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Abstract
Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory

and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent find-

ings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn

cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by

surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the dis-

eased brain as well, we confronted them with a series of apoptotic challenges and discov-

ered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate

agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysac-

charides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to

boost their phagocytic efficiency and compensate for the increased number of apoptotic cells,

thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling

was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in

hippocampal tissue resected from individuals with MTLE, a major neurological disorder char-

acterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/

apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic
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cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic

blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor

expression and was not directly mediated by signaling throughmicroglial glutamate recep-

tors. Instead, it was related to the disruption of local ATP microgradients caused by the hyper-

activity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the

uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that

was due not to decreased survival but to delayed cell clearance after seizures. These results

demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of

apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenera-

tive disorders.

Author Summary

Phagocytosis, the engulfment and digestion of cellular debris, is at the core of the regenera-
tive response of the damaged tissue, because it prevents the spillover of toxic intracellular
contents and is actively anti-inflammatory. In the brain, the professional phagocytes are
microglia, whose dynamic processes rapidly engulf and degrade cells undergoing apopto-
sis—programmed cell death—in physiological conditions. Thus, microglia hold the key to
brain regeneration, but their efficiency as phagocytes in the diseased brain is only pre-
sumed. Here, we have discovered a generalized response of microglia to apoptotic chal-
lenge induced by excitotoxicity and inflammation, in which they boost their phagocytic
efficiency to account for the increase in apoptosis. To our surprise, this apoptosis/micro-
glial phagocytosis coupling was lost in the hippocampus from human and experimental
mesial temporal lobe epilepsy (MTLE), a major neurodegenerative disorder characterized
by excitotoxicity, inflammation, and seizures. This uncoupling was due to widespread
ATP release during neuronal hyperactivity, which “blinded”microglia to the ATP micro-
gradients released by apoptotic cells as “find-me” signals. The impairment of phagocytosis
led to the accumulation of apoptotic cells and the build-up of a detrimental inflammatory
reaction. Our data advocates for systematic assessment of the efficiency of microglial
phagocytosis in brain disorders.

Introduction
Phagocytosis is a crucial component of the regenerative response that is well described in
peripheral inflammatory diseases, in which macrophages must rapidly clear the cell corpses to
prevent the spillover of toxic intracellular contents and the initiation of an inflammatory
response [1]. In the brain, however, where neuronal apoptosis (programmed cell death) is
ubiquitous during development as well as in neurodegenerative diseases such as epilepsy, ische-
mia/stroke, Alzheimer and Parkinson diseases, or multiple sclerosis, phagocytosis is known to
be executed largely by microglia but remains notoriously unexplored [2].

Microglia belong to the macrophage–monocyte lineage but, unlike most tissue-resident
macrophages, they are derived from the embryonic yolk sac and invade the brain parenchyma
early during embryonic development [3]. They also have other exclusive characteristics such as
the unique motility of their fine processes, which scan the whole brain parenchyma every few
hours [4,5]. As a result of these recent findings, novel roles of microglia in the healthy brain
have just begun to be unraveled, including their capacity to interact with neurons and modulate
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their activity [6–8]. They also shape the adult hippocampal neurogenic niche by removing the
excess of newborn cells naturally undergoing apoptosis [9]. Here, microglia are very skilled
phagocytes that rapidly engulf and degrade the apoptotic cells. Importantly, in physiological
conditions only a small proportion of microglia are in the process of phagocytosing at a given
time, suggesting that they hold a large phagocytic reservoir that could be summoned in the dis-
eased brain.

To test whether microglia are efficient phagocytes in neurodegenerative conditions, we con-
fronted them with a series of apoptotic challenges evoked by excitotoxicity as well as acute or
chronic inflammation. We discovered that, in these conditions, hippocampal microglia raised
their phagocytic capacity to proportionally match the increase in apoptosis. Thus, a general
mechanism of phagocytic response begins to emerge, in which microglial phagocytosis is effi-
ciently coupled to apoptosis. Unexpectedly, we found that the microglial phagocytic response
was impaired in both human and experimental mesial temporal lobe epilepsy (MTLE), a major
neurological disorder characterized by seizures, excitotoxicity, and inflammation. Herein, we
show that the uncoupling between microglial phagocytosis and apoptosis is the result of an
impairment of microglial motility and apoptotic cell recognition; it is related to the disruption
of ATP microgradients; and leads to a delayed clearance of apoptotic cells and inflammation.

Results

Microglial Phagocytosis Is Coupled to Cell Apoptosis
To analyze the microglial response to an apoptotic challenge, we used an in vitro model of exci-
totoxicity without seizures induced in postnatal (PND) organotypic hippocampal cultures by
treatment with the glutamate agonist NMDA (N-methyl-D-aspartate, 50 μM) (Fig 1). Apopto-
sis was determined by aberrant nuclear morphology visualized with the DNA dye DAPI
(pyknosis/karyorrhexis), necrosis by retention of propidium iodide (PI), and microglial phago-
cytosis by the appearance of phagocytic pouches in fms-EGFP mice, in which all microglia
express the fluorescent reporter [10] (Fig 1A). The number of apoptotic, but not of necrotic,
cells increased significantly after 4 h of NMDA treatment compared to nontreated controls
and returned to basal levels 24 h later (Fig 1B). The basal phagocytic (Ph) index, i.e., the pro-
portion of apoptotic cells completely engulfed by microglia, was 15 ± 2% in organotypic slices
(Fig 1C) lower than in the PND (60%–70%; S1A and S1B Fig), and adult (90%–100%; [9])
dentate gyrus (DG), evidencing changes induced by culturing the tissue. When challenged with
NMDA, microglia responded to the increased number of apoptotic cells by rising their Ph
capacity, i.e., the proportion of microglia with one or more phagocytic pouches, each contain-
ing one apoptotic cell [9], and there were more phagocytic microglia overall, some of them
with up to seven pouches (Fig 1D and 1E), while the number of microglia remained
unchanged (Fig 1F). Thus, the increase of net phagocytosis (number of microglia multiplied by
their phagocytic capacity) matched the increase in apoptosis, as determined by the phagocyto-
sis/apoptosis coupling ratio (Ph/A coupling). The Ph/A coupling was similar between control
and NMDA-treated slices (Fig 1G).

Remarkably, we observed the same type of coupled microglial phagocytic response in vivo
after acute and chronic inflammatory challenge (Fig 2). After acute inflammatory challenge
induced by bacterial lipopolysaccharides (LPS; 1 mg/kg i.p., 8 h, 1-mo-old mice), apoptosis
increased in the DG (Fig 2A) [9], and hippocampal microglia responded by proportionally
raising their phagocytic capacity (Fig 2B) without increasing their number (Fig 2C). As a
result, the Ph/A coupling ratio (Fig 2D) and the Ph index remained unchanged (95.9 ± 2.2%
versus 93.3 ± 1.4% of apoptotic cells engulfed in control versus LPS, respectively [9]). We
observed a similar response in a model of chronic inflammatory challenge induced in young
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Fig 1. Microglial phagocytic response during in vitro excitotoxic challenge. (A) Representative epifluorescence (upper panels) and confocal (middle
panel) images of the DG in hippocampal organotypic cultures treated with NMDA (50 μM) for 4 h, or fresh media for another 24 h. Normal or apoptotic
(pyknotic/karyorrhectic) nuclear morphology was visualized with DAPI (white), microglia by the transgenic expression of fms-EGFP (cyan) and membrane
permeability (characteristic of necrotic cells) by PI (red). High magnification inserts show a phagocytosed secondary apoptotic cell (pyknotic, PI+; left panel,
arrow); primary apoptotic cells (pyknotic, PI-), phagocytosed or not (arrow and arrow heads, respectively, central panel); and phagocytosed necrotic
(nonpyknotic, PI+; red arrow, right panel). Scale bars, upper panel = 1 mm, lower panel = 30 μm. (B) Number of dead apoptotic (primary and secondary
together) and necrotic cells in 200.000 μm3 of the DG in organotypic slices treated with NMDA. (C) Ph index in organotypic slices (% of apoptotic cells
phagocytosed) treated with NMDA. The Ph index in vivo of animals at PND7 (the age at which the organotypic slices were cultured) and PND14 (equivalent
to the age of the cultures after 1 wk in vitro) is shown in S1A and S1B Fig (D) Weighted Ph capacity of microglia (in parts per unit, ppu). (E) Histogram
showing the Ph capacity of microglia (in % of cells). (F) Number of microglial cells. (G) Ph/A coupling (in fold-change) in organotypic slices treated with
NMDA. Bars represent mean ± SEM. * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001 by Holm-Sidak posthoc test (after one-way
ANOVA was significant at p < 0.05). Only significant effects are shown. Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002466.g001
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(PND21) mice fed during embryonic and PND development with a diet deficient in anti-
inflammatory omega 3 polyunsaturated fatty acids [11]. In omega 3-deficient mice there was
an increase in apoptosis in the DG (Fig 2E and 2F) but the Ph index remained unaltered com-
pared to mice fed during gestation and lactation with an omega 3 balanced diet (Fig 2G). The
increase in apoptosis was matched by a partial increase in the Ph capacity and an increase in
the number of microglial cells (Fig 2H–2J), ultimately resulting in the maintenance of the Ph/
A coupling (Fig 2K). Thus, both after excitotoxic challenge in vitro and acute and chronic
inflammatory challenge in vivo, microglial phagocytosis remained tightly coupled to apoptosis.

Acute Impairment of Microglial Phagocytosis Following Seizures In Vivo
The above results suggest that microglia have a substantial reservoir for phagocytosis, as they
could reach their maximum Ph capacity by recruiting up to 100% microglia to be phagocytic,
by inducing each microglia to phagocytose more apoptotic cells, and/or by increasing the total
number of microglia. To test this potential, we challenged microglia in an in vivo model of
MTLE, in which seizures concur with excitotoxicity and inflammation (Fig 3). Intrahippocam-
pal administration of kainic acid (KA) induced an episode of prolonged continuous seizure
activity (status epilepticus) that lasted 4–6 h. All animals reached level 3–4 class seizures
according to the Racine scale [12], and the development of spontaneous recurrent seizures was
monitored for up to 7 wk (Fig 3A) [13]. Apoptosis was consistently induced in the medial hip-
pocampus (spanning from −1 mm to −2.5 mm in the anteroposterior (AP) axis, from Bregma),
and thus quantifications were restricted to that area. We quantified the absolute number of
apoptotic cells (determined by pyknosis/karyorrhexis and/or activated caspase 3 staining)
along a time course from 6 h postinjection (hpi) to 7 dpi (d postinjection) (Fig 3B and 3C). In
the DG, the number of apoptotic cells, mostly located in the subgranular zone (SGZ) where
neural stem cells reside, significantly increased starting from 1 dpi and up to 7 dpi relative to
controls. Unexpectedly, we found limited evidence of phagocytosis (Fig 3D–3F), and the Ph
index significantly dropped at 6 hpi and 1 dpi (Fig 3G). In addition, we also found a consis-
tently low Ph index in the CA1 and CA3 regions of the hippocampus, as well as in the adjacent
somatosensory cortex (S2A–S2C Fig). In these regions, apoptosis was undetectable in control
conditions, and thus the basal Ph index could not be estimated.

We further analyzed the characteristics of this phagocytosis impairment in the DG. We
found a decreased Ph capacity at both 6 hpi and 1 dpi compared to controls, due to a smaller
proportion of microglia with phagocytic pouches (Fig 3H and 3I). While no significant
changes in total microglial numbers were found (Fig 3J), there was a significant decrease in the
microglial density at 1 dpi (S3A Fig), which can be attributed to the increase in the DG volume
(due to granule cell dispersion; S3B Fig), typical of both human and mouse MTLE. As a result
of the decreased Ph capacity induced by KA, the Ph/A coupling ratio dramatically decreased
(Fig 3K). In summary, instead of an increase in phagocytosis after the KA challenge matching

Fig 2. Microglial phagocytic response during in vivo acute and chronic inflammatory challenge. (A) Experimental design and apoptosis in the DG of
c57BL/6 fms-EGFP 1-momice injected systemically with LPS (1mg/kg; n = 5) or vehicle (saline; n = 4) 8 h prior to sacrifice. Apoptotic cells were identified
by pyknosis/karryorhexis. Fig 2A was generated from data that was originally published as part of [9]. (B) Weighted Ph capacity of microglia (in parts per
unit, ppu) in control and LPSmice. (C) Number of microglial cells in control and LPSmice. (D) Ph/A coupling in the 1-mo mouse hippocampus (in fold
change) during acute inflammatory challenge. (E) Experimental design and representative confocal z-stacks of the DG of PND21 Swiss mice fed during
gestation and lactation with a diet balanced (Ω3 bal; n = 7) or deficient (Ω3 def; n = 7) in the omega 3 polyunsaturated fatty acid, a diet that induces chronic
inflammation in the hippocampus. Microglia were labeled with Iba1 (cyan) and apoptotic nuclei were detected by pyknosis/karyorrhexis (white, DAPI).
Arrows point to apoptotic cells engulfed by microglia (M). Scale bars = 50 μm; z = 22.5μm. (F) Number of apoptotic (pyknotic/karyorrhectic) cells in mice fed
withΩ3 balanced and deficient diets. (G) Ph index in the PND21 hippocampus (in % of apoptotic cells) in mice fed withΩ3 balanced and deficient diets. (H)
Weighted Ph capacity of microglia (in ppu) in PND21 mice. (I) Histogram showing the Ph capacity distribution of microglia (in % of cells) in PND21mice. (J)
Total number of microglial cells (Iba1+) in PND21mice. (K) Ph/A coupling in PND21mice. Bars represent mean ± SEM. * indicates p < 0.05 and **
indicates p < 0.01 by one-tail Student´s t test. Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002466.g002
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the increase in apoptosis, as expected from our experiments with excitotoxicity and inflamma-
tion, the microglial phagocytic response was reduced as early as 6 hpi following the KA
challenge.

We then argued that microglial phagocytosis impairment could be compensated by the
recruitment of other resident cells endowed with phagocytic potential, such as astrocytes [14]
or neuroblasts [15], which do not normally phagocytose hippocampal apoptotic cells in resting
conditions [9]. To test this hypothesis, we used transgenic mice in which the expression of fluo-
rescent reporters is controlled by cell-type specific promoters, i.e., human glial fibrillary acidic
protein (hGFAP) for astrocytes and proopiomelanocortin (POMC), which in the hippocampus
is only expressed in neuroblasts [16]. We found that both cell types were engaged in phagocy-
tosis after 1 dpi of KA, but nonetheless, they only engulfed a small proportion of the apoptotic
cells compared to microglia (S3C and S3E Fig). Therefore, even at 1 dpi after KA, microglia
remained the most determinant phagocyte in the hippocampus.

Subacute Partial Recovery of Microglial Phagocytosis Coincides with
Multinuclearity and Phagoptosis, and Is Unrelated to Monocyte Invasion
To determine the extent of microglial impairment over time, we analyzed apoptosis and phago-
cytosis over a time course of 3 to 7 dpi after the KA challenge (Fig 4). The number of apoptotic
cells continued to increase over this period (Fig 3C), but now the cells had a wider distribution
throughout the DG (Fig 4A). In contrast to 1 dpi, phagocytosis was evident in KA mice at 3
dpi and 7 dpi (Fig 4B and 4C), although the Ph index remained significantly lower than in
control mice (Fig 4D), indicating a continued impairment. Nonetheless, some recovery of
phagocytosis occurred, because the net phagocytosis increased significantly (Fig 4E). In addi-
tion to the phagocytosis of apoptotic cells, we found some cases of phagoptosis, i.e., engulfment
of nonapoptotic cells. This phenomenon occurred at lower frequency than the phagocytosis of
apoptotic cells (Fig 4C and 4F). Phagoptosis, which is a process triggered by inflammation
[17], was undetectable in control mice (Fig 4F), LPS-treated mice, or omega 3-deficient mice at
the time points tested.

Furthermore, microglia developed a hypertrophic, seemingly ameboid morphology, which
was accompanied by an incomplete mitosis (nucleokinesis without cytokinesis), as determined
by staining with the cell cycle marker phosphohistone 3 (PH3) (Fig 4B). While in saline
mice all microglia had a single nucleus, KA treatment significantly increased multinuclearity

Fig 3. Microglial phagocytosis is impaired early (1 dpi) due to MTLE seizures in vivo. (A) Hippocampal electroencephalographic
recordings of mice injected in the ipsilateral side (I) with KA (50 nL, 20 mM) during status epilepticus (0 dpi) and during a spontaneous
seizure occurring in the chronic phase of MTLE (49 dpi). The contralateral hippocampus (C) is shown for comparison purposes. (B)
Representative confocal z-stacks of saline and KA (1 dpi) hippocampi labeled with DAPI (nuclear morphology, white), activated caspase 3
(act-casp3+, red, for apoptotic cells), and fms-EGFP (cyan, microglia). (C) Number of apoptotic cells (pyknotic/karyorrhectic and act-casp3+)
in the septal DG (n = 3−9 per time point and treatment). The volume of the septal DG is shown in S3B Fig. (D) Representative confocal
image of a nonphagocytosed apoptotic (pyknotic and act-casp3+, arrowhead) cell in the SGZ (orthogonal projection, left; and 3-D-rendered
image, right). M, microglial cell body. (E) Representative 3-D-rendered confocal z-stack of apoptotic (pyknotic and act-casp3+) cells,
phagocytosed (arrow) or not (arrowheads) in the septal DG of mice treated with KA at 1 dpi. M, microglial cell body. (F) Representative 3-D-
rendered confocal z-stack of an apoptotic (pyknotic), nonphagocytosed cells (arrowhead) in the DG of mice treated with KA at 1 dpi. The
arrow points to a semiengulfed apoptotic cell. M, microglial cell body. (G) Ph index in the septal DG (in % of apoptotic cells) after KA.
Phagocytosis by astrocytes and neuroblasts is shown in S3C and S3E Fig. (H) Weighted Ph capacity of DGmicroglia (in ppu). (I) Histogram
showing the Ph capacity distribution of microglia (in % of cells) in the DG. (J) Total number of microglial cells (fms-EGFP+) in the septal DG.
Microglial density is shown in S3A Fig. (K) Ph/A coupling (in fold change) in the septal DG. (L) Histogram showing the distribution of the
distance (in μm) of apoptotic cells (in %) to microglial processes. The average distance of apoptotic cells to microglia is shown in S3F Fig.
Bars represent mean ± SEM except in L, where they indicate the sum of cells in each distance slot. * indicates p < 0.05, ** indicates
p < 0.01, and *** indicates p < 0.001 by Holm-Sidak posthoc test after two-way ANOVA (H–K) or one-way ANOVA (C, G, where a
significant interaction time x treatment was found) were significant at p < 0.05. Scale bars = 50 μm (B), 10 μm (D–F). z = 25 μm (B), 13.9 μm
(D), 14.1 μm (E), 8.4 μm (F). Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002466.g003
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(Fig 4G). In KA mice, uni- and multinucleated cells performed phagocytosis similarly (Fig
4H). Phagoptosis was executed mostly by multinucleated cells at 3 dpi, and similarly by uni
and multinucleated microglia at 7 dpi (Fig 4I). Because multinucleated microglia frequently
overlapped spatially, it was not possible to estimate their numbers precisely, and the Ph/A cou-
pling ratio was not calculated. To further characterize microglia in this context, we analyzed
their proliferation with the cell cycle marker Ki67 [18] and their expression of classic activation
markers such as CD11b (integrin αM) and CD68 (macrosialin) [19]. We found that DG micro-
glia began to proliferate at 3 dpi (S5 Fig), coincident with the proliferation of other cell types
and a large activation of the proliferative molecular program induced by KA [13]. We also
found an increased expression of CD11b and CD68 along the time course that reached a maxi-
mum at 7 dpi and was not restricted to the DG as it spread over the whole hippocampus (Fig 7
and S6 Fig). Nonetheless, we found no apparent correlation between the expression of these
markers and the phagocytosis impairment. Thus, at 3 and 7 dpi, there was a partial recovery of
microglial phagocytosis, coincidental with multinuclearity and phagoptosis.

The abnormal microglial phenotype we observed in KA-treated mice might be related to the
invasion of bone marrow-derived monocytes. To test this possibility, we analyzed the expres-
sion of CD45, a lymphocyte antigen with higher expression in circulating cells compared to
resident microglia [10]. CD45 expression was undetectable in saline-injected mice but was evi-
dent in all fms-EGFP-expressing cells at 3 dpi after KA by immunofluorescence (Fig 5A). Flow
cytometry analysis showed a transiently increased CD45 expression in the fms-EGFP popula-
tion at 3 dpi that returned to basal levels by 7 dpi (Fig 5B and 5C). This finding could be inter-
preted as resulting from a transient overexpression of CD45 in resident microglia, or from an
invasion of CD45high monocytes that either died or down-regulated the antigen later on. To
further test the role of invading monocytes, we injected KA in mice lacking CCR2, the main
receptor for the chemokine MCP1 (monocyte chemoattractant protein), which is involved in
the recruitment of circulating monocytes into the damaged central nervous system [20].
CCR2-/- mice have a greatly decreased population of circulating monocytes and recruitment
into the brain parenchyma [21]. CCR2-/- mice reached similar levels to WT mice in the Racine
scale (3–4) after KA, and the amount of apoptosis at 3 dpi was similar in wild type and CCR2-/-

mice (Fig 5D and 5E). As noted above, the number of microglial cells in these mice could not
be accurately assessed because of their ameboid, multinucleated morphology, but no obvious
differences were observed. Importantly, both genotypes showed a similar phagocytosis

Fig 4. Partial recovery of microglial phagocytic efficiency at 3 and 7 dpi is accompanied by multinuclearity and phagoptosis. (A)
Representative confocal z-stacks of saline and KA (3 dpi) hippocampi labeled with DAPI (nuclear morphology, white), activated caspase 3
(act-casp3+, red, for apoptotic cells), and fms-EGFP (cyan, microglia). At 3 dpi, KA led to an accumulation of apoptotic cells throughout the
DG. (B) Orthogonal projection of a confocal z-stack from the hippocampus of a KA-treated mouse (3 dpi) showing a binucleated microglia
cell (fms-EGFP+, cyan) undergoing division (phosphohistone 3, PH3, red) and phagocytosing an apoptotic cell (pyknotic by DAPI, white;
A). Note the condensed chromosomes in the microglial nuclei, typical of mitosis (M1, M2). (C) Representative confocal z-stack of a large
multinucleated phagoptotic microglia (fms-EGFP+, cyan) from the hippocampus of a KA mouse (3 dpi). Another example is shown in S4A
Fig. (C1). 3-D-rendered image showing the continuum of EGFP through the microglial cytoplasm and within their nuclei. Up to eight nuclei
were contained. (C2) Panel showing each nucleus individually. Nuclei 2, 3, and 5 showed condensed chromosomes, characteristic of an
ongoing mitosis. Nuclei 4 and 7 were small but not pyknotic; they did not contain EGFP and thus were not microglial but rather surrounded
by pouches of microglial cytoplasm. (C3) Orthogonal projections of nuclei 4 and 7 showing their complete engulfment by microglial
processes (phagoptosis). (D) Ph index (in % of cells) in the septal hippocampus at 3 and 7 dpi (n = 3–7 per group). (E) Total number of
phagocytosed apoptotic cells in the septal hippocampus after treatment with KA (3 and 7 dpi). (F) Total number of phagoptosed
nonapoptotic cells in the septal hippocampus after treatment with KA (3 and 7 dpi). Nonphagoptosed cells were found in control animals.
nd, not detected. (G) Proportion (in % of cells) between uni- and multinucleated microglia in the hippocampus of KA-treated mice at 3 and 7
dpi. (H) Weighted Ph capacity in the septal hippocampus after treatment with KA (3 and 7 dpi). (I) Weighted PhP (phagoptosis) capacity in
the septal hippocampus after treatment with KA (3 and 7 dpi). Bars showmean ± SEM. * indicates p < 0.05, ** indicates p < 0.01, and ***
indicates p < 0.001 by Student´s t test (G) or by Holm-Sidak posthoc test after two-way ANOVA (D, E) or one-way ANOVA (I) were
significant at p < 0.05. Only significant effects are shown. Scale bars = 50 μm (A), 10 μm (B, C); z = 25 μm (A), 10.5 μm (C). Underlying
data is shown in S1 Data.

doi:10.1371/journal.pbio.1002466.g004
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impairment determined by the Ph index (Fig 5F), the percentage of multinuclear microglia,
and the average number of nuclei per cell (Fig 5G and 5H), without any significant changes in
DG volume (S4C Fig). Likewise, phagocytosis and phagoptosis by uni- and multinucleated
microglia were similar in both genotypes (Fig 5I and 5J). We also tested potential compensa-
tory mechanisms such as neutrophil invasion. However, the presence of circulating neutrophils
labeled with myeloperoxidase [22] was very low in both genotypes (3.8 ± 2.0 versus 3.0 ± 2.1
cells per hippocampus in WT versus CCR2 KOmice, respectively; S4D and S4E Fig). Overall,
these data indicate that invading peripheral immune cells do not contribute significantly to the
microglial population in the early stages of experimental MTLE.

Chronic Impairment of Microglial Phagocytosis in Mouse and Human
MTLE
We next sought to confirm that microglial phagocytosis is also impaired in human MTLE.
Because in humans MTLE is a chronic disease, we first analyzed microglial phagocytosis in
KA-treated mice 4 mo postinjection (mpi), when animals have chronic epilepsy [13]. At this
time, hippocampal sclerosis characterized by granule cell dispersion and the appearance of
reactive, hypertrophic astrocytes [23] was evident in KA mice (Fig 6A and S4F Fig). At 4 mpi
after KA, apoptosis had returned to basal levels (S4G Fig), but a substantial number of apopto-
tic cells were not phagocytosed whether by microglia (Ph index = 43 ± 14%) (Fig 6B and 6C)
or by reactive astrocytes (Ph index = 5 ± 3%) (S4H Fig). Furthermore, over 80% of the nonpha-
gocytosed cells analyzed were less than 0.5 μm apart of a microglial process (Fig 6D). To test
whether this impaired microglial phagocytosis was related to a decreased surveillance, we ana-
lyzed the density of microglial cells and the percentage of the parenchyma occupied by micro-
glial processes (microglial volume), and found that both parameters increased significantly in
KA mice at 4 mpi compared to controls (Fig 6E and 6F). Thus, impairment of microglial
phagocytosis was long-lasting in our chronic MTLE experimental model in spite of their
increased density and volume occupied.

Next, we tested microglial phagocytosis in hippocampal tissue resected from drug-resistant
MTLE patients, in which the hippocampal formation was removed to control the seizures. The
tissue had minimal postoperative delay before it was fixed (under 40 min), which preserved
antigenicity and prevented further neuronal damage (Fig 6G). In the three MTLE patients

Fig 5. Microglial phagocytosis impairment is unrelated to monocytes. (A) CD45 staining in saline- and KA-injected mice at 3 dpi.
Cell nuclei are shown in white (DAPI), microglia in cyan (fms-EGFP), and CD45 in red. In control mice, the expression of CD45 was
dim, showing diffuse cytoplasmic inclusions within microglia. A CD45+ cell is shown engulfing an apoptotic cell (arrow, enlarged). In
KA mice, CD45 had a higher and more widespread expression in all microglial cells, including a dividing cell (arrowhead, enlarged). A
clear distinction between CD45high and CD45low cells was not evident. (B) Flow cytometry analysis of the expression of CD45 in fms-
EGFP+ hippocampal cells from control and KA-treated mice. Gates for CD45low (cyan) and CD45high (red) were defined based on the
distribution of the fms-EGFP+ cells in control (not injected) mice. 3 dpi after the KA injection, more cells were found in the CD45high

gate, although the fms-EGFP+ cells were in fact distributed along a continuum of CD45 expression, all of them with higher expression
than control mice. At 7 dpi, the expression of CD45 returned to basal levels. The gating strategy is shown in S4B Fig. (C) Percentage
of fms-EGFP+ cells that expressed low or high levels of CD45 in control or KA-treated mice determined by flow cytometry (n = 4 per
group). (D) Experimental design and representative confocal z-stacks of the hippocampus of CCR2-/- (CCR2 KO) mice and control
WTs (C57BL/6) injected with KA (3 dpi). No obvious differences in the status epilepticus, neuronal damage, microglial morphology,
nor in the DG volume (S4C Fig), or neutrophil infiltration were found (S4D and S4E Fig). (E) Number of apoptotic (pyknotic/
karyorrhectic) in the septal DG in WT and CCR2 KOmice 3 dpi after KA (n = 4 per group). (F) Ph index in the septal DG (in % of
apoptotic cells) in WT and CCR2-/- mice 3 dpi after KA. (G) Multinuclearity in WT and CCR2-/- mice. (H) Size of multinucleated cells in
WT and CCR2-/- mice. (I) Weighted Ph capacity in WT and CCR2-/- mice. Note that the Ph capacity is higher than in our previous time
course (Fig 4H), reflecting an increased number of apoptotic cells in this experiment compared to the previous one, possibly because
it was performed in different animal facilities. (J) Weighted PhP (phagoptosis) capacity in the septal DG in WT and CCR2-/- mice. Data
are shown as mean ± SEM. * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001 by Holm-Sidak posthoc test, after
one-way ANOVAwas significant at p < 0.05; only significant interactions are shown. Scale bars = 20 μm (A), 50 μm (D); z = 14.7 μm
(A), 12.6 μm (D). Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002466.g005
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analyzed (two males, one female, aged 38–56), apoptosis was low (typically 10–20 apoptotic cells
per slice). As in the mouse MTLE model, many apoptotic cells remained not phagocytosed in the
hippocampus (Fig 6H; S1 Table). Some of the apoptotic cells were phagocytosed by terminal or
en passant microglial branches (ball-and-chain mechanism) (Fig 6I), similar to phagocytosis by
mouse microglia in vivo in physiological conditions, after LPS [9], or early after KA challenge (Fig
3E). In addition, we observed a unique type of microglial phagocytosis in the human brain in
which several microglia formed a mesh surrounding the apoptotic cell, in an aster-like structure
(Fig 6J). Furthermore, in all patients we found many instances where several microglia directly
projected their processes towards nonapoptotic neurons (Fig 6K and S8A Fig), which can be
interpreted either as the initiation of a phagoptotic process or of the aster-shaped phagocytosis
uniquely found in the human tissue. Importantly, the three samples fromMTLE patients analyzed
showed a low Ph index (on average, 49 ± 4%; 26 ± 3% ball-and-chain, 23 ± 4% aster; Fig 6L), and
a large proportion of apoptotic cells in close proximity to a microglial process (up to 67% of cells
under 0.5μm; Fig 6H and 6N), similar to that of KAmice at 4 mpi. The density of microglial cells
and the volume occupied by microglia were also consistent among patients (Fig 6M and 6O) and
remarkably similar to those in our mouse model of MTLE at 4 mpi after the injection of KA.

To confirm this data, we obtained autopsy hippocampal tissue from epileptic patients (not
MTLE) and nondemented controls from the Netherlands Brain Bank (S8B and S8C Fig). The
long postmortem (PM) delays (ranging from 3 to 22 h) complicated the interpretation of the
data, as phagocytosis was mostly absent in the autopsy tissue. The low phagocytosis in autopsy
human tissue is in agreement with data obtained PM in the spinal cord of mice, where the
microglial motility and damage response were strongly prevented as early as 3 h PM, likely due
to a depletion of energy sources in the dead tissue [24]. Nonetheless, we found a significant
decrease in the Ph index in the hippocampus of nondemented controls compared to epileptic
patients (22 ± 3% versus 1.3 ± 1.3%, respectively from 6 control and 3 epileptic individuals;
p = 0.002; S1 Table). Overall, our data demonstrate that microglial phagocytosis is impaired in
human epilepsy.

Fig 6. Long-term impairment of microglial phagocytosis in mouse and humanMTLE. (A) Representative confocal images of the
DG of saline- and KA-injected mice at 4 mpi showing the nuclei (with DAPI, in white) and microglia (Iba1+, in cyan). Note the gross
dispersion of the DG in KA injected mice (S4F Fig). The number of apoptotic cells in control and KA-treated mice at 4 mpi is shown in
S4G Fig. (B) Upper panel: representative confocal z-stack of an apoptotic cell (pyknotic, with DAPI, in white; arrowhead) located nearby
a hypertrophic reactive astrocyte (rA; visualized with nestin-GFP+, in green) and a microglial cell (M; Iba1+, in cyan) at 4 mpi after KA.
Lower panel: representative confocal z-stack of an apoptotic cell phagocytosed by microglia at 4 mpi after KA. A representative image of
phagocytosis by a reactive astrocyte at 4 mpi after KA is shown in S4H Fig. (C) Ph index in the DG (% of apoptotic cells engulfed). (D)
Histogram showing the distribution of the distance (in μm) of apoptotic cells to microglia at 4 mpi after KA (in %). (E) Density of microglial
cells (in cells/mm3). (F) Microglial volume (in % of volume of DG occupied). (G) Representative confocal tiled image of a slice of the
human hippocampus from an MTLE patient showing cell nuclei (with DAPI, white), neuronal nuclei (NeuN+, magenta), and microglia
(Iba1+, cyan). (H) Representative confocal image of a nonphagocytosed apoptotic cell (pyknotic, with DAPI) adjacent to a microglial
process (Iba1+) in the hippocampus of an MTLE patient. (I) Representative confocal image of phagocytosis by a ball-and-chain
mechanism in the hippocampus from an individual with MTLE. The apoptotic cell (pyknotic, with DAPI in white; arrow) was engulfed by a
terminal branch of a nearby microglia (Iba1+, cyan). The right panel shows an orthogonal projection of the same cell, where the 3-D
engulfment is evident. (J) Representative confocal z-stack of phagocytosis by an aster mechanism in the hippocampus from an individual
with MTLE. The apoptotic cell (pyknotic, with DAPI in white; arrow) was engulfed by a mesh of processes frommany surrounding
microglia (Iba1+, cyan; M). The right panel shows an orthogonal projection of the same cell. (K) Representative confocal z-stack of a
granule neuron in the DG (NeuN+, magenta; arrow) targeted by the processes of several surrounding microglia (Iba1+). Nuclei are shown
in white (DAPI). The right panel shows an orthogonal projection of the same neuron directly targeted the processes of up to three
microglia (M). Another example is shown in S8A Fig and further data in S1 Table. (L) Ph index in the human DG (% of apoptotic cells
engulfed). (M) Density of microglial cells (in cells/mm3) in the DG of three hippocampal samples from human MTLE patients. (N)
Histogram showing the distribution of the distance of apoptotic cells (in %) to Iba1+ microglial processes in the DG of MTLE patients
(n = 21 cells from 3 patients). (O) Microglial volume (in % of volume of DG occupied) in the three hippocampal samples from individuals
with MTLE. Bars represent mean ± SEM (C, E, F), the individual values of all the pooled cells for each patient (L), the average values for
measures in different z-stacks for each patient (M, O), or the sum of cells in each distance slot (D, N). ** represents p < 0.01 by Student´s
t test (C, E, F). Scale bars = 50μm (A, K), 10 μm (B, H, I), 1 mm (G), 20 μm (J). z = 25 μm (A), 6.6 μm (B, upper panel), 12.7 μm (B, lower
panel), 2.8 μm (H), 2.6 μm (I), 5.2 μm (J), 12 μm (K). Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002466.g006
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Phagocytosis Impairment Is Triggered by Widespread ATP Release
during Seizures
We next investigated potential mechanisms underlying the impairment of microglial phagocy-
tosis in the acute phase of epilepsy. Such impairment occurred as early as 6 hpi, before a signifi-
cant increase in the number of apoptotic cells and decreased microglial density were detectable
(at 1 dpi; Fig 3 and S3A Fig). Strangely, we observed that in KA mice many nonphagocytosed
apoptotic cells were localized in direct apposition to a microglial process (Fig 3D and 3E).
While in control mice the average distance between an apoptotic cell and the closest microglial
process was 1.3 ± 0.3 μm, this was increased significantly at 6 hdpi and 1 dpi following KA
challenge (S3F Fig). In KA-treated mice at 1 dpi, 25% of nonphagocytosed apoptotic cells were
3–10 μm away, and up to 15% were over 10 μm away from a microglial process (Fig 3L). These
results suggested two potential mechanisms for the phagocytosis impairment: a defect in recog-
nition and phagocytosis initiation (which would result in apoptotic cells apposed to microglia
but not phagocytosed) and a defect in microglial surveillance and/or targeting of apoptotic cells
(which would result in far-off apoptotic cells). To verify the first hypothesis, we analyzed the
microglial expression of main receptors involved in phagocytosis: triggering receptor expressed
in myeloid cells 2 (Trem2) [25], Mer Tyrosine Kinase (MerTK) [26], complement receptor 3
(CR3) [27], and the G protein coupled receptor GPR34 [28]. We also analyzed the expression of
main receptors for ATP and UTP, well-described apoptotic cell “find-me” signals, such as the
ionotropic P2X4 and P2X7 and the metabotropic P2Y6 and P2Y12 receptors [29–31]. We acutely
purified microglia from the hippocampus of control and KAmice at 1 dpi by fluorescent-acti-
vated cell sorting (FACS) and quantified the expression of these receptors by RTqPCR.We
found that whereas P2X4, P2Y6, and P2Y12 receptors significantly increased, the apoptotic cell
recognition receptors Trem2, MerTK, CR3, and GPR34 were significantly decreased in microglia
from KAmice, explaining the deficient apoptotic cell targeting (Fig 7A).

We next explored the second hypothesis and reasoned that the impaired targeting could
result from an impaired motility of the microglial processes, among other possible mecha-
nisms. To assess the motility of microglial processes we resorted to an ex vivo approach using
acute hippocampal slices and 2-photon microscopy [32,33]. As predicted, KA induced a 22%
decrease in basal microglial motility at 1 dpi, mostly due to a decreased retraction of their pro-
cesses (Fig 7B–7D), which could lead to a decreased surveillance capacity. To further test the
impairment of microglial motility, we imaged the living cerebral cortex overlying the hippo-
campus, where we had previously detected phagocytosis impairment (S2C Fig). In the living
cortex of KA-injected mice at 1 dpi, microglia showed a 37% decrease in their basal motility
compared to saline-injected mice, which affected both the retraction and protraction (Fig 7E–
7G; S1 and S2 Movies). Together, the decreased expression of phagocytosis receptors and the
reduced motility would explain the defect in microglial phagocytosis of apoptotic cells observed
after seizures.

We then asked whether KA could be acting directly on microglia to cause the observed
phagocytosis impairment. We determined the expression of glutamate receptors in microglia
ex vivo and assessed the direct effect of KA in organotypic slices and primary cultures. We per-
formed a systematic analysis of the expression of all ionotropic and metabotropic glutamate
receptor subunits by RTqPCR in fluorescence-activated cell sorting (FACS) purified microglia
from the hippocampus and cortex of control 2-mo mice (Fig 8A and 8B and S9 Fig). We
detected a residual expression of all ionotropic and metabotropic subunits in hippocampal and
cortical microglia, unlikely to lead to the formation of functional receptors. In parallel, we
tested the effect of KA (1 mM) in hippocampal organotypic slices, and found that it did not
impair microglial phagocytosis of apoptotic cells (Fig 8C–8E and S10A–S10C Fig), likely
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Fig 7. Early phagocytic impairment is related to reduced expression of phagocytosis receptors and reducedmotility. (A) Experimental design
and expression of phagocytosis and purinergic receptors by RTqPCR in FACS-sorted microglia from control and KAmice at 1 dpi (n = 3 from 8 pooled
hippocampi). HPRT was used as a reference gene. (B) Experimental design and representative projections of 2-photon microscopy images of microglia
at t0 (cyan) and 15 min later (magenta) from the DG of controls and KA-treated mice (1 dpi). (C) Motility of microglial processes by 2-photon microscopy
in acute slices from CX3CR1GFP/+ mice after in vivo injection of KA (1 dpi; n = 4–5 cells from 3–4 mice per group). (D) Retraction and protraction of
microglial processes by 2-photon microscopy in acute slices from CX3CR1GFP/+ mice after in vivo injection of KA (1 dpi). (E) Experimental design and
representative projections of 2-photon images of microglia at t0 (cyan) and 13.5 min (magenta) in the cortex of controls and KA-treated mice (1 dpi). (F)
Motility of microglial processes by 2-photon microscopy in the living cortex of CX3CR1GFP/+ mice after the injection of KA (1 dpi; n = 6 cells from 3 mice
per group). (G) Retraction and protraction of microglial processes by 2-photon microscopy in the living cortex of CX3CR1GFP/+ mice after the injection of
KA. Bars represent mean ± SEM. * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001 by Student´s t test (A, C, D). Scale bars = 20 μm
(B), 50 mm (E). z = 50 μm (A), 40 μm (B). Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002466.g007
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Fig 8. Phagocytosis impairment is not directly mediated by glutamate receptors onmicroglia. (A, B) Experimental design for RTqPCR expression of
KA, NMDA, AMPA and metabotropic, receptor subunits in acutely purified microglia (FACS-sorted) from the hippocampus and the cortex of 2 mo mice (n = 4
samples of 8 pooled hippocampi and cortices each). The relative expression was compared to a positive control, a PND8 hippocampus, except for Grm6,
where the retina from a 2-mo mouse was used. L27A was used as a reference gene. Amplification plots and denaturing curves for each target gene are
shown in S9 Fig. (C) Experimental design and representative projections of confocal z-stacks of organotypic slices from fms-EGFPmice treated with vehicle
(control) or KA (1 mM) for 6 h. The number of apoptotic cells, Ph capacity, and number of microglia in the DG is shown in S10A–S10C Fig. (D) Ph index in
the DG organotypic slices (in % of apoptotic cells). (E) Ph/A coupling (in fold-change) in organotypic slices treated with KA. (F) Experimental design to test
the effect of KA on microglial phagocytosis in vitro. Primary cultures were pre-treated with KA (1 mM) for 2 h prior to adding apoptotic NE-4C cells (treated
with 5 μMCM-DiI for 25 min and 10 μM staurosporine for 4 h). NE-4C cells were left in the culture for another 3 h in the presence or absence of KA. (G)
Representative confocal z-stacks of fms-EGFP+ microglia phagocytosing apoptotic CM-DiI+ NE-4C cells. (H) Percentage of phagocytic microglia in cultures
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because KA did not induce seizures in vitro. Finally, we tested the direct effect of KA on micro-
glia in an in vitro model of phagocytosis, in which primary cultures of microglia derived from
PND0 mice were fed with a neuronal cell line, NE-4C, previously treated with staurosporine to
induce apoptosis. There, KA only produced a small but significant reduction in the percentage
of phagocytic microglia (Fig 8F–8H). Therefore, the strong impairment of microglial phagocy-
tosis that we observed in vivo after KA injection unlikely resulted from a direct effect of KA on
microglial KA receptors.

A strong candidate to mediate the effects of seizures is the extracellular nucleotide ATP. In
addition to being released by apoptotic cells [2], ATP is also released during seizures, either
from neurons or from astrocytes [34,35] and mediates the effects of glutamate on microglial
motility in retinal explants [36]. Direct measurement of the ATP release in vivo is complicated
by the fact that is rapidly degraded by several ectonucleotidases. Thus, we resorted to indirectly
determining the action of ATP released during seizures on microglia in vitro. We induced sei-
zures using a cocktail containing low Mg2+, high K+, and the nonselective blocker of voltage-
dependent potassium channels 4-aminopyridine (4-AP). This cocktail led to impaired micro-
glial phagocytosis in hippocampal organotypic slices as early as 1 h, as microglia failed to pro-
portionally increase their Ph capacity in response to the increase in apoptosis, further
confirming our in vivo data that seizures impair phagocytosis in mouse and human MTLE
(S10D–S10J Fig). Next, we treated acute hippocampal slices with the epileptogenic cocktail
and recorded microglial currents by patch-clamp. After a latency period of 11 ± 2 min, seizures
induced large inward currents in microglia that were blocked by the broad purinergic P2X
receptor antagonist BBG (Brilliant Blue G), (Fig 9A–9C), indicating a cationic current through
these channels. BBG did not alter the frequency or amplitude of the epileptic discharges
(S10K–S10M Fig). Overall, these data demonstrate that microglia sense seizures via ATP.

Because disrupting ATP gradients by saturating the cortical tissue with a high concentration
bath of ATP decreases the extension rate of microglia towards a laser-induced lesion [4], we
tested the hypothesis that large concentrations of ATP would disrupt the local “find-me” gradi-
ents in hippocampal organotypic slices and impair phagocytosis. Bathing the slices in ATP (1
mM) significantly increased the number of apoptotic cells in the slice (Fig 9D and 9E). This
effect was possibly due both to direct neuronal death [37,38] and a block of microglial phagocy-
tosis. The Ph index was substantially decreased (Fig 9F) as a result of decreased Ph capacity
(Fig 9G and 9H) and decreased microglial density (Fig 9I). We did not observe microglial apo-
ptosis induced by ATP but instead, microglia migrated towards the edges of the slice, an effect
that we attribute to the chemotactic nature of ATP. Ultimately, the Ph/A coupling was lost (Fig
9J). Overall, these data indicate that ATP impairs microglial phagocytosis and suggest a yet
unexplored mechanism underlying the early phagocytic impairment in experimental MTLE.

To further support our hypothesis that widespread release of ATP impairs microglial
phagocytosis, we injected ATP and its nondegradable analog ATPγS directly into the DG and
assessed their effect on microglial phagocytosis at 2 hpi. We injected a relatively high dose (100
mM) compared to conventional doses used in vitro, as in our organotypic slices experiments,
to account for their diffusion over the whole hippocampus (spanning an area of several cubic
mm). Indeed, we found a noticeable alteration in microglial morphology with processes retrac-
tion throughout the septal hippocampus, largely restricted to the DG (S11A Fig). No signs of
cell death or shrinkage due to a potential osmosis imbalance were observed at the injection site
in spite of the high osmolarity of the injected solutions (PBS: 286 mmol/kg; ATP: 473 mmol/

(n = 2 independent experiments in triplicate). Bars represent mean ± SEM. ** indicates p < 0.01 by Student´s t test (H). Scale bars = 30 μm (C, G).
z = 6.3 μm (F, J). Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002466.g008
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Fig 9. Seizures trigger ATP-mediated microglial activation and impairment of phagocytosis. (A) Experimental design used to induce seizures in acute
hippocampal slices with an epileptogenic cocktail that included high K+, low Mg2+, and 4-AP in ACSF, in the presence or absence of the broad P2X receptor
antagonist BBG (5 μM). Seizure activity was recorded in CA1, where it had higher amplitude than in the DG. Top, extracellular recording (mV) and bottom,
simultaneous microglia patch clamp recording (pA) before and after seizure induction in the absence or presence of BBG. BBG did not alter seizure
frequency or amplitude (S10K–S10M Fig). (B) Patch-clamp currents (in pA) induced in microglia by the seizure activity after the epileptogenic cocktail in the
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kg; ATPγS: 635 mmol/kg), likely because of their diffusion over the hippocampal parenchyma.
ATP, but not ATPγS, resulted in an increased number of apoptotic cells in the DG (Fig 10A
and 10B). Both treatments induced a significant reduction of the Ph index (Fig 10C) and Ph
capacity (Fig 10D and 10E) without altering the number of microglia (Fig 10F), ultimately
resulting in a strong reduction of the Ph/A coupling (Fig 10G). Nonetheless, apoptotic micro-
glia could be occasionally observed in the ATP (126 ± 46 apoptotic microglia per septal hippo-
campus) but not in the ATPγS- treated DG.

To disregard the possibility that changes in phagocytosis efficiency in ATP-treated mice
were the result of reduced microglial viability, we performed a second experiment with 10 mM
(304 mmol/kg) and 100 mM ATP. It is also important to note that, as the average clearance
time is 1.2–1.5 h [9], at 2 hpi we could detect only a fraction of the cells that had impaired rec-
ognition, as the cells that started phagocytosis before the injection would still be in the process
of degrading the apoptotic cell. Thus, we decided to analyze microglial phagocytosis at a later
time point (4 hpi) to let them fully digest their prior cargo. In contrast, in this later time point
degradation of the injected ATP by ectonucleotidases was more likely to occur. At 4 hpi, both
10 and 100 mM ATP increased the number of apoptotic cells in the DG (Fig 10H and S11B
Fig) and, as expected, the phagocytosis impairment indicated by the drop in the Ph index was
more obvious in mice treated with the higher dose (Fig 10I). Following 100 mM ATP, the Ph
index dropped and the Ph capacity remained constant, indicating a recovery from the 2 hpi
likely because of a wash-out or degradation of the injected ATP (Fig 10I and 10J). The number
of microglia decreased with ATP 100 mM (Fig 10L), indicating the expected loss of viability.
Microglial apoptosis was observed at 100 mM ATP (34 ± 16 apoptotic microglia per septal
DG) but not at 10 mM ATP. Furthermore, at 10 mM ATP, the Ph index dropped and the Ph
capacity increased but not sufficiently to counteract the increase in apoptosis, without affecting
microglial numbers (Fig 10L), ultimately resulting in a decreased Ph/A coupling (Fig 10M).
We finally tested the alternative hypothesis that impaired recognition in epileptic mice was due
to a defective signaling from apoptotic cells, possibly due to an altered expression of pannexin,
one route through which ATP is released [39]. However, we found a low expression of pan-
nexin throughout the hippocampus and no expression in apoptotic cells, either phagocytosed
or not, both in control or KA-treated mice (S12 Fig). Thus, in the hippocampus apoptotic cells
may signal to microglia via mechanisms unrelated to pannexin channels. Overall, the results
obtained with ATPγS (100 mM, 2 h) and ATP (10 mM, 4 h) confirm our in vitro data and
demonstrate that disrupting ATP gradients impairs microglial phagocytosis.

Seizures Lead to the Accumulation of Nonphagocytosed Apoptotic Cells
In Vivo
The impairment in microglial phagocytosis should result in an accumulation of apoptotic cells.
To directly test this hypothesis, we estimated the clearance time of well-identified cell popula-
tions undergoing apoptosis. Our data showed that the majority of apoptotic cells at 1 dpi after

absence (control, n = 18 cells) or presence of the P2X antagonist BBG (n = 11 cells). (C) Latency (in minutes) of the currents induced in microglia by the
seizure activity. (D) Experimental design and representative projections of confocal z-stacks of fms-EGFP organotypic slices treated with vehicle (control) or
ATP (300 μM and 1 mM) for 4 h. Normal or apoptotic nuclear (pyknotic/karyorrhectic) morphology was visualized with DAPI (white) and microglia by the
transgenic expression of fms-EGFP (cyan). The high magnification inserts show single images of apoptotic cells phagocytosed by microglia (arrows) or not
phagocytosed (arrowheads). (E) Number of apoptotic cells in a 200.000 μm3 volume containing the DG in organotypic slices treated with ATP (n = 3 slices
per group). (F) Ph index in organotypic slices (in %). (G) Weighted Ph capacity (in ppu) in organotypic slices. (H) Histogram showing the Ph capacity of
microglia distribution (in % of cells) in organotypic slices treated with ATP. (I) Number of microglia in organotypic slices. (J) Ph/A coupling (in fold-change) in
organotypic slices. Bars represent mean ± SEM. * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001 by Student´s t test (B) or by Holm-
Sidak posthoc test after one-way ANOVA (E–J) was significant at p < 0.05. Scale bars = 30 μm. z = 6.3 μm. Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002466.g009
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KA were located in the SGZ (Fig 3B), the niche where new neurons are born, in agreement
with previous publications showing that seizures lead to apoptosis of newborn cells [40,41].
Thus, we studied the effect of KA-induced seizures on the apoptosis and survival of newborn
cells, and focused on their previously identified early (3 d old, do) and late (8 do) critical peri-
ods of survival [9,42]. A single injection of the thymidine analog bromo-deoxyuridine (BrdU,
150 mg/kg) was administered 2 or 7 d prior to the injection of saline or KA, and mice were
killed 1 d later (KA 1 dpi). Unexpectedly, we found no significant changes in the number of 3
and 8 do BrdU+ cells, indicating that KA did not affect their survival (S13A and S13B Fig).

To increase the probability of observing apoptotic BrdU+ cells, we switched to a semicumu-
lative BrdU administration paradigm and focused on the early critical period (3 d) (Fig 11).
We administered BrdU every 2 h for 6 h (Fig 11A) 2 d prior to KA injection and quantified the
number of live and apoptotic BrdU+ cells 1 day later (KA 1 dpi) (Fig 11B and 11C). Again, we
found no significant changes in the number of live BrdU+ cells (Fig 11D), but a seemingly con-
tradictory significant increase in the number of apoptotic BrdU+ cells (Fig 11E). To exclude
the possibility that an (undetectable) loss of BrdU+ cells was compensated by their increased
proliferation, we analyzed their reentry into the cell cycle by calculating the percentage of
BrdU+ cells expressing the cell division marker Ki67. We found no evidence of increased prolif-
eration of the 3 do BrdU+ cell population due to KA injection, as the percentage of BrdU+ cells
colabeled with the proliferation marker Ki67 remained unchanged between control and KA-
injected mice (Fig 11F and S13C Fig). Together, these results demonstrate that the increase of
apoptotic 3 do BrdU+ cells was not due to de novo apoptosis, but rather, to the accumulation of
nonphagocytosed cells that were already undergoing apoptosis prior to the KA injection.
Nonetheless, the apoptotic BrdU+ fraction significantly decreased in KA mice (Fig 11G), sug-
gesting that apoptosis preferentially targeted cell populations other than the 3 do cells in the
KA-injected hippocampus. Thus, the rise in apoptotic cells in KA at 1 dpi is due both to an
accumulation of nonphagocytosed 3 do cells and de novo apoptosis of other populations.

For the 3 do cells, we reasoned that if KA was not affecting their survival (as there was no
change in the number of live BrdU+ cells), the total number of apoptotic BrdU+ cells (present
and cleared) should be identical in both control and KA mice, and used this information to
estimate the clearance time in KA mice. The number of cleared apoptotic cells, i.e., the number
of apoptotic cells no longer present in the tissue and eliminated by phagocytosis, can be esti-
mated using the clearance time formula (see Materials and Methods) and the estimated clear-
ance time in physiological conditions of 1.5 h [9]. To obtain the total number of apoptotic
BrdU+ cells (present and cleared), we estimated the number of cleared BrdU+ apoptotic cells in
saline mice and added it to the number of BrdU+ apoptotic cells present in saline mice (Fig
11H). To obtain the estimated number of cleared cells in KAmice, we then subtracted the num-
ber of BrdU+ apoptotic cells in KAmice from the above amount of total apoptotic BrdU+ cells.
This subtraction allowed us to estimate a new clearance time of 6.3 h in KAmice (Fig 11H),

Fig 10. ATP impairs microglial phagocytosis in vivo. (A) Representative confocal z-stacks of saline, 100 mM ATP and 100 mM
ATPγS (2 hpi) DG labeled with DAPI (nuclear morphology, white), activated caspase 3 (act-casp3+, red, for apoptotic cells), and fms-
EGFP (cyan, microglia). Arrow points to a phagocytosed apoptotic cell, whereas arrowheads point to nonphagocytosed apoptotic cells.
Activated-caspase 3 puncta within microglia are labeled with a round-ended arrow. (B, H) Experimental designs (B, 100 mM of ATP and
ATPγS, 2 h; H, 10 and 100 mMATP, 4 h; n = 3–4 per group) and number of apoptotic (pyknotic/karyorrhectic and act-casp3+) in the
septal DG (n = 3–4 per group). No changes in the volume of the DG were found in either experiment (S11C Fig). (C, I) Ph index in the
septal DG (in % of apoptotic cells). (D, J) Weighted Ph capacity of hippocampal microglia (in ppu). (E, K) Histogram showing the Ph
capacity distribution of microglia (in % of cells) in the septal DG. (F, L) Total number of microglial cells (fms-EGFP+) in the septal DG. (G,
M) Ph/A coupling (in fold change) in the septal DG. Bars represent mean ± SEM, * indicates p < 0.05, ** indicates p < 0.01, and ***
indicates p < 0.001 by Holm-Sidak posthoc test after one-way ANOVA were significant at p < 0.05. Scale bars = 50 μm, z = 11.9 μm
(control, ATP), 9.8 μm (ATPγs). Inserts are single plane images of the corresponding confocal z-stacks. Underlying data is shown in S1
Data.

doi:10.1371/journal.pbio.1002466.g010
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which represents the average time at the population level required for an apoptotic cell to be
eliminated by the dysfunctional microglia or the recruited astrocytes or neuroblasts. Further-
more, the decay in the Ph index predicted up to 52% of the variation in the number of apoptotic
cells using a linear regression analysis (p< 0.001) in all saline and KAmice used (6 hpi and 1
dpi) (Fig 11I), providing further evidence that the impairment in phagocytosis is linked to an
accumulation of apoptotic cells.

Finally, we tested the effect of KA on apoptosis in young (2 mo) and mature (6 mo) animals,
in which there are fewer neuroprogenitors and therefore fewer newborn cells [43]. Because in
the SGZ the vast majority of apoptotic cells are newborn cells [9], we expected to see a reduc-
tion in SGZ apoptotic cells in older mice as a consequence of the reduced neurogenesis. After
KA, both young and mature animals reached level 3–4 in the Racine scale and at 1 dpi had a
similar level and pattern of activation of the hippocampal circuitry (Fig 11J and 11K), as deter-
mined by staining with c-fos, an immediate early gene that has been used as an indirect marker
of neuronal activation [44]. In addition, at 1 dpi after KA, microglial phagocytosis was similarly
impaired in 2 and 6 mo mice (S13D Fig), but as expected, there were fewer SGZ apoptotic cells
in 6 mo than in 2 mo mice (Fig 9L and 9M). This difference in apoptosis between young and
mature mice can be attributed to the reduced proliferation and neurogenesis found in mature
animals, confirming our hypothesis that the rise of apoptotic cells in the SGZ induced by KA is
largely due to accumulation of the nonphagocytosed newborn cells that undergo apoptosis in
physiological conditions.

Microglial Phagocytic Impairment Correlates with Inflammation
We reasoned that, because phagocytosis of apoptotic cells is actively anti-inflammatory in vitro
[45], the impairment of phagocytosis should correlate with the development of an inflamma-
tory response. We tested this hypothesis by analyzing the expression of a panel of pro- and
anti-inflammatory cytokines by RTqPCR in hippocampal tissue samples and in microglia from

Fig 11. Microglial phagocytic impairment leads to delayed clearance of apoptotic cells at 1 dpi. (A) Experimental design used to
analyze the survival of 3 do cells after the injection of saline (n = 7) or KA (n = 8) in mice. (B) Representative confocal z-stacks of the DG
of control and KA-injected mice (1 dpi). The damage induced by KA was evidenced by the presence of cells with abnormal nuclear
morphology (DAPI, white), and the altered morphology of microglia (fms-EGFP+, cyan). (C) Representative confocal images of 3 do
apoptotic (pyknotic, DAPI, white) cells labeled with BrdU (red; arrows) in the SGZ of the hippocampus of saline and KA-injected mice at
1 dpi. In the saline mouse, the BrdU+ apoptotic cell, next to a cluster of BrdU+ cells, was phagocytosed by a terminal branch of a nearby
microglia (fms-EGFP, cyan), whose nucleus was also positive for BrdU. In the KA mouse, the apoptotic BrdU+ cell was not
phagocytosed by microglia. A nearby apoptotic cell (BrdU-; arrowhead) was partially engulfed by microglia. (D) Total number of live 3 do
BrdU+ cells (nonapoptotic) in the septal hippocampus after treatment with KA. The total number of 3 do and 8 do BrdU+ cells by a single
BrdU injection in saline and KA-injected mice is shown in S13A and S13B Fig. (E) Total number of apoptotic 3 do BrdU+ cells in the
septal hippocampus after treatment with KA. (F) Percentage of 3 do BrdU+ cells that re-enter cell cycle, assessed by their colabeling
with the proliferation marker Ki67 after treatment with KA. Representative confocal z-stacks of BrdU/Ki67 cells are found in S13C Fig.
(G) Percentage of apoptotic BrdU+ cells over total apoptotic cells in the septal hippocampus. (H) Estimated clearance of apoptotic cells
in the septal hippocampus. The total number of apoptotic BrdU+ (from E) present in the tissue was added to the number of estimated
apoptotic BrdU+ cells that had been cleared. In saline mice, this number was calculated using the clearance time formula shown in
Methods with a clearance time of 1.5 h [9]. As the total number of cells should be identical in saline and KAmice, the number of cleared
apoptotic cells in KAmice was calculated as the difference between the total (in saline) and the number of present apoptotic cells (in
KA). From here, we calculated a new clearance time using the same formula as in saline mice, of 6.3 h. (I) Linear regression analysis of
the relationship between apoptosis and phagocytosis (Ph index) in saline and KA-injected mice (6 hpi and 1 dpi). (J) Experimental
design used to compare SGZ apoptosis induced by KA at 1 dpi in young (2 mo) and mature (6 mo) mice. (K) Representative
epifluorescent tiling image of the hippocampus and surrounding cortex of 2 and 6 momice injected with KA at 1 dpi stained with the
neuronal activation marker c-fos. The same pattern of expression was found in young and mature mice throughout the DG, CA2, CA1
and the above cortex. (L) Representative confocal z-stacks of the apoptotic (pyknotic, white; act-casp3+, red) cells in the SGZ of the
hippocampus of 2 mo and 6 momice injected with KA (1 dpi). The microglial phagocytosis impairment was similar in the two age groups
(S13D Fig). (M) Total number of apoptotic cells in the SGZ of 2 and 6 mo mice treated with saline or KA (1 dpi; n = 4–5 per group). Bars
showmean ± SEM. * indicates p < 0.05, ** p < 0.01, and *** p < 0.001 by Student´s t test (E, G) or by Holm-Sidak posthoc test after
one-way ANOVA (M) was significant at p < 0.05. Scale bars = 50 μm (B), 20 μm (C), 500 μm (K), 25 μm (L). z = 14 μm (B), 12.6 μm (C,
sal), 15.4 μm (C, KA), 25 μm (L). Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002466.g011
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acutely purified microglia along the time course (6 hpi to 4 mpi) (Fig 12). At the tissue level,
we found that proinflammatory interleukin 1 beta (IL-1β) and interleukin 6 (IL-6) as well as of
anti-inflammatory macrophage inhibitory cytokine 1 (MIC-1) peaked at 1 dpi and decreased
afterwards up to 4 mpi (Fig 12A), a pattern that paralleled the impairment of phagocytosis
over time. In agreement, the average expression of these cytokines as well as anti-inflammatory
TGFβ correlated with the Ph index over the 4 mpi time course (Fig 12B). We next compared
the expression of these cytokines in FACS-sorted microglia from KA-treated mice. At 1 dpi,
microglia from KA mice expressed the highest levels of the proinflammatory TNFα and IL-6
(IL-1β showed a strong tendency but was not significant), as well as CSF, and low levels of the
anti-inflammatory TGFβ (MIC-1 showed a strong tendency but was not significant) compared
to microglia from control mice. At 7 dpi, microglia from KA mice expressed higher levels of
IL-1β and TNFα, and lower levels of TGFβ (Fig 12C). These data demonstrate that the
impaired microglia are in a proinflammatory state.

Discussion
In the present study, we examined and quantified for the first time the microglial phagocytic
behavior in times of brain distress and report the following original findings (Fig 13). First, we
have uncovered a generalized response of microglia to brain damage by excitotoxicity or inflam-
mation in which they plastically adapt their phagocytic efficiency to the amount of apoptosis.
Second, we have revealed an unexpected chronic impairment of microglial phagocytosis in an
experimental model of MTLE as well as in hippocampal tissue resected from pharmaco-resistant
MTLE patients. Third, we show that the microglial phagocytic impairment is not directly due to
KA receptors on microglia but is rather a complex phenomenon related to an impaired recogni-
tion as well as impaired motility and targeting, mediated at least partially by altered ATP micro-
gradients. Fourth, we demonstrate that the microglial phagocytic impairment leads to the
accumulation of apoptotic cells and contributes to the development of an inflammatory response
in the mouse model of MTLE. Overall, the data presented herein illuminate a novel generalized
response of microglia to phagocytic challenge in the DG. Importantly, we have observed a similar
degree of impairment in CA regions and the cortex, although in these latter regions the lack of
apoptotic cells implies that the basal phagocytic efficiency could not be determined. In addition,
our data compellingly demonstrates that the impairment of microglial phagocytosis is a novel
mechanism contributing to the pathophysiology of MTLE. Ultimately, the efficiency of microglial
phagocytosis is a decisive factor regulating the dynamics of neuronal death in the diseased brain.

Phagocytosis/Apoptosis Coupling in Health and Disease
In contrast to the long-standing assumption that phagocytosis is executed only by ameboid-
shaped microglia [46], we initially found that in physiological conditions, phagocytosis is effi-
ciently enacted by unchallenged, ramified, surveillant microglia. Using as a model the adult
hippocampal neurogenic cascade, where newborn neurons undergo apoptosis throughout
adulthood, we previously found that the vast majority of apoptotic cells are in the process of
being engulfed by microglia (Ph index> 90%) through a ball-and-chain mechanism and a
short clearance time (under 1.5 h) [9]. Thus, in physiological conditions, the high efficiency of
microglial phagocytosis leads to a large underestimation of the total amount of apoptosis.

We have now studied the microglial response to phagocytic challenges and found a general-
ized microglial response. When subjected to a phagocytic challenge induced by acute or
chronic inflammation or excitotoxicity, microglia stood up to the increased apoptosis combin-
ing three different strategies: recruiting more phagocytic cells, increasing the phagocytic capac-
ity of each cell, and/or increasing microglial numbers. The combination of these three
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Fig 12. Phagocytosis impairment correlates with inflammation in mouse MTLE. (A) RTqPCR quantification of a panel of pro- and anti-inflammatory
cytokines in the hippocampus of mice injected with saline or KA over a time course. Expression was normalized with the reference gene L27A and
expressed as fold change (FC) over the saline injected mice (dashed line). The expression of the cytokines was linearized by a logarithmic transformation;
only significant interactions are shown. (B) Linear regression analysis of the relationship between the average expression of tissue cytokines (IL-1β, IL-6,
MIC, TGFβ) and average Ph index in KA-injected mice along the time course. The Ph index explained a large percentage of the variation of the expression
of these cytokines, although significance at p = 0.05 was only reached for MIC-1 likely due to the small number of time points analyzed. (C) RTqPCR
quantification of a panel of pro- and anti-inflammatory cytokines in FACS-sorted fms-EGFP+ microglia. In A and C data are shown as mean ± SEM. a, *
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adaptation strategies allowed microglia to boost its phagocytic efficiency and match the apo-
ptotic challenge, therefore maintaining the phagocytosis/apoptosis ratio. Furthermore,

indicates p < 0.05; b, ** indicates p < 0.01; and c,*** indicates p < 0.001 by Holm-Sidak posthoc test compared to their respective time point controls, after
one-way ANOVA was significant at p < 0.05. Underlying data is shown in S1 Data.

doi:10.1371/journal.pbio.1002466.g012

Fig 13. Microglial phagocytosis/apoptosis coupling in health and disease. In physiological conditions as well as during excitotoxicity and
inflammation, microglial phagocytosis is tightly coupled to apoptosis due to “find-me” signals released by apoptotic cells, such as ATP. Microglia
display a combination of three adaptation strategies to boost their phagocytic efficiency: recruit more phagocytic cells, increase the phagocytic
capacity per cell, and/or increase the number of cells. In contrast, neuronal hyperactivity induced by seizures leads to a widespread release of ATP,
among other possible signals, and interferes with the ability of microglia to recognize and engulf apoptotic cells, resulting in their delayed clearance.
Because phagocytosis is actively anti-inflammatory, the phagocytosis impairment was associated with the production of proinflammatory,
epileptogenic cytokines.

doi:10.1371/journal.pbio.1002466.g013
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hippocampal microglia displayed up to four phagocytic pouches in vivo and up to seven in
organotypic slices, although most cells had a single pouch and many cells remained nonphago-
cytic. Therefore, microglia have an enormous reservoir for phagocytosis that can be reached by
recruiting 100% of cells with their maximum Ph capacity. This data suggests that enhancing
phagocytosis could be a novel therapeutic approach to accelerate tissue recovery after brain
injury.

Neuronal Hyperactivity Leads to Phagocytosis–Apoptosis Uncoupling In
Vivo
To our surprise, the microglial phagocytic potential was not employed to counteract the dam-
age resulting from neuronal hyperactivity in a mouse model of MTLE. In contrast, we found an
impairment of microglial phagocytosis, as shown by decreased Ph capacity and Ph index,
which was not compensated by recruiting other phagocytic cells, such as astrocytes or neuro-
blasts. This impairment was not simply an inability of microglia to cope with too much apopto-
sis because it occurred as early as 6 hpi after KA, before any significant accumulation of
apoptotic cells took place, and because microglia dispatched this amount of apoptosis in other
conditions (for instance, LPS in 1 mo mice). Microglial phagocytosis was not impaired by
inflammation nor by excitotoxicity per se, as shown above, and we thus postulated that the
impairment was related to the KA-induced seizures.

However, the impairment was unlikely a direct effect on microglia of either KA or glutamate
released during seizures, as microglia expressed residual levels of ionotropic and metabotropic
glutamate subunits, in agreement with previous reports showing the lack of functional recep-
tors in microglia in acute hippocampal slices [47] or retinal explants [36]. Furthermore, KA
had a very small effect on phagocytosis of apoptotic cells in primary cultures and no effect in
organotypic slices. Although KA is known to induce membrane ruffling and morphological
alterations in cultured microglia [48], which would explain our results in primary cultures
treated with KA, whether microglia express functional glutamate receptors in vivo is still under
discussion [36,47,49–52].

Nonetheless, the level of neuronal activity is known to affect microglial motility and behav-
ior, acting via extracellular ATP. In retinal explants and acute hippocampal slices, neuronal
glutamate signaling via NMDA receptor activation leads to the release of ATP, which in turn
alters microglial motility and morphology [36,52,53] and triggers microglial process conver-
gence towards neuronal dendrites [54]. ATP is also released in large amounts during seizures
in vivo and in vitro [34,35], although it has not been directly tested in our KA model due to the
limited tools to measure extracellular ATP levels in vivo. Nonetheless, here we demonstrate
that in vitro microglia acutely sense seizures, resulting in large inward currents that depend at
least partially on P2X receptors, similar to those observed during ischemia [55]. Interestingly,
we observed a delayed microglial response (11 min latency time) that is consistent with the
time it takes to reach the maximum ATP release evoked by depolarization [56]. In addition to
being a neuro- and gliotransmitter, ATP is a well-known “find-me” signal released by apoptotic
cells [2,57] and mediates the rapid attraction of microglial processes towards laser-induced
injuries [4]. In spite of the complex metabolism and signaling of released nucleotides, we have
mirrored the seizure-induced phagocytosis impairment by disrupting ATP gradients in orga-
notypic slices and in vivo. The KA-triggered microglial phagocytosis impairment is consistent
with a seizure-related widespread release of ATP that disrupts “find-me” signaling gradients
and turns microglia “blinded” to apoptotic cells.

ATP signals to microglia on a plethora of promiscuous P2X (ionotropic) and P2Y (metabo-
tropic) receptors and is degraded by extracellular ectonucleotidases to adenosine, whose
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receptors are expressed by microglia as well [51]. While the full pharmacological characteriza-
tion of the seizure-induced current and phagocytosis impairment will be carried out in future
studies, we have evidence that several purinergic receptors might be involved in these phenom-
ena, as we have detected a down-regulation of P2X7 and up-regulation of P2X4, P2Y6, and
P2Y12 in microglia at 1 dpi after the KA injection. In agreement, seizures induce changes in the
intrinsic electrophysiological properties of microglia (input resistance, membrane capacitance)
and an enhanced response to ATP and UDP that are mediated by P2X4, P2Y6, and P2Y12

receptors, respectively [58,59]. Similar to ATP, UDP is a “find-me” signal released by apoptotic
cells [60], and P2Y6 antagonists prevent the phagocytosis of microbeads injected into the cortex
of KA-treated mice [30]. This paper also showed that the systemic injection of KA increased
the capacity of cortical microglia to phagocytose latex microbeads [30], in apparent disagree-
ment with our data. However, the mechanisms of engulfment of beads and apoptotic cells are
largely different [60]. Importantly, latex microbeads do not release “find-me” signals that trig-
ger microglial chemotaxis, a fact that would explain the discrepancy. Overall, our results show
that neuronal hyperactivity interferes with the apoptotic cell “find-me” gradients by sending
competing ATP signals that microglia cannot discriminate.

In agreement, we have observed a large proportion of microglia located far away from the
apoptotic cells in KAmice at 6 hpi and 1 dpi, suggesting a decreased surveillance capacity. Con-
sistently, we found a decreased microglial density in the DG, and overall motility of microglia in
acute hippocampal slices and in the living cortex at 1 dpi. The level of motility impairment
observed in the cortex in vivo was higher than in the acute hippocampal slices, possibly because
the released ATP was washed out during the slice preparation. Our results of motility impairment
are to some extent in disagreement with a recent study in acute hippocampal slices, in which they
observed no difference in the processes velocity but a puzzling increase in the area of the explored
territory of each process [61], in spite of the increased purinergic signaling of microglia in this
model [58] and the well-established chemoattractant role of ATP in these lesions [4]. We specu-
late that at 2 dpi the widespread release of ATP induced by the seizures would be more attenuated
than at 1 dpi, accounting for the dissimilar results on microglial motility.

In addition to the defect in motility, we have also found a defect in the apoptotic cell recogni-
tion and phagocytosis initiation. Indeed, a large proportion of apoptotic cells were located
directly in apposition to microglial processes, and microglia down-regulated the expression of
several phagocytic receptors, such as TREM2, CR3, MerTK, and GPR34. Therefore, the seizure-
induced phagocytosis impairment is a complex phenomenon that likely implies other mecha-
nisms in addition to the ATP widespread release. For instance, seizures affect many other signal-
ing molecules released by neurons that control microglial function, such as fractalkine [62,63] or
endocannabinoids [64,65]. In addition, status epilepticus triggers an early energy depletion at the
seizure focus followed by a series of metabolic alterations in the long term [66] that affect the
mitochondrial function [67], on which phagocytosis heavily relies, at least in macrophages [60].
Microglial motility and injury response also depends on energy sources, as these functions are
early reduced in PMmouse tissue [24]. Therefore, some of these mechanisms are likely to play
additional roles in regulating microglial phagocytosis efficiency at different stages of the disease.

Long Term Impairment of Microglial Phagocytosis in Mouse and Human
MTLE
The early phagocytosis impairment in the mouse model of MTLE was maintained in the long
term, although there was a trend towards recovery of phagocytosis. In the subacute phase (3–7
dpi), microglia showed ameboid morphology and became multinucleated. This unresolved
nucleokinesis was likely related to KA-induced inflammation, known to induce this phenotype
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in microglia in vitro [68]. Further, we also observed another inflammation-related phenotype:
phagoptosis or the engulfment of nonapoptotic, seemingly live cells [17], albeit it occurred at
lower levels than phagocytosis of apoptotic cells. In the chronic phase of MTLE (4 mpi), micro-
glial phagocytosis continued to be impaired. Importantly, we obtained similar parameters (Ph
index, distance to apoptotic cells, microglial density, microglial tissue volume) in hippocampal
tissue from KA-treated mice and from MTLE patients. In the chronic phase of the mouse and
human disease, the Ph index indicated that less than half of the apoptotic cells were being
degraded by microglia, strongly suggesting that the microglial phagocytic impairment does
occur in human MTLE. We have confirmed the microglial phagocytic impairment induced by
seizures by comparing autopsy hippocampal tissue from age- and sex-matched nondemented
controls and people diagnosed with epilepsy, although the PM delay severely interfered with
the estimation of phagocytosis in this kind of tissue. In the human MTLE hippocampus, we
have also discovered a novel form of phagocytosis (aster-type), executed by several ramified
microglia with confluent processes towards the apoptotic cell, reminiscent of the microglial
response to a laser-induced photo lesion observed by 2-photon imaging in the live mouse cor-
tex [4]. While the functional relevance of the aster-phagocytosis and targeting of live neurons
remains to be determined, the cellular mechanism of cell clearance in the epileptic mouse and
human brain are remarkably similar.

Detrimental Consequences of Microglial Phagocytic Impairment
We speculate that the early microglial phagocytosis impairment has detrimental consequences
on the hippocampal function. Indeed, we have shown that the increased number of 3 do apopto-
tic cells found in the SGZ neurogenic niche after KA injection was not due to de novo apoptosis
of this population induced by KA but instead, to an accumulation of 3 do newborn cells that
undergo apoptosis under physiological conditions and are not phagocytosed by the impaired
microglia. The nonphagocytosed apoptotic cells would evolve into secondary necrotic cells that
lose membrane integrity and start leaking out intracellular contents [69], contributing to damag-
ing the surrounding tissue. Recent data provides direct evidence of the beneficial effects of micro-
glial phagocytosis, because transgenic silencing of the phagocytosis receptor TREM2 impairs
microglial phagocytosis in vitro and exacerbates ischemic damage in experimental stroke [70]. In
addition, we found that the impairment of phagocytosis could predict a large percentage (over
50%) of the variation in the levels of apoptosis, demonstrating that the efficiency of phagocytosis
determines apoptosis dynamics in epilepsy and possibly in other brain diseases as well.

Finally, a strong body of in vitro data on macrophages and microglia has shown that phago-
cytosis of apoptotic cells is actively anti-inflammatory (reviewed in [2]). As we expected,
impairment of microglial phagocytosis correlated with the expression of pro- and anti-inflam-
matory cytokines in hippocampal tissue. Inflammation per se did not impair phagocytosis, and
thus this data suggests that the impairment of phagocytosis releases the brake on inflammation.
Importantly, the same microglial population that exhibited impaired phagocytosis also had a
strong proinflammatory profile. Increased expression of proinflammatory cytokines has
already been observed in experimental and human MTLE tissue [71–73]. Because proinflam-
matory IL-1β enhances NMDA excitatory currents, it is speculated to contribute to develop-
ment of chronic seizures [74], and drugs designed to prevent IL-1β activation and signaling are
currently in clinical trials to prevent epileptogenesis [75]. Our data strongly support that this
inflammation may at least in part originate from the microglial phagocytic impairment, but
whether this dysfunction contributes to seizures remains to be determined. In summary, our
results demonstrate that in the epileptic brain, microglia are not merely “reactive” to the neuro-
nal damage but have their basal phagocytic function impaired. Because neuronal death and
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inflammation are hallmarks of all major brain diseases, such as ischemic stroke, Alzheimer,
Parkinson, or multiple sclerosis, harnessing microglial phagocytosis may serve to control tissue
damage and inflammation as a novel strategy to accelerate brain recovery.

Materials and Methods

Animals
All experiments were performed in fms-EGFP (MacGreen) mice, except the analysis of tissue
cytokines by RTqPCR and the analysis of microglial motility, which were performed in C56BL/
6 (Harlan, Boxmeer, the Netherlands) and CX3CR1GFP/+ mice, respectively. In both fms-EGFP
[10,76] and CX3CR1GFP/+ mice [77], all microglia express the fluorescent reporter. Analysis of
phagocytosis by nonprofesional phagocytes was done in POMC-EGFP [16], hGFAP-GFP [78],
and nestin-GFP [79,80]. Analysis of the effect of infiltrating monocytes was carried out in
CCR2-/- mice [20]. All mice used were in a C57BL/6 background, except experiments with fatty
acid diets, which were performed in CD-1 Swiss mice. Omega 3 deficient (containing 6% fat in
the form of sunflower oil, rich in linoleic acid) or omega 3 balanced (containing a mixture of dif-
ferent oils rich in alpha-linolenic acid) diets were given immediately after mating and through
gestation and lactation [11]; both diets were isocaloric and only their lipid composition was differ-
ent (S2 Table). Mice were housed in 12:12h light cycle with ad libitum access to food and water.
All procedures followed the European Directive 2010/63/EU, NIH guidelines, and Canadian
Council on Animal Care guidelines, and were approved by the Ethics Committees of the Univer-
sity of the Basque Country EHU/UPV (Leioa, Spain; CEBA/205/2011, CEBA/206/2011, CEIAB/
82/2011, CEIAB/105/2012), Bordeaux University (protocol number 5012094-A), and Southamp-
ton University (in accordance with United KingdomHome Office licensing; project license
30/3056); the Baylor College of Medicine Institutional Animal Care and Use Committee (Hous-
ton, TX, US; AN- 5004); and the Animal Care Committee of Université Laval (protocol number
2013102–1). Unless otherwise stated, mice were 8 weeks old at the time of the KA injection.

Intrahippocampal Injections
Induction of epilepsy was achieved by intrahippocampal injection of KA (Sigma-Aldrich, St
Louis, MO, US) [81]. In brief, mice were anesthetized with ketamine/xylazine (10/1 mg/kg)
and received a single dose of the analgesic buprenorphine (1 mg/kg) subcutaneously. After
positioning in the stereotaxic apparatus, a 0.6 mm whole was drilled at coordinates taken from
Bregma: AP −1.7 mm, laterolateral (LL) −1.6 mm. A pooled glass microcapillary was inserted
at −1.9 mm dorsoventral (DV), and 50 nL of saline or KA (20 mM) were delivered into the
right hippocampus using a microinjector (Nanoject II, Drummond Scientific, Broomal, PA,
US). ATP (10, 100 mM; Sigma) and ATPγS (100 mM; Tocris) pH-balanced solutions were
injected directly into the DG at coordinates AP −1.7 mm, LL −1.4 mm, DV −2.3 mm. After 2
min, the microcapillary was retracted, and the mice sutured and maintained in a thermal blan-
ket until recovered from anesthesia. Some mice were implanted with platinum iridium, Teflon-
coated deep electrodes (PlasticsOne, Roanoke, VA, US) immediately after intrahippocampal
injection. Four recording electrodes were positioned at −1.6 mm AP, +1.8 mm LL, −1.8 mm
DV (left hippocampus); −1.6 mm AP, −1.8 mm LL, −1.8 mm DV (right hippocampus); −0.1
mm AP, −1.8 mm LL, −2 mmDV (right cortex): −0.1 mm LL, +1.8 mm LL, −2 mmDV (left
cortex). The reference electrode was placed at the frontal lobe at +0.1 mm AP, +0.1 mm LL,
−0.5 mm DV, and the ground electrode was positioned over the cervical paraspinous area [13].
Four hours after implantation, every two days for the next week, and once a week for another 7
weeks, mice were attached to a Nicolet video-electroencephalogram (vEEG) system (NicView
5.71, CareFusion, San Diego, CA, US), and were recorded in 4 h sessions.
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Primary Microglia Cultures
Primary microglia cultures were performed as previously described [82]. Briefly, P0-P1 fms-
EGFP mice pup brains were carefully peeled off meninges in Hank's balanced salt solution
(HBSS, Hyclone) under a magnifying scope, and enzymatically digested with papain (20 U/ml,
Sigma) and DNAse (150 U/μl, Invitrogen) for 15 min at 37ºC. The homogenization process
was also helped by carefully pipetting. The resulting cell suspension was then filtered through a
40 μm nylon cell strainer (Fisher) and transferred to a 50 ml Falcon tube quenched by 5 ml of
20% heat inactivated Fetal Bovine Serum (FBS; Gibco) in HBSS. Afterwards, the cell suspension
was centrifuged at 200 g for 5 min, the pellet was resuspended in 1ml Dulbecco’s Modified
Eagle’s Medium/F12 (DMEM/F12, Gibco) complemented with 10% FBS and 1% Penicillin-
Streptomycin (Gibco), and seeded in Poly-L-Lysine-coated (15 μl/ml, Sigma) culture flasks
with a density of two brains per flask. Medium was changed every 3–4 d and enriched with
granulocyte-macrophage colony stimulating factor (5 ng/ml GM-CSF, Sigma). After conflu-
ence (at 37°C, 5% CO2 for approximately 14 d), microglia cells were harvested by shaking at
100 rpm, 37°C, 4 h. Isolated cells were counted and seeded in a density of 80.000 cell/well on
poly-l-lysine-coated 24-well plates. Microglia were allowed to rest and settle for at least 24 h
before phagocytosis experiments. Primary microglia cells were fed for 3 h with NE-4C (Ameri-
can Type Culture Collection), a mouse neural stem cell line derived from the cortex of 9 do p53
knock-out embryos. NE-4C were previously labeled with the membrane marker CM-DiI
(5 μM; 10 min at 37°C, 15 min at 4°C; Invitrogen) and treated with staurosporine (10 μM, 4h;
Sigma) to induce apoptosis. This treatment resulted in 27.4% ± 8.5% of apoptotic and 1.2% ±
0.9% of necrotic NE-4C cells, as determined by flow cytometry analysis with Annexin V and
PI; and in 35.0% ± 6.1% of apoptotic cells with pyknotic/karyorrhectic nuclear morphology
determined with DAPI in immunofluorescent assays. Apoptotic NE-4C cells were added to the
microglial cultures in a proportion 10:1 approximately. For the KA treatment, microglia were
pretreated with 1 mM KA (Sigma) for 2 h before adding the apoptotic cells and remained pres-
ent for the 3 h of the phagocytosis assay, accounting for a total of 5 h of KA treatment [48].

Organotypic Hippocampal Slice Cultures
Organotypic hippocampal slice cultures were prepared as described previously [83] with minor
modifications. In brief, 7 do fms-EGFP pups were decapitated and the brains extracted and
placed in cold HBSS. Both hippocampi were dissected and cut into 350 μm slices using a tissue
chopper (McIlwain). Slices were then transferred to 0.4 μm culture plate inserts (Millipore,
PICM0RG50), each containing four slices. These membranes were placed in six-well plates,
each well containing 1 ml of fresh organotypic culture medium. The medium consisted of 50%
Neurobasal medium supplemented with 0.5% B27, 25% horse serum, 1% Glutamax, 1% peni-
cillin/streptomycin, and 1% glucose solution in HBSS. Culture medium was changed the first
day after doing the culture and every 2 d afterwards. Slices were kept in culture for 7 d before
performing the experiments. For induction of excitotoxicity, hippocampal slices were treated
with media containing 50 μMNMDA at day in vitro 7 for 4 h; another batch of slices were
then placed in fresh culture medium for another 24 h. For KA experiments, hippocampal slices
were treated with media containing 1 mM KA (Sigma) for 6 h. For ATP experiments, hippo-
campal slices were treated with media containing 300 μM and 1 mM ATP (Sigma) for 4 h. For
experiments with the epileptogenic cocktail, hippocampal slices were treated for 1 h with either
vehicle (oxygenated (95%O2, 5% CO2) ACSF, pH 7.4, containing 124 mMNaCl, 25 mM
NaHCO3, 1.25 mMNaH2PO4, 2.5 mM KCl, 2.5 mMCaCl2, 1.3 mMMgCl2, and 10 mMD-glu-
cose) or proepileptogenic cocktail (ACSF, with high K+ (8 mM), lowMg2+ (0.25 mM) and 4-AP
(100 μM)) [84]. PI (5 μg/ml, Sigma) was added to the cultures in the last hour of the treatment.
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Human Samples from Individuals with MTLE
Freshly resected hippocampi from adult drug-resistant MTLE patients were obtained from
the Basque Biobank at the Cruces University Hospital (Bilbao, Spain) with the patient’s writ-
ten consent and with approval of the University of the Basque Country Ethics committee
(CEISH/154/2012). The patient´s anonymity was preserved for this study. Immediately after
surgery, the tissue was immersed in saline and maintained refrigerated until transported to
the Pathology Unit of the Hospital (under 40 min), where it was manually sectioned in 1–2
mm thick coronal sections and transferred to 4% paraformaldehyde (PFA) in PBS, pH 7.4
for 30 min, then washed in PBS and kept in cryoprotectant (30% sucrose, 30% ethylenegly-
col in PBS) at −20°C. Parafin-embedded hippocampal tissue from epileptic patients and
nondemented controls was obtained from The Netherlands Brain Bank, Netherlands Insti-
tute for Neuroscience, Amsterdam (open access www.brainbank.nl). All material was col-
lected from donors for or from whom a written informed consent for a brain autopsy and
the use of the material and clinical information for research purposes had been obtained by
the NBB.

Immunofluorescence
Mice were transcardially perfused with 30 ml of PBS followed by 30 ml of 4% PFA. The brains
were removed and postfixed with the same fixative for 3 h at room temperature, then washed
in PBS and kept in cryoprotectant at −20°C. Six series of 50 μm-thick sections of mouse (sagi-
tal) or human (coronal) brains were cut using a Leica VT 1200S vibrating blade microtome
(Leica Microsystems GmbH, Wetzlar, Germany). Fluorescent Immunostaining was carried out
following standard procedures [9]. Free-floating vibratome sections or organotypic slices were
incubated in permeabilization solution (0.3% Triton-X100, 0.5% BSA in PBS; all from Sigma)
containing 5% NGS for 1 hr at room temperature, and then incubated overnight with the pri-
mary antibodies diluted in the permeabilization solution at 4°C. For BrdU staining, sections
were pretreated with 2M HCl for 15 min at 37°C and washed with 0.1 M sodium tetraborate
for 10 min at RT prior to staining with the primary antibodies. After thorough washing with
PBS, the sections were incubated with fluorochrome-conjugated secondary antibodies and
DAPI (5 mg/ml; Sigma) diluted in the permeabilization solution for 2 hr at room temperature.
Primary microglial cultures were fixed for 10 min and organotypic slices for 40 min and then
transferred to PBS. Coverslips with primary microglial cultures were blocked in 1% normal
goat serum (NGS, Sigma), 0.2% Triton X-100 in PBS for 30 min. The cells were then incubated
with primary antibodies in 0.2% Triton X-100 PBS for 1 h at RT, washed in PBS and incubated
in the secondary antibodies containing DAPI (5 mg/ml) in the same solution for 1 h at RT.
After washing with PBS, the sections, organotypic cultures, and primary cultures were
mounted on glass slides with DakoCytomation Fluorescent Mounting Medium (DakoCytoma-
tion, Carpinteria, CA). The following antibodies were used: chicken anti-GFP (1:750; Aves Lab-
oratories, Tigard, OR); mouse anti-NeuN (1:1,000; EMDMillipore Corporation, Billerica, MA,
US); mouse anti-CD45.2 (1:100; BD Pharmingen, Spain); rabbit antiactivated-caspase-3 (1:100;
Cell Signaling Technology, Danvers, MA); rabbit anti-cfos (1:1,000; Santa Cruz Biotechnolo-
gies, Heidelberg, Germany); rabbit anti-Ki67 (1:1,000; Vector Laboratories, Burlingame, CA,
USA); rabbit anti-Iba1 (1:1,000; Wako Chemicals, GMBH, Germany); rabbit anti-phosphoHis-
tone 3 (1:1,000; Millipore); rat anti-BrdU (1:300; AbD Serotech, Kidlington, UK). Secondary
antibodies coupled to AlexaFluor 488, Rodhamine Red X, or AlexaFluor 647 were purchased
fromMolecular Probes (Willow Creek Road, Eugene, O) or from Jackson Immunoresearch
(West Grove, PA).
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Image Analysis
All fluorescence immunostaining images were collected using an Olympus Fluoview or a Leica SP8
laser scanning microscope using a 40X oil-immersion objective and a z-step of 0.7 μm. All images
were imported into Adobe Photoshop 7.0 (Adobe Systems Incorporated, San Jose, CA) in tiff for-
mat. Brightness, contrast, and background were adjusted equally for the entire image using the
“brightness and contrast” and “levels” controls from the “image/adjustment” set of options without
any further modification. 3D-rendering of phagocytic cells was performed using ImageSurfer (NIH)
or ImageJ (Fiji distribution). Quantitative analysis of apoptosis and phagocytosis was performed
using unbiased stereology methods as previously described [9]. For mouse tissue sections, 2–3
20 μm-thick z-stacks located at random positions containing the DG were collected per hippocam-
pal section, and a minimum of 6 sections per series were analyzed. For human tissue, 2–3 coronal
sections were fully scanned under the microscope to find all apoptotic cells. For organotypic cul-
tures, 3 20 μm-thick random z-stacks of the DG were collected per hippocampal slice, using a 60X
oil-immersion objective. For primary cultures, over 10 random z-stacks were obtained per coverslip.

Phagocytosis Analysis
Apoptotic cells were defined based on their nuclear morphology after DAPI staining as cells in
which the chromatin structure (euchromatin and heterochromatin) was lost and appeared con-
densed and/or fragmented (pyknosis/karyorrhexis); they also colocalized with activated-cas-
pase-3, a well-known marker of apoptosis. Phagocytosis was defined as the formation of an
enclosed, three-dimensional pouch of microglial processes surrounding an apoptotic cell. In
tissue sections and organotypic cultures, the number of apoptotic cells, phagocytosed cells,
BrdU+ cells, and microglia were estimated in the volume of the DG contained in the z-stack
(determined by multiplying the thickness of the stack by the area of the DG at the center of the
stack using ImageJ (Fiji)). To obtain the absolute numbers (in tissue sections), this density
value was then multiplied by the volume of the septal hippocampus (spanning from −1 mm to
−2.5 mm in the AP axes, from Bregma; approximately six slices in each of the six series), which
was calculated using Fiji from a Zeiss Axiovert epifluorescent microscope images collected at
20X. In organotypic cultures, the number of apoptotic cells and microglia in the DG was given
as a density, over a 200.000 μm3 volume (roughly, a 100 x 100 μm2 area of 20 μm of thickness).
In primary cultures, the percentage of phagocytic microglia was defined as cells with pouches
containing NE-4C nuclei and/or CM-DiI particles. The following formulae were used to esti-
mate microglial phagocytic efficiency in tissue or organotypic cultures:

Ph index ¼ apoPh

apotot

Ph capacity ¼ mgPh1 þ 2mgPh2 þ 3mgPh3 . . .þ nmgPhn

mg

Ph=A coupling ¼ Ph capacity x microglia

apotot

Clearance time ¼ apototðt2Þx Dt
DBrdU

where apoPh is the number of apoptotic cells phagocytosed; apotot is the total number of apo-
ptotic cells; and mgPhn is the proportion of microglia with n phagocytic pouches.
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The percentage of volume occupied by Iba1+ microglia was estimated in confocal z-stacks of
the DG and hilus. First, microglia were manually selected in each z-stack using the “Threshold”
tool (Fiji) to mask only the pixels of the image with Iba1+ staining. Then, the percentage of pix-
els occupied by microglia was calculated using the Area Fraction parameter of the “Measure”
tool (Fiji). All commands were automated in an ImageJ macro (Fiji). The average Area Fraction
from a minimum of ten images per z-stack was calculated. For mouse tissue, 2–3 20 μm-thick
z-stacks containing the DG and hilus were collected per hippocampal section and a minimum
of six sections per series were analyzed. For human tissue, 3–4 12 μm-thick z-stacks located at
random positions containing the DG and hilus were analyzed.

Two-Photon Imaging on Acute Hippocampal Slices
Brain slices were obtained from CX3CR1GFP/+ mice aged 2 mo 1 dpi or 7 dpi of KA or saline.
As we previously described [32], animals were quickly anesthetized with isoflurane, and
300 μm-thick coronal slices were made using a Vibratome (VT1000S, Leica, Nanterre, France).
Slices were then stored at room temperature (20 to 23°C) for one hour before imaging in an
oxygenated artificial cerebrospinal fluid (ACSF) containing 126 mMNaCl, 2.0 mM CaCl2, 2.0
mMMgCl2, 2.5 mM KCl, 1.25 mM NaH2PO4, 26 mMNaHCO3, 10 mM glucose, 1 mM ascor-
bic acid, 4 mM sodium pyruvate, and saturated with 95% O2 and 5% CO2 (310 ± 5 mOsm).
Slices were transferred to a recording chamber and perfused with oxygenated aCSF at a rate of
1–3 ml/min and maintained at 25°C with an inline heater. Two-photon imaging was per-
formed with a laser-scanning microscope Leica DMLFSA TCS SP2 on an upright stand (Leica
Microsystems, Mannheim, Germany) coupled to a femtosecond pulsed Ti:Sapphire laser (Mira
900, Coherent Laser Group, Santa Clara, CA, US). The laser was tuned to the excitation wave-
length for GFP (900 nm), and there was no photobleaching nor was there any evidence of cellu-
lar damage during extensive scanning to obtain time lapse images. The laser intensity was
carefully monitored in all instances and kept comparable between all experiments. A HCX IR
Apo L 25X NA 0.95 (Olympus) water-immersion objective lens was used. Imaging was done at
depths in brain slices>50 μm and up to 100 μm. The mean depth for imaging lesions was
75 μm. Voxel size was adjusted to 0.1 x 0.1 μm, and z-stacks were taken in 1 μm steps. The
mean scan time for z-stack was approximately 45 s. 3-D reconstruction of microglia and auto-
mated assessment of the number of branches was performed using the “filament tracer pro-
gram” (Matlab algorithm) of Imaris 7.6 (Bitplane AG), after correction for drift in x- and y-
axis (Stackreg [85] and Multistackreg [86] plugins, Fiji) and drift in z-axis ("correct 3-D axis",
Fiji module of Imaris 7.6). This allowed us to isolate each microglial process and to follow its
length modification all along the recording period. In both saline- and KA-injected animals,
we analyzed 4–5 cells (distributed through the hilus and the DG) per animal and 3–4 animals
per group.

Two-Photon Imaging on the Living Cortex
Live imaging was performed using two-photon imaging as previously described [33]. 2 mo
CX3CR1GFP/+ mice were injected with saline or KA as above. 24 h later, mice were anesthetized
with isoflurane. The skull above the motor cortex was exposed, cleaned, glued to a thin metal
plate, and carefully thinned to an approximately 20- to 30-mm thickness, using a high-speed
dental drill (Osada Inc) and a microsurgical blade. Drilling was interrupted periodically, and
sterile saline was applied on the skull to prevent heat-induced damage. Next, the mice were
placed under an Olympus two-photon microscope FV1000MPE equipped with a Ti:Sapphire
laser (Mai Tai DeepSee; Spectra Physics) tuned to 920 nm for transcranial imaging. A 25X
water-immersion lens (1.05 N.A.; Olympus) was used throughout the imaging session. Z stacks
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taken 1 μm apart were acquired every 1.5 min for 13.5 min (ten time frames). Microglial motil-
ity was analyzed using several plugins in Fiji. In brief, images were registered using the “Affine”
algorithm of the “MultiStack” plugin and aligned by using the “Correct 3D drift” plugin [87].
Background was subtracted using a difference of Gaussians and bleaching was corrected using
the “Histogram Matching” algorithm of the “Bleach Correction” plugin [88]. The motility was
automatically determined using a self-developed ImageJ macro that estimated the 3-D length
of previously selected processes and calculated the motility as the absolute difference of length
between two consecutive frames divided by the time interval (1.5 min). For automatic measure-
ment of the length process, each selected process was reoriented vertically in the xy plane and
the intensity profiles of horizontal lines run through the length of the process were obtained in
each z-slice.

Intensity profiles were used to determine the x and z coordinates of the borders of the pro-
cess in each line based on three parameters: background intensity, the difference between the
maximum intensity and the pixels flanking the maxima, and the inflexion points of the inten-
sity profiles. x and z coordinates of the borders were used to calculate the center of the process
in each horizontal plane (xz planes). Then, the length of the 3-D skeleton of the process in each
time frame was calculated as the summation of the distances between each pair of center points
located in consecutive xz planes. The following formulae were used to calculate the mean
motility of a process:

zC ¼ zU þ zB
2

Where zC, zU, and zB are the coordinates of the center, the upper z-slice and the bottom z-
slice containing the process, respectively.

xC ¼ xR þ xL
2

Where xC, xR, and xL are the coordinates of the center, the right border and the left border
of the process, respectively. If zc-slice was virtual (i.e., not an integer):

xR ¼
xRðzc�0:5Þ þ xRðzcþ0:5Þ

2

xL ¼
xLðzc�0:5Þ þ xLðzcþ0:5Þ

2

Once the coordinates of the center of the vertically aligned process had been defined in the
X and Z planes, its length was estimated:

length ¼
Xyn�1

i¼y0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyiþ1 � yiÞ2 þ ðxcyiþ1

� xcyi Þ
2 þ ðzcyiþ1

� zcyi Þ
2

q

Where y0 and yn-1 are the y coordinates of the first and last horizontal lines, respectively,
containing pixels with intensities above the background. Finally, the process motility was esti-
mated:

motility ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlengthfþ1 � lengthf Þ2

q

1:5

Where f is time frame, and 1.5 corresponds to the 1.5 min of the time interval between con-
secutive frames. Mean motilities were used for analysis. Mean protraction and retraction of a
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process were calculated as the mean of the motilities from consecutive frames (f and f+1)
where the length of the process was increased or decreased, respectively.

Electrophysiology
Hippocampal slices (300 μm) from PND20-PND30 days-old fms-EGFP mice were prepared in
oxygenated (95% O2,5% CO2) ACSF, pH 7.4, that contained 124 mMNaCl, 25 mM NaHCO3,
1.25 mM NaH2PO4, 2.5 mM KCl, 2.5 mM CaCl2, 1.3 mMMgCl2, and 10 mM D-glucose. Slices
were allowed to recover for at least 1 h and were then transferred to a 37ºC chamber with con-
tinuous flow (1 mL/min) of oxygenated ACSF. To induce epileptiform activity, cells were per-
fused with high K+ (8 mM), low Mg2+ (0.25 mM) and 4-AP (100 μM) [84]. Extracellular field
potential recording were performed in the CA1 pyramidal layer to monitor epileptiform activ-
ity, using glass electrodes (1 MO) filled with aCSF. Epileptiform activity was induced both in
the DG and CA1, but the amplitude of the spikes was considerably larger in CA1 and thus
EGFP-expressing microglial cells were simultaneously patch-clamped recorded in this region
in whole-cell configuration with recording pipettes (7–10 MO) filled with a solution containing
135 mM KCl, 4 mMNaCl, 0.7 mM CaCl2, 10 mM BAPTA, 10 mMHEPES, 4 mMMg-ATP
and 0.5 mM Na2-GTP (pH 7.2).

FACS Sorting
Microglia cells were isolated from brains as described previously [10]. The hippocampi and
cortices from 2-mo-old fms-EGFP mice were dissected and placed in enzymatic solution
(116 mMNaCl, 5.4 mM KCl, 26 mM NaHCO3, 1 mMNaH2PO4, 1.5 mM CaCl2, 1 mM
MgSO4, 0.5 mM EDTA, 25 mM glucose, 1 mM L-cysteine) with papain (20 U/ml) and DNAse
I (150 U/μl, Invitrogen) for digestion at 37ºC for 15 min. For glutamate receptor subunit
expression experiments, 8 hippocampi, and 3 hemicortices from 4 mice were collected per rep-
lica, with a total of 4 replicas. For cytokine expression experiments, 4 hippocampi from saline
or KA-injected mice were collected per replica, with a total of 4 replicas. After homogenization,
tissue clogs were removed by filtering the cell suspension through a 40 μm nylon strainer to a
50 ml Falcon tube quenched by 5 ml of 20% heat inactivated FBS in HBSS. For further enrich-
ment of microglia, myelin was removed by using Percoll gradients. For this purpose, cells were
centrifuged at 200 g for 5 min and resuspended in a 20% Solution of Isotonic Percoll (20% SIP;
in HBSS), obtained from a previous stock of SIP (9 parts Percoll per 1 part PBS 10X). Then,
each sample was layered with HBSS poured very slowly by fire-polished pipettes. Afterwards,
gradients were centrifuged for 20 min at 200 g with minimum acceleration and no brake so the
interphase was not disrupted. Then the phase was removed, cells were washed in HBSS by
centrifuging at 200 g for 5 min and pellet was resuspended in 500 μl of sorting buffer (25 mM
HEPES, 5 mM EDTA, 1% BSA, in HBSS). Microglia cell sorting was performed by FACS Jazz
(BD), in which the population of green fluorescent cells was selected, collected in Lysis Buffer
(Qiagen) containing 0.7% β-mercaptoethanol and stored at −80ºC until processing.

RNA Isolation and RTqPCR
The right hippocampus of wild type mice was rapidly isolated immediately after intraaortic
perfusion with cold PBS under tribromoethanol overdose, and stored at −80°C until processed.
Total RNA was isolated using a roto-stator homogenizer and Qiagen RNeasy Mini Kit (Alco-
bendas, Spain), following manufacturer’s instructions, including a DNAse treatment step.
RNA was quantified in a Nanodrop 2000, and 1.5 μg were retrotranscribed using random hex-
amers (Invitrogen) and Superscript III Reverse Transcriptase kit (Invitrogen), following manu-
facturer’s instructions in a Veriti Thermal Cycler (Applied Biosystems, Alcobendas, Spain).

Neuronal Hyperactivity Impairs Microglial Phagocytosis

PLOS Biology | DOI:10.1371/journal.pbio.1002466 May 26, 2016 37 / 48



RNA from FACS-sorted microglia was isolated by Rneasy Plus micro kit (Qiagen) according to
the manufacturer instructions, and the RNA was retrotranscribed using an iScript Advanced
cDNA Synthesis Kit (Biorad). qPCR was performed following MIQE guidelines (Minimal Infor-
mation for Publication of Quantitative Real Time Experiments [89]). Three replicates of 1.5 μl of
a 1:3 dilution of cDNAwere amplified using Power SybrGreen (Biorad) for hippocampal experi-
ments or SsoFast EvaGreen Supermix (Biorad) for FACS-sorted microglia experiments in a
CFX96 Touch Real-Time PCR Detection System (Biorad). The amplification protocol for both
enzymes was 3 min 95°C, and 40 cycles of 10 s at 95°C, 30 s at 60°C. Primers were designed to
amplify exon–exon junctions using Primer Express (Applied Biosystems) or PrimerBlast (NIH)
to avoid amplification of contaminating genomic DNA, and their specificity was assessed using
melting curves and electrophoresis in 2% agarose gels. Primer sequences are listed in S3 Table.
For each set of primers, the amplification efficiency was calculated using a standard curve of 1:2
consecutive dilutions, and was used to calculate the relative amount using the following formula:

DDCt ¼ ð1þ eff :target geneÞexpðCt sample� Ct controlÞ=

ð1þ eff :reference geneÞexpðCt sample� Ct controlÞ

Two independent reference genes were compared: L27A, which encodes a ribosomal protein
of the 60S subunit [10] and OAZ-1, which encodes ornithine decarboxylase antizyme, a rate-
limiting enzyme in the biosynthesis of polyamines and recently validated as reference gene in
rat and human [90]. In all experiments, the pattern of mRNA expression was similar using
both reference genes, and in each experiment the reference gene that rendered lower
intragroup variability was used for statistical analysis.

Statistical Analysis
SigmaPlot (San Jose, CA, USA) was used for statistical analysis. For the analysis of cytokine
mRNA expression, a logarithmic transformation was performed to comply with ANOVA
assumptions (normality and homocedasticity) [10]. The analysis of cytokine and apoptotic cell
expression was evaluated by two-way ANOVA or the corresponding non-parametrical test
(Kruskal-Wallis). When interaction between factors (time x treatment) was found, a 1-way
ANOVA test of all groups was performed instead to determine the overall effect of each factor.
In all cases, all-pairwise multiple comparisons (Holm-Sidak method or Tukey test) were used
as a posthoc test to determine the significance between groups in each factor. Only p< 0.05 is
reported to be significant. Data is shown as mean ± SEM (standard error of the mean).

The underlying data used in all figures are included in S1 Data.

Supporting Information
S1 Data. Excel files containing numerical values for all data shown in Figs 1–12 and S1–S13
Figs.
(XLSX)

S2 Data. Flow cytometry file containing CD45 data for control #1.
(LMD)

S3 Data. Flow cytometry file containing CD45 data for control #2.
(LMD)

S4 Data. Flow cytometry file containing CD45 data for control #3.
(LMD)
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S5 Data. Flow cytometry file containing CD45 data for control #4.
(LMD)

S6 Data. Flow cytometry file containing CD45 data for KA 3 dpi #1.
(LMD)

S7 Data. Flow cytometry file containing CD45 data for KA 3 dpi #2.
(LMD)

S8 Data. Flow cytometry file containing CD45 data for KA 3 dpi #3.
(LMD)

S9 Data. Flow cytometry file containing CD45 data for KA 3 dpi #4.
(LMD)

S10 Data. Flow cytometry file containing CD45 data for KA 7 dpi #1.
(LMD)

S11 Data. Flow cytometry file containing CD45 data for KA 7 dpi #2.
(LMD)

S12 Data. Flow cytometry file containing CD45 data for KA 7 dpi #3.
(LMD)

S13 Data. Flow cytometry file containing CD45 data for KA 7 dpi #4.
(LMD)

S1 Fig. Phagocytosis in the PND developing hippocampus. (A) Representative confocal
z-stack projections of the DG of the hippocampus at PND d 7 (PND7) and PND14 of fms-
EGFP mice, the ages when organotypic cultures were cultured (PND7) and were used for
experiments (PND7+7DIV). Apoptotic (pyknotic, white, DAPI; arrows) cells were phagocy-
tosed by terminal or en passant branches of microglia (fms-EGFP+, cyan; M). Scale bars =
50 μm. z = 16.8 μm. (B) Ph index in the DG at PND7 and 14 (in % of apoptotic cells; n = 3–4
per group). Bars represent mean ± SEM. � indicates p< 0.05 and �� indicates p< 0.01 by one-
tail Student´s t test. Underlying data is shown in S1 Data.
(TIF)

S2 Fig. Effect of KA on apoptosis and phagocytosis in the DG, CA, and cortex. (A) Repre-
sentative confocal z-stack projections of the CA1, CA3 regions of the hippocampus, and cortex
(Cx) of 2 mo fms-EGFP mice injected with saline (left panels) or KA (right panels) at 1 dpi. Apo-
ptotic cells (pyknotic, white, DAPI; arrowheads) are largely absent in control conditions but pres-
ent in KA-treated mice in the three regions. Some apoptotic cells were phagocytosed (arrows) by
microglia (fms-EGFP+, cyan) but most were not (arrowheads). Similar images of the DG are
shown in Fig 3B. Scale bars = 50 μm. z = 18.2 μm (except in CA1 KA1 dpi = 20.3 μm, CA3 sal 1
dpi = 17.5 μm and Cx KA 1 dpi = 19.6 μm). (B) Density of apoptotic (pyknotic/karyorrhectic
and act-casp3+) per mm3 (n = 3 per region and treatment). (C) Ph index (in % of apoptotic cells)
in the different brain regions after KA. nd, not detected; na, not applicable. Bars represent
mean ± SEM. �� indicates p< 0.01, and ��� indicates p< 0.001 by Student’s t test. Underlying
data is shown in S1 Data.
(TIF)

S3 Fig. Early effects of KA in the mouse hippocampus. (A) Density of microglia (cells/mm3)
in saline and KA-injected mice (n = 3–5 per group). At 1 dpi, KA induced a significant decrease
in the density of microglia. (B) Volume of the septal DG (mm3) in saline and KA-injected mice
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(n = 3–5 per group). The volume occupied by the DG was assessed in the septal hippocampus
(spanning from −1 mm to −2.5 mm in the AP axes, from Bregma) in control animals (injected
with saline, pooled from different time points for robustness) or after injection of KA at 1, 3,
and 7 dpi (no changes after 6 hpi were found). (C) Representative orthogonal projection
(upper panel) and 3-D-rendered image (lower panel) of a confocal z-stack showing an apopto-
tic cell (pyknotic, white, DAPI) expressing activated-caspase 3 (act-casp3+, red) phagocytosed
by a hGFAP+ astrocyte (green), nearby a microglial cell (Iba1+, cyan). (D) Representative
orthogonal projection (upper panel) and 3-D-rendered image (lower panel) of a confocal z-
stack showing an apoptotic cell (pyknotic, white, DAPI) expressing activated-caspase 3 (act-
casp3+, red) phagocytosed by a POMC+ neuroblast (yellow), nearby a microglial cell (Iba1+,
cyan). (E) Ph index of microglia, astrocytes and neuroblasts (in %) at 1 dpi after the injection
of KA (n = 3–4 per group). At 1 dpi, the impaired microglia remained the major phagocytic
cell in the hippocampus, as it engulfed a higher percentage of apoptotic cells. (F) Average dis-
tance (in μm) between apoptotic nuclei and the closest (perpendicular) microglial process.
Apoptotic cells were analyzed from 3 animals per group (n = 6, 73, and 189 cells for control,
KA 6 hpi and KA 1 dpi, respectively). The distance increased significantly by 1 dpi after KA.
Bars represent mean ± SEM. In A, �� indicates p< 0.01 by Holm-Sidak posthoc test after two-
way ANOVA was significant at p< 0.05. In B, a indicates p< 0.05 versus control, b indicates
p< 0.05 versus KA 7 dpi by Holm-Sidak posthoc test after one-way ANOVA was significant at
p< 0.05. In F, ��� indicates p< 0.001 by Dunn´s posthoc test after Kruskal-Wallis test was sig-
nificant at p< 0.05. Scale bars = 10 μm. z = 11.9 μm. Arrows, phagocytic pouches. Underlying
data is shown in S1 Data.
(TIF)

S4 Fig. Long term effects of KA in the mouse hippocampus. (A) Representative projection of
a confocal z-stack showing several large multinucleated phagoptotic microglia (fms-EGFP+,
cyan) from the hippocampus of a KA mouse (3 dpi). (A1) 3-D-rendered image showing the
continuum of EGFP through the microglial cytoplasm and within their nuclei. Up to five nuclei
were contained. (A2) Panel showing each nucleus individually. Nucleus 5 was small but not
pyknotic and was surrounded by a pouch of microglial cytoplasm. (A3) Orthogonal projections
of nucleus 5 showing its complete engulfment by microglial processes (phagoptosis). Arrowhead
point towards a nonengulfed apoptotic cell. (B) Gating strategy used for the analysis of CD45
expression in microglia from control and KA-injected mice (3 and 7 dpi). First, debris was
excluded using the R1 gate in FSC versus SSC. Next, fms-EGFP+ cells were gated in R2 in EGFP
vs FSC. A small population of microglial processes was excluded from R2 [10]. CD45low cells are
shown in cyan and CD45high in red (as in Fig 5). Original FSC files can be found in S2–S5 Data
(control), S6–S9 Data (KA 3 dpi), and S10–S13 Data (KA 7 dpi). (C) Septal DG volume (in
mm3) inWT and CCR2 KOmice at 3 dpi. (D) Representative projection of a confocal z-stack
showing neutrophils in the spleen challenged with LPS (8 h), stained with myeloperoxidase
(MPO, red) in fms-EGFP+ cells. (E) Representative projection of a confocal z-stack showing
neutrophils in the DG of a CCR2 KOmice injected with KA at 3 dpi. Neutrophils expressed
CD11b (green) andMPO (red). (F) Septal DG volume (in mm3) in saline and KA-injected mice
at 4 mpi. (G) Number of apoptotic cells per septal hippocampus in saline (n = 7) and KA (n = 8)
mice at 4 mpi after the injection of KA. (H) Representative projection of a confocal z-stack show-
ing phagocytosis by a reactive astrocyte in the hippocampus of a KAmice (4 mpi). Arrows point
towards the phagocytosed apoptotic cell. rA, reactive astrocyte; M, microglia. Scale bars = 10 μm
(A, G), 20 μm (C, D). z = 17 μm (A), 9,8 μm (C, D), 7.2 μm (C). Bars represent mean ± SEM,
��� indicates p> 0.001 by Student’s t test. Underlying data is shown in S1 Data.
(TIF)
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S5 Fig. Microglial proliferation along the time course after KA. (A) Representative confocal
z-stack projection of uni- (left) and multinucleated (right) microglia (fms-EGFP+, cyan) in the
DG 3 dpi after KA. Proliferating cells were labeled with Ki67 (red) and nuclei with DAPI
(white). Scale bars = 10μm. z = 9.8 μm (B) Percentage of uni- (grey) and multinucleated
(white) microglia labeled with Ki67 from 6hpi to 7 dpi. Bars represent mean ± SEM. nd, not
detectable. a indicates p< 0.05 between uninucleated microglia at 3 and 7 dpi, bbb indicates
p< 0.001 between multinucleated microglia at 3 and 7 dpi by Student´s t test. Underlying data
is shown in S1 Data.
(TIF)

S6 Fig. Expression of CD11b in microglia along the time course after KA. (A) Representa-
tive confocal z-stack projections of the hippocampus in control (not injected) and KA-injected
mice from 6 hpi to 7 dpi. Nuclei are labeled with DAPI (white), and microglia with fms-EGFP
(cyan) and CD11b (magenta). The expression of CD11b increased over the time course. Scale
bars = 500 μm. z = 7.7 μm (control, KA 6 hpi), 9.1 μm (KA 1 dpi), 9.8 μm (KA 3 dpi, 7 dpi). (B)
High magnification inserts of the DG and CA1 region in KA mice at 7 dpi. Scale
bars = 100 μm. z = 14.7 μm (DG), 11.9 μm (CA1).
(TIF)

S7 Fig. Expression of CD68 in microglia along the time course after KA. (A) Representative
confocal z-stack projections of the hippocampus in control (not injected) and KA-injected
mice from 6 hpi to 7 dpi. Nuclei are labeled with DAPI (white), and microglia with fms-EGFP
(cyan) and CD68 (magenta). The expression of CD68 increased over the time course. Scale
bars = 500 μm. z = 9.8 μm (control, KA 7 dpi), 8.4 μm (KA 6 hpi), 10.5 μm (KA 1 dpi, 3 dpi).
(B) High magnification inserts of the DG and CA1 region in KA mice at 7 dpi. Scale
bars = 100 μm. z = 12.6 μm (DG), 11.9 μm (CA1).
(TIF)

S8 Fig. Microglial phagocytosis in human epilepsy. (A). Representative confocal z-stack pro-
jection of two neurons in the hilus (NeuN+, magenta; arrows) surrounded by a mesh of micro-
glial processes (Iba1+) in the hippocampus of biopsy tissue obtained from an MTLE patient.
Nuclei are shown in white (DAPI). The right panel shows an orthogonal projection of the same
cells (N1 and N2). (B) Representative confocal z-stack projections of apoptotic cells (pyknotic,
DAPI, white) not phagocytosed (B1, in the granular layer) and phagocytosed (B2, in the hilus)
by microglia (Iba1+, cyan) in the hippocampus of autopsy tissue from a nondemented control.
(C) Representative confocal z-stack projections of apoptotic cells (pyknotic, DAPI, white) not
phagocytosed (C1, in the hilus) and phagocytosed (C2, in the granular layer) by microglia
(Iba1+, cyan) in the hippocampus of autopsy tissue from an epileptic patient. The number of
engulfed apoptotic cells evaluated is shown in S1 Table. Scale bars = 50 μm (A), 20 μm (B, C).
z = 15.7 μm (A), 3.5 μm (B1), 8.05 μm (B2), 4.55 μm (C1), 9.1 μm (C2).
(TIF)

S9 Fig. RTqPCR analysis of glutamate receptor subunit expression in microglia.Microglia
was FACS-sorted from the hippocampus and the cortex of 2 mo mice, and their expression of
ionotropic and metabotropic glutamate receptor subunit assessed by RTqPCR. Two PND8 hip-
pocampi were used as positive control (except for Grm6, where the retina of a 2 mo mouse was
used), and the RT- as negative control. (A) Amplification plots for each subunit showing the
cycle versus the RFU (relative fluorescent units). The threshold level of fluorescence used to
determine the threshold cycle is shown as a straight dark green line. Microglia had a low, but
consistent expression of all subunits above the threshold and clearly different from the RT-.
(B) Denaturing curves for each subunit showing the increase in temperature versus the
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decrement in fluorescence. All primers used were checked against forming primer dimer or
other nonspecific products.
(TIF)

S10 Fig. Seizures, but not KA, impair phagocytosis in organotypic slices. (A) Number of
apoptotic cells in a 200.000 μm3 volume in organotypic slices treated with KA (1 mM, 6 h). No
significant differences were found between KA (n = 5) and control (vehicle; n = 3) slices,
although there was a tendency to found fewer apoptotic cells in KA-treated slices (p = 0.08).
(B) Weighted Ph capacity (in ppu) in organotypic slices treated with KA. (C) Number of
microglia within the slice in a 200.000 μm3 volume in organotypic slices treated with KA. (D)
Experimental design and representative images of the DG of hippocampal organotypic slices
treated with ACSF (control) or an epileptogenic cocktail (high K+, low Mg2+, 4-AP) for 1 h.
Normal or apoptotic (pyknotic/karyorrhectic) nuclear morphology was visualized with DAPI
(white), microglia by the transgenic expression of fms-EGFP (cyan), and membrane permeabil-
ity (characteristic of necrotic cells) by PI (red). High magnification inserts show details of
phagocytosed apoptotic cells in the two conditions. Arrows, phagocytosed cells; arrowheads,
non-phagocytosed cell. Scale bars = 30 μm. (E) Number of dead apoptotic cells in 200.000 μm3

of the DG in organotypic slices treated with the epileptogenic cocktail. (F) Ph index in organo-
typic slices (% of apoptotic cells phagocytosed) treated with the epileptogenic cocktail. Note
that the Ph index in ACSF-treated slices is higher than in organotypic culture media-treated
slices (Fig 1). (G) Weighted Ph capacity of microglia (in parts per unit, ppu). (H) Histogram
showing the Ph capacity of microglia (in % of cells). (I) Number of microglial cells. (J) Ph/A
coupling (in fold-change) in organotypic slices treated with the epileptogenic cocktail. (K)
Extracellular recording of the seizure activity induced by the epileptogenic cocktail before and
after the purinergic antagonist BBG was added in acute hippocampal slices. The effect of this
drug in microglial currents is shown in Fig 9A–9C. (L) Spike amplitude (in mV) induced by
the epileptogenic cocktail. (M) Spike frequency (in Hz) induced by the epileptogenic cocktail.
Bars represent mean ± SEM. � indicates p< 0.05 and �� p< 0.01 by Student´s t test. Underly-
ing data is shown in S1 Data.
(TIF)

S11 Fig. Effect of ATP in vivo. (A) Tiled confocal z-stack of the injection site in ATP-injected
mice (100 mM, 2h). Note that the injected volume is larger than in the KA injections (1 μl ver-
sus 50 nL) and thus the tissue damage is more apparent. Nuclei are shown with DAPI in white
and microglia is visualized with fms-EGFP in cyan. Inserts show details of the cortex (A1, A2),
CA3 (A3), DG (A4), and CA1 (A5). The effect of injected ATP was restricted to the DG, as
determined by the change in microglial morphology. (B) Representative confocal z-stack of the
DG in mice injected with vehicle (control) or ATP (10 or 100 mM) at 4 hpi. (C) Septal DG vol-
ume (in mm3) in saline and ATP-injected mice at 4 hpi. Scale bars = 500 μm (A, tiled image),
100 μm (A, details), 50μm (B). z = 25.2 μm (A, tiled image), 16.8 μm (A, details), 14 μm (B).
Underlying data is shown in S1 Data.
(TIF)

S12 Fig. Expression of pannexin in the DG along the KA time course. Representative confo-
cal z-stack projections of the DG in control (1 and 2 mo) and KA-injected mice from 6 hpi to 7
dpi showing the low expression of pannexin (magenta) in granule neurons in the DG. Pan-
nexin was expressed at low levels by granule neurons in control mice, and appeared in puncta
on their surface along the time course after KA was injected (7-point stars), and could occa-
sionally be diffusely expressed in microglia (5-point star at 6 hpi). Pannexin expression was
largely absent in apoptotic cells, either phagocytosed (arrows) or nonphagocytosed
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(arrowheads) in control and KA mice. We found some cases of nonphagocytosed apoptotic
cells labeled with puncta of pannexin at 7 dpi (7-point star at 7 dpi). Scale bars = 20 μm.
z = 14.7 μm.
(TIF)

S13 Fig. Survival of newborn cells 1 dpi after KA. (A) Experimental design to test the effect
of KA on 3 do (upper panel) and 8 do (lower panel). (B) Number of BrdU+ cells per septal hip-
pocampus in saline or KA injected mice (n = 3–5 per group). 8 do cells were naturally less
abundant than 3 do cells, reflecting the decreased survival of newborn cells. Nonetheless, KA
did not significantly alter the number of BrdU+ cells born 3 or 8 d before. (C) Representative
projections of confocal z-stacks of the DG of the hippocampus showing the colocalization
between Ki67 (green) and BrdU (red), which had been injected 3 d before. The colocalization
was a measure of the reentry of 3 do cells in the cell cycle and was identical in saline- and KA-
injected mice. (C) Representative epifluorescent tiled image of the hippocampus and surround-
ing cortex of 2 and 6 mo mice injected with KA at 1 dpi stained with the neuronal activation
marker c-fos. The same pattern of expression was found in young and mature mice throughout
the DG, CA2, CA1, and the above cortex. (D) Ph index in the hippocampus (in % of apoptotic
cells) in control and KA-injected mice at 2 and 6 mo (n = 4–5 per group). Scale bars = 50 μm
(C). z = 28.7 μm (C, saline), 25.2 μm (C, KA). Underlying data is shown in S1 Data.
(TIF)

S1 Movie. Basal motility of microglial processes by two-photon microscopy in the living
cortex of CX3CR1GFP/+ mice after intrahippocampal injection of saline (1 dpi). Scale
bar = 20 μm. Time is indicated as hr:min.
(AVI)

S2 Movie. Basal motility of microglial processes by two-photon microscopy in the living
cortex of CX3CR1GFP/+ mice after intrahippocampal injection of KA (1 dpi). Scale
bar = 20 μm. Time is indicated as hr:min.
(AVI)

S1 Table. Apoptosis and microglial phagocytosis in the human hippocampus. List of biopsy
(Cruces University Hospital, Bilbao, Spain) and autopsy (Netherlands Brain Bank, NBB) hip-
pocampal samples analyzed, including the diagnostic (ND, nondemented controls), the num-
ber of sections analyzed, the total number of apoptotic cells, the number of apoptotic cells
phagocytosed by microglia, the Ph index, as well as age, sex, PM (hr:min) delay, and cause of
death. Representative images can be found in Fig 6 and S8 Fig.
(DOCX)

S2 Table. Fatty acid composition of the dietary lipids. Percentage (in weight) in saturated,
monounsaturated, omega 6 (O6) polyunsaturated, and omega 3 (O3) polyunsaturated fatty
acids, as determined by gas chromatography. AA, arachidonic acid; ALA, α-linolenic acid;
FAs, fatty acids; LA, linolenic acid; ND, not detected (under the limit for the detection by gas
chromatography,<0.05%); PUFAs, polyunsaturated fatty acids.
(DOCX)

S3 Table. qPCR primer sequences. List of primers used to amplify reference genes, cytokines,
and glutamate receptor subunits. The gene name, Gene Bank accession number, amplicon size,
sequence, and software used for their design are listed.
(DOCX)
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