

Data Sparsity in Highly Inflected

Languages: The Case of Morphosyntactic

Tagging in Polish

Author: Michael Ustaszewski

Supervisors: Rodrigo Agerri and German Rigau

Master’s Thesis

Master in Language Analysis and Processing
University of the Basque Country (Euskal Herriko Unibertsitatea)

Department of Computer Systems and Languages

Donostia-San Sebastián, September 2016

i

Acknowledgments

First and foremost, I thank Rodrigo Agerri for being a great supervisor, for having
that much patience with a linguist stubborn enough to enter the world of pro-
gramming and NLP, and for all his advice. Zu oso irakasle ona zara! No less im-
portant, I thank my second supervisor, German Rigau, for motivating me to choose
this topic for my thesis.

I am also thankful to the whole IXA research group and all teachers in the LAP Mas-
ter’s programme who made me feel welcome from the very beginning of my stay in
Donostia and who did a great job in sharing their passion for this fascinating field.
Not to forget the technical staff that helped me to run my experiments on the
group’s computer cluster. Eskerrik asko guztioi!

If it were not for the leave of absence granted by the University of Innsbruck I
would not have been able to study in the LAP programme. I am very thankful that I
was given the chance to learn something new and to make all those invaluable ex-
periences.

A very special thanks goes also to Josu – I could not have found a better flatmate.
But not only him, all my other friends who I met in Donostia made this year so spe-
cial.

My deepest gratitude goes, of course, also to my parents and family for all what
have done for me.

Finally, I am more than grateful to my love Babsi, who encouraged me to pursue
my ideas and to try something new despite not being able to be with me during
that time. The support you gave me means so much to me!

iii

Abstract

In morphologically complex languages, many high-level tasks in natural language
processing rely on accurate morphosyntactic analyses of the input. However, in
light of the risk of error propagation in present-day pipeline architectures for basic
linguistic pre-processing, the state of the art for morphosyntactic tagging is still
not satisfactory. The main obstacle here is data sparsity inherent to natural lan-
guage in general and highly inflected languages in particular.

In this work, we investigate whether semi-supervised systems may alleviate the
data sparsity problem. Our approach uses word clusters obtained from large
amounts of unlabelled text in an unsupervised manner in order to provide a su-
pervised probabilistic tagger with morphologically informed features. Our evalua-
tions on a number of datasets for the Polish language suggest that this simple
technique improves tagging accuracy, especially with regard to out-of-vocabulary
words. This may prove useful to increase cross-domain performance of taggers,
and to alleviate the dependency on large amounts of supervised training data,
which is especially important from the perspective of less-resourced languages.

v

Abstract ... iii

List of Figures .. vii

List of Tables ... ix

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Goals... 2

1.3 Thesis Structure ... 3

2 Morphosyntactic Tagging in Highly Inflected Languages 5

2.1 Problem Description .. 5

2.2 Approaches to Morphosyntactic Tagging .. 7

3 Materials and Methods ... 11

3.1 Experimental Setup ... 11

3.2 System Description .. 12

3.2.1 IXA Pipes .. 12
3.2.2 Baseline Features .. 13
3.2.3 Clustering Features .. 16

3.3 Data for Training and Testing... 17

3.3.1 National Corpus of Polish ... 18
3.3.2 Universal Dependencies Polish Treebank .. 19
3.3.3 Polish Language of the 1960s Corpus .. 19

3.4 Data for Unsupervised Word Cluster Induction .. 21

3.5 Evaluation Metrics ... 24

4 Results and Discussion ... 27

4.1 Evaluation of Segmentation and Tokenisation .. 27

4.2 Evaluation of Baseline Feature Sets .. 27

4.3 Evaluation of the Effect of Clustering Features .. 29

4.3.1 Brown Clusters .. 29
4.3.2 Clark Clusters ... 30
4.3.3 word2vec Clusters .. 31
4.3.4 Combining Cluster Types ... 33

4.4 Final Evaluation... 33

4.4.1 Evaluation on Test Sets ... 34
4.4.2 Out-of-Domain Evaluation ... 35
4.4.3 Interpretation and Discussion of Results ... 36
4.4.4 Comparison to Other Systems .. 37

5 Conclusions and Future Work .. 41

References .. 45

vii

List of Figures

1 Frequency of labels in UD Train, sorted by rank. .. 20
2 Results for best-performing feature combinations (UDP Train/Test). 34
3 Results for best-performing feature combinations (NCP Train/NCP Test). 35

ix

List of Tables

1 Morphological analyses and frequency counts for all forms of lemma robić 6
2 Running example of tagged sentence and features generated from it 13
3 Feature configuration of our two baseline systems. ... 15
4 Sample input and output for Brown cluster induction. ... 16
5 Sample input and output for Clark cluster induction.. 17
6 Sample input and output for word2vec cluster induction. .. 17
7 Statistics for datasets used for training and testing. ... 18
8 Sparsity in training and evaluation data. .. 21
9 Overview of induced clusters. .. 23
10 Evaluation of our baselines ... 28
11 Measuring the effect of Brown clusters ... 30
12 Measuring the effect of Clark clusters .. 31
13 Measuring the effect of word2vec clusters .. 32
14 Measuring the effect of combining Brown, Clark and word2vec clusters 33
15 Training time and size of best-performing models. ... 35
16 Out-of-domain evaluation for models trained on UDP Train 36
17 Out-of-domain evaluation for models trained on NCP Train 36
18 Comparison with other systems for Polish. ... 38
19 Comparison with systems for other languages .. 39

Chapter 1. Introduction

1

1 Introduction

1.1 Motivation

The use of Natural Language Processing (NLP) technologies continues to gain im-
portance in academic, commercial, as well as governmental settings worldwide.
While NLP applications are becoming increasingly sophisticated and enable users
to perform more and more complex tasks on natural language, the core of most, if
not all, NLP tools consists of several steps of basic linguistic processing, including
text segmentation (paragraph and sentence splitting), tokenization, part of speech
(POS) tagging, lemmatisation, named entity recognition and classification (NERC),
and parsing. Nowadays, these tasks are usually being performed in a modular and
sequential manner. Such systems are commonly referred to as NLP pipelines.

Given the fundamental importance of those core tasks, high-quality and efficient
NLP tools are indispensable to allow both researchers in academia and end-users
in industry to fully exploit the possibilities of present-day NLP. From the perspec-
tive of end-users, the usefulness of a system does not only depend on performance,
but also on aspects such as user-friendliness, flexibility and open availability. How-
ever, many systems are rather difficult to handle and require substantial IT skills
in order to be able to embark on NLP or computational linguistics. To further ad-
vance these two fields, we believe that truly easy-to-use and readily available NLP
tools that at the same time yield state-of-the-art precision and efficiency are of ut-
most importance. While such tools are, indeed, available for some linguistic com-
munities, first and foremost for English (e.g. Manning et al., 2014; Padró et al.,
2010) the picture is quite different for a large number of languages, especially for
less-resourced languages and languages with complex morphology. As a matter of
fact, we experienced this very situation on our own when trying to develop a sim-
ple application for computer-assisted learning of Polish, which required segmenta-
tion/tokenisation and morphosyntactic tagging. It turned out that the available
tools needed cumbersome compilation and configuration effort as well as third-
party dependencies, which means that many potential users will refrain from using
them. The most promising tool in terms of user-friendliness we have found for
Polish is the PSI Toolkit (Jassem, 2013); however, by the time we started this pro-
ject only the web interface was fully functional, whereas local distributions were
only partially available. Against this background, the initial motivation for the pre-
sent work was to provide tools that meet the above requirements in the context of
Polish. We hope that such tools will eventually spark an interest in data-driven
research methodologies among the ‘traditional’ linguistics community and pro-
mote the development and improvement of higher-order NLP applications.

Although Polish is well equipped with large corpora, treebanks and similar re-
sources of high quality, the very nature of the complex, inflectional morphology of
Polish and many other languages poses specific difficulties to NLP tasks within the
machine learning paradigm. The major problem here is data sparsity, which can be
conceived as the limited availability or even complete lack of training instances for
a large number of outcomes to be predicted by machine learning models. This does
not imply that the training data in question is of low quality, but that natural lan-
guage and thus linguistic data is inherently sparse given the open-endedness of
language as a dynamic system, as already postulated by the well-known Zipf’s law

Chapter 1. Introduction

2

(Zipf, 1935). In morphologically complex languages this data problem is even more
severe. In order to perform well in real-world higher level applications, NLP pipe-
lines for morphologically complex languages need to address sparsity issues in an
adequate way. Therefore, tools for morphosyntactic tagging still deserve our atten-
tion; and to maximally comply with end-users’ practical requirements in academia
and industry (performance, simplicity, flexibility, cost-efficiency, minimal use of
language-specific knowledge or components, etc.) such tools are ideally to be
based on language-independent architectures.

1.2 Goals

In light of the motivation outlined above, we evaluate the POS tagger of the IXA
pipes (Agerri, Bermudez and Rigau, 2014) when applied to morphosyntactic tag-
ging of Polish. The decision to give IXA pipes preference over other candidate tools
is mainly due to its user-friendliness: from all tools that we reviewed and tested, it
convinced us most for being easy to install and use due to its readily available
lightweight distribution, language-independent and trainable architecture, porta-
bility, and, no less important, for its public availability under an Apache 2.0 open-
source licence. At the downside, it is not yet entirely suitable to address the prob-
lems specific to morphosyntactic tagging in highly inflected languages. Therefore,
the main goal of the present thesis is to investigate to what extent semi-supervised
and linguistically uninformed approaches (e.g. Spoustová et al., 2009; Turian, Rati-
nov, and Bengio, 2010; Eger, Gleim and Mehler, 2016) are feasible to deal with the
problem of data sparsity inherent to morphosyntactic tagging of inflective lan-
guages.

Our proposed approach employs a combination of shallow local features with
word clusters obtained from large amount of unlabelled text in an unsupervised
manner, thus yielding a language-independent architecture that does not require
language-specific feature tuning. Most importantly, we focus on the effect of in-
cluding word cluster features in the morphosyntactic tagging task by conducting
tests on a number of Polish datasets. This research-oriented goal aims to eventual-
ly pave the way for a truly user-friendly, simple-to-use and efficient NLP pipeline
for the Polish language, which at the same time can be applied to other morpholog-
ically rich languages, too. That said, the development of such a full-fledged system is
beyond the scope of this thesis. Instead, it is an aim to be achieved at a later stage.

The contribution of our work consists essentially in shedding light on whether
unsupervised word clustering (Brown et al., 1992; Clark, 2003; Mikolov et al.,
2013), a technique well known in distributional semantics, has the potential to
compensate for data sparsity in supervised morphosyntactic tagging of languages
with a complex morphology. Since our approach solely relies on unlabelled text
rather than explicit linguistic knowledge or language-specific feature tuning, we
assume that our findings are valid not only for Polish but also for other highly in-
flected languages. Furthermore, we also provide evidence that our approach may
improve out-of-domain robustness of taggers, too. Finally, we discuss what modifi-
cations need to be implemented in IXA pipes in order to make it truly useful for
high-quality morphosyntactic tagging of Polish and other morphologically rich lan-
guages.

Chapter 1. Introduction

3

1.3 Thesis Structure

The structure of this thesis is as follows: In Chapter 2, we describe and delimit key
concepts and provide the theoretic background related to morphosyntactic tagging
in morphologically complex languages. Chapter 3 summarizes the experimental
setup of our study and presents the corpora and tools we employed in our re-
search. Chapter 4 reports the results of our tests and discusses how our findings
relate to the aims of our research on the one hand and to related work on morpho-
syntactic tagging on the other. Finally, in Chapter 5 we summarize the main find-
ings of our study, highlight its limitations and strengths, draw conclusions and
point out future lines of research and work.

Chapter 2. Morphosyntactic Tagging in Highly Inflected Languages

5

2 Morphosyntactic Tagging in Highly Inflected
Languages

2.1 Problem Description

The focus of our work is the basic linguistic processing task of morphosyntactic
tagging, or morphological tagging, in the context of Polish as a representative of
highly inflected languages. Morphosyntactic tagging is closely related to POS tag-
ging. Both terms are sometimes even used as synonyms because the underlying
problem is very similar and they can both be treated as sequence labelling prob-
lems. However, these two tasks considerably differ in complexity and therefore the
two terms should clearly be kept apart, which is, unfortunately, not always the case
in the relevant literature. POS tagging consists in a assigning a label for the part of
speech, or word class, to each token in a sequence, for example verb, noun, adjec-
tive, punctuation mark, and so on. Morphosyntactic tagging goes further than that
by assigning not only POS tags for word class – sometimes referred to as coarse
grained tag or label – but also tags for morphological, or inflectional, categories,
such as number, case, gender, tense, aspect, and so on. Together with POS tags, tags
for inflectional categories form complex, fine-grained tags. The structure of coarse-
grained POS labels is, by nature, quite different from fine-grained morphosyntactic
labels. Consider Example 1, where Polish robiła is labelled as a past tense verb
(praet) with the values singular for number, feminine for gender and imperfective
for aspect, whereas its English counterpart made is only labelled as a past tense
verb (VBD) according to the Penn Treebank (Marcus, Santorini and Marcinkiewicz,
1993). The internal structure of fine-grained morphosyntactic labels varies across
languages, but the basic idea is always the same: using delimiter symbols (e.g. co-
lon, plus or pipe) word class labels are concatenated with values for inflectional
categories. To promote cross-language applications, there are noteworthy and
highly desirable initiatives aiming to harmonise tagsets across languages (Petrov
et al., 2012; Nivre et al., 2016).

(1) PL: robiła praet:sg:f:imperf
EN: made VBD

While English POS tagging is commonly considered a solved task1 with per-
token accuracies close to 98% (Toutanova et al., 2003; Yang, Salakhutdinov and
Cohen, 2016), for highly inflective and agglutinative languages the situation is
quite different. The reason for this is first and foremost the cardinality of the tag
set: while for an isolating or analytic language such as English it is typically be-
tween 40 and 75, the average tag set found in a corpus of morphologically complex
languages is between 500 and 1,000 distinct tags – whereas the amount of possible
and linguistically plausible tags can reach 3,000 to 5,000 (Hajič, 2000). The prob-
lem with such large tagsets is data sparsity, i.e. the limited number or complete
lack of training instances for large portions of linguistic phenomena that factually

1 This position is becoming increasingly challenged, firstly because in real-world rather than re-
search settings out-of-domain performance is still an issue and, secondly, because sentence accura-
cy is still not satisfactory despite very high per-token tagging accuracies (for a detailed discussion,
see for example Giesbrecht and Evert, 2009).

Chapter 2. Morphosyntactic Tagging in Highly Inflected Languages

6

occur in natural language, which decreases prediction accuracies in machine learn-
ing scenarios. The linguistic explanation for data sparsity in highly inflectional lan-
guages is that, contrary to isolating or analytic languages, they have a larger vo-
cabulary, because inflection requires words to express certain morphological cate-
gories (e.g. tense, aspect, number, gender, etc.), mostly by affixation. The result is
that on average words in inflective languages have higher morpheme per word
ratios – which per se does not increase vocabulary size. More importantly, due to
inflection there are more word forms per lemma than in isolating or analytic lan-
guages. Consider the following example: for the English lemma make, there are
only four different word forms in the vocabulary: make (VB or VBP), makes (VBZ),
made (VBD or VBN), and making (VBG). For the Polish lemma robić ‘make’ on the
other hand there are 27 different word forms, as shown in Table 1.

It is worth noting that in both English and Polish there are ambiguities, since
some word forms (e.g. make or robił) may be assigned at least two different tags if
only the token itself is considered. But the real problem here is not ambiguity – in
many cases, disambiguation can be achieved by positional information of tokens
within a sequence – but that for a considerable number of word forms, there is on-
ly one instance in the corpus a machine learning model can learn from (see the
frequency counts in in Table 1).

Word Form Morphosyntactic Label Count
Word
Form Morphosyntactic Label Count

robić inf:imperf 119 robimy fin:pl:pri:imperf 15

robi fin:sg:ter:imperf 159 robiona ppas:sg:nom:f:imperf:aff 3

robią fin:pl:ter:imperf 68 robioną ppas:sg:acc:f:imperf:aff 2

robiąc pcon:imperf 2 robione ppas:pl:nom:n:imperf:aff 1

robiący pact:pl:nom:m1:imperf:aff 1 robione ppas:pl:nom:m3:imperf:aff 1

robicie fin:pl:sec:imperf 5 robione ppas:pl:acc:n:imperf:aff 1

robię fin:sg:pri:imperf 31 robione ppas:pl:acc:m3:imperf:aff 1

robienia ger:sg:gen:n:imperf:aff 8 robione ppas:sg:nom:n:imperf:aff 4

robienie ger:sg:nom:n:imperf:aff 3 robionego ppas:sg:gen:m3:imperf:aff 1

robieniem ger:sg:inst:n:imperf:aff 1 robiono imps:imperf 4

robieniu ger:sg:loc:n:imperf:aff 2 robiony ppas:sg:nom:m3:imperf:aff 1

robił praet:sg:m2:imperf 1 robionych ppas:pl:loc:f:imperf:aff 1

robił praet:sg:m3:imperf 3 robionych ppas:pl:gen:n:imperf:aff 1

robił praet:sg:m1:imperf 66 robionych ppas:pl:gen:m3:imperf:aff 1

robiła praet:sg:f:imperf 30 robionych ppas:pl:gen:f:imperf:aff 1

robili praet:pl:m1:imperf 37 robisz fin:sg:sec:imperf 33

robiło praet:sg:n:imperf 4 rób impt:sg:sec:imperf 8

robiły praet:pl:n:imperf 1 róbmy impt:pl:pri:imperf 1

robiły praet:pl:m3:imperf 1

robiły praet:pl:f:imperf 2

Table 1: Morphological analyses and frequency counts for all forms of lemma robić ‘to make’
found in the National Corpus of Polish.

While having a low number of instances of certain word forms in a corpus is cer-
tainly less than optimal, for a high-frequency verb such as robić ‘to make’ we can at
least assume that there is at least one instance for each morphologically plausible

Chapter 2. Morphosyntactic Tagging in Highly Inflected Languages

7

word form in a reasonably large corpus. If we take, however, a less frequent word
or a term specific to a certain subject domain, chances are high that only a few of
all possible word forms pertaining to a certain lemma are represented in a training
corpus for machine learning. This problem of out-of-vocabulary words is another
major obstacle in morphosyntactic tagging, because no matter how large a training
corpus is, according to Zipf’s law many word forms will be either completely un-
known to a tagger or modelled upon a very limited number of occurrences in the
training data.

Summing up, the difficulties in morphosyntactic tagging of highly inflected lan-
guages boil down to the cardinality of the set of complex, fine-grained tags; the
inevitable presence of word forms unknown to a model; and multiple, ambiguous
morphological tags for individual word forms.

2.2 Approaches to Morphosyntactic Tagging

The fact that both POS and morphosyntactic tagging are still a topic that receives
considerable attention in NLP shows that these tasks have not been resolved yet.
The reason for the continuous interest is obvious: being one of the first prepro-
cessing steps to be carried out in sequential and ascending NLP pipelines, high
quality on this lower level of language processing is crucial to the successful appli-
cation of high-level and more complex tasks. Because of the risk of error propaga-
tion throughout NLP pipelines, insufficient performance on lower levels may seri-
ously affect performance of high-level tasks (Caselli et al., 2015).2 Current lines of
research in morphosyntactic tagging include the following: 1) improving the over-
all state of the art, especially for inflective and agglutinative languages as well as
less-resourced languages; 2) improving sentence accuracy; 3) improving cross-
and out-of-domain robustness (Giesbrecht and Evert, 2009); 4) unsupervised in-
duction; and 5) improving the taxonomic basis of the linguistic resources for train-
ing data within the framework of descriptive linguistics (Manning 2011).

For POS tagging, the most commonly applied machine learning algorithms are
Maximum Entropy (Ratnaparkhi 1996; Toutanova et al., 2003), Perceptron (Col-
lins, 2002), Hidden Markov Models (Brants, 2000), Support Vector Machines
(Giménez and Màrquez, 2004), and most recently neural networks (Yang, Sala-
khutdinov, and Cohen, 2016). These algorithms are being successfully applied to a
variety of languages. To yield state-of-the-art results on per-token accuracy, for
many languages it is enough to train models with these algorithms using specific
feature sets, without combining taggers with any other component.

For morphosyntactic tagging, the approaches are not as straight-forward as in
the case of POS tagging due to the difficulties outlined in section 2.1. One may as-
sume that a simple solution to alleviate the data sparsity problem would be to re-
duce the tagset by stripping fine-grained tags, thus keeping only coarse-grained
POS labels. While for some tasks this may be a feasible solution, for most high-level
applications this would imply an unwarranted deprivation of important linguistic
information. After all, in highly inflective language word order is fairly flexible as
compared to isolating or analytic languages, which means that syntactic infor-

2 Whether pipelining is the best choice for NLP is a research question in its own right and therefore
beyond the scope of this thesis. Without doubt, it is still a dominant and influential approach. This
may change with deep learning and neural network approaches that increasingly gain momentum.

Chapter 2. Morphosyntactic Tagging in Highly Inflected Languages

8

mation is primarily encoded through morphological categories and agreement be-
tween word forms. Or, as Hajič (2000, p. 94) described it succinctly:

“These languages, obviously, do not use the rich inflection just for the amusement
(or embarrassment) of their speakers (or NLP researchers): the inflectional catego-
ries carry important information which ought to be known at a later time (e.g., dur-
ing parsing). Thus one wants not only to tell apart verbs from nouns, but also nomi-
native from genitive, masculine animate from inanimate, singular from plural - all of
them being often ambiguous one way or the other.”

To ensure its usefulness for high-level tasks, morphosyntactic tagging should
therefore retain as much of the morphologically encoded information as possible.
Since supervised machine learning is, by nature, not suitable to learn low-
frequency instances, they may be excluded from training data, or their fine-grained
tags may be replaced with coarse-grained ones; this requires additional tech-
niques, based, for example, on rules or dictionaries. In any case, to adequately ad-
dress the data sparsity problem caused by low-frequency instances, supervised
machine learning requires complementary approaches. A review of existing sys-
tems reveals that the following approaches can be distinguished:

 Morphological analysis: With out-of-vocabulary words being the major
obstacle to high accuracy, a reduction of unknown words can improve tag-
ging greatly. This can be achieved by means of a morphological analyzer
that provides the tagger itself with a list of all possible tags for each token,
which basically converts the tagging task into a disambiguation task. For
morphological analysis, two different techniques are being commonly ap-
plied: Firstly, using a lexicon of inflectional forms (e.g. Georgiev et al., 2012
for Bulgarian or Woliński et al., 2012 for Polish). Secondly, applying a mor-
phological guesser rather than a static morphological lexicon. Guessers aim
to dynamically infer all possible labels for each token in test time, especially
for unknown words, mainly based on pre- and suffix analysis. In fact, many,
if not most, morphologically complex languages heavily rely on guessers, for
example Icelandic (Loftsson and Östling, 2012), Czech (Straka et al., 2016),
Hungarian (Oravecz and Dienes, 2002), or Polish (Radziszewski, 2013).

 Tiered Tagging: Tiered tagging essentially consists in treating complex
morphosyntactic tags not atomically but each sub-label representing a cer-
tain inflectional value separately in a sequential manner. Thereby, the num-
ber of tiers, or layers, corresponds to the number of inflectional categories
distinguished. It has been used, among others, for Romanian (Ceauşu,
2006), Hungarian (Tufiş, 1999; Tufiş and Dragomirescu, 2004), or Polish
(Radziszewski, 2013; Radziszewski and Śniatowski, 2011).

 More Complex Models: This approach refers to training more sophisticat-
ed machine learning models than the ones described for POS tagging. Here,
first and foremost Conditional Random Fields (CRF) are being applied. CRFs
are a class of probabilistic models for structured prediction that can be suc-
cessfully applied to sequence labelling problems with a large number of in-
terdependent variables (Sutton and McCallum, 2011). Although model
complexity and training time are usually much higher than in the case of
simpler algorithms, CRF have become quite popular for morphosyntactic
tagging thanks to the high accuracy it yields (e.g. Radziszewski, 2013;

Chapter 2. Morphosyntactic Tagging in Highly Inflected Languages

9

Silfverberg et al., 2014). Müller, Schmid and Schütze (2013) have proposed
a CRF tagger that achieves state-of-the-art scores across six languages while
at the same time being fast enough to deal with large training corpora in
reasonable time, what is otherwise a major limitation of CRF.

 Ensemble Voting: In ensemble systems, several individual taggers are
combined in a complementary way, such that a voting technique is applied
to choose the most probable prediction from each of the individual taggers.
For Polish, this approach has achieved state-of-the-art results (Kobyliński,
2013; 2014; Radziszewski and Śniatkowski, 2011).

 Semi-supervised leveraging of unlabelled data: There have been promis-
ing approaches to combine supervised tagging with unsupervised tech-
niques for the exploitation of large amounts of unlabelled data, thus result-
ing in semi-supervised approaches. Successful applications include
Spoustová et al. (2009) or Eger, Gleim and Mehler (2016), who use word
embeddings. Such approaches are not only suitable for
POS/morphosyntactic tagging, but generally for a wide range of sequence
labelling problems. Thus, Agerri and Rigau (2016) have demonstrated sig-
nificant improvements in NERC, while Yang, Salakhutdinov and Cohen
(2016) leverage word embeddings from large corpora to score state-of-the
art results on several benchmark tasks across languages, including POS tag-
ging and NERC.

Of course, these approaches are not mutually exclusive, meaning that taggers may
exhibit characteristics of more than one approach.

Chapter 3. Materials and Methods

11

3 Materials and Methods
In this chapter, we describe the experimental setup of our study (section 3.1), the
architecture of our morphosyntactic tagger (section 3.2), as well as the corpora
used for the supervised (section 3.3) and unsupervised (section 3.4) components
of our system. Our tagger uses ixa-pipe-ml, the centralised machine learning mod-
ule of the IXA pipes.

3.1 Experimental Setup

Our research included the following steps:

1. Running ixa-pipe-ml off the shelf on Polish data, i.e. without any modifica-
tions to the source code or feature set. This preliminary step corroborated
our initial assumption that in its current form, the IXA pipes are not suitable
for precise morphosyntactic tagging in morphologically rich languages.
Yielding per-token accuracies of approximately 86%, results were well be-
low the current state of the art for Polish and other highly inflected lan-
guages.

2. In a further preliminary step we examined whether models trained with CRF
are a viable solution to achieve our goals. We opted for CRF because systems
based on this algorithm are among the top-scoring systems for a number of
morphologically complex languages, including Polish (Radziszewski, 2013).
To test this approach, we used the mallet addon3 for OpenNLP4 to implement
the CRF algorithm in ixa-pipe-ml. The add-on allows to train CRF models in
OpenNLP-based systems using the API of the MALLET machine learning li-
brary (McCallum, 2002). However, after running one experiment with our
implementation – the code is made available on GitHub5 – we decided to dis-
card and to no longer pursue this avenue. The decision is based on the fact
that while improving tagging accuracy by almost 3.5% as compared to Per-
ceptron models, CRF training is unbearably slow. Thus, it took 32 days to
train a model for a training set of 69,499 tokens, as opposed to only three
minutes with the Perceptron algorithm. CRF models can be very complex,
their training is computationally costly and they are said to require exten-
sive feature engineering (Baldwin, 2006); therefore we consider that this
approach does not fully meet the requirement of simplicity and efficiency of
the IXA pipes.

3. Following the methodology applied by Agerri and Rigau (2016) to NERC, we
established our baseline system, on top of which clustering features are to
be added. This step was done by running several hundred tests with ixa-
pipe-ml in order to find the best configuration of the local feature set, where
‘local’ refers to shallow non-clustering features, such as the token itself,
word shape or n-grams. Apart from the local features already supported by
ixa-pipe-ml, we implemented a small number of additional local features,
which were reported to be useful in other systems identified from the litera-
ture. Details on our baseline feature set, as well as tagging scores obtained
from it, are given in section 3.2.2.

3 http://svn.apache.org/viewvc/opennlp/sandbox/mallet-addon
4 https://opennlp.apache.org/index.html
5 https://github.com/mustaszewski/ixa-pipe-pos/tree/CRFTrainer

Chapter 3. Materials and Methods

12

4. Distributional cluster lexica to be used as clustering features atop of the
baseline were induced from four different unlabelled text collections (see
3.2.3).

5. Based on the two strongest baselines – one for the Perceptron and one for
the Maximum Entropy training algorithm, respectively – another series of
several hundred tests was run on the development data sets to determine
which (combinations of) clustering features improve the baselines most.

6. Once the best combinations of local features and clustering features were
identified, final evaluations were performed on the chosen test sets.

Throughout our experiments, we trained both Perceptron and Maximum Entropy
models in order to compare the performance of these two algorithms implemented
in ixa-pipe-ml. Consequently, all results are reported for both models in the re-
mainder of this thesis.

Given that except for the first step we did not use the IXA pipes off the shelf but
implemented a number of modifications, we make publicly available6 the source
code of the system in order to guarantee reproducibility of our results. Our com-
mits mainly concern the addition of features specific to morphosyntactic tagging.

3.2 System Description

3.2.1 IXA Pipes

For our experiments, we use the IXA pipes, which are a set of modular NLP tools
that have been developed to lower the barriers of using NLP technology while at
the same time yielding state-of-the-art results (Agerri, Bermudez and Rigau, 2014).
The IXA pipes are a simple and ready-to-use yet efficient toolkit for basic linguistic
preprocessing and annotations: sentence segmentation, tokenization, POS tagging,
NERC, chunking, and constituent parsing. These tasks are performed by a series of
modules: ixa-pipe-tok, ixa-pipe-pos, ixa-pipe-nerc, ixa-pipe-parse, and ixa-pipe-
chunk. The IXA pipes have a language-independent, multilingual architecture,
which means that they can be trained and used with any language without lan-
guage-specific parameter tuning. They are distributed under the open-source
Apache 2.0 License that facilitates source code use, distribution and integration,
also for commercial purposes. All modules of IXA pipes are based on the machine
learning API of the Apache OpenNLP project.

In our work, we used only the centralised machine learning module ixa-pipe-ml
because it offers a very simple way to training and evaluation parameter setting.
While in earlier versions of the IXA pipes a number of features were hard-coded
and thus not configurable without time-consuming source code modifications and
compiling, in the current version (0.0.1), all supported parameters can be specified
in a separate training parameter configuration file that is being parsed upon
launching the training procedure. Hence, it provides a simple and time-saving way
to performance evaluation. As a matter of fact, being the centralised machine
learning component of the entire pipeline, ixa-pipe-ml does not use parameters
specific to one of the remaining modules; rather, in the training parameter configu-

6 The source code can be found in the branch pos-pl our fork of the IXA pipes project, see
https://github.com/mustaszewski/ixa-pipe-ml/tree/pos-pl

Chapter 3. Materials and Methods

13

ration file users can choose from all implemented features in order to train models
that are most suitable to the task in question.

3.2.2 Baseline Features

As outlined in section 3.1, the third step of our experimental workflow consisted in
establishing the baseline that can be obtained from local features only, i.e. without
the use of clustering features. On top of this baseline, clustering features are to be
added in a subsequent step. In the following, we briefly outline the local features
supported by and used in our system. To illustrate the features, we use the Polish
sentence Jest to trudne pytanie ‘This is a difficult question’ as a running example.
Assuming that the current token to be tagged is trudne ‘difficult’, as indicated by
the arrow pointer in Table 2, the position markers from -2 to +2 identify the posi-
tion of each token in the sequence relative to the token at position 0, i.e. the token
currently being tagged. Of course, the tagger has access to the entire sequence of
morphosyntactic tags only during training, while during testing it is the very aim of
the tagger to determine the correct tag for each token of the sequence.

 ↓
Position -2 -1 0 +1 +2
Token Jest to trudne pytanie .
Tag fin:sg:ter:imperf pred adj:sg:nom:n:pos subst:sg:acc:n interp
Token Class single capital lower lower lower other
Token Shape Xx* x* x* x* .
Sentence Begin true false false false false
Sentence End false false false false true
Prefix (1-3) J, Je, Jes t, to t, tr, tru p, py, pyt .
Suffix (1-4) t, st, est, Jest o, to e, ne, dne, udne e, ie, nie, anie .

Table 2: Running example of tagged sentence (first 3 lines) and features generated from it.

Token Features

 Token: The token itself at the current position to be predicted. If this fea-
ture is selected, the token can be either lowercased or retained in its origi-
nal form for feature generation. In our running example, the token feature is
simply the current word itself, i.e. trudne.

 Token Class: Assigns a class to the token according to its shape, i.e. the
characters contained. The classes are: 1) lowercase alphabetical characters
only, 2) alpha-numeric characters, 3) digits only, 4) single capital letter on-
ly, 5) capital letters only, 6) one capital letter followed by a period, and 7)
other. In Table 2, token class features for each word of our running example
are shown. In addition, this feature can be combined with the token itself
(lowercased or original), yielding joint features of the form token, class, for
example Jest, single capital or trudne, lower.

 Token Shape: Following Ciaramita and Altun (2006), this feature normal-
ises each token by substituting individual characters or sequences of char-
acters according to whether they are uppercase, lowercase, digits or other
characters. In Table 2, the normalisation was performed for each token of
the running example.

Chapter 3. Materials and Methods

14

Previous Outcome Features

 Previous prediction: If the token to be predicted at the current position
has already appeared previously in the data, the previous tagging decision
is retrieved.

 Preceding outcomes: Uses the tags assigned to tokens preceding the cur-
rent token. A separate parameter can be used to specify how many preced-
ing outcomes are to be included. In our example, the two preceding out-
comes are fin:sg:ter:imperf at position -2 and pred at position -1. Further-
more, an n-gram of preceding tokens can be used for feature generation,
with the size of the n-gram to be specified by the user, for instance the bi-
gram fin:sg:ter:imperf, pred in our running example. Also, joint features of
the preceding outcome with the token itself (e.g. pred, trudne) as well as the
previous outcome with token class (e.g. pred, lower) can be generated.

 Preceding Sub-Label Features: Inspired by the feature templates em-
ployed by Radziszewski (2013) and Silfvereberg et al. (2014), we imple-
mented this feature which does not treat previous outcome labels atomical-
ly, but extracts specific inflectional values from previous labels. For exam-
ple, values for the morphological categories of case, gender, number or as-
pect of the preceding outcomes in a specified range can be used for feature
generation. To this end, in the training configuration file the following pa-
rameters need to be specified: a) which character is used as separator to de-
limit sub-label values; b) the grammatical class(es) of interest, followed by
the set of all possible values for the respective class(es). For instance, speci-
fying the colon as separator and providing the sets of possible values for the
classes number={sg|pl} and case={nom|gen|dat|acc|inst|loc|voc} will extract
the values number=sg and case=acc from the compound label subst:sg:acc:n,
whereas from the label fin:sg:ter:imperf only the value number=sg will be
used for feature generation. Furthermore, it can be specified whether the
word class, i.e. the coarse-grained POS tag, is to be extracted from the com-
pound label. In the case of our running example, this would be pred at posi-
tion -1 and fin at position -2. With this feature, the intuition is that sub-label
dependencies help to capture morphological agreement, at least to a certain
extent.

Sentence Features

 Sentence beginning: A binary feature assigning true to the first token of a
sentence, as shown in Table 2.

 Sentence end: A binary feature assigning true to the last token of a sen-
tence, as shown in Table 2.

Pre- and Suffix Features

 Prefix: Gets the prefixes of the current token, with the minimum and maxi-
mum prefix length to be specified. In Table 2, all possible prefixes of length
one to three for each token of the running example are shown.

 Suffix: Gets the suffixes of the current token, with the minimum and maxi-
mum suffix length to be specified. In Table 2, all possible suffixes of length
one to four for each token of the running example are shown.

Chapter 3. Materials and Methods

15

N-Gram Features

 Token Class N-Grams: Generates token class n-grams in a specified range
before and after the current token, where n-grams can range from bi- to
fivegrams. For instance, the token class bigram preceding the current token
is single capital, lower, while the following bigram is lower, other.

 Character N-Gram Features: Generates features from all character n-
grams up to a specified length to be found in the current token. For exam-
ple, all possible character trigrams of the current token trudne are tru, rud,
udn, and dne.

For token and token shape features, window size needs to be specified, i.e. the
range of tokens preceding and following the current token to be considered for
feature generation. For instance, setting window range to 2:2 will generate token
features from the current token (trudne in our running example), the two preced-
ing tokens (Jest, to), and the next two tokens (pytanie, .), resulting in a window of
size 5.

In Table 3, the training parameter configurations for our two best-performing
baselines (for Perceptron and Maximum Entropy models, respectively) are provid-
ed by specifying the precise setting for each of the above mentioned features. Tag-
ging accuracies for our baselines are reported in Chapter 4.

Feature Settings

 Maximum Entropy Perceptron

Window size 1:1 2:2

Token yes yes

Lowercase token? yes yes

Token class no yes

Token and class? --- yes

Token shape no yes

Preceding outcomes yes no

Preceding outcomes range -2 ---

Preceding outcome n-grams no no

Previous Prediction yes yes

Sentence beginning yes yes

Sentence end yes true

Prefix length min 1 1

Prefix length max 2 2

Suffix length min 1 1

Suffix length max 5 4

2-gram class no yes

3-gram class no yes

4-gram class no no

5-gram class no no

Character n-grams range 2:5 2:5

Preceding sub-labels yes yes

Preceding word class? yes yes

Preceding sub-label classes number, gender, case number, gender, case

Preceding sub-label range -1 -2

Table 3: Feature configuration of our two baseline systems.

Chapter 3. Materials and Methods

16

3.2.3 Clustering Features

After establishing the baselines, we induced three types of word clusters from four
different corpora consisting of large amounts of unlabelled Polish text (see 3.4).
The clusters, or cluster lexica to be more precise, are then used in our system to
generate features by looking up to which cluster a given token belongs. The under-
lying idea is that all words that belong to the same cluster share some semantic or
morphological information. In this way, our system exploits distributional word
representations, i.e. the clusters, in a semi-supervised manner: While training of
Perceptron and Maximum Entropy models is a supervised task based on annotated
corpora, the use of word representations obtained from unlabelled corpora based
on distributional information is an unsupervised task. The methodology of combin-
ing supervised and unsupervised techniques in NERC has been described in detail
by Agerri and Rigau (2016).

The three types of word clusters used in our system are: Brown clusters, Clark
clusters and K-means clusters based on the skip-gram algorithm used in the
word2vec tool. For NERC, it has been shown that a combination of cluster types
helps to improve performance greatly, as compared to the use of individual cluster
features (Agerri and Rigau, 2016).

Brown Clusters

Brown clustering (Brown et al., 1992), or IBM clustering, is used to group words
that appear in similar contexts into hierarchical clusters and was originally de-
signed to address data sparsity in n-gram language modelling. For the induction of
Brown clusters, we use the C++ implementation of the Brown word clustering al-
gorithm proposed by Liang (2005)7 off-the-shelf and with default settings.

As input, the tool takes a corpus of tokens separated by whitespaces without
punctuation, with one sentence per line. Following previous work (Liang, 2005), all
sentences with less than 90% lowercase characters have been removed from the
corpus. As output, the tool creates a hierarchical clustering lexicon, where each
word is identified by a bit string that represents the word’s path from the root in a
binary tree. A sample input and output file extract is shown in Table 4. The fea-
tures generated by our system retrieve the path for the current token from the
Brown clustering lexicon, which is stored in plain text format.

Brown Cluster Input Brown Cluster Output
ten film zmusza do myślenia
czym przyciągnąć gości
...

1001 w 986574
01011100 i 574255
011100 się 2164800
11111111010 robiła 5
...

 <cluster path as a bit string> <word> <frequen-
cy>

Table 4: Sample input and output for Brown cluster induction.

Clark Clusters

Clark clusters (Clark, 2003) were originally designed to exploit distributional and
morphological information to improve unsupervised POS tagging across languages,

7 https://github.com/percyliang/brown-cluster

Chapter 3. Materials and Methods

17

with a focus on rare words. Therefore, the algorithm relies only to a limited degree
on frequency information. Instead, it considers sequences of letters that form each
word, such that morphologically similar words are placed in the same cluster. This
approach makes it a promising candidate to deal with highly inflected languages.

We induce Clark clusters using Clark’s original implementation off-the-shelf.
The input to the tool is a corpus of lowercase tokens, with one token per line and a
blank line between sentences, while the output is a plain text file where each line
represents a word type with its cluster number and a weight (see Table 5). For
feature generation, our system performs simple look-ups in the cluster dictionary
to retrieve the cluster number for the current token, assigning null if no entry is
found in the lexicon.

Clark Cluster Input Clark Cluster Output
ten
film
zmusza
do
myślenia

czym
przyciągnąć
gości
...

w 82 0.967019
i 75 0.726565
się 25 0.985357
robiła 12 8.46919e-05
…

<word> <cluster> <weight>

Table 5: Sample input and output for Clark cluster induction.

word2vec Clusters

Finally, our word2vec features are based on skip-gram embeddings clustered via
K-Means (Mikolov et al., 2013). We induce the clusters using the word2vec tool8
off-the-shelf, which takes a corpus of lowercased, space-separated tokens without
punctuation as an input to produce a cluster lexicon, where each line represents a
word type and its corresponding cluster number (see Table 6). In our system, we
use word2vec clusters in the same way as Clark clusters, which means that for the
current token to be predicted its cluster number is retrieved from the cluster lexi-
con.

word2vec Cluster Input word2vec Cluster Output
ten film zmusza do myślenia czym przyciągnąć gości
...

w 37
i 37
się 20
robiła 70
...

<word> <cluster>

Table 6: Sample input and output for word2vec cluster induction.

3.3 Data for Training and Testing

For training and testing, we use a total of three different, publicly available corpo-
ra: 1) the National Corpus of Polish, or Narodowy Korpus Języka Polskiego in Polish

8 https://code.google.com/archive/p/word2vec/

Chapter 3. Materials and Methods

18

(henceforth NCP); 2) the Universal Dependencies Polish Treebank (UDP); and 3)
the Polish Language of the 1960s Corpus (P60). The first two were used for both
training and testing, whereas the third one was only used for out-of-domain evalu-
ation of the models trained on the former two corpora. Details on each of the da-
tasets are given in the following subsections and summarised in Table 7.

Dataset Tokens Vocabulary (Types) Vocabulary (Lemmas)

NCP Train 962,219 124,049 47,687

NCP Dev 119,704 31,343 15,475

NCP Test 120,949 32,339 16,150

NCP Total 1,202,872 -- --

UD Train 69,499 22,594 11,710

UD Dev 6,887 3,467 2,510

UD Test 7,185 3,558 2,554

UD Total 83,571 -- --

P60 Essays (UD) 7,632 -- --
P60 Fiction (UD) 7,448 -- --
P60 News (UD) 7,612 -- --
P60 Plays (UD) 7,037 -- --
P60 Science (UD) 7,632 -- --

 P60 Essays (NCP) 120,100 -- --
P60 Fiction (NCP) 120,725 -- --
P60 News (NCP) 116,807 -- --
P60 Plays (NCP) 114,613 -- --
P60 Science (NCP) 118,505 -- --

Table 7: Statistics for datasets used for training and testing. P60 sub-corpora for out-of-domain
evaluation have been compiled for testing with both NCP models and UDP models.

3.3.1 National Corpus of Polish

Being a carefully crafted, balanced corpus, the NCP (Przepiórkowski et al., 2012)
has become the most influential resource for Polish NLP. This reference corpus
contains more than 3,000 texts totalling 1.2 million tokens and contains manual
annotations on various linguistic levels, including morphosyntactic annotation. It is
distributed under a GNU GPL licence in TEI-compliant XML format.

The ixa-pipe-ml training component of our system takes plain text files as an in-
put, where each line represents one token with its morphosyntactic label separat-
ed by a tabulator. To preprocess the corpus according to the required input format,
we first converted all TEI file to XCES format using a Python script provided in the
repository9 of the PANTERA tagger. Subsequently, we used our own script10 to
convert XCES files into the required format. Once converted, we shuffled the order
of the plain text files extracted from NCP in order to create three randomised parti-
tions: an 80% training set, a 10% development set, and a 10% test set. To ensure
reproducibility, we make our partitions publicly available11.

9 https://github.com/accek/pantera-tagger/blob/master/scripts/tei2xces.py
10 https://github.com/mustaszewski/preprocessing
11 https://github.com/mustaszewski/nkjp

Chapter 3. Materials and Methods

19

We have decided to use the NCP in order to facilitate the comparison of our sys-
tem to state-of-the-art taggers for Polish, since it is the most commonly used cor-
pus in Polish NLP. Corpus statistics are given in Table 7.

3.3.2 Universal Dependencies Polish Treebank

The Universal Dependencies (UD) Project (Nivre et al., 2016) aims to develop tree-
bank annotations consistent across many languages. From the perspective of POS
and morphosyntactic tagging, an interesting feature of the UD project is that it
draws upon the Google universal POS tagset (Petrov et al., 2012), thus contributing
to a harmonisation of efforts across languages and research communities. Polish
features among the 37 treebanks currently included in the project. For each lan-
guage, two different annotation schemas are available: the universal POS tags for
word class information and the extended tags (XPOS) for full morphosyntactic tags.
In our work, we used only full morphosyntactic tags.

The UDP (Wróblewska and Przepiórkowski, 2014) is based on the Polish de-
pendency treebank (Woliński, Głowińska and Świdziński, 2011), which, in turn, is
based on the NCP. Therefore, UDP is a subset of NCP. Nevertheless, we decided to
include UDP into our study, too, for the following reasons: Firstly, it is only approx-
imately 7% the size of NCP; as a relatively small corpus it therefore allows us to
investigate the performance of our tagger in a setting where data sparsity is even
more of an issue than with large corpora. In addition, working with smaller corpo-
ra even though a large reference corpus is available may have important implica-
tions for the feasibility of our system in domains where less training data is availa-
ble, or for other, potentially less-resourced languages. Secondly, all UD treebanks
provide standardised training, development and test sets, which facilitate perfor-
mance comparisons across systems. Thirdly, given its relatively small size and con-
sequently short training-testing cycles, UD datasets are very handy during system
development while at the same time yielding representative results. Corpus statis-
tics are given in Table 7.

3.3.3 Polish Language of the 1960s Corpus

Given that tagging accuracy has been shown to drop considerably when applied to
domains or text types different from those represented in training data
(Giesbrecht and Evert, 2009), out-of-domain evaluations of new systems and ap-
proaches are of utmost importance. After all, in view of the high costs for the crea-
tion of hand-annotated data, in real-world scenarios many, if not most taggers are
likely to be applied to subject domains or text types that are potentially un-
derrepresented in training data. Consequently, robustness in cross-domain tagging
is a cornerstone of systems’ feasibility.

For our out of domain evaluation we use the P60 corpus (Ogrodniczuk, 2003). It
contains 10,000 samples from five domains: essays, news, scientific texts, fiction
and plays, all of them written between 1963 and 1967. We have chosen this corpus
for out-of-domain evaluation because of the following reasons: Firstly, its tagset is
fully compatible with both NCP and UDP tagsets – which is a prerequisite to test
models across datasets. Secondly, contrary to many other corpora which would
have otherwise been good candidates for evaluation, morphosyntactic information
in the corpus is hand-annotated. Thirdly, the corpus is freely available under a GNU
licence; and, fourthly, source files are neatly grouped into the five domains men-

Chapter 3. Materials and Methods

20

tioned above, which makes it very handy to create domain-specific sub-corpora.
That said, the P60 corpus has one important drawback: its representativeness for
present-day Polish may be deemed unsatisfactory, especially with regard to lan-
guage use in online and electronic communication. Nevertheless, we believe that
our choice constitutes a reasonable yet not ideal trade-off between practicality and
validity.

To obtain in-domain test sets for each of the five subdomains, the order of texts
in the respective subdomains has been randomised and subsequently partitions,
corresponding in size to the test set used in combination with the respective train-
ing data, were extracted. Thus, we compiled five out-of-domain test sets for both
NCP-models and UDP-models, with sizes similar to the non-out-of-domain test
sets. Corpus statistics are given in Table 7.
As outlined in section 2.1, data sparsity is one of the main obstacles to high-quality
morphosyntactic tagging in highly inflected languages. By means of a simple fre-
quency analysis, we examined if and to what extent sparsity is, in fact, a factor in
Polish language data. To this end, we quantified sparsity in terms of the frequency
of word forms, lemmas and morphosyntactic labels in the datasets used in our
study, namely NCP and UDP.

Figure 1: Frequency of labels in UD Train, sorted by rank.

Figure 1 shows the distribution of morphosyntactic labels according to their fre-
quency rank in the corpus. The most frequent label in UDP (interp, not indicated in
figure) occurs 11,184 times, thus accounting for 16.1% of all 69,499 tokens in the
corpus, whereas the second most frequent label, qub, accounts for 5.6%. Taken
together, the top-five labels account for 29.5%, and the top-ten for 39.2% of the
data. Sparsity becomes even more obvious when considering that the 100 most
frequent labels account for 89.6% of all instances, which means, in turn, that the
remaining 507 labels make up only 10.4% of training data. In such a scenario,
sparsity is an undeniable fact. Similarly, Table 8 provides further evidence for
sparsity in the training data: For example, in NCP Train there is a total of 962.219

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

1 101 201 301 401 501 601

Ta
g

Fr
e

q
u

en
cy

Tag Rank

Tag Frequency by Rank in UDP Train Corpus

Chapter 3. Materials and Methods

21

tokens, which are distributed among 124,049 different word forms (types). A clos-
er look on the distribution of word forms reveals that out of these 124,049 forms,
71,793 appear only once in the corpus. In other words, for 71,793 word forms, or
almost 58% of the entire vocabulary, there is only one single instance in the cor-
pus, which makes machine learning very challenging. For 115,660 word forms, or
an overwhelming 93.2%, there are only ten or less instances the model can learn
from. The picture is similar yet not as extreme if we look on the tags in the corpus:
The tagset consists of a total of 901 different tags, and for 116 of them, or 12.9%,
there is only one training instance. All these figures are clear indicators of data
sparsity.

 Tokens Lemmas Word forms Tags

total 1x ≤ 5 ≤ 10 total 1x ≤ 5 ≤ 10

NCP Train 962,219 47,687 124,049 71,793 108,135 115,660 901 116 236 305

NCP Dev 119,704 15,475 31,343 21,52 29,376 30,402 665 102 247 326

NCP Test 120,949 16,15 32,339 22,451 30,403 31,465 667 93 237 309

UDP Train 69,499 11,710 22,594 16,442 21,447 22,088 607 102 252 325

UDP Dev 6,887 251 3,467 291 3,377 3,422 333 93 196 232

UDP Test 7,185 2,554 3,558 2,952 3,462 351 349 107 213 250

Table 8: Sparsity in training and evaluation data.

3.4 Data for Unsupervised Word Cluster Induction

Contrary to training and evaluation of our morphological tagger, the induction of
word clusters to be subsequently used as features in our system does not require
labelled, i.e. supervised, data. Instead, the algorithms induce word clusters (for a
brief description of the cluster types used see 3.2.3) from unlabelled data in a pure-
ly unsupervised fashion, which is ideally done on large corpora. In the following,
we briefly describe the four corpora used for cluster induction.

Araneum Polonicum Maius

The Aranea project comprises comparable Gigaword corpora obtained by web
crawling in a number of languages (Benko, 2014; 2016). For each language, a large
version of approximately 1.2 billion tokens and a smaller, randomly sampled sub-
set of approximately 120 million tokens are available. For our system, we used the
Araneum Polonicum Maius of 1,110,120,694 tokens.12 Although the distributed
version contains automatically generated morphosyntactic annotation and lem-
mas, we were only interested in extracting plain text.

Polish Wikipedia

The Wikipedia, being one of the largest freely available text sources, has proved
useful for cluster induction, too. We downloaded the most recent dump and after
text extraction from the XML files and subsequent corpus preprocessing we ob-
tained approximately 185 million tokens.

12 We would like to thank Vladimír Benko for granting us access to the corpus.

Chapter 3. Materials and Methods

22

Polish Sejm Corpus

The Polish Sejm Corpus (PSC) is a collection of stenographic transcripts from sit-
tings of the Polish Sejm, totalling approx. 200 million tokens (Ogrodniczuk, 2012).
It contains automatically generated annotation on various levels encoded in TEI
format. However, we extracted only plain text using our own scripts13. After pre-
processing, we obtained approximately 165 million tokens. In large parts, the tran-
scripts represent quasi-spoken speech, which makes it a very interesting resource.

PELCRA

Finally, the smallest of our unlabelled corpora is the PELCRA multilingual parallel
corpus of Polish14, from which we extracted all Polish source texts, leaving us with
35 million words. The corpus comprises texts related to the European Union: news
articles from the web page of the Community Research and Development Infor-
mation Service, press releases from the European Commission, the European Par-
liament and the European Southern Observatory.

All four corpora have been preprocessed according to the specifications of each
cluster induction tool. Preprocessing, as well as cluster induction, was carried out
on the computer cluster of the IXA NLP group at the University of the Basque Coun-
try because the large amount of data can hardly be handled by most standard per-
sonal computers. For each cluster type and each corpus, a number of clusters with
different amounts of cluster classes have been induced, 42 in total (see Table 9).
Induction time varied greatly across corpora and cluster types, ranging from 1.5
hours to almost one month. Whereas Brown and especially word2vec clusters can
be induced in relatively short amount of time thanks to multithreading, the imple-
mentation for Clark clusters supports single-threaded induction only, which leads
to very long training times, especially in the case of Gigacorpora.

13 https://github.com/mustaszewski/preprocessing
14 http://pelcra.pl/new/multilingual

Chapter 3. Materials and Methods

23

Type Corpus No. of Classes

Brown Araneum 500

Brown Araneum 1000

Brown Araneum 2000

Brown Pelcra 500

Brown Pelcra 1000

Brown Pelcra 2000

Brown Sejm 500

Brown Sejm 1000

Brown Sejm 2000

Brown Wiki 500

Brown Wiki 1000

Brown Wiki 2000

Brown Wiki 3200

Clark Araneum 100

Clark Araneum 200

Clark Pelcra 100

Clark Pelcra 200

Clark Pelcra 400

Clark Sejm 100

Clark Sejm 200

Clark Sejm 400

Clark Sejm 600

w2v Araneum 100

w2v Araneum 200

w2v Araneum 400

w2v Araneum 800

w2v Araneum 1000

w2v Pelcra 100

w2v Pelcra 200

w2v Pelcra 400

w2v Pelcra 800

w2v Pelcra 1000

w2v Sejm 100

w2v Sejm 200

w2v Sejm 400

w2v Sejm 800

w2v Sejm 1000

w2v Wiki 100

w2v Wiki 200

w2v Wiki 400

w2v Wiki 800

w2v Wiki 1000

Table 9: Overview of induced clusters.

Chapter 3. Materials and Methods

24

3.5 Evaluation Metrics

Over the last few years, in the Polish NLP community there have been different
approaches to measuring tagging accuracy, which, unfortunately, makes compari-
sons across systems difficult. The use of different metrics reflects different concep-
tions as to what the exact task of a tagger is. According to Radziszewski and Ace-
dański (2012), there are three answers to this question:

1. Taggers tag plain, i.e. non-segmented and non-tokenised, text.
2. Taggers tag a sequence of unlabelled tokens rather than unlabelled plain

text. This assumes that tagging is performed on perfectly segmented and to-
kenised input, which is not always the case in real-world applications.

3. The tagger’s task is to disambiguate the correct tag among a set of possible
tags previously obtained from dictionary lookups or other techniques for
morphological analysis.

These three conceptions led to the use of various metrics as the statistic figure to
be reported in papers:

 Disambiguation accuracy: This statistic figure is related to the third of the
above conceptions. It used to be the most popular one for Polish, despite be-
ing the most controversial one because of relying on gold-standard morpho-
logical analyses from the reference corpus, which largely neglects real-
world scenarios.

 Per-token accuracy, also called word accuracy, is associated with the sec-
ond conception. This metric indicates what percentage of test tokens has
been assigned the correct tag by the system. It is the standard metric
worldwide. To better capture taggers’ performance, especially in highly in-
flected languages, it is common practice to report accuracy scores for words
known to the model (i.e. words that did appear in the training data) and un-
known to the model words (i.e. words that did not appear in the training da-
ta, also called out-of-vocabulary words) rather than calculating only overall
word accuracy in an undifferentiated manner.

 Accuracy lower bound, finally, reflects the first of the three conceptions.
This statistic figure, suggested by Radziszewski and Acedański (2012),
counts the number of output tokens that have been correctly segmented
and are labelled correctly according to the gold standard, divided by the to-
tal number of tokens in the reference corpus. In this metric, differences in
tokenisation are penalised, i.e. tokens from the reference corpus that are
not identically present in the tagger output are treated as a tagging error.
Apart from that, they also recommend to report accuracy upper bound,
which is the hypothetical upper limit of tagger performance “under the
(false) assumption that each token from the reference corpus that was not
explicitly present in tagger output due to unexpected tokenisation would be
correctly tagged” (Radziszewski, 2013, p. 252). This two metrics have be-
come the standard in Polish NLP.

The difficulty when comparing results obtained from different metrics is that they
are not directly comparable. Disambiguation accuracy is the least strict one, be-
cause it treats the tagging task as a much simpler disambiguation task based on a
set of gold-standard morphological analyses from the reference corpus. Then, per-

Chapter 3. Materials and Methods

25

token accuracy and accuracy upper bound are comparable in that they both as-
sume perfect tokenisation. However, contrary to accuracy upper bound, per-token
accuracy does not assume correct tagging for incorrectly segmented tokens. There-
fore, per-token accuracy is the stricter statistic figure. And as far as the juxtaposi-
tion of per-token accuracy and accuracy lower bound is concerned, the latter is the
stricter one in theory, because both tokenisation and tagging errors are being pe-
nalised. However, taking into account tagger evaluation practice (e.g.
(Radziszewski, 2013), accuracy lower bound – while in theory stricter – is being
applied to a simpler task than the in the vast majority of studies in non-Polish con-
texts: taggers evaluated with accuracy lower bound take into account gold-
standard morphological analyses contained in the NCP reference corpus
(Radziszewski, 2013), while such information is missing in many other corpora,
including UDP and thus our own work. As a matter of fact, differences between
accuracy lower and upper bound are very small, around 0.3% for all systems eval-
uated on these metrics (Radziszewski and Acedański, 2002; Radziewski, 2013).

Since in the IXA pipes segmentation/tokenisation and tagging are performed in
a sequential manner by two separate modules (the output of the former is the in-
put of the latter), we accordingly decided to base our evaluation not on accuracy
upper/lower bound – which would have made our study directly comparable to
other Polish taggers – but on two separate evaluations. In doing so, we adhere to
the mainstream practice in NLP. The performance of ixa-pipe-tok15 was measured
as the overlap of correctly segmented and tokenised sentences with the reference
corpus (see 4.1). Tagging accuracy, on the other hand, is measured in terms of
overall, unknown and known word accuracy. Given that the OpenNLP library and
the IXA pipes compute overall per-token accuracies only, we added the proposed
metrics for known/unknown word accuracy in the branch pos-pl our fork of the
IXA pipes16.

Summing up, our evaluation scheme treating segmentation/tokenisation and
tagging separately is in line with the majority of studies we have reviewed, except
for those within the Polish NLP community, where previously disambiguation ac-
curacy and now accuracy upper/lower bound have been used. Consequently, the
results of our system are comparable to other Polish taggers only to a limited ex-
tent, yet our metric is stricter than accuracy upper bound and in theory less strict
than accuracy lower bound, but in the end the latter two yield very similar scores.
In exchange, comparability of our results to taggers for languages other than Polish
is increased in our approach, which we consider to be very important in view of
our ultimate goal to adapt IXA pipes for use with a number of (morphologically
complex) languages.

15 https://github.com/ixa-ehu/ixa-pipe-tok
16 https://github.com/mustaszewski/ixa-pipe-ml/tree/pos-pl

Chapter 4. Results and Discussion

27

4 Results and Discussion

4.1 Evaluation of Segmentation and Tokenisation

As the default distribution of ixa-pipe-tok has no evaluation module implemented,
we added this component to the branch dev-pl of our fork17. We also added support
for Polish by adding non-breaking exceptions for abbreviations. This was done by
manually compiling a list of frequent abbreviations that, when followed by a peri-
od, do not indicate sentence boundaries. The list of almost 700 entries is partially
based on our knowledge about Polish and, to a larger extent, on mining NCP and
the Polish Wikipedia dump by means of hand-crafted regular expressions using the
grep command-line utility. The list is, by no means, exhaustive, yet we believe that
it sufficiently covers the most frequent Polish abbreviations. In terms of length, the
list is similar to those used in ixa-pipe-tok for the remaining languages.

Upon evaluation, we obtained an F1 score of 11.7 (precision: 11.9, recall: 11.6)
for segmentation/tokenisation accuracy. We believe that this admittedly low score
is due the following reasons: Firstly, the current version of ixa-pipe-tok fails to de-
tect sentence boundaries when segments lack final punctuation marks but are fol-
lowed by a blank line, which is a quite frequent case in our data, especially in seg-
ments representing headlines, titles or headings. Secondly, a considerable portion
of NCP data, namely 7% (Przepiórkowski et al., 2012, p. 33), consists of web con-
tent, which is often characterised by non-standard punctuation and capitalisation,
as well as tokens representing emoticons or other symbolic content. These non-
standard yet frequent special cases pose difficulties to the segmenter/tokenizer,
which are beyond the scope of the present thesis project. Therefore, we leave the
adaptation of ixa-pipe-tok for Polish out for further work.

4.2 Evaluation of Baseline Feature Sets

We have run several hundred tests to determine which combination of local fea-
tures, i.e. without using cluster features, provides the strongest baseline, both for
Maximum Entropy and Perceptron models (for a detailed description of our base-
line feature sets, see 3.2.2). As shown in Table 10, the strongest baseline for Maxi-
mum Entropy models trained on UDP scores 81.6% overall per-token accuracy on
the respective development sets, while for Perceptron models the score is 81.1%.
Overall accuracy for the test sets drops slightly. As was expected, accuracy scores
for models trained on the NCP are higher than for those trained on UDP, because
the former is much larger than the latter, thus providing more training instances.

Another important observation is, not surprisingly, that tagging accuracy for
unknown tokens, i.e. tokens that have not appeared in the training data, is much
lower than for known tokens. Especially in the case of morphologically complex
languages this is a key limitation, because due to the large number of possible
morphological word forms per lemma there will inevitably always appear un-
known words in test time, notwithstanding the size of the training corpus. A com-
parison of the performance of Maximum Entropy vs. Perceptron models shows
that overall scores are quite similar. For models trained on NCP, unknown word

17 https://github.com/mustaszewski/ixa-pipe-tok/tree/dev-pl

Chapter 4. Results and Discussion

28

accuracy is much higher for Perceptron models (approx. +6%), while differences in
overall and known word accuracy are approximately 1% only.

 Test Set Per-token accuracy

 Maximum Entropy Perceptron

 Total Known Unknown Total Known Unknown

UDP Dev 81.6 88.6 57.9 81.1 87.7 58.6

UDP Test 80.6 88.0 56.0 80.9 87.4 59.2

NCP Dev 87.2 89.8 59.0 88.5 90.6 65.0

NCP Test 86.6 89.3 58.6 87.9 90.2 64.6

P60 Essays (UDP) 71.9 81.5 50.4 72.4 81.4 52.5

P60 Fiction (UDP) 77.6 85.4 51.8 78.7 85.2 56.9

P60 News (UDP) 75.2 84.6 53.2 73.7 82.9 52.3

P60 Plays (UDP) 80.2 86.4 49.6 80.3 85.6 54.0

P60 Science (UDP) 75.4 82.6 55.7 75.2 82.0 56.8

P60 Essays (NCP) 83.5 86.6 59.3 85.0 87.6 65.3

P60 Fiction (NCP) 86.5 89.4 59.1 87.8 90.2 65.2

P60 News (NCP) 85.4 88.1 61.2 86.5 88.7 66.4

P60 Plays (NCP) 88.3 90.3 59.1 89.3 90.8 66.6

P60 Science (NCP) 85.9 87.9 61.7 87.1 88.5 68.8

Table 10: Evaluation of our baselines, including out-of-domain evaluation on five subsets of P60.

Out-of-domain evaluations on the five subsets of P60 show that except for P60
Plays accuracy drops strongly, between -3% and -8.7% on UDP models using Max-
imum Entropy and between -2.2% and -8.5% for Perceptron models, The decline
for models trained on NCP is less pronounced (between -0.1% and -3.1% for Max-
imum Entropy and between -0.1% and -2.9% for Perceptron models); in the case
of P60 Plays accuracy even improves slightly. It is noteworthy that unknown word
accuracy increases across all five subsets of P60 for NCP models as compared tests
on NCP Dev/Test, up to +3.1% for Maximum Entropy models and +4.2% for Per-
ceptron models. We believe that apart from sheer corpus size the reason for the
more robust out-of-domain performance of NCP-trained models as compared to
UDP-trained models can be attributed to the composition of NCP. Thus, NCP is a
balanced corpus containing data from a large variety of subject domains and text
types, while UDP is a subset of NCP. According to its documentation, the Polish de-
pendency treebank – upon which UDP is based – was annotated on a randomly
selected 20,000 sentences sample of NCP (Woliński, Głowińska, and Świdziński,
2011), which may suggest that certain text types and domains are not as repre-
sentatively contained in UDP as they are in NCP. Taken together, these observa-
tions seem to confirm the high quality of the NCP.

Interestingly, the decline for Maximum Entropy models when tested on P60
(NCP) is slightly stronger than for Perceptron models, which may be linked to the
better performance of Perceptron models in terms of unknown word accuracy.

All in all, our baselines are way below the current state of the art. From a practi-
cal perspective this means that with such low tagging scores, the baseline itself is
not useful for real-world applications at all. At the same time, from the perspective
of our research design we believe that the obtained baselines are relatively strong,
because we conducted a large number of experiments on parameter tuning to find
out how high tagging accuracy scores can get by using local features only. In other

Chapter 4. Results and Discussion

29

words, the baselines are most likely very close to the upper bound of tagging accu-
racy that can be achieved by the IXA pipes for a morphologically complex language
such as Polish in an out-of-the-box fashion without substantial system modifica-
tions. Our approach of initial feature fine-tuning definitely bears the risk of overfit-
ting the baselines to our data. While this would be, without doubt, a problem if the
goal of our work was to develop a readily usable tagger, it is less problematic in
our research setting that aims to shed light on the potential and limitations of clus-
tering features for morphosyntactic tagging in a semi-supervised system. To coun-
terbalance the disadvantages of parameter tuning, we conducted out-of-domain
tests to investigate whether the approach is robust across datasets. We have seen
that out-of-domain performance does drop, although not dramatically, especially
in the case of models trained on NCP, which appear to be robust across data-sets in
terms of unknown word accuracy.

4.3 Evaluation of the Effect of Clustering Features

In order to determine how each of the three word cluster types (Brown, Clark and
word2vec) contributes to the tagging task, we added clustering features on top of
the two strongest baselines, whose results are presented in the previous section.
As for each cluster type and each corpus a number of cluster lexica with different
amounts of cluster classes have been induced (42 cluster lexica in total, see section
3.4), for each cluster type we ran a series of tests. The tests consisted in adding the
available cluster lexica on top of the baseline feature set: this was done for each of
the cluster lexica individually, as well as for combinations of lexica. In all tests,
models were trained on the UDP training set and evaluated on the UDP develop-
ment set, while no tests using NCP data were performed. The reason for this is
purely practically motivated: due to the large number of tests, we opted for the
much faster training-testing cycles using smaller datasets.

For the sake of clarity, in the following we report results for each of the three
cluster types as well as their combinations separately.

4.3.1 Brown Clusters

Brown clusters of 500, 1000 and 2000 classes for each of the four corpora (Arane-
um, Wiki, Sejm, Pelcra) have been trained, thus resulting in a total of 12 cluster
lexica. We ran one test for each of it added atop of the two baselines, plus six tests
experimenting on lexica combinations.

As can be seen in Table 11, overall word accuracy may improve the baseline
thanks to Brown clusters by 2.2% for Maximum Entropy and by 4% for Perceptron
models. Known word accuracy scores improved by up to 2.3% (Maximum Entro-
py) and 2.8% (Perceptron). Most notably, unknown word accuracy increased sub-
stantially: +3.9% for Maximum Entropy and 8.6% for Perceptron models. Taking
into consideration that in most cases that yielded the biggest improvements on
unknown word accuracy also the highest overall word accuracy values have been
obtained, it appears that better performance on out-of-vocabulary words contrib-
utes stronger to overall tagging accuracy than improvements on known words.

Chapter 4. Results and Discussion

30

Cluster(s) Maximum Entropy Perceptron

 Total Known Unkn. Total Known Unkn.

Baseline 81.6 88.6 57.9 81.1 87.7 58.6

Araneum 500 83.9 90.8 60.4 84.7 90.5 65.3

Araneum 1000 84.0 90.5 61.8 85.1 90.4 67.2

Araneum 2000 83.5 90.3 60.2 85.0 90.3 67.1

Araneum 500, 1000, 2000 80.7 88.4 54.8 82.7 88.7 62.5

Wiki 500 83.8 90.6 60.7 84.1 89.9 64.6

Wiki 1000 83.4 90.2 60.1 85.1 90.4 67.1

Wiki 2000 83.7 90.9 59.1 84.7 90.2 66.3

Wiki 500, 1000, 2000 80.8 89.0 52.8 81.9 88.5 59.5

Sejm 500 82.8 90.3 57.4 84.0 89.8 64.1

Sejm 1000 82.3 89.9 56.4 83.5 89.3 64.1

Sejm 2000 82.5 90.2 56.4 84.0 89.4 65.5

Sejm 500, 1000, 2000 78.8 87.6 48.9 81.5 87.8 60.4

Pelcra 500 81.5 89.5 54.1 82.3 88.9 59.8

Pelcra 1000 81.6 89.8 53.7 82.9 89.2 61.2

Pelcra 2000 80.9 89.4 52.0 82.4 88.8 60.8

Pelcra 500, 1000, 2000 77.7 87.3 45.1 80.2 87.3 56.0

Araneum 500, Pelcra 500, Sejm 500, Wiki 500 79.7 87.4 53.8 81.1 87.3 59.9
Araneum 1000, Pelcra 1000, Sejm 1000, Wiki
1000 80.0 87.7 53.9 81.5 87.8 60.1
Araneum 2000, Pelcra 2000, Sejm 2000, Wiki
2000 79.8 88.1 51.4 81.3 88.0 58.6

Araneum 1000, Wiki 1000 82.3 89.6 57.6 83.8 89.3 65.2

Araneum 500, Pelcra 1000 79.7 88.6 49.6 81.3 88.0 58.3

Araneum 500, Wiki 500, Pelcra 1000, Sejm 1000 78.2 87.1 47.9 83.4 89.2 63.9

Table 11: Measuring the effect of Brown clusters added on top of both baselines. Models trained on
UDP Train and evaluated on UDP Dev. Scores are reported for overall, known and unknown (=
unkn.) word accuracy in percent. Best scores for each corpus are indicated in italics if the scores
improve in comparison to the baseline, best scores across all corpora are highlighted in bold italics.

The same cluster lexicon, Brown Araneum 1000, yielded best scores for both
Maximum Entropy and Perceptron models. A closer look on which Brown clusters
contribute most suggests that the improvement depends on the size of the corpus
for unlabelled cluster induction: Araneum and Wiki are the two biggest corpora in
our experiments. On the other hand, the smallest corpus, Pelcra, worsened scores
for Maximum Entropy models and only slightly improved Perceptron models. A
further important observation is that cluster feature stacking (Agerri and Rigau,
2016) does not improve results if only one type of clusters is being used. This ap-
pears to be true of stacking cluster lexica of various class numbers obtained from
the same corpus, as well as of stacking cluster lexica across corpora. This is rele-
vant insofar as combining clusters increases model complexity and thus training
time, computational cost as well as model size.

4.3.2 Clark Clusters

A limiting factor to the experiments on the effect of Clark clusters was extensive
cluster induction time (see 3.4). Therefore, we induced cluster lexica only for the
Araneum corpus (100 and 200 classes) and the Sejm corpus (100, 200, 400 and
600 classes). As shown in Table 12, the combination of Araneum 100 and 200 in-
creases all three accuracy metrics most. The improvement of total word accuracy

Chapter 4. Results and Discussion

31

amounts to +3.7% for Maximum Entropy and +4.5% for Perceptron models, which
is an even stronger effect than for Brown clusters. Most importantly, unknown
word accuracy increases by up to 10%.

Contrary to Brown clusters, the combination of clusters does seem to have an
added value for tagging accuracy, both with regard to within-corpus and across-
corpus combinations of cluster lexica. What can also be seen is that the much
smaller Sejm corpus contributes less to unknown word accuracy and consequently
less to overall word accuracy.

Maximum Entropy Perceptron

Total Known Unknown Total Known Unknown

Baseline 81.6 88.6 57.9 81.1 87.7 58.6

Araneum 100 84.3 90.5 63.6 84.8 90.1 66.7

Araneum 200 84.4 90.2 64.5 85.1 90.3 67.5

Araneum 100, 200 85.3 90.7 66.8 85.6 90.7 68.6

Sejm 100 83.3 89.8 60.9 83.3 89.4 62.5

Sejm 200 83.5 89.8 62.0 83.7 89.6 63.4

Sejm 400 83.2 89.6 61.4 83.7 89.5 64.1

Sejm 600 83.5 89.9 62.0 83.3 89.1 63.5

Sejm 100, 200 83.8 90.1 62.1 83.9 89.9 63.6

Sejm 400, 600 83.8 90.0 62.7 84.0 89.6 64.8

Sejm 100, 200, 400, 600 83.9 90.3 62.2 84.3 90.0 65.2

Sejm 100, Sejm 600 84.0 90.2 63.1 83.7 89.5 64.3

Araneum 100, Sejm 100 84.6 90.5 64.6 85.0 90.7 65.9

Araneum 100, Sejm 200 84.7 90.6 64.5 85.1 90.3 67.5

Araneum 200, Sejm 200 85.1 90.7 65.9 85.0 90.1 67.6

Araneum 200, Sejm 100 84.7 90.5 65.0 85.2 90.5 67.0

Araneum 100, Sejm 600 84.8 90.7 64.5 85.6 90.7 68.3

Table 12: Measuring the effect of Clark clusters added on top of both baselines. Models trained on
UDP Train and evaluated on UDP Dev. Scores are reported for overall, known and unknown word
accuracy in percent. Best scores for each corpus are indicated in italics if the scores improve in
comparison to the baseline, best scores across all corpora are highlighted in bold italics.

4.3.3 word2vec Clusters

Since the induction of word2vec clusters is very fast, we had at our disposal a large
set of word2vec clusters. However, our results shown in Table 13 suggest that
compared to Brown and Clark clusters this cluster type is not as useful for tagging,
since the highest improvement on word accuracy accounts for only +1.4% for Max-
imum Entropy and +1.7% for Perceptron, respectively. In the same way, unknown
word accuracy improved only by +2.2% for Maximum Entropy and 4.4% for Per-
ceptron models, which is less than in the case of Brown and Clark clusters. All in
all, this cluster type appears to work better with Perceptron models, especially in
the case of unknown word accuracy. Similar to the other cluster types, its influence
appears to depend on the size of the unlabelled corpus for cluster induction.

Chapter 4. Results and Discussion

32

Cluster(s) Maximum Entropy Perceptron

 Total Known Unknown Total Known Unknown

Baseline 81.6 88.6 57.9 81.1 87.7 58.6

Araneum 100 82.3 89.0 59.7 82.2 88.3 61.6

Araneum 200 82.6 89.2 60.1 82.3 88.6 60.8

Araneum 400 82.4 89.4 58.6 82.1 88.3 61.0

Araneum 800 82.6 89.5 59.2 82.1 88.1 61.4

Araneum 1000 83.0 89.7 60.1 82.4 88.3 62.3

Araneum 100, 200, 400 82.1 89.2 58.3 82.5 88.8 61.5

Araneum 800, 1000 82.9 89.9 59.3 82.6 88.5 62.6

Araneum 100, 200, 400, 800, 1000 82.2 89.6 57.1 82.8 88.6 63.0

Wiki 100 81.9 88.8 58.2 81.9 88.2 60.8

Wiki 200 82.1 89.0 58.8 81.4 87.6 60.3

Wiki 400 81.7 88.8 57.6 82.3 88.2 62.6

Wiki 800 82.1 89.2 57.9 82.0 88.3 60.6

Wiki 1000 82.4 89.3 59.0 82.4 88.5 61.5

Wiki 100, 200, 400 81.7 89.0 57.2 82.4 88.2 62.7

Wiki 800, 1000 82.5 89.6 58.6 82.1 88.4 60.4

Wiki 100, 200, 400, 800, 1000 81.5 89.2 55.3 81.9 88.1 60.9

Sejm 100 82.2 88.9 59.7 81.8 88.0 60.8

Sejm 200 82.2 89.0 58.9 82.0 88.2 60.9

Sejm 400 82.1 89.2 57.9 81.7 88.1 60.2

Sejm 800 81.9 89.0 57.9 81.7 88.2 59.6

Sejm 1000 82.2 89.2 58.5 81.6 88.0 60.1

Sejm 100, 200, 400 81.7 89.3 56.1 81.9 87.7 62.3

Sejm 800, 1000 81.8 89.1 56.9 82.1 88.2 61.4

Sejm 100, 200, 400, 800, 1000 81.0 89.2 53.0 82.3 88.6 60.6

Pelcra 100 81.9 88.8 58.6 81.3 87.9 58.9

Pelcra 200 82.1 88.9 58.9 81.5 88.1 59.2

Pelcra 400 82.0 88.9 58.8 81.3 87.9 59.0

Pelcra 800 81.9 88.9 58.1 81.3 88.2 58.0

Pelcra 1000 81.7 88.9 57.5 81.3 87.7 59.3

Pelcra 100, 200, 400 81.6 89.4 55.1 81.7 87.9 60.6

Pelcra 800, 1000 81.2 88.7 56.0 81.5 87.9 59.7

Pelcra 100, 200, 400, 800, 1000 80.7 89.1 52.2 81.3 87.9 58.8

Araneum 200, Wiki 200, Pelcra 200 82.7 89.4 59.7 81.9 88.2 60.8

Pelcra 400, Sejm 400 82.1 89.4 57.5 82.1 88.6 60.0

Araneum 100, Wiki 100 82.0 88.9 58.5 82.8 88.6 62.9

Sejm 100, Pelcra 100 82.2 89.1 58.6 82.3 88.3 62.2

Araneum 100, Pelcra 100 82.3 89.1 59.2 82.4 88.6 61.3

Table 13: Measuring the effect of word2vec clusters added on top of both baselines. Models trained
on UDP Train and evaluated on UDP Dev. Scores are reported for overall, known and unknown (=
unkn.) word accuracy in percent. Best scores for each corpus are indicated in italics if the scores
improve in comparison to the baseline, best scores across all corpora are highlighted in bold italics.

In conclusion, the effect of word2vec clusters on morphosyntactic tagging is much
lower than in the case of the other two cluster types. However, their usefulness
especially for unknown word accuracy is not to be dismissed, because they can be
induced in very short time and the resulting cluster lexica are the smallest ones in
terms of size.

Chapter 4. Results and Discussion

33

4.3.4 Combining Cluster Types

After determining how each cluster type contributes to tagging as reported in the
previous three subsections, we stacked and combined the most promising cluster
lexica from each cluster type. The results of these tests are shown in Table 14.
From this, it becomes obvious that word2vec clusters have a minor effect on the
overall task, since the highest scores obtained from combinations that leave out
word2vec clusters are very similar to those that do employ word2vec clusters. It
can also be seen that the combination of Brown and Clark clusters performs best,
with an overall word accuracy score of 86.2%, which equals to an improvement by
5.1% compared to the baseline for Perceptron models. In contrast, the best score
for the use of one cluster type (85.6%) was obtained by combining Clark Araneum
100 and Clark Araneum 200 clusters (see 4.3.2). Furthermore, stacking clusters
increased unknown word accuracy scores by +11.2%. Taken together, this sug-
gests that there is, indeed, an added effect of cluster stacking, as was confirmed by
Agerri and Rigau (2016) for NERC.

Cluster Combinations MaxEnt Perceptron

T U K T U K

Baseline

81.6 88.6 57.9 81.1 87.7 58.6

Brown Clark w2v
 Aran 1000 Aran 200 Aran 1000 84.5 90.9 62.9 85.6 90.6 68.7

Wiki 1000 Aran 200 Aran 1000 84.3 90.8 62.5 86.1 90.9 69.8

Sejm 500 Aran 200 Aran 1000 84.4 91.0 61.8 85.3 90.5 67.5

Aran 1000, Wiki 500 Aran 100, 200 Wiki 1000 83.3 90.1 60.2 84.6 89.7 67.3

Aran 1000 Aran 100, 200 Aran 1000 84.8 91.0 63.7 86.1 91.0 69.8

Aran 1000 Aran 100, 200 -- 84.6 91.0 62.8 86.1 91.1 69.5

Aran 500 Aran 100, 200 -- 84.7 91.1 62.9 85.6 90.8 68.0

Aran 1000, Wiki 500 Aran 100, 200 -- 83.0 89.9 59.7 84.4 89.6 66.8

Wiki 500 Aran 100, 200 -- 84.5 90.8 63.0 86.0 90.9 69.6

Wiki 1000 Aran 200 -- 84.4 90.9 62.2 85.6 90.8 67.8

Wiki 1000 Aran 100, 200 -- 84.7 91.1 63.0 85.9 90.6 69.8

Sejm 500 Aran 200 -- 84.0 90.9 60.8 85.2 90.4 67.6

Sejm 500 Aran 100, 200 -- 84.4 91.1 61.8 85.4 90.6 67.7

Sejm 1000 Aran 100, 200 -- 84.0 90.8 61.0 85.2 90.3 64.2

Table 14: Measuring the effect of combining Brown, Clark and word2vec clusters added on top of
baselines. Models trained on UDP Train and evaluated on UDP Dev. Scores for overall (T), known
(K) and unknown (U) word accuracy in %. Best scores for each combination group are indicated in
italics if they improve the baseline, best scores across all corpora are highlighted in bold italics.

4.4 Final Evaluation

The final step of our experiments consisted in an evaluation of the two best-
performing combinations of clustering features. For Maximum Entropy training,
Clark clusters of 100 and 200 classes obtained from the Araneum corpus were
chosen for the final evaluation, whereas for Perceptron training we combined
Brown clusters of 1000 classes, Clark clusters of 100 and 200 classes, and
word2vec clusters of 1000 classes, all of which were, again, obtained from the Ara-
neum.

Chapter 4. Results and Discussion

34

4.4.1 Evaluation on Test Sets

Models trained on UDP Train were evaluated on UDP Test (see Figure 2), whereas
those trained on NCP Train were evaluated on NCP Test (see Figure 3). As already
mentioned in section 4.2, tagging accuracy of the baselines slightly drops upon
evaluation on the test sets in comparison to the corresponding development sets.

As can be seen in the two bar charts, the clustering features consistently im-
prove the baseline for all three metrics (total, known and unknown word accura-
cy), with the highest improvement being +5.1% on total and +10.3% on unknown
word accuracy for Perceptron models trained on UDP. In absolute figures, our best
scores for overall word accuracy are 86.0% on UDP Test and 90.0% on NCP Test.
In general, our system appears to work slightly better with Perceptron than with
Maximum Entropy models.

Figure 2: Results for the two best-performing combinations of local and clustering features. Models
were trained on UDP Train and evaluated on UDP Test.

80,6
88,0

56,0

80,9
87,4

59,2

84,9
90,7

65,9

86,0
91,0

69,5

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

Total Known Unknown Total Known Unknown

Maxent Perceptron

W
o

rd
 A

cc
u

ra
cy

 (%
)

Final Evaluation on UDP Test

Baseline Features Clustering Features

Chapter 4. Results and Discussion

35

Figure 3: Results for the two best-performing combinations of local and clustering features. Models
were trained on NCP Train and evaluated on NCP Test.

Apart from accuracy scores, further important parameters of system performance
are not to be left out in our evaluation: training time and size of the models, which
are shown in Table 15. Especially in the case of Perceptron models, which rely on a
combination of 4 cluster lexica, training time and size is rather large when com-
pared to the baselines using local features only. Another factor to be taken into
consideration are memory issues. In our system, Perceptron models require a lot
of working memory in training, for the best-scoring model trained on NCP we
needed 120 GB for indexing the training data set, which can be explained by the
large size of the training corpus and the set of outcome tags. A similar problem was
reported by Radziewski (2013) for CRF models, too. Maximum Entropy training,
on the other hand, is less problematic in terms of memory use; apart from that, it
supports multithreading.

 Local Features Only Local + Clustering Features
 Maximum Entropy Perceptron Maximum Entropy Perceptron
 UDP NCP UDP NCP UDP NCP UDP NCP
Time (hh:mm) 00:21 01:47 00:10 06:15 00:12 01:59 00:14 17:54
Size (MB) 3 15 4 30 86 98 109 135

Table 15: Training time and size of best-performing models.

4.4.2 Out-of-Domain Evaluation

Finally, we performed out-of-domain evaluations. In the out-of-domain evaluation
of our baselines, we identified a drop in tagging accuracy as compared to the de-
velopment sets (see 4.2) The general picture for our models using combinations of
local and clustering features is very similar: accuracy drops, too, although the de-
crease is less pronounced (see Table 16 and Table 17). We also observed that the
Plays subset of P60 was least prone to accuracy declines, just as in the case of our

86,6 89,3

58,6

87,9 90,2

64,6

88,5 90,8

64,9

90,0 91,8

72,1

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

Total Known Unknown Total Known Unknown

Maxent Perceptron

W
o

rd
 A

cc
u

ra
cy

 (%
)

Final Evaluation on NCP Test

Baseline Features Clustering Features

Chapter 4. Results and Discussion

36

baselines. What is more, the positive effect of clustering features on tagging of un-
known words was observed in out-of-domain evaluation, too. The magnitude of
improvement on unknown vocabulary in out-of-domain evaluation is very similar
to the one observed when determining the effect of each cluster type on the overall
task, where the improvement on unknown vocabulary as compared to the use of
local features only was as high as 10% and more for some configurations. Also, the
robustness of unknown word accuracy for NCP models on all five subsets of P60
was observed, just as was the case with the baselines.

Maximum Entropy Perceptron

Total Known Unknown Total Known Unknown

UD Test Baseline 80.6 88.0 56.0 80.9 87.4 59.2

Clusters 84.9 90.7 65.9 86.0 91.0 69.5

P60 Essays Baseline 71.9 81.5 50.4 72.4 81.4 52.5

Clusters 77.8 84.9 61.9 78.3 85.2 63.1

P60 Fiction Baseline 77.6 85.4 51.8 78.7 85.2 56.9

Clusters 81.7 87.9 61.1 83.1 88.4 65.6

P60 News Baseline 75.2 84.6 53.2 73.7 82.9 52.3

Clusters 79.6 87.4 61.4 79.9 87.1 63.2

P60 Plays Baseline 80.2 86.4 49.6 80.3 85.6 54.0

Clusters 82.8 87.9 57.8 83.2 87.5 62.4

P60 Scientific Baseline 75.4 82.6 55.7 75.2 82.0 56.8

Clusters 79.6 85.7 63.0 80.5 85.8 66.1

Table 16: Out-of-domain evaluation for models trained on UDP Train using both local and cluster-
ing features. Scores are presented in total, known and unknown word accuracy in percent.

Maximum Entropy Perceptron

Total Known Unknown Known Total Unknown

NCP Test Baseline 86.6 89.3 58.6 87.9 90.2 64.6

Clusters 88.5 90.8 64.9 90.0 91.8 72.1

P60 Essays Baseline 83.5 86.6 59.3 85.0 87.6 65.3

Clusters 86.0 88.6 66.3 87.5 89.4 72.7

P60 Fiction Baseline 86.5 89.4 59.1 87.8 90.2 65.2

Clusters 88.6 91.2 63.9 90.0 91.9 72.0

P60 News Baseline 85.4 88.1 61.2 86.5 88.7 66.4

Clusters 87.5 89.8 66.7 88.7 90.5 72.3

P60 Plays Baseline 88.3 90.3 59.1 89.3 90.8 66.6

Clusters 89.8 91.5 64.5 91.0 92.2 73.2

P60 Scientific Baseline 85.9 87.9 61.7 87.1 88.5 68.8

Clusters 87.7 89.4 67.0 88.9 90.1 73.4

Table 17: Out-of-domain evaluation for models trained on NCP Train. Scores are presented in total,
known and unknown word accuracy in percent.

4.4.3 Interpretation and Discussion of Results

The two major conclusions to be drawn from our data are the following: First, the
strongest effect of clustering features is on unknown word accuracy, which can be
easily seen in the bar charts (Figure 2 and Figure 3). This is of great relevance for
highly inflected languages, where data sparseness is mainly caused by the large
number of word forms per lemma, many of which will inevitably be unknown to
models. While clustering features alone are not enough to push a baseline signifi-

Chapter 4. Results and Discussion

37

cantly beyond state-of-the-art tagging results, our results suggest that they are a
simple yet very efficient technique that, when added to a system, may help to bet-
ter deal with morphologically caused data sparsity and to improve a system’s ro-
bustness across datasets outside of the training domain. Eventually, this may help
to improve the current state of the art if used in conjunction with other techniques
reported in the literature.

The second major conclusion is that the effect of clustering features is stronger
for models trained on smaller datasets. The bar charts clearly show that the im-
provement of clustering features relative to the respective baselines is consistently
higher for models trained on the much smaller UDP corpus (Figure 2) than for
those trained on NCP (Figure 3). What is more, cluster features for Perceptron
models trained on UDP helped to improve overall tagging accuracy from 80.9% to
86.0%, which is close to the baseline of 87.9% for NCP-trained models. Taking into
consideration that UDP Train is only approximately 7% the size of NCP Train these
figures are quite impressive. For unknown word accuracy, cluster features push
scores for UDP models even from 59.2% to 69.5%, which is almost 5% beyond the
baseline for NCP models of 64.6%. All this suggests that clustering features have
the potential to alleviate the dependency on large hand-annotated training corpo-
ra, therefore corroborating in the context of morphosyntactic tagging what Agerri
and Rigau (2016) found for NERC. That said, we do not imply that clustering fea-
tures are not useful in situations where large training corpora are available. On the
contrary, we have observed positive effects on NCP data, too, albeit not as strong
ones as in the case of the smaller UDP. Consequently, we conclude that the strong-
er the baseline, the less pronounced the effect of clustering features on overall
word accuracy. Still, clusters do have an impact on unknown word accuracy, even
if models were trained on large, balanced and high-quality corpora.

Summing up, we would like to outline two scenarios, in which in our opinion the
application of clustering features should be considered for morphological tagging.
Firstly, in the absence of large training corpora, clustering may alleviate dependen-
cy on them, thus improving both overall and unknown accuracy. This may prove
useful especially for less-resourced languages that lack such resources, or for spe-
cific subject domains or text types that are otherwise underrepresented in training
data. Secondly, if large training corpora are available, clustering features may help
to improve, first and foremost, tagging accuracy on unknown words. This may be
the case when taggers are to be applied to domains other than the training domain
(which is, in fact, a frequent application scenario), or when training corpora are
not balanced. In this scenario, the main benefit is on out-of-domain robustness. Not
to be neglected is the effect on dealing with data sparsity inherent to highly inflect-
ed languages, which applies to either of the two outlined scenarios.

4.4.4 Comparison to Other Systems

Based on a literature review, we compare our results to other systems, both for
Polish and for other morphologically complex languages. Our goal is not to provide
an exhaustive comparison, but an anecdotal one for a general overview. A major
limitation to the comparison is the use of different metrics for most Polish taggers
(see discussion in 3.5) on the one hand and that papers do not always report all
relevant figures on the other.

Chapter 4. Results and Discussion

38

Systems for Polish

We compared our work the following taggers for Polish: WCRFT (Radziszewski,
2013), Pantera (Acedański, 2010), WMBT as a stand-alone tagger and as part of an
ensemble tagger (Radziszewski and Śniatkowski, 2011), and UDPipe (Straka et al.,
2016). All systems are trained and tested on NCP data, except for UDPipe, which
uses UDP data.

 Word.Ac Dis.Ac Ac.Low.B Ac.Up.B Ac.Low.B.Unk Tokens |Tagset|
 Total Unkn.

ours (NCP) 90.0 72.1 -- -- -- -- 962 K 901
WCRFT -- 90.3 90.7 40.1 1.1 M --
PANTERA -- -- 92.4 88.8* 89.1* 14.7* -- --
WMBT -- -- 93.0 87.5* 87.8* 13.6* 1.1 M --
WMBT ens. -- 94.1 -- -- -- 1.1 M --
ours (UDP) 86.0 69.5 -- -- -- -- 69 K 607
UDPipe 84.7 -- -- -- -- -- 69 K 607

Table 18: Comparison with other systems for Polish. Scores indicated in percent for total and un-
known word accuracy (Word.Ac.), disambiguation accuracy (Dis.Ac), accuracy lower bound
(Ac.Low.B), accuracy upper bound (Ac.Up.B), accuracy lower bound for unknown words
(Ac.Low.B.Unk). Size of training sets indicated in tokens and tagset cardinality in unique tags.
Scores marked with * are based on re-evaluation by Radziszewski and Acedański (2012).

The only fully comparable system is UDPipe since it was trained/tested on ex-
actly the same data and is evaluated using word accuracy. As shown in Table 18,
our system outperforms it by 1.3%. UDPipe is a language-independent system that
uses exactly the same architecture and settings for each of the 32 supported lan-
guages. In contrast, our system entailed some feature tuning for Polish, albeit only
to a very limited degree. The main difference between both systems is the use of a
morphological guesser in UDPipe. This demonstrates how powerful clustering fea-
tures are, because without any morphological analyser our system outperforms
one that uses a guesser. This, in turn, suggests that the extremely simple approach
employed in our work has the potential to replace, at least in parts, a more com-
plex morphological analysis.

With regard to the remaining Polish taggers, the picture is somewhat obscured
because of the difficulties related to the use of different evaluation metrics. Alt-
hough the results are not directly comparable, it appears that our system is at least
as competitive as current state-of-the-art taggers for Polish, because in practice
word accuracy is the strictest of all metrics (see discussion in 3.5). Most strikingly,
our system shows huge improvements in terms of tagging performance of un-
known words. This is remarkable given that all Polish taggers strongly rely on
morphological analysis while our system only applies unsupervised clustering fea-
tures.

Systems for Other Languages

In Table 19, we give a comparison with systems for other morphologically rich
(Slavic) languages that report results in terms of per-token accuracy. However, it
must be noted that due to differences in the linguistic characteristics of each lan-
guage as well as different corpora sizes scores are not directly comparable.

Chapter 4. Results and Discussion

39

 Word Accuracy Tokens |Tagset|
 Total Unknown

this work (NCP) PL 90.0 72.1 962 K 901
Spoustová et al. (2009) CZ 95.9 -- 1.5M --
Loftsson & Östling (2013) IS 93.8 -- 590 K 565
Halácsy et al. (2007) HU 98.4 96.0 1M --
this work (UDP) PL 86.0 69.5 69 K 607
Agić et al. (2013) HR 87.7 -- 88 K --
Agić et al. (2013) SR 85.6 -- 88 K --
Agić et al. (2010) HR 90.8 72.6 107 K 880
Georgiev et al. (2012) BG 98.0 -- 254 K 552
Silfverberg et al. (2014) CZ 91.0 77.8 (5K sent.) 908
Silfverberg et al. (2014) FI 88.7 63.6 (5K sent.) 2,141

Table 19: Comparison with systems for other languages. Scores in percent for total and unknow-
word accuracy. Size of training sets indicated in tokens and tagset cardinality in unique tags.

Spoustová et al. (2009), who also try to leverage unlabelled data in a semi-
supervised system, obtained very high accuracy scores of almost 96%, which is
one of the best scores for morphosyntactic tagging in Slavic languages known to us.
With the help of the unsupervised component, they improved their baseline by
almost 5%. While their approach is similar to ours in terms of combining super-
vised and unsupervised components, it differs in as far as it uses a morphological
analyser that precedes the tagger. The IceTagger (Loftsson and Östling, 2013) for
Icelandic was trained on data that is roughly 60% the size of NCP in terms of to-
kens and tagset cardinality. It is a mature system that achieves high tagging accu-
racies (93.8%), albeit on a tagset that is much smaller than in Polish. Interesting
from our perspective is that it also uses Perceptron models as well as word repre-
sentations from unlabelled text. Again, the key component that probably explains
the high scores is a morphological guesser. The taggers for Croatian and Serbian by
Agić et al. (2013) employ a rather simple approach and score in an approximately
similar range as our system. The ensemble voting system presented by Agić et al.
(2010), scores almost 5% better than our system on a larger training corpus. How-
ever, ensemble voting is not as straight-forward as our approach. For Bulgarian,
Georgiev et al. (2012) score an extraordinarily high overall tagging accuracy of
98.0%, which is at first sight surprising for a language with such a rich morpholo-
gy18 since the scores are very similar to POS tagging accuracies for English. Their
system, however, heavily relies on a pre-compiled inflectional lexicon, which dra-
matically reduces the number of unknown words, which is the very problem of
morphosyntactic tagging in highly inflected languages. Another tagger with very
high accuracy, both for all (98.4%) and unknown (96.0%) words, is HunPos (Halá-
csy et al., 2007) for Hungarian based on Hidden Markov Models. The system fea-
tures a strong morphological analyser, thereby considerably reducing the number
out-of-vocabulary words. Although Hungarian is agglutinative, this tagger architec-
ture is interesting for inflective languages, too, mainly because of outstandingly
short training times. Finally, we reviewed Silfverberg et al.’s (2013) CRF-based
tagger using sub-label dependencies as applied to Czech and Finnish. Unfortunate-
ly, it is difficult to compare it to our system because corpus size is not explicitly

18 Compared to Polish, Bulgarian has a simpler nominal inflection but more complex verbal inflec-
tion. In view of the size of the cardinality of the tagset (approx. 550), we may assume that the mor-
phological complexity is similar to our Polish case, although the Bulgarian training corpus is more
than three times the size of UDP.

Chapter 4. Results and Discussion

40

provided in their paper. Taking into consideration the cardinality of the tagset as
well as the results for the remaining languages presented in the paper it appears to
be a rather strong system that may outperform our system in direct comparison.
Most importantly, it scores higher for unknown words than our system.

In conclusion, the comparison of related work unfortunately does not yield a
clear picture. A comparison with other Polish taggers trained on NCP is not fully
feasible because of the use of different accuracy metrics. Nevertheless, our system
seems to be at least as competitive as current state-of-the-art systems. Most im-
portantly, our system performs much stronger in terms of unknown word accuracy
despite not using a morphological analyser or guesser.

Chapter 5. Conclusions and Future Work

41

5 Conclusions and Future Work
The main contributions of this work are the following:

1. Without using a component for morphological guessing or analysis, we have
proposed a morphosyntactic tagger for Polish that achieves similar or even
superior tagging accuracy as compared to more complex state-of-the-art sys-
tems. Most notably, our system performs much better on unknown word ac-
curacy than any other Polish tagger.

2. Thanks to the use of clustering features based on distributional semantics,
our system employs a simple yet robust approach to deal with data sparsity
in a semi-supervised manner. This suggests that clustering features may re-
place or complement more complex morphological analysers or guessers.

3. Our system is designed to meet the requirement of simplicity and user-
friendliness while at the same time being publicly available within the open-
source IXA pipes.

We set out to investigate the potential of word clustering features obtained in a
purely unsupervised fashion in order to improve supervised morphosyntactic tag-
ging for highly inflected languages, thus resulting in a semi-supervised approach.
The assumption underlying our work is that word representations such as word
clusters help to address data sparsity inherent to morphosyntactic tagging in mor-
phologically complex languages, with the main problem being out-of-vocabulary
words unknown to the model. Our ultimate goal is to propose a simple yet efficient
technique to improve tagging in language-independent, trainable, user-friendly
and robust tools. To this end, we conducted experiments on Polish datasets using
the POS tagging module of the IXA pipes, which was shown to yield state-of-the-art
results for languages with less complex morphology than Polish. In general, our
study is a replication of the work done on the use of clustering features in NERC
(Agerri and Rigau, 2016), but in application to morphosyntactic tagging.

Our proposed approach consists in adding word clustering features induced
from large amounts of unlabelled text on top of a baseline system that relies exclu-
sively on local features. Our system can therefore be deemed as linguistically unin-
formed, because no language-specific component is added to our system. Instead, it
attempts to leverage recent advances in unsupervised distributional semantics,
which is becoming increasingly popular in view of the public availability of large
unlabelled corpora for the vast majority of languages and which has therefore had
an impact on almost any field of NLP. To test our assumptions, we first established
a baseline by implementing a limited number of features useful for morphosyntac-
tic tagging of highly inflected languages in the IXA pipes and by subsequently de-
termining the best-performing parameter setting for Maximum Entropy and Per-
ceptron models. Then, we used freely available tools to induce three types of word
clustering lexica (Brown clusters, Clark clusters and word2vec clusters); for each
type we used a total of four corpora (Araneum Polonicum Maius, Polish Wikipedia
dump, Polish Sejm Corpus, Polish source texts from PELCRA multilingual parallel
corpus) and induced cluster lexica distinguishing various numbers of cluster clas-
ses. In the next step, we investigated how each cluster type and corpus contributes
to the tagging task. Our results suggest that Brown and even more so Clark clusters
are very useful to the task, and that the size of corpora used for cluster induction
plays an important role, too. Furthermore, we showed that stacking and combining

Chapter 5. Conclusions and Future Work

42

cluster features may have an added value as compared to the use of single cluster
lexica. Finally, we evaluated the best-performing combinations of cluster features
added atop of local features on our test sets, which included five datasets for out-
of-domain evaluation.

The main findings of our systematic evaluation are the following: Firstly, clus-
tering features do improve, as predicted, tagging accuracy as compared to base-
lines. The stronger the baseline, the less pronounced the improvement. In the same
way, we observed that the magnitude of improvement depends on the amount of
training data: the smaller the training corpus, the higher increases in tagging accu-
racy, which we suggest has important implications for less-resourced languages on
the one hand and for subject domains for which large amounts of training data are
not available. Thus, we have observed that thanks to clustering features baseline
scores for a system trained on a small corpus can be pushed beyond the baseline
for a corpus that is 13 times larger. This may alleviate the dependency on super-
vised training data considerably. Secondly, using neither a morphological
guesser/analyser nor a morphological dictionary, our system is at least as competi-
tive as current state-of-the-art systems for Polish. Most notably, our system scores
much better (around 30 %) on unknown word accuracy than other taggers trained
on NCP, despite not exploiting gold-standard morphological analysis from the ref-
erence corpus. Similarly, without the use of a morphological guesser we outper-
form UDPipe in terms of overall word accuracy. We believe this is due to the effect
of clustering features, which suggests that this simple approach can replace, at
least in parts, more complex techniques for morphological analysis. It should be
noted that our system is efficient and easy to install and use due to its user-friendly
design, while at the same time being available under a permissive open-source li-
cence.

A limitation of our study is that we conducted our research only on Polish data,
while investigating the effect of clustering features in other morphologically com-
plex languages may have been insightful, too. Furthermore, the use of an accuracy
measurement that is not compatible with most other Polish tagger evaluations can
be regarded as a limitation, too. However, in exchange we increase comparability
of our results with studies conducted on other languages, since the mainstream
metrics for Polish seem to be a peculiarity of the Polish NLP community. On the
other hand, the differentiated measurement of overall, known and unknown word
accuracy is a strength of our study, because it sheds light on the main cause for
data sparsity in morphologically complex languages, i.e. vocabulary unknown to
models because of the high number of possible word forms per lemma. In the same
way, our out-of-domain evaluations on five different datasets are important indica-
tors for systems’ robustness across text types and subject domains. Here, reporting
of unknown word accuracies is, again, of great importance. A further strength is
the use of two different training corpora. Although UDP is a subset of NCP, the in-
sights from this dual approach are important to understand the effect of clustering
features since those two corpora not only differ significantly in size, but also in
composition: NCP is a balanced corpus, while UDP is a random sample of it. Finally,
by making available our system’s code as well as our data sets, we guarantee the
reproducibility of our results.

As far as future work is concerned, we identify two main directions. Firstly, rep-
lications of our results in further (morphologically complex) languages are desira-
ble. Since large unlabelled corpora are available for most languages, a number of

Chapter 5. Conclusions and Future Work

43

different languages and language typologies might be explored. Secondly, towards
our ultimate goal of adapting the IXA pipes to morphologically complex languages,
two promising avenues deserve our attention: combining our approach with com-
plementary techniques for morphological analysis, or employing tiered tagging.
With regard to morphological analysis, using a static lexicon of inflectional forms
means relying on language-specific resources, which is not fully consistent with the
otherwise language-independent architecture of IXA pipes. Therefore, the imple-
mentation of an (universal) morphological guesser appears more appropriate. Giv-
en our observation that clustering features can, to a certain extent, replace a mor-
phological guesser, it will be interesting to see how a combination of these compo-
nents contributes to the tagging task. No less importantly, we believe that work
towards the optimisation of the remaining NLP components of the IXA pipes for
Polish, i.e. tokenisation/segmentation, lemmatisation, NERC, parsing and chunking,
is important, too, because it may help to provide the Polish NLP community with a
simple yet powerful, full-fledged pipeline.

To conclude this work, we would like to give a brief statement on research
methodology in POS and morphosyntactic tagging: For the sake of system compa-
rability, we believe that it is of utmost importance to harmonise the way tagger
evaluation is being communicated to the research community. Our suggestion is to
rigorously report the following figures: differentiated per-token accuracies for
known and unknown words apart from overall per-token accuracies; percentage of
unknown words in development and test sets; sentence accuracy; size of the vo-
cabulary in terms of tokens, types and lemmas for each split of the corpus (train-
ing, development and testing); and the cardinality of the tagset in each of the splits.
In addition, we encourage to always perform out-of-domain evaluations on various
datasets in order to be able to judge tagger performance in real-world settings. We
ourselves did not compute sentence accuracy and percentage of unknown vocabu-
lary, though we realised in the course of our work that it would have been very
informative to better understand the behaviour of our tagger. We therefore hope
that in the near future comparable best-practice guidelines for tagger evaluation
will be followed to facilitate the comparability of the limitations and strengths of
individual systems across languages, subject domains and text types. This may
eventually promote in a community effort further performance improvement in
this crucial NLP task.

References

45

References
Acedański, Sz. (2010). A morphosyntactic brill tagger for inflectional languages. In: Lofts-

son, H., Rögnvaldsson, E. and Helgadóttir, S., (eds.): Advances in Natural Language Pro-
cessing. Berlin, Heidelberg: Springer, pp. 3-14.

Agerri, R., Bermudez, J. and Rigau, G. (2014): IXA pipeline: Efficient and Ready to Use Mul-
tilingual NLP tools. In: Proceedings of the 9th Language Resources and Evaluation Confer-
ence (LREC2014), pp. 3759-3764.

Agerri, R. and Rigau, G. (2016): Robust multilingual Named Entity Recognition with shal-
low semi-supervised features. In: Artificial Intelligence vol. 238, pp. 63-82.

Agić, Ž., Tadić, M. and Dovedan, Z. (2010): Tagger Voting Improves Morphosyntactic Tag-
ging Accuracy on Croatian Texts. In: Proceedings of 32nd International Conference on In-
formation Technology Interfaces, pp. 61-66-

Agić, Ž, Ljubešić, N and Markler, D. (2013): Lemmatization and Morphosyntactic Tagging
of Croatian and Serbian. In: Proceedings of the 4th Biennial International Workshop on
Balto-Slavic Natural Language Processing, pp. 48-57.

Baldwin, B. (2006): Why do you Hate CRFs? In: LingPipe Blog. https://lingpipe-
blog.com/2006/11/22/why-do-you-hate-crfs (retrieved 07/2016).

Benko, V. (2014): Aranea: Yet Another Family of (Comparable) Web Corpora. In Sojka, P.,
Horák, A., Kopeček, I. and Pala, K. (eds.): Text, Speech and Dialogue. Proceedings of the
17th International Conference (TSD 2014). Springer International Publishing Switzer-
land, pp. 257-264.

Benko, V. (2016): Two Years of Aranea: Increasing Counts and Tuning the Pipeline. In:
Proceedings of the 10th International Conference on Language Resources and Evaluation
(LREC 2016), pp. 4245-4248.

Brants, T. (2000): Tnt: A statistical part-of-speech tagger. In: Proceedings of the 6th Confer-
ence on Applied Natural Language Processing, pp 224-231.

Brown, P.F., Desouza, P.V., Mercer, R.L., Pietra, V.J.D. and Lai, J.C. (1992): Class-Based n-
gram Models of Natural Language. In: Computational Linguistics vol. 18, pp. 467-479.

Caselli, T., Vossen, P., van Erp, M., Fokkens, A., Ilievski, F, Izquierdo, R. Le, M. Morante, R.
and Postma, M. (2015): When it's all piling up: investigating error propagation in an
NLP pipeline. In: Izquierdo, R. (ed.): Proceedings of the Workshop on NLP Applications:
Completing the Puzzle. Aachen.

Ceauşu A. (2006): Maximum Entropy Tiered Tagging. In: Proceedings of the 11th ESSLLI
Student Session, pp. 173-179.

Ciaramita, M. and Altun, Y. (2006): Broad-Coverage Sense Disambiguation and Information
Extraction witha Supersense Sequence Tagger. In: Proceedings of the 2006 Conference
on Empirical Methods in NLP, pp. 594-602.

Collins, M. (2002): Discriminative training methods for Hidden Markov Models: Theory
and experiments with perceptron algorithms. In: EMNLP 2002.

Clark, A. (2003): Combining distributional and morphological information for part of
speech induction. In: Proceedings of the 10th Conference on European Chapter of the As-
sociation for Computational Linguistics - Volume 1, pp. 59-66.

Eger, S. Gleim, R. and Mehler (2016): Lemmatization and Morphological Tagging in Ger-
man and Latin: A comparison and a survey of the state-of-the-art. In: Proceedings of the
10th International Conference on Language Resources and Evaluation, 2016.

References

46

Georgiev, G., Zhikov, V., Osenova, P, Simov, K. and Nakov, P. (2012): Feature-rich part-of-
speech tagging for morphologically complex languages: application to Bulgarian. In:
Proceedings of the 13th Conference of the European Chapter of the Association for Compu-
tational Linguistics, pp. 492-502.

Giesbrecht, E. and Evert, S. (2009): Is Part-of-Speech Tagging a Solved Task? An Evaluation
of POS Taggers for the German Web as Corpus. In: Proceedings of the 5th Web as Corpus
Workshop (WAC5), San Sebastián, Spain, pp. 27-35.

Giménez, J. and Màrquez (2004): SVMTool: A general POS tagger generator based on sup-
port vector machines. In: Proceedings of the 4th International Conference on Language
Resources and Evaluation.

Hajič, J. (2000): Morphological Tagging: Data vs. Dictionaries. In: Proceedings of the 1st
North American Chapter of the Association for Computational Linguistics Conference, pp
94-101.

Halácsy, P., Kornai , A. and Oravecy, Cs. (2007): HunPos: an open source trigram tagger. In:
Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstra-
tion Sessions, pp. 209-212

Jassem, K. (2013): PSI-Toolkit – how to turn a linguist into a computational linguist. In:
Proceedings of the 15th International Conference Text, Speech and Dialogue, Brno, pp.
215-222.

Kobyliński, Ł. (2013): Improving the accuracy of Polish POS tagging by using voting en-
sembles. In: Proceedings of the 6th Language & Technology Conference: Human Language
Technologies as a Challenge for Computer Science and Linguistics, pp. 453-456.

Kobyliński, Ł. (2014): PoliTa: A multitagger for Polish. In: Proceedings of the 9th Interna-
tional Conference on Language Resources and Evaluation, LREC 2014, pp. 2949-2954.

Liang, P. (2005): Semi-Supervised Learning for Natural Language. MA Thesis. Massachu-
setts Institute of Technology.

Loftsson, H. and Östling, R. (2013): Tagging a Morphologically Complex Language using an
Averaged Perceptron Tagger: The Case of Icelandic. In: Proceedings of the 19th Nordic
Conference of Computational Linguistics, pp. 105-119.

Manning, C.D. (2011): Part-of-Speech Tagging from 97% to 100%: Is It Time for Some Lin-
guistics? In: Gelbukh, A. (ed.): Computational Linguistics and Intelligent Text Processing,
12th International Conference, CICLing 2011, Proceedings, Part I. Springer, pp. 171-189.

Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J. and McClosky. D. (2014): The
Stanford CoreNLP Natural Language Processing Toolkit. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational Linguistics: System Demonstrations,
pp. 55-60.

Marcus, M.P., Santorini, B. and Marcinkiewicz, M.A. (1993): Building a large annotated cor-
pus of English: The Penn treebank. In: Computational Linguistics vol. 19, pp. 313-330.

McCallum, A (2002): MALLET: A Machine Learning for Language Toolkit.
http://mallet.cs.umass.edu.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J. (2013): Distributed represen-
tations of words and phrases and their compositionality. In: Advances in Neural Infor-
mation Processing Systems, pp. 3111-3119.

Müller, T., Schmid, H. and Schütze, H. (2013). Efficient higher-order CRFs for morphologi-
cal tagging. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 322-332.

References

47

Nivre, J. et al. (2016): Universal Dependencies v1: A Multilingual Treebank Collection. In:
Proceedings of the 10th Language Resources and Evaluation Conference (LREC 2016), pp.
1659-1666.

Ogrodniczuk, M. (2003): Wzbogacenie korpusu słownika frekwencyjnego o nowe kody
gramatyczne. In: Bień, J.S. and Ogrodniczuk and Woliński, M. (eds): Wzbogacony korpus
Słownika frekwencyjnego polszczyzny współczesnej. Katedra Lingwistyki Formalnej,
Wydział Neofilologii Uniwersytetu Warszawskiego,
http://clip.ipipan.waw.pl/PL196x?action=AttachFile&do=view&target=operacje.pdf.

Ogrodniczuk, M. (2012): The Polish Sejm Corpus. In: Proceedings of the 8th International
Conference on Language Resources and Evaluation (LREC 2012), pp. 2219-2223.

Okazaki, N. (2007): CRFsuite: A fast implementation of conditional random fields (CRFs).
URL: http://www.chokkan.org/software/crfsuite/.

Oravecz, Cs. and Dienes, P. (2002): Efficient Stochastic Part-of-Speech Tagging for Hungar-
ian. In: Proceedings of the 3rd LREC Conference, Las Palmas, pp. 710-717.

Padró, L, Collado, M., Reese, S., Lloberes, M. and Castellón, I. (2010): FreeLing 2.1: Five
Years of Open-Source Language Processing Tools. In: Proceedings of 7th Language Re-
sources and Evaluation Conference (LREC 2010), ELRA
La Valletta, Malta. May, 2010.

Petrov, S., Das, D. and McDonald, R. (2012): A universal part-of-speech tagset. In: Proceed-
ings of the 8th Language Resources and Evaluation Conference (LREC 2012).

Przepiórkowski, A., Bańko, M., Górski, R.L. and Lewandowska-Tomaszczyk, B. (2012):
Narodowy Korpus Języka Polskiego. Warszawa: Wydawnictwo Naukowe PWN.

Radziszewski, A (2013): A tieredCRF tagger for Polish. In: In: Bembenik, R. et al. (eds.):
Intelligent Tools for Building a Scientific Information Platform. Berlin, Heidelberg:
Springer, pp. 215-230.

Radziszewski, A. and Acedański, Sz. (2012): Taggers gonna tag: an argument against eval-
uating disambiguation capacities of morphosyntactic taggers. In: Sojka, P., Horák, A.,
Kopeček, I. and Pala, K. (eds.): Proceedings of the 15th International Conference TSD,
Brno, September 2012. Heidelberg: Springer, pp. 81-87.

Radziszewski, A. and Śniatowski, T. (2011): A memory-based tagger for Polish. In: Pro-
ceedings of the 5th Language & Technology Conference, Poznań.

Ratnaparkhi, A. (1996): A maximum entropy model for part-of-speech tagging. In: Proceed-
ings of the conference on empirical methods in natural language processing vol. 1, pp.
133-142.

Silfverberg, M., Ruokolainen, T., Lindén, K. and Kurimo, M. (2014): Part-of-Speech Tagging
using Conditional Random Fields: ExploitingSub-Label Dependencies for Improved Ac-
curacy. In: Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Short Papers), pp. 259-264.

Spoustová, D., Hajič, J., Raab, J., Spousta, M. (2009): Semi-supervised training for the aver-
aged perceptron POS tagger. In: Proceedings of the 12th Conference of the European
Chapter of the ACL, pp. 763-771.

Straka, M., Hajič J. and Straková, J. (2016): UDPipe: Trainable Pipeline for Processing
CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and
Parsing. In: Proceedings of the 10th International Conference on Language Resources and
Evaluation (LREC 2016), Portorož, Slovenia, pp. 4290-4297.

Sutton, C. and McCallum, A. (2011): An introduction to conditional random fields. In:
Foundations and Trends in Machine Learning vol. 4, no. 4, pp. 267-373.

References

48

Toutanova, K., Klein, D., Manning, C.D. and Singer, Y. (2003): Feature-rich part-of-
speechtagging with a cyclic dependency network. In: Proceedings of the 2003 Confer-
ence of theNorth American Chapter of the Association for Computational Linguistics on
Human Language Technology - Volume 1, pp 173-180.

Tufiş, D. (1999): Tiered Tagging and Combined Classifiers. In: Text, Speech and Dialogue,
Lecture Notes in Artificial Intelligence vol, 1692, pp. 28-33.

Tufiş, D. and & Dragomirescu, L. (2004): Tiered Tagging Revisited. In: Proceedings of the 4th
LREC Conference, pp. 39-42.

Turian, J., Ratinov, L.A. and Bengio, Y. (2010): Word representations: A Simple and General
Method for Semi-Supervised Learning. In: Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, Uppsala, Sweden, pp. 384-394.

Woliński, M., Głowińska, K. and Świdziński, M. (2011): A preliminary version of Składnica
– a treebank of Polish. In: Vetulani, Z. (ed.): Proceedings of the 5th Language & Technolo-
gy Conference: Human Language Technologies as a Challenge for Computer Science and
Linguistics, pp. 299-303.

Woliński, M., Miłkowski, M., Ogrodniczuk, M, Przepiórkowski, A. and Szałkiewicz, Ł.
(2012): PoliMorf: a (not so) new open morphological dictionary for Polish. In Proceed-
ings of the Eighth International Conference on Language Resources and Evaluation,
LREC 2012, pp. 860-864.

Wróblewska, A. and Przepiórkowski, A. (2014): Projection-based Annotation of a Polish
Dependency Treebank. In: Proceedings of the 9th International Conference on Language
Resources and Evaluation, Reykjavík, pp. 2306-2312.

Yang, Zh., Salakhutdinov, R. and Cohen, W. (2016); Multi-Task Cross-Lingual Sequence
Tagging from Scratch. In: Computing Research Repository. URL:
http://arxiv.org/abs/1603.06270.

Zipf G.K. (1935): Psycho-Biology of Languages: An Introduction to Dynamic Philology. Bos-
ton: Houghton-Mifflin.

