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Abstract 

In morphologically complex languages, many high-level tasks in natural language 
processing rely on accurate morphosyntactic analyses of the input. However, in 
light of the risk of error propagation in present-day pipeline architectures for basic 
linguistic pre-processing, the state of the art for morphosyntactic tagging is still 
not satisfactory. The main obstacle here is data sparsity inherent to natural lan-
guage in general and highly inflected languages in particular. 

In this work, we investigate whether semi-supervised systems may alleviate the 
data sparsity problem. Our approach uses word clusters obtained from large 
amounts of unlabelled text in an unsupervised manner in order to provide a su-
pervised probabilistic tagger with morphologically informed features. Our evalua-
tions on a number of datasets for the Polish language suggest that this simple 
technique improves tagging accuracy, especially with regard to out-of-vocabulary 
words. This may prove useful to increase cross-domain performance of taggers, 
and to alleviate the dependency on large amounts of supervised training data, 
which is especially important from the perspective of less-resourced languages. 
 





 

v 

Abstract ....................................................................................................................................................... iii 

List of Figures .......................................................................................................................................... vii 

List of Tables ............................................................................................................................................. ix 

1 Introduction ................................................................................................................ 1 

1.1 Motivation ............................................................................................................................... 1 

1.2 Goals........................................................................................................................................... 2 

1.3 Thesis Structure ................................................................................................................... 3 

2 Morphosyntactic Tagging in Highly Inflected Languages ............................... 5 

2.1 Problem Description .......................................................................................................... 5 

2.2 Approaches to Morphosyntactic Tagging ................................................................ 7 

3 Materials and Methods ........................................................................................... 11 

3.1 Experimental Setup ......................................................................................................... 11 

3.2 System Description .......................................................................................................... 12 

3.2.1 IXA Pipes .............................................................................................................................................. 12 
3.2.2 Baseline Features .............................................................................................................................. 13 
3.2.3 Clustering Features .......................................................................................................................... 16 

3.3 Data for Training and Testing..................................................................................... 17 

3.3.1 National Corpus of Polish ............................................................................................................... 18 
3.3.2 Universal Dependencies Polish Treebank ................................................................................ 19 
3.3.3 Polish Language of the 1960s Corpus ........................................................................................ 19 

3.4 Data for Unsupervised Word Cluster Induction ................................................ 21 

3.5 Evaluation Metrics ........................................................................................................... 24 

4 Results and Discussion ........................................................................................... 27 

4.1 Evaluation of Segmentation and Tokenisation .................................................. 27 

4.2 Evaluation of Baseline Feature Sets ........................................................................ 27 

4.3 Evaluation of the Effect of Clustering Features .................................................. 29 

4.3.1 Brown Clusters .................................................................................................................................. 29 
4.3.2 Clark Clusters ..................................................................................................................................... 30 
4.3.3 word2vec Clusters ............................................................................................................................ 31 
4.3.4 Combining Cluster Types ............................................................................................................... 33 

4.4 Final Evaluation................................................................................................................. 33 

4.4.1 Evaluation on Test Sets ................................................................................................................... 34 
4.4.2 Out-of-Domain Evaluation ............................................................................................................. 35 
4.4.3 Interpretation and Discussion of Results ................................................................................. 36 
4.4.4 Comparison to Other Systems ...................................................................................................... 37 

5 Conclusions and Future Work .............................................................................. 41 

References ...................................................................................................................... 45 

 

 





 

vii 

List of Figures 

1 Frequency of labels in UD Train, sorted by rank. ............................................................ 20 
2 Results for best-performing feature combinations (UDP Train/Test). ................ 34 
3 Results for best-performing feature combinations (NCP Train/NCP Test). ...... 35 

 
 





 

ix 

List of Tables 

1 Morphological analyses and frequency counts for all forms of lemma robić . ..... 6 
2 Running example of tagged sentence and features generated from it ................. 13 
3 Feature configuration of our two baseline systems. ..................................................... 15 
4 Sample input and output for Brown cluster induction. ............................................... 16 
5 Sample input and output for Clark cluster induction.................................................... 17 
6 Sample input and output for word2vec cluster induction. ........................................ 17 
7 Statistics for datasets used for training and testing. ..................................................... 18 
8 Sparsity in training and evaluation data. ............................................................................ 21 
9 Overview of induced clusters. .................................................................................................. 23 
10 Evaluation of our baselines ....................................................................................................... 28 
11 Measuring the effect of Brown clusters ............................................................................... 30 
12 Measuring the effect of Clark clusters .................................................................................. 31 
13 Measuring the effect of word2vec clusters ........................................................................ 32 
14 Measuring the effect of combining Brown, Clark and word2vec clusters .......... 33 
15 Training time and size of best-performing models. ....................................................... 35 
16 Out-of-domain evaluation for models trained on UDP Train .................................... 36 
17 Out-of-domain evaluation for models trained on NCP Train .................................... 36 
18 Comparison with other systems for Polish. ....................................................................... 38 
19 Comparison with systems for other languages ................................................................ 39 

 
 





Chapter 1. Introduction 

1 

1 Introduction 

1.1 Motivation 

The use of Natural Language Processing (NLP) technologies continues to gain im-
portance in academic, commercial, as well as governmental settings worldwide. 
While NLP applications are becoming increasingly sophisticated and enable users 
to perform more and more complex tasks on natural language, the core of most, if 
not all, NLP tools consists of several steps of basic linguistic processing, including 
text segmentation (paragraph and sentence splitting), tokenization, part of speech 
(POS) tagging, lemmatisation, named entity recognition and classification (NERC), 
and parsing. Nowadays, these tasks are usually being performed in a modular and 
sequential manner. Such systems are commonly referred to as NLP pipelines. 

Given the fundamental importance of those core tasks, high-quality and efficient 
NLP tools are indispensable to allow both researchers in academia and end-users 
in industry to fully exploit the possibilities of present-day NLP. From the perspec-
tive of end-users, the usefulness of a system does not only depend on performance, 
but also on aspects such as user-friendliness, flexibility and open availability. How-
ever, many systems are rather difficult to handle and require substantial IT skills 
in order to be able to embark on NLP or computational linguistics. To further ad-
vance these two fields, we believe that truly easy-to-use and readily available NLP 
tools that at the same time yield state-of-the-art precision and efficiency are of ut-
most importance. While such tools are, indeed, available for some linguistic com-
munities, first and foremost for English (e.g. Manning et al., 2014; Padró et al., 
2010) the picture is quite different for a large number of languages, especially for 
less-resourced languages and languages with complex morphology. As a matter of 
fact, we experienced this very situation on our own when trying to develop a sim-
ple application for computer-assisted learning of Polish, which required segmenta-
tion/tokenisation and morphosyntactic tagging. It turned out that the available 
tools needed cumbersome compilation and configuration effort as well as third-
party dependencies, which means that many potential users will refrain from using 
them. The most promising tool in terms of user-friendliness we have found for 
Polish is the PSI Toolkit (Jassem, 2013); however, by the time we started this pro-
ject only the web interface was fully functional, whereas local distributions were 
only partially available. Against this background, the initial motivation for the pre-
sent work was to provide tools that meet the above requirements in the context of 
Polish. We hope that such tools will eventually spark an interest in data-driven 
research methodologies among the ‘traditional’ linguistics community and pro-
mote the development and improvement of higher-order NLP applications. 

Although Polish is well equipped with large corpora, treebanks and similar re-
sources of high quality, the very nature of the complex, inflectional morphology of 
Polish and many other languages poses specific difficulties to NLP tasks within the 
machine learning paradigm. The major problem here is data sparsity, which can be 
conceived as the limited availability or even complete lack of training instances for 
a large number of outcomes to be predicted by machine learning models. This does 
not imply that the training data in question is of low quality, but that natural lan-
guage and thus linguistic data is inherently sparse given the open-endedness of 
language as a dynamic system, as already postulated by the well-known Zipf’s law 
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(Zipf, 1935). In morphologically complex languages this data problem is even more 
severe. In order to perform well in real-world higher level applications, NLP pipe-
lines for morphologically complex languages need to address sparsity issues in an 
adequate way. Therefore, tools for morphosyntactic tagging still deserve our atten-
tion; and to maximally comply with end-users’ practical requirements in academia 
and industry (performance, simplicity, flexibility, cost-efficiency, minimal use of 
language-specific knowledge or components, etc.) such tools are ideally to be 
based on language-independent architectures. 

1.2 Goals 

In light of the motivation outlined above, we evaluate the POS tagger of the IXA 
pipes (Agerri, Bermudez and Rigau, 2014) when applied to morphosyntactic tag-
ging of Polish. The decision to give IXA pipes preference over other candidate tools 
is mainly due to its user-friendliness: from all tools that we reviewed and tested, it 
convinced us most for being easy to install and use due to its readily available 
lightweight distribution, language-independent and trainable architecture, porta-
bility, and, no less important, for its public availability under an Apache 2.0 open-
source licence. At the downside, it is not yet entirely suitable to address the prob-
lems specific to morphosyntactic tagging in highly inflected languages. Therefore, 
the main goal of the present thesis is to investigate to what extent semi-supervised 
and linguistically uninformed approaches (e.g. Spoustová et al., 2009; Turian, Rati-
nov, and Bengio, 2010; Eger, Gleim and Mehler, 2016) are feasible to deal with the 
problem of data sparsity inherent to morphosyntactic tagging of inflective lan-
guages. 

Our proposed approach employs a combination of shallow local features with 
word clusters obtained from large amount of unlabelled text in an unsupervised 
manner, thus yielding a language-independent architecture that does not require 
language-specific feature tuning. Most importantly, we focus on the effect of in-
cluding word cluster features in the morphosyntactic tagging task by conducting 
tests on a number of Polish datasets. This research-oriented goal aims to eventual-
ly pave the way for a truly user-friendly, simple-to-use and efficient NLP pipeline 
for the Polish language, which at the same time can be applied to other morpholog-
ically rich languages, too. That said, the development of such a full-fledged system is 
beyond the scope of this thesis. Instead, it is an aim to be achieved at a later stage.  

The contribution of our work consists essentially in shedding light on whether 
unsupervised word clustering (Brown et al., 1992; Clark, 2003; Mikolov et al., 
2013), a technique well known in distributional semantics, has the potential to 
compensate for data sparsity in supervised morphosyntactic tagging of languages 
with a complex morphology. Since our approach solely relies on unlabelled text 
rather than explicit linguistic knowledge or language-specific feature tuning, we 
assume that our findings are valid not only for Polish but also for other highly in-
flected languages. Furthermore, we also provide evidence that our approach may 
improve out-of-domain robustness of taggers, too. Finally, we discuss what modifi-
cations need to be implemented in IXA pipes in order to make it truly useful for 
high-quality morphosyntactic tagging of Polish and other morphologically rich lan-
guages. 
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1.3 Thesis Structure 

The structure of this thesis is as follows: In Chapter 2, we describe and delimit key 
concepts and provide the theoretic background related to morphosyntactic tagging 
in morphologically complex languages. Chapter 3 summarizes the experimental 
setup of our study and presents the corpora and tools we employed in our re-
search. Chapter 4 reports the results of our tests and discusses how our findings 
relate to the aims of our research on the one hand and to related work on morpho-
syntactic tagging on the other. Finally, in Chapter 5 we summarize the main find-
ings of our study, highlight its limitations and strengths, draw conclusions and 
point out future lines of research and work. 
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2 Morphosyntactic Tagging in Highly Inflected 
Languages 

2.1 Problem Description 

The focus of our work is the basic linguistic processing task of morphosyntactic 
tagging, or morphological tagging, in the context of Polish as a representative of 
highly inflected languages. Morphosyntactic tagging is closely related to POS tag-
ging. Both terms are sometimes even used as synonyms because the underlying 
problem is very similar and they can both be treated as sequence labelling prob-
lems. However, these two tasks considerably differ in complexity and therefore the 
two terms should clearly be kept apart, which is, unfortunately, not always the case 
in the relevant literature. POS tagging consists in a assigning a label for the part of 
speech, or word class, to each token in a sequence, for example verb, noun, adjec-
tive, punctuation mark, and so on. Morphosyntactic tagging goes further than that 
by assigning not only POS tags for word class – sometimes referred to as coarse 
grained tag or label – but also tags for morphological, or inflectional, categories, 
such as number, case, gender, tense, aspect, and so on. Together with POS tags, tags 
for inflectional categories form complex, fine-grained tags. The structure of coarse-
grained POS labels is, by nature, quite different from fine-grained morphosyntactic 
labels. Consider Example 1, where Polish robiła is labelled as a past tense verb 
(praet) with the values singular for number, feminine for gender and imperfective 
for aspect, whereas its English counterpart made is only labelled as a past tense 
verb (VBD) according to the Penn Treebank (Marcus, Santorini and Marcinkiewicz, 
1993). The internal structure of fine-grained morphosyntactic labels varies across 
languages, but the basic idea is always the same: using delimiter symbols (e.g. co-
lon, plus or pipe) word class labels are concatenated with values for inflectional 
categories. To promote cross-language applications, there are noteworthy and 
highly desirable initiatives aiming to harmonise tagsets across languages (Petrov 
et al., 2012; Nivre et al., 2016). 

(1) PL: robiła  praet:sg:f:imperf 
EN: made  VBD 

While English POS tagging is commonly considered a solved task1 with per-
token accuracies close to 98% (Toutanova et al., 2003; Yang, Salakhutdinov and 
Cohen, 2016), for highly inflective and agglutinative languages the situation is 
quite different. The reason for this is first and foremost the cardinality of the tag 
set: while for an isolating or analytic language such as English it is typically be-
tween 40 and 75, the average tag set found in a corpus of morphologically complex 
languages is between 500 and 1,000 distinct tags – whereas the amount of possible 
and linguistically plausible tags can reach 3,000 to 5,000 (Hajič, 2000). The prob-
lem with such large tagsets is data sparsity, i.e. the limited number or complete 
lack of training instances for large portions of linguistic phenomena that factually 

                                                        
1 This position is becoming increasingly challenged, firstly because in real-world rather than re-
search settings out-of-domain performance is still an issue and, secondly, because sentence accura-
cy is still not satisfactory despite very high per-token tagging accuracies (for a detailed discussion, 
see for example Giesbrecht and Evert, 2009). 
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occur in natural language, which decreases prediction accuracies in machine learn-
ing scenarios. The linguistic explanation for data sparsity in highly inflectional lan-
guages is that, contrary to isolating or analytic languages, they have a larger vo-
cabulary, because inflection requires words to express certain morphological cate-
gories (e.g. tense, aspect, number, gender, etc.), mostly by affixation. The result is 
that on average words in inflective languages have higher morpheme per word 
ratios – which per se does not increase vocabulary size. More importantly, due to 
inflection there are more word forms per lemma than in isolating or analytic lan-
guages. Consider the following example: for the English lemma make, there are 
only four different word forms in the vocabulary: make (VB or VBP), makes (VBZ), 
made (VBD or VBN), and making (VBG). For the Polish lemma robić ‘make’ on the 
other hand there are 27 different word forms, as shown in Table 1. 

It is worth noting that in both English and Polish there are ambiguities, since 
some word forms (e.g. make or robił) may be assigned at least two different tags if 
only the token itself is considered. But the real problem here is not ambiguity – in 
many cases, disambiguation can be achieved by positional information of tokens 
within a sequence – but that for a considerable number of word forms, there is on-
ly one instance in the corpus a machine learning model can learn from (see the 
frequency counts in in Table 1). 
 

Word Form Morphosyntactic Label Count  
Word 
Form Morphosyntactic Label Count 

robić inf:imperf 119  robimy fin:pl:pri:imperf 15 

robi fin:sg:ter:imperf 159  robiona ppas:sg:nom:f:imperf:aff 3 

robią fin:pl:ter:imperf 68  robioną ppas:sg:acc:f:imperf:aff 2 

robiąc pcon:imperf 2  robione ppas:pl:nom:n:imperf:aff 1 

robiący pact:pl:nom:m1:imperf:aff 1  robione ppas:pl:nom:m3:imperf:aff 1 

robicie fin:pl:sec:imperf 5  robione ppas:pl:acc:n:imperf:aff 1 

robię fin:sg:pri:imperf 31  robione ppas:pl:acc:m3:imperf:aff 1 

robienia ger:sg:gen:n:imperf:aff 8  robione ppas:sg:nom:n:imperf:aff 4 

robienie ger:sg:nom:n:imperf:aff 3  robionego ppas:sg:gen:m3:imperf:aff 1 

robieniem ger:sg:inst:n:imperf:aff 1  robiono imps:imperf 4 

robieniu ger:sg:loc:n:imperf:aff 2  robiony ppas:sg:nom:m3:imperf:aff 1 

robił praet:sg:m2:imperf 1  robionych ppas:pl:loc:f:imperf:aff 1 

robił praet:sg:m3:imperf 3  robionych ppas:pl:gen:n:imperf:aff 1 

robił praet:sg:m1:imperf 66  robionych ppas:pl:gen:m3:imperf:aff 1 

robiła praet:sg:f:imperf 30  robionych ppas:pl:gen:f:imperf:aff 1 

robili praet:pl:m1:imperf 37  robisz fin:sg:sec:imperf 33 

robiło praet:sg:n:imperf 4  rób impt:sg:sec:imperf 8 

robiły praet:pl:n:imperf 1  róbmy impt:pl:pri:imperf 1 

robiły praet:pl:m3:imperf 1     

robiły praet:pl:f:imperf 2     

Table 1: Morphological analyses and frequency counts for all forms of lemma robić ‘to make’ 
found in the National Corpus of Polish. 

While having a low number of instances of certain word forms in a corpus is cer-
tainly less than optimal, for a high-frequency verb such as robić ‘to make’ we can at 
least assume that there is at least one instance for each morphologically plausible 
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word form in a reasonably large corpus. If we take, however, a less frequent word 
or a term specific to a certain subject domain, chances are high that only a few of 
all possible word forms pertaining to a certain lemma are represented in a training 
corpus for machine learning. This problem of out-of-vocabulary words is another 
major obstacle in morphosyntactic tagging, because no matter how large a training 
corpus is, according to Zipf’s law many word forms will be either completely un-
known to a tagger or modelled upon a very limited number of occurrences in the 
training data. 

Summing up, the difficulties in morphosyntactic tagging of highly inflected lan-
guages boil down to the cardinality of the set of complex, fine-grained tags; the 
inevitable presence of word forms unknown to a model; and multiple, ambiguous 
morphological tags for individual word forms. 

2.2 Approaches to Morphosyntactic Tagging 

The fact that both POS and morphosyntactic tagging are still a topic that receives 
considerable attention in NLP shows that these tasks have not been resolved yet. 
The reason for the continuous interest is obvious: being one of the first prepro-
cessing steps to be carried out in sequential and ascending NLP pipelines, high 
quality on this lower level of language processing is crucial to the successful appli-
cation of high-level and more complex tasks. Because of the risk of error propaga-
tion throughout NLP pipelines, insufficient performance on lower levels may seri-
ously affect performance of high-level tasks (Caselli et al., 2015).2 Current lines of 
research in morphosyntactic tagging include the following: 1) improving the over-
all state of the art, especially for inflective and agglutinative languages as well as 
less-resourced languages; 2) improving sentence accuracy; 3) improving cross- 
and out-of-domain robustness (Giesbrecht and Evert, 2009); 4) unsupervised in-
duction; and 5) improving the taxonomic basis of the linguistic resources for train-
ing data within the framework of descriptive linguistics (Manning 2011). 

For POS tagging, the most commonly applied machine learning algorithms are 
Maximum Entropy (Ratnaparkhi 1996; Toutanova et al., 2003), Perceptron (Col-
lins, 2002), Hidden Markov Models (Brants, 2000), Support Vector Machines 
(Giménez and Màrquez, 2004), and most recently neural networks (Yang, Sala-
khutdinov, and Cohen, 2016). These algorithms are being successfully applied to a 
variety of languages. To yield state-of-the-art results on per-token accuracy, for 
many languages it is enough to train models with these algorithms using specific 
feature sets, without combining taggers with any other component. 

For morphosyntactic tagging, the approaches are not as straight-forward as in 
the case of POS tagging due to the difficulties outlined in section 2.1. One may as-
sume that a simple solution to alleviate the data sparsity problem would be to re-
duce the tagset by stripping fine-grained tags, thus keeping only coarse-grained 
POS labels. While for some tasks this may be a feasible solution, for most high-level 
applications this would imply an unwarranted deprivation of important linguistic 
information. After all, in highly inflective language word order is fairly flexible as 
compared to isolating or analytic languages, which means that syntactic infor-

                                                        
2 Whether pipelining is the best choice for NLP is a research question in its own right and therefore 
beyond the scope of this thesis. Without doubt, it is still a dominant and influential approach. This 
may change with deep learning and neural network approaches that increasingly gain momentum. 
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mation is primarily encoded through morphological categories and agreement be-
tween word forms. Or, as Hajič (2000, p. 94) described it succinctly:  

“These languages, obviously, do not use the rich inflection just for the amusement 
(or embarrassment) of their speakers (or NLP researchers): the inflectional catego-
ries carry important information which ought to be known at a later time (e.g., dur-
ing parsing). Thus one wants not only to tell apart verbs from nouns, but also nomi-
native from genitive, masculine animate from inanimate, singular from plural - all of 
them being often ambiguous one way or the other.” 

To ensure its usefulness for high-level tasks, morphosyntactic tagging should 
therefore retain as much of the morphologically encoded information as possible. 
Since supervised machine learning is, by nature, not suitable to learn low-
frequency instances, they may be excluded from training data, or their fine-grained 
tags may be replaced with coarse-grained ones; this requires additional tech-
niques, based, for example, on rules or dictionaries. In any case, to adequately ad-
dress the data sparsity problem caused by low-frequency instances, supervised 
machine learning requires complementary approaches. A review of existing sys-
tems reveals that the following approaches can be distinguished: 

 Morphological analysis: With out-of-vocabulary words being the major 
obstacle to high accuracy, a reduction of unknown words can improve tag-
ging greatly. This can be achieved by means of a morphological analyzer 
that provides the tagger itself with a list of all possible tags for each token, 
which basically converts the tagging task into a disambiguation task. For 
morphological analysis, two different techniques are being commonly ap-
plied: Firstly, using a lexicon of inflectional forms (e.g. Georgiev et al., 2012 
for Bulgarian or Woliński et al., 2012 for Polish). Secondly, applying a mor-
phological guesser rather than a static morphological lexicon. Guessers aim 
to dynamically infer all possible labels for each token in test time, especially 
for unknown words, mainly based on pre- and suffix analysis. In fact, many, 
if not most, morphologically complex languages heavily rely on guessers, for 
example Icelandic (Loftsson and Östling, 2012), Czech (Straka et al., 2016), 
Hungarian (Oravecz and Dienes, 2002), or Polish (Radziszewski, 2013). 

 Tiered Tagging: Tiered tagging essentially consists in treating complex 
morphosyntactic tags not atomically but each sub-label representing a cer-
tain inflectional value separately in a sequential manner. Thereby, the num-
ber of tiers, or layers, corresponds to the number of inflectional categories 
distinguished. It has been used, among others, for Romanian (Ceauşu, 
2006), Hungarian (Tufiş, 1999; Tufiş and Dragomirescu, 2004), or Polish 
(Radziszewski, 2013; Radziszewski and Śniatowski, 2011). 

 More Complex Models: This approach refers to training more sophisticat-
ed machine learning models than the ones described for POS tagging. Here, 
first and foremost Conditional Random Fields (CRF) are being applied. CRFs 
are a class of probabilistic models for structured prediction that can be suc-
cessfully applied to sequence labelling problems with a large number of in-
terdependent variables (Sutton and McCallum, 2011). Although model 
complexity and training time are usually much higher than in the case of 
simpler algorithms, CRF have become quite popular for morphosyntactic 
tagging thanks to the high accuracy it yields (e.g. Radziszewski, 2013; 
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Silfverberg et al., 2014). Müller, Schmid and Schütze (2013) have proposed 
a CRF tagger that achieves state-of-the-art scores across six languages while 
at the same time being fast enough to deal with large training corpora in 
reasonable time, what is otherwise a major limitation of CRF. 

 Ensemble Voting: In ensemble systems, several individual taggers are 
combined in a complementary way, such that a voting technique is applied 
to choose the most probable prediction from each of the individual taggers. 
For Polish, this approach has achieved state-of-the-art results (Kobyliński, 
2013; 2014; Radziszewski and Śniatkowski, 2011). 

 Semi-supervised leveraging of unlabelled data: There have been promis-
ing approaches to combine supervised tagging with unsupervised tech-
niques for the exploitation of large amounts of unlabelled data, thus result-
ing in semi-supervised approaches. Successful applications include 
Spoustová et al. (2009) or Eger, Gleim and Mehler (2016), who use word 
embeddings. Such approaches are not only suitable for 
POS/morphosyntactic tagging, but generally for a wide range of sequence 
labelling problems. Thus, Agerri and Rigau (2016) have demonstrated sig-
nificant improvements in NERC, while Yang, Salakhutdinov and Cohen 
(2016) leverage word embeddings from large corpora to score state-of-the 
art results on several benchmark tasks across languages, including POS tag-
ging and NERC. 

Of course, these approaches are not mutually exclusive, meaning that taggers may 
exhibit characteristics of more than one approach. 
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3 Materials and Methods 
In this chapter, we describe the experimental setup of our study (section 3.1), the 
architecture of our morphosyntactic tagger (section 3.2), as well as the corpora 
used for the supervised (section 3.3) and unsupervised (section 3.4) components 
of our system. Our tagger uses ixa-pipe-ml, the centralised machine learning mod-
ule of the IXA pipes.  

3.1 Experimental Setup 

Our research included the following steps: 

1. Running ixa-pipe-ml off the shelf on Polish data, i.e. without any modifica-
tions to the source code or feature set. This preliminary step corroborated 
our initial assumption that in its current form, the IXA pipes are not suitable 
for precise morphosyntactic tagging in morphologically rich languages. 
Yielding per-token accuracies of approximately 86%, results were well be-
low the current state of the art for Polish and other highly inflected lan-
guages. 

2. In a further preliminary step we examined whether models trained with CRF 
are a viable solution to achieve our goals. We opted for CRF because systems 
based on this algorithm are among the top-scoring systems for a number of 
morphologically complex languages, including Polish (Radziszewski, 2013).  
To test this approach, we used the mallet addon3 for OpenNLP4 to implement 
the CRF algorithm in ixa-pipe-ml. The add-on allows to train CRF models in 
OpenNLP-based systems using the API of the MALLET machine learning li-
brary (McCallum, 2002). However, after running one experiment with our 
implementation – the code is made available on GitHub5 – we decided to dis-
card and to no longer pursue this avenue. The decision is based on the fact 
that while improving tagging accuracy by almost 3.5% as compared to Per-
ceptron models, CRF training is unbearably slow. Thus, it took 32 days to 
train a model for a training set of 69,499 tokens, as opposed to only three 
minutes with the Perceptron algorithm. CRF models can be very complex, 
their training is computationally costly and they are said to require exten-
sive feature engineering (Baldwin, 2006); therefore we consider that this 
approach does not fully meet the requirement of simplicity and efficiency of 
the IXA pipes.  

3. Following the methodology applied by Agerri and Rigau (2016) to NERC, we 
established our baseline system, on top of which clustering features are to 
be added. This step was done by running several hundred tests with ixa-
pipe-ml in order to find the best configuration of the local feature set, where 
‘local’ refers to shallow non-clustering features, such as the token itself, 
word shape or n-grams. Apart from the local features already supported by 
ixa-pipe-ml, we implemented a small number of additional local features, 
which were reported to be useful in other systems identified from the litera-
ture. Details on our baseline feature set, as well as tagging scores obtained 
from it, are given in section 3.2.2. 

                                                        
3 http://svn.apache.org/viewvc/opennlp/sandbox/mallet-addon 
4 https://opennlp.apache.org/index.html 
5 https://github.com/mustaszewski/ixa-pipe-pos/tree/CRFTrainer 
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4. Distributional cluster lexica to be used as clustering features atop of the 
baseline were induced from four different unlabelled text collections (see 
3.2.3). 

5. Based on the two strongest baselines – one for the Perceptron and one for 
the Maximum Entropy training algorithm, respectively – another series of 
several hundred tests was run on the development data sets to determine 
which (combinations of) clustering features improve the baselines most. 

6. Once the best combinations of local features and clustering features were 
identified, final evaluations were performed on the chosen test sets. 

Throughout our experiments, we trained both Perceptron and Maximum Entropy 
models in order to compare the performance of these two algorithms implemented 
in ixa-pipe-ml. Consequently, all results are reported for both models in the re-
mainder of this thesis. 

Given that except for the first step we did not use the IXA pipes off the shelf but 
implemented a number of modifications, we make publicly available6 the source 
code of the system in order to guarantee reproducibility of our results. Our com-
mits mainly concern the addition of features specific to morphosyntactic tagging. 

3.2 System Description 

3.2.1 IXA Pipes 

For our experiments, we use the IXA pipes, which are a set of modular NLP tools 
that have been developed to lower the barriers of using NLP technology while at 
the same time yielding state-of-the-art results (Agerri, Bermudez and Rigau, 2014). 
The IXA pipes are a simple and ready-to-use yet efficient toolkit for basic linguistic 
preprocessing and annotations: sentence segmentation, tokenization, POS tagging, 
NERC, chunking, and constituent parsing. These tasks are performed by a series of 
modules: ixa-pipe-tok, ixa-pipe-pos, ixa-pipe-nerc, ixa-pipe-parse, and ixa-pipe-
chunk. The IXA pipes have a language-independent, multilingual architecture, 
which means that they can be trained and used with any language without lan-
guage-specific parameter tuning. They are distributed under the open-source 
Apache 2.0 License that facilitates source code use, distribution and integration, 
also for commercial purposes. All modules of IXA pipes are based on the machine 
learning API of the Apache OpenNLP project. 

In our work, we used only the centralised machine learning module ixa-pipe-ml 
because it offers a very simple way to training and evaluation parameter setting. 
While in earlier versions of the IXA pipes a number of features were hard-coded 
and thus not configurable without time-consuming source code modifications and 
compiling, in the current version (0.0.1), all supported parameters can be specified 
in a separate training parameter configuration file that is being parsed upon 
launching the training procedure. Hence, it provides a simple and time-saving way 
to performance evaluation. As a matter of fact, being the centralised machine 
learning component of the entire pipeline, ixa-pipe-ml does not use parameters 
specific to one of the remaining modules; rather, in the training parameter configu-

                                                        
6 The source code can be found in the branch pos-pl our fork of the IXA pipes project, see 
https://github.com/mustaszewski/ixa-pipe-ml/tree/pos-pl 
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ration file users can choose from all implemented features in order to train models 
that are most suitable to the task in question. 

3.2.2 Baseline Features 

As outlined in section 3.1, the third step of our experimental workflow consisted in 
establishing the baseline that can be obtained from local features only, i.e. without 
the use of clustering features. On top of this baseline, clustering features are to be 
added in a subsequent step. In the following, we briefly outline the local features 
supported by and used in our system. To illustrate the features, we use the Polish 
sentence Jest to trudne pytanie ‘This is a difficult question’ as a running example. 
Assuming that the current token to be tagged is trudne ‘difficult’, as indicated by 
the arrow pointer in Table 2, the position markers from -2 to +2 identify the posi-
tion of each token in the sequence relative to the token at position 0, i.e. the token 
currently being tagged. Of course, the tagger has access to the entire sequence of 
morphosyntactic tags only during training, while during testing it is the very aim of 
the tagger to determine the correct tag for each token of the sequence. 
 

   ↓   
Position -2 -1 0 +1 +2 
Token Jest to trudne pytanie . 
Tag fin:sg:ter:imperf pred adj:sg:nom:n:pos subst:sg:acc:n interp 
Token Class single capital lower lower lower other 
Token Shape Xx* x* x* x* . 
Sentence Begin true false false false false 
Sentence End false false false false true 
Prefix (1-3)  J, Je, Jes t, to t, tr, tru p, py, pyt . 
Suffix (1-4) t, st, est, Jest o, to e, ne, dne, udne e, ie, nie, anie . 

Table 2: Running example of tagged sentence (first 3 lines) and features generated from it. 

Token Features 

 Token: The token itself at the current position to be predicted. If this fea-
ture is selected, the token can be either lowercased or retained in its origi-
nal form for feature generation. In our running example, the token feature is 
simply the current word itself, i.e. trudne. 

 Token Class: Assigns a class to the token according to its shape, i.e. the 
characters contained. The classes are: 1) lowercase alphabetical characters 
only, 2) alpha-numeric characters, 3) digits only, 4) single capital letter on-
ly, 5) capital letters only, 6) one capital letter followed by a period, and 7) 
other. In Table 2, token class features for each word of our running example 
are shown. In addition, this feature can be combined with the token itself 
(lowercased or original), yielding joint features of the form token, class, for 
example Jest, single capital or trudne, lower. 

 Token Shape: Following Ciaramita and Altun (2006), this feature normal-
ises each token by substituting individual characters or sequences of char-
acters according to whether they are uppercase, lowercase, digits or other 
characters. In Table 2, the normalisation was performed for each token of 
the running example. 
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Previous Outcome Features 

 Previous prediction: If the token to be predicted at the current position 
has already appeared previously in the data, the previous tagging decision 
is retrieved. 

 Preceding outcomes: Uses the tags assigned to tokens preceding the cur-
rent token. A separate parameter can be used to specify how many preced-
ing outcomes are to be included. In our example, the two preceding out-
comes are fin:sg:ter:imperf at position -2 and pred at position -1. Further-
more, an n-gram of preceding tokens can be used for feature generation, 
with the size of the n-gram to be specified by the user, for instance the bi-
gram fin:sg:ter:imperf, pred in our running example. Also, joint features of 
the preceding outcome with the token itself (e.g. pred, trudne) as well as the 
previous outcome with token class (e.g. pred, lower) can be generated. 

 Preceding Sub-Label Features: Inspired by the feature templates em-
ployed by Radziszewski (2013) and Silfvereberg et al. (2014), we imple-
mented this feature which does not treat previous outcome labels atomical-
ly, but extracts specific inflectional values from previous labels. For exam-
ple, values for the morphological categories of case, gender, number or as-
pect of the preceding outcomes in a specified range can be used for feature 
generation. To this end, in the training configuration file the following pa-
rameters need to be specified: a) which character is used as separator to de-
limit sub-label values; b) the grammatical class(es) of interest, followed by 
the set of all possible values for the respective class(es). For instance, speci-
fying the colon as separator and providing the sets of possible values for the 
classes number={sg|pl} and case={nom|gen|dat|acc|inst|loc|voc} will extract 
the values number=sg and case=acc from the compound label subst:sg:acc:n, 
whereas from the label fin:sg:ter:imperf only the value number=sg will be 
used for feature generation. Furthermore, it can be specified whether the 
word class, i.e. the coarse-grained POS tag, is to be extracted from the com-
pound label. In the case of our running example, this would be pred at posi-
tion -1 and fin at position -2. With this feature, the intuition is that sub-label 
dependencies help to capture morphological agreement, at least to a certain 
extent. 

Sentence Features 

 Sentence beginning: A binary feature assigning true to the first token of a 
sentence, as shown in Table 2. 

 Sentence end: A binary feature assigning true to the last token of a sen-
tence, as shown in Table 2. 

Pre- and Suffix Features 

 Prefix: Gets the prefixes of the current token, with the minimum and maxi-
mum prefix length to be specified. In Table 2, all possible prefixes of length 
one to three for each token of the running example are shown. 

 Suffix: Gets the suffixes of the current token, with the minimum and maxi-
mum suffix length to be specified. In Table 2, all possible suffixes of length 
one to four for each token of the running example are shown. 
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N-Gram Features 

 Token Class N-Grams: Generates token class n-grams in a specified range 
before and after the current token, where n-grams can range from bi- to 
fivegrams. For instance, the token class bigram preceding the current token 
is single capital, lower, while the following bigram is lower, other. 

 Character N-Gram Features: Generates features from all character n-
grams up to a specified length to be found in the current token. For exam-
ple, all possible character trigrams of the current token trudne are tru, rud, 
udn, and dne. 

For token and token shape features, window size needs to be specified, i.e. the 
range of tokens preceding and following the current token to be considered for 
feature generation. For instance, setting window range to 2:2 will generate token 
features from the current token (trudne in our running example), the two preced-
ing tokens (Jest, to), and the next two tokens (pytanie, .), resulting in a window of 
size 5. 

In Table 3, the training parameter configurations for our two best-performing 
baselines (for Perceptron and Maximum Entropy models, respectively) are provid-
ed by specifying the precise setting for each of the above mentioned features. Tag-
ging accuracies for our baselines are reported in Chapter 4. 

 
Feature Settings 

 Maximum Entropy Perceptron 

Window size 1:1 2:2 

Token yes yes 

Lowercase token? yes yes 

Token class no yes 

Token and class? --- yes 

Token shape no yes 

Preceding outcomes yes no 

Preceding outcomes range -2 --- 

Preceding outcome n-grams no no 

Previous Prediction yes yes 

Sentence beginning yes yes 

Sentence end yes true 

Prefix length min 1 1 

Prefix length max 2 2 

Suffix length min 1 1 

Suffix length max 5 4 

2-gram class no yes 

3-gram class no yes 

4-gram class no no 

5-gram class no no 

Character n-grams range 2:5 2:5 

Preceding sub-labels yes yes 

Preceding word class? yes yes 

Preceding sub-label classes number, gender, case number, gender, case 

Preceding sub-label range -1 -2 

Table 3: Feature configuration of our two baseline systems. 
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3.2.3 Clustering Features 

After establishing the baselines, we induced three types of word clusters from four 
different corpora consisting of large amounts of unlabelled Polish text (see 3.4). 
The clusters, or cluster lexica to be more precise, are then used in our system to 
generate features by looking up to which cluster a given token belongs. The under-
lying idea is that all words that belong to the same cluster share some semantic or 
morphological information. In this way, our system exploits distributional word 
representations, i.e. the clusters, in a semi-supervised manner: While training of 
Perceptron and Maximum Entropy models is a supervised task based on annotated 
corpora, the use of word representations obtained from unlabelled corpora based 
on distributional information is an unsupervised task. The methodology of combin-
ing supervised and unsupervised techniques in NERC has been described in detail 
by Agerri and Rigau (2016). 

The three types of word clusters used in our system are: Brown clusters, Clark 
clusters and K-means clusters based on the skip-gram algorithm used in the 
word2vec tool. For NERC, it has been shown that a combination of cluster types 
helps to improve performance greatly, as compared to the use of individual cluster 
features (Agerri and Rigau, 2016). 

Brown Clusters 

Brown clustering (Brown et al., 1992), or IBM clustering, is used to group words 
that appear in similar contexts into hierarchical clusters and was originally de-
signed to address data sparsity in n-gram language modelling. For the induction of 
Brown clusters, we use the C++ implementation of the Brown word clustering al-
gorithm proposed by Liang (2005)7 off-the-shelf and with default settings. 

As input, the tool takes a corpus of tokens separated by whitespaces without 
punctuation, with one sentence per line. Following previous work (Liang, 2005), all 
sentences with less than 90% lowercase characters have been removed from the 
corpus. As output, the tool creates a hierarchical clustering lexicon, where each 
word is identified by a bit string that represents the word’s path from the root in a 
binary tree. A sample input and output file extract is shown in Table 4. The fea-
tures generated by our system retrieve the path for the current token from the 
Brown clustering lexicon, which is stored in plain text format. 

 
Brown Cluster Input Brown Cluster Output 
ten film zmusza do myślenia 
czym przyciągnąć gości 
... 

1001  w 986574 
01011100 i 574255 
011100  się 2164800 
11111111010 robiła 5 
... 

 <cluster path as a bit string> <word> <frequen-
cy> 

Table 4: Sample input and output for Brown cluster induction. 

Clark Clusters 

Clark clusters (Clark, 2003) were originally designed to exploit distributional and 
morphological information to improve unsupervised POS tagging across languages, 

                                                        
7 https://github.com/percyliang/brown-cluster 



Chapter 3. Materials and Methods 

17 

with a focus on rare words. Therefore, the algorithm relies only to a limited degree 
on frequency information. Instead, it considers sequences of letters that form each 
word, such that morphologically similar words are placed in the same cluster. This 
approach makes it a promising candidate to deal with highly inflected languages. 

We induce Clark clusters using Clark’s original implementation off-the-shelf. 
The input to the tool is a corpus of lowercase tokens, with one token per line and a 
blank line between sentences, while the output is a plain text file where each line 
represents a word type with its cluster number and a weight (see Table 5). For 
feature generation, our system performs simple look-ups in the cluster dictionary 
to retrieve the cluster number for the current token, assigning null if no entry is 
found in the lexicon. 
 

Clark Cluster Input Clark Cluster Output 
ten 
film 
zmusza 
do 
myślenia 
 
czym 
przyciągnąć 
gości 
... 

w 82 0.967019 
i 75 0.726565 
się 25 0.985357 
robiła 12 8.46919e-05 
… 
 
<word> <cluster> <weight> 

Table 5: Sample input and output for Clark cluster induction. 

word2vec Clusters 

Finally, our word2vec features are based on skip-gram embeddings clustered via 
K-Means (Mikolov et al., 2013). We induce the clusters using the word2vec tool8 
off-the-shelf, which takes a corpus of lowercased, space-separated tokens without 
punctuation as an input to produce a cluster lexicon, where each line represents a 
word type and its corresponding cluster number (see Table 6). In our system, we 
use word2vec clusters in the same way as Clark clusters, which means that for the 
current token to be predicted its cluster number is retrieved from the cluster lexi-
con. 

  
word2vec Cluster Input word2vec Cluster Output 
ten film zmusza do myślenia czym przyciągnąć gości 
... 

w 37 
i 37 
się 20 
robiła 70 
... 

 

<word> <cluster> 

Table 6: Sample input and output for word2vec cluster induction. 

3.3 Data for Training and Testing 

For training and testing, we use a total of three different, publicly available corpo-
ra: 1) the National Corpus of Polish, or Narodowy Korpus Języka Polskiego in Polish 

                                                        
8 https://code.google.com/archive/p/word2vec/ 
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(henceforth NCP); 2) the Universal Dependencies Polish Treebank (UDP); and 3) 
the Polish Language of the 1960s Corpus (P60). The first two were used for both 
training and testing, whereas the third one was only used for out-of-domain evalu-
ation of the models trained on the former two corpora. Details on each of the da-
tasets are given in the following subsections and summarised in Table 7. 

 
Dataset Tokens Vocabulary (Types) Vocabulary (Lemmas) 

NCP Train 962,219 124,049 47,687 

NCP Dev 119,704 31,343 15,475 

NCP Test 120,949 32,339 16,150 

NCP Total 1,202,872 -- -- 
    

UD Train 69,499 22,594 11,710 

UD Dev 6,887 3,467 2,510 

UD Test 7,185 3,558 2,554 

UD Total 83,571 -- -- 
    

P60 Essays (UD) 7,632 -- -- 
P60 Fiction (UD) 7,448 -- -- 
P60 News (UD) 7,612 -- -- 
P60 Plays (UD) 7,037 -- -- 
P60 Science (UD) 7,632 -- -- 

    P60 Essays (NCP) 120,100 -- -- 
P60 Fiction (NCP) 120,725 -- -- 
P60 News (NCP) 116,807 -- -- 
P60 Plays (NCP) 114,613 -- -- 
P60 Science (NCP) 118,505 -- -- 

Table 7: Statistics for datasets used for training and testing. P60 sub-corpora for out-of-domain 
evaluation have been compiled for testing with both NCP models and UDP models. 

3.3.1 National Corpus of Polish 

Being a carefully crafted, balanced corpus, the NCP (Przepiórkowski et al., 2012) 
has become the most influential resource for Polish NLP. This reference corpus 
contains more than 3,000 texts totalling 1.2 million tokens and contains manual 
annotations on various linguistic levels, including morphosyntactic annotation. It is 
distributed under a GNU GPL licence in TEI-compliant XML format. 

The ixa-pipe-ml training component of our system takes plain text files as an in-
put, where each line represents one token with its morphosyntactic label separat-
ed by a tabulator. To preprocess the corpus according to the required input format, 
we first converted all TEI file to XCES format using a Python script provided in the 
repository9 of the PANTERA tagger. Subsequently, we used our own script10 to 
convert XCES files into the required format. Once converted, we shuffled the order 
of the plain text files extracted from NCP in order to create three randomised parti-
tions: an 80% training set, a 10% development set, and a 10% test set. To ensure 
reproducibility, we make our partitions publicly available11. 

                                                        
9 https://github.com/accek/pantera-tagger/blob/master/scripts/tei2xces.py 
10 https://github.com/mustaszewski/preprocessing 
11 https://github.com/mustaszewski/nkjp 



Chapter 3. Materials and Methods 

19 

We have decided to use the NCP in order to facilitate the comparison of our sys-
tem to state-of-the-art taggers for Polish, since it is the most commonly used cor-
pus in Polish NLP. Corpus statistics are given in Table 7. 

3.3.2 Universal Dependencies Polish Treebank  

The Universal Dependencies (UD) Project (Nivre et al., 2016) aims to develop tree-
bank annotations consistent across many languages. From the perspective of POS 
and morphosyntactic tagging, an interesting feature of the UD project is that it 
draws upon the Google universal POS tagset (Petrov et al., 2012), thus contributing 
to a harmonisation of efforts across languages and research communities. Polish 
features among the 37 treebanks currently included in the project. For each lan-
guage, two different annotation schemas are available: the universal POS tags for 
word class information and the extended tags (XPOS) for full morphosyntactic tags. 
In our work, we used only full morphosyntactic tags. 

The UDP (Wróblewska and Przepiórkowski, 2014) is based on the Polish de-
pendency treebank (Woliński, Głowińska and Świdziński, 2011), which, in turn, is 
based on the NCP. Therefore, UDP is a subset of NCP. Nevertheless, we decided to 
include UDP into our study, too, for the following reasons: Firstly, it is only approx-
imately 7% the size of NCP; as a relatively small corpus it therefore allows us to 
investigate the performance of our tagger in a setting where data sparsity is even 
more of an issue than with large corpora. In addition, working with smaller corpo-
ra even though a large reference corpus is available may have important implica-
tions for the feasibility of our system in domains where less training data is availa-
ble, or for other, potentially less-resourced languages. Secondly, all UD treebanks 
provide standardised training, development and test sets, which facilitate perfor-
mance comparisons across systems. Thirdly, given its relatively small size and con-
sequently short training-testing cycles, UD datasets are very handy during system 
development while at the same time yielding representative results. Corpus statis-
tics are given in Table 7. 

3.3.3 Polish Language of the 1960s Corpus 

Given that tagging accuracy has been shown to drop considerably when applied to 
domains or text types different from those represented in training data 
(Giesbrecht and Evert, 2009), out-of-domain evaluations of new systems and ap-
proaches are of utmost importance. After all, in view of the high costs for the crea-
tion of hand-annotated data, in real-world scenarios many, if not most taggers are 
likely to be applied to subject domains or text types that are potentially un-
derrepresented in training data. Consequently, robustness in cross-domain tagging 
is a cornerstone of systems’ feasibility. 

For our out of domain evaluation we use the P60 corpus (Ogrodniczuk, 2003). It 
contains 10,000 samples from five domains: essays, news, scientific texts, fiction 
and plays, all of them written between 1963 and 1967. We have chosen this corpus 
for out-of-domain evaluation because of the following reasons: Firstly, its tagset is 
fully compatible with both NCP and UDP tagsets – which is a prerequisite to test 
models across datasets. Secondly, contrary to many other corpora which would 
have otherwise been good candidates for evaluation, morphosyntactic information 
in the corpus is hand-annotated. Thirdly, the corpus is freely available under a GNU 
licence; and, fourthly, source files are neatly grouped into the five domains men-
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tioned above, which makes it very handy to create domain-specific sub-corpora. 
That said, the P60 corpus has one important drawback: its representativeness for 
present-day Polish may be deemed unsatisfactory, especially with regard to lan-
guage use in online and electronic communication. Nevertheless, we believe that 
our choice constitutes a reasonable yet not ideal trade-off between practicality and 
validity. 

To obtain in-domain test sets for each of the five subdomains, the order of texts 
in the respective subdomains has been randomised and subsequently partitions, 
corresponding in size to the test set used in combination with the respective train-
ing data, were extracted. Thus, we compiled five out-of-domain test sets for both 
NCP-models and UDP-models, with sizes similar to the non-out-of-domain test 
sets. Corpus statistics are given in Table 7. 
As outlined in section 2.1, data sparsity is one of the main obstacles to high-quality 
morphosyntactic tagging in highly inflected languages. By means of a simple fre-
quency analysis, we examined if and to what extent sparsity is, in fact, a factor in 
Polish language data. To this end, we quantified sparsity in terms of the frequency 
of word forms, lemmas and morphosyntactic labels in the datasets used in our 
study, namely NCP and UDP. 
 

 

Figure 1: Frequency of labels in UD Train, sorted by rank. 

Figure 1 shows the distribution of morphosyntactic labels according to their fre-
quency rank in the corpus. The most frequent label in UDP (interp, not indicated in 
figure) occurs 11,184 times, thus accounting for 16.1% of all 69,499 tokens in the 
corpus, whereas the second most frequent label, qub, accounts for 5.6%. Taken 
together, the top-five labels account for 29.5%, and the top-ten for 39.2% of the 
data. Sparsity becomes even more obvious when considering that the 100 most 
frequent labels account for 89.6% of all instances, which means, in turn, that the 
remaining 507 labels make up only 10.4% of training data. In such a scenario, 
sparsity is an undeniable fact. Similarly, Table 8 provides further evidence for 
sparsity in the training data: For example, in NCP Train there is a total of 962.219 
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tokens, which are distributed among 124,049 different word forms (types). A clos-
er look on the distribution of word forms reveals that out of these 124,049 forms, 
71,793 appear only once in the corpus. In other words, for 71,793 word forms, or 
almost 58% of the entire vocabulary, there is only one single instance in the cor-
pus, which makes machine learning very challenging. For 115,660 word forms, or 
an overwhelming 93.2%, there are only ten or less instances the model can learn 
from. The picture is similar yet not as extreme if we look on the tags in the corpus: 
The tagset consists of a total of 901 different tags, and for 116 of them, or 12.9%, 
there is only one training instance. All these figures are clear indicators of data 
sparsity. 

 

 Tokens Lemmas Word forms Tags 

    
total 1x ≤ 5 ≤ 10 total 1x ≤ 5 ≤ 10 

NCP Train 962,219 47,687 124,049 71,793 108,135 115,660 901 116 236 305 

NCP Dev 119,704 15,475 31,343 21,52 29,376 30,402 665 102 247 326 

NCP Test 120,949 16,15 32,339 22,451 30,403 31,465 667 93 237 309 

UDP Train 69,499 11,710 22,594 16,442 21,447 22,088 607 102 252 325 

UDP Dev 6,887 251 3,467 291 3,377 3,422 333 93 196 232 

UDP Test 7,185 2,554 3,558 2,952 3,462 351 349 107 213 250 

Table 8: Sparsity in training and evaluation data. 

3.4 Data for Unsupervised Word Cluster Induction 

Contrary to training and evaluation of our morphological tagger, the induction of 
word clusters to be subsequently used as features in our system does not require 
labelled, i.e. supervised, data. Instead, the algorithms induce word clusters (for a 
brief description of the cluster types used see 3.2.3) from unlabelled data in a pure-
ly unsupervised fashion, which is ideally done on large corpora. In the following, 
we briefly describe the four corpora used for cluster induction. 

Araneum Polonicum Maius 

The Aranea project comprises comparable Gigaword corpora obtained by web 
crawling in a number of languages (Benko, 2014; 2016). For each language, a large 
version of approximately 1.2 billion tokens and a smaller, randomly sampled sub-
set of approximately 120 million tokens are available. For our system, we used the 
Araneum Polonicum Maius of 1,110,120,694 tokens.12 Although the distributed 
version contains automatically generated morphosyntactic annotation and lem-
mas, we were only interested in extracting plain text. 

Polish Wikipedia 

The Wikipedia, being one of the largest freely available text sources, has proved 
useful for cluster induction, too. We downloaded the most recent dump and after 
text extraction from the XML files and subsequent corpus preprocessing we ob-
tained approximately 185 million tokens.  
 

                                                        
12 We would like to thank Vladimír Benko for granting us access to the corpus. 
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Polish Sejm Corpus 

The Polish Sejm Corpus (PSC) is a collection of stenographic transcripts from sit-
tings of the Polish Sejm, totalling approx. 200 million tokens (Ogrodniczuk, 2012). 
It contains automatically generated annotation on various levels encoded in TEI 
format. However, we extracted only plain text using our own scripts13. After pre-
processing, we obtained approximately 165 million tokens. In large parts, the tran-
scripts represent quasi-spoken speech, which makes it a very interesting resource. 

PELCRA 

Finally, the smallest of our unlabelled corpora is the PELCRA multilingual parallel 
corpus of Polish14, from which we extracted all Polish source texts, leaving us with 
35 million words. The corpus comprises texts related to the European Union: news 
articles from the web page of the Community Research and Development Infor-
mation Service, press releases from the European Commission, the European Par-
liament and the European Southern Observatory. 

All four corpora have been preprocessed according to the specifications of each 
cluster induction tool. Preprocessing, as well as cluster induction, was carried out 
on the computer cluster of the IXA NLP group at the University of the Basque Coun-
try because the large amount of data can hardly be handled by most standard per-
sonal computers. For each cluster type and each corpus, a number of clusters with 
different amounts of cluster classes have been induced, 42 in total (see Table 9). 
Induction time varied greatly across corpora and cluster types, ranging from 1.5 
hours to almost one month. Whereas Brown and especially word2vec clusters can 
be induced in relatively short amount of time thanks to multithreading, the imple-
mentation for Clark clusters supports single-threaded induction only, which leads 
to very long training times, especially in the case of Gigacorpora.  

                                                        
13 https://github.com/mustaszewski/preprocessing 
14 http://pelcra.pl/new/multilingual 
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Type Corpus No. of Classes 

Brown Araneum 500 

Brown Araneum 1000 

Brown Araneum 2000 

Brown Pelcra 500 

Brown Pelcra 1000 

Brown Pelcra 2000 

Brown Sejm 500 

Brown Sejm 1000 

Brown Sejm 2000 

Brown Wiki 500 

Brown Wiki 1000 

Brown Wiki 2000 

Brown Wiki 3200 

Clark Araneum 100 

Clark Araneum 200 

Clark Pelcra 100 

Clark Pelcra 200 

Clark Pelcra 400 

Clark Sejm 100 

Clark Sejm 200 

Clark Sejm 400 

Clark Sejm 600 

w2v Araneum 100 

w2v Araneum 200 

w2v Araneum 400 

w2v Araneum 800 

w2v Araneum 1000 

w2v Pelcra 100 

w2v Pelcra 200 

w2v Pelcra 400 

w2v Pelcra 800 

w2v Pelcra 1000 

w2v Sejm 100 

w2v Sejm 200 

w2v Sejm 400 

w2v Sejm 800 

w2v Sejm 1000 

w2v Wiki 100 

w2v Wiki 200 

w2v Wiki 400 

w2v Wiki 800 

w2v Wiki 1000 

Table 9: Overview of induced clusters. 
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3.5 Evaluation Metrics 

Over the last few years, in the Polish NLP community there have been different 
approaches to measuring tagging accuracy, which, unfortunately, makes compari-
sons across systems difficult. The use of different metrics reflects different concep-
tions as to what the exact task of a tagger is. According to Radziszewski and Ace-
dański (2012), there are three answers to this question: 

1. Taggers tag plain, i.e. non-segmented and non-tokenised, text. 
2. Taggers tag a sequence of unlabelled tokens rather than unlabelled plain 

text. This assumes that tagging is performed on perfectly segmented and to-
kenised input, which is not always the case in real-world applications. 

3. The tagger’s task is to disambiguate the correct tag among a set of possible 
tags previously obtained from dictionary lookups or other techniques for 
morphological analysis. 

These three conceptions led to the use of various metrics as the statistic figure to 
be reported in papers: 

 Disambiguation accuracy: This statistic figure is related to the third of the 
above conceptions. It used to be the most popular one for Polish, despite be-
ing the most controversial one because of relying on gold-standard morpho-
logical analyses from the reference corpus, which largely neglects real-
world scenarios. 

 Per-token accuracy, also called word accuracy, is associated with the sec-
ond conception. This metric indicates what percentage of test tokens has 
been assigned the correct tag by the system. It is the standard metric 
worldwide. To better capture taggers’ performance, especially in highly in-
flected languages, it is common practice to report accuracy scores for words 
known to the model (i.e. words that did appear in the training data) and un-
known to the model words (i.e. words that did not appear in the training da-
ta, also called out-of-vocabulary words) rather than calculating only overall 
word accuracy in an undifferentiated manner. 

 Accuracy lower bound, finally, reflects the first of the three conceptions. 
This statistic figure, suggested by Radziszewski and Acedański (2012), 
counts the number of output tokens that have been correctly segmented 
and are labelled correctly according to the gold standard, divided by the to-
tal number of tokens in the reference corpus. In this metric, differences in 
tokenisation are penalised, i.e. tokens from the reference corpus that are 
not identically present in the tagger output are treated as a tagging error. 
Apart from that, they also recommend to report accuracy upper bound, 
which is the hypothetical upper limit of tagger performance “under the 
(false) assumption that each token from the reference corpus that was not 
explicitly present in tagger output due to unexpected tokenisation would be 
correctly tagged” (Radziszewski, 2013, p. 252). This two metrics have be-
come the standard in Polish NLP.  

The difficulty when comparing results obtained from different metrics is that they 
are not directly comparable. Disambiguation accuracy is the least strict one, be-
cause it treats the tagging task as a much simpler disambiguation task based on a 
set of gold-standard morphological analyses from the reference corpus. Then, per-
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token accuracy and accuracy upper bound are comparable in that they both as-
sume perfect tokenisation. However, contrary to accuracy upper bound, per-token 
accuracy does not assume correct tagging for incorrectly segmented tokens. There-
fore, per-token accuracy is the stricter statistic figure. And as far as the juxtaposi-
tion of per-token accuracy and accuracy lower bound is concerned, the latter is the 
stricter one in theory, because both tokenisation and tagging errors are being pe-
nalised. However, taking into account tagger evaluation practice (e.g. 
(Radziszewski, 2013), accuracy lower bound – while in theory stricter – is being 
applied to a simpler task than the in the vast majority of studies in non-Polish con-
texts: taggers evaluated with accuracy lower bound take into account gold-
standard morphological analyses contained in the NCP reference corpus 
(Radziszewski, 2013), while such information is missing in many other corpora, 
including UDP and thus our own work. As a matter of fact, differences between 
accuracy lower and upper bound are very small, around 0.3% for all systems eval-
uated on these metrics (Radziszewski and Acedański, 2002; Radziewski, 2013). 

Since in the IXA pipes segmentation/tokenisation and tagging are performed in 
a sequential manner by two separate modules (the output of the former is the in-
put of the latter), we accordingly decided to base our evaluation not on accuracy 
upper/lower bound – which would have made our study directly comparable to 
other Polish taggers – but on two separate evaluations. In doing so, we adhere to 
the mainstream practice in NLP. The performance of ixa-pipe-tok15 was measured 
as the overlap of correctly segmented and tokenised sentences with the reference 
corpus (see 4.1). Tagging accuracy, on the other hand, is measured in terms of 
overall, unknown and known word accuracy. Given that the OpenNLP library and 
the IXA pipes compute overall per-token accuracies only, we added the proposed 
metrics for known/unknown word accuracy in the branch pos-pl our fork of the 
IXA pipes16. 

Summing up, our evaluation scheme treating segmentation/tokenisation and 
tagging separately is in line with the majority of studies we have reviewed, except 
for those within the Polish NLP community, where previously disambiguation ac-
curacy and now accuracy upper/lower bound have been used. Consequently, the 
results of our system are comparable to other Polish taggers only to a limited ex-
tent, yet our metric is stricter than accuracy upper bound and in theory less strict 
than accuracy lower bound, but in the end the latter two yield very similar scores. 
In exchange, comparability of our results to taggers for languages other than Polish 
is increased in our approach, which we consider to be very important in view of 
our ultimate goal to adapt IXA pipes for use with a number of (morphologically 
complex) languages. 
 

 

                                                        
15 https://github.com/ixa-ehu/ixa-pipe-tok 
16 https://github.com/mustaszewski/ixa-pipe-ml/tree/pos-pl 
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4 Results and Discussion 

4.1 Evaluation of Segmentation and Tokenisation 

As the default distribution of ixa-pipe-tok has no evaluation module implemented, 
we added this component to the branch dev-pl of our fork17. We also added support 
for Polish by adding non-breaking exceptions for abbreviations. This was done by 
manually compiling a list of frequent abbreviations that, when followed by a peri-
od, do not indicate sentence boundaries. The list of almost 700 entries is partially 
based on our knowledge about Polish and, to a larger extent, on mining NCP and 
the Polish Wikipedia dump by means of hand-crafted regular expressions using the 
grep command-line utility. The list is, by no means, exhaustive, yet we believe that 
it sufficiently covers the most frequent Polish abbreviations. In terms of length, the 
list is similar to those used in ixa-pipe-tok for the remaining languages. 

Upon evaluation, we obtained an F1 score of 11.7 (precision: 11.9, recall: 11.6) 
for segmentation/tokenisation accuracy. We believe that this admittedly low score 
is due the following reasons: Firstly, the current version of ixa-pipe-tok fails to de-
tect sentence boundaries when segments lack final punctuation marks but are fol-
lowed by a blank line, which is a quite frequent case in our data, especially in seg-
ments representing headlines, titles or headings. Secondly, a considerable portion 
of NCP data, namely 7% (Przepiórkowski et al., 2012, p. 33), consists of web con-
tent, which is often characterised by non-standard punctuation and capitalisation, 
as well as tokens representing emoticons or other symbolic content. These non-
standard yet frequent special cases pose difficulties to the segmenter/tokenizer, 
which are beyond the scope of the present thesis project. Therefore, we leave the 
adaptation of ixa-pipe-tok for Polish out for further work. 

4.2 Evaluation of Baseline Feature Sets 

We have run several hundred tests to determine which combination of local fea-
tures, i.e. without using cluster features, provides the strongest baseline, both for 
Maximum Entropy and Perceptron models (for a detailed description of our base-
line feature sets, see 3.2.2). As shown in Table 10, the strongest baseline for Maxi-
mum Entropy models trained on UDP scores 81.6% overall per-token accuracy on 
the respective development sets, while for Perceptron models the score is 81.1%. 
Overall accuracy for the test sets drops slightly. As was expected, accuracy scores 
for models trained on the NCP are higher than for those trained on UDP, because 
the former is much larger than the latter, thus providing more training instances. 

Another important observation is, not surprisingly, that tagging accuracy for 
unknown tokens, i.e. tokens that have not appeared in the training data, is much 
lower than for known tokens. Especially in the case of morphologically complex 
languages this is a key limitation, because due to the large number of possible 
morphological word forms per lemma there will inevitably always appear un-
known words in test time, notwithstanding the size of the training corpus. A com-
parison of the performance of Maximum Entropy vs. Perceptron models shows 
that overall scores are quite similar. For models trained on NCP, unknown word 

                                                        
17 https://github.com/mustaszewski/ixa-pipe-tok/tree/dev-pl 
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accuracy is much higher for Perceptron models (approx. +6%), while differences in 
overall and known word accuracy are approximately 1% only.  

 

 Test Set Per-token accuracy 

 Maximum Entropy Perceptron 

 Total Known Unknown Total Known Unknown 

UDP Dev 81.6 88.6 57.9 81.1 87.7 58.6 

UDP Test 80.6 88.0 56.0 80.9 87.4 59.2 

NCP Dev 87.2 89.8 59.0 88.5 90.6 65.0 

NCP Test 86.6 89.3 58.6 87.9 90.2 64.6 

P60 Essays (UDP) 71.9 81.5 50.4 72.4 81.4 52.5 

P60 Fiction (UDP) 77.6 85.4 51.8 78.7 85.2 56.9 

P60 News (UDP) 75.2 84.6 53.2 73.7 82.9 52.3 

P60 Plays (UDP) 80.2 86.4 49.6 80.3 85.6 54.0 

P60 Science (UDP) 75.4 82.6 55.7 75.2 82.0 56.8 

P60 Essays (NCP) 83.5 86.6 59.3 85.0 87.6 65.3 

P60 Fiction (NCP) 86.5 89.4 59.1 87.8 90.2 65.2 

P60 News (NCP) 85.4 88.1 61.2 86.5 88.7 66.4 

P60 Plays (NCP) 88.3 90.3 59.1 89.3 90.8 66.6 

P60 Science (NCP) 85.9 87.9 61.7 87.1 88.5 68.8 

Table 10: Evaluation of our baselines, including out-of-domain evaluation on five subsets of P60. 

Out-of-domain evaluations on the five subsets of P60 show that except for P60 
Plays accuracy drops strongly, between -3% and -8.7% on UDP models using Max-
imum Entropy and between -2.2% and -8.5% for Perceptron models, The decline 
for models trained on NCP is less pronounced (between -0.1% and -3.1% for Max-
imum Entropy and between -0.1% and -2.9% for Perceptron models); in the case 
of P60 Plays accuracy even improves slightly. It is noteworthy that unknown word 
accuracy increases across all five subsets of P60 for NCP models as compared tests 
on NCP Dev/Test, up to +3.1% for Maximum Entropy models and +4.2% for Per-
ceptron models. We believe that apart from sheer corpus size the reason for the 
more robust out-of-domain performance of NCP-trained models as compared to 
UDP-trained models can be attributed to the composition of NCP. Thus, NCP is a 
balanced corpus containing data from a large variety of subject domains and text 
types, while UDP is a subset of NCP. According to its documentation, the Polish de-
pendency treebank – upon which UDP is based – was annotated on a randomly 
selected 20,000 sentences sample of NCP (Woliński, Głowińska, and Świdziński, 
2011), which may suggest that certain text types and domains are not as repre-
sentatively contained in UDP as they are in NCP. Taken together, these observa-
tions seem to confirm the high quality of the NCP. 

Interestingly, the decline for Maximum Entropy models when tested on P60 
(NCP) is slightly stronger than for Perceptron models, which may be linked to the 
better performance of Perceptron models in terms of unknown word accuracy. 

All in all, our baselines are way below the current state of the art. From a practi-
cal perspective this means that with such low tagging scores, the baseline itself is 
not useful for real-world applications at all. At the same time, from the perspective 
of our research design we believe that the obtained baselines are relatively strong, 
because we conducted a large number of experiments on parameter tuning to find 
out how high tagging accuracy scores can get by using local features only. In other 
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words, the baselines are most likely very close to the upper bound of tagging accu-
racy that can be achieved by the IXA pipes for a morphologically complex language 
such as Polish in an out-of-the-box fashion without substantial system modifica-
tions. Our approach of initial feature fine-tuning definitely bears the risk of overfit-
ting the baselines to our data. While this would be, without doubt, a problem if the 
goal of our work was to develop a readily usable tagger, it is less problematic in 
our research setting that aims to shed light on the potential and limitations of clus-
tering features for morphosyntactic tagging in a semi-supervised system. To coun-
terbalance the disadvantages of parameter tuning, we conducted out-of-domain 
tests to investigate whether the approach is robust across datasets. We have seen 
that out-of-domain performance does drop, although not dramatically, especially 
in the case of models trained on NCP, which appear to be robust across data-sets in 
terms of unknown word accuracy. 

4.3 Evaluation of the Effect of Clustering Features 

In order to determine how each of the three word cluster types (Brown, Clark and 
word2vec) contributes to the tagging task, we added clustering features on top of 
the two strongest baselines, whose results are presented in the previous section. 
As for each cluster type and each corpus a number of cluster lexica with different 
amounts of cluster classes have been induced (42 cluster lexica in total, see section 
3.4), for each cluster type we ran a series of tests. The tests consisted in adding the 
available cluster lexica on top of the baseline feature set: this was done for each of 
the cluster lexica individually, as well as for combinations of lexica. In all tests, 
models were trained on the UDP training set and evaluated on the UDP develop-
ment set, while no tests using NCP data were performed. The reason for this is 
purely practically motivated: due to the large number of tests, we opted for the 
much faster training-testing cycles using smaller datasets. 

For the sake of clarity, in the following we report results for each of the three 
cluster types as well as their combinations separately. 

4.3.1 Brown Clusters 

Brown clusters of 500, 1000 and 2000 classes for each of the four corpora (Arane-
um, Wiki, Sejm, Pelcra) have been trained, thus resulting in a total of 12 cluster 
lexica. We ran one test for each of it added atop of the two baselines, plus six tests 
experimenting on lexica combinations. 

As can be seen in Table 11, overall word accuracy may improve the baseline 
thanks to Brown clusters by 2.2% for Maximum Entropy and by 4% for Perceptron 
models. Known word accuracy scores improved by up to 2.3% (Maximum Entro-
py) and 2.8% (Perceptron). Most notably, unknown word accuracy increased sub-
stantially: +3.9% for Maximum Entropy and 8.6% for Perceptron models. Taking 
into consideration that in most cases that yielded the biggest improvements on 
unknown word accuracy also the highest overall word accuracy values have been 
obtained, it appears that better performance on out-of-vocabulary words contrib-
utes stronger to overall tagging accuracy than improvements on known words. 
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Cluster(s) Maximum Entropy Perceptron 

 Total Known Unkn. Total Known Unkn. 

Baseline 81.6 88.6 57.9 81.1 87.7 58.6 

Araneum 500 83.9 90.8 60.4 84.7 90.5 65.3 

Araneum 1000 84.0 90.5 61.8 85.1 90.4 67.2 

Araneum 2000 83.5 90.3 60.2 85.0 90.3 67.1 

Araneum 500, 1000, 2000 80.7 88.4 54.8 82.7 88.7 62.5 

Wiki 500 83.8 90.6 60.7 84.1 89.9 64.6 

Wiki 1000 83.4 90.2 60.1 85.1 90.4 67.1 

Wiki 2000 83.7 90.9 59.1 84.7 90.2 66.3 

Wiki 500, 1000, 2000 80.8 89.0 52.8 81.9 88.5 59.5 

Sejm 500 82.8 90.3 57.4 84.0 89.8 64.1 

Sejm 1000 82.3 89.9 56.4 83.5 89.3 64.1 

Sejm 2000 82.5 90.2 56.4 84.0 89.4 65.5 

Sejm 500, 1000, 2000 78.8 87.6 48.9 81.5 87.8 60.4 

Pelcra 500 81.5 89.5 54.1 82.3 88.9 59.8 

Pelcra 1000 81.6 89.8 53.7 82.9 89.2 61.2 

Pelcra 2000 80.9 89.4 52.0 82.4 88.8 60.8 

Pelcra 500, 1000, 2000 77.7 87.3 45.1 80.2 87.3 56.0 

Araneum 500, Pelcra 500, Sejm 500, Wiki 500 79.7 87.4 53.8 81.1 87.3 59.9 
Araneum 1000, Pelcra 1000, Sejm 1000, Wiki 
1000 80.0 87.7 53.9 81.5 87.8 60.1 
Araneum 2000, Pelcra 2000, Sejm 2000, Wiki 
2000 79.8 88.1 51.4 81.3 88.0 58.6 

Araneum 1000, Wiki 1000 82.3 89.6 57.6 83.8 89.3 65.2 

Araneum 500, Pelcra 1000 79.7 88.6 49.6 81.3 88.0 58.3 

Araneum 500, Wiki 500, Pelcra 1000, Sejm 1000 78.2 87.1 47.9 83.4 89.2 63.9 

Table 11: Measuring the effect of Brown clusters added on top of both baselines. Models trained on 
UDP Train and evaluated on UDP Dev. Scores are reported for overall, known and unknown (= 
unkn.) word accuracy in percent. Best scores for each corpus are indicated in italics if the scores 
improve in comparison to the baseline, best scores across all corpora are highlighted in bold italics. 

The same cluster lexicon, Brown Araneum 1000, yielded best scores for both 
Maximum Entropy and Perceptron models. A closer look on which Brown clusters 
contribute most suggests that the improvement depends on the size of the corpus 
for unlabelled cluster induction: Araneum and Wiki are the two biggest corpora in 
our experiments. On the other hand, the smallest corpus, Pelcra, worsened scores 
for Maximum Entropy models and only slightly improved Perceptron models. A 
further important observation is that cluster feature stacking (Agerri and Rigau, 
2016) does not improve results if only one type of clusters is being used. This ap-
pears to be true of stacking cluster lexica of various class numbers obtained from 
the same corpus, as well as of stacking cluster lexica across corpora. This is rele-
vant insofar as combining clusters increases model complexity and thus training 
time, computational cost as well as model size. 

4.3.2 Clark Clusters 

A limiting factor to the experiments on the effect of Clark clusters was extensive 
cluster induction time (see 3.4). Therefore, we induced cluster lexica only for the 
Araneum corpus (100 and 200 classes) and the Sejm corpus (100, 200, 400 and 
600 classes). As shown in Table 12, the combination of Araneum 100 and 200 in-
creases all three accuracy metrics most. The improvement of total word accuracy 
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amounts to +3.7% for Maximum Entropy and +4.5% for Perceptron models, which 
is an even stronger effect than for Brown clusters. Most importantly, unknown 
word accuracy increases by up to 10%. 

Contrary to Brown clusters, the combination of clusters does seem to have an 
added value for tagging accuracy, both with regard to within-corpus and across-
corpus combinations of cluster lexica. What can also be seen is that the much 
smaller Sejm corpus contributes less to unknown word accuracy and consequently 
less to overall word accuracy. 
 

 
Maximum Entropy Perceptron 

 
Total Known Unknown Total Known Unknown 

Baseline 81.6 88.6 57.9 81.1 87.7 58.6 

Araneum 100 84.3 90.5 63.6 84.8 90.1 66.7 

Araneum 200 84.4 90.2 64.5 85.1 90.3 67.5 

Araneum 100, 200 85.3 90.7 66.8 85.6 90.7 68.6 

Sejm 100 83.3 89.8 60.9 83.3 89.4 62.5 

Sejm 200 83.5 89.8 62.0 83.7 89.6 63.4 

Sejm 400 83.2 89.6 61.4 83.7 89.5 64.1 

Sejm 600 83.5 89.9 62.0 83.3 89.1 63.5 

Sejm 100, 200 83.8 90.1 62.1 83.9 89.9 63.6 

Sejm 400, 600 83.8 90.0 62.7 84.0 89.6 64.8 

Sejm 100, 200, 400, 600 83.9 90.3 62.2 84.3 90.0 65.2 

Sejm 100, Sejm 600 84.0 90.2 63.1 83.7 89.5 64.3 

Araneum 100, Sejm 100 84.6 90.5 64.6 85.0 90.7 65.9 

Araneum 100, Sejm 200 84.7 90.6 64.5 85.1 90.3 67.5 

Araneum 200, Sejm 200 85.1 90.7 65.9 85.0 90.1 67.6 

Araneum 200, Sejm 100 84.7 90.5 65.0 85.2 90.5 67.0 

Araneum 100, Sejm 600 84.8 90.7 64.5 85.6 90.7 68.3 

Table 12: Measuring the effect of Clark clusters added on top of both baselines. Models trained on 
UDP Train and evaluated on UDP Dev. Scores are reported for overall, known and unknown word 
accuracy in percent. Best scores for each corpus are indicated in italics if the scores improve in 
comparison to the baseline, best scores across all corpora are highlighted in bold italics. 

4.3.3 word2vec Clusters 

Since the induction of word2vec clusters is very fast, we had at our disposal a large 
set of word2vec clusters. However, our results shown in Table 13 suggest that 
compared to Brown and Clark clusters this cluster type is not as useful for tagging, 
since the highest improvement on word accuracy accounts for only +1.4% for Max-
imum Entropy and +1.7% for Perceptron, respectively. In the same way, unknown 
word accuracy improved only by +2.2% for Maximum Entropy and 4.4% for Per-
ceptron models, which is less than in the case of Brown and Clark clusters. All in 
all, this cluster type appears to work better with Perceptron models, especially in 
the case of unknown word accuracy. Similar to the other cluster types, its influence 
appears to depend on the size of the unlabelled corpus for cluster induction. 
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Cluster(s) Maximum Entropy Perceptron 

 Total Known Unknown Total Known Unknown 

Baseline 81.6 88.6 57.9 81.1 87.7 58.6 

Araneum 100 82.3 89.0 59.7 82.2 88.3 61.6 

Araneum 200 82.6 89.2 60.1 82.3 88.6 60.8 

Araneum 400 82.4 89.4 58.6 82.1 88.3 61.0 

Araneum 800 82.6 89.5 59.2 82.1 88.1 61.4 

Araneum 1000 83.0 89.7 60.1 82.4 88.3 62.3 

Araneum 100, 200, 400 82.1 89.2 58.3 82.5 88.8 61.5 

Araneum 800, 1000 82.9 89.9 59.3 82.6 88.5 62.6 

Araneum 100, 200, 400, 800, 1000 82.2 89.6 57.1 82.8 88.6 63.0 

Wiki 100 81.9 88.8 58.2 81.9 88.2 60.8 

Wiki 200 82.1 89.0 58.8 81.4 87.6 60.3 

Wiki 400 81.7 88.8 57.6 82.3 88.2 62.6 

Wiki 800 82.1 89.2 57.9 82.0 88.3 60.6 

Wiki 1000 82.4 89.3 59.0 82.4 88.5 61.5 

Wiki 100, 200, 400 81.7 89.0 57.2 82.4 88.2 62.7 

Wiki 800, 1000 82.5 89.6 58.6 82.1 88.4 60.4 

Wiki 100, 200, 400, 800, 1000 81.5 89.2 55.3 81.9 88.1 60.9 

Sejm 100 82.2 88.9 59.7 81.8 88.0 60.8 

Sejm 200 82.2 89.0 58.9 82.0 88.2 60.9 

Sejm 400 82.1 89.2 57.9 81.7 88.1 60.2 

Sejm 800 81.9 89.0 57.9 81.7 88.2 59.6 

Sejm 1000 82.2 89.2 58.5 81.6 88.0 60.1 

Sejm 100, 200, 400 81.7 89.3 56.1 81.9 87.7 62.3 

Sejm 800, 1000 81.8 89.1 56.9 82.1 88.2 61.4 

Sejm 100, 200, 400, 800, 1000 81.0 89.2 53.0 82.3 88.6 60.6 

Pelcra 100 81.9 88.8 58.6 81.3 87.9 58.9 

Pelcra 200 82.1 88.9 58.9 81.5 88.1 59.2 

Pelcra 400 82.0 88.9 58.8 81.3 87.9 59.0 

Pelcra 800 81.9 88.9 58.1 81.3 88.2 58.0 

Pelcra 1000 81.7 88.9 57.5 81.3 87.7 59.3 

Pelcra 100, 200, 400 81.6 89.4 55.1 81.7 87.9 60.6 

Pelcra 800, 1000 81.2 88.7 56.0 81.5 87.9 59.7 

Pelcra 100, 200, 400, 800, 1000 80.7 89.1 52.2 81.3 87.9 58.8 

Araneum 200, Wiki 200, Pelcra 200 82.7 89.4 59.7 81.9 88.2 60.8 

Pelcra 400, Sejm 400 82.1 89.4 57.5 82.1 88.6 60.0 

Araneum 100, Wiki 100 82.0 88.9 58.5 82.8 88.6 62.9 

Sejm 100, Pelcra 100 82.2 89.1 58.6 82.3 88.3 62.2 

Araneum 100, Pelcra 100 82.3 89.1 59.2 82.4 88.6 61.3 

Table 13: Measuring the effect of word2vec clusters added on top of both baselines. Models trained 
on UDP Train and evaluated on UDP Dev. Scores are reported for overall, known and unknown (= 
unkn.) word accuracy in percent. Best scores for each corpus are indicated in italics if the scores 
improve in comparison to the baseline, best scores across all corpora are highlighted in bold italics. 

In conclusion, the effect of word2vec clusters on morphosyntactic tagging is much 
lower than in the case of the other two cluster types. However, their usefulness 
especially for unknown word accuracy is not to be dismissed, because they can be 
induced in very short time and the resulting cluster lexica are the smallest ones in 
terms of size. 
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4.3.4 Combining Cluster Types 

After determining how each cluster type contributes to tagging as reported in the 
previous three subsections, we stacked and combined the most promising cluster 
lexica from each cluster type. The results of these tests are shown in Table 14. 
From this, it becomes obvious that word2vec clusters have a minor effect on the 
overall task, since the highest scores obtained from combinations that leave out 
word2vec clusters are very similar to those that do employ word2vec clusters. It 
can also be seen that the combination of Brown and Clark clusters performs best, 
with an overall word accuracy score of 86.2%, which equals to an improvement by 
5.1% compared to the baseline for Perceptron models. In contrast, the best score 
for the use of one cluster type (85.6%) was obtained by combining Clark Araneum 
100 and Clark Araneum 200 clusters (see 4.3.2). Furthermore, stacking clusters 
increased unknown word accuracy scores by +11.2%. Taken together, this sug-
gests that there is, indeed, an added effect of cluster stacking, as was confirmed by 
Agerri and Rigau (2016) for NERC. 

 
Cluster Combinations MaxEnt Perceptron 

 
  

T U K T U K 

Baseline 
  

81.6 88.6 57.9 81.1 87.7 58.6 

Brown Clark w2v 
      Aran 1000 Aran 200 Aran 1000 84.5 90.9 62.9 85.6 90.6 68.7 

Wiki 1000 Aran 200 Aran 1000 84.3 90.8 62.5 86.1 90.9 69.8 

Sejm 500 Aran 200 Aran 1000 84.4 91.0 61.8 85.3 90.5 67.5 

Aran 1000, Wiki 500 Aran 100, 200 Wiki 1000 83.3 90.1 60.2 84.6 89.7 67.3 

Aran 1000 Aran 100, 200 Aran 1000 84.8 91.0 63.7 86.1 91.0 69.8 

Aran 1000 Aran 100, 200 -- 84.6 91.0 62.8 86.1 91.1 69.5 

Aran 500 Aran 100, 200 -- 84.7 91.1 62.9 85.6 90.8 68.0 

Aran 1000, Wiki 500 Aran 100, 200 -- 83.0 89.9 59.7 84.4 89.6 66.8 

Wiki 500 Aran 100, 200 -- 84.5 90.8 63.0 86.0 90.9 69.6 

Wiki 1000 Aran 200 -- 84.4 90.9 62.2 85.6 90.8 67.8 

Wiki 1000 Aran 100, 200 -- 84.7 91.1 63.0 85.9 90.6 69.8 

Sejm 500 Aran 200 -- 84.0 90.9 60.8 85.2 90.4 67.6 

Sejm 500 Aran 100, 200 -- 84.4 91.1 61.8 85.4 90.6 67.7 

Sejm 1000 Aran 100, 200 -- 84.0 90.8 61.0 85.2 90.3 64.2 

Table 14: Measuring the effect of combining Brown, Clark and word2vec clusters added on top of 
baselines. Models trained on UDP Train and evaluated on UDP Dev. Scores for overall (T), known 
(K) and unknown (U) word accuracy in %. Best scores for each combination group are indicated in 
italics if they improve the baseline, best scores across all corpora are highlighted in bold italics. 

4.4 Final Evaluation 

The final step of our experiments consisted in an evaluation of the two best-
performing combinations of clustering features. For Maximum Entropy training, 
Clark clusters of 100 and 200 classes obtained from the Araneum corpus were 
chosen for the final evaluation, whereas for Perceptron training we combined 
Brown clusters of 1000 classes, Clark clusters of 100 and 200 classes, and 
word2vec clusters of 1000 classes, all of which were, again, obtained from the Ara-
neum. 
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4.4.1 Evaluation on Test Sets 

Models trained on UDP Train were evaluated on UDP Test (see Figure 2), whereas 
those trained on NCP Train were evaluated on NCP Test (see Figure 3). As already 
mentioned in section 4.2, tagging accuracy of the baselines slightly drops upon 
evaluation on the test sets in comparison to the corresponding development sets. 

As can be seen in the two bar charts, the clustering features consistently im-
prove the baseline for all three metrics (total, known and unknown word accura-
cy), with the highest improvement being +5.1% on total and +10.3% on unknown 
word accuracy for Perceptron models trained on UDP. In absolute figures, our best 
scores for overall word accuracy are 86.0% on UDP Test and 90.0% on NCP Test. 
In general, our system appears to work slightly better with Perceptron than with 
Maximum Entropy models. 

 

 

Figure 2: Results for the two best-performing combinations of local and clustering features. Models 
were trained on UDP Train and evaluated on UDP Test. 
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Figure 3: Results for the two best-performing combinations of local and clustering features. Models 
were trained on NCP Train and evaluated on NCP Test. 

Apart from accuracy scores, further important parameters of system performance 
are not to be left out in our evaluation: training time and size of the models, which 
are shown in Table 15. Especially in the case of Perceptron models, which rely on a 
combination of 4 cluster lexica, training time and size is rather large when com-
pared to the baselines using local features only. Another factor to be taken into 
consideration are memory issues. In our system, Perceptron models require a lot 
of working memory in training, for the best-scoring model trained on NCP we 
needed 120 GB for indexing the training data set, which can be explained by the 
large size of the training corpus and the set of outcome tags. A similar problem was 
reported by Radziewski (2013) for CRF models, too. Maximum Entropy training, 
on the other hand, is less problematic in terms of memory use; apart from that, it 
supports multithreading. 
 

 Local Features Only Local + Clustering Features 
 Maximum Entropy Perceptron Maximum Entropy Perceptron 
 UDP NCP UDP NCP UDP NCP UDP NCP 
Time (hh:mm) 00:21 01:47 00:10 06:15 00:12 01:59 00:14 17:54 
Size (MB) 3 15 4 30 86 98 109 135 

Table 15: Training time and size of best-performing models. 

4.4.2 Out-of-Domain Evaluation 

Finally, we performed out-of-domain evaluations. In the out-of-domain evaluation 
of our baselines, we identified a drop in tagging accuracy as compared to the de-
velopment sets (see 4.2) The general picture for our models using combinations of 
local and clustering features is very similar: accuracy drops, too, although the de-
crease is less pronounced (see Table 16 and Table 17). We also observed that the 
Plays subset of P60 was least prone to accuracy declines, just as in the case of our 
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baselines. What is more, the positive effect of clustering features on tagging of un-
known words was observed in out-of-domain evaluation, too. The magnitude of 
improvement on unknown vocabulary in out-of-domain evaluation is very similar 
to the one observed when determining the effect of each cluster type on the overall 
task, where the improvement on unknown vocabulary as compared to the use of 
local features only was as high as 10% and more for some configurations. Also, the 
robustness of unknown word accuracy for NCP models on all five subsets of P60 
was observed, just as was the case with the baselines.  
 

  
Maximum Entropy Perceptron 

  
Total Known Unknown Total Known Unknown 

UD Test Baseline 80.6 88.0 56.0 80.9 87.4 59.2 

 
Clusters 84.9 90.7 65.9 86.0 91.0 69.5 

P60 Essays Baseline 71.9 81.5 50.4 72.4 81.4 52.5 

 
Clusters 77.8 84.9 61.9 78.3 85.2 63.1 

P60 Fiction Baseline 77.6 85.4 51.8 78.7 85.2 56.9 

 
Clusters 81.7 87.9 61.1 83.1 88.4 65.6 

P60 News Baseline 75.2 84.6 53.2 73.7 82.9 52.3 

 
Clusters 79.6 87.4 61.4 79.9 87.1 63.2 

P60 Plays Baseline 80.2 86.4 49.6 80.3 85.6 54.0 

 
Clusters 82.8 87.9 57.8 83.2 87.5 62.4 

P60 Scientific Baseline 75.4 82.6 55.7 75.2 82.0 56.8 

 
Clusters 79.6 85.7 63.0 80.5 85.8 66.1 

Table 16: Out-of-domain evaluation for models trained on UDP Train using both local and cluster-
ing features. Scores are presented in total, known and unknown word accuracy in percent. 

  
Maximum Entropy Perceptron 

  
Total Known Unknown Known Total Unknown 

NCP Test Baseline 86.6 89.3 58.6 87.9 90.2 64.6 

 
Clusters 88.5 90.8 64.9 90.0 91.8 72.1 

P60 Essays Baseline 83.5 86.6 59.3 85.0 87.6 65.3 

 
Clusters 86.0 88.6 66.3 87.5 89.4 72.7 

P60 Fiction Baseline 86.5 89.4 59.1 87.8 90.2 65.2 

 
Clusters 88.6 91.2 63.9 90.0 91.9 72.0 

P60 News Baseline 85.4 88.1 61.2 86.5 88.7 66.4 

 
Clusters 87.5 89.8 66.7 88.7 90.5 72.3 

P60 Plays Baseline 88.3 90.3 59.1 89.3 90.8 66.6 

 
Clusters 89.8 91.5 64.5 91.0 92.2 73.2 

P60 Scientific Baseline 85.9 87.9 61.7 87.1 88.5 68.8 

 
Clusters 87.7 89.4 67.0 88.9 90.1 73.4 

Table 17: Out-of-domain evaluation for models trained on NCP Train. Scores are presented in total, 
known and unknown word accuracy in percent. 

4.4.3 Interpretation and Discussion of Results  

The two major conclusions to be drawn from our data are the following: First, the 
strongest effect of clustering features is on unknown word accuracy, which can be 
easily seen in the bar charts (Figure 2 and Figure 3). This is of great relevance for 
highly inflected languages, where data sparseness is mainly caused by the large 
number of word forms per lemma, many of which will inevitably be unknown to 
models. While clustering features alone are not enough to push a baseline signifi-
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cantly beyond state-of-the-art tagging results, our results suggest that they are a 
simple yet very efficient technique that, when added to a system, may help to bet-
ter deal with morphologically caused data sparsity and to improve a system’s ro-
bustness across datasets outside of the training domain. Eventually, this may help 
to improve the current state of the art if used in conjunction with other techniques 
reported in the literature. 

The second major conclusion is that the effect of clustering features is stronger 
for models trained on smaller datasets. The bar charts clearly show that the im-
provement of clustering features relative to the respective baselines is consistently 
higher for models trained on the much smaller UDP corpus (Figure 2) than for 
those trained on NCP (Figure 3). What is more, cluster features for Perceptron 
models trained on UDP helped to improve overall tagging accuracy from 80.9% to 
86.0%, which is close to the baseline of 87.9% for NCP-trained models. Taking into 
consideration that UDP Train is only approximately 7% the size of NCP Train these 
figures are quite impressive. For unknown word accuracy, cluster features push 
scores for UDP models even from 59.2% to 69.5%, which is almost 5% beyond the 
baseline for NCP models of 64.6%. All this suggests that clustering features have 
the potential to alleviate the dependency on large hand-annotated training corpo-
ra, therefore corroborating in the context of morphosyntactic tagging what Agerri 
and Rigau (2016) found for NERC. That said, we do not imply that clustering fea-
tures are not useful in situations where large training corpora are available. On the 
contrary, we have observed positive effects on NCP data, too, albeit not as strong 
ones as in the case of the smaller UDP. Consequently, we conclude that the strong-
er the baseline, the less pronounced the effect of clustering features on overall 
word accuracy. Still, clusters do have an impact on unknown word accuracy, even 
if models were trained on large, balanced and high-quality corpora. 

Summing up, we would like to outline two scenarios, in which in our opinion the 
application of clustering features should be considered for morphological tagging. 
Firstly, in the absence of large training corpora, clustering may alleviate dependen-
cy on them, thus improving both overall and unknown accuracy. This may prove 
useful especially for less-resourced languages that lack such resources, or for spe-
cific subject domains or text types that are otherwise underrepresented in training 
data. Secondly, if large training corpora are available, clustering features may help 
to improve, first and foremost, tagging accuracy on unknown words. This may be 
the case when taggers are to be applied to domains other than the training domain 
(which is, in fact, a frequent application scenario), or when training corpora are 
not balanced. In this scenario, the main benefit is on out-of-domain robustness. Not 
to be neglected is the effect on dealing with data sparsity inherent to highly inflect-
ed languages, which applies to either of the two outlined scenarios. 

4.4.4 Comparison to Other Systems 

Based on a literature review, we compare our results to other systems, both for 
Polish and for other morphologically complex languages. Our goal is not to provide 
an exhaustive comparison, but an anecdotal one for a general overview. A major 
limitation to the comparison is the use of different metrics for most Polish taggers 
(see discussion in 3.5) on the one hand and that papers do not always report all 
relevant figures on the other. 
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Systems for Polish 

We compared our work the following taggers for Polish: WCRFT (Radziszewski, 
2013), Pantera (Acedański, 2010), WMBT as a stand-alone tagger and as part of an 
ensemble tagger (Radziszewski and Śniatkowski, 2011), and UDPipe (Straka et al., 
2016). All systems are trained and tested on NCP data, except for UDPipe, which 
uses UDP data. 
 

 Word.Ac Dis.Ac Ac.Low.B  Ac.Up.B Ac.Low.B.Unk Tokens |Tagset| 
 Total Unkn.       

ours (NCP) 90.0 72.1 -- -- -- -- 962 K 901 
WCRFT --   90.3 90.7 40.1 1.1 M -- 
PANTERA -- -- 92.4 88.8* 89.1* 14.7* -- -- 
WMBT -- -- 93.0 87.5* 87.8* 13.6* 1.1 M -- 
WMBT ens. --  94.1 -- -- -- 1.1 M -- 
ours (UDP) 86.0 69.5 -- -- -- -- 69 K 607 
UDPipe 84.7 -- -- -- -- -- 69 K 607 

Table 18: Comparison with other systems for Polish. Scores indicated in percent for total and un-
known word accuracy (Word.Ac.), disambiguation accuracy (Dis.Ac), accuracy lower bound 
(Ac.Low.B), accuracy upper bound (Ac.Up.B), accuracy lower bound for unknown words 
(Ac.Low.B.Unk). Size of training sets indicated in tokens and tagset cardinality in unique tags. 
Scores marked with * are based on re-evaluation by Radziszewski and Acedański (2012). 

The only fully comparable system is UDPipe since it was trained/tested on ex-
actly the same data and is evaluated using word accuracy. As shown in Table 18, 
our system outperforms it by 1.3%. UDPipe is a language-independent system that 
uses exactly the same architecture and settings for each of the 32 supported lan-
guages. In contrast, our system entailed some feature tuning for Polish, albeit only 
to a very limited degree. The main difference between both systems is the use of a 
morphological guesser in UDPipe. This demonstrates how powerful clustering fea-
tures are, because without any morphological analyser our system outperforms 
one that uses a guesser. This, in turn, suggests that the extremely simple approach 
employed in our work has the potential to replace, at least in parts, a more com-
plex morphological analysis. 

With regard to the remaining Polish taggers, the picture is somewhat obscured 
because of the difficulties related to the use of different evaluation metrics. Alt-
hough the results are not directly comparable, it appears that our system is at least 
as competitive as current state-of-the-art taggers for Polish, because in practice 
word accuracy is the strictest of all metrics (see discussion in 3.5). Most strikingly, 
our system shows huge improvements in terms of tagging performance of un-
known words. This is remarkable given that all Polish taggers strongly rely on 
morphological analysis while our system only applies unsupervised clustering fea-
tures. 

Systems for Other Languages 

In Table 19, we give a comparison with systems for other morphologically rich 
(Slavic) languages that report results in terms of per-token accuracy. However, it 
must be noted that due to differences in the linguistic characteristics of each lan-
guage as well as different corpora sizes scores are not directly comparable. 
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  Word Accuracy Tokens |Tagset| 
  Total Unknown   

this work (NCP) PL 90.0 72.1 962 K 901 
Spoustová et al. (2009) CZ 95.9 -- 1.5M -- 
Loftsson & Östling (2013) IS 93.8 -- 590 K 565 
Halácsy et al. (2007) HU 98.4 96.0 1M -- 
this work (UDP) PL 86.0 69.5 69 K 607 
Agić et al. (2013) HR 87.7 -- 88 K -- 
Agić et al. (2013) SR 85.6 -- 88 K -- 
Agić et al. (2010) HR 90.8 72.6 107 K 880 
Georgiev et al. (2012) BG 98.0 -- 254 K 552 
Silfverberg et al. (2014) CZ 91.0 77.8 (5K sent.) 908 
Silfverberg et al. (2014) FI 88.7 63.6 (5K sent.) 2,141 

Table 19: Comparison with systems for other languages. Scores in percent for total and unknow-
word accuracy. Size of training sets indicated in tokens and tagset cardinality in unique tags. 

Spoustová et al. (2009), who also try to leverage unlabelled data in a semi-
supervised system, obtained very high accuracy scores of almost 96%, which is 
one of the best scores for morphosyntactic tagging in Slavic languages known to us. 
With the help of the unsupervised component, they improved their baseline by 
almost 5%. While their approach is similar to ours in terms of combining super-
vised and unsupervised components, it differs in as far as it uses a morphological 
analyser that precedes the tagger. The IceTagger (Loftsson and Östling, 2013) for 
Icelandic was trained on data that is roughly 60% the size of NCP in terms of to-
kens and tagset cardinality. It is a mature system that achieves high tagging accu-
racies (93.8%), albeit on a tagset that is much smaller than in Polish. Interesting 
from our perspective is that it also uses Perceptron models as well as word repre-
sentations from unlabelled text. Again, the key component that probably explains 
the high scores is a morphological guesser. The taggers for Croatian and Serbian by 
Agić et al. (2013) employ a rather simple approach and score in an approximately 
similar range as our system. The ensemble voting system presented by Agić et al. 
(2010), scores almost 5% better than our system on a larger training corpus. How-
ever, ensemble voting is not as straight-forward as our approach. For Bulgarian, 
Georgiev et al. (2012) score an extraordinarily high overall tagging accuracy of 
98.0%, which is at first sight surprising for a language with such a rich morpholo-
gy18 since the scores are very similar to POS tagging accuracies for English. Their 
system, however, heavily relies on a pre-compiled inflectional lexicon, which dra-
matically reduces the number of unknown words, which is the very problem of 
morphosyntactic tagging in highly inflected languages. Another tagger with very 
high accuracy, both for all (98.4%) and unknown (96.0%) words, is HunPos (Halá-
csy et al., 2007) for Hungarian based on Hidden Markov Models. The system fea-
tures a strong morphological analyser, thereby considerably reducing the number 
out-of-vocabulary words. Although Hungarian is agglutinative, this tagger architec-
ture is interesting for inflective languages, too, mainly because of outstandingly 
short training times. Finally, we reviewed Silfverberg et al.’s (2013) CRF-based 
tagger using sub-label dependencies as applied to Czech and Finnish. Unfortunate-
ly, it is difficult to compare it to our system because corpus size is not explicitly 

                                                        
18 Compared to Polish, Bulgarian has a simpler nominal inflection but more complex verbal inflec-
tion. In view of the size of the cardinality of the tagset (approx. 550), we may assume that the mor-
phological complexity is similar to our Polish case, although the Bulgarian training corpus is more 
than three times the size of UDP. 
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provided in their paper. Taking into consideration the cardinality of the tagset as 
well as the results for the remaining languages presented in the paper it appears to 
be a rather strong system that may outperform our system in direct comparison. 
Most importantly, it scores higher for unknown words than our system. 

In conclusion, the comparison of related work unfortunately does not yield a 
clear picture. A comparison with other Polish taggers trained on NCP is not fully 
feasible because of the use of different accuracy metrics. Nevertheless, our system 
seems to be at least as competitive as current state-of-the-art systems. Most im-
portantly, our system performs much stronger in terms of unknown word accuracy 
despite not using a morphological analyser or guesser.  
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5 Conclusions and Future Work 
The main contributions of this work are the following: 

1. Without using a component for morphological guessing or analysis, we have 
proposed a morphosyntactic tagger for Polish that achieves similar or even 
superior tagging accuracy as compared to more complex state-of-the-art sys-
tems. Most notably, our system performs much better on unknown word ac-
curacy than any other Polish tagger. 

2. Thanks to the use of clustering features based on distributional semantics, 
our system employs a simple yet robust approach to deal with data sparsity 
in a semi-supervised manner. This suggests that clustering features may re-
place or complement more complex morphological analysers or guessers. 

3. Our system is designed to meet the requirement of simplicity and user-
friendliness while at the same time being publicly available within the open-
source IXA pipes. 

We set out to investigate the potential of word clustering features obtained in a 
purely unsupervised fashion in order to improve supervised morphosyntactic tag-
ging for highly inflected languages, thus resulting in a semi-supervised approach. 
The assumption underlying our work is that word representations such as word 
clusters help to address data sparsity inherent to morphosyntactic tagging in mor-
phologically complex languages, with the main problem being out-of-vocabulary 
words unknown to the model. Our ultimate goal is to propose a simple yet efficient 
technique to improve tagging in language-independent, trainable, user-friendly 
and robust tools. To this end, we conducted experiments on Polish datasets using 
the POS tagging module of the IXA pipes, which was shown to yield state-of-the-art 
results for languages with less complex morphology than Polish. In general, our 
study is a replication of the work done on the use of clustering features in NERC 
(Agerri and Rigau, 2016), but in application to morphosyntactic tagging. 

Our proposed approach consists in adding word clustering features induced 
from large amounts of unlabelled text on top of a baseline system that relies exclu-
sively on local features. Our system can therefore be deemed as linguistically unin-
formed, because no language-specific component is added to our system. Instead, it 
attempts to leverage recent advances in unsupervised distributional semantics, 
which is becoming increasingly popular in view of the public availability of large 
unlabelled corpora for the vast majority of languages and which has therefore had 
an impact on almost any field of NLP. To test our assumptions, we first established 
a baseline by implementing a limited number of features useful for morphosyntac-
tic tagging of highly inflected languages in the IXA pipes and by subsequently de-
termining the best-performing parameter setting for Maximum Entropy and Per-
ceptron models. Then, we used freely available tools to induce three types of word 
clustering lexica (Brown clusters, Clark clusters and word2vec clusters); for each 
type we used a total of four corpora (Araneum Polonicum Maius, Polish Wikipedia 
dump, Polish Sejm Corpus, Polish source texts from PELCRA multilingual parallel 
corpus) and induced cluster lexica distinguishing various numbers of cluster clas-
ses. In the next step, we investigated how each cluster type and corpus contributes 
to the tagging task. Our results suggest that Brown and even more so Clark clusters 
are very useful to the task, and that the size of corpora used for cluster induction 
plays an important role, too. Furthermore, we showed that stacking and combining 
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cluster features may have an added value as compared to the use of single cluster 
lexica. Finally, we evaluated the best-performing combinations of cluster features 
added atop of local features on our test sets, which included five datasets for out-
of-domain evaluation. 

The main findings of our systematic evaluation are the following: Firstly, clus-
tering features do improve, as predicted, tagging accuracy as compared to base-
lines. The stronger the baseline, the less pronounced the improvement. In the same 
way, we observed that the magnitude of improvement depends on the amount of 
training data: the smaller the training corpus, the higher increases in tagging accu-
racy, which we suggest has important implications for less-resourced languages on 
the one hand and for subject domains for which large amounts of training data are 
not available. Thus, we have observed that thanks to clustering features baseline 
scores for a system trained on a small corpus can be pushed beyond the baseline 
for a corpus that is 13 times larger. This may alleviate the dependency on super-
vised training data considerably. Secondly, using neither a morphological 
guesser/analyser nor a morphological dictionary, our system is at least as competi-
tive as current state-of-the-art systems for Polish. Most notably, our system scores 
much better (around 30 %) on unknown word accuracy than other taggers trained 
on NCP, despite not exploiting gold-standard morphological analysis from the ref-
erence corpus. Similarly, without the use of a morphological guesser we outper-
form UDPipe in terms of overall word accuracy. We believe this is due to the effect 
of clustering features, which suggests that this simple approach can replace, at 
least in parts, more complex techniques for morphological analysis. It should be 
noted that our system is efficient and easy to install and use due to its user-friendly 
design, while at the same time being available under a permissive open-source li-
cence. 

A limitation of our study is that we conducted our research only on Polish data, 
while investigating the effect of clustering features in other morphologically com-
plex languages may have been insightful, too. Furthermore, the use of an accuracy 
measurement that is not compatible with most other Polish tagger evaluations can 
be regarded as a limitation, too. However, in exchange we increase comparability 
of our results with studies conducted on other languages, since the mainstream 
metrics for Polish seem to be a peculiarity of the Polish NLP community. On the 
other hand, the differentiated measurement of overall, known and unknown word 
accuracy is a strength of our study, because it sheds light on the main cause for 
data sparsity in morphologically complex languages, i.e. vocabulary unknown to 
models because of the high number of possible word forms per lemma. In the same 
way, our out-of-domain evaluations on five different datasets are important indica-
tors for systems’ robustness across text types and subject domains. Here, reporting 
of unknown word accuracies is, again, of great importance. A further strength is 
the use of two different training corpora. Although UDP is a subset of NCP, the in-
sights from this dual approach are important to understand the effect of clustering 
features since those two corpora not only differ significantly in size, but also in 
composition: NCP is a balanced corpus, while UDP is a random sample of it. Finally, 
by making available our system’s code as well as our data sets, we guarantee the 
reproducibility of our results. 

As far as future work is concerned, we identify two main directions. Firstly, rep-
lications of our results in further (morphologically complex) languages are desira-
ble. Since large unlabelled corpora are available for most languages, a number of 
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different languages and language typologies might be explored. Secondly, towards 
our ultimate goal of adapting the IXA pipes to morphologically complex languages, 
two promising avenues deserve our attention: combining our approach with com-
plementary techniques for morphological analysis, or employing tiered tagging. 
With regard to morphological analysis, using a static lexicon of inflectional forms 
means relying on language-specific resources, which is not fully consistent with the 
otherwise language-independent architecture of IXA pipes. Therefore, the imple-
mentation of an (universal) morphological guesser appears more appropriate. Giv-
en our observation that clustering features can, to a certain extent, replace a mor-
phological guesser, it will be interesting to see how a combination of these compo-
nents contributes to the tagging task. No less importantly, we believe that work 
towards the optimisation of the remaining NLP components of the IXA pipes for 
Polish, i.e. tokenisation/segmentation, lemmatisation, NERC, parsing and chunking, 
is important, too, because it may help to provide the Polish NLP community with a 
simple yet powerful, full-fledged pipeline. 

To conclude this work, we would like to give a brief statement on research 
methodology in POS and morphosyntactic tagging: For the sake of system compa-
rability, we believe that it is of utmost importance to harmonise the way tagger 
evaluation is being communicated to the research community. Our suggestion is to 
rigorously report the following figures: differentiated per-token accuracies for 
known and unknown words apart from overall per-token accuracies; percentage of 
unknown words in development and test sets; sentence accuracy; size of the vo-
cabulary in terms of tokens, types and lemmas for each split of the corpus (train-
ing, development and testing); and the cardinality of the tagset in each of the splits. 
In addition, we encourage to always perform out-of-domain evaluations on various 
datasets in order to be able to judge tagger performance in real-world settings. We 
ourselves did not compute sentence accuracy and percentage of unknown vocabu-
lary, though we realised in the course of our work that it would have been very 
informative to better understand the behaviour of our tagger. We therefore hope 
that in the near future comparable best-practice guidelines for tagger evaluation 
will be followed to facilitate the comparability of the limitations and strengths of 
individual systems across languages, subject domains and text types. This may 
eventually promote in a community effort further performance improvement in 
this crucial NLP task. 
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