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Abstract 

 

Recent proposals have suggested that language prediction is supported by the neurophysiological 

mechanisms involved in language production. Both prediction and production in language imply 

information processing percolating down from abstract semantic representations to lower-level 

processing steps, either for articulation (action) or active sensation (perception). Language 

production studies have repeatedly reported desynchronization of oscillatory beta power (13-30 Hz) 

over the left frontal cortex during word generation. Crucially, predictive coding theories propose 

that the beta frequency channel mediates top-down propagation of information during prediction. 

The present study evaluates initial experimental evidence on pre-stimulus activity during speech 

production and discusses the similar oscillatory dynamics involved in preparation for perception of 

words. We try to better characterize what processing dynamics the pre-stimulus beta-band activity 

represents, illustrating with some results from our lab. This evidence motivates the need for more 

fine-grained psycholinguistic paradigms to better characterize whether prediction and production 

are supported by similar neurophysiological mechanisms. 

 

Running Head: Producing and predicting by beta? 

 

Keywords: Prediction, Language production, Language comprehension, Beta band activity, 

Electrophysiology 

 

 



 3 

Meaning-to-form mapping is the processing skeleton for language production, in which the 

intention of communicating a message translates into the top-down information processing flow 

that converts a semantic representation (through syntactic, lexical and phonological intermediate 

representations) into an efferent motor command that drives articulation. On the other hand, 

language comprehension follows similar intermediate processing steps but in the opposite direction: 

the perceived form of a linguistic input is fed-forward to higher-level processing steps 

(orthographic/phonological, lexical, syntactic) in order to transmit the intended (semantic) message 

of the speaker.  

 

— Please insert Glossary around here — 

 

Interestingly, recent proposals have identified a common processing mechanism in the 

service of both production and comprehension, namely prediction. Pickering and Garrod (2007, 

2013) suggest that the comprehension system might use the production system in order to make 

predictions. Pickering and Garrod (2013) illustrate this link, focusing on forward modeling of an 

action. 

 

We use the simple example of moving a hand to a target. The actor formulates the action 

(motor) command to move the hand. This command initiates two processes in parallel. 

First, it causes the action implementer to generate the act, which in turn leads the 

perceptual implementer to construct a percept of the experience of moving the hand. 

Second, it sends an efference copy of the action command to cause the forward action 

model to generate the predicted act of moving the hand. (page 333). 

 

Action monitoring is the constant comparison between the predicted sensation deriving from the 

forward model and what “the perceptual implementer” perceives on-line. Language production 

involves such internal monitoring processes that on-line compare the articulation act with the 

predicted model of the same motor act at the sensory level. In consequence, a prediction of the 

expected articulatory output is sent to the sensory system predicting what will be heard. During 

language processing, an addressee could possibly employ the same mechanisms (implementation of 

the articulatory command at the sensory level), as the basic processing algorithm through which the 

properties of the incoming linguistic input are anticipated. This would make speaker-addressee 

synchronization optimal and communication more efficient.  

Dell & Chang (2014) propose that there is a direct link between the two sides of the 

�language coin� (i.e., production and comprehension). In their P-chain, they acknowledge that 
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language processing largely involves prediction processes. They differ from Pickering and Garrod 

(2007, 2013) in that they do not make any claims about the possibly motor nature of the prediction 

mechanisms. Importantly however, they claim that prediction is production, based on the fact that 

both involve top-down processes from intended meaning to linguistic forms. Chang, Dell and Bock 

(2006) computationally implement the idea that production abilities arise directly from learning to 

predict; in other words, without an efficient predictive system developed during language exposure, 

based on implicit learning, children would not be able to develop proper language production skills 

(Mani & Huettig, 2012).  

Despite the relevance of these proposals, the neurocognitive mechanisms on which 

prediction relies during language processing and whether these possibly link perception and 

production are still poorly understood. In fact, classic behavioral studies have not been able to 

provide evidence about how our mind prepares for future events (either for articulation or for 

perception), since they focus on stimulus reactions. Recent eye-tracking studies (e.g., Altmann & 

Kamide, 1999) have provided initial evidence; however, the paradigms employed have important 

limitations (see Huettig, 2015, for a discussion). In addition, most neuroimaging language research 

on comprehension still employs the traditional paradigm focusing on post-stimulus brain activity. In 

recent theoretical approaches to prediction (see Predictive coding below) post-stimulus activity 

most likely represents integration and learning processes (Friston, 2005); the inferences that can be 

made about predictive processing are thus �contaminated� by additional adaptive strategies.  

The aim of this manuscript is to discuss the possible common neurocognitive mechanisms 

supporting production and prediction (during comprehension). Based on recent proposals (Pickering 

& Garrod, 2007, 2013), the neurocognitive architecture supporting production (and more 

specifically production monitoring) should also support prediction. We will first introduce the 

predictive coding framework. Then, we will present the on-going debate about the role of prediction 

in language processing. Based on these theoretical premises we will discuss neurophysiological 

evidence from studies of the brain dynamics reflecting preparation for articulation in language 

production. We will mainly focus on high temporal resolution techniques. Based on recent 

experimental evidence from our laboratory, we will evaluate the neurophysiological mechanisms 

involved in predictive processing during language comprehension. Finally, we will advance 

theoretical inferences from the experimental evidence discussed.  

 

Predictive coding 

 

Before advancing in further discussion, a clarification of how the term “prediction” is employed in 

this review must be provided, given the considerable degree of heterogeneity in the use of this term. 
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Predictive processing here refers to predictive coding that qualitatively differs from predictive 

timing (Arnal, 2012; Arnal & Giraud, 2012; Arnal, Doelling & Poeppel, 2014). Predictive timing 

refers to the phenomenon by which sensory regions typically show increased excitability in view of 

whatever event is going to happen in a specific modality (i.e., predicting �when�). In this paper, we 

mainly focus on the predicting �what�.  

Predictive coding is typically framed as reflecting a process that originates from abstract 

internal representations driving the activation of sensory representations in the processing periphery 

(Figure 1). The predictive coding approach (Clark, 2013; Rao & Ballard, 1999) details the 

computations (grounded in Bayesian hierarchical inference theory, see Friston, 2005) involved in 

predictive processing. A core notion of this framework posits an asymmetry in the flow of 

information across the processing hierarchy: top-down propagation of information would activate 

representations of expected sensory input generated from internal generative models, while only the 

portion of sensory data not accounted for by the prediction at each stage - the prediction error - 

would be propagated forward.  

In more detail (see Glossary), pre-activation (i.e., prediction) �spreads� across many 

different hierarchical substeps, converting internal abstract Forward Models into pre-stimulus 

Sensory Predictions (see Figure 1; Bubic, von Cramon & Schubotz, 2010; Friston, 2005; Poeppel, 

Idsardi & van Wassenhove, 2008). Based on the information represented in the Forward Model, the 

brain communicates top-down with more peripheral sensory regions dedicated to the interaction 

with the environment. In some proposals (Arnal, 2012; Pickering & Garrod, 2007; Schubotz, 2007), 

these sensory representations are typically employed to monitor on-line the outcome of an internally 

generated motor command. However, they are �available� for the perception/comprehension system 

even when there is no motor activity involved.  

Prediction by definition is ‘prone to error’, since it can either match or mismatch with the 

physical properties of the incoming stimulus (processed in sensory regions). This determines the 

amount of Prediction Error (Figure 1). Prediction Error explains activation that propagates bottom-

up to higher processing levels. Such ascending activation would be used to update internal models 

and subsequent predictions, until the prediction error is totally “explained away” and assimilated 

throughout the processing hierarchy (Friston, 2005). Prediction Error activity would propagate 

across hierarchically more general processing stages and cortical areas in the opposite direction to 

the prediction: from sensory to association areas of the cortex. Importantly, Prediction Error 

accounts for post-stimulus brain activity in a more biologically plausible way compared to bottom-

up frameworks, following the principle of minimizing the brain�s free energy (for discussions see 

Friston, 2005; Rao & Ballard, 1999). As a consequence, matching information has enormous 
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processing advantages for all the multi-level perception and integration processing hierarchy. 

However, mismatching information has an even greater value for readjusting (Adaptation in Figure 

1) the internal source representations of the environment based on external pieces of information 

(i.e., Learning, see Dell & Chang, 2014; Friston, 2005).  

In this paper, we will focus on our claim that Prediction is reflected in pre-stimulus brain 

activity, while Learning (driven by the assimilation of the Prediction Error along the processing 

hierarchy) is reflected in post-stimulus activity. As a consequence, properties of the predicted 

stimulus should be decodable from the pre-stimulus modulations of brain activity.  

 

— Please insert Figure 1 around here — 

 

The role of prediction in language processing 

 

The mechanisms through which predictive processing affects language comprehension are still 

under dispute. Indeed, some authors have doubts about the existence of predictive processing in 

language.  

For example, Jackendoff (2002) proposed that it would make much more sense for our brain 

to consume neurocognitive resources in the post-stimulus analysis of an input, since failed 

predictions are very common in natural language (in fact, one important property of humans is the 

ability to communicate creatively avoiding redundancies; Hockett, 1960). Predicting all the time 

during comprehension would result in constant processing costs when the input does not match the 

predictions. This would require a large amount of cognitive resources because predictions are more 

likely to be wrong than right. Consequently, the costs of predicting would outweigh the benefits 

(see also Huettig, 2015). In addition, given the arbitrary relation between form and meaning in the 

language system (words such ant and mosquito are semantically related but not form related), a 

semantic neighborhood would not directly map onto an orthographic one, and pre-activation of the 

visual features of one word would be of no benefit when processing conceptually similar items. In 

support of such criticism, Van Petten and Luka (2012) and Huettig (2015) indicate that there is no 

robust evidence in favor of the prediction hypothesis.  

Even among the supporters of the prediction hypothesis, an unsolved question is what 

representations (only abstract representations, or sensory information) are pre-activated and in 

which conditions. In fact, some authors assume that prediction is an essential processing mechanism 

for comprehension (Levy, 2008; Dikker & Pylkkanen, 2013; see also the analysis-by-synthesis 

approach by Poeppel et al., 2008), while a more conservative view does not consider prediction a 

fundamental principle of language processing (Huettig, 2015).  
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However, if we accept the predicting coding view that considers the brain as a highly 

adaptive prediction machine, capable of constantly building up predictions based on available 

contextual information (Bar, 2007; Friston, 2005; Poeppel et al., 2008), why should this mechanism 

be “blocked” during language processing? In predictive coding, predictions at different levels of the 

neurocognitive hierarchy are �nested� (from being more abstract to more concrete) with different 

levels of uncertainty related to a Forward Model. Critically, prediction would always percolate 

down to early sensory areas, so that some kind of Sensory Prediction would always be generated. 

However, the amount of contextual information determines the uncertainty of the internal Forward 

Models and, in turn, the quality of the Sensory Prediction that can be either general (i.e., I predict I 

will perceive a word) or more specific (i.e., I predict I will perceive the word “dog”). 

From experimental studies, initial (although not conclusive) indications of the existence of 

prediction processes have been reported.  

 

1. Predictions matter in language comprehension (Altmann & Kamide, 1999, Kutas & 

Hillyard, 1984). A well-established effect reported in the language comprehension literature 

concerns the fact that contextual information (e.g., a highly constraining sentence fragment) can 

facilitate the recognition of a word, as evidenced by faster eye gaze in reading or a smaller N400 

component (a negative-going event-related voltage deflection (ERP) that peaks around 400 

milliseconds post-stimulus onset in the scalp-recorded electroencephalographic signal). Classically, 

this effect has been interpreted as reflecting modulation of lexical-semantic retrieval and integration 

(Kutas & Hillyard, 1984). Recently, the N400 modulation has been interpreted as reflecting 

facilitated recognition of a word as a result of contextual pre-activation of some of its 

lexical/semantic features (DeLong et al., 2005). Despite the fact that this hypothesis has many 

supporters, the N400 is a post-target word onset effect and can only be indirectly linked to 

predictive processes (through theoretical assumptions). Post-stimulus brain activity is likely to 

reflect retrospective use of information regarding previous events (see Prediction Error in Figure 1, 

for a similar proposal on post-stimulus ERPs, Friston, 2005). This observable, stable effect 

temporarily follows predictive processing and can represent adaptive strategies. Thus, the questions 

remain: are internal Forward Models translated into Sensory Predictions during language 

processing? And if so, in which language scenarios?  

 

2. Information originating from the internal forward model can lead to pre-activation of 

low-level linguistic information. DeLong and colleagues (2005) presented words in high 

constraining sentence contexts that differed in their initial phonemes (a vowel or a consonant, e.g., 

kite vs. airplane) and in expectancy levels (higher for kite compared to airplane). The authors 
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reported larger N400 for the less expected word (airplane), but more importantly, they found the 

same ERP modulation in the article that preceded the noun and that varied depending on the initial 

phoneme of the expected word (an for airplane elicited a larger negative effect than a for kite): in 

other words, the N400 amplitude changed depending on whether or not the article was appropriate 

for the highly expected word. This result indicates that low-level phonological features of the 

expected word were pre-activated by the semantic constraints imposed by the sentence context, 

since the expectancy effect was measured on a word (a/an) that does not provide any semantic (but 

does provide phonological) information concerning the following expected word (kite/airplane). 

This effect indicates that low-level features of an expected word are pre-activated before target 

word presentation. However, does prediction involves word-form sensory representations? And 

which neurophysiological mechanisms are recruited for language prediction?  

 

3. Differential activation based on the strength of prediction can be observed in peripheral 

sensory regions. A small number of studies (Dikker & Pylkkanen, 2013; Molinaro, Barraza, & 

Carreiras, 2013a; Piai et al., 2014) employing neuroimaging techniques (electroencephalography, 

EEG and magnetoencephalography, MEG) with high temporal resolution have unveiled the 

preparatory dynamics of the brain activity immediately before a target event. Furthermore, MEG 

provides information about the source of brain activity with good spatial resolution (~2 cm). In a 

picture-word matching paradigm, Dikker and Pylkkanen (2013) found increased MEG evoked 

activity in the visual cortex in the milliseconds before the presentation of a word when the previous 

(related) picture represented a single object compared to a group of objects. Importantly, in these 

predictable conditions the single object pre-activated a single word (and, possibly, its word form), 

while the group of objects pre-activated the overall semantic category (but not a specific word 

form). This evidence partially supports the predictive view, since it shows that in specific 

experimental conditions prediction leads to pre-stimulus activity in sensory regions. Nonetheless, 

this effect only indicates that visual regions are more active for the less complex condition (in 

which a single object preceded the word) and may represent more general (attentional) preparatory 

processes that do not carry information about the perceptual properties of the predicted word. So, 

does this sensory peripheral effect reflect prediction of linguistic input?  

 

More importantly for the present discussion, practically no studies so far have directly 

focused on the most relevant moment of time at which predictions are generated, i.e. before 

stimulus appearance (before time zero). Recently, Boylan, Trueswell and Thompson-Schill (2014) 

followed this rationale in an fMRI study in which they studied predictive processing of word form, 

depending on lexical-syntactic category (noun vs. verb). By focusing on the brain volumes of the 
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so-called visual word form area (Cohen et al., 2000), sampled during the time lag before the 

presentation of an expected stimulus (either a noun or a verb), they were able to successfully 

classify (based on functional data from left inferior occipito-temporal regions) trials in which 

participants were expecting a noun, from trials in which they were expecting a verb. This study 

shows the possibility of decoding word form representations from pre-stimulus activity. However, 

these findings do not provide evidence about the time-course of neural activity through which 

predictive coding evolves up to the millisecond preceding presentation of an expected stimulus. To 

address this issue, high temporal resolution techniques with reasonable spatial brain resolution can 

provide critical experimental evidence. Techniques like MEG and EEG reflect the cortical activity 

of large populations of pyramidal cells. These measures have the great advantage of providing 

information about brain activity with the temporal resolution required to disentangle multiple 

successive and interactive cognitive events. This is extremely important in prediction studies, in 

which it is vital to track the temporal course of neurocognitive events until a stimulus appears. 

Specifically, the analysis of oscillatory brain activity has great potential to bridge the gap between 

different levels of explanation in neuroscience research. Recent proposals (Buszáki & Draguhn, 

2004; Wang, 2010; Ward, 2003) identify in the rhythmic activity of the brain the basic unifying 

principle coordinating activity of single cells into larger populations of neurons eliciting both local 

field potentials and long-distance synchronization. Buszáki & Draguhn (2004) review how such 

network oscillations bias input selection, temporally linking neurons into assemblies, and 

facilitating synaptic plasticity. This, in turn, is associated to cognitive functions such as 

multisensory integration, working memory, and selective attention (Wang, 2010).  

 

Oscillatory dynamics reflecting preparation for articulation 

 

Pre-motor activity for action execution is a fundamental aspect of speech production. Motor 

planning has been associated with modulation of oscillatory brain activity in the beta range (13-30 

Hz; but also with the mu rhythm, 7.5-12.5 Hz, Gestaut, 1952). Beta activity inversely correlates 

with the likelihood of an action to be performed, with larger power decrease reflecting stronger 

motor readiness. In such conditions, less synchronized activity of such populations, across multiple 

different motor events, does not �sum up� and triggers less power compared to resting conditions in 

which such activity is more synchronous (see Glossary). Interestingly, beta band activity is not only 

observed when an action has to be performed, but also when it is expected or imagined (Hari et al., 

1998). Jenkinson and Brown (2011) observe that beta band desynchronization reflects estimation of 

the probability of new processing demands, either in the motor or perceptual domain. Engel and 

Fries (2010) reviewed the role of beta band activity both within and outside the motor domain, 
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proposing that change in the processing mode is correlated with power decrease in the beta band, 

compared to either (i) conditions in which the current processing routines remain unaltered, and 

beta power does not change, or (ii) higher task demands for the same cognitive operations recruiting 

more cognitive resources, reflected in higher beta power. Beyond the motor domain, Siegel, 

Donner, Oostenveld, Fries & Engel (2008) observed beta band modulation across the visual dorsal 

attentional network (involving frontal, parietal and visual regions). Importantly, regional beta band 

desynchronization was related to better performance in a visual attention task, highlighting the role 

of beta band activity in top-down modulation of sensory processes. Finally, Hanslmayr, Satudigl 

and Fellner (2012) proposed the information via desynchronization hypothesis. Based on 

information theory, beta synchronization effects would be related to richness of information 

processed in the brain. In other words, “the more information that needs to be encoded, the more 

desynchronized the firing of local neural assemblies needs to be” (page 7). When processing 

complex heterogeneous motor commands, but also high-level abstract cognitive information, beta 

desynchronization could thus enable encoding and retrieval of such brain-stored representations. 

 

Weiss and Mueller (2012) recently detailed four different roles of beta activity in language 

processing: beta activity would reflect the semantic and sensory-motor features of word stimuli; it 

would be involved in complex sentence-level operations; beta oscillations would play a crucial role 

in working memory operations; more importantly, beta activity would play a critical role in top-

down mechanisms during language processing. In the present paper, we focus on the parallel 

between production and prediction in language, based on the dynamic principles of forward 

modeling a motor command. Given the relevance of beta band activity in the motor domain and the 

importance of motor planning for articulation, it is not surprising to observe that a number of 

studies have reported beta band effects related to speech production (Fisher et al., 2008; Singh, 

Barnes, Hillebrand, Forde & Williams, 2002). Recently, Findlay et al. (2012) employed a verb 

generation task in which participants were presented with a noun and had to produce a related verb. 

They observed reduced beta power in the left inferior frontal regions prior to the generation of the 

verb. Liljeström, Kujala, Stevenson & Salmelin (2015) analyzed the brain network configuration 

preceding picture naming. They did not focus on local power modulations, but analyzed the 

functional connectivity in a larger speech production network. After picture presentation (and 

before naming) they observed increased large-scale coherence in the beta-range for over production. 

They claimed that such an effect reflects selection processes during speech planning. These two 

studies highlight the important role of beta oscillations in language production, showing both power 

reduction (desynchronization) and increase of cortical connectivity in this frequency band. Jenson et 

al. (2014) required their participants to produce syllables and words both overtly and covertly. In 



 11 

both conditions they observed reduced beta power before production, with weaker effects in covert 

production. Interestingly, pre-stimulus beta effects similar to covert production were observed also 

during a perceptual discrimination task. Thus, the authors concluded that pre-stimulus 

desynchronization in the beta range could represent early predictive coding based on internal 

forward modeling.  

Recent language production studies have employed experimental paradigms typically 

exploited in comprehension experiments. In language comprehension, the processing of a target 

word is influenced by the contextual constraint of the previous sentence fragment (typically 

measured with cloze-probability, i.e., the proportion of participants who report a word as continuing 

a sentence fragment in a paper and pencil questionnaire; Kutas & Hillyard, 1984). Recent proposals 

suggest that it reflects lexical pre-activation during language comprehension in cases of highly 

predicted upcoming linguistic information (DeLong, Urbach & Kutas, 2005). Piai, Roelofs and 

Maris (2014) asked participants to name a picture after word-by-word visual presentation of a 

sentence that could present different degrees of semantic constraint (high or low) towards the 

expected picture. This study thus combines the classic sentence constraint paradigm and word 

production in a picture-naming paradigm. By measuring EEG, the authors observed relative power 

modulation in the beta (and also alpha, ~10 Hz) frequency range before picture presentation in left 

frontal electrodes, i.e., less beta power while participants read high-constraining contexts (preceding 

the picture) compared to low-constraining ones. Assuming the �prediction is production� account 

(Dell & Chang, 2014; see also Pickering & Garrod, 2007), it is possible that the beta modulation 

reported by Piai and colleagues (2014) does not only reflect stronger motor preparation of the (to be 

named) target word in the high constraining context, but also the development of a more detailed 

internal forward model (i.e., an acoustic representation) of that same word (as suggested by Jenson 

et al., 2014). 

Klein et al. (2014; Wheat, Cornelissen, Frost, & Hansen, 2010) reported MEG beta 

desynchronization in left inferior frontal regions during the first 100 ms after presentation of a 

visual target word in a masked priming paradigm. The effect was stronger (i) when the target word 

was preceded by a masked letter string starting with the same initial phoneme and (ii) when 

participants were asked to name the word aloud as compared to a lexical decision task. The authors 

interpreted this effect as reflecting early access to articulatory representations during visual word 

recognition. These findings indicate how fast pre-articulatory activity (reflected in beta-band 

desynchronization) is during word production. More importantly, the beta power reduction was 

significant (but less sustained in time) in the lexical decision task in which no (overt or covert) 

production was required of the participants. In this study, the preceding masked prime string was 

presented ~90 ms before the target word. As a consequence, the prime influenced the processing of 
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the target word at ~200 ms. Masked priming paradigms assume that primes pre-activate features of 

the target stimulus. For example, in the P-chain (Dell & Chang, 2014) comprehension of a prime 

involves prediction (and leads to implicit learning, that is useful for diminishing prediction error 

during processing in similar future situations, see also Figure 1). The stronger beta effects observed 

in production by Klein et al. (2014) could thus reflect the additional pre-stimulus involvement of the 

articulatory brain circuits; however, the observation of similar (but reduced) beta band effects when 

no articulation is needed possibly shows the development of the internal forward model supporting 

both sensory prediction (during comprehension) and monitoring of articulation (during production). 

In addition, Klein et al.�s (2014) findings highlight the role of left lateral prefrontal brain regions in 

planning the internal forward models (see also Hickok & Poeppel, 2007, quoted in Pickering & 

Garrod, 2007). 

 

Oscillatory dynamics reflecting pre-stimulus prediction 

 

Studies of language production have highlighted the relevant role of beta band in forward modeling 

future sensory information for articulatory monitoring purposes (Jenson et al., 2014). If such 

Forward Models are similarly recruited for predicting future sensory inputs (Pickering & Garrod, 

2007, 2013), we should observe similar oscillatory effects for processing in language scenarios in 

which active predictive processing is at work that does not involve any motor or monitoring (of 

motor) activity.  

In this vein, recent studies have provided preliminary neurophysiological evidence of beta-

band activity reflecting top-down processing (for a review, Bastos et al., 2012). Bastos et al. (2015) 

analyzed the oscillatory dynamics of the primate visual system employing electrocorticography 

recordings from grids implanted along the whole visual system of monkeys. They observed that 

increased coherence in the beta band was associated with feedback influences from higher 

processing regions to primary visual regions. Beta band activity modulated the relative �functional 

hierarchy� between lower and higher-order regions during pre-stimulus and post-stimulus visual 

processing. 

In an MEG study, Arnal, Wyart & Giraud (2011) found that violating intermodal speech 

expectations was accompanied by increased beta oscillatory activity in a multi-sensory brain region 

(temporal regions), and increased high gamma activity in early sensory regions (see also Fontolan, 

Morillon, Liegeois-Chauvel & Giraud, 2014). Frye, Wu, Liederman and Fisher (2010) reported that 

greater connectivity in the beta band from the left inferior frontal regions to other cortical areas was 

significantly related to better phonological performance in dyslexic readers. In addition, previous 

proposals (Bubic et al., 2010; den Ouden, Kok & de Lange, 2012; Rahnev, Lau & de Lange, 2011) 
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indicated that pre-frontal brain regions drive the recruitment of source information to develop 

predictions and could then show beta band modulations related to the development of forward 

models (as in language production studies) in the pre-stimulus time interval (Bastos et al., 2015). 

Overall, these findings highlight the role of the beta-band frequency channel in predictive 

processing: beta effects have been observed both in the domain of local power modulations (post-

stimulus beta power increase, as in Arnal et al., 2011) and in the analysis of larger-scale brain 

connectivity (increase pre-stimulus beta connectivity, as in Bastos et al., 2015). However, if the 

internal forward models employed in language production are involved also in language prediction 

we should observe pre-stimulus beta power desynchronization during language comprehension (see 

also pre-stimulus beta synchronization associated to predictive timing, Arnal et al., 2014).  

Desynchronization effects during prediction in natural language would be in line with the 

information via desynchronization hypothesis (Hanslmayr et al., 2012) in which retrieval of 

complex conceptual representations (as a consequence, for example, of a linguistic prediction) 

would correlate with beta desynchronization. These authors indicate that a larger amount of 

information would be better coded by a neural population in which single cells fire with a lower 

degree of synchrony. This is the case of natural language, in which complex semantic 

representations corresponding to each content word should be retrieved and combined with the 

overall discourse-level representation of the message. In these conditions, more desynchronization 

is expected for the retrieval of more semantically complex (information-rich) representations. In the 

prediction domain, the pre-activation of representationally more complex information would then 

determine less beta power (single neurons’ firing rates are highly desynchronized) compared to both 

scenarios in which the predicted representation is “simpler” (without activating large-scale 

distributed representations in semantic memory) and scenarios in which prediction is “weaker” (i.e., 

there is more uncertainty concerning the predicted representation, possibly due to the competition of 

multiple functionally similar representations). In these latter conditions, either the predicted 

representation is less complex (less information to code across the neural population) or multiple 

(functionally similar) representations trigger overlapping firing rates (across cells), causing overall 

larger synchrony and increased beta power. Thus, both information-rich and "information-poor" 

stimuli (such as beats or basic visual objects, Arnal et al., 2014; and the references in Bastos et al., 

2012) would correlate with beta-band modulations, but the amount of desynchronization would be 

larger for the prediction of more complex stimuli.  

 

In our lab, we recently carried out a set of studies exploring language prediction during 

sentence comprehension. We employed specific linguistic constructions that permeate everyday 

language experience, i.e., Multi-Word Units (MWUs) which, depending on definitional criteria, 
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roughly constitute 60% of spoken and 55% of written language. MWUs are continuous or 

discontinuous sequences of words which are, or appear to be prefabricated: that is, stored and 

retrieved whole from memory at the time of use, rather than being subject to generation or analysis 

by language compositional processes. A variety of phrase chunks constitute this category, from 

collocations (make a difference) to discourse organizers (on the other hand) and social routine 

clichés (nice to meet you) among others.  

In Molinaro et al. (2013a; Monsalve, Pérez & Molinaro, 2014) we recently evaluated, in an 

EEG sentence comprehension experiment, the correlates of reading a target word that followed a 

regular non-fixed semantic compositional context (Semantic condition, as in Kutas & Hillyard, 

1984; DeLong et al., 2005) as compared to when the same target word “concluded” a MWU (MWU 

condition). These strings were selected based on the fact that the last word of the string was highly 

predictable after reading the string until the second-to-last word (cloze-probability higher than 

85%). Thus, in both our experimental conditions the same specific target word was similarly highly 

expected (for details see Molinaro et al., 2013a).  

Despite the levels of expectation (cloze-probability) being the same in Semantic and MWU, 

the former condition relies on rule-based compositional processes (the meaning of the previous 

sentence fragment has to be computed word by word to figure out what piece of information is 

coming next), while the latter condition relies on memory-based processes (recognition of the 

MWU that would not require rule-based computation). In a number of studies (Molinaro, 

Vespignani, Canal, Fonda & Cacciari, 2008; Molinaro, Canal, Vespignani, Pesciarelli & Cacciari, 

2013b; Molinaro & Carreiras, 2010; Roehm, Bornkessel-Schlesewsky, Rösler & Schlesewsky, 

2007; Vespignani, Molinaro, Canal, Fonda & Cacciari, 2010) this has been associated to the fact 

that readers, before the presentation of the target word in multi-word scenarios, can develop a 

�deterministic� expectation. On the other hand, in the semantic constraining conditions, the context 

would pre-activate a semantic field (i.e., a set of semantically-related candidate words) and this 

would determine a more “probabilistic” expectation for the incoming word stimuli. MWUs are thus 

ideal for studying lexical prediction during language comprehension, compared to the Semantic 

condition, in which multiple functionally similar (semantically-related) lexical representations 

compete for prediction (DeLong et al., 2005; Federmeier & Kutas, 1999). According to the 

predictive proposal discussed above, prediction during MWUs should be stronger and more specific 

compared to the Semantic condition (�weaker� prediction).  

 

In Molinaro et al. (2013a) we asked our participants to read sentences for comprehension. 

Their task was to answer a yes/no comprehension question every five sentences on average. 

Comprehension questions appeared randomly throughout the whole experiment. In addition, the 
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YES/NO button positions appeared randomly either on the left (half of the times) or on the right 

(half of the times). This experimental paradigm does not imply any motor preparation, since 

participants have no time-pressure when answering the comprehension questions. Based on EEG 

data, we provided initial indications about predictive processing (and, importantly, pre-stimulus 

evidence) in a language paradigm involving sentence comprehension. However, the available EEG 

data cannot be directly compared to the production studies reporting beta band effects during 

language production. First, oscillatory activity in these studies was estimated focusing on phase 

synchronization (Phase Locking Value: Varela, Lachaux, Rodriguez & Martinerie, 2001), with the 

aim of studying the network dynamics involved in predictive processing. Language production 

studies, on the other hand, have mainly focused on power (and coherence) modulations of 

oscillatory brain activity. Second, previous studies on language production (see Oscillatory 

dynamics reflecting preparation for articulation above) provide inferences about the underlying 

brain regions involved in pre-articulatory activity mainly by focusing on MEG recordings. EEG 

recordings, however, do not offer comparable evidence concerning the underlying brain regions 

involved in specific computations. To better evaluate the reliability of the prediction/production 

parallel (Pickering & Garrod, 2007), it is important to identify the brain source of beta-band effects, 

that both production (Klein et al., 2014) and prediction studies (Rahnev et al., 2011) would identify 

in frontal brain regions. 

In a MEG study, we employed the same experimental paradigm as that described in 

Molinaro et al. (2013a). Here, we report the analysis of data acquired from a group of 24 

participants. Data acquired at the sensor level were analyzed focusing on amplitude modulations of 

oscillatory brain activity across a large spectrum of frequency bands (from 1 to 90 Hz, frequency 

resolution of 1 Hz) from 1 second preceding the target word to 600 ms post-stimulus onset. 

Compared to the EEG topographical distribution, MEG sensor-level distributions (and specifically 

the data collected with planar gradiometers) are more reliable concerning the possible brain source 

of an effect. Still, the effects we report here should be interpreted with caution, since the underlying 

brain sources can be inferred only at a macroscopic level (along the left-right hemispheric 

lateralization and anterior-posterior dimensions).  

 

— Please insert Figure 2 around here — 

 

In Figure 2 we present the two main effects (cluster-based corrected) that emerged at the 

sensor level (while considering a pre-sentence baseline in which the fixation point was displayed to 

the participant). In the time interval between −670 to −360 ms preceding the presentation of the 

predicted target word, we observed larger beta band desynchronization for the MWU condition 
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compared to the Semantic in the frequency range from 17 to 23 Hz. This beta desynchronization is 

anteriorly distributed, possibly reflecting a bilateral effect involving frontal brain regions, with a 

larger involvement of left-lateralized regions. This effect was followed by a larger alpha band (8-12 

Hz) synchronization for the MWU compared to Semantic condition in the time interval 

corresponding to the detection of the target word (from −10 to 330 ms). Compared to the beta 

effect, the alpha synchronization shows a more posterior distribution (with a slight right-

hemispheric lateralization).  

The beta band desynchronization in the present study possibly reflects more detailed 

preparatory dynamics for the processing of the incoming stimulus in the MWU condition compared 

to the Semantic. Importantly, we observed effects in a similar frequency channel as that observed 

for production studies, providing initial indications that the oscillatory mechanisms supporting 

prediction employ a similar oscillatory mechanism to the one observed in production. Following 

Pickering and Garrod�s (2007, 2013) proposal, the beta frequency channel would play a role in 

developing internal Forward Models of future sensory events. This explanation is supported by the 

following effect in the alpha band. Alpha band effects have been related to modulation of visual 

attention (Jensen, Gips, Bergmann & Bonnefond, 2014); typically, recruitment of visual-attention 

resources inversely correlates with alpha power (alpha synchronization). In our study, the higher 

visual attentional resources allocated to processing the incoming word in the Semantic condition 

imply a relative reduction of alpha power time-locked to the presentation of the target word in 

posterior brain regions. On the other hand, in the MWU condition, the prediction is so strong that 

fewer attentive resources are required to visually decode the expected stimulus.  

In order to better estimate the relation between the two effects, we selected the time-

frequency windows for each of the two effects described above and the sensor in which the effect 

showed its peak of activity. We then computed the Pearson correlation between the two arrays and 

we observed the expected inverse correlation between the beta and the alpha effect (R = −0.51, p = 

0.018). This provides a clear indication that the preparatory dynamics observed in frontal brain 

regions for MWUs are related to the reduced visual attentional resource time-locked to the 

presentation of the target word. It should be underscored that these findings do not provide evidence 

for the underlying brain networks triggering these oscillatory effects. Nevertheless, based on the 

data discussed, we can sketch initial inferences about the time-frequency oscillatory dynamics 

involved in predictive processing. 

 

To be(ta) or not to be(ta): That is the question 

Preliminary findings from our lab thus provide initial evidence that the oscillatory dynamics 

supporting language prediction employ a similar frequency channel to the ones involved in 
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language production. Beta band activity has been reported in production studies and in studies 

manipulating the contextual constraints during sentence comprehension. These last findings are in 

line with predictive coding theories pointing to the crucial role of beta-band activity in top-down 

modulating of the perception of incoming stimuli. Beta band activity has been associated to top-

down brain activity (Bastos et al., 2012, 2015) and the evidence for such effects in frontal regions 

could reflect high-level planning of subsequent peripheral interactions with the external 

environment (Clark, 2013; Pickering & Garrod, 2007). 

This effect observed before the presentation of an expected stimulus fits with the Prediction 

framework illustrated in Figure 1. In this model, predictive processing develops before stimulus 

onset and is composed of multiple processing stages. Based on the development of an internal 

Forward Model, activation propagates downwards across the multiple levels of the processing 

hierarchy (Friston, 2005) and can trigger Sensory Predictions. Beta-band effects would mediate 

such top-down propagation of activation. In our sentence comprehension MEG experiment we 

interpret the pre-stimulus beta-band power decrease as the pre-activation of high-level abstract 

representations. The spatial distribution of the effect (possibly associated to frontal lobe activity) 

supports the proposed interpretation of the findings. Frontal regions would constitute a critical hub 

collecting abstract information preliminary to production/prediction. Previous studies (Bastos et al., 

2015; Rahnev et al., 2011) in fact show that pre-frontal brain regions would drive the recruitment of 

source information to develop Forward Models and Sensory Predictions, i.e., pre-activation of low-

level information (in peripheral sensory regions) related to the physical properties of the predicted 

stimulus. Enhanced expectations could thus modulate visual attention and the perception of an 

incoming stimulus (for a discussion of the relation between expectation and attention see 

Summerfield & Egner, 2009). 

Nevertheless, evidence of pre-stimulus activity related to the post-stimulus perceptual 

processing of a stimulus is only partial evidence in favor of prediction during language processing. 

What such an effect represents in the complex neurophysiological dynamics driving predictive 

processing is still an open question. Previous studies focusing on beta band oscillations have related 

beta activity to visual attention (Siegel et al., 2008). It is thus feasible that the beta effects we are 

targeting in this paper reflect the recruitment of different attentional processes in more or less 

predictive scenarios, but do not necessarily reflect predictive coding of a specific stimulus, i.e., 

modulation of the pre-stimulus oscillatory activity based on the distinctive properties of a predicted 

representation (at each level of the processing hierarchy). Although this mechanism is relevant for 

prediction, the beta band oscillations could reflect predictive timing (Arnal, 2012).  

In addition, evidence for Sensory Prediction (as claimed in Dikker & Pylkkanen, 2013; 

Molinaro et al., 2013a) involving differential predictive activity in primary sensory regions is still 
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missing. Interestingly, Siegel and colleagues (2008) observed a correlation between beta band 

activity in primary visual regions and the subsequent behavioral performance in the task. Despite 

the involvement of primary visual regions (where Sensory Predictions effects should be evident 

before stimulus presentation), this peripheral effect could still reflect recruitment of additional 

neurophysiological resources, depending on the amount of task needs.  

We are now working on a set of experiments in which we manipulate the (physical, 

orthographic, phonological, lexical, semantic) properties of a predicted item in experimental 

conditions that recruit the same amount of attentional resources (i.e., similar contextual constraints). 

Evidence for differential activation in high- and low-level (Sensory related) brain regions would 

provide clear-cut indications of the different amounts of resources recruited for qualitatively 

different stimuli. For example, Piai and colleagues (2014) observed oscillatory effects in the 

sentence constraint-picture naming paradigm in the theta band (~4-7 Hz) for items with variable 

lexical frequency. Such manipulation in a sentence comprehension paradigm (excluding the naming 

task) is similar to what is typically done in language production electrophysiological experiments 

and would provide indications of prediction of different items. Based on previous studies on 

prediction, successful stimulus decoding in (or driven by) frontal regions would likely reflect 

development of internal Forward Models (Pickering & Garrod, 2007), while effects in primary 

sensory regions could reflect Sensory Predictions. Assuming what predictive coding proposals 

suggest (Bastos et al., 2012), we should be able to decode the predicted stimulus properties from 

oscillatory activity in the beta-band channel. However, we do not exclude achieving our aim (i.e., 

stimulus decoding from pre-stimulus oscillatory activity) by analyzing a lower frequency band (< 

10 Hz, Fontolan et al., 2014; Piai et al., 2014).  

Additional evidence should emerge from studies focusing on connectivity measures (Bastos 

et al., 2015). Communication between brain regions could be an important neural mechanism 

supporting predictive processing (Molinaro et al., 2013a). Patterns of brain connectivity (not 

necessarily reflected in amplitude modulations, but for example in synchronous phase oscillations) 

represent the coupling between brain regions that could support top-down communication to 

primary sensory regions (Sensory Predictions). Such long-range connectivity has been reported for 

low-frequency phase oscillations (in the theta range ~4-7 Hz) in reading (Molinaro et al., 2013a) 

and speech perception (Peelle & Davis, 2012). In addition, cross-frequency coupling between low-

frequency phase entrainment (delta, <4 Hz) and the amplitude of high-frequency neural activity 

(gamma, 30-80 Hz) has been associated with enhanced perceptual attention (Lakatos, Karmos, 

Mehta, Ulbert & Schroeder, 2008).  

 

Conclusions 



 19 

In this paper, we have reviewed recent findings emerging from oscillatory analysis of high-temporal 

resolution measures (electrophysiological brain activity) collected before the presentation of an 

expected stimulus, to explore the parallels in processing between prediction and production. We 

have focused on the role that beta-band oscillatory activity has played in both the motor and the 

prediction domain and the possible evidence for top-down processing in both language production 

and language prediction. Importantly, Siegel and colleagues (2008; similar findings in Bastos et al., 

2015) link such beta band activity observed in frontal-to-posterior brain regions to preparatory 

processing, probably reflecting attentional modulation of perception (observed in occipital regions 

and in different frequency bands). It is thus not clear if the beta frequency channel encodes 

properties of a predicted stimulus (predictive coding). We thus argue the need for further studies in 

which the feature of an expected stimulus should be modulated to provide more reliable indexes of 

predictive coding. Testing (within participants) production and prediction of linguistic items 

varying along different psycholinguistic dimensions could better detail the relation between 

production and prediction (Dell & Chang, 2014; Pickering & Garrod, 2007, 2013). 
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Glossary 

 

Top-down processing: Information processing in which higher hierarchical levels influence lower 

levels. Typically, information related to the physical properties of a stimulus is processed in 

modality-specific lower levels, while general abstract information is processed in higher processing 

levels. Bottom-up processing reflects information processing in the opposite direction. Top-down 

activity involves feedback/descending propagation of activation, while bottom-up activity is 

supported by feed-forward/ascending propagation of activation. 

 

Forward model: In the motor domain, an internal Forward Model (based on a “efference” copy of 

a planned motor command) is involved in the estimation of the predicted body positions during a 

movement. The Forward Model derives from computationally abstract memory-based prospective 

knowledge of reality. The format of the memory information that shapes a Forward Model can be 

very heterogeneous and is informed by the external state of the environment or the internal state of 

the neurocognitive system (analogies and associations; Bar, 2007).  

 

Sensory Prediction: Pre-activation of low-level information in sensory regions related to the 

physical properties of an incoming stimulus. Sensory Predictions are top-down activated by internal 

Forward Models. 

 

Prediction Error: Amount of representational mismatch between the predicted information and the 

percept obtained from the external input. In the case of small amount Prediction Error (when the 

Sensory Predictions were correct), post-stimulus bottom-up processing is reduced and activation 

propagates across lower processing levels; when the Prediction Error is large (when the Sensory 

Predictions were either incorrect or not stimulus-specific enough), bottom-up processing is costlier 

and can reach higher processing levels. 

 

Adaptation: Modification of internal representations stored in long-term memory to achieve a 

better fitness of the individual to the external environment and the possibility of developing more 

detailed predictions. 

  

Bayes’ law: The theorem is mathematically stated as follows: P(Pr|In) = [P(In|Pr) × P(Pr)] / P(In), 

where Pr and In are two sources of information. Pr can be the Prediction and In the sensory Input. 

Pr can be seen as the hypothesis that we are interested in testing and In the piece of evidence that 

confirms or disconfirms the hypothesis. P(Pr) is defined as the prior probability of Pr and P(Pr|In) 
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is defined as the posterior probability of Pr, i.e., the probability assigned to Pr after taking into 

account the new piece of evidence, In. This theorem provides the estimation of a determined 

statistic in relation to prior observed probabilities of events constituting that statistic. 

 

Predictive coding (predicting “what”): In neuroscience, the predictive coding hypothesis 

proposes a functional interpretation of how information is represented (hierarchically) and 

processed (iteratively). Predictive coding implies that the neural system actively predicts upcoming 

sensory information rather than passively registering it, while only the unpredicted portion of the 

sensory signal is recorded.  

 

Predictive timing (predicting “when”): Refers to the ability of the brain to estimate the time 

intervals in which to deploy resources for the processing of an input stimulus. The rhythmic features 

of the oscillatory neural activity are assumed to reflect such predictive timing. 

 

Event Related Potentials: Estimation of neural activity (voltages) time-locked to the presentation 

of an event, obtained by averaging samples of electrophysiological recordings across multiple 

repetitions of the same event. 

 

Frequency desynchronization: Estimation of the change in power of the oscillatory neural activity 

in a specific frequency relative to a baseline period. Power increases are defined as synchronization 

effects, while power decreases as desynchronization. Power decrease has traditionally been 

considered as reflecting the desynchronized activity of large populations of neurons that are actively 

processing information independently (Pfurtscheller & Da Silva, 1999). 

 

Functional connectivity: Connectivity between brain regions that share functional properties, 

defined as the temporal correlation between spatially remote neurophysiological events. It can be 

estimated in different ways such as spectral coherence and phase locking value, among others.  
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Figure captions 

 

Figure 1: Schematic model of the Prediction and Learning through which we represent the 

continuous interaction between the internal knowledge and the external environment. Prediction 

critically is reflected in the pre-stimulus brain activity; Learning is reflected in the post-stimulus 

brain activity 

 

Figure 2: Oscillatory effects recorded in the MEG studies in which we studied deterministic 

prediction of lexical items (MWU) compared to probabilistic prediction (Semantic). In the top panel 

we report the sensor-level topography of the pre-stimulus oscillatory beta effects on the left, and 

post-stimulus oscillatory alpha effects on the right. In the underlying images, we report the time-

frequency representation from the most relevant sensors (indicated by circles in the topoplots) for 

the two conditions and the differential effects.  

 






