

Variability in Remote Portlets

Dissertation
presented to

the Department of Computer Languages and Systems of
the University of the Basque Country

in Partial Fulfillment of
the Requirements
for the Degree of

Doctor of Philosophy

Sandy Pérez González

Supervisor: Prof. Dr. Oscar Díaz García
San Sebastián, Spain, 2015

(cc)2016 SABDY PEREZ GONZALEZ (cc by-sa 4.0)

This work was hosted by the University of the Basque Country (Faculty
of Computer Sciences). The author enjoyed a doctoral grant from the
Basque Government under the “Researchers Training Program” during
the years 2006 to 2010. The work was co-supported by the Spanish
Ministry of Science and Education, and the European Social Fund under
contract MODELINE, TIN2008-06507-C02-01 and TIN2008-06507-C02-
02. The views and conclusions contained herein are those of the author and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the University of the Basque
Country, the Basque Government, the Spanish Ministry of Science and
Education, or the European Social Fund.

.

To my parents, Caridad and José,
for their endless encouragement and patience,

¡Gracias!

Summary

Portlet standardization efforts, namely, the JavaTMPortlet Specification
(formerly JSR 286) and the Web Services for Remote Portlets (WSRP)
promise to make portlets into universal and reusable plug-and-play
components, making it possible to build a portal by plugging portlets from
different vendors into a portal from any vendor. To make portlet reuse
practical and effective, portlets need to offer some degree of variability to
increase their capability to be tailored to the diversity of settings through
which they might be delivered. So far, portlet standards account for
variability by accessing and storing persistent configuration data and user
profile parameters whose values are provided by the portal at runtime.
These mechanisms imply that portlets are equipped with a number of
variants, and are able, at runtime, to select between them. However, this
might not be enough.

The portlet architecture distinguishes between the portlet provider
and the portlet consumer. The provider builds the portlet, the consumer
integrates the portlet. Providers and consumer might not coincide. This
forces providers to foresee the different scenarios in which the portlet will
be used. This is not easy. Currently available configuration mechanism
falls short to account for the different needs that might arise when
integrating portlets in third-party portals.

This thesis explores three scenarios where mechanisms provided by
current portlet standards are not enough, namely:

1. the realization of Service-Oriented Architecture (SOA). Portals as
integration platforms, offer an excellent conduit for realizing SOAs.
The thesis propose the use of Software Product Lines techniques that
account for portlets to become truly reusable services,

2. the provision of social tagging as a portal commodity. That
is, tagging functionality is up to the portal but offered through
portlets. To account of the portal specifics, portlet events and RDFa
annotations are used to build a novel architecture that allows portlets
to be seamlessly plugged into portal tagging infrastructure,

3. mashup-based personalization. Here, mashing is regarded as
an additional personalization mechanism whereby portal users
can supplement portal services with their own data needs. An
architecture is presented where portlet providers facilitate mashups
placeholders and XBL bindings are used to dynamically bound user
mashups to them.

The thesis develops the theoretical underpinnings, and provides different
implementations as a proof-of-concepts. All solutions are JSR-286 and
WSRP compliant.

Contents

1 Introduction 1
1.1 Context . 1
1.2 General Problem . 3
1.3 Scenario 1: Provider-Based Variability 4
1.4 Scenario 2: Consumer-Based Variability 6
1.5 Scenario 3: User-Based Variability 7
1.6 Contributions . 8
1.7 Design-Science as Research Approach 9
1.8 Outline . 11
1.9 Conclusions . 13

2 Background 15
2.1 Overview . 15
2.2 Enterprise Information Portals 16
2.3 Portlets . 19
2.4 The WSRP Specification 23
2.5 Conclusions . 26

3 Introducing Variability in Portlets 29
3.1 Overview . 29
3.2 Introducing Variability in a Family of Portlets 31

3.2.1 Identification of Variability 31
3.2.2 Constraining Variability 33
3.2.3 Implementing Variability 41

ix

Variability in Remote Portlets

3.2.4 Managing the Variability 42
3.3 Conclusions . 42

4 Provider-Based Variability 43
4.1 Overview . 43
4.2 What Can Vary . 46
4.3 When Can It Vary . 48
4.4 How Is It Supported . 50
4.5 A Product-Line Architecture to Portlet Families 54

4.5.1 WSRP Parameter Extensions 55
4.5.2 Portlet Registration Extensions 57

4.6 Conclusions . 60

5 Consumer-Based Variability 61
5.1 Overview . 61
5.2 What Can Vary . 65
5.3 When Can It Vary . 67
5.4 How Is It Supported . 68
5.5 Social Tagging as a Portal Commodity 69

5.5.1 Back-end Consistency 69
5.5.2 Front-end Consistency 73

5.6 Conclusions . 80

6 User-Based Variability 83
6.1 Overview . 83
6.2 What Can Vary . 85
6.3 When Can It Vary . 88
6.4 How Is It Supported . 88
6.5 Mashup-based Personalization 88

6.5.1 Realizing the Portlet Provider Perspective 89
6.5.2 Realizing the Portal Perspective 90
6.5.3 Setting Composition Coordinates 96
6.5.4 Setting Orchestration Coordinates 97

x

CONTENTS

6.5.5 Extending Portal Design Tools 99
6.6 Related Work . 100
6.7 Conclusions . 102

7 Conclusions 105
7.1 Overview . 105
7.2 Results . 107
7.3 Publications . 109
7.4 Research Stages . 112
7.5 Assessment and Future Research 112
7.6 Conclusions . 114

xi

List of Figures

1.1 Framework for design science 10

1.2 Chapter Map . 12

2.1 Sample portal page with portlets. 20

2.2 Request handling sequence. 21

2.3 A sample portlet. 23

2.4 Portlet producers and consumers. 24

2.5 WSRP protocol: portlet Consumer registration. 25

2.6 WSRP protocol: request handling sequence. 26

3.1 Steps for introducing variability in portlets. 31

3.2 Feature diagram of the flight booking portlet family. 33

3.3 Variable feature life cycle. 34

3.4 Portlet development activities. 36

4.1 The Consumer Model. 47

4.2 The DomainProducer communicates to the PortalIDE the
Consumer Model. 56

4.3 Conforming the Consumer Profile through the portal IDE. 56

4.4 The PortaIDE communicates to the DomainProducer its
Consumer Profile. 57

4.5 The architecture. 58

4.6 Registration time: sequence diagram. 59

xiii

Variability in Remote Portlets

5.1 A portal page offering two portlets (i.e., LibraryPortlet and
AllWebJournalPortlet). 65

5.2 A feature diagram where tagging is represented as an
external feuture. 66

5.3 The PartOnt (a) and the TagOnt (b) ontologies together
with their Protégé rendering counterparts (c). 71

5.4 JSP that delivers a fragment markup with annotations
along the TagOnt and PartOnt ontologies. 72

5.5 Interaction diagram: base requests vs. tagging requests. . . 74
5.6 Split query processing. Query specification goes

through TagBarPortlet: the tag selected by the user is
highlighted. Query outcome is delegated to the portlets
holding the resource content, i.e., LibraryPortlet and
AllWebJournalPortlet. 77

5.7 portlet.xml configuration files for TagBarPortlet and
LibraryPortlet. Both portlets know about the tagSelected
event. 78

5.8 Handling a tagSelected occurrence. 79

6.1 Side-by-side composition. 86
6.2 Inlay composition. 87
6.3 Portlet markup with mashcells as mashup placeholders. . 91
6.4 Design space for the flighBooking portlet. 92
6.5 An XBL sample. 96
6.6 XBL support for the composition coordinate

(WeatherForecastGadget,top-mashcell). 97
6.7 XBL support for the orchestration coordinate (top-

mashcell, destination). 98
6.8 Mashup process: composition step. 99
6.9 Mashup process: orchestration step. 101

7.1 Top five publications as for the number of references in
Google Scholar [Accessed 8 December 2015]. 109

xiv

LIST OF FIGURES

7.2 The author’s Google Scholar metrics [Accessed 8
December 2015]. 111

xv

Chapter 1

Introduction

“A journey of a thousand miles begins with a single step.”

– Lao Tzu.

1.1 Context

An Enterprise Information Portal (EIP) is a framework for integrating
information, people and processes across organizational boundaries in
a manner similar to the more general web portals (Wikipedia). One
hallmark of enterprise portals (hereafter referred to as just “portal”)
is the de-centralized content contribution and content management,
which keeps the information always updated. Another distinguishing
characteristic is that they cater for customers, vendors and others beyond
an organization’s boundaries. This contrasts with a corporate portal
which is structured for roles within an organization. Portals enable
people to communicate and collaborate, providing a unified point of
access to dynamic content from business applications, breaking down
silos of content, and delivering information effectively through context-
driven personalization. A hallmark of portals is integration. Rather

1

Variability in Remote Portlets

than providing its own services, a portal is also a conduit for external
applications. So offered applications are technically known as portlets.

A portlet is a user interface Web component which is packed to be
delivered through third-party Web applications (e.g., a portal). Portlets are
user-facing (i.e., return markup fragments rather than data-oriented XML)
and multi-step (i.e., they encapsulate a chain of steps rather than a one-
shot delivery). Designed to achieve interoperability between portlets and
portal platforms, the JavaTMPortlet Specification [Jav03, Jav08] promises
write once, deploy anywhere portlet development. This provides the
infrastructure to make feasible a portlet market à la COST1 so that portals
can deliver portlets being provided by third parties. Indeed, the Open
Source Portlet Repository Project has been launched in 2006 to foster the
free and open exchange of portlets. The Portlet Repository is "a library of
ready-to-run applications that you can download and deploy directly into
your portal with, in most cases, no additional setups or configurations"
[BKPS06]. Other similar initiatives include Portlet Swap (jboss.org) and
Liferay Marketplace (liferay.com).

The Web Services for Remote Portlets (WSRP) specification
[ftAoSIS03, ftAoSIS08] goes one step further and allows for the remote
rendering of portlets. The WSRP mantra is “deploy once, deliver
anywhere”. With WSRP, a portlet can be hosted ("produced") on
physically and logically separate infrastructure from the portals surfacing
("consuming") the portlet. In so doing, WSRP becomes a feasible way to
build federated portals, i.e., a network of interoperating portals, whereby
resources hosted in one portal can be made available in many. From
the above perspective, portlets strive to play at the front end the same
role that Web services currently enjoy at the back end, namely, enablers
of application assembly through reusable services. On the portlet case,
differences stem from what is being reused (i.e., which includes the
presentation layer) and where is the integration achieved (i.e., at the front
end).

1COST stands for Commercial off-the-shelf.

2

Chapter 1. Introduction

1.2 General Problem

Software variability is the ability of a software system or artefact to be
changed, customized or configured for use in a particular context. But, how
much variability should be considered? Who is aware of the variability
required? To answer these questions let us introduce an example.

Consider an airline company (e.g., IBERIA). It offers two services
in terms of portlets: searchFlight and bookFlight. In this way, travel
agencies (e.g., HALCON) can inject these portlets within their portals.
Users (e.g., customers of HALCON) access the travel agency portal
without being aware about searchFlight is being offered by a third party
(i.e., IBERIA). Therefore, portlets are explicitly developed for and used
in multiple portals, either locally deployed or remotely provided. The
important point to note is that portlets might need to be integrated in
diverse context and audiences. For instance, IBERIA offers its services
not only to HALCON but also to other travel agencies (e.g., EROSKI).
This means that searchFlight should also cater for the integration needs
of EROSKI. But this is not enough. Even customers within a given portal
might have different needs. For instance, Oscar is very apprehensive to
weather conditions so that he looks at the weather forecast before setting
the trip date. This just applies to Mr. Oscar, and it is not contemplated by
flightBooking. Hence, Mr. Oscar is forced to move outside the portal realm
to satisfy this data need (e.g., through a weatherForecast widget), and to
bridge himself the passing of data from the portal to the widget.

The previous example serves to highlight the different contexts in
which variability can be set and decided. Specifically, three “realms of
decision” can be envisaged:

• the portlet provider (e.g., IBERIA). Here, the provider conducts a
deep domain analysis to account for the variations among all the
users and settings in which its portlets can be deployed.

• the portlet consumer (e.g., HALCON). Here, the consumer portal

3

Variability in Remote Portlets

conducts an analysis of its consumer base, and means are offered for
the portal owner to configure the portlet appropriately.

• the end user (e.g., Mr. Oscar). No design can provide information
for every situation, and no designer can include personalized
information for every user. This is true for any web application, and
portlets are not exception.

Worth mentioning, that these realms are not orthogonal but
complementary. All, the portlet provider, the portlet consumer, and
even, end users, should collaborate to obtain a better Web experience.
Next sections delve into each of these scenarios.

1.3 Scenario 1: Provider-Based Variability

This scenario puts the variability burden on the provider’s shoulders. The
provider should conduct domain analysis to comprehend the different
settings in which portlets are going to be deployed. This leads to the notion
of the Consumer Profile.

The Consumer Profile includes not only the consumer’s
platform (e.g., JBoss GateIn, Liferay, eXo Platform) but also
presentation and functional requirements posed by the portal
owner that needs to be catered for by the portlet producer.

While the user profile characterizes the end user (e.g., age, name, etc.), the
Consumer Profile captures the idiosyncrasies of the organization through
which the portlet is being delivered (e.g., the portal owner) as far as the
portlet functionality is concerned. The user profile can be dynamic and
hence, requires the portlet to be customized at runtime. By contrast,
the Consumer Profile is known at registration time, and it is not always
appropriate/possible to consider it at runtime. Rather, it is better to
customize the code at development time, and produce an organization-
specific portlet which built-in, custom functionality. This makes even more

4

Chapter 1. Introduction

stringent to address portlet variability. To this end, we propose the use of
software product line (SPL) development.

SPL development refers to software engineering methods, tools and
techniques for creating a collection of similar software systems from
a shared set of software assets using a common means of production
(Wikipedia). In this scenario, we no longer have a portlet but a family
of portlets, and the portlet provider becomes the “assembly line” of this
family. This work promotes this vision by introducing an organization-
aware, WSRP-compliant architecture that let portlet consumers registry
and handle “family portlets” in the same way that “traditional portlets”. In
so doing, portlets are nearer to become truly reusable services, and hence
realizing the so-called Service Oriented Architectures (SOAs)

A SOA is “an IT strategy that organizes the discrete functions
contained in enterprise Service-oriented applications into interoperable,
Architecture standards-based services that can be combined and reused
quickly to meet business needs” - BEA Systems, Inc. SOA offers
organizations greater agility, as they can quickly deploy new business
processes or modified existing ones in response to marketplace changes.
Portlet-based portals might provide a light-weight approach to SOA. Using
portal terminology, the previous definition can be rephrased to define
portlet-based portals as a SOA realization that organizes the discrete
functions contained in enterprise applications [portlets] into interoperable
[remote portlets can communicate and share data], standards-based
services [WSRP is built on Web Service standards] that can be combined
[portals can aggregate information from multiple portlets] and reused
quickly [WSRP does not require programming effort] to meet business
needs. Although a growing number of organizations are moving to SOA
many are having difficulties in identifying the first step in the process. As
organizations search for a way to leverage a service oriented architecture,
portlet-based portals can provide a lightweight approach [Phi05].

This SOA scenario not only requires portlet interoperability (through
portlet standards) and portlet dissemination (through portlet repositories)

5

Variability in Remote Portlets

but also portlet variability. Portlets tend to be coarser grained than
traditional Web services since they encapsulate the presentation layer as
well as the functional layer. These coarse-grained components have fewer
chances to be reused “as-is” [JGJ97]. This can jeopardize the vision
of portlets as reusable services. This introduces the following research
questions:

How SPL development can be applied to portlets?

Which would be the implications for the WSRP standard?

1.4 Scenario 2: Consumer-Based Variability

Portlet providers might not always foresee all needs, or some portlets
might need some extensions that cannot be taken care for with just
parameterization configuration. Social tagging is a case in point. Portals, to
a bigger extent than other Web applications, have the notion of community
deeply rooted inside its nature. Specifically, Enterprise Information
Portals are borne to support the employees within an organization.
Therefore, it is just natural to integrate social networking into these portals.
Among social networking activities, we focus on tagging. Motivation for
bringing tagging at the working place admits a two-fold perspective. From
the company’s viewpoint, tagging is an affordable approach to account
for knowledge sharing and retention in the context of an organization,
preventing leaking critical data outside the company [DMG+08]. From
an employee’s perspective, distinct studies [TSMM08, AN07, MYWF07]
conclude that individual motivations for tagging at the working place,
such as creating a personal repository or re-finding one’s own resources,
remained important.

In this scenario, taggers (i.e., the portal community) and tags are
portal assets. However, and unlike self-sufficient tagging sites, portals
could not hold the description of all tag-able resources. For instance,
the description of the books or hotels offered through the portal could be

6

Chapter 1. Introduction

remotely kept by, e.g., Amazon and Expedia, respectively. This outsource
of content description does not imply that the external resources are not
worth tagging. This leads to distinguish between two actors: the resource
provider, which keeps the content of the tag-able resources (e.g., book
description in the case of Amazon), and the resource consumer (i.e., the
portal), which holds the tagger community and the tags. In the same way,
that portlets adapt their rendering to the aesthetic guidelines of the hosting
portal, tagging through portlets should also cater for the peculiarities of the
consumer portal. This introduces the following research questions:

How portlets can be made aware of portal specificities,
specifically, portal-based tagging?

1.5 Scenario 3: User-Based Variability

Personalization is the process of tailoring pages to individual users’
characteristics or preferences that will be meaningful to their goals.
It works on the theory that each user has unique interest and needs.
Unfortunately, users typically have no influence on choosing which content
can be personalized or how it can be manipulated. Furthermore, it is not
always easy for the designer to foresee the distinct utilization contexts and
goals from where the application is accessed. “No design can provide
information for every situation, and no designer can include personalized
information for every user” [Rho00].

Not so long ago, only developers could create applications. Users
could only use what developers have created before. However, things have
changed. With mashups, users can avoid the IT department and assemble
their own applications in response to their own individual needs. A mashup
is a lightweight Web application created by combining information and
capabilities from more than one existing source to deliver new functions
and insights. New powerful tools are currently available (e.g., Software
AG Presto, IBM Mashup Center, Kofax Kapow) that require little or

7

Variability in Remote Portlets

no IT involvement, and allow savvy users to create the mashup they
need, whenever they need it. Enabling users in this way can reduce the
application backlog on the IT department, development time and costs
and lower the cost of customizing information so individuals can adapt
information easily into exactly the form they need it [CDG+08]. By taking
advantages of mashups features, a portal could become a highly-dynamic
yet personalized environment. This introduces the following research
questions:

How mashups can be introduced in portlet-based portals?

1.6 Contributions

This thesis has been developed in the context of engineering, which pushed
us to achieve not only an academic contribution but also to look at the
broader applicability of these ideas. To this end, we provide a realization
(implementation) of the ideas we describe here. In our opinion, this thesis
makes the following contributions:

Provider-Based Variability

This work promotes the vision of portlets as reusable services by
introducing the notion of Consumer Profile as a way to capture the distinct
organization scenarios where a portlet can be deployed. This in turn leads
to the use of an SPL approach to portlet development, and the introduction
of an WSRP-compliant architecture that let portlet consumers registry and
handle “family portlets” in the same way that “traditional portlets”.

Consumer-Based Variability

It advocates for means to better account for the portlet consumer specifics.
Tagging is used as an example. It argues for tagging to be orthogonally
supported as a crosscut on top of portlets, i.e., as a portal commodity.

8

Chapter 1. Introduction

The main challenge rests on consistency at both the back-end (i.e., use
of a common structure for tagging data, e.g., a common set of tags), and
the front-end (i.e., tagging interactions to be achieved seamlessly across
the portal using similar rendering guidelines). Portlet events and RDFa
annotations are used to meet this requirement.

User-Based Variability

The presented approach introduces mashups as an additional
personalization mechanism whereby portal users can supplement
portal services (i.e., portlets) with their own data needs. The approach
is realized for Liferay as the portal engine, portlets as the realization of
portal services, and XBL as the integration technology.

1.7 Design-Science as Research Approach

Design science is “the scientific study and creation of artefacts as they are
developed and used by people with the goal of solving practical problems
of general interest” [JP14]. In additional quote from P. Johannesson and E.
Perjons, brilliantly summarise the essence of this approach:

The starting point for a design researcher is that something
is not quite right with the world, and it has to be changed.
A new artefact should be introduced into the world to make
it different, to make it better. Design science researchers do
not only think and theorise about the existing world. They
model, make, and build in order to create new worlds. They
produce both a novel artefact and knowledge about it and
its effects on the environment. In particular, they need to
formulate problem statements, determine stakeholder goals
and requirements, and evaluate proposed artefacts. In other
words, artefacts as well as knowledge about them are research
outcomes for design science.

9

Variability in Remote Portlets

Figure 1.1: Overview of the method framework for design science (taken
from [JP14])

Specifically, we follow the framework defined in [JP14]. For self-
contained, next paragraphs are an excerpt of [JP14] where the different
tasks of their Design Science methodology are described (see Figure 1.1):

• Explicate Problem. The Explicate Problem activity is about
investigating and analysing a practical problem. The problem
needs to be precisely formulated and justified by showing that it
is significant for some practice. The problem should be of general
interest, i.e., significant not only for one local practice but also for
some global practice. Furthermore, underlying causes to the problem
may be identified and analysed.

• Define Requirements. The Define Requirements activity outlines
a solution to the explicated problem in the form of an artefact and
elicits requirements, which can be seen as a transformation of the
problem into demands on the proposed artefact.

• Design and Develop Artefact. The Design and Develop Artefact
activity creates an artefact that addresses the explicated problem
and fulfils the defined requirements. Designing an artefact includes

10

Chapter 1. Introduction

determining its functionality as well as its structure.

• Demonstrate Artefact. The Demonstrate Artefact activity uses
the developed artefact in an illustrative or real-life case, sometimes
called a “proof of concept”, thereby proving the feasibility of the
artefact. The demonstration will show that the artefact actually can
solve an instance of the problem.

• Evaluate Artefact. The Evaluate Artefact activity determines how
well the artefact fulfils the requirements and to what extent it can
solve, or alleviate, the practical problem that motivated the research.

As indicated by P. Johannesson and E. Perjons, these tasks do not follow
strictly in sequence. Rather, research is commonly iterative, moving back
and forth between all the activities of problem explication, requirements
definition, development, and evaluation. The arrows in Figure 1.1 should
not be interpreted as temporal orderings but as input–output relationships.
In other words, the activities should not be seen as temporally ordered but
instead as logically related through input–output relationships.

1.8 Outline

This section provides a brief summary of each chapter of this dissertation.
Figure 1.2 presents a chapter map to help to put each of them in context.

Chapter 2

This chapter introduces the background (Enterprise Information Portals,
Portlets and WSRP) on top of which the remaining chapters are developed.

Chapter 3

This chapter introduces the notion of “portlet families” and discusses the
factors that must be considered when introducing variability in a family of
portlets.

11

Variability in Remote Portlets

Figure 1.2: Chapter Map

Chapter 4

This chapter tackles scenario 1.3. It promotes the vision of portlets as
reusable services by introducing the notion of Consumer Profile as a way to
capture the distinct organization scenarios where a portlet can be deployed.

12

Chapter 1. Introduction

Chapter 5

This chapter tackles scenario 1.4. It advocates for means to better account
for the portlet consumer specifics. Tagging is used as an example. It argues
for tagging to be orthogonally supported as a crosscut on top of portlets,
i.e., as a portal commodity.

Chapter 6

This chapter tackles scenario 1.5. It introduces mashups as an additional
personalization mechanism whereby portal users can supplement portal
services (i.e., portlets) with their own data needs.

Chapter 7

This chapter concludes the dissertation. It summarizes the obtained results,
makes an assessment and also identifies future research topics that this
work raised.

1.9 Conclusions

The intention of this chapter was to give an overview of the contents of
this dissertation. The topic was introduced and what, in our opinion, are
its contributions were listed. The next chapter starts with a review of the
background.

13

Chapter 2

Background

2.1 Overview

The proliferation of Web applications has raised the need for a new kind of
application to tie these disparate Web applications together into aggregated
applications—the Web portals. As soon as the need was identified, there
were many portal vendors claiming their products to be the solution to such
a need. This first generation of portals had entirely proprietary APIs.

At the same time, J2EE was having a great success as a platform
for server programming in the JavaTMprogramming language. Quickly,
portal vendors began to release non-standard extensions to J2EE. However,
these portal-specific extensions were against the portability of enterprise
applications, which was considered the characteristic of the J2EE that had
most contributed to its success.

IBM and Sun recognized this problem and, after having launching
a proposal for standardization separately, they reached an agreement
to combine both proposals into JSR 168 (a.k.a. the JavaTMPortlet
Specification version 1.0) [Jav03]. JSR 168 was adopted by most JavaTM-
based portal vendors.

15

Variability in Remote Portlets

However, the widespread use of the technology soon brought new
requirements for new functionality that was not addressed in JSR 168.
This situation leads, once again to the detriment of portability, to the
emergence of new portal-specific extensions to JSR 168. JSR 286 (a.k.a.
the JavaTMPortlet Specification version 2.0) [Jav08] tries to solve this
problem by adding that functionality most requested by developers.

Alongside the JSR 168, a related standard was developed—the Web
Services for Remote Portlets Specification (WSRP) [ftAoSIS03]. The
WSRP specification is motivated by the need of portals to aggregate not
only local content, but also content provided by external content hosts.
Traditionally provided by data-oriented Web services, this content requires
aggregating applications (e.g., a portal) to provide specific presentation
logic. This approach is not well suited to dynamic integration of content as
a plug-and-play solution. To solve this problem, the WSRP specification
introduces a presentation-oriented Web service interface that provides both
business logic and presentation logic. Being related specifications, the
release of the JSR 286 implied the release of a new version of the WSRP
specification [ftAoSIS08].

This chapter provides a quick glance at Web portals, portlets and
WSRP. We invite the reader to skip this chapter if familiar with those
concepts.

2.2 Enterprise Information Portals

It is quite difficult to define accurately what a “Web portal” is. This term
has been overused and it takes on a somewhat different meaning depending
on the viewpoint of the stakeholder. But, in general terms a portal is just a
gateway, and a Web portal can be seen as a gateway to the information and
services on the Web. Tatnall et al. [Tat05] defines a Web portal as a special
Internet (or intranet) site designed to act as a gateway to give access to
other sites. It should be seen as providing a gateway not just to sites on the
Web, but to all network-accessible resources, whether involving intranets,

16

Chapter 2. Background

extranets, or the Internet. In other words, a Web portal provides users a
single access point to all the types of information.

The term “Web portal” probably has its origins in search engine sites
such as Yahoo!, Lycos, and so on, which can now be classified as the first
generation Web portals. Apart from the search engine feature, these first
generation Web portals quickly evolved into sites offering other services
such as e-mail, news, stock quotes, community building, and so on. Web
portals may be horizontal or vertical in nature [Str02]. Horizontal portals
are intended to be accessed by a broad base of users, whereas vertical
portals focus on a particular audience.

A kind of vertical portals that have grown to be widely popular
over the last few years is the so-called Enterprise Information Portals
(a.k.a. Corporate Portals). The term Enterprise Information Portals is
applied to the gateway to the corporate intranets that are used to manage
the knowledge within an organization. Primarily designed to automate
business-to-employee (B2E) processes, they can be seen as a customized
home page or desktop that offers employees the means to access and share
data and information within the enterprise. In this dissertation, when
speaking of portal it means Enterprise Information Portal.

Features of a Portal

The following list presents those features commonly offered by portals
[RAV+04].

• Aggregation of content. It refers to the capability of portals to
aggregate content from different sources and to present it into one
consistent and interoperating view.

• Customized views. Different users accessing the same URL may
get different views depending on the role of the person in the
organization.

• Personalized content. Personalization takes customization one

17

Variability in Remote Portlets

step further and allows individual users to tailored their views
to individual users’ characteristics or preferences that will be
meaningful to their goals.

• Unified security model. Users have only one account for all
different systems aggregated by the portal. This provides not only
single sign-on1, but also an enterprise-wide security policy based on
role.

• Collaboration features. Collaboration is mainly concerned with
building communities of interest, whereby portal’s users can share
common knowledge and insight on a particular set of data.

• Localization. Localization implies to adapt the content to the locale
in which it is being presented, including the language of the user
interface and features such as date format, currency exchange, and
so on.

• Internationalization. Internationalization is the process of
designing an application or portal in such a way that it can be
localized without engineering changes.

• Web services access. Web services are a widespread approach to
provide services to third-parties and to consume them. This feature
refers to the ability of a portal to consume and provide Web services.

• Workflow. A workflow consists of a sequence of connected steps.
In the case of portals, it allows users to seamlessly move through a
set of tasks across multiple data sources and applications.

• Self-service. Self-service is the practice of serving oneself. For
example, in many gas stations, customers pump their own gas rather
than have an attendant do it. In the case of portals, self-service means

1Single sign-on allows portals to pull all of your different systems together and make
them available by logging in just once.

18

Chapter 2. Background

that the user should conduct transactions easily with minimal or no
support from other people.

• Client agnostic processing. Portals should be browser-, device-,
and platform-independent.

The above list does not include all the features we could found in a portal.
Neither the minimum set of features that any portal must offer. Its main
goal is to give an overview of the types of features we can expect to find in
a portal.

2.3 Portlets

With the trend towards more portal solutions also came a growing list
of portal-specific APIs that developers had to learn. The JavaTMPortlet
Specification [Jav08] defines a common API for developing portal
applications that can work on any portal. JSR 286-compliant portal
applications are known as portlets.

A portlet is an application that provides a specific piece of content
(information or service) to be included as part of a portal page. The
content generated by a portlet is also called a fragment. Being user-facing,
portlets generate markup fragments (e.g., HTML, XHTML, WML) rather
than data-oriented XML. The content of a portlet is normally aggregated
with the content of other portlets to form the portal page. Figure 2.1 shows
a sample portal page containing four portlets.

Portlets are multi-step applications, i.e., they encapsulate a chain of
steps rather than a one-shot delivering. The life cycle of a portlet is
managed by a portlet container, which is responsible for initializing and
destroying the portlet. After a portlet is properly initialized, the portlet
container may invoke the portlet to handle client requests. The Portlet
interface defines two methods for handling requests, the processAction
method and the render method. Additionally, the EventPortlet and
ResourceServingPortlet interfaces define the additional life cycle methods

19

Variability in Remote Portlets

Figure 2.1: Sample portal page with portlets.

processEvent and serveResource. Figure 2.2 presents the life cycle of an
action request.

Normally, users interact with content produced by a portlet, for
example by following links or submitting forms, resulting in a portlet
action being received by the portal (1). Then, the portal requests the portlet
container to invoke the portlet to process the action (2), which ends with
the portlet container executing the request on the hosted portlet (3). As a
result of an action, the portlet may publish events (4), which result in one or
more invocations of the processEvent method of this or another portlet (5).
After the event processing is finished, portal invokes the render method
for all portlets in the portal page (6), each of them returning a fragment.
Finally, the portal builds a “quilt page” out of these fragments, and renders
it back to the user (7).

At this point, it is important to notice two things. Firstly, portlet can
react to actions or state changes not directly related to an interaction of the

20

Chapter 2. Background

Figure 2.2: Request handling sequence.

user with the portlet. This is the case of portlet A in figure 2.2. Secondly,
the life cycle of an action request is split into two parts: the action
processing phase, which includes the event processing phase, and the
rendering phase. This provides a clean separation of the action semantics
from the rendering of the content.

Additionally, in order to serve resources or render content fragments
via the portlet, the portlet can implement the ResourceServingPortlet
interface and create resource URLs that will trigger the serveResource
method on this interface. The portlet container does not render any
output in addition to the content returned by the serveResource call. The
serveResource call can be used to implement Ajax use cases.

21

Variability in Remote Portlets

Adaptive/Adaptable Portlets

Normally, portlets perform different tasks and create different content
depending on the function they are currently performing. Such a function
is indicated by the portlet mode. A portlet mode advises the portlet what
task it should perform and what content it should generate. For instance,
when in the VIEW mode, the portlet renders fragments which support its
functional purpose. This is what we usually mean by interacting with a
traditional Web application. Other modes include the EDIT mode, where
the portlet provides content and logic that let a user customize the behavior
of this portlet and the HELP mode, where a portlet may provide help
screens that explain the portlet purpose, and its expected usage.

The mode example illustrates how portlets can adapt their behavior to
the function they are currently performing. Moreover, portlets should also
decide how much information they should render depending on the amount
of portal page space they have assigned. The window state indicates the
portlet the available space. The NORMAL window state indicates that a
portlet may be sharing the page with other portlets. The MAXIMIZED
window state is an indication that a portlet may be the only portlet being
rendered in the portal page. And, when a portlet is in MINIMIZED window
state, the portlet should only render minimal output or no output at all.

Both portlet mode and window state can be change programmatically
by the portlet or manually by the portal user. To this end, content generated
by portlets is usually enclosed in a decorator provided by the portal. This
decorator is the object responsible for providing the controls that allow a
portal user to manually change these values (see figure 2.3).

Portlet not only adapt their behaviour to the portlet mode and
the window state, but they can also be adapted to the user profile2,
initialization parameters, and additional portlet-specific data collected as
portlet preferences.

2User Information Attributes Names are derived from the Platform for Privacy
Preferences 1.0 (P3P 1.0) by OASIS where attributes are described such as
user.name.given, user.business-info.telecom.telephone.intcode and the like.

22

Chapter 2. Background

Figure 2.3: A sample portlet.

These portlet preferences provide a parameterization-based
mechanism to adapt the portlet. They are commonly configured to
provide a customized view or behavior for different users. For example, a
weather portlet that displays the weather of a specific location could offer
the location as a portlet preference in order to allow individual portal users
to select the location he or she wants. These preferences can be changed
at configuration time (by the portal administrator) or at enactment time.
In this latter case, the values can be automatically set by the portlet itself
based on the user profile (adaptive approach) or prompting the current
user through the EDIT mode (adaptable approach).

2.4 The WSRP Specification

The WSRP specification [ftAoSIS08] standardizes the Web service
interface a portlet producer must implement to allow another application
(typically a portal) to consume its portlets. Such an interface defines
a protocol that decouples portlet producers from portlet consumers.
Therefore, the main actors involved here are Producers (web services
conforming to this specification) and Consumers (applications consuming
Producers in a manner conforming to WSRP specification).

23

Variability in Remote Portlets

Figure 2.4: Portlet producers and consumers.

The WSRP specification defines four interfaces:

• Service Description. The getServiceDescription operation provides
a discovery mechanism-agnostic means for a Consumer to ascertain
a Producer’s or portlet’s capabilities.

• Markup. This interface offers operations to request the generation of
markup and the processing of interactions with that markup.

• Registration. A registration describes a relationship between a
Consumer and a Producer. This interface allows Consumers to
establish these relationships.

• Portlet Management. This interface provides the operations that
allow Consumers to clone and customize the portlets the Producer
offers.

It provides the infrastructure to make feasible a portlet market à la COST3

so that portals can deliver portlets being provided by third parties (see
figure 2.4).

3COST stands for Commercial off-the-shelf.

24

Chapter 2. Background

Figure 2.5: WSRP protocol: portlet Consumer registration.

The interaction among these actors goes as follows. First, portal
registration is achieved by the portal administrator normally through
a portal IDE (e.g., Liferay, eXo Platform, etc.), and ends up with a
portal being registered to a given portlet producer. Figure 2.5 outlines
the protocol. First, an introductory description of the producer is
obtained through getServiceDescription(). If registration is required then,
consumers must register with a producer before accessing any of the
producer’s portlets. Once registered, the consumer queries again the
producer but now, a detailed description of the available portlets is
returned.

Once registered, the portal is ready to engage the portlet in conversation
to deliver its service. Continuing with the example introduce in figure
2.2, figure 2.6 presents the life cycle of an action request, but now the
portlet B is remotely provided using WSRP. Whenever the user clicks
on a link of the portlet markup, the portal receives the HTTP request
which is in turn, forwarded to the portlet producer (by means of the
performBlockingInteraction()) till it finally reaches the portlet itself. As
a result, the portlet can change its state. But no markup is returned to the

25

Variability in Remote Portlets

Figure 2.6: WSRP protocol: request handling sequence.

consumer. This requires the consumer to issue a getMarkup() to recover the
eventually new markup associated with this new state. Thus, the separation
of the action semantics from the rendering of the content, established by
the portlet specification (see section 2.3), is kept untouched.

2.5 Conclusions

The purpose of this chapter was to provide a brief introduction to the
background on top on which this work is built on, namely:

• Web portals

• Portlets

• WSRP

26

Chapter 2. Background

The interested reader can find further details of the covered topics in the
references.

27

Chapter 3

Introducing Variability in
Portlets1

3.1 Overview

A portlet is a reusable software artefact that could be simultaneously used
in different shapes by different portals. Portlet reusability is defined as
the capability of the portlet to be used in different portals [MCnP+05].
However, portlets tend to be coarse-grained software artefacts since
they encapsulate the presentation layer as well as the functional layer.
These coarse-grained components have fewer chances to be reused “as-
is” and this can jeopardize the vision of portlets as reusable software
artefacts. Of course, portlets can be used “as-is” when they match the
problem. However, slightly different requirements could make such a
portlet unsuitable for the system at hand. An important lesson learned
by the software reuse community is that any reusable software artefact
must provide the ‘right’ abstractions and the ‘right’ level of variability

1This chapter is not part of the contribution of this dissertation; it is based on
[SvGB05] and its goal is to contextualise next chapters.

29

Variability in Remote Portlets

[JGJ97, Bos00].

Handling variability implies engineering core artefacts for reuse
in a planned way. Approaches to reuse can be opportunistic or
systematic. The former does not represent an organization-wide strategy
but rather, an opportunity exploited on a project-by-project basis. Common
“clone&own” practices are a case in point. By contrast, systematic
reuse takes an organizational perspective rather than a project view. The
assumption is that projects in the same business area tend to build systems
that satisfy similar needs, so that these systems can be regarded as instances
of a family. Therefore, there is a shift from developing individual portlets
to create a portfolio of closely related portlets with controlled variations.

Development of portlet families relies heavily on the use of variability
to manage the different between individual portlets. A key issue is
how this variability is realised (a.k.a. variability realization techniques).
Many variability realization techniques have been proposed over the years
[JGJ97, SvGB05] and choosing an appropriated technique is not a trivial
task as research shows [JRLR00, GBS01, CN01, BFG+02, JGJ97, JB02].
The portlet engineer needs to choose the techniques that provide support
for the different patterns of variation that are encountered during the portlet
development life cycle. This chapter discusses the factors that must be
considered when introducing variability in a family of portlets in order to
choose an appropriate variability realization technique.

The rest of the chapter is structured as follows. Section 3.2 discusses
the factors they need to consider in order to choose an appropriate
variability realization technique. Finally, some conclusions end this
chapter.

30

Chapter 3. Introducing Variability in Portlets

3.2 Introducing Variability in a Family of
Portlets

Firstly, substantial portlet reuse requires that commonality and variability
be identified. This variability needs then to be constrained to that
which is actually required to support the current and future, planed
needs of the portlet at hand. Once variability has been identified and
constrained, it must be implemented. The last step is to manage the
variability, for example, to extend functionality by adding new variants
to cover future user requirements, pruning those variants that are no
longer used and so on. Therefore, to introduce variability in portlets, it
is necessary to perform a minimal number of steps, namely, variability
identification, variability constriction, variability implementation and
variability management [SvGB05] (see figure 3.1).

Figure 3.1: Steps for introducing variability in portlets.

Variability is concerned with all types of software development
artefacts such as requirements model, architecture design, software
components, test plans, etc. This dissertation is focused on variability in
software components, more specifically, in portlets.

3.2.1 Identification of Variability

The identification of variability is a research field in its own right
[CN01, Bos00] and it is outside the scope of this dissertation to study
it in depth. However, when discussing variability, it is convenient to
introduce the term feature. Bosch et al. [Bos00] defines a feature as
“a logical unit of behaviour that is specified by a set of functional and
quality requirements”. Features can be mandatory, alternative, optional

31

Variability in Remote Portlets

or external; let me illustrate it using an example. Consider a family of
portlets to book flights. Every portlet in such a family might share common
characteristics. For example, the flight search engine might be the same
for all portlets (i.e., a mandatory feature); every booked flight must have
a travel insurance added; however, insurance company can vary from one
portlet to another (i.e., an alternative feature); some portlets might accept
payments from PayPal and others might not (i.e., an optional feature);
finally, portlets from this family could be accessible and usable to people
with disabilities if browser rendering them supports assistive technologies
such as WAI-ARIA2 (i.e., an external feature). External features are those
“features offered by the target platform of the system” [GBS01]. They are
not part of the portlet but they are important because they are used by the
portlet which depends on them. Travel agencies that want to buy a portlet
of this family have no choice of flight search engine; however, they can
choice the insurance company they would like to work with and decide
whether to accept payments from PayPal or not. On the other hand, all
portlets from this family will or will not be more accessible to people with
disabilities depending on the browser rendering them.

Features are organized into the so-called feature diagrams. A feature
diagram represents a hierarchical decomposition of features and their
character, that is, whether they are mandatory, alternative, optional or
external (see, e.g., FODA [KCH+90], FORM [KKL+98], and FeatuRSEB
[GFdA98]). Figure 3.2 shows the feature diagram corresponding to the
flight booking portlet family described above using a notation derived from
FeatuRSEB which is introduced in [GBS01].

2WAI-ARIA, the Accessible Rich Internet Applications Suite, defines a way to make
Web content and Web applications more accessible to people with disabilities.

32

Chapter 3. Introducing Variability in Portlets

Figure 3.2: Feature diagram of the flight booking portlet family.

Notice that by modelling a family of portlets using features, variations
between members of the family is expressed in terms of alternative and
optional features. Thus, the process of identifying variability consists of
listing those varying features.

3.2.2 Constraining Variability

After having identified a variable feature (i.e., an alternative or optional
feature), the next step is to constraint it. If our family of portlets is too
large and family members vary too widely, family could collapse into
the old-style one-at-a-time portlet development effort and then benefits
of developing portlets as a family will be lost [CN01]. By constraining
the variability we enable an informed decision on how to implement the
variable feature in the family of portlets [SvGB05].

When implementing a variable feature, portlet developers need to
consider a number of factors in order to select an appropriate variability

33

Variability in Remote Portlets

realization technique. These factors can be identified by considering the
life cycle of the variable feature. As figure 3.3 shows, a variable feature
goes through different states until there is a decision on which variant to
use.

Figure 3.3: Variable feature life cycle.

Let’s take a closer look at each of these states.

• Implicit. As stated in section 3.2.1, the identification of variability is
the first step to introduce variability in a family of portlets. Variable
features identified in 3.2.1 it is said to be implicit. Implicit variable
features only exist as concepts; they are part of the outcome of 3.2.1
but are not yet implemented.

• Introduced. Variable features exploit at variation points. A variation
point “identifies one or more locations at which the variation will
occur” [JGJ97]. Each variable feature may be implemented by
one or more variation points. A variable feature is introduced in
the family of portlets when it has already been decided how to
implement it, i.e., variation points to realize the variable feature are
introduced in the family. Notice that variants may not be present at
this time.

34

Chapter 3. Introducing Variability in Portlets

• Populated. Once a variable feature is introduced the next step is
to populate it with its variants. This means that, for each variation
point, variants are implemented.

• Bound. To create a particular member of a family of portlets, we
have to make the decision of which variant is used for each variation
point. That is, the family of portlets is bound to one of the variants
for a particular variable feature.

Only the last three states are of importance for constraining a variable
feature. These states are detailed in the following sections.

Throughout this life cycle, decisions need to be made in each state
change. Svahnberg et al. [SvGB05] identifies three groups of stakeholders
responsible for making such decisions.

• Domain engineers. People that are responsible for designing and
implementing the family of portlets. Domain engineers are those
who identify mandatory, alternative and optional features, introduce
variation points and populate them with its variants. In a WSRP
scenario, this role is played by the portlet provider that conducts a
deep domain analysis and provides portlet consumers with a fixed
set of variants to choose from.

• Application engineers. This role is played by the portlet consumer,
which is responsible for deriving members from the family of
portlets developed by the portlet providers. That is, in a WSRP
scenario, portlet consumers are in charge of binding variable features
to one of its variants.

• End users. The clients of the portlet consumers, people that use the
portlets created by portlet consumers.

Introducing a Variable Feature

To introduce a variable feature into a family of portlets means to create
the set of variation points necessary to implement all of the variants for

35

Variability in Remote Portlets

that feature. The decision on when to introduce a variable feature is
governed by a number of things, such as: size of software entities, number
of variation points and cost of maintaining a variable feature [SvGB05].

Components, class packages, single classes, lines of code or even a
combination of all of them are valid ways to implement variants of a
variable feature. When speaking of software entities it refers to these
different implementation artefacts. Size of software entities has not a
direct connection to how to implement the variation points; however, it
determines the overall strategy of how to implement the variable feature.
During the portlet development process, portlets goes through different
development phases (see figure 3.4). Different software entities are mostly
likely to be considered during different development phases. For example,
components are in focus during architecture design whereas lines of code
are considered during implementation and compilation phases.

Figure 3.4: Portlet development activities.

36

Chapter 3. Introducing Variability in Portlets

On the other hand, a single variable feature may be implemented by one
or more variations point. Similarly, each variation point can be populated
with one or more variants. A thousand variation points may imply several
thousands of variants. So, it is recommendable to maintain the number of
variation points corresponding to each single variable feature as small as
possible in order to increase understandability of the source code, facilitate
maintenance and reduce the risk of introducing bugs.

Additionally, the cost of maintenance is a factor to take into account.
Variable features should be added no too early, but no later than is
needed either. It is typically more expensive (computationally) to have
a variable feature that work during runtime. However, the earlier we add
a software entity, the higher is the cost of maintaining it. If we introduce
a software entity during the architecture design, we need to consider it
during architecture design, detailed design, implementation, compilation,
deployment and linking (see figure 3.4).

Populating a Variable Feature with Variants

Once the variation points have been created the next step is to populate
them with their variants. When populating a variable feature we need to
consider three factors, namely, when, how and who [SvGB05].

When it is possible to populate. We can add new variants to a variation
point only during some phases of their life cycle. For these phases it
is said the variation point is open, and closed during all other. For
example, variation points implemented using lines of code are usually
open during detailed design and implementation but close during all the
others. When a variation point is open or closed is determined from both
a technical perspective (e.g., lines of codes are limited to detailed design
and implementation phases) and as a design decision (e.g., we desire a
variation point to be open during runtime).

How to populate. Population can be done implicitly or explicitly.
Implicit population means that the variation point has no knowledge of

37

Variability in Remote Portlets

the available variants, whereas with explicit population there is an explicit
list of all variants available. Being aware of all of the possible variants
(i.e., explicit population), the portlet could discern between them and by
itself select a suitable variant during runtime. However, implicit population
requires the intervention of a third-party (e.g., the portlet consumer) to
specify which variant to use.

Who populates the variable features with variants. In order to
select the appropriated mechanism, it is crucial to take into account
who is allowed to populate a variable feature. Commonly, portlet
providers provide the portlet consumers with a fixed set of available
variants to choose from. However, sometimes portlet providers allow
portlet consumers to create and add their own product-specific variants.
Furthermore, there is an increasing tendency to provide variability to
end users (e.g., plug-in mechanisms). Depending on this factor some
techniques are more suitable than others.

Binding to a Variant

At this point of the life cycle of a variable feature, variation points have
been introduced and populated with their variants. The last step is to select
a variant for a variable feature (a.k.a. binding). The decisions to make here
are when to bind and how to bind [SvGB05].

When to bind. Binding can be done at several stages during the portlet
development and also at runtime.

• Product architecture derivation. The architecture of a particular
portlet is derived from the architecture of the portlet family. The
design of an architecture of a family of portlets usually includes
many unbound variation points in order to support variability. A
portlet architecture is obtained by binding these variation points to a
particular variant.

• Compilation. During compilation the source code is transformed
into JavaTM bytecode. This may include extending the code to

38

Chapter 3. Introducing Variability in Portlets

add new behaviour using code superimposition techniques such as
aspect-, feature-, and subject-oriented programming.

• Deployment. Portlet are no standalone applications, every portlet
is deployed inside a portlet container that controls the life cycle of
the portlet and provides it with necessary resources and information
about its environment. A portlet container is responsible for
initializing and destroying portlets and also for passing user requests
to it and collecting responses. The behaviour of portlets can be
customised during the initialization process by using initialization
portlet parameters.

• Linking. The JavaTMVirtual Machine dynamically loads, links and
initializes classes and interfaces. Linking is the process of taking
a class or interface and combining it into the runtime state of the
JavaTMVirtual Machine so that it can be executed. The dynamic
nature of the JavaTMlinking phase make possible technologies such
as OSGi [The14] that supports the hot replacement of jar libraries.
These technologies can be used to implement variability using
component-driven development techniques.

• Runtime. This phase refers to the period during which a portlet
is running by the portlet container. Variations points can be open
for population at runtime (e.g., to provide variability to end-users).
Variants added during runtime are commonly referred as plug-ins
and are usually developed by a third party.

At this point, it should be note that for a variable feature that exploits
at many variation points, variation points need to be bound either at the
same time, or the binding of several variation points is synchronized so
that a variation point that is bound during compilation binds to the same
variant that related variation points have already bound to during product
architecture derivation.

39

Variability in Remote Portlets

When considering when to bind, generally, the later the binding is done
the more costly (e.g., in term of performance) it is. For example, to enable
binding at runtime implies the portlet have to include extra functionality to
support it, which, in turn, involves a cost in term of performance to conduct
the binding.

How to bind. Binding can be done internally or externally. Internal
binding means that the portlet itself contains the functionality to bind
to a particular variant, whereas external binding implies a third-party is
responsible for performing the actual binding. If combined with implicit
and explicit population, we obtain four different options.

• Implicit population and internal binding. The portlet has no
knowledge of the available variants, but it contains the functionality
to perform the binding by itself. The XMLHttp requests are an
example of this. XMLHttp requests allow JavaScript developers to
initiate HTTP request from anywhere in an application. However,
Microsoft’s implementation prior to Internet Explorer 7 is an
ActiveX control, whereas the other browsers use a native JavaScript
object—the XMLHttpRequest object. If the portlet at hand has to
make use of such functionality, despite it does not need to explicitly
manage the set of variants, it should be able to select one of the
variants by itself each time it needs to initiate an HTTP request. This
type of variation point is commonly bound during runtime.

• Implicit population and external binding. The portlet has no
knowledge of the available variants and it is a third-party who is
responsible for performing the actual binding. For example, a portal
that can be bundled with different application servers (e.g., Apache
Geronimo3 and GlassFish4). After being created by a build tool (i.e.,
the third-party in charge of performing the binding), the portal itself
does not need to know it could be bundled with another application

3http://geronimo.apache.org/
4https://glassfish.dev.java.net/

40

Chapter 3. Introducing Variability in Portlets

server as well. This combination is the most commonly used to bind
variations point in the development phases, i.e., all phases except
runtime and dynamic linking.

• Explicit population and internal binding. There is an explicit list
of all variants available and the portlet contains the functionality
to perform the binding by itself. For example, an RSS feed reader
portlet that allows an end-user to specify which RSS feed should be
used by default, and where the set of available RSS feeds is not fixed,
but it can be extended at runtime. This variation points are typically
both populated and bound at runtime.

• Explicit population and external binding. There is an explicit list
of all variants available, but it is a third-party who is responsible
for performing the actual binding. This combination is not very
common or even likely.

Decide between internal and external binding depends on many factors, for
example, the binding should be performed by the portlet developer or by
the end-user. An important aspect to take into account here is that internal
binding implies that the portlet must include the functionality to perform
the binding by itself, which involves an increment in the complexity of the
portlet.

3.2.3 Implementing Variability

The implementation of a variable feature requires a selection of a
variability realization technique. Such a selection must be done basing
on constraints established in the previous section 3.2.2. We must select the
technique that involves a better balance between constraints.

Precisely, variability implementation is the main topic of the
subsequent chapters where part of the contribution of this dissertation
resides. The next three chapters study three different scenarios where

41

Variability in Remote Portlets

it is needed to introduce variability in portlets and where current portlet
standards are not enough to provide the ‘right’ level of variability.

3.2.4 Managing the Variability

Inevitable business changes will make re-planning and directional shifts
unavoidable. New actions, adjusted goals and metrics, and changes in
process and organization will be needed to keep focused and maintain
momentum [JGJ97]. Changes may involve adding new variants to variable
features or removing obsolete variants, but they may also imply adding
new variable features or removing them altogether. Management phase
deals with these changes. As with identification of variability, management
is outside the scope of this dissertation.

3.3 Conclusions

This chapter introduces the notion of “portlet families”. It provides an
overview of variability techniques available to cater for the differences
between the distinct “members” of these families. Choosing an
appropriated technique is not trivial. This chapter revised different
approaches and distinguishing criteria. These criteria will be used in
the rest of this thesis to account for the three scenarios outlined in the
introduction, namely, provider-based variability (Chapter 4), consumer-
based variability (Chapter 5) and user-based variability (Chapter 6).

42

Chapter 4

Provider-Based Variability:
Realization of SOA using
Portals1

4.1 Overview

Portlets are presentation-oriented Web Services which are packed to be
delivered through third-party Web applications (e.g., a portal). Portlets are
user-facing (i.e., return markup fragments rather than data-oriented XML)
and multi-step (i.e., they encapsulate a chain of steps rather than a one-shot
delivering). So far, portlets are mainly used as a modularization technique
to structure portal content. However, their ability to be delivered through
other Web applications, make portlets be the enablers of service-oriented
architectures (SOAs) but now at the front end.

From this perspective, portlets strive to play at the front end the same
role that Web services currently enjoy at the back end, namely, enablers
of application assembly through reusable services. On the portlet case,

1Parts of this chapter have been previously presented [DTP07]

43

Variability in Remote Portlets

the difference stems from what is being reused (i.e., which includes the
presentation layer) and where is the integration achieved (i.e., at the front
end).

This SOA scenario first requires portlet interoperability, whereby
portlets developed in, let’s say, Liferay (liferay.com), can be deployed at an
eXo Platform (exoplatform.com) portal, and vice versa. The Web Services
for Remote Portlets (WSRP) specification brings this interoperability
by providing a protocol that decouples portlet providers from portlet
consumers (see chapter 2). This provides the infrastructure to make
feasible a portlet market à la COST2 so that portals can deliver portlets
being provided by third parties. Indeed, the Open Source Portlet
Repository Project has been launched in 2006 to foster the free and open
exchange of portlets. The Portlet Repository is "a library of ready-to-run
applications that you can download and deploy directly into your portal
with, in most cases, no additional setups or configurations" [BKPS06].
Other similar initiatives include JBoss Portlet Swap (portletswap.jboss.org)
and Liferay Marketplace.

However, this SOA scenario not only requires portlet interoperability
(through WSRP) and portlet dissemination (through standard repositories)
but also portlet variability. Portlets tend to be more coarse-grained than
traditional Web services since they encapsulate the presentation layer as
well as the functional layer. These coarse-grained components have less
chances to be reused “as-is” [JGJ97] and this can jeopardize the vision of
portlets as reusable services.

Variability implies two main questions, namely, what can vary and
when is this variation considered. The what side captures the diversity
of the settings where a portlet might be consumed (i.e., the context).
Web applications are increasingly becoming context aware, making them
ubiquitous with respect to time, location, de- vice or user profiles (see
[KPRS03] for an overview). Portlets are Web applications, so these
aspects are applicable here. Additionally, and unlike “traditional” Web

2COST stands for Commercial off-the-shelf.

44

Chapter 4. Provider-Based Variability

applications, portlets are delivered through third-party applications, and
this introduces a new context, the Consumer Profile. This Consumer
Profile includes not only the consumer’s platform (e.g., Liferay, eXo
Platform, etc.) but also presentation and functional requirements posed
by the portal owner that needs to be catered for by the portlet producer.

Besides what is the context, we should also consider when should
this context be appraised to customize the portlet. At this respect, it
is most important to distinguish between adaptability and extensibility.
Adaptability gives us the ability to adapt a component to different
requirements without changing the code base (i.e., without writing
code). Adaptability is built into the services which care for the context
automatically (adaptive applications) or semi-automatically through user
intervention (adaptable applications). By contrast, extensibility techniques
introduce additional code to extend and change a software component to
support a specific “custom” behaviour.

Portlet development standards (e.g., JSR 286) account for adaptability
by accessing and storing persistent configuration (a.k.a. initialization
parameters), customization data (a.k.a. portlet preferences) and user
profile parameters whose values are provided by the portal at runtime.
However, the Consumer Profile frequently implies extensions on new
markups, controllers or persistent data that would be very cumbersome to
develop and, most important, maintain from a single block of code using
adaptability approaches to custom dynamically the code to the current
profile.

This situation can be better served by extensibility techniques where
additional code is introduced to extend the base portlet.

This new scenario where portlets can be extended as well as adapted,
changes the role of the portlet provider. Currently, the portlet provider is
just a container of end portlets. By contrast, now portlets can be generated
on consumer registry, and the portlet provider becomes a portlet assembly
line (a.k.a. software product lines).

This work introduces an architecture for portlet product lines and

45

Variability in Remote Portlets

reports on the implications for the WSRP protocol. We do not address here
the development of portlet product lines but the implications for WSRP.
The architecture has been realized using eXo Platform as the portal IDE
(Integrated Development Environment), and WSRP4Java3 as the portlet
provider.

The rest of the chapter is structured as follows. Section 4.2 and 4.3
motivate the issue by addressing the subject of variations and the time of
variations with the help of an example. Section 4.4 outlines how to handle
those variations using product-line techniques. The main contribution of
the chapter rests on Section 4.5 that introduces a “portlet-line architecture”
using WSRP. Finally, some conclusions end the chapter.

4.2 What Can Vary

Being full-fledged applications, portlet variations can manifest in any of
the three layers: the presentation layer, the functional layer and the data
layer. For the presentation layer, variations can imply rebranding the
rendering with customer-specific logos and banners, changing the labels
and text that appear in the user interface so that they are appropriate and
familiar to the employees and customers of the portal, changing the entry
fields that are prompted to the user and even, given the consumer the
ability to inlay new markup inside portlet’s fragments [DR05]. As for the
functional layer, the multi-step nature of portlets indicates the existence
of a process that can be tuned to fit the consumer demands which include
the existence of optional steps that can be provided in a consumer basis.
Finally, distinct functionalities will probably require distinct data.

This large number of variations advises to focus on some specific reuse
contexts. An artefact is not universally variable, and making it variable
on A can prevent the artefact from being variable on B. Since, it is most
important to identify the distinct situations in which the portlet is most

3http://portals.apache.org/wsrp4j/

46

Chapter 4. Provider-Based Variability

Figure 4.1: The Consumer Model.

likely to be reused. All these variations are captured through features.
A feature is a product characteristic that customers feel is important in
describing and distinguishing members within a family. These features,
their structure and cardinalities are depicted as a feature model using the
notation introduced by van Gurp et al. in [GBS01].

As an example, consider an air carrier that sells tickets through distinct
travel agencies. To this end, the flightBooking portlet is developed where
the air carrier is the portlet provider, and the portals of the travel agencies
are the portlet consumers. A feature of the flightBooking portlet is
any characteristic, placed by the carrier and used by the travel agency
to describe how the flight booking process should be tailored to the
agency’s idiosyncrasies. For our running sample, the following features
are considered (see figure 4.1):

• Payment, which indicates how travel agencies are compensated by
their cooperation. Alternatives include (i) click fees, where the
carrier will pay the agency based on the number of users who access
the portlet; (ii) bounties, where the carrier will pay the agency
based on the number of users who actually sign up for the carriers
services through the agency portal; and (iii) transaction fees, where
the incomes of the ticket sales are split between the carrier and the

47

Variability in Remote Portlets

agency. These variants are alternatives.

• Check-in, which provides the namesake functionality. This variant
is optional. Some travel agencies might offer online check-in and
others might not.

• FlightTypes, which offers two variants: domestic and international.
The travel agency should select at least one.

• PortletPref. Portlet preferences can be set by the end user.
PortletPref permits to tune which parameters are going to be set
as portlet preferences (i.e., liable to be provided by end users). One
of the variants of this feature includes usrSetDepart. By selecting
this variant, the agency (i.e., the portal owner) lets end users set their
favourite departure airport through the EDIT portlet mode. Other
option is usrSetArrival that permits to provide a default for the arrival
airport to end users.

Moreover, features are not always independent, but dependencies can
exist among them (e.g., requires or excludes). For our sample case, the
usrSetMeal feature depends on the selection of the international variant,
i.e., it only makes sense to care about the meal if the portlet supports
international flights since domestic flights do not offer this option. For
a detail account about feature models see [Bat05].

This feature model conforms the Consumer Model. This model
acts as a catalogue of the variability space offered by the portlet
to accommodate the idiosyncrasies of the consumer organization. A
Consumer Profile instantiates the Consumer Model for a particular
organization.

4.3 When Can It Vary

Once features have been identified, we need to indicate for each feature
when it needs to be committed to a particular variant of the feature (a.k.a

48

Chapter 4. Provider-Based Variability

the binding time), see chapter 3. The following options are considered for
the portlet case:

• compilation time, where the decision is taken when the portlet
is being compile, adding the components required to supply the
selected variant,

• registration time, in a WSRP scenario, when the relationship
between portlet consumers and providers is established.

• runtime, where the decision is resolved during the enactment of the
portlet either automatically (e.g., based on the user profile) or by
prompting the end user (e.g., through the EDIT portlet mode). The
terms “adaptive” and “adaptable” are used throughout the chapter to
refer to these two kinds of runtime binding.

One extreme approach could be to defer all decisions till runtime, making
the system totally adaptive, provided this is technically possible. However,
as pointed out in [SvGB05] “when determining when to bind a variant
feature to a particular variant, what needs to be considered is when
binding is absolutely required. As a rule of thumb, one can in most cases
say that the later the binding is done, the more costly (e.g., in terms
of performance or resource consumption) it is. Deferring binding from
product architecture derivation to compilation means that developers need
to manage all variants during implementation, and deferring binding from
compilation to runtime means that the system will have to include binding
functionality. This introduces a cost in terms of, for example, performance
to conduct the binding”.

This decision can also be influenced by business strategies, delivery
models and development processes. For instance, if your business strategy
advises payment variants to be open for discussion rather than being a fix
range of alternatives then, this feature could not be bound at compilation
time but deferred till registration time. It is also worth noting that the
binding option not only has implementation implications, but it also

49

Variability in Remote Portlets

influences who takes the decision of which variant is finally selected. And
this has to do with the business model.

Back to our sample case, figure 4.1 is extended with annotations to
reflect the binding strategy. In this way,

• Payment is set at registration time,

• Check-in, is resolved at runtime, e.g., by prompting the portal
administrator of the travel agency through the CONFIG4 portlet
mode,

• FlightTypes, are also decided at runtime execution but, unlike Check-
in, they are automatically resolved basing on the user profile (e.g.,
only users with the CEO profile can book for international flights),
and

• PortletPref is decided at registration time to allow portal
administrators to establish which portlet preferences are available
to end users.

4.4 How Is It Supported

Features serve to scope the organization context. They relate to
requirements, but do not preclude how the portlet is finally designed or
implemented. A first approach is to use some kind of parameterization
technique. Even if this were possible, the resulting code could be very
cumbersome to develop and maintain. As an example, consider our sample
case. Making a single, adaptive portlet that could handle all variants at
runtime would make the implementation too complex as the number of
possible variant combinations goes quickly above one hundred.

This advises to have distinct “versions” of the portlet at least for
those features whose decisions can be resolved at compilation time (e.g.,

4A popular custom mode which is mainly used to read and modify the administrator
level of preferences.

50

Chapter 4. Provider-Based Variability

Payment and PortletPref in our sample case). Nevertheless, the number of
combinations still goes up to twenty four different versions; and this for
just two features!

If it is necessary to maintain a portlet version for each combination
of all these potential variants, portlets will grow in size and number. The
cumulative effect of this uncontrolled growth may make to reuse portlets
prohibitive [JS00]. More to the point considering that Web applications
are reckoned to be in continuous evolution, and shorter life cycles are
commonly achieved at the cost of maintainability [GEM04]. Therefore,
the Web setting cannot always afford the high maintenance cost that goes
with the versioning approach.

This maintenance penalty partly stems from the fact that features tend
to impact more than one artefact, i.e., they cross cut distinct groups of
artefacts, which makes variations more difficult to track and maintain.
Since a product is defined by selecting a group of features, this implies
that a carefully coordinated and complicated mixture of parts of different
components are involved [KLM+97].

Table 4.1 shows the “feature x artefact” matrix that highlights the
distinct artefacts that are affected by the inclusion of a given feature. For
our sample case, as for the artefact axis, portlet realization follows a MVC
pattern with a single controller that governs the distinct portlet modes (e.g.,
VIEW, EDIT, CONFIG) where each mode includes a model, a view and
the deployment descriptor file where portlet preferences are set (i.e., the
portlet.xml). On the other hand, the feature axis enumerates the distinct
characteristics that realize the Consumer Model. The “base” stands for
the common behaviour. Adding feature Check-in to this base implies
to add/modify some JSP pages for interacting with the user, enlarging
the JavaTMclasses to access the database, and including this additional
step in the application flow. Moreover, “check-in” is made a read-only
portlet preference, i.e., the administrator level of preference. This implies
changes in “portlet.xml” as well as enhancing the views that support the
“CONFIG” mode which now should permit the travel agency to enable

51

Variability in Remote Portlets

Artefact mVIEW mEDIT mCONFIG

co
nt

ro
lle

r

po
rt

le
t.x

m
l

Feature m
od

el

vi
ew

m
od

el

vi
ew

m
od

el

vi
ew

Base X X X X X X X X
Check-in X X X X X X

FlightType domestic X X X
international X X X

PortletPref usrSetMeal X X X X X X
usrSetArrival X X X X X X
usrSetDepart X X X X X X

Payment
click X
bounty X
transaction X

Table 4.1: Feature scattering along distinct artefacts.

and disable the online check-in functionality. This is reflected in table 4.1
by marking the cells for the controller, the mVIEW model, the mVIEW
view, the mCONFIG model, the mCONFIG view and the portlet.xml.

Other example is enhancing this portlet with usrSetMeal. This feature
allows for the user to be prompted about meal preferences, and requires
a new entry form as well as storing this information in the database. The
“meal” portlet preference should be added to the portlet.xml and views
that support the “EDIT” mode enhanced to enable the end users to provide
a default for this parameter. More to the point, this usrSetMeal feature
requires the portlet being tuned for international flights (domestic flights
do not have meals), hence the effect of a feature can ripple even to artefacts
realizing other features!

Therefore, handling variability implies engineering core artefacts for
reuse in a planned way. Approaches to reuse can be opportunistic
or systematic. The former does not represent an organization-wide
strategy but rather, an opportunity exploited on a project-by-project basis.

52

Chapter 4. Provider-Based Variability

Common “clone&own” practices are a case in point. In this way, the
flightBookingWithCheckin portlet would be constructed by copying the
flightBooking basic portlet, and extending it with the Check-in additions.

By contrast, systematic reuse takes an organizational perspective rather
than a project view. The assumption is that projects in the same business
area tend to build systems that satisfy similar needs, so that these systems
can be regarded as instances of a family or a product from a product line.
Therefore, there is a shift from developing individual portlets to create
a portfolio of closely related portlets with controlled variations. That is,
developing a product line of portlets.

A Software Product Line (SPL) is "a set of software-intensive
systems, sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way" [CN01].
This “particular market segment” corresponds to a business area also
known as a domain. For our sample case, the domain would be “flight
booking”. Both the mission of an organization and the changing needs of
its customers determine the objectives of that business-area organization.

This implies a shift of focus from a specific application to a domain.
This, in turn, leads to distinguish between two processes, namely, the
domain engineering process, and the application engineering process.
Using a “design-for-reuse” approach, domain engineering is in charge
of determining the commonality and the variability among product family
members (through a feature model as described in the previous section).
The commonality constitutes the software platform, i.e., “the set of
software subsystems and interfaces that form a common structure from
which a set of derived products can be efficiently developed and produced”
[ML97]. This includes the architecture, software components, design
models and, in general, any artefact that is liable to be reused. On the other
hand, and using a “design-with-reuse” approach, application engineering
is responsible for deriving a specific product from the SPL platform.

Distinguishing between these processes permits to separate

53

Variability in Remote Portlets

construction of the software platform from production of the custom
application. Domain engineering is responsible for providing the
right amount of variability for the custom application to be produced.
Application engineering focuses on reusing the software platform,
and binding the variability as required for the different applications
[PBvdL05]. Details about using product-line techniques in a Web setting
can be found at [BRPA05, CD03, DTA05, JBZZ03, RJ05, TBD07]. These
previous works introduce SPL as a means to reduce the time and costs of
production and to increase the software quality by reusing elements which
have already been tested and secured. Our work however, looks at SPLs
also as a cost-effective way to enhance variability and hence, improving
the “serviceness” of portlets. Next section introduces an SPL architecture
to portlet families. Implementation issues are not addressed here.

4.5 A Product-Line Architecture to Portlet
Families

SPLs achieve systematic reuse for a set of applications sharing a “family
flavour”. What are the specificities brought to SPLs when the product to
be built is a portlet? Differences mainly stem from:

1. domain engineering. Besides the user profile, browser agent and
other context features, portlets have an additional source of variation:
the Consumer Profile. Unlike, standalone software thought to be run
on its own, services in general, and portlets in particular, are born to
be “consumed” to conform higher functional units. Customization
to the consumer then becomes a main ability to achieve seamless,
tight higher functional units.

2. application engineering. Current practices assume portlets to be
already deployed at the provider. An approach is to create a portlet
clone where some configuration parameters can be singularized for

54

Chapter 4. Provider-Based Variability

the consumer. But variations are always considered at runtime.
As argued in previous sections, this can lead to convoluted portlet
implementations due to the crosscutting nature of features. This
issue is addressed through “hot deployment”, i.e., generating the
portlet on demand using generative techniques.

The rest of the section presents how to accommodate these demands in
WSRP. The proposal has been validated with WSRP4Java.

4.5.1 WSRP Parameter Extensions

Before a consumer obtains the service (portlet instance), a relationship
needs to be established with the producer, determine its capabilities,
and set the preferences. This is achieved through the WSRP
getServiceDescription() and register() operations (see chapter 2). These
operations need now to account for the Consumer Model. Specifically, the
service description is extended with the Consumer Model, whereas service
registration serves to communicate the Consumer Profile of the current
consumer.

Once registered, getServiceDescription returns the producer’s metadata
and the list of the "Producer-offered-Portlets". Figure 4.2 shows a
snippet of the returned ServiceDescription structure. Using the extensional
facilities of WSRP, a new parameter is introduced to describe the
Consumer Model using the XML notation proposed in [BTT05] for the
description of feature models in XML. Basically, the snippet serializes in
XML the model of figure 4.1. The portalIDE takes this model as input and
produce a GUI for the portal administrator to input the Consumer Profile
that better fits his preferences (see figure 4.3).

55

Variability in Remote Portlets

Figure 4.2: The DomainProducer communicates to the PortalIDE the
Consumer Model.

Figure 4.3: Conforming the Consumer Profile through the portal IDE.

56

Chapter 4. Provider-Based Variability

Figure 4.4: The PortaIDE communicates to the DomainProducer its
Consumer Profile.

Next, the portal administrator selects the feature variants that better
fit its organization, and conforms the Consumer Profile. This profile is
returned back to the domainProducer through the register() operation.
This requires to extend the parameters of register() to convey the new
profile. Figure 4.4 illustrates this situation for our sample case where the
profile includes transaction as Payment, domestic and international will be
available as FlightType and availability of Check-in.

4.5.2 Portlet Registration Extensions

To avoid the cluttering code that crosscutting features can cause, this work
argues for the use of SPL techniques. Broadly speaking, the registration
of a singularized portlet goes along a three-step process: (1) instantiation
of the Consumer Model which outputs a Consumer Profile; (2) synthesis
of the singularized portlet as an output of the SPL along the lines of the
Consumer Profile, and (3) registration of the singularized portlet with the
Consumer.

Current practices assume portlets to be already deployed at the
provider. This implies the previous process to be split as follows. First,
steps (1) and (2) where the singularized portlet is obtained, and deployed
at the provider. And second, step (3) that goes along the traditional

57

Variability in Remote Portlets

Figure 4.5: The architecture.

registration process. However, this split makes the consumer organization
(i.e., the travel agencies for our sample case) aware of the use of SPLs.

By contrast, we strive to make the portlet-generation process
transparent. Regardless of whether an SPL approach or a single-product
approach is used, portlet consumers go always along the same protocol. To
this end, we are forced to use a generative approach to portlet product lines
[Kru06]. The architecture of this approach is presented in the following
paragraphs.

According to the SPL paradigm, we distinguish between the platform
(i.e., the core assets) and the application (see figure 4.5). The platform is
realized as a portlet producer (the domainProducer) that holds the scope of
the family (i.e., the feature model), and the common platform from where
the application portlet is generated. As for the application, it includes a
“traditional” producer (the applicationProducer) that holds organization-
aware portlets (the applicationPortlet). The applicationProducer is just a
container for the portlets generated by the domainProducer.

The challenge is how to make this architecture transparent to the
consumer. Along with the WSRP protocol, we distinguish between portlet
registration and portlet enactment (see chapter 2).

Portlet registration. A “family portlet” registration is
achieved through the domainProducer (see figure 4.6). The only
difference with “traditional” registration is that now the response of
getServiceDescription() is extended to include an XML specification
of the feature model of the domain at hand (e.g., booking of flights) as
described in the previous subsection.

58

Chapter 4. Provider-Based Variability

Figure 4.6: Registration time: sequence diagram.

On reception, the portalIDE renders the feature model to the portal
administrator who selects the feature variants that better fit its Consumer
Profile, and the Consumer Profile is returned back to the domainProducer
through the register() operation.

Next, the domainProducer commands the PLFactory to generate
an applicationPortlet along the lines of the Consumer Profile (see
figure 4.6). This applicationPortlet is generated and deployed on the
applicationProducer container. As a result, an applicationPortlet handle is
returned. On reception, the domainProducer clones the domainPortlet (see
figure 4.6), which is a proxy portlet, and updates one of its preferences with
the returned applicationPortlet handle. The outcome of creating this proxy
portlet is in turn a proxyPortletHandle that is delivered to the portalIDE
the next time getServiceDescription() is invoked.

Portlet enactment. At this time, each organization (e.g., each travel
agency) has registered its own portlet which has been customized to fit its
Consumer Profile. The travel agency portal (i.e., the portlet consumer)

59

Variability in Remote Portlets

interacts with the applicationPortlet through the domainPortlet. Such
domainPortlet is a proxy portlet that just forwards all the requests to the
customized applicationPortlet. From then on, applicationPortlets do not
differentiated from “traditional” portlets.

The indirection that this solution implies can raise some concerns
about efficiency at enactment time. Notice however, that both the
domainProducer and the applicationProducer are kept on the same
machine. Hence, this additional request is local and can be neglected in
comparison with the remote call made by the portlet consumer.

4.6 Conclusions

This work promotes a SOA approach to portal construction that relies upon
portlets as truly reusable services. However, reusability can be jeopardized
by the coarse-grained nature of portlets. To overcome this drawback, the
notion of Consumer Profile is introduced as a way to capture the distinct
organization scenarios where a portlet can be deployed. This in turn leads
to the use of an SPL approach to portlet development, and the introduction
of an architecture that permits to handle SPL portlets in the same way that
traditional portlets. The solution has been supported in WSRP4Java, and
the additions on the protocol are WSRP compliant.

Parts of the work described in this chapter have been previously
presented:

• Oscar Díaz, Salvador Trujillo and Sandy Pérez. Turning Portlets
into Services: The Consumer Profile. In proceedings of the 16th
International World Wide Web Conference (WWW2007), Banff,
Alberta, Canada, 2007.

60

Chapter 5

Consumer-Based Variability:
Tagging as a Portal Commodity1

5.1 Overview

Enterprise Information Portals play a three-fold role. As a means by which
to manage and access content, portals play the role of content managers.
As the mechanism to integrate third party applications using portlets or
gadgets, portals can be regarded as front-end integrators. Finally, portals
also offer a conduit for on-line communities. It is in this third role where
the importance of incorporating social networking facilities in current
portal engines emerges. Among social networking activities, this chapter
focuses on social tagging.

Traditional tagging sites such as Delicious (delicious.com), Tumblr
(tumblr.com) or Flickr (flickr.com) can be characterized as being self-
sufficient and self-centred. The former implies that all it is need for tagging
(i.e., the description of the resource, the tag and the user) is kept within

1Parts of this chapter have been previously presented [DPA09]

61

Variability in Remote Portlets

the tagging site. Delicious keeps the bookmark URL, the tags and the
user community as assets of the site. On the other hand, self-centeredness
indicates that all Delicious care about is its own resources, tags and users.
No links exists with other tagging sites, even if they tag the same resources,
e.g., CiteULike (citeulike.org).

This situation changes when moving to a portal setting. A hallmark
of portals is integration. Rather than providing its own services, a portal
is also a conduit for external applications. So offered applications are
technically known as portlets. Portlets can be locally deployed or be
provided remotely through third-party providers. For instance, a portal can
offer the possibility of blogging, purchasing a book, or arranging a trip,
all without leaving the portal. Some of these portlets can be built in house
whereas others can be externally provided by third parties, e.g., Amazon
(amazon.com) or Expedia (expedia.com). The portal mission is to offer a
common gateway that hides such distinct origins from the user. This has
important implications on the way tagging can be incorporated into portals,
namely:

• portals are not self-sufficient. Taggers (i.e., the portal community)
and tags are portal assets. However, and unlike self-sufficient
tagging sites, portals could not hold the description of all tag-able
resources. For instance, the description of the books or hotels offered
through the portal could be remotely kept by, e.g., Amazon and
Expedia, respectively. This outsource of content description does not
imply that the external resources are not worth tagging. This leads to
distinguish between two actors: the resource provider, which keeps
the content of the tag-able resources (e.g., book description in the
case of Amazon), and the resource consumer (i.e., the portal), which
holds the tagger community and the tags,

• portals are not self-centred. Traditional tagging sites are “tagging
islands”: each site keeps its own tagging data. Providing an
integrated view of these heterogeneous tagging silos is at the user

62

Chapter 5. Consumer-Based Variability

expenses. By contrast, portals strive to glue together heterogeneous
applications. This effort implies offering a consistent set of tags
no matter neither the resource nor the portlet through which the
tagging is achieved. That is, our expectation is that employees would
use a similar set of tags no matter the portlet that holds the tagged
resource.

Based on these observations, consistency is identified as a main
requirement, i.e., tagging should be seamlessly achieved across the portal,
regardless of the type (messages, books, hotels, etc.), or origin (i.e.,
Amazon, Expedia, etc.) of the resource. This consistency is two-
fold. “Back-end consistency” implies the use of a common structure for
tagging data, e.g., a common set of tags. On the other hand, “front-end
consistency” entails tagging interactions to be achieved seamlessly and
cohesively across the portal using similar rendering recourses and aesthetic
guidelines.

To support back-end and front-end consistency, currently, most portal
vendors offer tagging as a portal functionality. The portal is regarded
as a content manager. The portal owns the resources, and provides
functionality for tagging. Tagging is restricted to those resources within
the realm of the portal. Being content managers, portals can keep their
own resources. Additionally, portals are also integration platforms, making
external resources available through portlets. The remote origin of these
resources does not imply that they are not worth tagging.

As integration platforms, portals offer commodities for easing the
integration of heterogeneous applications (e.g., the Single Sign-On2

commodity is a popular example). Likewise, we advocate for tagging
services to be offered as a portal commodity. This is, tagging services are
up to the portal but offered through the companion portlets. This implies
that portlets should be engineered to be plugged into this commodity

2This commodity enables a user to log in once at the portal, and gain access to the
available applications being offered through the portal without being prompted to log in
again.

63

Variability in Remote Portlets

rather than building their own tagging functionality. In the same way,
that portlets adapt their rendering to the aesthetic guidelines of the hosting
portal, tagging through portlets should also cater for the peculiarities of the
consumer portal.

To this end, this work presents a novel architecture to orthogonally
support tagging as a crosscut on top of portlets, i.e., as a portal commodity.
RDFa annotations are used as a mean for the resource provider to
communicate the resource consumer the existence of tag-able resources.
On the other hand, the standard portlet event mechanism allows the
resource consumer to broadcast tag-based queries to resource providers.
This has been implemented for the Liferay (liferay.com) portal engine
using TASTY3 as the tagging engine. This implementation evidences the
feasibility of the approach, which make up the contribution of this chapter.

The rest of the chapter is structured as follows. Section 5.2 and 5.3
addresses the subject of variations and the time of variations with the help
of an example. Section 5.4 outlines how to handle those variations can
be handle using markup replacement techniques inspired by linkers in the
C programing language. The main contribution of the chapter rests on
Section 5.5 that introduces how actual consistency is realized. Finally,
some conclusions end the chapter.

3https://code.google.com/p/microapps/wiki/Tasty

64

Chapter 5. Consumer-Based Variability

Figure 5.1: A portal page offering two portlets (i.e., LibraryPortlet and
AllWebJournalPortlet).

5.2 What Can Vary

Portlet development standards account for front-end consistency by
defining a set of Cascading Stylesheets (CSS) styles that portlets should
use in rendering their markup in order to achieve a common and pluggable
look and feel. However, this only establishes how elements must be
rendered on screen (e.g., fonts, colours, spacing), but not how to interact
with them. For example, one portal can support tag addition via in-place
editable lists whereas a different one may opt for prompting the user
using pop-up forms, and both of the them would be portlet’s standards-
compliant. From the portlet perspective, front-end consistency means that
the same portlet must use in-place editable tag lists for tag addition when
being delivered through the former portal, and pop-up forms when being
delivered through the latter one. Thus, to achieve front-end consistency,
the portlet’s presentation layer must have the capability of being varied to
accommodate the different tagging interaction patterns found in portals.

As for back-end consistency, figure 5.1 provides a snapshot of a portal
page offering two portlets: LibraryPortlet and AllWebJournalPortlet that
render content on books and publications, respectively. Both books and
publications are kept outside the portal realm.

65

Variability in Remote Portlets

Figure 5.2: A feature diagram where tagging is represented as an external
feuture.

Notice that both portlets, regardless of their different providers, offer
the same set of tags. That is, tagging adapts to the hosting portal. This also
implies that if the very same portlet is offered through a different portal
then, the rendered tag set will be distinct since tags reflect the projects,
roles and ways of working of the organization at hand.

Therefore, both front-end and back-end consistency requires variations
in the presentation layer of the portlet. On the other hand, since tagging
functionality is up to portal, no variation is required neither in the
functional layer of the portlet nor in the data layer.

Tagging as a portal commodity is a clear example of an external feature
introduced in section 3. It is a functionality offered by the portal but used
by the portlets that depend on it. As a feature, it can be included as part of
a Consumer Model (see section 4). External features are motivated by the
need to map requirements that can be met by using functionality external
to the system to features [ZJ97]. Figure 5.2 shows a possible Consumer

66

Chapter 5. Consumer-Based Variability

Model for the LibraryPortlet presented in figure 5.1.
However, depending on certain external feature limits the amount of

deployment platform. To avoid this, in figure 5.2 tagging is modelled as
an optional feature. Organizing external features under variant/optional
features may help improve platform independence.

5.3 When Can It Vary

The binding options available for the portlet case are:

• compilation time, where the decision is taken when the portlet
is being compile, adding the components required to supply the
selected variant,

• registration time, in a WSRP scenario, when the relationship
between portlet consumers and providers is established.

• runtime, where the decision is resolved during the enactment of the
portlet either automatically (e.g., based on the user profile) or by
prompting the end user (e.g., through the EDIT portlet mode). The
terms “adaptive” and “adaptable” are used to refer to these two kinds
of runtime binding.

Binding at compilation time only works for locally deployed portlets.
Remotely provided portlets are already running on a remote container
and communicate with the portal through WSRP (see chapter 2 for an
overview).

On the other hand, binding at registration time, like in chapter 4,
means that we are generating an organization-specific portlet for every
organization registered against our portlet provider. In the previous chapter
it makes sense because we were dealing with portlet provided functionality.
However, tagging as a portal commodity is an external functionality
provided by the portal surfacing the portlet. That is, variations could
depend on the used portal platform but never on the organization at hand.

67

Variability in Remote Portlets

Therefore, the binding option that better fit tagging supported as a portal
commodity is at runtime.

5.4 How Is It Supported

At this point, two different approaches are feasible. One option is that
portlets are equipped with binding functionality and are able, at runtime,
to select the right tagging variant for the portal at hand. Although this
is a feasible option, the solution would not be very scalable. New portal
platforms may involve changes in the binding functionality to account for
the new variants.

A different solution requires binding functionality to be residing at the
portal side. This solution is inspired by linkers in C programing language.
In C, the compilers translate pre-processed code into assembly code. The
assembly code generated by the compilation step is then passed to the
assembler which translates it into machine code; the resulting file is called
an object file. Since an object file will be linked with other object files
and libraries to produce a program, the assembler cannot assign absolute
memory locations to all the instructions and data in a file. Rather, it writes
some notes in the object file about how it assumed things were layed out.
It is the job of the linker to use these notes to assign absolute memory
locations to everything and resolve any unresolved references. In the
portlet case, portlet developers play the role of “assemblers” and introduce
notes into the portlet markup in order to communicate the presence of
tag-able resources. The role of linker is played by the portal, which use
these notes to seamlessly weave the markup corresponding to the tagging
functionality into the portlet markup.

Notice that this solution does not jeopardize portlet interoperability, in
the worst case, we won’t be able to add tags to the resources being rendered
through the portlet but the portlet functionality will work as expected. Next
section delves into the details.

68

Chapter 5. Consumer-Based Variability

5.5 Social Tagging as a Portal Commodity

This scenario introduces three actors, namely: portlets, which provide
the tag-able resources; the portal, which embodies the portal users as
potential taggers; and the tagging commodity, i.e., a portal component
that provides tagging utilities. This chapter looks at two such tagging
functionalities: tag assignment and tag-based querying.

However, the existence of three different actors should not jeopardize
one of the portal hallmarks: interaction consistency across the portal.
Tagging should be homogenously achieved throughout the portal, no
matter where the resource resides (i.e., which portlet renders it).
Additionally, and on top of the portal mandate, the desire for tag
consistency emerged as a major request among portal users, (e.g., “how
will others find my content if I don’t use the same tags over and over?”) as
drawn from a recent study [TSMM08].

This consistency is two-fold. “Back-end consistency” implies the use
of a common structure for tagging data, e.g., a common set of tags.
On the other hand, “front-end consistency” entails tagging interactions
to be achieved seamlessly and cohesively across the portal using similar
rendering guidelines. Next sections delve into the details.

5.5.1 Back-end Consistency

Back-end consistency implies tagging data to be a portal asset rather than
being disseminated across different silos. Tagging data basically refers to
tags, taggers and tag-able resources. Both, taggers and tags, are naturally
held by the portal. However, tag-able resources can be outside the portal
realm. Although tagging could become a portal duty, some tag-able
resources would still be provided by third-party portlets. Therefore, a
mechanism is needed for portlets to make the portal aware of their tag-
able resources.

The main means for portlet-to-portal communication is the markup

69

Variability in Remote Portlets

fragment that the portlet delivers to the portal. Here, the portal is a mere
conduit for portlet markups. Portals limit themselves to provide a common
skin and appropriate decorators to portlet fragments, being unaware of
what this markup conveys. We propose to annotate this markup with
tagging concerns using RDFa [W3C08a].

RDFa is a W3C standard that provides syntax for communicating
structured data through annotating the XHTML content. In our case,
RDFa offers a means for the portlet provider to communicate the portlet
consumer the existence of tag-able resources. The idea is to capitalize on
the fragment layout to annotate tag-able resources.

Firstly, an ontology is defined which is later used to annotate the
fragment. This ontology should serve to indicate both what to tag and
where to tag (see later). This is the aim of PartOnt (Participatory
Ontology), an ontology that aims at capturing manners in which users
engage in the participatory web. One of these ways is of course, tagging.
Rather than defining its own concepts, PartOnt capitalizes on existing
ontologies that already formalize some of these notions. Specifically,
PartOnt benefits from TagOnt, an ontology that captures tagging by
describing resources, tags, taggers, tagging time, and so on [Kne]. Figure
5.3 shows these ontologies, both the RDF code and the Protégé rendering
counterpart.

These ontologies are then used to annotate the portlet markup. An
example is shown in Figure 5.4. The JSP script outputs a LibraryPortlet
fragment. Book data (i.e., title, authors, etc.) are rendered as table
rows (TR), where book keywords are iteratively enclosed within SPAN
elements. All of the table cells are wrapped within a table (<table>) which
in turns is wrapped in another table together with the book-cover image.

This markup is then annotated along the previous ontologies.
Specifically, the following structural HTML elements are annotated4:

4As far as this work is concerned, we ignore the resource content (i.e., we do not
annotate e.g., titles or authors of book resources). All the portal needs to know is that a
tag-able resource is being rendered. The details about the rendering itself are left to the
portlet.

70

Chapter 5. Consumer-Based Variability

Figure 5.3: The PartOnt (a) and the TagOnt (b) ontologies together with
their Protégé rendering counterparts (c).

• HTML element that embodies a tag-able resource. In our example,
this corresponds to the outer <table> element. This element now
includes an “about” attribute which denotes the existence of a tag-
able resource. The identifiers of tag-able resources are supported
as Uniform Resource Identifiers (URIs). Following Semantic Web
practices, these URIs are created by concatenating a namespace with
a resource’s key,

• HTML element that conveys potential tags. In this case, we identify
keywords as playing such role. This implies to annotate the
element with the “tagont:Tag” annotation. These tags are provided
for the portal’s convenience, and they are expected to describe the
resource content. It is up to the portal to incorporate these tags as
suggestions during tagging. These portlet-provided tags should not

71

Variability in Remote Portlets

Figure 5.4: JSP that delivers a fragment markup with annotations along the
TagOnt and PartOnt ontologies.

be mistaken with those provided by the portal users.

These annotations permit the portlet consumer (i.e., the portal) to become
aware of resources and tags coming from external sources. This external
data is incorporated into the portal not when it is rendered but when it is
tagged. When the first tag is added, the portal check if the resource ID is
already in the tagging repository (see later Figure 5.5).

However, resource IDs and tags are not introduced in the tagging
repository right away. Rather, the tagging commodity should include a
“cleaning module” to ascertain whether two tags/resources really stand
for the same notion. For instance, the same resource can be offered as
a book in LibraryPortlet and as a publication in AllWebJournalPortlet.
Likewise, this resource can be tagged as “ServiceOrientedArchitecture” in
one place and “SOA” in the other. This cleaning module will provide some
heuristics to ascertain the equality of resources and tags being offered in
different forms by different resource providers. This effort is akin to the

72

Chapter 5. Consumer-Based Variability

view of the portal as an integration platform, and an argument in favour
of tagging being conducted through the portal rather than as a disperse
activity performed at each resource provider.

5.5.2 Front-end Consistency

Portals are a front-end technology. Much of their added value (and
investment) rests on how content is rendered and navigated. In this context,
presentation consistency is a must to hide the diverse sources that feed
the portal. Tagging wise, consistency mandates tagging interactions to be
seamlessly and coherently achieved across the portal. This would not be
much of a problem if tagging were only up to the portal. But, this chapter
highlights that portal tagging is a joint endeavour among the portal and
the companion portlets. Rendering wise, this coupling can be achieved at
the portlet place (through markup portions referred to as widgets) or at the
portal place (using a publish/subscribe approach with local portlets). Next
subsections address each of these approaches.

Front-end Consistency through Widgets

Seamlessness calls for tagging to be conducted at the place tag-able
resources are rendered (side-by-side rendering). This place is the portlet
fragment. But portlets should not deliver their own tagging functionality
since a premise of this work is that such functionality should be provided
by the portal. But, portals are traditionally mere proxies for the portlet
markup. Tagging however, requires portals to take a more active role.
Besides skins and decorators, portals now become the purveyors of tagging
widgets to be injected into the portlet markup.

The question is how can the portal know where to inject these widgets?
Annotations are again used for this purpose. Specifically, the PartOnt
ontology includes a Hook class, with a subclass TaglistHook that denotes
an extension point for adding markup to update the tag list. This class
annotates the HTML element that plays the “hook” role. Figure 5.4 shows

73

Variability in Remote Portlets

Figure 5.5: Interaction diagram: base requests vs. tagging requests.

our sample fragment where this role is played by a <div> element. At
execution time, the portal locates the “hooks” and injects the tagging
widget (see later).

Markup coming from the portlet should be seamlessly mixed together
with markup coming from the portal so that the user is unaware of the
different origins. After all, this is the rationale behind letting the portlet
specify the tagging hooks: injecting the extra markup in those places
already foreseen by the portlet designer so that the final rendering looks
harmonious. However, the distinct markup origins become apparent to the
portal which needs to propagate the user interactions to the appropriate
target. Specifically, base requests (i.e., those with the portlet markup) are
propagated to the portlet provider, while tagging requests (i.e., those with
the tagging widget) are processed by the tagging commodity.

Figure 5.5 provides an overview of the whole process where these two
types of interactions are distinguished:

1. base request. According with the WSRP standard, user interactions

74

Chapter 5. Consumer-Based Variability

with portlet markup are propagated till reaching the appropriate
portlet. In return, the portlet delivers a markup, now annotated with
tagging metadata,

2. content annotation processing. At the portal place, the tagging
commodity (specifically an RDFa parser) extracts both tag-able
resources and tags conveyed by the actual markup. This data is kept
at the tagging repository.

3. hook annotation processing. If the markup also holds “TaglistHook”
annotations, the tagging commodity (specifically, a markup
renderer) outputs the appropriate widget to be injected at the
hook place. The markup renderer can need to access the tagging
repository, e.g., to recover the tags currently associated with a given
resource.

4. markup rendering. The original markup has now become a tagging-
aware fragment, i.e., a fragment through which tagging can be
conducted,

5. tagging request. Now, the user interacts with the tagging markup
(e.g., requesting the update of the tag set). This petition is directed
to the tagging commodity which checks the additions and removals
being made to the tag set kept in the repository. In return, the tagging
commodity repaints the tagging markup.

As the previous example illustrates, the co-existence of markups from
different origins within the same portlet decorator brings an Ajax-like
style to markup production. In Figure 5.5, lines with solid triangular
arrowheads denote synchronous communication whereas open arrowheads
stand for asynchronous communication. Specifically, the tagging request
is asynchronously processed.

75

Variability in Remote Portlets

Front-end Consistency through Local Portlets

Previous subsection illustrates the case of a tagging functionality (e.g., tag
update) to be achieved at the portlet place. However, other services can
be directly provided by the portal but in cooperation with the companion
portlets. Tag-based querying is a case in point.

Comprehensive querying implies the query to expand across
resources, no matter their origin. A query for resources being
tagged as “forDevelProject” should deliver books (hence, provided
by the LibraryPortlet portlet), publications (hence, supplied by the
AllWebJournalPortlet portlet), post blogs (locally provided), etc. being
tagged as used in this project. Such a query can be directly answered
through the tagging repository that will return the set of resource identifiers
meeting the query condition.

However, portals are a front-end technology. Providing a list of
identifiers is not a sensible option when an end user is the addressee.
Rather, it is the content of resource what the user wants to see. We
need then to de-reference these identifiers. Unfortunately, the tagging
repository cannot “de-reference” those identifiers. The portal owns the
tagging data. But it is outside the portal realm to know the resource
content as well as how this content is to be rendered. This is the duty
of the resource providers, i.e., the portlets. Therefore, the portal cannot
accomplish the whole query processing on its own since this also involves
content rendering.

Figure 5.6 illustrates this situation. First, a mean is needed for the
user to express the query. For the sake of this work, a simple portlet has
been built: TagBarPortlet. This portlet consults the tagging repository,
renders the tags available, and permits the users to select one of these tags.
The selection has two consequences. First, the selected tag is highlighted.
Second, and more important, the companion portlets synchronize their
views with this selection, rendering those resources that were tagged with
the selected tag at this portal. This last point is important. The very

76

Chapter 5. Consumer-Based Variability

Figure 5.6: Split query processing. Query specification goes through
TagBarPortlet: the tag selected by the user is highlighted. Query outcome
is delegated to the portlets holding the resource content, i.e., LibraryPortlet
and AllWebJournalPortlet.

same portlet can be offered through different portals. Hence, the same
resource (e.g., a book) can be tagged at different places (i.e., through
distinct portals). When synchronized with the TagBarPortlet of portal P1,
the portlet just delivers those resources being tagged through portal P1.

This scenario again requires a means for portal-to-portlet
communication. Previous section relies on the rendering markup as
the means of communication. This was possible because the data flew
from the portlet to the portal. However, now identifiers/tags go the other
way around: from the portal to the portlets. To this end, we follow a
publish/subscribe approach where data flows from the publisher (i.e.,
the portal, better said, the portal representative, i.e., TagBarPortlet) to
the subscriber (e.g., LibraryPortlet and AllWebJournalPortlet). The
availability of an event mechanism in the JavaTMPortlet Specification
[Jav08] comes to our advantage.

Portlet events are intended to allow portlets to react to actions or state
changes not directly related to an interaction of the user with the portlet.
Portlets can be both event producers and event consumers. Back to our

77

Variability in Remote Portlets

Figure 5.7: portlet.xml configuration files for TagBarPortlet and
LibraryPortlet. Both portlets know about the tagSelected event.

sample case, the query-specification portlet, i.e., TagBarPortlet, fires the
appropriate event that is broadcasted by the portal to the resource-provider
portlets to make them aware of the tag being selected. Publications
and subscriptions are parts of the portlet definition and hence, expressed
in the configuration file portlet.xml. Figure 5.7 shows those files for
TagBarPortlet and LibraryPortlet. The former defines a published event,
tagSelected, whereas LibraryPortlet acknowledges the capacity to process
tagSelected events.

Processing tagSelected occurrences imply rendering the content of
the so-tagged resources at the portlet place. For instance, LibraryPortlet
should produce markup for those books being tagged with the tag provided
in the event payload. However, LibraryPortlet holds the resource content
but ignores how they have been tagged. This tagging data is kept at the
portal. Therefore, the portlet needs to get such data from the tagging
commodity. As a result, the tagging-commodity URL is included as part of
the event payload, so that the portlet can construct a REST petition asking
which of its resources are so-tagged at this portal. Therefore, the very same
portlet can process tagSelected occurrences coming from different portals

78

Chapter 5. Consumer-Based Variability

Figure 5.8: Handling a tagSelected occurrence.

and hence, whose payloads refer to different URLs5. In this way, portlet
interoperability is preserved.

Figure 5.8 provides the global view. First, the user selects
“forDevelProject” as the tag to be used as the filtering criteria. This
request is handled by TagBarPortlet that signals a tagSelected occurrence.
The portal forwards this occurrence to their subscribers: LibraryPortlet
and AllWebJournalPortlet. Processing tagSelected involves first, to query

5An alternative design would have been for TagBarPortlet to recover itself all resource
identifiers that exhibit the selected tag, and include the whole set of identifiers as part of
the event payload. On reception, the portlet filters out its own resources. However, this
solution does not scale up for large resource sets. Additionally, the option of restricting
the payload to just those resources of the addressee portlet forces to have a dedicated event
for each portlet.

79

Variability in Remote Portlets

the TaggingEngine about the so-tagged resources. To this end, the
REST_API provides the getResourceByTag method. This method outputs
a list of resource identifiers for which the LibraryPortlet should locally
retrieve the content and produce the markup. This process is accomplished
for all the resource-provider portlets. This ends the state changing logic
phase of the portlet life cycle.

The rendering phase builds up the portal page out of the portlet
fragments. This implies sending the render() request to each of the portlets
of the page, assembling the distinct markups obtained in return, and render
the result back to the user. For our sample case, the outcome is depicted in
Figure 5.6.

5.6 Conclusions

This work argues for portal tagging to be a joint endeavour between
resource providers (i.e., portlets) and resource consumers (i.e., portals).
Additionally, portlets are reckoned to be interoperable, i.e., deliverable
through different portals. These observations advocate for tagging to
be orthogonally supported as a crosscut on top of portlets, i.e., a portal
commodity.

A tagging commodity has been implemented for the Liferay portal
engine using TASTY as the tagging engine6. This implementation
evidences the feasibility of the approach. The benefits include:

• portal ownership of tagging data,

• increases consistency in the set of tags used to annotate resources,
regardless of the resource owner,

• facilitates consistency among tagging activities, no matter the portal
application through which tagging is achieved,

6http://microapps.sourceforge.net/tasty/

80

Chapter 5. Consumer-Based Variability

• permits tagging to be customized based on the user profile kept by
the portal. For instance, the suggested set of tags can be based on
the user profile, the projects he participates in, etc.

As in other situations where applications need to cooperate, the main
challenge rests on agreeing in common terms and protocols. In our case,
this mainly implies the standardization of the tagging ontology, and the
REST API.

Parts of the work described in this chapter have been previously
presented:

• Oscar Díaz, Sandy Pérez and Cristóbal Arellano. Tagging-Aware
Portlets. In proceedings of the 9th International Conference on Web
Engineering (ICWE2009), San Sebastian, Spain, 2009.

81

Chapter 6

User-Based Variability:
Mashup-based Personalization 1

6.1 Overview

A mashup is a lightweight web application created by opportunistically
combining information or capabilities from more than one existing source,
normally in a do-it-yourself (DIY) manner. On the other hand, Enterprise
Information Portals (hereafter just portals) are heavyweight, carefully pre-
planned applications that offer corporations a means by which to manage
and access both content and applications from disparate sources across
the firm. Integrating, adapting and sharing are all hallmarks of both
portals and mashups. Differences partially stem from the complexity of
the integration, the criticality of the services, the sensitivity of the data,
and non-functional requirements (e.g., availability, efficiency, etc.) that
impose a centralized and professionalized portal administration. From this
perspective, both portals and mashups tackle data/service integration but
provide different answers to the balance between easiness and reliability.
This chapter addresses mashups on portals.

Traditional mashing-up distinguishes two scenarios w.r.t. source

1Parts of this chapter have been previously presented [PD10, DPnP07]

83

Variability in Remote Portlets

applications. In the first scenario, the mashup is a separate application
from source applications (e.g., Yahoo! Pipes). In the second scenario,
the mashup is an enhancement on the source application (e.g., MashMaker
[EG07], MARGMASH [DPnP07]). This normally requires users to install a
browser plug-in for the mashup to be woven with the application markup at
the client. In both cases, source applications ignore they are being subject
to mashup. Portals are Web applications. Hence, previous scenarios can
be applied to portals. However, this prevents mashing-up from capitalizing
on portal utilities (e.g., single-sign on, access control, customization, etc.).
Unlike other Web applications, portals reckon to provide an integration
space for corporate services. By mashing-up at the back of the portal, you
miss the opportunity to benefit from this integration space. Therefore, we
tackle “mashup-aware portals”.

This departs from traditional scenarios. First, and unlike the Yahoo!
Pipes approach, the mashup is offered without leaving the portal. Second,
and unlike MashMaker-like approaches, now the portal takes an active
role on facilitating mashups on portal services. This implies that (1)
no additional plug-in is necessary since mashup weaving is already
engineered into the portal, (2) the portal “guides” users throughout the
mashup process, and (3), the portal provides the context for mashups to
be seamlessly integrated into portal services. From the portal perspective,
mashing-up becomes an additional approach to customize portal offerings.

Customization helps portal services (e.g., booking flight tickets) to be
adapted to the users’ roles. Both content and services can be adapted to
the current user (e.g., flightBooking is only available for senior engineers).
Personalization goes one step further by permitting users themselves to
set some configuration options (e.g., the destinationAirport parameter is
set to “New York” by John Douglas). This work introduces mashups as
an additional personalization mechanism. For instance, John Douglas is
very apprehensive to weather conditions so that he looks at the weather
forecast before setting the trip date. This just applies to Mr. Douglas, and
it is not contemplated by flightBooking. Hence, Mr. Douglas is forced

84

Chapter 6. User-Based Variability

to move outside the portal realm to satisfy this data need (e.g., through a
weatherForecast widget), and to bridge himself the passing of data from
the portal to the widget. By contrast, mashup-aware portals would assist
Mr. Douglas in weaving the weatherForecast widget to the flightBooking
service. Specifically, we focus on portlets [DR04] as the realization of
portal services.

The rest of the chapter is structured as follows. Section 6.2 and 6.3
addresses the subject of variations and the time of variations with the help
of an example. Section 6.4 outlines how to handle those variations using
variability realization techniques. The main contribution of the chapter
rests on section 6.5 that addresses the challenges posed for both portlet
providers and portlet consumers. Finally, sections 6.6 and section 6.7
introduce the related work and conclusions, respectively.

6.2 What Can Vary

This work regards portal mashups as enhancements provided by users but
accomplished through the portal. This introduces a distinction among the
tasks to be reached through the portal: main tasks and mashup tasks (e.g.,
weatherForecast). Main tasks are set by the portal administrator. They
support the functional backbone of the portal. Being complex tasks, they
tend to be realized as portlets. Portlets strive to play at the front end
the same role that Web services currently enjoy at the back end, namely,
enablers of application assembly through reusable services. Portlets are
user-facing (i.e., return markup fragments rather than data-oriented XML)
and multi-step (i.e., they encapsulate a chain of steps rather than a one-shot
delivering) [DR04]. The latter is worth noticing: service accomplishment
normally requires a sequence of markups that are progressively rendered
to the user. For instance, the flightBooking service can be realized as a
portlet that provides a set of markups for airport/date setting, site booking,
entering billing data, and so on.

On the other hand, mashup tasks are subordinated to main tasks.

85

Variability in Remote Portlets

Figure 6.1: Side-by-side composition.

Normally, they consult and provide additional data rather than updating
the service state. Unlike main tasks, mashup tasks can be set by portal
users. We choose widgets as the realization technology for ancillary tasks.
Widgets are full-fledged client-side applications that are authored using
Web standards and packaged for distribution [W3C08b].

Traditionally, portal services are readily presented as you enter the
portal page. Figure 6.1 provides a sample case. Two portlets (i.e.,
flightBooking and librarySearch), and one gadget2 (i.e., weatherForecast)
are rendered together. The figure illustrates traditional composition
(a.k.a. “side-by-side composition”). As soon as you enter a portal page,
portlets/gadgets are all made readily available. This approach is based on
the premise that tasks are all equal, regardless of how they are supported.

By introducing mashup tasks, this approach now falls short. Side-by-
side composition is still possible: portlets and gadgets can be co-located
in portal pages. However, mashup tasks should not be readily available
but only when they are needed. Otherwise you will end up with cluttered

2Gadgets are a concrete technology for widgets.

86

Chapter 6. User-Based Variability

Figure 6.2: Inlay composition.

portal pages full of gadgets with no obvious purpose. The purpose of a
mashup task should be sought in the context of a main task. In our previous
example, weatherForecast only makes sense when flightBooking reaches
the point of prompting for the destination airport. Once flightBooking
moves to the next stage, weatherForecast is of no use. Additionally, the
weatherForecast gadget should be located the closest to the entry form for
the destination airport. However, side-by-side composition would assign
flightBooking and weatherForecast distinct (although co-located) cells. It
is then possible for the departure airport to appear at the bottom of the cell
while forecast data is rendered upper on the page.

Mashup-aware portals depart from side-by-side composition by
permitting portlet markup to become the canvas (i.e., the rendering space)
for gadgets. Figures 6.2 provides an example. First, flightBooking and
library are presented side-by-side as realization of main portal tasks. By
contrast, mashup tasks such as weatherForecast, can now be inlayed within
the rendering space of flightBooking.

Therefore, what varies here is the portlet markup that can be now

87

Variability in Remote Portlets

extended with different mashup markups depending on the current user,
whereas portlet’s data and business logic remain untouched.

6.3 When Can It Vary

The design decision here is to support the addition of variants by end-
users. For instance, Mr. Douglas prefers the weatherForecast widget to be
inlayed within the flightBooking services, whereas another user may prefer
to check his agenda. This implies that variation points should be open for
adding new variants at runtime.

6.4 How Is It Supported

When providing variability to end-users, one cannot expect end-users to
edit and compile source code, so any variability technique that requires
this would be unsuitable for this kind of variant feature. Additionally, the
chosen variability realization technique must enable end-users to extend
the portlet with new variants at runtime. Such variants are normally
referred to as plug-ins and these may often be developed by third parties. In
the case at hand, plug-in are implemented as widgets conforming mashups
that have been developed by end-users using mashup development tools.

In this scenario, the chosen variability realization techniques must
facilitate the modification of the portlet after delivery. This is the main
reason to choose the binary replacement technique described in [SvGB05].
However, this techniques needs to be adapted in order to be applied to
markup entities. This is the main contribution of this chapter and it is
detailed in the next section.

6.5 Mashup-based Personalization

This scenario introduces three actors, namely

88

Chapter 6. User-Based Variability

• the portal user. Once the portal is deployed, he can require additional
data to better accomplish some portal services. Akin to the DIY
approach, it is up to him to find the appropriate widget.

• the portlet provider. Portals provide the means to integrate services
from third parties through portlets. Portlet providers ensure the
quality of the service (data integrity, service throughput, etc.). Now,
they are also responsible to decide how the service can be mashed
up. Portlet designers should foresee placeholders to inlay additional
information on accomplishing the portlet task (e.g., on selecting the
destination airport),

• the portal (i.e., the portlet consumer). Akin to the portal-as-an-
integration-space, portals should offer weaving mechanisms that
permit data to seamlessly flow between main tasks and mashup tasks.
WeatherForecast provides an example: its parameter “location” is to
be obtained from the flightBooking destination airport, so that every
time the airport is changed, the inlayed gadget is refreshed.

6.5.1 Realizing the Portlet Provider Perspective

Portlets support well-focus functionality: booking a fly seat, handling a
bank transfer, and so on. On the other hand, portlets are born to be
reused. The same portlet can be offered through different portals. As
in any other component technology, this implies an attempt to foresee
requirements for distinct potential consumers. However, traditional
component development already advises that “no design can provide
information for every situation, and no designer can include personalized
information for every user” [Rho00]. This is when mashups come into
play. Mashups permit portal users to complement portlet functionality. It
is most important to notice that we do not mashup the portlet as such but
the offering of this portlet through this portal. The very same portlet can
have a different mashup when offered through another portal.

89

Variability in Remote Portlets

A similar situation arises in XML Schema. Schema standards are set
by international bodies. Since the specificities of each sector/country
can be difficult or inappropriate to be directly captured by the general
schema, extension points are defined for consumers to adapt the schema
to their own contexts. Likewise, portlet designers need to find a balance
when supporting the portlet functionality, i.e., the portlet should be general
enough to be appropriate for a large set of consumers while including
“mashup placeholders” to cater for mashup specifics (hereafter referred
to as “mashcells”). Their role is similar to the <any> element in XML
schemas.

Mashcells do not have any presentation impact other than pinpointing
where the portlet markup can be extended. Implementation wise,
mashcells are supported as the CSS class “mashcell”. Figure 6.3 shows a
snippet for a markup fragment for flightBooking. Notice that a portlet task
is rarely accounted for through a single markup fragment. Rather, a portlet
tends to involve a succession of markups that are accordingly presented to
the user (e.g., enter trip details, select the seat, provide bill details, etc.). To
this end, the “view” CSS class is introduced to denote each of these markup
fragments. The sample markup corresponds to the “search_form_view”.

Mashcells permit portlet designers to foresee places where ancillary
tasks can be inlayed to ease the user to accomplish the main task. For
the sample markup, the designer decides to provide two mashcells right
before and after the entry form: “top-mashcell” and “bottom-mashcell”.
Portal tools can then light up these mashcells, pinpointing mashup points
for portal users to fill up with the desired gadgets. This moves us to the
consumer perspective.

6.5.2 Realizing the Portal Perspective

Mashup-able portlets exceed side-by-side composition. Portlets
themselves now become “the canvas” where gadgets can be placed. The
design space is then set on a portlet basis. Broadly, this space comprises

90

Chapter 6. User-Based Variability

Figure 6.3: Portlet markup with mashcells as mashup placeholders.

three dimensions (see Figure 6.4):

• what to include (i.e., gadget selection). The values of this
dimension stand for the gadgets available at the portal. Permission
can be granted for portal users to add their own gadgets, hence
personalizing their own data purveyors,

• where is to be included. Values correspond to the mashcells available
at the portlet at hand,

• how is to be included. Values stand for potential “data feeds” to be
obtained from the portlet markup.

Figure 6.4 shows the design space for the flightBooking portlet. This
space frames the setting for deciding what-where (hereafter, referred to as
“composition coordinate”), and where-how (referred to as “orchestration

91

Variability in Remote Portlets

Figure 6.4: Design space for the flighBooking portlet.

coordinate”). For the sample problem, weatherForecast gadget is to be
inlayed into the “top-mashcell” (composition coordinate). Additionally,
this gadget is to be fed after the destination airport entry form
(orchestration coordinate). Next paragraphs introduce two requirements
to be fulfilled by the implementation technology: dynamic binding and
presentation-based orchestration.

Dynamic binding: coordinates can be set once the portal is already
deployed. Behaving as a kind of portal preferences for decision taken,
gadgets and the associated coordinates can be added by portal users at any
time. This hot-deployment of gadgets implies the ability to dynamically
define coordinates.

Presentation-centred orchestration: gadget parameters can be
obtained from portlet markup. Being both portlets and gadgets
presentation components, it is just natural to use events for this purpose.
Portlets already have a standard that permits portlets to synchronize their
life cycles through events [Jav08]. But this leaves gadgets out. Departing
from the specific technology, Yu et al. propose an orchestration model but
now based on a canonical model for presentation components [YBSP+07].
Presentation components are encapsulated through an interface where

92

Chapter 6. User-Based Variability

events and operations are specified. The orchestration model is next
defined on top of these interfaces: events from component C1 can trigger
operations (i.e., state changes) in component C2. The approach requires
the use of adapters to map platform-specific technologies (e.g., portlets,
gadgets, etc.) into their platform-independent component model.

The proposal introduced in [YBSP+07] strives to abstract from
the distinct technologies of presentation components, and provides a
common framework where components can be seamlessly orchestrated.
The approach brings several benefits: interoperability, portability or
maintenance. However, it also imposes an important footprint:

1. on the search for generalization (i.e., a canonical model for
presentation components), this indirection can eventually incur in
some efficiency penalty. Platform-specific events (e.g., portlet
events) need first to be mapped into the canonical framework. Next
orchestration rules are triggered which, in turn, cause the enactment
of operations. Finally, these canonical operations need to be mapped
down to platform-specific operations on portlets/gadgets. These
mappings from component-specific technology platforms to the
component-independent canonical platform (and vice versa) occur
at runtime.

2. on the search for abstraction, components offer high-level events
(e.g., seat booked) rather than UI, low-level events (e.g., mouse
over). This is certainly an advantage since it encapsulates the
component implementation, and in so doing, shelters component
consumers from changes in how the presentation is achieved (i.e., UI
events). However, it also restricts the freedom of the consumer who
is now limited to subscribe to those predefined events available at the
component interface. This can be especially severe in case of using
third-party components where component events are necessarily
general.

93

Variability in Remote Portlets

On these grounds, we decide to stick to UI events. The fact of HTML
being the standard for delivering rendering through the Web makes HTML
the lingua franca for portlet-widget communication. That is, the DOM
API is used [W3C00]. This API provides a set of low-level UI events
(e.g., load, mouse over, etc.) to operate on low-level UI components
(e.g., menus, button, etc.). Of course, this is far from abstraction but it
provides generality: components, no matter whether they are portlets or
gadgets, can “be operated” basing on the same DOM events. The only
requirement is for the output to be HTML markup. That is, there is no
need for the component provider to facilitate a high-level event interface.
Additionally, this approach relies on an existing technology (mainly DOM
and JavaScript) rather than requiring the portal administrator to become
knowledgeable about a new component model. Therefore, we rely on
DOM events to specify the orchestration model. This forces composition
to take place at the client3.

Having said that, we are also aware of the drawbacks this decision
conveys. First, upgrades in the component markup can impact the
orchestration. Second, maintenance of the orchestration model becomes
more demanding. Being described in terms of low-level UI events rather
than high-level events, the orchestration becomes more verbose and error
prone.

Our contention is that this trade-off should be solved in a portal basis.
Each portal administrator should balance the complexity and potential
evolution of the portal’s orchestration model versus the indirection costs
caused by the “canonical” component model. It is worth noticing
that, unlike mashups, portals offer a more controlled environment for
composition. Portlet providers should be certified before delivering their
portlets through the portal. In this setting, portal administrators can impose
portlet providers to communicate any change in the portlet markup so that
no sudden changes cause the orchestration to stop working.

3Actually, portlets produce the markup at the server while gadgets are scripts to be run
at the client.

94

Chapter 6. User-Based Variability

Based on these two requirements (i.e., dynamic binding, and client-
based, DOM event-based orchestration), we select the XML Binding
Language (XBL) [W3C07] as the implementation technology. Next
subsection gives a brief on this language.

A Brief on XBL

XBL is a W3C candidate recommendation for describing bindings that can
be attached to elements in other documents. It is currently supported
by the main browsers. The element that the binding is attached to,
called the bound element, acquires the new behaviour specified by the
binding [W3C07]. An XBL document has <bindings> as a root. The
<bindings> tag contains a collection of <binding> elements that describe
element behaviour. Each <binding> can include the <content> tag, which
is used to describe anonymous content that can be inserted around a
bound element, an <implementation> tag that captures new properties and
methods, and a <handlers> tag to account for event handlers on the bound
element.

Bindings can be attached to elements through CSS using the -
moz-binding property. Figure 6.5 shows an example where the CSS
specification attaches newBreeds binding to the CSS class breeds elements.
The binding is identified by referring to the XBL file using the # notation.
The example shows how the dog-variation list changes as a result of
applying the binding, in this case, by adding two additional dog variations.

Next sections look at how XBL can be used to realize both composition
coordinates and orchestration coordinates. XBL files can be bound
dynamically, hence, changing the coordinates based on either the profile
of the current user or the portal configuration parameters.

95

Variability in Remote Portlets

Figure 6.5: An XBL sample.

6.5.3 Setting Composition Coordinates

A composition coordinate (what, where) specifies what gadget is to be
place in which mashcell. XBL wise, the binding provides the what
as a <content> element, while the CSS provides the bound element,
i.e., the where. Figure 6.6 provides an example for the coordinate
(WeatherForecastGadget, top-mashcell).

What. The binding “gadget_21” describes this gadget as anonymous
content. Gadget preferences are supported as properties. In this case, getter
and setter methods are provided for the two gadget preferences: location
and units. This file is kept at “localhost:8080/xbl/wrappers.xml”.

Where. Gadgets are placed in mashcells. The CSS file in Figure 6.6
bounds the gadget_21 binding to the “top-mashcell” to be found in the

96

Chapter 6. User-Based Variability

Figure 6.6: XBL support for the composition coordinate
(WeatherForecastGadget,top-mashcell).

markup of the flightBooking portlet. This markup is shown in Figure 6.3:
the “top-mashcell” div pertains to the “search_form_view” (notice that a
portlet can deliver a set of markups) which in turn is wrapped by a portal
decorator (a.k.a. portlet wrappers)4. The CSS addresses the whole portal
page; hence the CSS style must identify a single cell within the portal page.
This explains the three ID conditions in a raw found in the CSS sample.

6.5.4 Setting Orchestration Coordinates

Gadget parameters can be obtained from portlet markup. For instance,
the weatherForecast’s location parameter is to be obtained through
subscription to changes in the destination form field of the flightBooking
portlet. This stands for the orchestration coordinate (top-mashcell,

4The latter identification is needed since it is possible for the same portlet to be
instantiated more than once in the very same portal page. That is, they can be distinct
flightBooking portlet instances in the very same portal page.

97

Variability in Remote Portlets

Figure 6.7: XBL support for the orchestration coordinate (top-mashcell,
destination).

destination).

Figure 6.7 illustrates the realization of this coordinate using XBL. A
binding is specified that declares a handler on the DOM event “change”.
The handler proceeds along three steps: (1) calling the data extractors,
(2) enacting the converters for data transformation, if required, and finally
(3), localize the bound element where the gadget resides. Data conversion
is needed since data formats can differ between the provider and the
consumer of the data. In this case, a converter is used to map IATA airport
identification used by the portlet to Yahoo! city code utilized in the gadget.

Next, the companion CSS file associates the previous
onDestinationChange binding to the form field that collects the destination
airport. The CSS locates the bound element by first identifying the portlet
decorator, next the portlet view, and finally the DOM node that holds the
data. At enactment time, rendering this view will cause the handler to be
bound to the form field so that any change in its value will cause to refresh
the weatherForecast markup.

98

Chapter 6. User-Based Variability

Figure 6.8: Mashup process: composition step.

6.5.5 Extending Portal Design Tools

Previous sections evidence the feasibility of mashup-able portlets using
XBL. Portal developers master CSS, HTML or JavaScript, so learning
XBL is just a question of hours. However, mashups aim to be an end-
user technology. To this end, XBL should be hidden through GUI tools
that permit portal users to define basic mashups based on their favourite
gadgets. This section outlines such a tool for Liferay.

The tool achieves mashups in two steps: composition and
orchestration. Composition starts by opening the dock menu (1) and
selecting the Add Widget option (2). This causes the rendering of the
Widget palette (3) (see Figure 6.8). So far, this palette is set by the
portal administrator but the idea is for portal users to certify their favourite
widgets to be uploaded into the portal (recall gadgets are a concrete
technology for widgets). Next, the user selects a widget and drops it into
a portlet mashcell (4). Available portlet mashcells are lighted up as the
user moves around. Once the widget is dropped in a mashcell, the user
can set the default values for the widget preferences (5). This concludes

99

Variability in Remote Portlets

the composition step that ends up with the generation of the corresponding
XBL file.

So far, the gadget is inlayed into the portlet realm. A tightened
integration can be achieved by feeding the gadget after the portlet data.
To this end, (1) the user first selects the “orchestration” button (see Figure
6.9) that brings up the Orchestration Editor (2). By clicking on the “new”
button (3), you are initiating the creation of the second XBL file behind the
scenes. An XBL binding can now be generated for each gadget preference
(e.g., location, units). Creation of a binding starts by prompting its name
(4), indicating from where the data is to be obtained by clicking on the
portlet markup (and realized as an XPath expressions (5)), and finally,
pointing to the gadget to be fed (6). This defines a set of sources and a
set of targets. Next, the user can draw a line from a source to a target that
causes the generation of the XBL binding (7). However, not always the
data can be consumed as extracted. In our sample case, IATA code should
first be converted into Yahoo! city code. Constructing such converters is
commonly outside end users’ skills. EMML editors can be used to facilitate
this task. A repository of converters can be available at the portal. In this
case, the tool permits to display certified converters that can be inlayed into
the piping process just as an intermediary link (8). In this way, a handler-
based XBL file and its CSS counterpart as the one shown in Figure 6.7 is
generated.

6.6 Related Work

Recently, there has been a proliferation of research papers about mashups.
In [LHSL07], mashups as facilitators of Web Service composition is
presented. Mashups encapsulate web services that are later composed
through some additional JavaScript glue code. Like in our approach,
HTML is used as the integration layer to achieve Web Service composition.
On the other hand, MashMaker [EG07] and MARGMASH [DPnP07]
allow end users to augment the content of an existing Web application

100

Chapter 6. User-Based Variability

Figure 6.9: Mashup process: orchestration step.

101

Variability in Remote Portlets

by inserting mashups’ markup throughout the web application’s pages.
However, extension points are not controlled by the existing application but
screen-scraping techniques are used “to glue” the mashup to the existing
code. Enterprise Information Portals offer a more controlled environment
where existing portlets participate in the mashup effort by setting the
extension points in their markup (i.e., the mashcells).

In [GZF+08], a new Web component called gadget is proposed. A
gadget can interact to other gadgets through contract-based channels.
Gadgets can contain other gadgets. This approach aligns to our efforts to
permit presentation component to hold other components. The differences
stems from the technological settings. Portals do not have the freedom
that gadget exhibit. First, [GZF+08] proposes to extend HTML with a
new HTML element—the so-called <gadget>. To avoid ad-hoc HTML
extensions, our approach opts for using W3C candidate recommendation
XBL to specify the bindings. Second, unlike gadgets, portlet markup
cannot be extended at any place but at selected location pre-set by
the portlet provider (i.e., the mashcell placeholders). Third, the portal
frames the setting where the mashup is achieved. Although not yet
explored, this permits to capitalize on portal utilities such as single-sign
on, customization or resource sharing.

6.7 Conclusions

Enterprise Information Portals achieve front-end integration for
presentation-oriented Web Services (a.k.a. portlets). As any other
Web application, portlets can also be subject to mashup. However,
their special characteristics (i.e., reusable components being offered
by third parties) make portlet mashup a combined endeavour of portlet
consumers and portlet providers. We have presented an architecture where
portlet providers facilitate mashup placeholders (i.e., mashcells) to add
companion widgets. As for portlet consumers, XBL bindings are used
to dynamically bound user mashups to mashcells. The approach strives

102

Chapter 6. User-Based Variability

to find a balance between portal reliability and mashup freedom. This
architecture is borne out for Liferay.

Next follow-on includes capitalizing on the portal utilities for
leveraging mashup. Single-sign on, access control, customization
mechanisms are now at our disposal to adapt mashup techniques when
achieved through a enterprise portal.

Parts of the work described in this chapter have been previously
presented:

• Oscar Díaz, Sandy Pérez and Iñaki Paz. Providing Personalized
Mashups Within the Context of Existing Web Applications. In
proceedings of the 8th International Conference on Web Information
Systems Engineering (WISE2007), Nancy, France, 2007.

• Sandy Pérez, Oscar Díaz. Mashup-Aware Corporate Portals.
In proceedings of the 11th International Conference on Web
Information Systems Engineering (WISE2010), Hong Kong, China,
2010.

103

Chapter 7

Conclusions

“Every new beginning comes from some other beginning’s end.”
-Seneca

7.1 Overview

Enterprise Information Portals (EIP) enable people to communicate and
collaborate, provide a unified point of access to dynamic content from
business applications, break down silos of content, and deliver information
effectively through context-driven personalization. This makes EIP a must
in today organizations [VMP+12]. Key to this vision is the notion of
portlets.

Portlets are the fundamental building blocks of portals. Portlets are
used by portals as pluggable user interface Web components. The JavaTM

Portlet Specification (formerly JSR 286) [Jav03, Jav08] establishes a
standard API for ensuring portlet portability, i.e. developers can create
one portlet and reuse it in any portal that supports the JavaTM Portlet
Specification. However, portability is not only a standardization matter.
Portlets tend to be coarse-grained components since they encapsulate both
the presentation layer and the functional layer. It is well-known in the
component community that, the larger the component, the more reduced

105

Variability in Remote Portlets

the reuse. To make portlet reuse practical and effective, portlets need to
offer some degree of variability in order to accommodate the differences
between individual portals. This will certainly increase reusability, and
hence, helping to pay off the upfront investment portlets require.

A complementary standard, Web Services for Remote Portals (WSRP)
[ftAoSIS03, ftAoSIS08] defines a common interface and protocol for
creating pluggable, user-facing, interactive Web services. JSR 286 portlets
can be exposed as WSRP-compliant Web services. Therefore, portlets can
be locally deployed or be provided remotely through third-party providers.
For instance, a portal can offer the possibility of blogging, purchasing a
book, or arranging a trip, all without leaving the portal. Some of these
portlets can be built in house whereas others can be externally provided by,
e.g., Amazon (amazon.com) or Expedia (expedia.com). However, where
the notion of portlet gets its full potential is when portlets are deployed
remotely, provided by third parties. This dissertation focuses on variability
for remote portlets.

The WSRP protocol describes the conversation between portlet
Providers and Consumers on behalf of End-Users :

• providers are presentation-oriented web services that host portlets
which are able to render markup fragments and process user
interaction requests,

• consumers use these web services as part of presenting markup
to End-Users and managing the End-User’s interaction with the
markup,

• end-users are the clients of consumers

These roles constitute the different contexts in which variability for
remote portlets can be set and decided.

• the portlet provider. Here, the portlet provider conducts a deep
domain analysis and provide portlet consumers with a fixed set of
variants to choose from.

106

Chapter 7. Conclusions

• the portlet consumer. Here, the portlet consumers may also create
and add their own product-specific variants, e.g., to account for
requirements that can be met by using functionality external to the
portlet.

• the end user. Additionally, there is an increasing trend to provide
variability to end users (e.g., plugin mechanisms). However, we
cannot expect end users to edit and compile source code.

This dissertation undertakes the challenge of supporting variability for
each of these scenarios. This chapter reviews the main results of this work,
assesses its limitations, and suggests work for future research.

7.2 Results

This dissertation develops the content of the research through three main
chapters which are next summarized.

Chapter 4 is an example of the first scenario (i.e., provider-based
variability). It promotes a SOA approach to portal construction that
relies upon portlets as truly reusable services. However, reusability can
be jeopardized by the coarse-grained nature of portlets. To overcome
this drawback, the notion of Consumer Profile is introduced as a way to
capture the distinct organization scenarios where a portlet can be deployed.
The result is an organization-aware, WSRP-compliant architecture that lets
portlet consumers register and handle “family portlets” in the same way
that “traditional portlets”.

Chapter 5 is an example of the second scenario (i.e. consumer-
based variability). It advocates for means to better account for the
portlet consumer specifics. Tagging is used as an example. It argues
for tagging to be orthogonally supported as a crosscut on top of portlets,
i.e., as a portal commodity. Tagging functionality is up to the portal
(i.e., the portlet consumer) but offered through companion portlets. In
the same way that portlets adapt their rendering to the portal aesthetic,

107

Variability in Remote Portlets

tagging through portlets should also cater for the peculiarities of the
consumer portal. Currently, most portal vendors support tagging as a portal
functionality. The portal is regarded as a content manager. The portal owns
the resources, and provides functionality for tagging. Tagging is restricted
to those resources within the realm of the portal. Additionally, portals
are also integration platforms, making external resources available through
portlets. This outsource of content description does not imply that external
resources are not worth tagging. This work highlights that tagging should
be seamlessly achieved across the portal, regardless of the type (messages,
books, hotels, etc.), or origin (i.e., Amazon, Expedia, etc.) of the resource.
This is akin to portals as integration platforms. Implementation wise,
this implies that portlets should be engineered to be plugged into this
commodity. The result is a novel architecture where RDFa annotations
are used as a means for portlets to communicate the portal the existence
of tag-able resources, and portlet events as the mechanism for portals to
broadcast tag-based queries to portlets.

Chapter 6 illustrates the third scenario (i.e., user-based variability).
Motivated by “no design can provide information for every situation, and
no designer can include personalized information for every user” [Rho00],
this chapter brings mashups into portlets through the combined effort
of portlet providers and portlet consumers. Portlet providers facilitate
mashup placeholders (i.e., mashcells) to add companion widgets. Portlet
consumers resort to XBL bindings to dynamically bound user mashups to
mashcells. The approach strives to find a balance between portal reliability
and mashup freedom. Unlike traditional mashing scenarios: (i) the mashup
is offered without leaving the portal, (ii) no additional plug-in is necessary
since mashup weaving is already engineered into the portal, (iii) the portal
“guides” users throughout the mashup process, and (iv), the portal provides
the context for mashups to be seamlessly integrated into portal services.
Additionally, a tool for generating XBL files has been developed. The tool
is completely visual, and hides XBL technicalities.

108

Chapter 7. Conclusions

Figure 7.1: Top five publications as for the number of references in Google
Scholar [Accessed 8 December 2015].

7.3 Publications

Parts of the work explained in this thesis have been presented and
discussed in distinct peer-reviewed forums. Figure 7.1 depicts the top five
publications as for the number of references in Google Scholar.

Next we provide a more detailed account in terms of the different
communities being addressed:

Web Engineering

• Oscar Díaz, Salvador Trujillo and Sandy Pérez. Turning Portlets
into Services: The Consumer Profile. In proceedings of the 16th
International World Wide Web Conference (WWW2007), Banff,

109

Variability in Remote Portlets

Alberta, Canada, 2007. Acceptance rate: 15%. Rank A+ in the
CORE conference ranking [DTP07].

• Oscar Díaz, Sandy Pérez and Iñaki Paz. Providing Personalized
Mashups Within the Context of Existing Web Applications.
In proceedings of the 8th International Conference on Web
Information Systems Engineering (WISE2007), Nancy, France,
2007. Acceptance rate: 29%. Rank A in the CORE conference
ranking [DPnP07].

• Oscar Díaz, Sandy Pérez and Cristóbal Arellano. Tagging-Aware
Portlets. In proceedings of the 9th International Conference on Web
Engineering (ICWE2009), San Sebastian, Spain, 2009. Acceptance
rate: 24%. Rank C in the CORE conference ranking [DPA09].

• Sandy Pérez, Oscar Díaz. Mashup-Aware Corporate Portals.
In proceedings of the 11th International Conference on Web
Information Systems Engineering (WISE2010). Hong Kong, China,
2010. Acceptance rate: 30%. Rank A in the CORE conference
ranking [PD10].

Model-Driven Web Engineering

• Sandy Pérez, Oscar Díaz, Santiago Meliá and Jaime Gómez. Facing
Interaction-Rich RIAs: the Orchestration Model. In proceedings of
the 8th International Conference on Web Engineering (ICWE2008),
Yorktown Heights, New York, United States, 2008. Acceptance rate:
34%. Rank B in the CORE conference ranking [PDMG08].

• Santiago Meliá, Jaime Gómez, Sandy Pérez and Oscar Díaz.
A Model-Driven Development for GWT-Based Rich Internet
Applications with OOH4RIA. In proceedings of the 8th
International Conference on Web Engineering (ICWE2008),
Yorktown Heights, New York, United States, 2008. Acceptance
rate: 34%. Rank B in the CORE conference ranking [MGPD08].

110

Chapter 7. Conclusions

• Santiago Meliá, Jaime Gámez, Sandy Pérez and Oscar Díaz.
Architectural and Technological Variability in Rich Internet
Applications. In IEEE Internet Computing journal, 2010, 14, 24-
32. JCR (ranked fifth in the top 10 magazines and journals in
the computer science software engineering category), Impact factor
3.108 [MGPD10].

• Sandy Pérez, Frederico Durao, Santiago Meliá, Peter Dolog
and Oscar Díaz. RESTful, Resource-Oriented Architectures: a
Model-Driven Approach. In proceedings of the 1st International
Symposium on Web Intelligent Systems & Services (WISS2010).
Hong Kong, China, 2010 [PDM+10].

Figure 7.2 summarises the citations to these publications.
Google Scholar. Accessed 8 December 2015.
https://scholar.google.es/citations?user=4JnaSTQAAAAJ&hl=en

Figure 7.2: The author’s Google Scholar metrics [Accessed 8 December
2015].

111

Variability in Remote Portlets

7.4 Research Stages

One of the outstanding benefits of performing a Ph.D. is the possibility of
working together with international and well-regarded professionals, and
above all, learning from them. The author performed a research visit from
March to May of 2010 to the Intelligent Web and Information Systems
Research Group (IWIS) at the Aalborg University, Denmark, under the
supervision of Prof. Dr. Peter Dolog. This visit fostered discussion,
broadened horizons and greatly helped to improve this work.

7.5 Assessment and Future Research

This dissertation explores and proposes solutions to implement variability
in three scenarios of the portlet arena, which are not well cover
by the mechanisms provided by current portlet standards: (1) the
realization of Service-Oriented Architecture (SOA) using portals, (2) the
provision of social tagging as a portal commodity and (3), mashup-
based personalization. However, an objective assessment exposes some
limitations of this work and shows there is still room for improvement and
future research.

Realization of SOA using portals

• Performance. The presented architecture could be simplified by
eliminating the need for the applicationProducer. To achieve this,
generated portlets should be hot deployed directly in the portlet
container residing in the domainProducer. This is possible by
making use of the portlet container API. By eliminating a level of
indirection, we hope to boost the performance of the whole system.

• Validation. Although the developed prototype evidence the
feasibility of the proposed solution, real tests cases are needed to
demonstrate that it really can be used in a real setting.

112

Chapter 7. Conclusions

Provision of social tagging as a portal commodity

• Expand the approach to others social networking services. Although
the proposed solution is focused on social tagging, nothing prevents
it from being expanded to others social networking services such
as rating or comments. To this end, the PartOnt (Participatory
Ontology) ontology needs to be augmented to capture the new
concepts introduced by the new functionality. Additionally, the
proposed REST API should be extended to cater for the new
requirements.

• Scalability. Although the proof-of-concept demonstrates the
feasibility of the approach, real tests cases are needed to fully test
the scalability problems. In the proposed REST API, tag-based
queries involve the execution of IN queries at the provider side in
order to obtain the list of the resources tagged with a specific tag.
These queries need to be measured with real examples involving
large databases and large sets of resource URIs which conform the
filter of the query.

• Explore how the proposed REST API could be improved by the
introduction of the Open Data Protocol (OData) [ftAoSIS14].
OData is an open protocol to allow the creation and consumption of
queryable and interoperable RESTful APIs in a simple and standard
way. For example, it can be used to express query filters, define
query options such as orderby or limit the number of returned entries.

• Explore the viability of a JCR-compliant [Jav05] portlet provider.
As content managers, portlet providers could become standards
content repositories, which could then be queried via standard
services such as Content Management Interoperability Services
(CMIS) [ftAoSIS12]. Although the CMIS specification does not
specify how to interact with tags, Alfresco’s Enterprise Content
Management (alfresco.com) provides an example of how to

113

Variability in Remote Portlets

perform tagging via CMIS. However, this does not eliminate the
need for agreements in commons terms and protocols.

Mashup-based personalization

• Migration to HTML 5. HTML5 may have implications in
the realization of both the portlet provider perspective and the
portal perspective (i.e., the portlet consumer). In the former
case, for example, mashcell can be now supported via custom
HTML elements (e.g., <mashcell/>) instead of CSS classes (<div
class=”mashcell”/>). In the latter case, HTML 5 can help in
obtaining and processing data feeds. For example, the element
<input type=”email”> reveals the existence of an electronic mail
address, which can now be validate as such.

• Usability. The prototype evidence the feasibility of the proposed
solution. However, experiments should be conducted in order to
determine how user friendly is the interface of the companion tool
and how it can be improved.

• Extend the approach to existent portlets. The approach could be
extended to make use of the mechanisms include in [DPnP07] in
order to allow end users to identify which markup fragments play
the role of the mashup anchors (i.e., mashcell).

7.6 Conclusions

This dissertation has shown how variability can be implemented in three
scenarios where mechanisms provided by current portlet standards are not
enough, namely:

1. the realization of Service-Oriented Architecture (SOA). Portals as
integration platforms, offer an excellent conduit for realizing SOAs.

114

Chapter 7. Conclusions

The thesis propose the use of Software Product Lines techniques that
account for portlets to become truly reusable services,

2. the provision of social tagging as a portal commodity. That
is, tagging functionality is up to the portal but offered through
portlets. To account of the portal specifics, portlet events and RDFa
annotations are used to build a novel architecture that allows portlets
to be seamlessly plugged into portal tagging infrastructure,

3. mashup-based personalization. Here, mashing is regarded as
an additional personalization mechanism whereby portal users
can supplement portal services with their own data needs. An
architecture is presented where portlet providers facilitate mashups
placeholders and XBL bindings are used to dynamically bound user
mashups to them.

The thesis develops the theoretical underpinnings, and provides different
implementations as a proof-of-concept. All solutions are JSR-286 and
WSRP compliant. However, while these implementations evidence the
feasibility of the proposed solutions, real tests cases are needed to
demonstrate that really pay off in a real setting. This will certainly imply
moving from prototypes to products, and from users to customers as the
target audience.

115

Bibliography

[AN07] Morgan Ames and Mor Naaman. Why We Tag: Motivations
for Annotation in Mobile and Online Media. In 25th
ACM SIGCHI Conference on Human Factors in Computing
Systems, 2007.

[Bat05] Don Batory. Feature Models, Grammars, and Propositional
Formulas. In 9th International Software Product Line
Conference, 2005.

[BFG+02] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela,
J. Henk Obbink, and Klaus Pohl. Variability Issues in
Software Product Lines. In 4th International Workshop on
Software Product-Family Engineering, 2002.

[BKPS06] Jeffrey Blattman, Navaneeth Krishnan, Dean Polla,
and Marina Sum. Open-Source Portal Initiative at
Sun, Part 2: Portlet Repository. Published at http:

//www.oracle.com/technetwork/systems/

articles/portlet-repository-141454.html,
2006.

[Bos00] Jan Bosch. Design & Use of Software Architectures:
Adopting and Evolving a Product-Line Approach. Addison-
Wesley Professional, 2000.

117

Variability in Remote Portlets

[BRPA05] L. Balzerani, D. Di Ruscio, A. Pierantonio, and G. De
Angelis. A Product Line Architecture for Web Applications.
In 20th ACM Symposium on Applied Computing, 2005.

[BTT05] D. Benavides, S. Trujillo, and P. Trinidad. On the
Modularization of Feature Models. In 1st European
Workshop on Model Transformation, 2005.

[CD03] Rafael Capilla and Juan C. Dueñas. Light-weight Product-
Lines for Evolution and Maintenance of Web Sites. In
7th European Conference on Software Maintenance and
Reengineering, 2003.

[CDG+08] Nicole Carrier, Tom Deutsch, Chris Gruber, Mark Heid, and
Lisa Lucadamo Jarrett. The business case for enterprise
mashups. Technical report, IBM Corporation, 2008.

[CN01] Paul Clements and Linda Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley Professional, 2001.

[DMG+08] Joan DiMicco, David R. Millen, Werner Geyer, Casey
Dugana, Beth Brownholtz, and Michael Muller. Motivations
for Social Networking at Work. In ACM Conference on
Computer Supported Cooperative Work, 2008.

[DPA09] Oscar Díaz, Sandy Pérez, and Cristóbal Arellano. Tagging-
Aware Portlets. In 9th International Conference on Web
Engineering, 2009.

[DPnP07] Oscar Díaz, Sandy Pérez, and Iñaki Paz. Providing
Personalized Mashups Within the Context of Existing Web
Applications. In 8th International Conference on Web
Information Systems Engineering, 2007.

118

BIBLIOGRAPHY

[DR04] Oscar Díaz and Juan J. Rodríguez. Portlets as Web
Components: an Introduction. Journal of Universal
Computer Science (J.UCS), 10(4):454–472, 2004.

[DR05] Oscar Díaz and Juan J. Rodríguez. Portlet Syndication:
Raising Variability Concerns. ACM Transactions on Internet
Technology, 5(4):627–659, 2005.

[DTA05] Oscar Díaz, Salvador Trujillo, and Felipe I. Anfurrutia.
Supporting Production Strategies as Refinements of the
Production Process . In 9th International Software Product
Line Conference, 2005.

[DTP07] Oscar Díaz, Salvador Trujillo, and Sandy Pérez. Turning
Portlets into Services: The Consumer Profile. In 16th
International World Wide Web Conference, 2007.

[EG07] Robert J. Ennals and Minos N. Garofalakis. MashMaker:
Mashups for the Masses. In ACM SIGMOD International
Conference on Management of Data, 2007.

[ftAoSIS03] OASIS (Organization for the Advancement of Structured
Information Standards). Web Services for Remote Portlets
Specification v1.0, 2003.

[ftAoSIS08] OASIS (Organization for the Advancement of Structured
Information Standards). Web Services for Remote Portlets
Specification v2.0, 2008.

[ftAoSIS12] OASIS (Organization for the Advancement of Structured
Information Standards). Content Management
Interoperability Services v1.1, 2012.

[ftAoSIS14] OASIS (Organization for the Advancement of Structured
Information Standards). Open Data Protocol v4.0, 2014.

119

Variability in Remote Portlets

[GBS01] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On the
Notion of Variability in Software Product Lines. In Working
IEEE/IFIP Conference on Software Architecture, 2001.

[GEM04] Paul Grünbacher, Alexander Egyed, and Nenad Medvidovic.
Reconciling Software Requirements and Architectures with
Intermediate Models. Software and Systems Modeling,
3(3):235–253, 2004.

[GFdA98] M. L. Griss, J. Favaro, and M. d’ Alessandro. Integrating
Feature Modeling with the RSEB. In 5th International
Conference on Software Reuse, 1998.

[GZF+08] Rui Guo, Bin B. Zhu, Min Feng, Aimin Pan, and Bosheng
Zhou. Compoweb: A component-oriented web architecture.
In 17th International World Wide Web Conference, 2008.

[Jav03] Java Community Process. JavaTMPortlet Specification v1.0,
2003.

[Jav05] Java Community Process. Content Repository API for
JavaTMv1.0, 2005.

[Jav08] Java Community Process. JavaTMPortlet Specification v2.0,
2008.

[JB02] Michel Jaring and Jan Bosch. Representing Variability in
Software Product Lines: A Case Study. In 2nd International
Software Product Line Conference, 2002.

[JBZZ03] Stan Jarzabek, Paul Bassett, Hongyu Zhang, and Weishan
Zhang. XVCL: XML-based Variant Configuration Language.
In 25th International Conference on Software Engineering,
2003.

120

BIBLIOGRAPHY

[JGJ97] Ivar Jacobson, M. Griss, and P. Jonsson. Software Reuse:
Architecture, Process and Organization for Business Success.
Addison-Wesley Professional, 1997.

[JP14] Paul Johannesson and Erik Perjons. An introduction to design
science. Springer, 2014.

[JRLR00] Mehdi Jazayeri, A. C. M. Ran, Frank Van Der Linden, and
Alexander Ran. Software Architecture for Product Families:
Principles and Practice. Addison-Wesley, 2000.

[JS00] Stan Jarzabek and Rudolph Seviora. Engineering
Components for Ease of Customization and Evolution. IEE
Proceedings-Software, 147(6):237–248, 2000.

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E.
Novak, and A. Spencer Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-021, Software Engineering Institute, 1990.

[KKL+98] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim,
Euiseob Shin, and Moonhang Huh. FORM: A Feature-
Oriented Reuse Method with Domain-Specific Reference
Architectures. Annals of Software Engineering, 5:143–168,
1998.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-Oriented Programming. In 11th
European Conference on Object-Oriented Programming,
1997.

[Kne] Torben Knerr. Tagging Ontology - Towards
a Common Ontology for Folksonomies.
http://tagont.googlecode.com/files/TagOntPaper.pdf.

121

Variability in Remote Portlets

[KPRS03] Gerti Kappel, Birgit Pröll, Werner Retschitzegger, and
Wieland Schwinger. Customisation for Ubiquitous Web
Applications: a Comparison of Approaches. International
Journal of Web Engineering and Technology, 1(1):79–111,
2003.

[Kru06] Charles W. Krueger. New Methods in Software Product Line
Development. In 10th International Software Product Line
Conference, 2006.

[LHSL07] Xuanzhe Liu, Yi Hui, Wei Sun, and Haiqi Liang. Towards
Service Composition Based on Mashup. In IEEE Congress
on Services, 2007.

[MCnP+05] Ma Ángeles Moraga, Coral Calero, Iñaki Paz, Oscar Díaz,
and Mario Piattini. A Reusability Model for Portlets. In Web
Information Systems Quality (WISQ 2005) Workshop, 2005.

[MGPD08] Santiago Meliá, Jaime Gómez, Sandy Pérez, and Oscar
Díaz. A Model-Driven Development for GWT-Based RIAs
with OOH4RIA. In 8th International Conference on Web
Engineering, 2008.

[MGPD10] Santiago Meliá, Jaime Gómez, Sandy Pérez, and Oscar
Díaz. Architectural and Technological Variability in Rich
Internet Applications. IEEE Internet Computing, 14(3):24–
32, May/June 2010.

[ML97] Marc H. Meyer and Alvin P. Lehnerd. The Power of Product
Platforms. Free Press, 1997.

[MYWF07] David Millen, Meng Yang, Steven Whittaker, and Jonathan
Feinberg. Social Bookmarking and Exploratory Search.
In 10th European Conference on Computer-Supported
Cooperative Work, 2007.

122

BIBLIOGRAPHY

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden.
Software Product Line Engineering: Foundations, Principles
and Techniques. Springer, 2005.

[PD10] Sandy Pérez and Oscar Díaz. Mashup-Aware Corporate
Portals. In 11th International Conference on Web
Information Systems Engineering, 2010.

[PDM+10] Sandy Pérez, Frederico Durao, Santiago Meliá, Peter Dolog,
and Oscar Díaz. RESTful, Resource-Oriented Architectures:
a Model-Driven Approach. In 1st International Symposium
on Web Intelligent Systems & Services, Hong Kong, China,
December 2010.

[PDMG08] Sandy Pérez, Oscar Díaz, Santiago Meliá, and Jaime Gómez.
Facing Interaction-Rich RIAs: the Orchestration Model. In
8th International Conference on Web Engineering, 2008.

[Phi05] Gene Phifer. A Portal May Be Your First Step to Leverage
SOA, 2005. Gartner, Inc.

[RAV+04] W. Clay Richardson, Donald Avondolio, Joe Vitale, Peter
Len, and Kevin T. Smith. Professional Portal Development
with Open Source Tools: JavaTMPortlet API, Lucene, James,
Slide. Wrox, 2004.

[Rho00] Bradley J. Rhodes. Margin Notes Building a Contextually
Aware Associative Memory. In International Conference on
Intelligent User Interfaces, 2000.

[RJ05] Damith C. Rajapakse and Stan Jarzabek. An Investigation of
Cloning in Web Applications. In 14th International World
Wide Web Conference, 2005.

[Str02] Howard Strauss. All About Web Portals: A Home Page Doth
Not a Portal Make. In Web Portals and Higher Education:

123

Variability in Remote Portlets

Technologies to Make IT Personal. Jossey-Bass, A Wiley
Company, 2002.

[SvGB05] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A
Taxonomy of Variability Realization Techniques. Software—
Practice & Experience, 35(8):705–754, 2005.

[Tat05] Arthur Tatnall. Portals, Portals Everywhere. In Web Portals:
The New Gateways to Internet Information and Services. Idea
Group Publishing, 2005.

[TBD07] Salvador Trujillo, Don Batory, and Oscar Díaz. Feature
Oriented Model Driven Development: A Case Study for
Portlets. In 29th International Conference on Software
Engineering, 2007.

[The14] The OSGi Alliance. OSGi Core Release 6, 2014.

[TSMM08] Jennifer Thom-Santelli, Michael J. Muller, and David R.
Millen. Social Tagging Roles: Publishers, Evangelists,
Leaders. In 26th ACM SIGCHI Conference on Human
Factors in Computing Systems, 2008.

[VMP+12] Ray Valdes, Jim Murphy, Gene Phifer, Gavin Tay, and
Mick MacComascaigh. Magic Quadrant for Horizontal
Portals. Published at http://www.gartner.com/id=
2170615, 2012.

[W3C00] W3C. Document Object Model (DOM) Level 2 Events
Specification, 2000. http://www.w3.org/TR/DOM-Level-2-
Events/.

[W3C07] W3C. XML Binding Language (XBL) 2.0, 2007.
http://www.w3.org/TR/xbl/.

[W3C08a] W3C. RDFa Primer: Bridging the Human and Data Webs,
2008. http://www.w3.org/TR/xhtml-rdfa-primer/.

124

BIBLIOGRAPHY

[W3C08b] W3C. Widgets Family of Specifications, 2008.
http://www.w3.org/2008/webapps/wiki/WidgetSpecs.

[YBSP+07] Jin Yu, Boualem Benatallah, Regis Saint-Paul, Fabio Casati,
Florian Daniel, and Maristella Matera. A Framework for
Rapid Integration of Presentation Components. In 16th
international conference on World Wide Web, 2007.

[ZJ97] Pamela Zave and Michael Jackson. Four Dark Corners of
Requirements Engineering. ACM Transactions on Software
Engineering and Methodology, 6(1):1–30, 1997.

125

Acknowledgments

This work would never have been possible without the support of so many
people I would like to thank. First and foremost, thanks are due to my
supervisor Oscar Díaz for investing a great deal of time in this work from
the early stages to the very end and for his continuous encouragement.
Thanks to my colleagues at ONEKIN group: Arantza Irastorza, Cristóbal
Arellano, Felipe Ibañez, Gorka Puente, Iker Azpeitia, Iñaki Paz, Itziar
Otaduy, Jokin García, Jon Iturrioz, Luis M. Alonso, Maider Azanza and
Salvador Trujillo. Not a day goes by where I don’t learn something from
at least one of you.

I would also like to express my gratitude to Peter Dolog, head of the
Intelligent Web and Information Systems (IWIS) research group at the
Aalborg University in Denmark, for allowing me to visit his group. I
really appreciate his valuable comments and his effort in making my stay in
Aalborg as comfortable as my home. Thanks to the people at IWIS group
who made it such a great place to work. Particular thanks go to Frederico
Durão and Karsten Jahn.

Part of this thesis is based on the collaborative work with Santiago
Meliá, Jaime Gómez, Peter Dolog and Frederico Durão. They contributed
their own ideas, tested mine and provided practical assistance throughout
the project. It is a great pleasure to thank them for a very pleasant and
fruitful collaboration.

Huge thanks to my family to whom this dissertation is dedicated. Last
but not least, I want to thank to all my close friends (i.e., “la cuadrilla”)
that helped me to distract from the thesis matters.

127

VITA

Sandy Pérez González was born in Cienfuegos, Cuba on 7th of August,
1982, son of José Pérez Molina (father) and Juana Caridad González
Hernández (mother). Sandy is brother of Maickel Pérez González. Sandy
received the Bachelor of Science (BSc in 2006) and the Master of Science
(MSc in 2008) in Computer Science at the University of the Basque
Country (UPV/EHU). Currently, Peréz is a software architect and support
analyst at the Indaba Consultores S.L.

Contact him at sandyperezglz@gmail.com.

This dissertation was typed by the author.

129

