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This paper studies the nonnegativity and local and global stability properties of the solutions of a newly proposed SEIADR model
which incorporates asymptomatic and dead-infective subpopulations into the standard SEIRmodel and, in parallel, it incorporates
feedback vaccination plus a constant term on the susceptible and feedback antiviral treatment controls on the symptomatic
infectious subpopulation. A third control action of impulsive type (or “culling”) consists of the periodic retirement of all or a
fraction of the lying corpses which can become infective in certain diseases, for instance, the Ebola infection. The three controls
are allowed to be eventually time varying and contain a total of four design control gains. The local stability analysis around both
the disease-free and endemic equilibrium points is performed by the investigation of the eigenvalues of the corresponding Jacobian
matrices. The global stability is formally discussed by using tools of qualitative theory of differential equations by using Gauss-
Stokes and Bendixson theorems so that neither Lyapunov equation candidates nor the explicit solutions are used. It is proved that
stability holds as a parallel property to positivity and that disease-free and the endemic equilibrium states cannot be simultaneously
either stable or unstable. The periodic limit solution trajectories and equilibrium points are analyzed in a combined fashion in the
sense that the endemic periodic solutions become, in particular, equilibrium points if the control gains converge to constant values
and the control gain for culling the infective corpses is asymptotically zeroed.

1. Introduction

Relevant attention is being paid in the last two decades to the
study of mathematical epidemic models which are modelled
by integro-differential equations and/or difference equations.
Those models describe the evolution of the various subpop-
ulations considered as the disease under study progresses.
Typically, the models have three essential subpopulations
(namely, susceptible, infected, and recovered by immunity)
whose dynamics are mutually coupled. There are different
degrees of complexity in the statement of the models. The
simplest ones have only “susceptible” (𝑆) and “infected” (𝐼)
subpopulations and are referred to as SI-models. A second
degree of complexity adds a third one said to be the “recov-
ered by immunity” subpopulation and those models are said
to be SIR-models. A further complexity degree splits the

infected into two subpopulations (or compartments), namely,
the so-called “infected” or “exposed” (𝐸) subpopulation
(those having the disease but do not present yet external
symptoms) and the “infectious” or “infective” subpopulation
(those having external symptoms).The generic acronymused
for this last category of models is SEIR, being referred to
as SEIR epidemic models. General description of epidemic
models and some mathematical analysis on them is given
in some classical books. See, for instance, [1–3] and for
more recent models, see, for instance, [4–11] and references
therein. The positivity of the solution is investigated in a
number of works. See, for instance, [6–9, 12] and some
references therein. The use of nonlinear incidence rates in
the models is also investigated in a number of papers. See,
for instance, [13–15]. The presence of perturbations is also
investigated in many models. See, for instance, [9, 15–17]
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to give some of them. Also, certain robustness studies of
stability and positivity under deviations of the equilibrium
points due toWiener noise are performed in [9].The stability
properties and the convergence of the solutions to equilib-
rium states are a major analysis tool in most of the works.
In particular, the asymptotic solution behaviors including
associated diffusion effects have been provided in [18, 19]
and some references therein. The use of vaccination rules to
improve the infection behavior has been also proposed in the
literature. See, for instance, [6–8, 11, 20–23] and references
therein. In particular, two control actions are proposed in
[20], namely, a vaccination action of the susceptible and a
therapeutic treatment of the infectious subpopulation with
constant and nonconstant controls and impulsive controls are
proposed in [22, 23]. The stability and optimal control under
a subpopulation of infective in treatment with vaccination
is investigated in [24] and a model with delay, latent period
and saturation incidence rate and impulsive vaccination is
proposed and discussed in [25].

On the other hand, it turns out as known due to medical
experience that there are individuals who are infective but
do not have significant external symptoms, that is, the so-
called the “asymptomatic” (𝐴) subpopulation, [26]. This
occurs even in the common known influenza disease. If
such an asymptomatic subpopulation is considered in the
model, then it turns out that the exposed subpopulation
have different transitions to the symptomatic infectious
subpopulation and to the asymptomatic ones so that a part of
the exposed become subpopulation asymptomatic infectious
after a certain time while others become symptomatic infec-
tious. Finally, it is well known that in the case of Ebola disease,
the lying dead corpses are infective [27, 28] which causes
serious sanitary problems in third world tropical countries
with low or scarce sanitary means when an Ebola disease
spreads thoroughly speciallywhen it is transmitted from rural
areas to high populated urban ones. The dead corpses can be
considered in the model as a new subpopulation “𝐷.”

The paper is organized as follows. Section 2 defines the
SEIADR model with the six subpopulations (𝑆, 𝐸, 𝐼, 𝐴,𝐷, 𝑅)
under controls in terms of vaccination control on the suscep-
tible and antiviral treatment on the symptomatic infectious
subpopulation. The vaccination control possesses feedback-
independent (which can be constant, in particular) and
feedback linear terms while the antiviral treatment control
is implemented via proportional gain acting on the symp-
tomatic infectious population. There is also a third control
which consists of an impulsive control action of retirement
of corpses to reduce the risks of dead-contagion to the living
uninfected population. The three mentioned controls have
feedback information taken on line from their respective
subpopulations. The nonconstant control terms are based
on feedback information of the respective subpopulations.
Section 2 also discusses later on some nonnegativity and
stability properties of the model, under the various controls,
in a linked way in the sense that the nonnegativity of the
subpopulations, under nonzero initial conditions, and the
boundedness of the total population both together guarantee
the boundedness of all the subpopulations for all time as
a result. Section 3 deals with the disease-free and endemic

equilibrium points and the periodic limit solutions of the
controlled epidemic model as well as the associated local
stability properties. The dependence of the resulting disease-
free and endemic equilibrium states is seen to be dependent
on the limiting vaccination control gains. On the other hand,
the global stability is also investigated by using qualitative
theory of stability of differential equations by using Gauss-
Stokes and Bendixson theorems while neither Lyapunov
functions nor the explicit solutions of the differential model
are invoked at this stage. Finally, some numerical examples
are given in Section 4 with attention to oscillatory behaviors
under periodic culling action of dead infectious corpses and
some conclusions end the paper.

1.1. Notation

R+ = {𝑟 ∈ R : 𝑟 > 0}; R0+ = {𝑟 ∈ R : 𝑟 ≥ 0},
C is the complex plane,
∨ and ∧ stand, respectively, for logic “or” and “and,”

𝐶0 and 𝑃𝐶0 are, respectively, the sets of continuous
and piecewise-continuous functions of domain 𝐼 and
image 𝑋. The functions 𝑓 : 𝐼 → 𝑋 in those sets
are denoted, respectively, by 𝑓 ∈ 𝐶0(𝐼, 𝑋) and 𝑓 ∈𝑃𝐶0(𝐼, 𝑋),
card(𝐴) denotes the cardinal of the set 𝐴,
card(𝐴) = ℵ0 indicates that the cardinal of a denu-
merable set 𝐴 is infinite as opposed to card(𝐴) = ∞,
denoting the infinity cardinal of a nondenumerable
set 𝐴,
I𝑛 is 𝑛th identity matrix,
𝛿(𝑡) denotes the Dirac distribution at 𝑡 = 0,
𝑚 = {1, 2, . . . , 𝑚}.

2. The SEIADR Epidemic Model: Some
Results on Nonnegativity, Stability, and
Equilibrium Solution Trajectories

Theproposed SEIADRmodel is an extended SEIRmodelwith
the following characteristics and novelties:

(a) Apart from the classical subpopulations of “suscepti-
ble” (𝑆), “exposed” who are infected but not yet infec-
tive (𝐸), “symptomatic infectious” (𝐼), and “recov-
ered” (𝑅) subpopulation, it has two extra additional
subpopulations, namely, “asymptomatic infectious”(𝐴) and “dead-infective” (𝐷). The so-called asymp-
tomatic are a group of infective individuals (which
are modelled as a distinct group of the 𝐼-infective
subpopulation), characterized by small or null level
of infection, with acquired immunity, but who can
transmit the infective disease to others. The so-called
dead-infective subpopulation are dead individuals
(spread corpses in the distribution disease habitat)
which transmit the illness because of lack of good
sanitary performance or practice in certain infective
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illnesses (e.g., the Ebola disease) as it is a common
situation in some third world countries with scarce
technical and economic means.

(b) It incorporates three combined control actions which
can be of a feedback nature as follows: (1) the
standard vaccination control 𝑉 of the susceptible
which consists of two terms, one of them being a
nonfeedback gain and another feedback term with
a gain being proportional to the susceptible, (2)
the antiviral treatment 𝜉 of the infective subpopu-
lation with a proportional gain on the symptomatic
infectious subpopulation, and (3) the dead-infective
culling which has a feedback impulsive nature mod-
ulated by a control gain in the sense that it is not
applied at all time but at certain periods where either
voluntary or civil-servant staff can become involved
on this duty. The three controls contain together
four, eventually time varying, design control gains
which is a novel contribution of the paper related
to the background literature while another novelty is
the global stability analysis outlined from qualitative
theory of differential equations.

It has been pointed out that the coexistence of an asymp-
tomatic infectious subpopulation, often known in some well-
known diseases as influenza, and a dead-infective subpop-
ulation (e.g., in the case of the Ebola) can occur. See, for
instance, a related UK medical report [29] and see also
[27]. Recent work on the incorporation of infective corpses
and asymptomatic infectious type as new subpopulation is
discussed, for instance, in [26, 28]. The epidemic SEIADR
model with vaccination and antiviral treatment together with
infective corpses culling is as follows:

̇𝑆 (𝑡) = 𝑏1 − (𝑏2 + 𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)
+ 𝜂𝑅 (𝑡) − 𝑉 (𝑡) , (1)

𝐸̇ (𝑡) = − (𝑏2 + 𝛾) 𝐸 (𝑡)
+ (𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡) , (2)

̇𝐼 (𝑡) = − (𝑏2 + 𝛼 + 𝜏0) 𝐼 (𝑡) + 𝛾𝑝𝐸 (𝑡) − 𝜉 (𝑡) , (3)

𝐴̇ (𝑡) = − (𝑏2 + 𝜏0) 𝐴 (𝑡) + 𝛾 (1 − 𝑝) 𝐸 (𝑡) , (4)

𝐷̇ (𝑡) = −𝜇𝐷 (𝑡) + 𝑏2 (𝐼 (𝑡) + 𝐴 (𝑡)) + 𝛼𝐼 (𝑡)
− 𝜌𝐷 (𝑡) 𝐷 (𝑡) ∑

𝑡𝑖∈Imp𝐷
𝛿 (𝑡 − 𝑡𝑖) , (5)

𝑅̇ (𝑡) = − (𝑏2 + 𝜂) 𝑅 (𝑡) + 𝜏0 (𝐼 (𝑡) + 𝐴 (𝑡)) + 𝜉 (𝑡)
+ 𝑉 (𝑡) , (6)

𝑉 (𝑡) = 𝑉0 (𝑡) + 𝐾𝑉 (𝑡) 𝑆 (𝑡) , (7)

𝜉 (𝑡) = 𝐾𝜉 (𝑡) 𝐼 (𝑡) ; (8)

∀𝑡 ∈ R0+ (9)

with initial conditions satisfying min(𝑆(0), 𝐸(0), 𝐼(0), 𝐴(0),𝐷(0), 𝑅(0)) ≥ 0, where Imp𝐷 = {𝑡 ∈ R0+ : 𝐷(𝑡) ̸= 𝐷(𝑡−)} =⋃𝑡∈R0+ Imp𝐷(𝑡) is the total set of impulsive (“culling”) time
instants for removal of infective corpses (note that the
notation for 𝑓(𝑡+) is simplified to 𝑓(𝑡)). The vaccination𝑉(𝑡) and (7) consist of feedback-independent term, which
can be constant, plus a linear feedback term injected on
the susceptible subpopulation while the antiviral action is a
linear feedback control applied to the symptomatic infectious
subpopulation. Besides,

Imp𝐷(𝑡−) = {𝜎 ∈ Imp𝐷 : 𝜎 < 𝑡} ,
Imp𝐷 (𝑡) = {𝜎 ∈ Imp𝐷 : 𝜎 ≤ 𝑡} = Imp𝐷(𝑡−)

if 𝑡 ∉ Imp𝐷,
Imp𝐷 (𝑡) = {𝜎 ∈ Imp𝐷 : 𝜎 ≤ 𝑡} = Imp𝐷(𝑡−) ∪ {𝑡}

if 𝑡 ∈ Imp𝐷

(10)

and the (nonnegative) parameters and controls are the fol-
lowing:

𝑏1 is the recruitment rate.
𝑏2 is the natural average death rate.
𝛽, 𝛽𝐴, 𝛽𝐷 are the various disease transmission
coefficients to the susceptible from the respective
symptomatic infectious, asymptomatic, and infective
corpses subpopulations.
𝜂 is a parameter such that 1/𝜂 is the average duration
of the immunity period reflecting a transition from
the recovered to the susceptible.
𝛾 is the transition rate from the exposed to all
(i.e., both symptomatic and asymptomatic) infectious
subpopulation.
𝛼 is the average extra mortality associated with the
symptomatic infectious subpopulation.
𝜏0 is the natural immune response rate for the whole
infectious subpopulation (i.e., 𝐴 + 𝐼), respectively;𝑝 is the fraction of the exposed which become
symptomatic infectious subpopulation.
1 − 𝑝 is the fraction of the exposed which becomes
asymptomatic infectious subpopulation.
1/𝜇 is the average period of infectiousness after death.
𝑉(𝑡) and 𝜉(𝑡) are, respectively, the vaccination and
antiviral treatment controls and 𝜌𝐷(𝑡𝑖)𝐷(𝑡𝑖) is the
impulsive action of removal of corpses (or “culling”)
for all 𝑡𝑖 ∈ Imp𝐷 with some piecewise continuous𝜌𝐷(𝑡) ∈ [0, 1]. The controls can be of different types
including constant and feedback actions. It turns out
that a well-posed epidemic model has to be positive
and with bounded solutions to be useful for potential
applications. The subsequent results are, respectively,
related to the nonnegativity under nonnegative initial
conditions and some smoothness conditions on the
controls and boundedness of the solutions of the
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model. Note that the positivity of the trajectory
solutions as well as that of the equilibrium solutions
is a crucial “a priori” basic requirement for model
validation in many different biological problems. See,
for instance, [6–9, 12, 18, 30–32].

Theorem 1. The solutions of the SEIADR model (1) to (8)
are uniquely defined and if min(𝑆(0), 𝐸(0), 𝐼(0), 𝐴(0), 𝑅(0),𝐷(0)) ≥ 0, 𝑉0(𝑡) ∈ [0, 𝑏1 + 𝜂𝑅(𝑡)], 𝜌𝐷, 𝑉, 𝐾𝑉, 𝐾𝜉 ∈ 𝑃𝐶0(R0+,
R0+) and 𝜌𝐷 : R0+ → [0, 1], then such solutions are, further-
more, nonnegative for any given nonnegative initial conditions
defined by:

𝑆 (𝑡) = 𝑒−(𝑏2𝑡+∫𝑡0 (𝐾𝑉(𝜎)+𝛽𝐼(𝜎)+𝛽𝐴𝐴(𝜎)+𝛽𝐷𝐷(𝜎))𝑑𝜎) × (𝑆 (0)
+ ∫𝑡

0
𝑒∫𝜎0 (𝑏2+𝐾𝑉(𝜃)+𝛽𝐼(𝜃)+𝛽𝐴𝐴(𝜃)+𝛽𝐷𝐷(𝜃))𝑑𝜃 (𝑏1 + 𝜂𝑅 (𝜎)

− 𝑉0 (𝜎)) 𝑑𝜎) ; ∀𝑡 ∈ R0+,
(11)

𝐸 (𝑡) = 𝑒−(𝑏2+𝛾)𝑡 (𝐸 (0) + ∫𝑡

0
𝑒(𝑏2+𝛾)𝜎 (𝛽𝐼 (𝜎) + 𝛽𝐴𝐴 (𝜎)

+ 𝛽𝐷𝐷 (𝜎)) 𝑆 (𝜎) 𝑑𝜎) ; ∀𝑡 ∈ R0+,
(12)

𝐼 (𝑡) = 𝑒−((𝑏2+𝛼+𝜏0)𝑡+∫𝑡0 𝐾𝜉(𝜎)𝑑𝜎) (𝐼 (0)
+ 𝛾𝑝∫𝑡

0
𝑒∫𝜎0 (𝑏2+𝛼+𝜏0+𝐾𝜉(𝜃))𝑑𝜃𝐸 (𝜎) 𝑑𝜎) ; ∀𝑡 ∈ R0+,

(13)

𝐴 (𝑡) = 𝑒−(𝑏2+𝜏0)𝑡 (𝐴 (0) + 𝛾 (1 − 𝑝)
⋅ ∫𝑡

0
𝑒(𝑏2+𝜏0)𝜎𝐸 (𝜎) 𝑑𝜎) ; ∀𝑡 ∈ R0+,

(14)

𝑅 (𝑡) = 𝑒−(𝑏2+𝜂)𝑡 (𝑅 (0) + ∫𝑡

0
𝑒(𝑏2+𝜂)𝜎 (𝜏0 (𝐼 (𝜎) + 𝐴 (𝜎))

+ 𝐾𝜉 (𝜎) 𝐼 (𝜎) + 𝑉0 (𝜎) + 𝐾𝑉 (𝜎) 𝑆 (𝜎)) 𝑑𝜎) ;
∀𝑡 ∈ R0+,

(15)

𝐷(𝑡) = 𝑒−𝜇(𝑡−𝑡𝑖) (𝐷 (𝑡𝑖) + ∫𝑡

𝑡𝑖
𝑒𝜇(𝜎−𝑡𝑖) [(𝑏2 + 𝛼) 𝐼 (𝜎)

+ 𝑏2𝐴 (𝜎)] 𝑑𝜎) ;
∀𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) , ∀𝑡𝑖 ∈ Imp𝐷

(16)

with

𝐷(𝑡−𝑖+1) = 𝑒−𝜇𝑇𝑖 (𝐷 (𝑡𝑖)
+ ∫𝑡𝑖+1

𝑡𝑖
𝑒𝜇(𝜎−𝑡𝑖) [(𝑏2 + 𝛼) 𝐼 (𝜎) + 𝑏2𝐴 (𝜎)] 𝑑𝜎)

(17)

while

𝐷(𝑡𝑖+1) = 𝐷 (𝑡−𝑖+1) − ∫𝑡𝑖+1

𝑡−𝑖+1
𝜌𝐷 (𝜎)𝐷 (𝜎) 𝛿 (𝜎 − 𝑡𝑖+1) 𝑑𝜎

= (1 − 𝜌𝐷 (𝑡𝑖+1))𝐷 (𝑡−𝑖+1) = (1 − 𝜌𝐷 (𝑡𝑖+1))
⋅ 𝑒−𝜇𝑇𝑖 (𝐷 (𝑡𝑖)
+ ∫𝑡𝑖+1

𝑡𝑖
𝑒𝜇(𝜎−𝑡𝑖) [(𝑏2 + 𝛼) 𝐼 (𝜎) + 𝑏2𝐴 (𝜎)] 𝑑𝜎) ,

(18)

where 𝑇𝑖 = 𝑡𝑖+1 − 𝑡𝑖; ∀𝑡𝑖 ∈ Imp𝐷. Furthermore, 𝑆, 𝐸, 𝐼, 𝐴, 𝑅 ∈𝐶0(R0+,R0+) are everywhere differentiable in R0+ and 𝐷 ∈𝑃𝐶0(R0+,R0+) and it is time-differentiable in⋃𝑡𝑖∈Imp𝐷(𝑡𝑖, 𝑡𝑖+1).
Proof. The replacements of (7) into (1) and (8) into (3) yield

̇𝑆 (𝑡) = 𝑏1
− (𝑏2 + 𝐾𝑉 (𝑡) + 𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)
+ 𝜂𝑅 (𝑡) − 𝑉0 (𝑡) ,

(19)

̇𝐼 (𝑡) = − (𝑏2 + 𝛼 + 𝜏0 + 𝐾𝜉 (𝑡)) 𝐼 (𝑡) + 𝛾𝑝𝐸 (𝑡) ; (20)

∀𝑡 ∈ R0+. (21)

The solutions of (19), (2), (20), and (4)–(6) follow via direct
calculus and are unique and nonnegative resulting in (11)–
(18) for any given set of nonnegative initial conditions. Also,𝑆, 𝐸, 𝐼, 𝐴, 𝑅 ∈ 𝐶0(R0+,R0+) since their first respective time
derivatives exist everywhere in R0+ from (1)–(4) and (6).
Furthermore, note from (5) and the fact that its impulsive
(“culling”) control 𝜌𝐷 : R0+ → [0, 1] yields a unique
piecewise solution 𝐷 ∈ 𝑃𝐶0(R0+,R0+) for each given𝐷(0).

The boundedness of all the subpopulations for all time
and the asymptotic infection removal under a feedback, in
general, time-varying linear antiviral control law, is addressed
by the subsequent result.

Theorem 2. The following properties hold under the assump-
tions of Theorem 1:

(i) lim sup𝑡→∞𝐼(𝑡) ≤ 𝑏1/𝛼, sup𝑡∈R0+𝐼(𝑡) < +∞, sup𝑡∈R0+𝑁(𝑡) ≤ 𝑁(0) + 𝑏1/𝑏2 < +∞; ∀𝑡 ∈ R0+ where 𝑁(𝑡) =𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝐴(𝑡) + 𝑅(𝑡); ∀𝑡 ∈ R0+ is the total
alive population, and

max( sup
𝑡∈R0+

𝑆 (𝑡) , sup
𝑡∈R0+

𝐸 (𝑡) , sup
𝑡∈R0+

𝐼 (𝑡) , sup
𝑡∈R0+

𝐴 (𝑡) ,

sup
𝑡∈R0+

𝐷 (𝑡) , sup
𝑡∈R0+

𝑅 (𝑡)) ≤ sup
𝑡∈R0+

𝑁(𝑡)
≤ max( sup

𝑡∈R0+
𝑁(𝑡) , sup

𝑡∈R0+
𝐷 (𝑡)) < +∞,

(22)
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(ii) for any 𝑡 ∈ R0+, assume that 𝐾𝜉(𝑡) = 0 if 𝐼(𝑡) = 0, and
the antiviral control gain is chosen to be

𝐾𝜉 (𝑡) = 𝜉 (𝑡)𝐼 (𝑡) = 1𝐼 (𝑡) [(𝛼 + 𝜏0) 𝐸 (𝑡) + 𝛼𝐴 (𝑡)
+ (𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)] + 𝛽𝑆 (𝑡) if 𝐼 (𝑡) ̸= 0.

(23)

Then, 𝐾𝜉(𝑡) = 𝑂(𝐼(𝑡)), implying also that sup𝑡∈R0+𝐾𝜉(𝑡) < +∞, and the following limits exist:

lim
𝑡→∞

(𝐸 (𝑡) + 𝐼 (𝑡) + 𝐴 (𝑡) + 𝐷 (𝑡)) = 0,
lim
𝑡→∞

(𝑆 (𝑡) + 𝑅 (𝑡)) = lim
𝑡→∞

𝑁(𝑡) = lim
𝑡→∞

𝑁(𝑡) = 𝑏1𝑏2 ,
(24)

where 𝑁(𝑡) = 𝑁(𝑡) + 𝐷(𝑡); ∀𝑡 ∈ R0+ is the total
population including infective corpses.

(iii) If, furthermore, 𝑉0(𝑡) satisfies the most stringent con-
straint lim sup𝑡→∞(𝑉0(𝑡) − 𝑏1 − 𝜂𝑅(𝑡) + 𝜀𝑉) ≤0 for any fixed 𝜀𝑉(≤ 𝑏1 − 𝜂𝑅(𝑡)) ∈ R+, then
min(lim inf 𝑡→∞𝑆(𝑡), lim inf 𝑡→∞𝑅(𝑡)) > 0.

Proof. Assume that lim sup𝑡→∞𝐼(𝑡) > 𝑏1/𝛼 and proceed by
contradiction. By summing up (1) to (4) and adding (6), one
gets 𝑁̇(𝑡) = −𝑏2𝑁(𝑡) + 𝑏1 − 𝛼𝐼(𝑡); ∀𝑡 ∈ R0+ which concludes
that

lim sup
𝑡→∞

(∫𝑡

0
𝑒−𝑏2(𝑡−𝜎) (𝛼𝐼 (𝜎) − 𝑏1) 𝑑𝜎 + 𝑁 (𝑡)) = 0. (25)

Since lim sup𝑡→∞𝐼(𝑡) > 𝑏1/𝛼 and 𝑁 ∈ 𝐶0(R0+,R0+), which
is derived from the result of Theorem 1, it follows a contra-
diction to (25) since lim sup𝑡→∞(∫𝑡0 𝑒−𝑏2(𝑡−𝜎)(𝛼𝐼(𝜎) − 𝑏1)𝑑𝜎 +𝑁(𝑡)) > 0.Therefore, lim sup𝑡→∞𝐼(𝑡) ≤ 𝑏1/𝛼 < +∞. Also, the
boundedness of𝑁(𝑡) follows directly since 𝐼(𝑡) ≥ 0; ∀𝑡 ∈ R0+
from the standard comparison theorem for 𝑁̇(𝑡) ≤ 𝑁̇0(𝑡) =−𝑏2𝑁0(𝑡)+𝑏1 leading to𝑁(𝑡) ≤ 𝑒−𝑏2𝑡𝑁(0)+(1−𝑒−𝑏2𝑡)(𝑏1/𝑏2) ≤𝑁(0)+𝑏1/𝑏2 < +∞;∀𝑡 ∈ R0+ provided that𝑁0(0) = 𝑁(0) and
lim sup𝑡→∞𝑁(𝑡) = 𝑏1/𝑏2. FromTheorem 1, all the subpopula-
tions are nonnegative for all time for any given nonnegative
initial conditions. Since the model is nonnegative for all
time then all the living subpopulations are bounded for all
time since 𝑁(𝑡) < +∞. From (17)-(18) the lying corpses
subpopulation is nonnegative and bounded for all time
since both the symptomatic and asymptomatic infectious
subpopulations are bounded for all time. As a result, the total
population is also bounded for all time as they are all the
subpopulations. Property (i) is proved. To prove Property
(ii), one gets from (2), (3), and (4) under the given antiviral
treatment control law that

𝐸̇ (𝑡) + ̇𝐼 (𝑡) + 𝐴̇ (𝑡)
= −𝑏2 (𝐸 (𝑡) + 𝐼 (𝑡) + 𝐴 (𝑡))

+ (𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)
− (𝛼 + 𝜏0) 𝐼 (𝑡) − 𝜉 (𝑡) − 𝜏0𝐴 (𝑡)

= − (𝑏2 + 𝜏0 + 𝛼) (𝐸 (𝑡) + 𝐼 (𝑡) + 𝐴 (𝑡))
+ (𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)
+ (𝛼 + 𝜏0) 𝐸 (𝑡) + 𝛼𝐴 (𝑡) − 𝐾𝜉 (𝑡) 𝐼 (𝑡)

= − (𝑏2 + 𝜏0 + 𝛼) (𝐸 (𝑡) + 𝐼 (𝑡) + 𝐴 (𝑡)) ;
∀𝑡 ∈ R0+

(26)

so that it exists the limit lim𝑡→∞(𝐸(𝑡) + 𝐼(𝑡) + 𝐴(𝑡)) =𝑒−(𝑏2+𝜏0+𝛼)𝑡(𝐸(0) + 𝐼(0) + 𝐴(0)) = 0. Thus, lim𝑡→∞𝐸(𝑡) =
lim𝑡→∞𝐼(𝑡) = lim𝑡→∞𝐴(𝑡) = 0 since the three sub-
populations are nonnegative for all time under any given
nonnegative initial conditions. This also implies as a result
that lim𝑡→∞(𝑆(𝑡) + 𝑅(𝑡)) = lim𝑡→∞𝑁(𝑡) = lim𝑡→∞𝑁(𝑡) =𝑏1/𝑏2 since from (16)–(18), lim𝑡→∞𝐷(𝑡) = 0. It remains to
prove that 𝐾𝜉(𝑡) = 𝑂(𝐼(𝑡)) = 𝑂(max(𝐼(𝑡), 𝑆(𝑡)) < +∞). First,
note that 𝐼(𝑡) is uniformly bounded since it is nonnegative
and the total population is uniformly bounded. Thus, to
prove that 𝐾𝜉(𝑡) = 𝑂(𝐼(𝑡)) = 𝑂(𝐼(𝑡), 𝑆(𝑡)), it suffices to
prove, in view of (23), that 𝐼 ≤ max(𝑜(𝐸), 𝑜(𝐴), 𝑜(𝐷)). Since
lim𝑡→∞(𝐸(𝑡)+𝐼(𝑡)+𝐴(𝑡)) = 0, then lim𝑡→∞(𝐸(𝑡)+𝐴(𝑡)) = 0.
On the other hand, note from (13) that 𝐼(𝑡) → 0 as 𝑡 → 𝑡1 for
any 𝑡1 ∈ R0+ implies ∫𝑡10 𝑒−((𝑏2+𝛼+𝜏0)(𝑡1−𝜎)+∫𝑡1𝜎 𝐾𝜉(𝜎)𝑑𝜎)𝐸(𝜎)𝑑𝜎 →0 and 𝐸(𝑡1) → 0. If, in addition 𝐼(0) > 0 then 𝑡1 → ∞.
On the other hand, from (12) if 𝐸(𝑡) → 0 as 𝑡 → ∞, then𝐼(𝑡), 𝐴(𝑡), 𝐷(𝑡) → 0 as 𝑡 → ∞. Thus, 𝐸(𝑡)/𝐼(𝑡) and 𝐴(𝑡)/𝐼(𝑡)
cannot diverge as 𝑡 → ∞ if 𝐸(𝑡) → 0 as 𝑡 → ∞. Thus,
if 𝐼(𝑡) → 0 then 𝐸(𝑡), 𝐴(𝑡), 𝐷(𝑡) → 0 and if 𝐸(𝑡) → 0 or𝐴(𝑡) → 0 (see also (14)), then 𝐼(𝑡) → 0. Then, 𝐾𝜉(𝑡) =𝑂(𝐼(𝑡)) = 𝑂(𝐼(𝑡), 𝑆(𝑡)). Property (ii) has been proved. On the
other hand, if lim inf 𝑡→∞(𝑏1 − 𝜀𝑉 + 𝜂𝑅(𝑡) − 𝑉0(𝑡)) ≥ 0 then
lim inf 𝑡→∞𝑆(𝑡) > 0 from (11) which leads to lim inf 𝑡→∞𝑅(𝑡) >0 from (15). Hence, Property (iii) is proved.

Remark 3. Note that the condition lim inf 𝑡→∞(𝑏1−𝜀𝑉+𝜂𝑅(𝑡)−𝑉0(𝑡)) ≥ 0 for 𝜀𝑉 = 0 ofTheorem 2(iii) is guaranteed if𝑉0(𝑡) ∈[0, 𝑏1); ∀𝑡 ∈ R0+.

3. Disease-Free and Endemic Equilibrium
Points, Limit Periodic Equilibrium
Trajectories, and Local and Global Stability

Define the linearized error of the trajectory solution with
respect to any equilibrium 𝑥∗ by

𝑥 (𝑡) = 𝑥 (𝑡) − 𝑥∗ (𝑡) ; ∀𝑡 ∈ R0+ \ Imp𝐷, (27)

where 𝑥(𝑡) is the linearized state-trajectory solution in
R6
0+whose six components are defined by 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡),𝐴(𝑡), 𝐷(𝑡), and 𝑅(𝑡) in this order. In particular, 𝑥∗df (𝑡) =𝑥∗df = (𝑆∗df , 0, 0, 0, 0, 𝑅∗

df )𝑇 for any 𝑡 ∈ R0+ is the disease-
free equilibrium solution, which is an equilibrium point, and𝑥∗end(𝑡) = (𝑆∗end(𝑡), 𝐸∗

end(𝑡), 𝐼∗end(𝑡), 𝐴∗
end(𝑡), 𝐷∗

end(𝑡), 𝑅∗
end(𝑡))𝑇

for any 𝑡 ∈ [0, 𝑇∗
𝐷] is an equilibrium periodic trajectory of

period 𝑇∗
𝐷 if 𝜌𝐷(𝑡) → 𝜌∗𝐷 ∈ (0, 1) and (𝑡𝑖+1 − 𝑡𝑖) → 𝑇∗

𝐷(> 0)
as 𝑡𝑖(∈ Imp𝐷) → ∞. If 𝜌∗𝐷 = 0 or card Imp𝐷 < 𝜒0
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(i.e., the cardinal of impulsive time instants is numerable
finite), then 𝑥∗end(𝑡) = 𝑥∗end; ∀𝑡 ∈ R0+ (i.e., the limit
periodic endemic solution is just an endemic equilibrium
point). The following result holds and is concerned with the
eventually periodic asymptotic behavior of the dead-infective
lying corpses subpopulation under constant limiting values
of the culling removal fraction and culling period. It is also
obtained the intuitively obvious result that if all the lying
infective corpses are removed by the culling control then
the dead corpses infective subpopulation is asymptotically
zeroed at the culling time instants.

Theorem 4. The following properties hold:
(i) Assume that (𝑡𝑖+1 − 𝑡𝑖) → 𝑇∗

𝐷(> 0), 𝑉0(𝑡) = 𝑉0; ∀𝑡 ∈
R0+, and 𝜌𝐷(𝑡𝑖) → 𝜌∗𝐷(∈ [0, 1]) as 𝑡𝑖(∈ Imp𝐷) → ∞.
Then, a periodic limit solution of period 𝑇∗

𝐷 of the form

lim
𝑛→∞

𝐷(𝑛𝑇∗
𝐷 + 𝜃) = 𝐷∗ (𝑇∗

𝐷 + 𝜃)
= 𝑒−𝜇𝜃𝜇 [(𝑏2 + 𝛼) 𝐼∗𝑎V + 𝑏2𝐴∗

𝑎V]

⋅ [(1 − 𝜌∗𝐷) (1 − 𝑒−𝜇𝜃)
(1 − (1 − 𝜌∗𝐷) 𝑒−𝜇𝜃) − 1 + 𝑒𝜇𝜃] ; ∀𝜃 ∈ [0, 𝑇∗

𝐷]
(28)

exists for the dead-infective corpses subpopulation,
where the subscript “𝑎V” stands for a mean value of the
corresponding subpopulation on the period [0, 𝑇∗

𝐷)with
existing right and left limits

𝐷∗ (𝑇∗
𝐷 + 𝜃) = lim

𝑛→∞
𝐷(𝑛𝑇∗

𝐷 + 𝜃) = lim
𝑡𝑖→∞

𝐷(𝑡𝑖 + 𝜃) ;
∀𝜃 ∈ [0, 𝑇∗

𝐷) ,
𝐷∗ (𝑇∗−

𝐷 ) = 𝐷 (0−) = lim
𝜃→0−

lim
𝑛→∞

𝐷(𝑛𝑇∗
𝐷 + 𝜃)

= lim
𝜃→0−

lim
𝑡𝑖→∞

𝐷(𝑡𝑖 − 𝜃)
(29)

possessing eventual discontinuities𝐷∗(𝑇∗
𝐷) ̸= 𝐷∗(𝑇∗−

𝐷 )
which satisfy

𝐷∗ (𝑇∗
𝐷) = (1 − 𝜌∗𝐷)𝐷∗ (𝑇∗−

𝐷 ) ;
𝐷∗ (𝑇∗−

𝐷 )
= 1 − 𝑒−𝜇𝑇∗𝐷𝜇 (1 − (1 − 𝜌∗𝐷) 𝑒−𝜇𝑇∗𝐷) [(𝑏2 + 𝛼) 𝐼∗𝑎V + 𝑏2𝐴∗

𝑎V] .
(30)

(ii) If 𝑇∗
𝐷 = +∞, or if Imp𝐷 has a finite cardinal, then

𝐷∗ (𝑇∗−
𝐷 ) = 1𝜇 [(𝑏2 + 𝛼) 𝐼∗𝑎V + 𝑏2𝐴∗

𝑎V] ;
𝐷∗ (𝑇∗

𝐷) = 1 − 𝜌∗𝐷𝜇 [(𝑏2 + 𝛼) 𝐼∗𝑎V + 𝑏2𝐴∗
𝑎V] .

(31)

If, furthermore 𝜌∗𝐷 = 1, then𝐷∗(𝑇∗
𝐷) = 0.

For the disease-free equilibrium, 𝐷∗
𝑑𝑓(𝑇∗

𝐷) = 𝐷∗
𝑑𝑓(𝑇∗−

𝐷 ) = 0 irrespective of 𝑇∗
𝐷 and 𝜌∗𝐷.

If, furthermore 𝜌∗𝐷 = 0, then the endemic equilibrium
periodic solution is an endemic equilibrium point𝐷∗

end = ((𝑏2 + 𝛼)𝐼∗end + 𝑏2𝐴∗
end)/𝜇.

(iii) The limit periodic solution 𝐷∗(𝑇∗
𝐷 + 𝜃) for 𝜃 ∈ [0, 𝑇∗

𝐷)
induces limit periodic oscillations of the susceptible and
immune which obey the relationships:

𝑆∗ (𝜃)
= 𝑏1 − 𝑉0 + 𝜂𝑅∗ (𝜃)𝑏2 + 𝐾∗

𝑉 (𝜃) + 𝛽𝐼∗ (𝜃) + 𝛽𝐴𝐴∗ (𝜃) + 𝛽𝐷𝐷∗ (𝜃) ,
𝑅∗ (𝜃) = 𝑁∗

𝑅 (𝜃)𝐷∗
𝑅 (𝜃) ,

(32)

where
𝑁∗

𝑅 (𝜃) = (𝑏2 + 𝛽𝐼∗ (𝜃) + 𝛽𝐴𝐴∗ (𝜃) + 𝛽𝐷𝐷∗ (𝜃))
⋅ ((𝜏0 + 𝐾∗

𝜉 (𝜃)) 𝐼∗ (𝜃) + 𝜏0𝐴∗ (𝜃) + 𝑉∗
0 (𝜃))

+ 𝐾∗
𝑉 (𝜃) ((𝜏0 + 𝐾∗

𝜉 (𝜃)) 𝐼∗ (𝜃) + 𝜏0𝐴∗ (𝜃) + 𝑏1) ,
𝐷∗

𝑅 (𝜃) = (𝑏2 + 𝜂)
⋅ (𝑏2 + 𝛽𝐼∗ (𝜃) + 𝛽𝐴𝐴∗ (𝜃) + 𝛽𝐷𝐷∗ (𝜃))
+ 𝑏2𝐾∗

𝑉 (𝜃) ;
∀𝜃 ∈ [0, 𝑇∗

𝐷]

(33)

provided that 𝑉0(𝑛𝑇∗
𝐷 + 𝜃) → 𝑉∗

0 (𝜃), 𝐾𝑉(𝑛𝑇∗
𝐷 + 𝜃) →𝐾∗

𝑉(𝜃), and 𝐾𝜉(𝑛𝑇∗
𝐷 + 𝜃) → 𝐾∗

𝜉 (𝜃) for any 𝜃 ∈ [0, 𝑇∗
𝐷]

as 𝑛(∈ Z+) → ∞. If 𝜌∗𝐷 = 0, 𝑉∗
0 (𝜃) = 𝑉∗

0 , 𝐾∗
𝑉(𝜃) =𝐾∗

𝑉, and 𝐾𝜉(𝜃) = 𝐾∗
𝜉 ; ∀𝜃 ∈ [0, 𝑇∗

𝐷] then the endemic
equilibrium solution is an endemic equilibrium point.

Proof. Note from (18) that if (𝑡𝑖+1 − 𝑡𝑖) → 𝑇∗
𝐷 and 𝜌𝐷(𝑡𝑖) →𝜌∗𝐷 ∈ [0, 1] as 𝑡𝑖(∈ Imp𝐷) → ∞ then the right limits 𝐷(𝑇∗

𝐷 +𝜃) = lim𝑛→∞𝐷(𝑛𝑇∗
𝐷 + 𝜃) = lim𝑡𝑖→∞𝐷(𝑡𝑖 + 𝜃) exist for 𝜃 ∈[0, 𝑇∗

𝐷) as well as the left limits𝐷(𝑇∗−
𝐷 ) = lim𝜃→0− lim𝑛→∞𝐷(𝑛𝑇∗

𝐷 + 𝜃) = lim𝜃→0− lim𝑡𝑖→∞𝐷(𝑡𝑖 − 𝜃) with eventual discontinuities 𝐷(𝑇∗
𝐷) ̸= 𝐷(𝑇∗−

𝐷 ). So,
we have in the steady state

𝐷(𝑡𝑖+1) = 𝐷 (𝑡𝑖) = 𝐷 (𝑇∗
𝐷) = (1 − 𝜌∗𝐷)𝐷 (𝑡−𝑖+1)

= (1 − 𝜌∗𝐷) 𝑒−𝜇𝑇∗𝐷𝐷(𝑇∗
𝐷) + (1 − 𝜌∗𝐷)

⋅ (∫𝑇∗𝐷

0
𝑒−𝜇(𝑇∗𝐷−𝜎) [(𝑏2 + 𝛼) 𝐼∗ (𝜎) + 𝑏2𝐴∗ (𝜎)] 𝑑𝜎)

(34)

so that, from the mean value theorem since the limit the
periodic oscillation is bounded, there is a mean value of
the symptomatic and asymptomatic infectious subpopulation
such that

[1 − (1 − 𝜌∗𝐷) 𝑒−𝜇𝑇∗𝐷]𝐷∗ (𝑇∗
𝐷) = (1 − 𝜌∗𝐷)

⋅ 1 − 𝑒−𝜇𝑇∗𝐷𝜇 [(𝑏2 + 𝛼) 𝐼∗av + 𝑏2𝐴∗
av] ,

(35)
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𝐷∗ (𝑇∗
𝐷 + 𝜃) = 𝑒−𝜇𝜃𝐷∗ (𝑇∗

𝐷) + [(𝑏2 + 𝛼) 𝐼∗av + 𝑏2𝐴∗
av]

⋅ (∫𝜃

0
𝑒−𝜇(𝜃−𝜎)𝑑𝜎) = 𝑒−𝜇𝜃𝜇 [(𝑏2 + 𝛼) 𝐼∗av + 𝑏2𝐴∗

av]

⋅ [(1 − 𝜌∗𝐷) (1 − 𝑒−𝜇𝜃)
(1 − (1 − 𝜌∗𝐷) 𝑒−𝜇𝜃) − 1 + 𝑒𝜇𝜃] ;

∀𝜃 ∈ [0, 𝑇∗
𝐷] .

(36)

If 𝜌∗𝐷 = 0, one gets from (36) that

lim
𝑡𝑖(∈Imp𝐷)→∞

𝐷(𝑡𝑖 + 𝜃) = [(𝑏2 + 𝛼) 𝐼∗av + 𝑏2𝐴∗
av]

⋅ lim
𝑡𝑖(∈Imp𝐷)→∞

(∫𝑡𝑖+𝑇
∗
𝐷

𝑡𝑖
𝑒−𝜇(𝑇∗𝐷+𝜃−𝜎)𝑑𝜎)

= 𝐷∗ (𝑇∗
𝐷 + 𝜃) = (𝑏2 + 𝛼) 𝐼∗av + 𝑏2𝐴∗

av𝜇 ;
∀𝜃 ∈ [0, 𝑇∗

𝐷)

(37)

so that 𝐷(𝑡) → 0 as 𝑡 → ∞ if the disease-free equilibrium
point is globally asymptotically attractive and𝐷(𝑡) → 𝐷∗

end =((𝑏2 + 𝛼)𝐼∗end + 𝑏2𝐴∗
end)/𝜇 if the endemic equilibrium state,

which is an equilibrium point, is globally asymptotically
attractive. The proofs of Properties (i)-(ii) are complete. To
prove Property (iii), the inspection of (1) and (6) at any
equilibrium yields that 𝑆 and 𝑅 have periodic oscillation if𝐷
is periodic. So, we can get from (1) and (6) that if 𝑉0(𝜃) =𝑉∗
0 (𝜃), 𝐾𝑉(𝜃) = 𝐾∗

𝑉(𝜃), and 𝐾𝜉(𝜃) = 𝐾∗
𝜉 (𝜃), for any 𝜃 ∈[0, 𝑇∗

𝐷], the relations

𝑆∗ (𝜃)
= 𝑏1 − 𝑉∗

0 (𝜃) + 𝜂𝑅∗ (𝜃)𝑏2 + 𝐾∗
𝑉 (𝜃) + 𝛽𝐼∗ (𝜃) + 𝛽𝐴𝐴∗ (𝜃) + 𝛽𝐷𝐷∗ (𝜃) ,

𝑅∗ (𝜃) = (𝜏0 + 𝐾∗
𝜉 (𝜃)) 𝐼∗ (𝜃) + 𝜏0𝐴∗ (𝜃) + 𝑉∗

0 (𝜃)
𝑏2 + 𝜂

+ 𝐾∗
𝑉 (𝜃)𝑏2 + 𝜂 𝑆∗ (𝜃)

= (𝜏0 + 𝐾∗
𝜉 (𝜃)) 𝐼∗ (𝜃) + 𝜏0𝐴∗ (𝜃) + 𝑉∗

0 (𝜃)
𝑏2 + 𝜂

+ 𝐾∗
𝑉 (𝜃)𝑏2 + 𝜂

⋅ 𝑏1 − 𝑉∗
0 (𝜃) + 𝜂𝑅∗ (𝜃)𝑏2 + 𝐾∗

𝑉 (𝜃) + 𝛽𝐼∗ (𝜃) + 𝛽𝐴𝐴∗ (𝜃) + 𝛽𝐷𝐷∗ (𝜃)

(38)

lead to

(1
− 𝐾∗

𝑉 (𝜃) 𝜂(𝑏2 + 𝜂) (𝑏2 + 𝐾∗
𝑉 (𝜃) + 𝛽𝐼∗ (𝜃) + 𝛽𝐴𝐴∗ (𝜃) + 𝛽𝐷𝐷∗ (𝜃)))

⋅ 𝑅∗ (𝜃) = 1𝑏2 + 𝜂 [(𝜏0 + 𝐾∗
𝜉 (𝜃)) 𝐼∗ (𝜃) + 𝜏0𝐴∗ (𝜃) + 𝑉∗

0 (𝜃)
+ 𝐾∗

𝑉 (𝜃) (𝑏1 − 𝑉∗
0 (𝜃))

(𝑏2 + 𝐾∗
𝑉 (𝜃) + 𝛽𝐼∗ (𝜃) + 𝛽𝐴𝐴∗ (𝜃) + 𝛽𝐷𝐷∗ (𝜃))]

(39)

which may be simplified as 𝑅∗(𝜃) = 𝑁∗
𝑅(𝜃)/𝐷∗

𝑅(𝜃); ∀𝜃 ∈[0, 𝑇∗
𝐷). Thus, Property (iii) follows.

On the other hand, the linearized error of the trajectory
solution with respect to an equilibrium trajectory is defined
by

̇̃𝑥 (𝑡) = A∗𝑥 (𝑡) ,
𝑥 (𝑡𝑖) = (I6 −M∗) 𝑥 (𝑡−𝑖 ) ;

∀𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) , ∀𝑡𝑖 ∈ Imp𝐷,
(40)

where 𝑥(0−) = 𝑥0 andM∗ are R6 × R6 matrix taking account
of the impulses, where (M∗)55 = 𝜌∗𝐷 as 𝜌𝐷(𝑡) → 𝜌∗𝐷 as 𝑡 → ∞
and its remaining entries being zero. The following result,
concerning the disease-free and endemic equilibrium points,
holds if the control gains converge to constant values and𝜌∗𝐷 = 0.
Theorem 5. Assume that 𝑉0(𝑡) → 𝑉0, 𝐾𝑉(𝑡) → 𝐾∗

𝑉, 𝐾𝜉(𝑡) →𝐾∗
𝜉 and 𝜌𝐷(𝑡𝑖) → 𝜌∗𝐷 = 0, and (𝑡𝑖+1 − 𝑡𝑖) → 𝑇∗

𝐷 as 𝑡, 𝑡𝑖(∈
Imp𝐷) → ∞. Then, the following properties hold:

(i) There is a unique disease-free equilibrium point satis-
fying

𝑥∗𝑑𝑓 fl lim
𝑡→∞

𝑥 (𝑡) = (𝑆∗𝑑𝑓, 𝐸∗
𝑑𝑓, 𝐼∗𝑑𝑓, 𝐴∗

𝑑𝑓, 𝐷∗
𝑑𝑓, 𝑅∗

𝑑𝑓)𝑇
= (𝑆∗𝑑𝑓, 0, 0, 0, 0, 𝑅∗

𝑑𝑓)𝑇
(41)

with

𝑆∗𝑑𝑓 = 𝑏2 (𝑏1 − 𝑉0) + 𝜂𝑏1𝑏2 (𝑏2 + 𝜂 + 𝐾∗
𝑉) = 𝑏1 + 𝜂𝑁∗

𝑑𝑓 − 𝑉0𝑏2 + 𝜂 + 𝐾∗
𝑉

,

𝑅∗
𝑑𝑓 = 𝑏2𝑉0 + 𝐾∗

𝑉𝑏1𝑏2 (𝑏2 + 𝜂 + 𝐾∗
𝑉) = 𝐾∗

𝑉𝑁∗
𝑑𝑓 + 𝑉0𝑏2 + 𝜂 + 𝐾∗

𝑉

= 𝐾∗
𝑉𝑆∗𝑑𝑓 + 𝑉0𝑏2 + 𝜂 = 𝑁∗

𝑑𝑓 − 𝑆∗𝑑𝑓

(42)

leading to an associated limit total population

𝑁∗
𝑑𝑓 = 𝑁∗

𝑑𝑓 = 𝑆∗𝑑𝑓 + 𝑅∗
𝑑𝑓 = 𝑏1𝑏2 (43)
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under a vaccination disease-free limiting control 𝑉∗
𝑑𝑓 =𝑉0 + 𝐾∗

𝑉𝑆∗𝑑𝑓 and a zero antiviral treatment control.
(ii) There exists some large enough threshold𝛽cend such that

if 𝛽 > 𝛽cend then there is a unique endemic equilibrium
point with all its components being positive such that

𝑁∗
𝑑𝑓 > 𝑆∗end = 𝜇 (𝑏2 + 𝛾) (𝑏2 + 𝜏0) (𝑏2 + 𝛼 + 𝜏0 + 𝐾∗

𝜉 )
𝛽 (𝛾𝑝 (𝑏2 + 𝜏0) (𝜇 + 𝛽𝐷𝑟 (𝑏2 + 𝛼)) + 𝛾 (1 − 𝑝) (𝑏2 + 𝛼 + 𝜏0 + 𝐾∗

𝜉 ) (𝛽𝐴𝑟𝜇 + 𝛽𝐷𝑟𝑏2)) > 0, (44)

𝑆∗end = 𝑏2 + 𝛾𝛽 (𝐶𝐼 + 𝛽𝐴𝑟𝐶𝐴 + 𝛽𝐷𝑟𝐶𝐷) = 𝑏1 − 𝑉0 + 𝜂𝑅∗
end𝑏2 + 𝐾∗

𝑉 + 𝛽 (𝐶𝐼 + 𝛽𝐴𝑟𝐶𝐴 + 𝛽𝐷𝑟𝐶𝐷) 𝐸∗
end

, (45)

𝑅∗
end = ((𝜏0 + 𝐾∗

𝜉 ) 𝐶𝐼 + 𝜏0𝐶𝐴) 𝐸∗
end + 𝑉0 + 𝐾∗

𝑉𝑆∗end𝑏2 + 𝜂 , (46)

𝑁∗
end = (𝜏0 + 𝐾∗

𝜉 ) 𝐼∗end + 𝜏0𝐴∗
end + 𝑉0𝑏2 + 𝜂 + (1 + 𝐾∗

𝑉𝑏2 + 𝜂) 𝑆∗end + (𝐶𝐼 + 𝐶𝐴 + 𝐶𝐷 + 1) 𝐸∗
end, (47)

where 𝛽𝐴𝑟 = 𝛽𝐴/𝛽 and 𝛽𝐷𝑟 = 𝛽𝐷/𝛽 are relative dis-
ease coefficient transmission rates of the asymptomatic
infectious and lying infective corpses with respect to the
symptomatic infectious one, and

𝐶𝐼 = 𝛾𝑝𝑏2 + 𝛼 + 𝜏0 + 𝐾∗
𝜉
,

𝐶𝐴 = 𝛾 (1 − 𝑝)
𝑏2 + 𝜏0 ,

𝐶𝐷 = 1𝜇 [ (𝑏2 + 𝛼) 𝛾𝑝
𝑏2 + 𝛼 + 𝜏0 + 𝐾∗

𝜉
+ 𝑏2𝛾 (1 − 𝑝)

𝑏2 + 𝜏0 ] .
(48)

(iii) The disease-free and endemic equilibrium dynamics
matrices are, respectively, given by

A∗
𝑑𝑓 =

[[[[[[[[[[[[[[
[

− (𝑏2 + 𝐾∗
𝑉) 0 −𝛽𝑆∗𝑑𝑓 −𝛽𝐴𝑆∗𝑑𝑓 −𝛽𝐷𝑆∗𝑑𝑓 𝜂

0 − (𝑏2 + 𝛾) 𝛽𝑆∗𝑑𝑓 𝛽𝐴𝑆∗𝑑𝑓 𝛽𝐷𝑆∗𝑑𝑓 0
0 𝛾𝑝 − (𝑏2 + 𝛼 + 𝜏0 + 𝐾∗

𝜉 ) 0 0 0
0 𝛾 (1 − 𝑝) 0 − (𝑏2 + 𝜏0) 0 0
0 0 𝑏2 + 𝛼 𝑏2 −𝜇 0
𝐾∗
𝑉 0 𝜏0 + 𝐾∗

𝜉 𝜏0 0 − (𝑏2 + 𝜂)

]]]]]]]]]]]]]]
]

, (49)

A∗
end =

[[[[[[[[[[[[[[
[

− (𝑏2 + 𝛽𝐼∗end + 𝛽𝐴𝐴∗
end + 𝛽𝐷𝐷∗

end + 𝐾∗
𝑉) 0 −𝛽𝑆∗end −𝛽𝐴𝑆∗end −𝛽𝐷𝑆∗end 𝜂

𝛽𝐼∗end + 𝛽𝐴𝐴∗
end + 𝛽𝐷𝐷∗

end − (𝑏2 + 𝛾) 𝛽𝑆∗end 𝛽𝐴𝑆∗end 𝛽𝐷𝑆∗end 0
0 𝛾𝑝 − (𝑏2 + 𝛼 + 𝜏0 + 𝐾∗

𝜉 ) 0 0 0
0 𝛾 (1 − 𝑝) 0 − (𝑏2 + 𝜏0) 0 0
0 0 𝑏2 + 𝛼 𝑏2 −𝜇 0
𝐾∗
𝑉 0 𝜏0 + 𝐾∗

𝜉 𝜏0 0 − (𝑏2 + 𝜂)

]]]]]]]]]]]]]]
]

. (50)
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Note that the endemic equilibrium linearized dynamics
can also be described equivalently by

𝐴∗
end =

[[[[[[[[[[[
[

− (𝑏2 + 𝐾∗
𝑉) 0 − (𝛽 + 1) 𝑆∗end − (𝛽𝐴 + 1) 𝑆∗end − (𝛽𝐷 + 1) 𝑆∗end 𝜂

0 − (𝑏2 + 𝛾) (𝛽 + 1) 𝑆∗end (𝛽𝐴 + 1) 𝑆∗end (𝛽𝐷 + 1) 𝑆∗end 0
0 𝛾𝑝 − (𝑏2 + 𝛼 + 𝜏0 + 𝐾∗

𝜉 ) 0 0 0
0 𝛾 (1 − 𝑝) 0 − (𝑏2 + 𝜏0) 0 0
0 0 𝑏2 + 𝛼 𝑏2 −𝜇 0
𝐾∗
𝑉 0 𝜏0 + 𝐾∗

𝜉 𝜏0 0 − (𝑏2 + 𝜂)

]]]]]]]]]]]
]

. (51)

(iv) If 𝜌∗𝐷 ∈ (0, 1) then the endemic equilibrium steady
state 𝑥∗end(𝜃) for 𝜃 ∈ [0, 𝑇∗

𝐷) is periodic of period 𝑇∗
𝐷

leading to a matrix of dynamics A∗
end : [0, 𝑇∗

𝐷) →
R6×6 with A∗

end(𝑇∗
𝐷) = A∗

end(0) and A∗
end(𝑇∗−

𝐷 ) =
A∗

end(0−) ̸= A∗
end(0). Equations (45)–(47) and (50)-(51)

remain valid with the change 𝑥∗end → 𝑥∗end(𝜃) and the
corresponding changes in the two first rows of (50) and
(51) for 𝜃 ∈ [0, 𝑇∗

𝐷).
If the limit control gains 𝑉∗

0 (⋅), 𝐾∗
𝑉(⋅), and 𝐾∗

𝜉 (⋅) are periodic
functions of period 𝑇∗

𝐷 then the disease-free equilibrium state
has periodic susceptible and immune components defined as in
Property (i) with the replacements 𝐾∗

𝑉 → 𝐾∗
𝑉(𝜃) and 𝐾∗

𝜉 →𝐾∗
𝜉 (𝜃) for 𝜃 ∈ [0, 𝑇∗

𝐷) andA∗
𝑑𝑓 : [0, 𝑇∗

𝐷) → R6×6 in (49). In this
case, the endemic equilibrium state, if it exists, is also periodic
of period 𝑇∗

𝐷.

Proof. Thedisease-free equilibrium point is obtained directly
from (1) to (7) from the constraints𝐸∗

df = 𝐼∗df = 𝐴∗
df = 𝐷∗

df = 0
and it is seen to be trivially unique. The Jacobian matrix of
the linearized system at such a disease-free equilibrium point
is (49). The proof of Property (i) follows directly. To prove
the existence of an endemic equilibrium point (Property (ii))
some calculations are now performed to see the compatibility
of the model with the existence of an equilibrium with
exposed subpopulation 𝐸∗

end > 0 implying the remaining
subpopulations to be nonnegative. Direct calculations by
zeroing in (3) to (5) the time derivatives of the subpopulations
by taking into account (7)-(8) yield

𝐸∗
end > 0 ⇐⇒ 𝐼∗end = 𝐶𝐼𝐸∗

end > 0,
𝐸∗
end > 0 ⇐⇒ 𝐴∗

end = 𝐶𝐴𝐸∗
end > 0,

𝐸∗
end > 0 ⇐⇒ 𝐷∗

end = 𝐶𝐷𝐸∗
end > 0

(52)

with the above constants defined in (48). From (2), one gets
if 𝐸∗

end > 0 implying that 𝐼∗end > 0 that (44) holds since
𝐸∗
end > 0 ⇐⇒
[(𝐼∗end > 0) ∧ (𝐴∗

end > 0) ∧ (𝐷∗
end > 0)] 󳨐⇒

𝑆∗end = 𝑏2 + 𝛾𝛽 (𝐶𝐼 + 𝛽𝐴𝑟𝐶𝐴 + 𝛽𝐷𝑟𝐶𝐷) 𝐸∗
end

𝐸∗
end.

(53)

This proves the first part of Property (ii) since 𝑁∗
end < 𝑁∗

df .
Now, note from (44) that if 𝛽 ≤ 𝛽cend for a small enough
threshold 𝛽cend for some existing small enough threshold𝛽cend, then 𝑆∗end ≥ 𝑁∗

end from (44). This implies that 𝑆∗end > 0
from (44) but 𝐸∗

end ≤ 0 (then either the endemic equilibrium
point does not exist, since it has negative components, or it
coincides with the disease-free one) since (46) leads to𝐸∗

end >0 and 𝑆∗end > 0 implies 𝑅∗
end > 0 and 𝑅∗

end < 0 with 𝑆∗end > 0 if
and only if𝐸∗

end < 0.Therefore,𝐸∗
end > 0 ⇔ (𝑁∗

end > 𝑆∗end > 0)
if and only if 𝛽 > 𝛽cend. Now, summing up (1), (2), and (6), by
taking into account (7)-(8) at the endemic equilibrium point
yield (45)–(47) since

𝑏2 (𝑆∗end + 𝑅∗
end)

= 𝑏1 + [(𝜏0 + 𝐾∗
𝜉 ) 𝐶𝐼 + 𝜏0𝐶𝐴 − 𝑏2 − 𝛾] 𝐸∗

end,
𝑅∗
end − 𝐾∗

𝑉𝑆∗end + 𝑉0𝑏2 + 𝜂 = (𝜏0 + 𝐾∗
𝜉 ) 𝐼∗end + 𝜏0𝐴∗

end𝑏2 + 𝜂
= (𝜏0 + 𝐾∗

𝜉 ) 𝐶𝐼 + 𝜏0𝐶𝐴𝑏2 + 𝜂 𝐸∗
end,

𝑁∗
end = 𝑅∗

end + 𝑆∗end + (𝐼∗end + 𝐴∗
end + 𝐷∗

end + 𝐸∗
end)

= (𝜏0 + 𝐾∗
𝜉 ) 𝐼∗end + 𝜏0𝐴∗

end + 𝑉0𝑏2 + 𝜂
+ (1 + 𝐾∗

𝑉𝑏2 + 𝜂) 𝑆∗end + (𝐶𝐼 + 𝐶𝐴 + 𝐶𝐷 + 1) 𝐸∗
end

(54)

which completes the proof of Property (ii). The proof of
Property (iii) is direct by taking the respective Jacobianmatri-
ces at the disease-free equilibrium point and the endemic
equilibrium. The respective Jacobian matrices are (49) and
(50). The use of (51), replacing (50), as the matrix of
linearized dynamics around the endemic equilibrium point
is legitimated via the identity:

(𝛽𝐼∗end + 𝛽𝐴𝐴∗
end + 𝛽𝐷𝐷∗

end) 𝑆∗end
= [𝛽𝑆∗end 𝛽𝐴𝑆∗end 𝛽𝐷𝑆∗end] [[

[
𝐼∗end𝐴∗
end𝐷∗
end

]]
]
. (55)
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Property (iv) follows directly from Property (iii) and Theo-
rem 4 with the replacement 𝑥∗end → 𝑥∗end(𝜃) and 𝐶𝐼 = 𝐶𝐼(𝜃)
and 𝐶𝐷 = 𝐶𝐷(𝜃) in (48) for 𝜃 ∈ [0, 𝑇∗

𝐷) and, eventually,𝑆∗df → 𝑆∗df (𝜃) and 𝑅∗
df → 𝑅∗

df (𝜃) if the control gains converge
to periodic values of period 𝑇∗

𝐷.

Theorem 5 is useful for the study under linearization of
the solution trajectories around the disease-free equilibrium
point if 𝜌∗𝐷 = 0 under limit gains of the other controls.
However, if the above limit gain is nonzero and less than one,
then the trajectory solutions are asymptotically periodic. It
is also proved the existence and uniqueness of the endemic
equilibrium point if the coefficient transmission rates exceed
a certain minimum threshold 𝛽cend. It is also deduced from
the disease-free equilibrium expressions that the susceptible
disease-free equilibrium numbers can be decreased, and cor-
respondingly the immune equilibrium numbers increased,
by increasing the constant vaccination and/or the linear
vaccination gains.

A constraint for the endemic equilibrium solution, if it
exists, is discussed and given in the subsequent result. The
existence constraints are easy to test under the form 𝑆∗end(𝜃) <𝑏1/𝑏2 − 𝑉∗

0 (𝜃), ∀𝜃 ∈ [0, 𝑇∗
𝐷), or some equivalent constraints,

where 𝑇∗
𝐷 is the limit interculling action period.

Theorem 6. Assume that (𝑡𝑖+1 − 𝑡𝑖) → 𝑇∗
𝐷, 𝜌𝐷(𝑛𝑇∗

𝐷) → 𝜌∗𝐷 ∈[0, 1), 𝑉0(𝑛𝑇∗
𝐷 + 𝜃) → 𝑉∗

0 (𝜃), 𝐾𝑉(𝑛𝑇∗
𝐷 + 𝜃) → 𝐾∗

𝑉(𝜃) and𝐾𝜉(𝑛𝑇∗
𝐷 + 𝜃) → 𝐾∗

𝜉 (𝜃) as 𝑛 → ∞, ∀𝜃 ∈ [0, 𝑇∗
𝐷] as 𝑡 → ∞,𝑡𝑖(∈ Imp𝐷) → ∞, and 𝑛(∈ Z+) → ∞. Then, the following

properties hold:
(i) The endemic equilibrium state 𝑥∗end = 𝑥∗end(𝜃) for𝜃 ∈ [0, 𝑇∗

𝐷], being a point if 𝜌∗𝐷 = 0, equivalently if
card Imp𝐷 < ℵ0 (i.e., it is finite), and a periodic
limit oscillation if 𝜌∗𝐷 ∈ (0, 1] has the subsequent
components:

𝑆∗end (𝜃) = 𝐵𝐴𝐵𝐼 (𝜃) 𝐵𝐸𝛽𝑓 + 𝛽𝐴𝑓𝐴 (𝜃) + 𝛽𝐷𝑓𝐷 (𝜃)
= 𝑏2 + 𝛾𝛽 (𝐶𝐼 (𝜃) + 𝛽𝐴𝑟𝐶𝐴 + 𝛽𝐷𝑟𝐶𝐷 (𝜃)) ,

𝐸∗
end (𝜃) = 𝐵𝐴𝐵𝐼 (𝜃) 𝐶0 (𝜃)
⋅ (𝐵𝑅 (𝑆∗𝑑𝑓 (𝜃) − 𝑆∗end (𝜃)) + 𝐾∗

𝑉 (𝜃) 𝑆∗𝑑𝑓) ,
𝐼∗end (𝜃) = 𝐶𝐼 (𝜃) 𝐸∗

end (𝜃) = 𝑓𝐶0 (𝜃)
⋅ (𝐵𝑅 (𝑆∗𝑑𝑓 (𝜃) − 𝑆∗end (𝜃)) + 𝐾∗

𝑉 (𝜃) 𝑆∗𝑑𝑓 (𝜃)) ,
𝐴∗

end (𝜃) = 𝐶𝐴𝐸∗
end (𝜃) = 𝑓𝐶0 (𝜃)

⋅ (𝐵𝑅 (𝑆∗𝑑𝑓 (𝜃) − 𝑆∗end (𝜃)) + 𝐾∗
𝑉 (𝜃) 𝑆∗𝑑𝑓 (𝜃)) ,

𝐷∗
end (𝜃) = 𝐶𝐷 (𝜃) 𝐸∗

end (𝜃) = 𝑓𝐷 (𝜃) 𝐶0 (𝜃)
⋅ (𝐵𝑅 (𝑆∗𝑑𝑓 (𝜃) − 𝑆∗end (𝜃)) + 𝐾∗

𝑉𝑆∗𝑑𝑓 (𝜃)) ,

𝑅∗
end (𝜃) = (𝑆∗𝑑𝑓 (𝜃) − 𝑆∗end (𝜃))
+ (𝑅∗

𝑑𝑓 (𝜃) − (𝐸∗
end (𝜃) + 𝜇𝑏2𝐷∗

end (𝜃))) ;
∀𝜃 ∈ [0, 𝑇∗

𝐷] .
(56)

Being real constants if 𝜌∗𝐷 = 0, where
𝐵𝐴 = 𝑏2 + 𝜏0;

𝐵𝐼 (𝜃) = 𝑏2 + 𝜏0 + 𝛼 + 𝐾∗
𝜉 (𝜃) ,

𝐵𝑅 = 𝑏2 + 𝜂;
𝐵𝐸 = 𝑏2 + 𝛾,
𝑓 = 𝛾𝑝𝐵𝐴;

𝑓𝐴 (𝜃) = 𝛾 (1 − 𝑝) 𝐵𝐼 (𝜃) ,
𝑓𝐷 (𝜃) = 1𝜇 (𝑏2𝑓𝐴 (𝜃) + (𝑏2 + 𝛼)𝑓)

= 𝛾𝜇 (𝑏2 (1 − 𝑝) 𝐵𝐼 (𝜃) + 𝑝 (𝑏2 + 𝛼) 𝐵𝐴) ,
𝐶0 (𝜃) = 𝑏2𝑏2𝐵𝐴𝐵𝐼 (𝜃) (𝛾 + 𝐵𝑅) + 𝜂𝜇𝑓𝐷 (𝜃) ;

∀𝜃 ∈ [0, 𝑇∗
𝐷) ,

(57)

where 𝐶𝐼 = 𝐶𝐼(𝜃) and 𝐶𝐷 = 𝐶𝐷(𝜃) in (48) since𝐾∗
𝜉 = 𝐾∗

𝜉 (𝜃) for 𝜃 ∈ [0, 𝑇∗
𝐷). If 𝑆∗end(𝜃) < ((𝐵𝑅 +𝐾∗

𝑉(𝜃))/𝐵𝑅)𝑆∗𝑑𝑓(𝜃) = (1 + 𝐾∗
𝑉(𝜃)/(𝑏2 + 𝜂))𝑆∗𝑑𝑓(𝜃); ∀𝜃 ∈[0, 𝑇∗

𝐷), then the endemic equilibrium state exists, while
being distinct of the disease-free equilibrium state. This
existence condition of the endemic equilibrium state is
equivalent to 𝑆∗end(𝜃) < 𝑏1/𝑏2 − 𝑉∗

0 (𝜃); ∀𝜃 ∈ [0, 𝑇∗
𝐷).

If 𝑆∗end(𝜃) > (1 + 𝐾∗
𝑉(𝜃)/(𝑏2 + 𝜂))𝑆∗𝑑𝑓(𝜃); ∀𝜃 ∈ [0, 𝑇∗

𝐷)
then the endemic equilibrium state does not exist in
the sense that it has some negative components. On the
contrary, the opposed condition

𝑆∗end (𝜃) < (1 + 𝐾∗
𝑉 (𝜃)𝑏2 + 𝜂 ) 𝑆∗𝑑𝑓 (𝜃)

= 𝑏2 (𝑏1 − 𝑉∗
0 (𝜃)) + 𝜂𝑏1𝑏2 (𝑏2 + 𝜂) ; 𝜃 ∈ [0, 𝑇∗

𝐷)
(58)

yields the existence of such an endemic equilibrium
state. In the case when the limit control gains are
constant, the disease-free equilibrium state is an equi-
librium point. If, in addition, 𝜌∗𝐷 = 0 then the endemic
equilibrium solution, if it exists, is also an equilibrium
point.

(ii)

𝑁∗
end (𝜃) < 𝑁∗

𝑑𝑓 = 𝑏1𝑏2 (59)
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and the dependence on 𝜃 ∈ [0, 𝑇∗
𝐷) is removed in the

case that the endemic equilibrium state is an equilib-
rium point.

Proof. The values of the components of the endemic equilib-
rium state follow by direct elementary calculations form (45)
and (48) and have been verified under symbolic calculation
with the Mathematica package. Note that in the general case
when the control gains converge to periodic functions of
period 𝑇∗

𝐷 both the disease-free and endemic equilibrium
solutions are periodic with such a period [seeTheorem 5(iv)].
The endemic equilibrium exists while it is distinct from the
disease-free one if (58) holds. To prove Property (ii), note by
zeroing (1) to (4) and (6) while summing them up and the use
of (7) at the disease-free and endemic equilibrium states that

𝑁∗
end (𝜃) = 𝑆∗end (𝜃) + 𝑅∗

end (𝜃) + 𝐸∗
end (𝜃) + 𝐼∗end (𝜃)

+ 𝐴∗
end (𝜃) < 𝑁∗

df = 𝑆∗df + 𝑅∗
df;
∀𝜃 ∈ [0, 𝑇∗

𝐷)
(60)

since 𝑁̇(𝑡) = −𝑏2𝑁(𝑡) + 𝑏1 − 𝛼𝐼(𝑡); ∀𝑡 ∈ R0+. Thus, since(𝐸∗
end(𝜃) + 𝐼∗end(𝜃) + 𝐴∗

end(𝜃)) > 0; ∀𝜃 ∈ [0, 𝑇∗
𝐷) implied by𝐸∗

end(𝜃) > 0, ∀𝜃 ∈ [0, 𝑇∗
𝐷) if the endemic equilibrium state

exists then 𝑁∗
end(𝜃) < 𝑁∗

df ; ∀𝜃 ∈ [0, 𝑇∗
𝐷). Property (ii) is

proved.

Note from the components of the endemic equilibrium
expressions given inTheorem 6(i) that the equilibrium num-
ber of the endemic susceptible increases while correspond-
ingly those of all the infective subpopulations decrease as the
limit antiviral control gain𝐾∗

𝜉 increases.This is an interesting
tool to control the infection in the case that the endemic
equilibrium exists and the disease-free one is unstable so
unreachable in practice if the coefficient transmission rate is
large enough exceeding the threshold 𝛽cend of Theorem 5.

Remark 7. Note that we can write the linearized equation
around the endemic equilibrium state as

̇̃𝑥 (𝜃) = ⌈A∗
df (𝜃) + (A∗

end (𝜃) − A∗
df (𝜃))⌉ 𝑥 (𝜃)

= ⌈A∗
df (𝜃) + (A∗

end (𝜃) − A∗
df (𝜃))⌉ 𝑥 (𝜃) ;

∀𝜃 ∈ [0, 𝑇∗
𝐷)

(61)

with

𝑥 (0) = 𝑥 (𝑇∗
𝐷) = (1 − 𝜌∗𝐷) 𝑥 (𝑇∗−

𝐷 ) , (62)

where

A∗
end (𝜃) − A∗

df (𝜃)

= [[
[
0 0 −𝑎13 (𝜃) −𝑎14 (𝜃) −𝑎15 (𝜃) 0
0 0 𝑎13 (𝜃) 𝑎14 (𝜃) 𝑎15 (𝜃) 0

04×6

]]
]

(63a)

with

𝑎13 (𝜃) = (𝛽 + 1) 𝑆∗end (𝜃) − 𝛽𝑆∗df (𝜃) ,
𝑎14 (𝜃) = (𝛽𝛽𝐴𝑟 + 1) 𝑆∗end (𝜃) − 𝛽𝛽𝐴𝑟𝑆∗df (𝜃) ,
𝑎15 (𝜃) = (𝛽𝛽𝐷𝑟 + 1) 𝑆∗end (𝜃) − 𝛽𝛽𝐷𝑟𝑆∗df (𝜃) ;

∀𝜃 ∈ [0, 𝑇∗
𝐷)

(63b)

since

A∗
end (𝜃) 𝑥∗end (𝜃) = A∗

end (𝜃) 𝑥∗end (𝜃)
= [A∗

df (𝜃) + (A∗
end (𝜃) − A∗

df (𝜃))] 𝑥∗end (𝜃) ;
∀𝜃 ∈ [0, 𝑇∗

𝐷)
(64)

by using (49)–(51) and (55). If A∗
df(𝜃) is nonsingular then

A∗
end(𝜃) = A∗

df(𝜃)[I6 + A∗−1
df (𝜃)(A∗

end(𝜃) − A∗
df(𝜃))] is also

nonsingular if

󵄩󵄩󵄩󵄩󵄩A∗
end (𝜃) − A∗

df (𝜃)󵄩󵄩󵄩󵄩󵄩22 = 2 [𝑎213 (𝜃) + 𝑎213 (𝜃) + 𝑎215 (𝜃)]
< 1; ∀𝜃 ∈ [0, 𝑇∗

𝐷) .
(65)

Therefore, if A∗
df(𝜃) is a stability matrix (then, nonsingular)

and (65) holds thenA∗
end(𝜃) andA∗

end(𝜃) are stabilitymatrices.
The following results give easily testable sufficiency-type

local instability and local stability tests for the endemic
equilibrium point based on the stability properties of the
disease-free matrix of dynamics of the linearized system
about the disease-free equilibrium. The extension to the case
of oscillatory periodic endemic equilibrium solution would
follow “mutatis-mutandis.”

Theorem 8. Assume that the control limits 𝑉∗
0 , 𝐾∗

𝑉, 𝐾∗
𝜉 , and𝜌∗𝐷 = 0 exist and define the amounts

𝜗 = 12
󵄩󵄩󵄩󵄩󵄩󵄩𝐴∗−1

df
󵄩󵄩󵄩󵄩󵄩󵄩1 󵄩󵄩󵄩󵄩󵄩𝐴∗

end − 𝐴∗
df
󵄩󵄩󵄩󵄩󵄩1 ,

𝜅𝜗 = 󵄩󵄩󵄩󵄩󵄩󵄩𝐴∗−1
df

󵄩󵄩󵄩󵄩󵄩󵄩1 𝑏2 (𝑏1 − 𝑉0) + 𝜂𝑏1𝑏2 (𝑏2 + 𝜂 + 𝐾∗
𝑉) [ 𝐾∗

𝑉𝑏2 + 𝜂 (1
+ 𝛽max (1, 𝛽𝐴𝑟, 𝛽𝐷𝑟)) + 1] .

(66)

The following properties hold:

(i) The endemic equilibrium point exists and it is unstable
if 𝐴∗

df is instability nonsingular matrix (i.e., it has at
least one eigenvalue in Re 𝑠 > 0) and 𝜅𝜗 < 1/2.

(ii) The endemic equilibrium point, provided that it exists,
is locally asymptotically stable if𝐴∗

df is a stabilitymatrix
and 𝜅𝜗 < 1/2.

Proof. Elementary calculation yields 𝐴∗
end = 𝐴∗

df[I6 +𝐴∗−1
df (𝐴∗

end − 𝐴∗
df)] if 𝐴∗

df is nonsingular. If, furthermore, 𝐴∗
df

is instability matrix then 𝐴∗
end is also instability matrix if
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1 > ‖𝐴∗−1
df (𝐴∗

end−𝐴∗
df)‖1, which is equivalent to 𝜅𝜗 < 1/2, from

Banach’s Perturbation Lemma [33], since 𝐴∗
end is nonsingular

and the eigenvalues are continuous functions with respect
to any matrix entry thus 𝐴∗

end is instability matrix. In the
same way, if 𝐴∗

df is a stability matrix (then nonsingular) and𝜅𝜗 < 1/2 then 𝐴∗
end is nonsingular and then stable by similar

reasoning.
It has to be pointed out that Theorem 10, which is stated

and proved later on, establishes that both equilibrium points
cannot be simultaneously stable. As a result, one concludes
viaTheorem 8(ii) that if𝐴∗

df is a stability matrix and 𝜅𝜗 < 1/2
then the endemic equilibrium point does not exist. By linking
this observationwithTheorem6(i), one concludes aswell that𝑆∗end > (1 + 𝐾∗

𝑉/(𝑏2 + 𝜂))𝑆∗df and the only existing equilibrium
point is the disease-free one which is globally asymptotically
stable.

Theorem 8 can be reformulated for the use of ℓ∞-norms
by using the identity:

󵄩󵄩󵄩󵄩󵄩𝐴∗
end − 𝐴∗

df
󵄩󵄩󵄩󵄩󵄩∞ = 󵄨󵄨󵄨󵄨𝑆∗end + 𝛽 (𝑆∗end − 𝑆∗df)󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨𝑆∗end + 𝛽𝛽𝐴𝑟 (𝑆∗end − 𝑆∗df)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑆∗end + 𝛽𝛽𝐷𝑟 (𝑆∗end − 𝑆∗df)󵄨󵄨󵄨󵄨

(67)

and for the use of ℓ2-norms by using the square root of the
sum of the squares of the three right-hand-side terms in
the above identity as replacement of it. A simple sufficient
condition for the local stability of the disease-free equilibrium
follows.

Theorem 9. Assume that 𝛽 is small enough according to 𝛽 <𝛽𝑐𝑑𝑓 with respect to the threshold:

𝛽𝑐𝑑𝑓 = 1 + 𝛽𝐴𝑟 + 𝛽𝐷𝑟𝑆∗df [𝑏2 +min (𝛾, 𝐾∗
𝑉 − 𝜂)]

= 𝑏2 (𝑏2 + 𝜂 + 𝐾∗
𝑉)(1 + 𝛽𝐴𝑟 + 𝛽𝐷𝑟) [𝑏2 (𝑏1 − 𝑉0) + 𝜂𝑏1] (𝑏2

+min (𝛾, 𝐾∗
𝑉 − 𝜂)) .

(68)

Thus, the disease-free equilibrium point is locally asymptoti-
cally stable provided that

𝛼 < 𝜇;
𝐾∗
𝑉 > 𝜂 − 𝑏2,

𝑏2 ∈ (max (𝜂 − 𝐾∗
𝑉, 𝐾∗

𝑉 + 2𝜏0 + 𝐾∗
𝜉 − 𝜇, 𝛾 (1 − 𝑝)

− 𝜏0, 𝛾𝑝 − 𝛼 − 𝜏0 − 𝐾∗
𝜉 , 0) , 𝜇 − 𝛼2 ) .

(69)

Proof. Note from (49) that A∗
df is a stability matrix since

diag(A∗
df) is a stability matrix and A∗

df is diagonally row
dominant if (68)-(69) hold.

Note that Theorem 9 can be combined with Theorem 5
in practical situations in the following sense. If the threshold

𝛽 < 𝛽cdf ≤ 𝛽cend then the disease-free equilibrium is locally
asymptotically stable and no endemic equilibrium point
exists. If 𝛽 ≥ 𝛽cdf ≥ 𝛽cend then the endemic equilibrium
point is locally asymptotically stable while the disease-free
one is unstable. This local result has a global stability version
as discussed in the following. The subsequent global stability
result is proved in Appendix and it is based on the qualitative
theory of differential equations in the sense that Lyapunov
equation candidates are not used. The solution explicit
formulas are not invoked to construct the proof but only the
trajectory separating properties of eventually existing stable,
semistable, or unstable limit cycles around equilibriumpoints
are addressed and used.

Theorem 10 (global uniform asymptotic stability). Assume
that 𝜌𝐷(𝑡) → 𝜌∗𝐷 = 0 as 𝑡(∈ Imp𝐷) → ∞. Thus, the following
properties hold:

(i) If the disease-free equilibrium point is locally asymptot-
ically stable while the endemic equilibrium state does
not exist then the epidemic model is globally uniformly
asymptotically stable and all the solution trajectories
converge asymptotically to the disease-free equilibrium
point.

(ii) If the disease-free equilibrium point is unstable and the
endemic equilibrium state exists then the system is glob-
ally uniformly asymptotically stable and all the solution
trajectories converge to the endemic equilibrium point.

(iii) The disease-free and the endemic equilibrium states
cannot be simultaneously either stable or unstable.

4. Numerical Simulations

It is now presented a set of numerical simulation work. The
parameters of the model are obtained from real data from
a study of Ebola disease [29]. The recruitment rate and the
natural average death rate are 𝑏1 = 𝑏2 = 1/(70×365) × days−1
while the disease transmission coefficients are 𝛽 = 0.16, 𝛽𝐴 =0.05, and 𝛽𝐷 = 0.5 (×days−1), respectively. The average dura-
tion of the immunity period reflecting a transition from the
recovered subpopulation to the susceptible subpopulation is
determined by 1/𝜂 = 1000 days, the average transition rate
from the exposed to both infectious subpopulations is 𝛾 =1/15.8 × days−1, the average extra mortality of the symp-
tomatic infectious is𝛼 = 1/13.3 × days−1, the natural immune
response is 𝜏0 = 1/12 × days−1, the fraction of the exposed
subpopulation becoming symptomatic infectious one is 𝑝 =0.9, and the average duration of infection is 1/𝜇 = 20 days.
The initial conditions are given by 𝑆(0) = 1000/1050, 𝐸(0) =10/1050, 𝐼(0) = 30/1050, 𝐴(0) = 𝐷(0) = 0, and 𝑅(0) =10/1050 so that the initial total living population is normal-
ized to unity, 𝑁(0) = 𝑆(0) + 𝐸(0) + 𝐼(0) + 𝐴(0) + 𝐷(0) +𝑅(0) = 1. Figure 1 displays the natural evolution of the disease
in the absence of any external action. It is observed that the
number of infective and infectious subpopulations increases
implying an increase of infective corpses as well. The result
of the natural evolution of the epidemics is the dead of
individuals so that the total living population decreases with



Discrete Dynamics in Nature and Society 13

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (days)

Su
bp

op
ul

at
io

ns

S
E
I
A
D
R

Figure 1: Natural evolution of the subpopulations.
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Figure 2: Natural evolution of the total alive population.

time as Figure 2 shows. After 250 days, the total living
population is only 56.47% of the initial one. Three control
mechanisms of fighting against Ebola have been considered
in the previous subsections. The effect of these control poli-
cies is now illustrated through simulation examples. Initially,
corpse culling (impulsive action on 𝐷) is considered as the
only action to modify the natural behavior of the disease.
Figures 3 and 4 show the effect of corpse culling on the system
with different culling rates. In this way, Figure 3 considers the
case when corpses are removed once daily at a rate of 𝜌𝐷 = 0.1
(i.e., 10% of corpses are removed daily) while Figure 4 shows
the behavior of the system when the daily culling rate is 𝜌𝐷 =0.8.
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Figure 3: Evolution of the subpopulations with a daily culling rate
of 𝜌𝐷 = 0.1.
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Figure 4: Evolution of the subpopulations with a daily culling rate
of 𝜌𝐷 = 0.8.

It can be deduced from Figures 3 and 4 that corpse culling
has a high impact on the evolution of the disease since all
the infected populations reduce their peak values due to the
application of culling. The direct consequence of this fact is
that the number of casualties is reduced as Figures 5 and 6
reveal for the total living population. Therefore, when the
culling rate is 𝜌𝐷 = 0.1, the total living population after 250
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Figure 5: Evolution of the total alive population with a daily culling
rate of 𝜌𝐷 = 0.1.
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Figure 6: Evolution of the total alive population with a daily culling
rate of 𝜌𝐷 = 0.8.

days is 62.10% of the initial one while when 𝜌𝐷 = 0.8 the total
living population after 250 days is 86.07% of the initial one.
On the other hand, Figures 7 and 8 show the effect of culling
when applied every other day instead of daily.

If we now compare Figures 6 and 8 it can be noticed
that the spacing of the culling action reduces the total
living population after 250 days of epidemics. Thus, from
Figures 5, 6, and 8 it is obtained the intuitive conclusion
that it is recommendable to perform culling as frequently as
possible with the highest possible rate. Hence, the proposed
mathematical model (1)–(6) captures and illustrates the effect
of culling in reality. Figures 9, 10, and 11 display the culling
effort corresponding to the cases considered in Figures 3, 4,
and 7, respectively. The culling effort is higher during the
first time instants for a higher culling rate while decreases
afterwards. Thus, a greater number of corpses are removed
initially, fact that reduces the number of deaths caused by the
infection, which in turn reduces the number of new corpses.
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Figure 7: Evolution of the subpopulations with an every other day
culling rate of 𝜌𝐷 = 0.8.
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Figure 8: Evolution of the total alive population with an every other
day culling rate of 𝜌𝐷 = 0.8.
As a consequence, the number of corpses to be removed
reduces as time goes by. On the other hand, a smaller culling
rate causes a peak in the culling effort during the evolution of
the disease, as Figure 9 shows.

Furthermore, vaccination can also be used in addition
to culling to fight against disease. In this way, Figures 12–
15 show the effect of a constant vaccination on the system
when a culling rate of 𝜌𝐷 = 0.1 is also applied. The constant
vaccination is expressed in both cases as amultiple of 𝑏1, being
of 𝑉 = 𝑉0 = 0.2𝑏1 for Figures 12 and 13 and 𝑉 = 𝑉0 = 0.8𝑏1
for Figures 14 and 15.

It can be noted from Figures 5, 13, and 15 that the
proposed constant vaccinations do not alter significantly the
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Figure 9: Culling effort 𝜌𝐷𝐷(𝑡) with a daily culling rate of 𝜌𝐷 = 0.1.
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Figure 10: Culling effort 𝜌𝐷𝐷(𝑡)with a daily culling rate of 𝜌𝐷 = 0.8.
behavior of the system where the culling action has been
applied. This result points out that it may be difficult to
tune the constant vaccination term 𝑉0 in order to obtain an
appropriate behavior of the controlled system. The proposed
feedback vaccination given by (7) in Section 2 contributes to
solving this tuning problem since it relates the vaccination
effort to the actual evolution of the system in such a way
that the amplitude of vaccination is calculated based on the
current value of susceptible. Thus, Figures 16 and 17 show
the system evolution when a feedback vaccination with a
constant of 𝐾𝑉 = 0.002 is applied along with the constant
vaccination term.

FromFigures 12 and 16we conclude that the feedback vac-
cination law calculated from the value of susceptible modifies
significantly the behavior of the system while Figures 13 and
17 reveal that the total living population is largely improved
by the action of feedback control. As a consequence, themain
recommendation related to vaccination campaign design is to
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Figure 11: Culling effort 𝜌𝐷𝐷(𝑡) with an every other culling rate of𝜌𝐷 = 0.8.
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Figure 12: Evolution of the subpopulations with daily culling rate of𝜌𝐷 = 0.1 and constant vaccination of 𝑉 = 𝑉0 = 0.2𝑏1.
dynamically calculate the amount of vaccines to be applied
by using the proposed feedback law (7). The vaccination
control action is shown in Figure 18 while the culling effort
corresponding to this case is depicted in Figure 19. It can
be observed in Figure 19 that the culling action vanishes as
a direct consequence of 𝐷(𝑡) tending to zero asymptotically.
Therefore, the combination of culling and feedback vaccina-
tion allows stopping themortality associatedwith the disease.
Finally, we can also add antivirals to fight against Ebola.
Antiviral action is given by (8)which is a feedback control law
based on the symptomatic infectious subpopulation. In this
case, we consider the constant linear value of 𝜉(𝑡) = 𝐾𝜉𝐼(𝑡) =
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Figure 13: Evolution of the total alive population with daily culling
rate of 𝜌𝐷 = 0.1 and constant vaccination of 𝑉 = 𝑉0 = 0.2𝑏1.
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Figure 14: Evolution of the subpopulations with daily culling rate of𝜌𝐷 = 0.1 and constant vaccination of 𝑉 = 𝑉0 = 0.8𝑏1.
0.01𝐼(𝑡) to show its effect on the system. Figures 20 and 21
show the combined effect of the three external actions.

From Figures 17 and 21 it is observed that the total living
population is improved thanks to the use of antivirals while
the deaths associated with the disease are stopped due to the
use of the proposed approach. Moreover, it is now worth
comparing the behavior of the natural system without any
kind of external action with the evolution of the system when
culling, vaccination, and antivirals are applied, especially
Figures 2 and 21. After 250 days of epidemics, the total living
population without any external action is of 56.47%while it is
of 98.74% when the proposed dedicated policies are applied.
These values show the great success in the application of
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Figure 15: Evolution of the total alive population with daily culling
rate of 𝜌𝐷 = 0.1 and constant vaccination of 𝑉 = 𝑉0 = 0.8𝑏1.
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Figure 16: Evolution of the subpopulations with daily culling rate of𝜌𝐷 = 0.1 and feedback vaccination of 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡).

control measurements to lessen the impact of epidemics in
society. Moreover, Figures 22, 23, and 24 show the control
efforts associated with each one of the therapies. It is shown
that the culling and antiviral actions vanish asymptotically so
that they are only applied for a limited period of time while
vaccination needs to be maintained since it converges to a
positive constant.

Figures 25–28 show the behaviors of the asymptomatic
and lying infective corpses under a culling rate of 𝜌𝐷 = 0.1.
The oscillatory nature of the solution due to the impulsive
culling action on infective corpses is better figured out in
Figure 28 which is ran on longer observation time intervals.
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Figure 17: Evolution of the total alive population with daily culling
rate of 𝜌𝐷 = 0.1 and feedback vaccination of 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡).
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Figure 18: Vaccination function 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡) when a daily
culling rate of 𝜌𝐷 = 0.1 is also applied.

5. Conclusions

A new epidemic model is proposed with six subpopulations
by incorporating the asymptomatic infectious and the dead
corpses into a basic SEIR model of four subpopulations. The
model is driven by three simultaneous controls in terms of
a vaccination control on the susceptible which is based on
linear time-varying feedback plus a constant term, an antivi-
ral treatment on the symptomatic infectious subpopulation
with infection feedback information, and a culling action of
impulsive type on the infective dead corpses.The vaccination
controls are combinations of feedback-independent (which
can be constant, in particular) and feedback time-varying
linear terms and the antiviral treatment control is of a time-
varying linear feedback nature. There is also an impulsive
time-dependent control action consisting of the retirement
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Figure 19: Culling effort 𝜌𝐷𝐷(𝑡)when a daily culling rate of𝜌𝐷 = 0.1
and vaccination law 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡) are applied.
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Figure 20: Evolution of the subpopulations with daily culling rate of𝜌𝐷 = 0.1, feedback vaccination 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡), and antiviral
treatment 𝜉(𝑡) = 𝐾𝜉𝐼(𝑡) = 0.01𝐼(𝑡).
of corpses so as to reduce the risks of dead-contagion to the
living uninfected population.

An identification and analysis of the endemic anddisease-
free equilibrium points and equilibrium oscillations are
performed in the case that the control gains are constant.
The equilibrium oscillations arise as a generalization of the
equilibriumpointswhen the dead corpses recovery action has
a periodic nature. The parameterizations of those mentioned
steady-state solutions are investigated as being dependent on
the control gains as they converge to constant values. The
local stability properties of the steady states and the global
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Figure 21: Evolution of the total alive population with daily culling
rate of 𝜌𝐷 = 0.1, feedback vaccination 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡), and
antiviral treatment 𝜉(𝑡) = 𝐾𝜉𝐼(𝑡) = 0.01𝐼(𝑡).
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Figure 22: Vaccination function 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡) when a daily
culling rate of 𝜌𝐷 = 0.1 and antiviral treatment 𝜉(𝑡) = 𝐾𝜉𝐼(𝑡) =0.01𝐼(𝑡) are applied.

stability are investigated. The main novelties of the paper
are (a) the incorporation of the asymptomatic infectious
subpopulation and dead corpses as extra subpopulations
with study of their steady states being either equilibrium
points or oscillations; (b) the design of three distinct controls
on the above proposed extended SEIADR model which
can be time varying and with feedback information on the
susceptible, symptomatic infections and dead corpses; (c)
the performance of the global stability analysis based on
qualitative theory of differential equations rather than on
the analysis of Lyapunov functionals; and (d) the emphasis,
supported within a variety of performed simulations, that
the infection evolution might be very sensitive to the corpses
culling action (impulsive control) parameters.
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Figure 23: Culling effort 𝜌𝐷𝐷(𝑡) when a daily culling rate of 𝜌𝐷 =0.1, vaccination law 𝑉 = 0.2𝑏1 + 0.002𝑆(𝑡) and antiviral treatment𝜉(𝑡) = 𝐾𝜉𝐼(𝑡) = 0.01𝐼(𝑡) are applied.
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Figure 24: Antiviral action when a daily culling rate of 𝜌𝐷 = 0.1,
vaccination law𝑉 = 0.2𝑏1 +0.002𝑆(𝑡), and antiviral treatment 𝜉(𝑡) =𝐾𝜉𝐼(𝑡) = 0.01𝐼(𝑡) are applied.

Appendix

Proof of Theorem 10. Rewrite (2) equivalently as

𝐸̇ (𝑡) − (𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)
= 𝐹1 (𝐸 (𝑡) , 𝐼 (𝑡) + 𝐴 (𝑡)) = 𝐹1 (𝐸 (𝑡) , 0)
fl − (𝑏2 + 𝛾) 𝐸 (𝑡)

(A.1)
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Figure 25: Evolution of the asymptomatic subpopulation with a
daily culling rate of 𝜌𝐷 = 0.1.

while one gets from (3), (4), and (8)

̇𝐼 (𝑡) + 𝐴̇ (𝑡) + (𝛼 + 𝐾∗
𝜉 + 𝐾̃𝜉 (𝑡)) 𝐼 (𝑡)

= 𝐹2 (𝐸 (𝑡) , 𝐼 (𝑡) + 𝐴 (𝑡))
fl 𝛾𝐸 (𝑡) − (𝑏2 + 𝜏0) (𝐼 (𝑡) + 𝐴 (𝑡)) ,

(A.2)

where 𝐾̃𝜉(𝑡) = 𝐾𝜉(𝑡) − 𝐾∗
𝜉 . Note from (A.1)-(A.2) that𝐹1(𝐸(𝑡), 0) and 𝐹2(𝐸(𝑡), 𝐼(𝑡) + 𝐴(𝑡)) are continuous with

continuous partial derivatives with respect to their arguments
in any simply connected region Cint of R2

𝜕𝐹1 (𝐸 (𝑡) , 0)𝜕𝐸 (𝑡) + 𝜕𝐹2 (𝐸 (𝑡) , 𝐼 (𝑡) + 𝐴 (𝑡))𝜕 (𝐼 (𝑡) + 𝐴 (𝑡))
= − (2𝑏2 + 𝛾 + 𝜏0) < 0; ∀𝑡 ∈ R0+.

(A.3)

Any such region Cint cannot contain a closed trajectory C
(limit cycle) from Gauss-Stokes theorem since then

∮
C
[𝐹1 (𝐸 (𝑡) , 0) 𝑑 (𝐼 (𝑡) + 𝐴 (𝑡)) − 𝐹2 (𝐸 (𝑡) , 𝐼 (𝑡) + 𝐴 (𝑡)) 𝑑𝐸 (𝑡)]
= ∬

CintC

(𝜕𝐹1 (𝐸 (𝑡) , 0)𝜕𝐸 (𝑡) + 𝜕𝐹2 (𝐸 (𝑡) , 𝐼 (𝑡) + 𝐴 (𝑡))𝜕 (𝐼 (𝑡) + 𝐴 (𝑡)) ) 𝑑𝐸 (𝑡) 𝑑 (𝐼 (𝑡) + 𝐴 (𝑡)) < 0; (A.4)

from (A.3) if CintC is the interior of the set defined by the
simple curve C, a contradiction, (Bendixson’s criterion of
nonexistence of limit cycles [34] or Bendixson’s first theorem,
implies that the above integral has to be null for closed
trajectories) then it should hold 𝐹̇2(𝑡)𝑑𝐹1(𝑡)−𝐹̇1(𝑡)𝑑𝐹2(𝑡) = 0
along the orbit C and this is impossible from (A.4), where

𝐹1 (𝑡)
= 𝐸 (𝑡) − 𝐸 (0)

− ∫𝑡

0
(𝛽𝐼 (𝜎) + 𝛽𝐴𝐴 (𝜎) + 𝛽𝐷𝐷 (𝜎)) 𝑆 (𝜎) 𝑑𝜎

= − (𝑏2 + 𝛾)∫𝑡

0
𝐸 (𝜎) 𝑑𝜎,

𝐹2 (𝑡)
= 𝐼 (𝑡) + 𝐴 (𝑡) − 𝐼 (0) − 𝐴 (0)

+ ∫𝑡

0
(𝛼 + 𝐾∗

𝜉 + 𝐾̃𝜉 (𝜎)) 𝐼 (𝜎) 𝑑𝜎
= ∫𝑡

0
(𝛾𝐸 (𝜎) − (𝑏2 + 𝜏0) (𝐼 (𝜎) + 𝐴 (𝜎))) 𝑑𝜎

(A.5)

from (A.1)-(A.2). Since 𝐾̃𝜉(𝑡) → 0 as 𝑡 → ∞ one has from
(A.1) and (A.2) and (A.4) that

lim
𝑡→∞

[ ̇𝐼 (𝑡) + 𝐴̇ (𝑡) + (𝛼 + 𝐾∗
𝜉 ) 𝐼 (𝑡)

− 𝐹2 (𝐸 (𝑡) , 𝐼 (𝑡) + 𝐴 (𝑡))] = 0, (A.6)

lim
𝑡→∞

[𝐸̇ (𝑡) − (𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)
− 𝐹1 (𝐸 (𝑡) , 0)] = 0. (A.7)

Taking Laplace transforms in (A.6) by neglecting initial
conditions and using (48), one gets from (A.6) that 𝐸(𝑠) =𝐹2(𝑠)/((𝐶𝐼 + 𝐶𝐴)𝑠 + (𝛼 + 𝐾∗

𝜉 )𝐶𝐼), where the superscript
“hat” denotes the Laplace transform in the Laplace argument
“𝑠” of 𝐹2(⋅). Since 𝐹2(𝑡) is not asymptotically periodic the
Laplace antitransform of 𝐸(𝑠), that is, 𝐸(𝑡), is not asymptot-
ically periodic from the above expression. Since 𝐸(𝑡) is not
asymptotically periodic then 𝐼(𝑡) and 𝐴(𝑡) and 𝐷(𝑡) are not
asymptotically periodic (note the assumption 𝜌∗𝐷 = 0). On
the other hand, one gets from (6) to (8) as 𝑡 → ∞, since𝐾𝑉(𝑡) → 𝐾∗

𝑉 and𝐾𝜉(𝑡) → 𝐾∗
𝜉 as 𝑡 → ∞ that

𝑅̇ (𝑡) + (𝑏2 + 𝜂) 𝑅 (𝑡) − 𝑉0 − 𝐾∗
𝑉𝑆 (𝑡)

= 𝜏0𝐴 (𝑡) + (𝜏0 + 𝐾∗
𝜉 ) 𝐼 (𝑡) (A.8)

while summing up (1) and (6) by taking into account (2) and
(48) yields

̇𝑆 (𝑡) + 𝑅̇ (𝑡) + 𝑏2 (𝑆 (𝑡) + 𝑅 (𝑡))
= −𝐸̇ (𝑡) + 𝑏1

+ (𝜏0𝐶𝐴 + (𝜏0 + 𝐾∗
𝜉 ) 𝐶𝐼 − (𝑏2 + 𝛾)) 𝐸 (𝑡) .

(A.9)
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Figure 26: Zoom on the evolution of the asymptomatic subpopula-
tion with a daily culling rate of 𝜌𝐷 = 0.1.

Subtracting (A.8) from (A.9) and rewriting (A.9) in an
equivalent form yields

̇𝑆 (𝑡) + 𝐸̇ (𝑡) + (𝑏2 + 𝛾) 𝐸 (𝑡) − 𝑏1 + 𝑉0
= 𝐹3 (𝑆 (𝑡) , 𝑅 (𝑡)) fl − (𝑏2 + 𝐾∗

𝑉) 𝑆 (𝑡) + 𝜂𝑅 (𝑡) , (A.10)

̇𝑆 (𝑡) + 𝑅̇ (𝑡) + 𝐸̇ (𝑡) − 𝑏1
+ (𝑏2 + 𝛾 − 𝜏0𝐶𝐴 − (𝜏0 + 𝐾∗

𝜉 ) 𝐶𝐼) 𝐸 (𝑡)
= 𝐹4 (𝑆 (𝑡) , 𝑅 (𝑡)) fl −𝑏2 (𝑆 (𝑡) + 𝑅 (𝑡)) ,

(A.11)

𝜕𝐹3 (𝑆 (𝑡) , 𝑅 (𝑡))𝜕𝑆 (𝑡) + 𝜕𝐹4 (𝑆 (𝑡) , 𝑅 (𝑡))𝜕𝑅 (𝑡)
= − (2𝑏2 + 𝐾∗

𝑉) < 0;
∀𝑡 ∈ R0+.

(A.12)

Since sign((𝜕𝐹3(𝑆(𝑡), 𝑅(𝑡)))/𝜕𝑆(𝑡) + (𝜕𝐹4(𝑆(𝑡), 𝑅(𝑡)))/𝜕𝑅(𝑡))
is constant along state-trajectory solutions in R2, one has
again that no closed trajectory (then no limit cycle) can exist
surrounding any region with Poincaré’s index +1. In view of
(A.11)-(A.12), the functions ̇𝑆(𝑡)+𝐸̇(𝑡)+(𝑏2+𝛾)𝐸(𝑡)−𝑏1+𝑉0 anḋ𝑆(𝑡)+𝑅̇(𝑡)+𝐸̇(𝑡)−𝑏1+(𝑏2+𝛾−𝜏0𝐶𝐴−(𝜏0+𝐾∗

𝜉 )𝐶𝐼)𝐸(𝑡) are not
asymptotically periodic. Since𝐸(𝑡) and 𝐸̇(𝑡) have been proved
to be nonasymptotically periodic then ( ̇𝑆(𝑡)+𝑅̇(𝑡)), ̇𝑆(𝑡), 𝑅̇(𝑡),
and then their time-integral solutions are not asymptotically
periodic either.

The above arguments, together with the property of
uniform boundedness of the total population and that of
the nonnegativity of the solution, conclude that if only
the disease-free equilibrium point exists while it is locally
asymptotically stable then it is globally asymptotically stable
as well since no limit cycle can exist around it in any plane
in R2

0+ associated with any two of the state variables. On
the other hand, assume that the endemic equilibrium state
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Figure 27: Evolution of the infective lying corpses with a daily
culling rate of 𝜌𝐷 = 0.1.
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Figure 28: Zoom on the evolution of the infective corpses with a
daily culling rate of 𝜌𝐷 = 0.1.
is not a stable attractor while the disease-free is unstable.
Then, an unstable limit cycle around it cannot exist from the
above discussion (which excludes both stable and instable
limit cycles) and, due to the nonnegativity of the solution and
to the uniform boundedness of the whole population, then
the trajectory converges asymptotically to it so that it is a
stable attractor.

If the disease-free equilibrium point is unstable and the
endemic equilibrium exists then the endemic equilibrium
point is a stable attractor and the system is globally asymp-
totically stable with any state-trajectory solution converging
to it.

Two other possible stability/instability combinations of
the stability of both equilibrium states are excluded as follows
leading to Property (ii):

(1) The case that both equilibrium states are simulta-
neously locally stable is excluded. Since there is no
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closed trajectory solution then there is no semistable
limit cycle separating the domains of attraction of
both equilibrium states within the first orthant of R6.

(2) The case that both equilibrium states are simultane-
ously unstable is excluded as well since the system is
globally stable if it is positive.
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