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ABSTRACT

Through-casing borehole resistivity measurements are commonly acquired in order
to characterize the Earth’s subsurface. The use of a casing surrounding the borehole
highly complicates numerical simulations of the electric potential due to its thinness
and a large contrast between casing conductivity and surrounding rock formation
conductivity. In this work, we model the casing as a thin cylindrical layer of uniform
thickness. Motivated by realistic scenarios, we realize that the conductivity of the
case is typically proportional to its thickness to the power of minus three.

In this Ph.D. Dissertation, we focus on the above problem to derive Impedance
Transmission Conditions (ITCs) in order to replace the metallic casing. To do so,
we start by considering a 2D model in Cartesian coordinates that serves as an
initial approximation to solve the more realistic 3D axi-symmetric model (using
cylindrical coordinates) considered in most realistic through casing borehole simu-
lations. We start by considering the static (zero frequency) case, and we also derive
ITCs for nonzero frequencies, which are important to understand certain physical
phenomena occurring in through casing borehole measurements, namely, the so-
called Delaware and Groningen effects. Then, we analyze these models by proving
stability and convergence results, and we asses the numerical performance of these
models by employing a Finite Element Method. Finally, we derive semi-analytical
solutions for such models, which provide a more efficient way of evaluating our
approximate models as in comparison with full numerical solutions.



RESUME

Les mesures de résistivité en forage sont communément utilisées pour obtenir une
meilleure caractérisation du sous-sol. L’utilisation d’un tube métallique pour cou-
vrir le puits complique énormément les simulations numériques pour le potentiel
électrique a cause de la faible épaisseur du tube et de sa conductivité élevée par
rapport a celle des formations du sous-sol. Dans ce travail, motivé par des configu-
rations réalistes, le tube est modélisé par une couche mince cylindrique d’épaisseur
uniforme et la résistivité du tube est proportionnelle au cube de son épaisseur.

Dans cette these, on se concentre sur ce probléeme pour obtenir des Conditions
de transmission (ITCs) approchées pour le potentiel électrique a travers le tube
métallique. Pour ce faire, on considére dans une premiere approche, un modele
2D en coordonnées cartésiennes, puis on résout le probleme 3D axisymétrique qui
est considéré dans la majorité des simulations de mesures de résistivité en forage
a travers un tube. On considere d’abord le cas statique (fréquence nulle), puis
on obtient des ITCs pour des fréquences non-nulles, lesquelles sont importantes
pour comprendre certains phénomeénes physiques, comme les effets Delaware et
Groningen. Ensuite, on analyse les modeles en prouvant des résultats de stabilité
et convergence, et on évalue la performance numérique de ces modeles en utilisant
la méthode des éléments finis. Enfin, on construit des solutions semi-analytiques
pour ces modeles, lesquelles nous fournissent une maniere plus efficace d’évaluer
nos modeles approchés par rapport aux solutions numériques (éléments finis).



RESUMEN

Las medidas de resistividad en perforaciones a traves de tubos se utilizan de manera
comun para obtener una mejor caracterizacién del subsuelo de la tierra. El uso de
un tubo que cubre el pozo complica enormemente las simulaciones numéricas debido
a su finura y al gran contraste entre la conductividad del tubo y la de las formaciones
rocosas. En este trabajo, modelizamos el tubo como una membrana cilindrica fina
de grosor uniforme. Basandonos en configuraciones realistas, consideramos que la
conductividad del tubo es proporcional a su grosor a la potencia de menos tres.

En esta tesis doctoral, nos concentramos en el problema anterior para obtener
condiciones de transmisién de impedancia (ITCs) que sirvan para reemplazar el
tubo metalico. Para ello, empezamos por considerar un modelo 2D en coordenadas
cartesianas, que sirve como una primera aproximacion para resolver el problema 3D
con simetria axial (empleando coordenadas cilindricas) considerado en la mayoria
de las simulaciones realistas de perforaciones con tubos. Empezamos por considerar
el caso estatico (frecuencia nula), y mas tarde obtenemos ITCs para frecuencias
no nulas, las cuales son importantes para entender ciertos fenémenos fisicos que
ocurren al obtener medidas de resistividad en pozos a través de tubos, como por
ejemplo, los efectos de Delaware y Groningen. Después, analizamos estos modelos
demostrando resultados de estabilidad y convergencia, y evaluamos el rendimiento
numérico de estos modelos empleando el método de elementos finitos. Por tltimo,
obetnemos soluciones semi-analiticas para dichos modelos, las cuales proporcionan
una manera mas eficiente de evaluar las soluciones a nuestros modelos aproximados
en comparacion con soluciones puramente numeéricas.



LABURPENA

Hobietan egindako erresistibitate neurketak sarri erabiltzen dira lurrazpiaren
geruza ezberdinak identifikatzeko. Hobia hodi metaliko batez inguratuta dagoe-
nean, potentzial elektrikoarentzako zenbakizko simulazioak izugarri konplikatu
egiten dira hodiaren izaera mehea eta eroankortasun altua direla eta, zeina in-
guruko lur geruzena baino askoz altuagoa da. Lan honetan, hodi metalikoa forma
zilindrikoa duen geruza mehe bat bezala modelizatzen dugu. Konfigurazio erreal-
istetan oinarrituta, hodiaren eroankortasuna bere lodieraren kubo negativoarekiko
proportzionala kontsideratzen dugu.

Tesi hontan, azalduriko probleman kontzentratzen gara hodi metalikoa trans-
misio kondizio baliokideekin (ITCs) ordezkatzeko. Hau burutzeko, 2D eredu bat
kontsideratzen dugu koordenatu kartesiarretan, zeina lehendabiziko hurbilpen bat
bezala erabiltzen dugun ardatz bertikalarekiko simetria duen eta errealistagoa
den 3D eredu bat ebazteko (koordenatu zilindrikoetan). Hasteko, kasu estatikoa
(frekuentzia nuloa) kontsideratzen dugu, eta gero, era berean, frekuentzia ez nu-
loetarako I'TCs-ak garatzen ditugu, zeinak hainbat fenomeno fisiko ulertzeko gar-
rantzitsuak diren, adibidez, Delaware eta Groningen efektuak. Ondoren, mod-
elo hauen analisi bat egiten dugu hainbat estabilitate eta konbergentzia emaitza
frogatuz, eta modelo hauen zenbakizko errendimendua aztertzen dugu Elementu
Finituen Metodoa erabiliz. Azkenik, soluzio semi-analitikoak garatzen ditugu mod-
elo hauentzako, zeinak gure modelo hurbilduak ebaluatzeko modu eraginkorrago
bat eskeintzen diguten zenbakizko soluzio hutsekin konparatuta.
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INTRODUCTION

Les mesures de résistivité en forage sont communément utilisées pour obtenir une
meilleure caractérisation du sous-sol. Une procédure standard pour obtenir de
telles mesures consiste a utiliser plusieurs transmetteurs et antennes réceptrices.
Ces transmetteurs et récepteurssont des instruments situés dans un puits qui per-
mettent de transmettre et d’enregistrer des ondes électromagnétiques qui se propa-
gent vers différentes couches de formations rocheuses du sous-sol. Conformément
aux résultats exposés dans [28,29], la deuxieme différence du potentiel électrique
dans la direction verticale peut étre utilisée pour déterminer la conductivité des
diverses couches de formations rocheuses. Cette technique a été largement utilisée
dans la littérature pour obtenir des mesures de résistivité en forage, on renvoit le
lecteur aux travaux [11,31,34-38,50] a ce sujet.

Ce type de procédé a un interét particulier lorsqu’il met en jeu un tube mé-
tallique pour couvrir le puits. L’utilisation de ce tube permet de protéger le forage
et d’éviter d’eventuelles ruptures. Mais ce procédé induit aussi des complications
lorsqu’il s’agit d’effectuer des simulations numériques du potentiel électrique a cause
de la faible épaisseur du tube et de la conductivité élevée du tube par rapport a
celle des formations du sous-sol. De fait, dans ce type d’étude, les résultats sont
souvent imprécis ou simplement trop cotiteux pour les effectuer en temps réel.

Ces problemes ont déja été abordés de deux fagons différentes, par des méth-
odes analytiques et des méthodes numériques. L’utilisation de méthodes analy-
tiques [25,30,39] limite les types de géométries que 'on peut considérer, elles ne
sont donc pas tres pratiques pour modéliser des configurations physiques réalistes.
L’utilisation de méthodes numériques semble le meilleur moyen pour traiter des
configurations complexes. Il existe une grande variété de techniques, comme par ex-
emple la méthode de Petrov-Galerkin Discontinue [17,61], 'analyse Isogéométrique
[26,51], ou encore la Méthode des Eléments Finis hp [32-34,58]. Cependant, cette
option peut aussi engendrer de nombreuses instabilités numériques a cause des forts
contrastes de conductivité, et aussi a cause de la faible épaisseur du tube. Tout
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14 INTRODUCTION

cela conduit inévitablement a une augmentation du cotit de calcul.

Pour surmonter cette difficulté, on adopte une méthode asymptotique afin de
traiter des configurations réalistes [38] dans lequelles la conductivité du tube prend
des valeurs beaucoup plus élevées que celle des formations rocheuses. Notre but
est de travailler dans le contexte de cette application, pour laquelle on suppose que
la conductivité du tube est de 'ordre suivant

~ ~—3
Olay =~ € 7,

ol ¢ désigne 1’épaisseur du tube. Dans ce contexte, notre objectif est de dévelop-
per des Conditions de Transmission d’Impédance (ITCs) principalement pour le
potentiel électrique, ainsi que pour le champ électromagnétique. Le concept de
Conditions d’ITmpédance (ICs) et de ITCs est assez classique dans la modélisation
des phénomenes de propagation d’ondes; une telle condition peut-étre obtenue en
effectuant un developpement asymptotique et elle est congue pour remplacer une
partie du domaine de calcul. Les techniques asymptotiques sont largement util-
isées dans le domaine de la propagation d’ondes, citons par exemple les travaux
6,8,9,23,24,27,43] sur des problemes de couches limites en électromagnétisme
(effet de peau et courant de Foucault).

Les travaux [2,13,22,48,49,57] correspondent a des études similaires associées
a l'obtention de ICs obtenues pour remplacer une couche mince placé au bord du
domaine. La question des ITCs est plus proche avec le travail présent, mais elle est
plus délicate que la question des ICs. Tout de méme on peut trouver une grande
variété de travaux liés a ce sujet, [12,15,19-21,40,44,47,49,52,53, 55, 56.

Cette étude a été réalisée dans le contexte de milieux fortement contrastés,
dans lesquels les parametres physiques dépendent de 1’épaisseur de la couche mince.
On trouve plusieurs travaux qui ont des similitudes par rapport a ce sujet, par
exemple, dans [54], les auteurs développent des I'TCs pour des modeles de courant
de Foucault dans lesquels on trouve une conductivité d’ordre e ou €72 ol ¢
est I’épaisseur de la couche mince. De méme, dans [45], on trouve un probléme
de couche mince pour les équations en temps de Maxwell, ou la conductivité est
d’ordre €72 dans une couche mince de taille . On peut citer enfin les travaux [46]
et [20], pour un probléme pour le potentiel électrique statique et un probléme
électromagnétique respectivement en presence d’'une couche mince résistive.

Il existe aussi des études similaires en ce qui concerne 1'obtention de ITCs
pour d’autres modeles physiques, par exemple on peut mentionner [5] concernant
I'étude de I’élasto-dynamique, [41,42] dans le domaine de I’élasto-acoustique et [16]
dans le domaine de 'acoustique. Il existe aussi des modeles dans lesquels d’autres
parameétres physiques sont reliés a I’épaisseur de la couche mince: [3] effectue une



INTRODUCTION 15

étude sur le probleme d’une inclusion élastique en forme de coque avec une rigidité

d’ordre e ! ou £73.

Dans ce travail, on considére des domaines de calcul qui ne sont pas lisses. Ce
cadre de travail peut compliquer largement ’analyse asymptotique par rapport au
cas lisse (voir par exemple [14]) et la présence de singularités géométriques (comme
des coins) peut réduire la performance des conditions d’impédance standards, voir
par exemple [6,7,59,60]. Dans ce travail on considére principalement un probleme
de transmission pour le potentiel électrique

div[(c —iew)Vu] = f dans €,

avec des conditions de frontiere de Dirichlet ou mixtes (Dirichlet et Neumann). On
commence par considérer le domaine {2 comme un domaine rectangulaire dans R?,
puis on considere le domaine §2 comme un domaine axisymétrique en forme de puits
dans R?. Ce domaine est composé par trois sous-domaines Qf,, Q¢ et Qf, ot
ce dernier correspond au tube qui est représenté par une couche mince d’épaisseur
uniforme €. Dans ces équations w représente la fréquence et ¢, représente la per-
mittivité électrique. Le parametre o correspond a la conductivité, qui est constante
dans chaque sous-domaine. Finalement f représente une source de courant qui est

nulle dans le tube.

Dans ce contexte, on développe des I'TCs adaptées au potentiel u quand e
tend vers zéro. On développe deux classes de I'TCs en utilisant deux approches.
La premiere approche consiste a écrire les ITCs a travers le tube, tandis que la
deuxieéme approche consiste a écrire les ITCs a travers une interface artificielle située
au milieu du tube. Les deux classes ont leurs propres avantages et inconvénients, ce
sujet est discuté dans ce travail. On présente aussi des justifications mathématiques
pour ces I'TCs et on étudie la performance numérique des modeles développés. Les
ITCs de la premiere classe se comportent comme des approximations du second
ordre et du quatrieme ordre, tandis que les I'TCs pour la deuxieme classe sont
obtenues pour les quatre premiers ordres.

La méthode asymptotique adoptée se résume ainsi. D’abord on effectue un
chagement d’échelle dans le sous-domaine qui correspond au tube métallique, Qf,
dans la direction normale a la couche mince afin de se ramener a une géometrie
indépendante de . Ensuite, on effectue un Ansatz sous forme d’un développement
puissances de € et on obtient une collection de problemes élémentaires a résoudre
successivement. Puis on tronque la série et on sélectionne les premiers termes du
développement pour en déduire des conditions équivalentes en négligeant des termes
résiduels. Finalement on prouve des résultats de convergence pour ces modeles. On
suit cette méthode pour les deux configurations (2D et 3D).

Le manuscrit est structuré de la maniere suivante. Dans le premier chapitre
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développe des ITCs pour le potentiel électrique statique dans une configuration
avec des conditions de frontiere de Dirichlet, on décrit la procédure pour obtenir
ces ITCs. On considere la configuration 2D et la configuration 3D axisymétrique
pour le potentiel électrique statique, ainsi que le probleme a fréquence non-nulle.
Le chapitre 2 présente des résultats similaires au chapitre 1 pour le potentiel élec-
trique statique en 2D, mais pour un probleme des conditions de frontiere mixtes
(Dirichlet et Neumann). Dans le chapitre 3 on effectue une analyse mathématique
des modeles asymptotiques obtenues dans le chapitre 1, on présente des résultats de
stabilité (existence, unicité et estimations uniformes) et convergence. Le chapitre
4 est consacré a I'analyse numérique et a la simulation des modeles asymptotiques
obtenus dans les chapitres précédents. On vérfie les ordres de convergence et on
présente plusieurs applications pour ces modeles. Dans le chapitre 5 on développe
des solutions semi-analytiques pour certains modeles en utilisant la transformé
de Fourier. Finalement, on présente des résultats complémentaires aux premiers
chapitres dans I’Annexe A. Pour obtenir les résultats numériques du Chapitre 4, on
a implémenté un code d’éléments finis. On explique les différentes caractéristiques
de ce code dans le Annexe B.
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Las medidas de resistividad se utilizan de manera comun para obtener una mejor
caracterizacion del subsuelo de la tierra. El procedimiento estandar para la obten-
cion de dichas medidas de resistividad consiste en emplear uno o varios transmisores
y antenas receptoras. Estos transmisores y receptores, a los que denominamos el in-
strumento, se sitilan dentro de un pozo, donde se utilizaran para transmitir ondas
electromagnéticas hacia las diferentes capas de formaciones rocosas del subsuelo
para mas tarde registrar las ondas entrantes. Conforme a los resultados expuestos
en [28,29], la segunda derivada del potencial eléctrico en la direccién vertical puede
ser utilizada para determinar la conductividad de las diversas capas de formaciones
que componen el subsuelo de la tierra. Esta técnica ha sido extensamente utilizada
en la literatura para obtener medidas de resistividad en pozos de sondeo, remitimos
al lector a los trabajos [11,31,34-38,50] para més informacién sobre este tema.

Este tipo de procedimientos son de especial interés cuando se realizan a través
de una cobertura metalica, ya que a menudo se emplea un tubo hecho de metal
para cubrir el pozo. Por un lado, el uso de dicho tubo metélico permite proteger la
perforacion y evitar los posibles colapso, pero por otro lado también crea enormes
complicaciones a la hora de realizar simulaciones numéricas para el potencial eléc-
trico debido a la delgadez y alta conductividad del tubo comparado a la de las
formaciones del subsuelo. Por lo tanto, al realizar este tipo de estudios, los resul-
tados a menudo son imprecisos o simplemente demasiado costosos para realizarlos
en tiempo real.

Este tipo de problemas han sido abordados mediante dos enfoques difer-
entes, los métodos analiticos y los métodos numéricos. El uso de métodos analiti-
cos [25,30,39] limita los tipos de geometrias que pueden considerarse, por lo tanto
no es muy adecuado para modelizar configuraciones fisicas realistas. El uso de
métodos numéricos parece ser la mejor respuesta para lidiar con configuraciones
complejas. Podemos encontrar una gran variedad de técnicas en lo que ser refiere a
métodos numéricos. El método de Petrov-Garlerkin Discontinuo [17,61], el anélisis

17
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Isogeométrico [26,51] y el Método de Elementos Finitos hp [32-34, 58] son ejem-
plos de técnicas que merecen ser mencionadas. No obstante, esta opcion también
puede acarrear numerosas dificultades debido al gran contraste de conductividad
eléctrica entre el tubo metdlico y las capas del subsuelo, asi como el mintsculo
grosor del tubo. En particular, cuando tratamos este tipo de membranas finas,
el coste computacional aumenta cuando intentamos mallarlas. Ademas, los méto-
dos numéricos utilizados para resolver este tipo de problemas, no funcionan como
es debido cuando se consideran medios con altos contrastes. Estos hechos con-
llevan un inevitable aumento en el coste de computacién, por tanto, es esencial
evitar la membrana fina mediante el uso de técnicas matematicas que permitan
construir problemas reducidos compuestos por condiciones de transmision o de
frontera apropiadas.

Para superar esta dificultad adoptamos un método asintético motivado por
configuraciones realistas [38], en el cual la conductividad en el tubo toma valores
mucho mas altos que los de las formaciones rocosas. Nuestro propésito es trabajar
en el contexto de esta aplicacion, para la cual suponemos que la conductividad en
el tubo toma la siguiente forma

~ ~—3
Olay ~ €

donde ¢ denota el grosor del tubo, el cual es presentado como una membrana fina
de grosor uniforme. Podemos motivar esta eleccion mediante el articulo [38], en el
cual podemos observar los siguientes valores para la conductividad y para el grosor
del tubo metélico

£e=127-10"2m,
Olay = 4.34 - 10°Q7 m™".

De estos valores, inferimos la siguiente relaciéon entre estos parametros fisicos

Olay = 8.89 - 72

En este contexto nuestro objetivo es desarrollar Condiciones de Transmission
de Impedancia (ITCs) principalmente para el potencial eléctrico, y méas tarde para
el campo electromagnético, a través de dicho tubo. El pequenio grosor del tubo, que
viene dado de forma natural por el problema, comparado con el resto del dominio
permite que este tipo de método sea ideal para este problema. El concepto de
Condiciones de Impedancia (ICs) y ITCS es bastante clasico en el modelizado de
fendémenos de propagacién de ondas. Dicha condicién es obtenida por medio de la
realizacion de una expansion asintética y estd disenada para reemplazar una parte
del domino computacional. Las técnicas asintéticas se emplean ampliamente en el
campo de la propagacién de ondas, por ejemplo mencionamos los trabajos [6,8,9,
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23,24, 27,43] relacionados con el fendmeno de capa limite en Electromagnetismo
(efecto pelicular y corriente de Foucault).

Los trabajos [2,13,22,48,49,57] corresponden a estudios similares relacionados
con la obtencién de ICs para el electromagnetismo, en los cuales se obtienen 1Cs
para sustituir una membrana fina que se encuentra en un borde del dominio. La
cuestion de las ITCs estd més relacionada con el presente trabajo, pero también
es méas delicada que la cuestion de las ICs. De todas maneras, podemos encontrar
una extensa variedad de trabajos relacionados con este tema, [12,15,19-21,40, 44,
47,49,52,53,55,56].

Este estudio se ha realizado en el contexto de medios de alto contraste, en los
cuales los parametros fisicos tienen una dependencia del grosor de la membrana
fina. Podemos encontrar varios trabajos con similitudes en este tema, por ejemplo,
en [54], los autores desarrollan I'T'Cs para modelos de corriente de Foucault donde
encontramos una conductividad dependiente del grosor de la membrana fina de
érdenes 7! y e72. Del mismo modo, en [45], encontramos un problema de mem-
brana fina para las ecuaciones armoénicas de Maxwell, cuya conductividad depende
del grosor de la membrana fina con orden e72. En [46] y [20], se consideran un prob-
lema para el potencial estatico y un problema electromagnético respectivamente,
estando presente en ambos trabajos una membrana fina resistiva.

También existen estudios similares respecto a la obtencién de ITCs para otros
modelos fisicos, por ejemplo podemos mencionar [5] en cuanto a el estudio de la
Elasto-dinamica, [41,42] en lo que refiere al estudio de un porblema con medios
actsticos y eldsticos y [16] en el campo de la Actistica. También existen modelos en
los que los pardmetros fisicos dependen del grosor de la membrana fina, [3] realiza
un estudio sobre el problema de una inclusién eldstica con forma de cascarén con

una rigidez de 6rdenes !y £73.

En este trabajo, consideramos dominios computacionales que no son suaves
e incluyen vértices y bordes. En general, este contexto complica enormemente el
andlisis comparado con el caso suave (ver por ejemplo [14]) y la presencia de singu-
laridades geométricas (como esquinas) reduce el rendimiento de las condiciones de
impedancia estandares, ver por ejemplo [6,7,59,60]. En este trabajo consideramos
principalmente un problema de transmisién para el potencial eléctrico

div[(oc —iew)Vu] = f en €,

con condiciones de frontera de Dirichlet o mixtas (Dirichlet y Neumann). Em-
pezamos considerando el dominio {2 como un dominio con forma rectangular en
R?, v luego consideramos el dominio € como un dominio con simetria axial en
forma de pozo en R3. Este dominio estd compuesto de tres subdominios Q¢ , Qf

int» ext
y €2, donde este ultimo corresponde a el tubo y es una membrana fina de grosor

€
lay»
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uniforme. En estas ecuaciones w representa la frecuencia y €y representa la per-
mitividad. El parametro o corresponde a la conductividad, que es una funcion
constante a trozos que toma un valor diferente en cada subdominio. Finalmente f
es una funcién que se anula en el tubo.

En este contexto, abordamos el problema de las I'TCs para u cuando ¢ tiende
a cero. Desarrollamos dos clases diferentes de I'TCs mediante dos enfoques difer-
entes. Kl primero consiste en obtener las ITCs a través del tubo mismo, mientras
que el segundo enfoque aborda el problema obteniendo las ITCs a través de una
interfaz artificial situada en el medio del tubo. Ambas clases tienen sus ventajas
et inconvenientes, tema que desarrollaremos en este trabajo. También presenta-
mos las justificaciones matematicas para estas I'TCs y estudiamos el rendimiento
numérico de los modelos que hemos desarrollado. Las I'TCs de la primera clase se
comportan como aproximaciones de segundo y cuarto orden, mientras que las I'TCs
de segunda clase son obtenidas desde el primer hasta el cuarto orden.

El método asintético que seguimos puede ser resumido en los siguientes pasos.
Primero de todo realizamos un escalado en el subdominio correspondiente al tubo
metalico, (2}, , en la direccién normal a la membrana fina. Entonces realizamos un
Ansatz en forma de expansion de potencias de € y obtenemos una colecciéon de prob-
lemas. Estos pueden ser resueltos de forma alterna para determinar los problemas
elementales satisfechos por cada término de la expansion asintética. Mas tarde,
truncamos la serie y seleccionamos los primeros términos de la expansion para in-
ferir condiciones equivalentes omitiendo los términos residuales dependiendo de .
Finalmente demostramos los resultados de convergencia para los modelos asintoti-
cos que hemos obtenido. Seguimos esta metodologia tanto para la configuracion
2D, como para la configuracion 3D.

El manuscrito esta estructurado de la siguiente manera. En el primer capi-
tulo explicamos como obtenemos las ITCs para el potencial eléctrico estatico en
una configuracion con condiciones de frontera de Dirichlet, presentamos el problema
modelo y describimos el procedimiento para obtener las I'TCs de primera y segunda
clase. Consideramos la configuracién 2D y la 3D con simetria axial para el poten-
cial eléctrico estatico y una configuraciéon 2D para el caso armonico. El capitulo
2 presenta resultados similares a el capitulo 1 para el potencial eléctrico estatico
en 2D pero en este caso consideramos condiciones de frontera mixtas (Dirichlet y
Neumann). Més tarde, en el capitulo 3, realizamos un andlisis matematico de los
modelos asintéticos que hemos derivado en el capitulo 1, presentamos los resultados
correspondientes a la estabilidad (existencia, unicidad y estimaciones uniformes)
y a la convergencia de las soluciones de los modelos obtenidos. El capitulo 4 esta
destinado al analisis numérico del rendimiento de los modelos asintoticos obtenidos
en los capitulos anteriores. Analizamos los 6rdenes de convergencia numéricos y



INTRODUCCION 21

comprobamos si concuerdan con los 6rdenes de convergencia tedricos. Finalmente,
presentamos varias aplicaciones para estos modelos. En el capitulo 5 desarrol-
lamos soluciones semi-analiticas para varios de los modelos estudiados mediante el
uso de una transformada de Fourier. Finalmente, podemos encontrar dos anexos.
Primero, en el Anexo A, presentamos resultados similares a los mostrados en los
capitulos anteriores para otras configuraciones adicionales, como las formulaciones
variacionales para el caso 3D con simetria axial y el caso armoénico, resultados
numeéricos preliminares para el Electromagnetismo en 3D, una notaciéon unificada
para las condiciones equivalentes obtenidas en este documento y una comparacion
de los resultados obtenidos en este documento respecto a otros modelos en la lit-
eratura. Por tultimo, para obtener los resultados numéricos del capitulo 4, hemos
implementado un c6digo de elementos finitos y en el Anexo B explicamos las difer-
entes caracteristicas de este cddigo, como los tipos de problemas que resuelve y
como funciona.



22

INTRODUCCION




SARRERA

Erresistibitate neurketak sarri erabiltzen dira lurrazpiaren karakterizazio hobe bat
lortzeko orduan. Erresistibitate neurketa hauek lortzeko prozedura estandarrak
transmisore eta antena errezptore bat edo zenbait erabiltzean datza. Trans-
misore eta errezeptore hauek, instrumentu bezala izendatuko ditugunak, hobi
baten barnean kokatzen dira, non lurrazpiaren geruzetarantz uhin elektromag-
netikoak bidaltzeko eta era berean, iristen diren uhinak erregistratzeko, erabiliko
diren. [28,29] lanetan azaltzen diren emaitzen arabera, potentzial elektrikoaren bi-
garren deribatua norabide bertikalean erabilia izan daiteke lurrazpia osatzen duten
geruza ezberbinen eroankortasuna zehazteko. Teknika hau oso erabilia izan da liter-
aturan hobietako erresistibitate neurketak eskuratzeko, irakurlea [11,31,34-38,50]
lanetara igortzen dugu gai honen inguruan informazio gehiago eskuratzeko.

Mota honetako prozedurek interes berezia daukate estalki metaliko batean ze-
har egiten direnean, izan ere maiz metalez egindako hodi bat erabiltzen da hobiak
estaltzeko. Alde batetik, aipaturiko hodi honen erabilerak, zulaketa babebestea
eta kolapso posibleak sahiestea baimentzen ditu, baina bestalde, zailtazun izugar-
riak sortzen ditu potentzial elektrikoarentzako zenbakizko simulazioak egiterakoan
hodiaren mehetasun eta eroankortasun altua direla eta. Beraz, horrelako analisiak
egiterakoan, sarritan emaitzak ez dira zehatzak izaten edo besterik gabe kostu
konputazionala oso altua da denbora errealean burutzeko.

Mota honetako problemei bi ikuspuntu desberdinetatik aurre egin izan zaie,
metodo analitikoak erabiliz eta zenbakizko metodoak erabiliz. Metodo analitikoen
erabilerak [25, 30, 39] kontsideratu daitezkeen geometriak mugatzen ditu, beraz,
ez da oso aproposa konfigurazio fisiko errealistak modelizatzeko. Zenbakizko meto-
doen erabilerak konfigurazio komplexuei ekiteko erantzunik aproposena ematen du.
Teknika ugari aurkitu daitezke zenbakizko metodoen inguruan. Petrov-Galerkin
ez-jarraitua [17, 61], analisi Isogeometrikoa [26, 51] eta hp Elementu Finituen
Metodoa [32-34,58] aipatzea merezi duten tekniken adibideak dira. Dena den, auk-
era honekin ere zailtazun ugari aurkitu ditzakegu metalezko hodiaren eta lurrazpi-
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aren geruzen eroankortasunen arteko kontrastea eta hodiaren lodiera txikia dela
eta. Bereziki, mota honetako geruza meheekin lan egiterakoan, kostu konputazion-
alaren igoera handi bat gertatzen da sare bat sortzerako orduan. Gainera, problema
hauek ebazteko erabiltzen diren zenbakizko metodoek ez dute ongi funtzionatzen
kontraste altuko ingurunueak kontsideratzen direnean. Arrazoi hauek kostu kom-
putazionalaren igoera saihestezin bat dakarte, beraz, geruza mehea saihestea ez-
inbestekoa da transmisio kondizioak dituzten eredu murriztuak garatzea bideratzen
duten teknika matematikoak erabiliz.

Zailtasun hauek gainditzeko, konfigurazio errealistetan [38] oinarritutako
metodo asintotiko bat proposatzen dugu, zeinean hodiaren eroankortasunak balio
askoz handiagoak hartzen dituen lurrazpiko geruzekin konparatuta. Gure helbu-
rua aplikazio honen testuinguruan lan egitea da, zeinean hodiaren eroankortasunak
hurrengo itxura hartzen duen

Olay ~ 6737
non e-ek hodiaren lodiera izendatzen duen, zeina lodiera uniformeko geruza mehe
bat bezala aurkezten den. Aukera hau motibatu dezakegu [38] lanean oinarrituz,
non ondorengo balioak aurkitzen ditugun hodiaren eroankortazun eta lodierar-

entzako
{ £=127-10"2m,

Olay = 4.34 - 10°Q ! m™".

Balio hauetatik hurrengo erlazioa ondorioztatzen dugu bi parametro fisiko
hauen artean
Olay = 8.89 - 72,

Testuinguru honetan gure helburua batez ere hodi horren zehar potentzial elek-
trikoarentzat Inpedantzia Transmisio Kondizioak (ITCs) garatzea da, eta geroago
eremu elektromagnetikoarentzat. Naturalki txikia den hodiaren lodierak, gainer-
ako eremuarekin konparatuta, metodo hau problema mota hauentzako aukera ezin
hobea izatea baimentzen du. Inpedantzia Kondizioen kontzeptua (ICs) eta ITCs-
ena nahiko klasikoa da uhinen hedapenaren modelizazioan. Holako kondizio bat
hedapen asintotiko bat eginez lortzen da eta eremu konputazionalaren zati bat
ordezkatzeko bereziki diseinatuta dago. Teknika asintotikoak oso erabiliak dira
uhinen hedapenaren eremuan, adibidez [6,8,9,23,24,27,43] lanak aurki ditzakegu
elektromagnetismoaren eremuan geruza limitearen fenomenoarekin erlazionatuta
(azal efektua eta Foucault-en korrontea).

2, 13, 22, 48, 49, 57] lanak elektromagnetismoarentzako garatutako ICs-en
inguruan egindako estudio antzekoak dira, zeinetan eremuaren bazter batean
kokatuta dagoen geruza mehe bat ordezkatzeko ICs-ak garatzen diren. ITCs-
en gaia erlazionatuagoa dago lan honekin, baina gai delikautagoa da ICs-ena
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baino. Dena den, lan sorta handi bat aurki dezakegu gai honen inguruan,
[12,15,19-21,40,44,47,49,52,53,55, 56].

Lan hau kontraste altuko inguruneen testuinguruan eginda dago, zeinetan
parametro fisikoek geruza mehearen lodierarekiko mendekotasun bat duten. Lan
ezberdin batzuk aurki ditzakegu gai honen inguruan antzekotasunak dituztenak,
adibidez, [54] lanean, egileek ITC-ak garatzen dituzte Foucault-en korrontearen ere-
duentzako, non aurkitzen dugun eroankortasunak geruza mehearen lodierarekiko
e~! eta £7? ordeneko menpekotasuna daukan. Era berean, [45] lanean, geruza
mehe bat duen problema bat aurkitzen dugu Maxwell-en ekuazio harmonikoentzat,
non eroankortasunak geruza mehearen lodierarekiko €2 ordeneko mendekotasuna
duen. [46] eta [20] lanetan, potenzial estatikoarentzako problema bat eta problema
elektromagnetiko bat kontsideratzen dira hurrenez hurren, bi lanetan geruza mehe
erresistibo bat aurkitzen dugularik.

Beste eredu fisikoetarako estudio antzekoak ere existitzen dira, adibidez [5]
aipa dezakegu elasto-dinamikaren arloan, [41,42] ingurune elastiko eta akustikoen
eremuan eta [16] akustikaren arloan. Era berean, badaude ereduak zeinetan
parametro fisikoek geruza mehearen lodierarekiko menpekotasuna duten, [3] lanean,
egileak oskol itsura duen inklusio elastiko baten analisia egiten du, non zurrunta-
suna ¢! eta 73 ordenekoa den.

Lan honetan, leunak ez diren eremu komputazionalak kontsideratzen ditugu,
zeinek erpin eta ertzak dituzten. Orokorrean, textuinguru honek analisia izugarri
zaildu egiten du kasu leunarekin konparatuta (ikusi adibidez [14]) eta singulartasun
geometrikoen presentziak (erpinak adibidez) inpendantzia kondizio estandarren er-
rendimendua murriztu egiten du, ikusi adibidez [6,7,59,60]. Lan honetan bereziki
potentzial elektrikoarentzako transmisio problema bat kontsideratzen dugu

div[(o — teqw)Vu| = f Q-an,

Dirichlet edo muga baldintza mixtoekin (Dirichlet eta Neumann). Hasteko ) ere-
mua laukizuzen formako eremu bezala kontsideratzen dugu R?-n, eta gero 2 eremua
ardatz bertikalarekiko simetrikoa den hobi itxurako eremu bezala kontsideratzen
dugu R*n. Eremu hau hiru azpieremuz osatuta dago, Qf,, Q,, eta Qf, , non
azkenengo hau hodi metalikoari dagokion eta lodiera uniformeko geruza bezala
kontsideratzen dugun. Ekuazio hauetan w-k frekuentzia eta ep-k permitibitatea
adierazten du. o parametroa eroankortasunari dagokio eta zatika konstatea den
funtzio bat da zeinak azpieremu bakoitzean balio ezberdin bat hartzen duen.

Amaitzeko f funtzio bat da zeina hodian ezeztatu egiten den.

Testuinguru hontan, u-rentzako I'TC-en problemari ekiten diogu e zerorantz
doanean. Bi ITCs klase ezberdin garatzen ditugu bi ikuspegi ezberdin erabiliz.
Lehenengoak I'TCs-ak hodian zehar garatzean datza, bigarrenak berriz, I'TCs-ak
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hodiaren erdian kokatzen den interfaze batean zehar garatuz ekiten dio problemari.
Klase bakoitzak bere abantaila eta eragozpenak ditu, zeinak lan honetan azaldu
egiten diren. Lan honetan ITCs hauentzako justifikazio matematikoak ematen
ditugu eta era berean garatutako eredu matematikoen zenbakizko errendimendua
aztertu egiten dugu. Lehenengo klaseko I'TC-ak bigarren eta laugarren ordeneko
hurbilketa moduan aurkitzen ditugu, ostera bigarren klaseko I'TCs-ak lehenengo
ordenetik laugarren ordenerarte garatzen ditugu.

Jarraitzen dugun metodo asintotikoa hurrengo urratsetan laburtua izan
daiteke. Lehendabizi, hodi metalikoari dagokion azpieremuan, €, , eskalatze
bat egiten dugu geruza mehearen norabide normalean. Orduan, e-en berreturen
serie moduko Ansatz bat eraikitzen dugu eta oinarrizko problema bilduma bat
lortzen dugu, zeinak txandaka ebatzi behar diren. Gero, seriea trunkatzen dugu
eta lehenengo gaiak aukeratzen ditugu kondizio baliokideak lortzeko s-en menpe
dagoen hondarra mespresatuz. Amaitzeko, garatu ditugun ereduentzako konber-
gentzia emaitzak frogatu egiten ditugu. Metodologia hay jarraitzen dugu bai 2D

konfigurazioarentzat, bai 3D konfigurazioarentzat.

Textuak hurrengo egitura jarraitzen du. Lehenengo kapituluan potentzial elek-
triko estatikoarentzat I'TCs-ak nola garatzen ditugun azaltzen dugu Dirichlet muga
baldintzak kontsideratuz, eredu problema aurkezten dugu eta lehenengo eta bigar-
ren klaseko ITCs-ak garatzeko prozesua deskribatzen dugu. 2D konfigurazioa eta
ardatz bertikalarekiko simetria duen 3D konfigurazioa kontsideratzen ditugu po-
tentzial elektriko estatikoarentzat, eta baita 2D konfigurazio bat kasu harmonikoar-
entzako. 2 kapituluak, 1 kapituluak aurkeztutako emaitza antzekoak erakusten
ditu potentzial elektriko estatikoarentzat 2D konfigurazioan, baina kasu honetan
muga baldintza mixtoak (Dirichlet eta Neumann) kontsideratzen ditugu. Ondoren,
3 kapituluan, 1 kapituluan garatutako eredu asintotikoen analisi matematiko bat
egiten dugu. Hain zuzen ere, estabilitate (existentzia, bakartasun eta estimazio
uniformeak) eta konbergentziari buruzko emaitzak aurkezten ditugu. 4 kapitu-
lua aurreko kapituluetan garatutako eredu asintotikoen zenbakizko errendimendua
aztertzera zuzendua dago. Zenbakizko konbergentzia ordenak aztertzen ditugu eta
konbergentzia orden teorikoekin bat egiten duten egiaztatzen dugu. Amaitzeko
eredu hauentzako hainbat aplikazio aurkezten ditugu. 5 kapituluan, garatutako
hainbat eredurentzako soluzio semi-analitikoak eraikitzen ditugu Fourier-en trans-
formada bat erabiliz. Azkenik, bi eranskin aurkitzen ditugu. Lehenengo A eran-
skina daukagu, non aurreko kapituluen antzeko emaitzak aurkitu daitezkeen beste
konfigurazio osagarri batzuetarako, adibidez, ardatz bertikalarekiko simetria duen
3D konfigurazioarentzako eta kasu armonikoarentzako formulazio ahula, 3D Elek-
tromagnetismoaretzako zenbakizko probak, dokumentu honetan garatutako kon-
dizio baliokideentzako notazio bateratu bat eta hemen lortutako emaitzen eta lit-
eraturan aurkitutako beste eredu batzuen arteko konparazio bat. Amaitzeko, 4
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kapituluan aurkeztutako zenbakizko emaitzak lortzeko elementu finituen kode bat
garatu dugu eta hain zuzen ere B eranskinean kode honen ezaugarri ezberdinak
azaltzen ditugu, adibidez ze problema ebazten dituen eta nola funtzionatzen duen.
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INTRODUCTION

Borehole resistivity measurements are commonly used when trying to obtain a
better characterization of the Earth’s subsurface. The standard procedure for
acquiring borehole resistivity measurements consists in employing a logging in-
strument equipped with one or several transmitters and receiver antennas. The
logging instrument moves along a given well while electromagnetic measurements
are recorded at each logging position. Electrical logging through casing is of special
interest because the well is often surrounded by a steel-made casing. On one hand,
the use of such casings allows to protect the well and avoid possible collapses, but
on the other hand it also highly complicates the numerical simulations for the elec-
tric potential due to the thinness and high conductivity of the casing compared to
those of the layer formations. Thus, when performing through casing resistivity
simulations, the numerical results are often inaccurate or simply too costly to be
performed in real time.

According to the results shown in [28,29], the second vertical derivative of the
electric potential, measured at the receiving antennas can be employed to determine
the conductivity of the different layer formations composing the Earth’s subsurface.
This technique has been widely employed in the literature for acquiring borehole
resistivity measurements. See, for instance, [11,31,34-38, 50].

These kind of problems have already been faced by two different approaches,
the use of semi-analytical methods and the use of numerical methods. The use
of semi-analytical methods [25,30,39] limits the types of subsurface models that
one can consider, severely limiting the number of real problem configurations that
one can solve. The use of numerical methods seems the best answer for dealing
with complex geometries. A wide range of techniques can be found regarding such
numerical methods, including Discontinuous Petrov-Galerking methods [17, 61],
Isogeometric analysis [26,51], and hp-adaptive Finite Element Methods [32-34,58].
However, tackling this problem with numerical methods becomes challenging too
due to the high electrical conductivity contrast between the metallic casing and the
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layer formations, as well as the small thickness of the casing. In particular, when
dealing with thin layers, the computational cost greatly increases due to the need
of a heavily refined mesh. Traditional numerical methods employed to solve these
problems do not perform well when high contrast materials are considered. As a
result, the computational cost dramatically increases.

To overcome these difficulties, in this Ph.D. dissertation we replace the thin
layer occupied by the casing by a novel Impedance Transmission Condition (ITC).
For that, we adopt an asymptotic method which is motivated by a realistic config-
uration [38], where the casing conductivity takes much higher values than those in
the layer formations. We further assume that the conductivity in the casing has
the following form

~ ~—3
Olay ~ &

where € denotes the casing thickness, which is expressed in terms of a thin layer of
uniform thickness. The above assumption is indeed realistic, since in real scenarios

we have (see [38]):
{ £=127-10"2 m,

Olay = 4.34-10° Q7" m™".

From these values we infer the following relation between these physical parameters

oy = 8.89 - 75,

In this framework, our aim is to derive Impedance Transmission Conditions
(ITCs) mainly for the electric potential, and eventually for the electromagnetic
field, across the aforementioned casing. The naturally small thickness of the cas-
ing compared to the rest of the domain makes it ideal for applying this kind of
method. The concept of Impedance Conditions (ICs) and ITCs is classical in the
modelling of wave propagation phenomena. Such conditions are derived by per-
forming an asymptotic expansion and are designed to replace one part of the com-
putational domain (in our case, the subdomain occupied by the casing). Asymp-
totic techniques are widely employed in the field of wave propagation problems, for
instance, [6,8,9,23,24,27,43] related to boundary layer phenomena in Electromag-
netism (skin effect and eddy current problem).

Similar studies regarding the derivation of ICs for Electromagnetism include
[2,13,22,48,49, 57|, where ICs are derived to substitute a thin layer present in
one side of the domain. ITCs are more suitable for our present work, but their
derivation is also more complex than that of ICs. There also exists a wide variety
of works related to this topic, e.g., [12,15,19-21,40,44,47,49,52,53,55, 56].

This study is performed in the framework of high-contrast material properties,
where the conductivity has a dependence on the thickness of a thin layer. Several
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works can be found with similarities in this matter. For instance, in [54], the
authors derive I'TCs for eddy current models with a dependence on the conductivity
parameter of the thin layer of the form e™! and ¢72. In the same way, in [45],
we find a thin layer problem for the time-harmonic Maxwell’s equations, whose
conductivity depends on the thickness of the thin layer in the form of £72. In [46]
and [20], a problem for the static potential and an electromagnetic problem are

considered, and in both works a thin resistive layer is present.

There also exist similar studies regarding the derivation of ITCs for other
physical models. For example in [5] they focus on Elastodynamics, [41,42] study
a problem with elastic and acoustic media, and [16] considers the field of Acous-
tics. There also exists other models where the physical parameters depend on the
thickness of the a layer. For instance [3] perfoms a study about the problem of an
elastic shell-like inclusion with a rigidity of the form e~! and £73.

In this work, we consider non-smooth computational domains, which include
vertices and edges. In general, this framework greatly complicates the analysis com-
pared to the smooth case (see for example [14]) and the presence of geometrical
singularities (such as corners) may reduce the performance of standard impedance
conditions, see for example [6,7,59,60]. In this work, we consider mainly a trans-
mission problem for the electric potential, reading as

div[(o —iew)Vu] = f in £,

with Dirichlet or mixed (Dirichlet and Neumann) boundary conditions. We first
consider the domain ) to be a rectangular shaped domain in R?, and then we
consider the domain € to be an axi-symmetric borehole shaped domain in R3.
This domain is composed of three subdomains Qf, Q¢, and Qf , where the last
one corresponds to the casing and is a thin layer of uniform thickness €. Here,
w represents the frequency and ¢ is the electrical permittivity. The parameter o
corresponds to the conductivity and it is a piecewise constant function that takes
different values in each subdomain. Function f corresponds to the right-hand side

and it is a function that vanishes in the casing.

In this framework, we address the issue of ITCs for u as ¢ tends to zero. We
derive two different classes of I'TCs employing different approaches. The first one
consists in deriving I'TCs across the casing itself, whereas the second approach tack-
les the problem by deriving I'TCs on an artificial interface located on the middle of
the casing. Both classes have their advantages and drawbacks, which are described
in this work. We shall present the mathematical justification for these ITCs and we
shall also concentrate on studying the numerical performance of the derived mod-
els. A first class of ITCs provide second and fourth order approximations whereas
a second class of I'TCs deliver order one up to order four approximations.
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The asymptotic method consists of the following steps. First, we scale the
subdomain occupied by the casing, {)f, , along the direction perpendicular to the
vertical casing in order to obtain a geometry independent of €. Then, we select
an Ansatz for the electric potential v in the form of power expansion of . We
obtain a collection of problems that can be alternately solved to determine the
elementary problems satisfied by each term of the asymptotic expansion. Then,
we truncate the resulting series and collect the first terms of the expansion to
infer equivalent conditions by neglecting residual terms depending on . Finally,
we prove convergence results for the derived asymptotic models. We follow this
methodology for both the 2D and the 3D axi-symmetric configurations.

The outline of the dissertation consists of the following. In the next chapter, we
derive the ITCs for the static (zero frequency) electric potential in a configuration
with Dirichlet boundary conditions. We also introduce a model problem and we
describe the procedure to derive ITCs of the first and second classes. We consider a
2D and a 3D axi-symmetric configurations for the static electric potential and a 2D
configuration for the time-harmonic case. Chapter 2 expands the results of Chapter
1 to the case of mixed (Dirichlet and Neumann) boundary conditions. Then, in
Chapter 3 we perform a mathematical analysis of the asymptotic models we have
derived in Chapter 1. We present stability (existence, uniqueness and uniform esti-
mates) and convergence results for the solution of the derived models. Chapter 4 is
devoted to the numerical performance assessment of the asymptotic models derived
in the previous chapters. We analyze the numerical order of convergence and we
verify they match with the theoretical orders of convergence. Finally we present
several applications to these models. Then, in Chapter 5 we derive semi-analytical
solutions for some of the obtained 3D axi-symmetric models by employing a Hankel
transform. We also provide two appendixes. First, in Appendix A, similar results
to the ones of the previous chapters are presented for some additional configura-
tions, like variational formulations for the 3D axi-symmetric configuration and the
time-harmonic case, preliminary numerical test for 3D Electromagnetism, a unified
notation for the Equivalent Conditions derived in this document and a comparison
of the results presented here with other models in the literature. Lastly, to obtain
the numerical results of Chapter 4 a finite element code has been implemented and
in Appendix B we explain the different features of this code, including what type
of problems it solves and how it works.

Rather than moving on the contain of the dissertation, we have decided to
give an overview of the main results we have obtained. The following part of
this introduction provides the reader a detailed abstract of the thesis. We will
concentrate ourselves on presenting the results for the problem of the static electric
potential with homogeneous Dirichlet conditions and we refer to Chapters 2 and 4
for results regarding the problem with mixed conditions.
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2D ITCs derivation

Here we concentrate on presenting the results for the static case but we also derive
ITCs for time-harmonic case in Section 1.5. We begin by performing an asymptotic
expansion of the solution, which has the following form for the first approach (see
Proposition 1)

Uint (1:7 y) = u?nt(x7 y) + 82ui2nt ('Tu y) + 7,i:))nt(xv y) in Qisnt?

Uext(T,Y) = Ua (7, 9) + ug (v, 9) + 180 (r,y)  in D,

Ulay (T,Y) = 2?2 (5—1 (x — x0) ,y) + rf’ay(x, Y) in oy

and the following form for the second approach (see Proposition 2), which is given
by
Uint(ﬂf, y) - u’?nt<x7 y) + Euilnt(:m y) + Tilnt(xa y) in Qint7

uCXt(x7 y) = U’Sxt('I? y) + guéxt (LU, y) + T;;d:(x? y) in ch‘m

ulay (IL’, y) = Tllay(xv y) in laay'

where the terms 7V represent the residue (see (0.6) for precise estimates). Then, we
truncate the series and collect the first terms of the expansion to infer equivalent
conditions by neglecting residual terms depending on . We derive asymptotic
models of different orders® for the first class of problems, which can be summarized
as follows

Order two (Dirichlet conditions)

n _ e
Uit = 0 on I%,,

ugt =0 on TI'g,.

Let ul¥l be the solution to an asymptotic model, and let u be the solution to the reference
problem. We say that the asymptotic model is of order k£ + 1, if there exists a constant C
independent of €, such that Hu — ulkl Hl a0 < Ce*+1 for ¢ sufficiently small, where Q°F = QF  UQS

int ext*
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Order four

{u[i’)}hs =0,

[a@nu[g’qrs - _(zg(i; {UB]}FE ’

The asymptotic conditions derived for the second class of problems are sum-

marized as follows

Order one (Dirichlet conditions)

[0]

Uipg = 0 on I
ugt =0 on I
Order two (Robin conditions)
Wofoul o T
0 _ €400 r
ext 2 nUext on :

When numerically solving this model, it presents some instability problems due
to a non-coercive term that appears in the variational formulation of the problem.
This fact causes the numerical solutions to present big oscillations near the thin
layer, behaviour which is not desirable. However, this issue can be solved by
employing artificial boundaries [15, 16] and rewriting the transmission conditions
across them. Doing so we obtain the following model (see Section 3.5 for more

details)
1—-26
u([;i]nt = S(Q)anu[éﬂnt on F?nt?
1—20
ut[sl,]cxt = _E(Q)a”ut[sl,]cxt on Fﬁxt?

which is stable for § > 0.5.

(0.1)
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Order three

o], o), + 5 [0, =

2 d2 d2 d2
= {Oﬁnupqr + €8dy2 {@ZU[Q]}F + Zdyz [&lu[g]}r + 32 {um}r =0.

Order four

), + e o)+ S o], + = {0,

2 3 3 d2
;0 [a@nu[‘{ﬂr + ;) {aanu[?’]}r + ;6(13/2 [Q‘ju[g]}r
2 d2 d2 d2

Classical conditions and comparison with equivalent condi-
tions

In this section we show the results we obtain when we no longer consider the
conductivity in the thin layer to be dependent on its thickness to remark the
different results we obtain with our approach compared to the classical one. The
model problem remains the same, but now the conductivity inside the casing, o1y,
is just a constant and not dependent on ¢ any more. Considering this model and
applying the same asymptotic method to derive approximate models of the first
class, we obtain a first-order model and a third-order model. The expression of the
impedance conditions for these models are the following.
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First-order model

0] _
UintAuint - fint

0] _
UextAuext - fext

[U[qua =0,
[aanu[oqrs =0,
ul® =0

Third-order model

2] _
JintAuint - fint

2] _
UextAuext - fext

Olay

ud =0

0], = o oo}

in

in

on

re’

[Uﬁnup]]rs = —€U1ay;;2 {U[Q]}FE )

Qigntn
QZXt’
(0.2)
o N o°.
in .
in
(0.3)
on O0QN O,

We notice that these models are different from (1.18) and (1.19). A main
difference comparing with our approach (i.e. when o,y = Goe™*) comes from the
fact that now the lower order model (0.2) is coupled, whereas model (1.18) is
governed by two independent problems. Moreover, the lower order model (0.2) is
of order one, whereas model (1.18) is of order two. In the same way, the higher
order model (0.3) is of order three, whereas model (1.19) is of order four.

In the same way, applying the asymptotic method to derive approximate mod-
els of the second class, we obtain a first-order model and a second-order model.
The expression of the impedance conditions for these models are the following.
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First-order model

UintAui[g]t = fint in Qinta
O-extAUg))c]t = f ext in Qex‘m
o _
[u }F =0, (0.4)

[Uﬁnu[ol] . 0,

ul® =0 on Of).

Second-order model

o intAUi[Ill}t = fint n - Oy,
UextAuggt = f ext in Qexta
{u[l}h - Uiy { a”um}r —c {a”um}r ’ (0.5)
wWM=0 on 0N

We notice that these models are different from (1.36) and (1.38). A main
difference comparing with our approach (i.e. when oy = Goe™?) comes from
the fact that now both models are coupled, whereas employing our approach, the
models are uncoupled, given thus by two independent problems. In this case,
contrary to the first class of ITCs, the order of these models, (0.4) and (0.5),
coincide with the one of the models (1.36) and (1.38).

3D axisymmetric ITCs derivation

In this configuration, the meridian domain corresponds to the 2D configuration (see
Figure 1), but in the variables (7, z) instead of the variables (x,y). We follow the
same methodology for this configuration, we begin by performing an asymptotic
expansion of the solution. Here, even though they are different, for the sake of
simplicity we employ the same notation as in the 2D configuration for the terms
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of the asymptotic expansion. The asymptotic expansion has the following form for
the first approach (see Proposition 3)

Uint (T7 Z) - u?nt (Tv Z) + 82ui2nt(r7 Z) + €3U13nt<7’, Z) + Ti?)nt (TJ Z) iIl ant?

Uext (', 2) = U (1 2) + €28 (7, 2) + MUy (1, 2) + 18 (1, 2) in QL
lay>

Upy (1, 2) = 2U? (5’1(7" — 7o), z) + 303 (5’1(7" —T9), z) + 7y (r, 2) in QO

and the following form for the second approach (see Proposition 4)

uint<r7 Z) - u?nt(ra 2) + 6uilnt<r7 Z) + rilnt (Tv Z) in Qintv
ueXt<T7 Z) = u(e)xt (7’, Z) + guelzxt (T7 Z) + r;xt (T, Z) in Qext7
ula)’(r’ Z) = Tllay<r’ Z) in i:ay7

where the terms 7" represent the residue. Then, we truncate the series and collect
the first terms of the expansion to infer equivalent conditions by neglecting residual
terms depending on £. The asymptotic conditions we have derived for the first class
of problems can be summarized as follows

) )
IN IN
Yo : Yo
ignt Qfay ngt Qint Qext
I‘iant EF ngt In
: L L
o L’" 0 L’"
(a) Reference problem domain. (b) Domain for the second class of ITCs.

Figure 1: Domains for the reference model and the second class of asymptotic
models.

Order two (Dirichlet conditions)

1 _ e
Uing = 0 on I‘in‘m

n _ <
Uyt = on I't,.
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Order three

[umhs =0,
j {ul} 4 01 [o0,u2] =0
Order four
[u[g]}ra =0,
52&10 [Uanu[slhs N 538017"0 {UanU[S]}FE _ _;; {u[s}}rs .

The asymptotic conditions derived for the second class of problems are sum-
marized as follows

Order one (Dirichlet conditions)
uﬂ =0 on [

ugt =0 on [

Order two (Robin conditions)

n _ €4 0]

int — 5 nUint on FJ

1 € 1
<[ex]t = _5 n'u’[e)gt on I

We remark that these conditions coincide with the I'TCs derived for the 2D
problem up to the second order of approximations.

Stability and convergence results

These asymptotic models approximate the solution to the reference model and
converge to it with a determined order. We perform the mathematical proves of
existence, uniqueness, and uniform estimates for the reference problem and the
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asymptotic models. Then, we prove the order of convergence of the asymptotic
models. We begin by proving the following optimal estimates for the residue (see
Proposition 2)

N
ext

N

T int

r < CeNt, (0.6)

108~
ay

+
LQZXC

+ Ve

and then, we obtain the following convergence results for the solutions to the asymp-
totic models of the first class (see Proposition 6 and Proposition 7)

- _ (1]
Uint, uint Uext Uext

and the following for the asymptotic models of the second class (see Proposition
10 and Proposition 11)

When considering the second class of I'TCs, the model of order two presents
some instability problems. However, this issue can be solved by employing artificial
boundaries [15,16] and rewriting the transmission conditions across them. This is
the reason we denote the solution to this asymptotic model as ugl] (see Section 3.5
for more details).

N
A
1 7Q;Ent a

< ke?,

+

1,08

int

17Qi8nt

(3]

int

(3] 4
Uext — Uext < ]{55 3

Uint — U =
1’Qisnt

+)

17Qisnt

[0]

int

0
e, — UL < ke,

Uint — U
1’Qilt

+

L%,

(1]

L (1]
Uint — Ug ing

2
Uext, = Up ext || 5 < ke“.

ext

+

&
17Qint

Numerical results and application

Numerical results show that theoretical order of convergence coincide with the
convergence rates obtained with simulations. When measuring the error in L2
norm we recover the theoretical order of convergence for all the models, including
the second-order model of the second class in the 2D configuration, despite the
instabilities it has. On the other hand, when measuring the error in the H' norm,
the order of convergence is recovered for all the models except for this one, due
to the instabilities. However, when employing a technique based on the use of
artificial boundaries, the order of convergence is recovered for the H' norm with
this model too. We observe the numerical convergence rates for the different models
we have derived in Figure 2. In the same way, we have derived similar results for the
3D axisymmetric configuration by obtaining convergence curves for the different
models employing the H! norm.
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Figure 2: H' relative error of the different asymptotic models for different values

of €

Comparison between the equivalent models

We would like to show a brief comparison of the models derived employing the
two approaches we have considered. Both approaches have their advantages and
drawbacks. Table 1 summarizes some of these points for the different models we

have derived.

Model Numerical order | Stability | e-independent domain
Class 1: Order 2 2 v X
Class 1: Order 4 4 v X
Class 2: Order 1 1 v v
Class 2: Order 2 1-2 X v
0-Order 2 2 v X

Table 1: Comparison of the four models we have derived.

As we observe in Table 1, the models obtained for the first class of problems

have a higher order of convergence than those derived for the second class. On the
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other hand, one of the models of the second class presents some instability issues,
even though we present a technique for solving these problems in Section 1.4.3.
An advantage of the second class ITCs in comparison with the first class ITCs is
that the domain of the obtained models does not depend on ¢, while it does for the
models of the first class. This makes these models much more practical, specially
when considering a curved thin layer. Concerning the models derived for the 3D
axisymmetric configuration, we remark that the models obtained for the first class
of problems are different from those obtained in the 2D configuration for the first
class, the main difference being the derivation of an additional third-order model
and an extra term in the fourth-order model.

Application

Here we present an application for the derived models. We consider a three di-
mensional axisymmetric borehole surrounded by several rock layers of different
conductivities. We introduce a transmitter and three receivers inside the borehole,
and we approximate the second derivative of potential in the axis direction by em-
ploying the second difference of potential measured at the receivers. The second
difference of potential is characterized by the following formula

w(ry, z3) — 2u (ry, 29) +u(r1, 21)
h? ’

8§u (r1,20) =~

where (71, 21), (r1,22), and (ry, z3) are the positions of the three receivers. This
expression approximates the value of second derivative of potential in the vertical
direction up to an error of order O(h), where h denotes the distance between the
receivers, h = 23— 29 = 2o —21. This calculi allows us to determine the conductivity
of the rock formations. We observe such a configuration in Figure 3a and in Figure
3b we observe the result of measuring the second difference of potential at the
receivers. We observe that the results for the reference model and the asymptotic
model of order four are almost identical.

Semi-analytical solutions

In this section we present the results obtained in the form of semi-analytical solu-
tions. We consider several of the derived asymptotic models and we obtain semi-
analytical solutions for them by applying a Hankel transform, more specifically, we
consider problems (1.84), (1.85), and (1.77). In order to be able to perform this
kind of analysis, we assume that in these problems the domain is infinite along the
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Figure 3: Borehole surrounded by a four layered formation and second difference
of potential measured at the receivers for the reference model and the approximate
model of order four.
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z direction. The employed Hankel transform has the following form

1 .
uy(r, §) = o /(_7T - u(r, 0, z) cos (k0) % do dz.

Once the expression of u is found, we employ the following inverse Hankel
transform to obtain the expression of u

u(r,0,z) = i g;; /Rﬁk(r, f)eigz d€ cos (k) ,
k=0

1 k=0,
G =
2 k>0

where

The main result concerning this section corresponds to the semi-analytical
expression of the solution to Problem (1.77), defined over the domain showed in
Figure 1.4, which has the form

ﬁk(rv |€|) = Cf(|§|)]k‘<|§|r>’ re (07Tt>’
el €]) = CHIEN L) + CHIEDKR(Elr), € (rori).

an(r,|€)) = CEENI(glr) + CEEN KL (elr), 7€ (rerd).

where functions I, and K} correspond to the modified Bessel function of first and
second kind respectively. The coefficients C¥, C¥ C§, C¥, and C¥ are determined
by employing the boundary and transmission conditions of Problem (1.77).



CHAPTER

DERIVATION OF ITCS WITH
DIRICHLET EXTERNAL BOUNDARY
CONDITIONS

1.1 Introduction

This chapter is devoted to the study of a transmission problem for the electric
potential. In all considered configurations, the domain includes a highly conductive
thin layer of uniform thickness ¢ and Dirichlet boundary conditions. The objective
of this chapter is to derive equivalent transmission conditions when ¢ tends to zero.
For this purpose we adopt two different approaches that deliver two different classes
of ITCs. The first approach consists in deriving equivalent conditions across the
thin layer itself, whereas on the second approach we derive the equivalent conditions
across an artificial interface located in the middle of the thin layer.

This chapter is structured as follows. Section 1.2 states the model problem for
a 2D transmission problem for the static electric potential. Then, we present the
scaling we perform as a first step towards deriving a multiscale expansion in terms
of powers of ¢ for the solution to the model problem. This part is common to the
two approaches we consider, which are explained in Sections 1.3 and 1.4 respec-
tively. Both sections consist of the derivation of I'TCs for each of the considered
approaches. Additionally, at the end of Section 1.4, we present a technique, based
on some artificial boundaries, for solving a stability problem occurring in one of
the derived models.

Finally, Sections 1.5 and 1.6 present similar results for a 2D time-harmonic
problem and a 3D axi-symmetric problem. The derivation of the ITCs for these
configurations is similar to the one presented in the previous sections. Thus, we
summarize the procedure and we concentrate on showing the main results, concern-
ing the asymptotic expansion of the solution and the derivation of the asymptotic
models.

45
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1.2 Static 2D configuration: model problem and
scaling

The main objective of this section is to present the model problem we are interested
in and to explain the first step towards the derivation of asymptotic models. This
is first step consist in a scaling performed in the subdomain corresponding to the
thin layer. The objective of these asymptotic models is to replace a thin layer by
proper transmission or boundary conditions.

Y
IN
Yo ,
' n
1 —)
€ £ £
int Q lay ext
\E
€ ' €
int ) F Fext
n,
1
I > x
X L

Figure 1.1: Domain of interest, composed of a thin layer, an interior domain, and
an exterior domain.

Let Q C R? be the domain of interest described in Figure 1.1. Domain Q
is rectangular shaped and is composed of three rectangular shaped subdomains
Q> Qexe, and Qf, . The subdomain €27, is a thin layer of uniform thickness € > 0.
We denote the interface between € and Qf, by I'f, and the interface between

by I'¢ .. In this domain, we study the equations of the static electric

int»
€ €
lay and Qext ext*

potential, which read as follows
div(cVu) = f. (1.1)

Here, u represents the electric potential, ¢ is the conductivity, and f stands for a
current source. The conductivity is a piecewise constant function, with a different
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value in each subdomain. Specifically, the value of the conductivity inside the thin
layer 2, is much larger than the one in the other subdomains and we assume that
it depends on the parameter e. We consider a conductivity of the following form

: £
Cint in Qf,,

~ -3 . e
0 = { Olay = 00E in Qlay,

: £
Oext in Q.

where g, > 0 is a given constant. We assume that the right-hand side f is a
piecewise smooth function that is independent of € and it vanishes inside the layer

€
lay*

: €

fint m Qint?
I 3 £

f=9 Tuy=0 in O,
: €

f ext m Qext‘

It is possible to prove that Problem (1.1) has a unique solution u € H} ().
Representing this solution w in each subdomain as follows

: 13
Uint m Qint )

: €
U= 4 Uy In

Uext 10 €2

ext?

the Problem (1.1) becomes

. €
OintAuint = fint m Qint?
. €
UextAuext = f ext m Qex‘m
J— 1 E
Aulauy =0 m lay»
e Teé
Uint = Ulay on int>»
(1.2)
€
Ulay = Uext on I,
~ -3 €
O_intanuint = 0¢p€ 8nulay on Fint?
~ 3 €
oo anulay = Uextanuext on Fexta
u=>0 on 0,

where 0, represents the normal derivative in the direction of the normal vector,

inwardly directed to %, on I'%,,, and outwardly directed to Q2 on I, (see Figure
1.1).
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Introduction of a scaling

A key point for the derivation of a multiscale expansion for the solution to Problem
(1.2) consists in performing a scaling along the direction normal to the thin layer.

We begin by describing domain €2, in the following way

11
leay = {’Y(y) + eXn: V(y) € F7X S (_27 2)} 3
where 7y is a parametrization of the curve I' (see Figure 1.1), which is defined as

v(y) = (xo,y), for all y € (0, o)

and n = (1,0) is the normal vector to the curve I'. This domain geometry induces
the following scaling

r=20+eX & X=c'(r—1).
As a consequence, we have

ok — kb, kel

This scaling allows us to write the Laplace operator in the following way

A= 02402 = 208 4 0P

On the interfaces I'f; and I't,, we rewrite the normal derivative in the follow-

ing form 9, = 0, = ¢ '0x. Finally, we denote by U the function that satisfies

11
ulay(way) = Uflay<x0 + 5X7 y) = U(X7 y)7 (X7 y) € (_27 2> X (073/0) .

We rewrite System (1.2) with the newly defined variables and functions and
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we obtain
O-intAuint = fint in Qianw
UextAUext - fext in ngta
292U 4+ 02U =0 in (=2 1) < 0
€ X + Y - m 77 5 X ( 7y0) )
€ 1
Uing, (.Z'o 2ay> _U(_2ay> y e (O>y0)7
_ . (1.3)
Uext <$0+7y> _U(7y> ye (O>y0)7
2 2
IS ~
Ulntanuint (xO - 57 y) = 0p& 48XU a5 3/) Y € (07y0)7
£ 4 1
Uextanuext (350 + 57 y) = 0p& aX[] a) y) Yy € (07 yO)a
u=20 on 0,

1.3 Static 2D configuration: first class of ITCs

1.3.1 Construction of a multiscale expansion

In the following, we asymptotically expand the solution in a power series of €.
Then, by truncating this series and neglecting higher order terms in ¢, we derive
approximate models composed of equivalent transmission conditions across the thin
layer described in Section 1.3.2.

We start by defining the jump and mean value of a function across a thin layer.

Definition 1. Let u be a smooth function defined over Q). We define its jump and
mean value across a thin layer as

Ulpe = Uegt|Te , — Usint|T
[ulr Ire,,

e
int’

1
{u}pe = 5 (Uext|riu + Uz‘nt|F§m> :

Now we proceed to derive an asymptotic expansion of u. We first perform an
Ansatz in the form of power series expansion of ¢ for the solution to Problem (1.3),
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i.e. we look for solutions

ulnt x y Z Ekumt ‘/L‘ y in Qlanta
k>0
Uext (T, Y) ehuf (z,y) in
ext ;;o ¢ ¢ (1.4)
. 11
U(X7 y) ~ Z gkUk(Xa y) m <_27 2> X (ano) :
k>0

Equations for the coefficients of the electric potential

Substituting the previous expressions (1.4) into the Equations (1.3) and collecting
the terms with the same powers in ¢, for every k& € N we obtain the following set
of equations

aintAuiknt(:L',y) = fint(m,y)ég in QL (1.5a)

aextAu’gXt (‘1.7 y) = feXt (:E7 y>6§ in QZXt’ (1'5b)
11

RUH(X,y) = —2U*2(X,y) i (=55) % Ow)s (150

along with the following transmission conditions

1 €
Uk (—2,y> = ufnt <ZL’0 - 2,y> Yy e (an())) (16&)
of (L)) b (o4 E € (0,yo) (1.6b)
Qay — UWext 0 Qay ) » Y0), .
. 1 €
anXUk (_2a y) = Uinta ufnt4 (l’o - 27y> Yy e (Oa y0)7 (160)
- 1 5
UOaXUk (2a y) - Uexta uext4 <m0 + 2>?J) Yy € (Oa y0)7 (16d)

and the following boundary conditions



1.3. STATIC 2D CONFIGURATION: FIRST CLASS OF ITCS 51

uf(0,y) = u*(L,y) = 0 y € (0, 90), (1.7a)
W (2,0) = u (2, o) = 0 re <0,:Jc0 _ ;) U (xo + L> (L)
U*(X,0) = U*(X, yo) = 0 Xe <—; ;) , (1.7¢)

where 6F represents the Kronecker symbol. For determining the elemental problem
satisfied by each of the terms of the expansion, we will also need the following
equation obtained by applying the fundamental theorem of calculus for a smooth
function U*,

© RUNX,g)aX = 0y (5.0) - xU* (<5.0). (1.8)

If we replace Equation (1.5¢) on the left-hand side of the above equation, and Equa-
tions (1.6¢) and (1.6d) on the right-hand side, we obtain the following compatibility
condition

_ 1 _
RUM (X, y)dX = — [00,u" "] L (). (1.9)

~

00

1

2
2
2
We adopt the convention that the terms with negative indices in Equations (1.5) -
(1.9) are equal to zero. Employing equations (1.5) - (1.9) we deduce the elementary
problems satisfied outside and inside the layer for any £ € N. For that purpose, we
employ the following algorithm composed of three steps.

Algorithm for the determination of the coefficients

We assume that the first terms of the expansion (1.4) up to the order e~ have
already been calculated, and we derive the equations for the k-th term. The first

two steps are intended to determine U* and the third step determines uf, and
uk .. For every k =0,1,2,..., we perform the following steps:
First step:

We select Equation (1.5¢), along with Equations (1.6¢) and (1.6d), and we
build the following differential problem in the variable X for U* (the variable y
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plays the role of a parameter)
OXU(X,y) = —0,U" (X, y)

~ 1 _ €
UOaXUk <_27 y) = O—intanuﬁlt;4 (950 - 57 y) )

N 1 _ €
GoOx U" (2,y> = aextanulgxt4 (950 + 5 y) .

(1.10)

There exists a solution U* of (1.10) provided the compatibility condition (1.9) is

satisfied. We deduce the expression of U* up to a function in the variable v, denoted
by ©E(y). The function U* has the following form

UMX,y) = VH(X,y) + ¢ (),

form (see Proposition 1)

V’“(X,y)z{

where V* represents the part of U* that is determined at this step and has the

0 if k=0,1,23,
Oh o)X TP+ o ()X TP+ i (y) X if

k> 3.
Function ¢f is determined at the second step.

Second step:

We employ the compatibility condition (1.9) for the k£ + 2 term, along with

Equation (1.7c) to write the following differential problem in the variable y for
function @, involved into the expression of U*.

d2 k ]‘ k—2 % 217k
@wo(y)z—go 00,0472 (y) - _Tlay‘/ (X,y)dX gy € (0,5),
1.11
25(0) = 0, (L11)
ve(yo) = 0.

Solving this differential equation, we obtain function % and thus, the complete
expression of U*.

Third step:
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We derive the equations outside the layer by employing Equations (1.5a),
(1.5a), (1.6a), (1.6b), (1.7a), and (1.7b). We infer that uf, and u* , are defined
independently in the two subdomains €25, and €2, by the following differential
problems

Oine AU, = fint g in Q5
o)1)
T on 00N OL,.
(1.12)
Text Auly, = fext(sg in - O,
o500 ()
uf, =0 on 00N oL

ext — ext*

We now define u*, for k € N, as

k : €
{ uint m Qint7

k . €
uext m Qext .

We will now employ this algorithm to determine the first terms of the expan-
sion.

First terms of the asymptotics

Terms of order zero

We consider Problem (1.10) for U°

-11
RUXy) =0 Xe(F3),
22
Ox U (—1 )=o
X 27y - Y
1

The solution to the above equation has the form U°(X,y) = ¢)(y). Then, we
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employ (1.11) and build the following problem for ()

d2

d7y2908(y) =0 y € (0,7),
@0(0) =0,
@o(yo) =0

We deduce that ©)(y) = 0 and thus, U°(X,y) = 0. Finally, employing (1.12), we
obtain that the limit solution u° satisfies homogeneous Dirichlet boundary condi-

tions on I, and I'? .. Thus, we write the problem satisfied by u" as

0o _ : €
UintAuint - fint m Qint?
ud =0 on O

int int*

(1.13)

ul. =0 on Of)

ext”

0o _ : €
{ UextAuext - fext mn Qexta

ext

Terms of order one

We consider Problem (1.10) for U*
9 771 -11

1
aX(]1 (_27y> = 07

1

The solution to the above equation has the form U'(X,y) = ¢}(y). Then, we
employ (1.11) and build the following problem for ¢}

d2

dT/QQDé(y) =0 y € (0,%0),
©4(0) =0,
90(1)(%) =0.

We deduce that ¢}(y) = 0 and thus, U'(X,y) = 0. Finally, employing (1.12) we
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write the problem satisfied by u! outside the layer as two uncoupled problems

int>

=0 on 00

int*

{ Auj, =0 in

mt

(1.14)

ext’

=0 on 00

ext*

{Aum 0 in

ext

We deduce that u!' =

Terms of order two

We consider Problem (1.10) for U?
9 110 -1 1

1
aXUv2 (_Qay> = Oa

1

The solution to this equation has the form U?(X,y) = ©3(y). Then, we employ
(1.11) and build the following problem for (3

d? 1

Tygwﬁ(y) =5 00.0°| () y € (0,90),
3(0) = 0,
90(2)(90) = 0.

We deduce that p3(y) and thus, U?*(X,y) have the following form.

U*(X,y) = ¢5(y)

. (1.15)

Y A 0 dt—i——/ wo — 1) [00,u°] _(t)dt.

0o J0 00Yo

We assume the integrals in the expression of U? make sense and we make the same
assumption for the rest of integrals that appear in this section. Finally, employing
(1.12), we write the problem satisfied outside the layer by u? as two uncoupled
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problems
Au?nt =0 in Q(isnt’
2 € _ 2
i (- J) =) ve©Ouw)
ul, =0 on 00N OKL,.
(1.16)
AuZ, =0 in QL
3
e (wt50)=eb) e Ow).
ul, =0 on O0QNONL,.

Terms of order three

We consider Problem (1.10) for U?

1
8XU3 <_27y) = 07

1

The solution to this equation has the form U*(X,y) = ©3(y).

(1.11) and build the following problem for 3
d2

@@g(y) =0
©o(0) =0,
ea(yo) = 0.

-11

Then, we employ

Y S (07 y0)7

We deduce that ¢3(y) = 0 and thus, U3(X,y) = 0. Finally, employing (1.12) we
write the problem satisfied outside the layer by u® as two uncoupled problems

3 . .
{ Auy, =0 in
3 _
Uy, =0 on
3 o .
{ Aus, =0 in
3 _
Uy =0 on

We deduce that u3 = 0.

QO

int»

08,

int*

(1.17)
QE

ext’

082

ext”
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Remark 1. This algorithm could be employed to go up to any desired order, but
the elemental problems satisfied by each term of the asymptotic expansion get more
complex the further you go. In addition, this process generally decreases the reg-
ularity of these terms. Here we have stopped at the fourth term of the expansion,
which provides a good balance between the order of accuracy and the complexity of
the problem.

Recapitulation of the asymptotic expansion

Proposition 1. The asymptotic expansion (1.4), has the following form

Umt(.fl? y) - u?nt(x y) + E umt 'y y + O €4> Z’fl, Q;:nt?

uemt(x y) - uext(x y) + 5 uext x y + O (84) Zn Qixta

U (X,y) = 2 (y) + O (=) in (—;;) % (0, 90),

where functions %, u°, and u* are defined by Equations (1.15), (1.13), and (1.16),
respectively. In addition, for k € N, the solution U* to Equation (1.10) has the
following form

0 if k=0 ork odd,
U (X,y) =4 k-2 .
Z gof(y)XJ if k even,
=0
and solution u* = (uk ., u¥ ) to Problem (1.12) satisfies

b =uf =0, if k odd
Proof. We prove it by induction on k. For k = 0, 1, 2, 3, we have already calculated
the expressions of u* and U” in the previous section. We distinguish two different
cases for the proof: the case of an even number £ > 4, and the case of an odd
number k£ > 4.. Let us thus prove the result for an even number k£ by assuming
the result is true for all even numbers 7 < k. Thanks to the inductive assumptions,
function U? has the form

U'(X,y) =@ o(y) X 72+ 03X 7+ ..+ 0l (y) X + ¢h(y).

We begin by considering Problem (1.10) for the even number k. Solving this
problem we obtain a solution of the form

U (X,y) = 0f o)X 2+ 0f ()X 7+ ..+ i ()X + 95 (),
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and .
kroy o+ k—4
e (y) = 5, {Uanu }FE (),
1
k - k—4
72Y) = 55 00" (),

d? k-2
20k—j-2(Y)
k dy 7 .
(y) = =2,...,k—2.

In the above expression of U¥, we find function V*, which reads as

VE(X,y) = oh o)X 2+ of ()X P+ L+ ol (y) X,

and has been defined at the first step of the algorithm. The only thing left to prove

is that if & is an odd number, U* = 0 and uf, = ul,, = 0. We assume that for

all odd number j € N, such that j < k, U7 = 0 and v/, = v/, = 0. Employing

int

Equation (1.10), we have the following problem for U*

11
RUH(X.y) = 020" *(X, y) Xe(-35)
~ k 1 k—4 €
UOaXU <_> y) - Uintanuint <ZE0 — y) )
2 2
~ k(1 k—4 €
ao0xU <2>?J) = Oext OnUoxy <l‘0 + 2,y> .

Thanks to the inductive assumptions we know that U2 = 0 and uf;* =

int
k4 = 0. Thus, we conclude that U* has the following form

ext —

UM(X,y) = ¢§(y).

Now we employ Equation (1.11) to build the following problem

_ k—2
W) = =5 o0 @)y e )
5(0) =0,
5 (o) = 0.

Again, thanks to the inductive assumptions, we know that ©*~2 = 0. Thus,
we conclude that pf = 0 and consequently U* = 0. Now, employing (1.12), we
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write the problems satisfied by u¥, and uf , as follows

Auf =0 in QF

int int»

k €
uint - O on Fint?

uf, =0 on 0QNINL

int*

Auf =0 in Q°

ext T ext?

ub = on [I°¢

ext?

F.=0 on 0QNoN<

ext”

We deduce that v = 0. m

1.3.2 Equivalent models

Now that we know the expressions for the first four terms of the expansion, we
truncate the series and we identify a simpler problem satisfied by

u® =0 reut 4+ fF in Qi

U Qe

ext

up to a residual term of order 1. We neglect the residual term of order e¥+! to
obtain an approximate model satisfied by function u!¥l. For the sake of simplicity
we will employ the following notation for the domain.

Notation 1. We denote by ¢ the domain

0F =Q;

int

U Qs

ext?

where 5, and )S,, are the domains defined in Section 1.2.

We will also adopt the following notation for the different norms we employ
in this document.

Notation 2. For any function u € L? (), we denote the L? norm by
||U||o,Q = ||U||L2(Q) :
In the same way, for any function u € H (Q), we denote the norm in H' by

1
2 2 2
lull, 0 = (lelliq + 1Vulgg) -
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In the following, we define the order of convergence for an asymptotic model.
Here, we formally derive two approximate models of order two and order four,
respectively.

Definition 2. Let u* be the solution to an asymptotic model, and let u be the
solution to the reference problem. We say that the asymptotic model is of order
k + 1, if there exists a constant C independent of €, such that following relation is
satisfied for a sufficiently small :

Hu — u[k}H < Cehtt,
1,00

Second-order model

For deriving the second-order model, we truncate the series from the second term
and we define u") as

U Qe

(1) _,,0 1_ .0 . e
u =u +eu =uw in ()} oxt

int

(see Proposition 1).

From (1.13), we conclude that u(!) solves the following uncoupled problem

1) . e
Oint Aliyi = fing in - Qp,

ul(it) =0 on 0%

int*

(1.18)

1 _ : €
Oext Auext - fext m Qexta

ug()t = on 00,,.

In this case, we have ul! = u® as u® does not depend on . We infer a second-
order model satisfied by ul!! solution to Problem (1.18).

Fourth-order model

For deriving the model of order four, we truncate the series from the fourth term
and we define u®® as

u® = et + 2P+ =+ % in 5, UQS, (see Proposition 1).
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From (1.13), (1.14), (1.16), and (1.17), we conclude that u(® satisfies the following
equations

O-intAui(gt) = fint in Qignta
UextAug)()t = fext in Qix‘m
{u(g)}ra =0,
d? 1
— B = 2 0
e {u }rs =—¢ . [ac%u }rs’
u® =0 on 00N OSYr.

Then, we employ the expression u® = u® — g2u? to rewrite the right-hand side of
the second transmission condition as:

1 1 1 1

~='5, loowl] = =25 o0 et o0l = —e2 [0i), 4Ol
Thus u® satisfies the following equations

O-intAui(gt) = fint in O,

Oext AU, = for in O

[u(g)}rs =0,
;Z; {u(g)}re - _62510 [Ua"u(g)}rs + 0(54)’
u® =0 on 00N OO,

We define as ul®! the function we obtain when truncating the solution at the fourth
term of the expansion and neglecting the terms of order four or higher in €. Then,
ul®! satisfies the following equations

UintAui[?l]t = fint in ant?
UextAu([jgt = fext in szm

[3] _

). =0, (1.19)
=~ 2
g _ 0 d ¢
[U@nu }FE BT {u }FE,
u[3] =0 on (99 N (995
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1.4 Static 2D configuration: second class of I'TCs

1.4.1 Construction of a multiscale expansion

In this section, we perform an expansion of the solution in power series of &, fol-
lowing the same steps as in Section 1.3.1. Then, by truncating this series and
neglecting higher order terms in ¢, we derive approximate models composed by
equivalent transmission conditions in Section 1.4.2. The main difference with the
first class of ITCs is that now we employ some formal Taylor series expansions
to write the terms of the expansion across an artificial interface I' situated in the
middle of the thin layer. The resulting asymptotic models will be defined in the
domain depicted at Figure 1.2b. We start by defining the jump and mean value of
a function across interface I', in the same way we have done with the jump and the
mean value across the thin layer in Definition 1.

) Y
IN AN
Yo ; Yo
Qignt ngay ngt Qint Qext
ant :F ngt N
: L L
o L > L ) L > L
(a) Reference problem domain. (b) Domain for the second class of ITCs.

Figure 1.2: Domains for the reference model and for the second class of asymptotic
models.

Definition 3. Let u be a function defined over Q2. We define its jump and mean
value across interface I' as

[U]F = ue:vt|F - Umt|F,

1
{U}I‘ = 5 (ue:rt|F + uint‘F) .

Now we derive the asymptotic expansion. We start by performing an Ansatz
in the form of power series of ¢ for the solution to Problem (1.3), that is, we look
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for solutions
: 13
Uint (T, Y) Z efuf () in Q5
k>0

uext xz ?/ ZE uext Z y in Qth’ (120)

k>0

i 11
U(X7 y) R Z gkUk(X> y) m <_27 2) X (07 yO) :
k>0

where functions (uflc )keN and ( ext) peyy A1 DOW defined in e-independent domains,

int

contrary to the first approach. We emphasize that sequence (ulf ) N (respectively

int ke

(uk )kGN) is defined in Q¢ (respectively Qext) even if its associated series does not

ext
approach v in the thin layer. We assume that for k& € N, the terms uf, and u* , are
as regular as necessary, see [19]. Then, we perform a formal Taylor series expansion
of the series, in order to write the transmission

of the terms uk ‘rs and u”
int

conditions across interface T'. The formal Taylor series expansion writes as follows

ext

15
Ufnt (IU - 27y) = Z ( ) aZL fnt (Iﬂ’y) )

>0 2

m

Ulgxt (IQ + 5, y) = Z e Qii'a;’ulgxt (,Io, y) .

i>0

We also perform a formal Taylor series expansion of the following form for the

derivatives 0 umt - and 0 uext
€ (=1,
(9 uk <l’ o ) - i a“rluk o, )
int 0 92 ) ~ 9ijl n 1nt( 0 y)
c 1
Onut (x + =, ) ="' otk (wo,
ext 0 92 ) Pt 9ij1n ext( 0 y)

Employing these formal Taylor series expansions and the Ansatz (1.20), we
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expand the terms u;py e and Uext

int ext

in the following way

Uint

€
| = Uiy E ¥ umt To— =, Y
re, 2
k>0

=) ¢ Zﬁ

k>0 >0

n 1nt I()? y)7

k
a;L fnt .Z‘o, Z Z
k>0 =0
(1.21)

Uext

g
e = Uext <$0 + = > Z 5kuext <$o + 5 y>

ext k>0

- Z Z&" 27, 'a’ib ]efxt 1'0, Z Z 21 ‘8:1 ]gxt;l :L‘O)y)-

k>0 >0 k>0 =0

, Opur

re ext

int cxt

and the terms 0, u*

int in the following way

anuint e = 8nuint ( ) Z gka umt ( ga y)
int k>0
k .
Z ZS 241 a:z—’_l ant 07y) = Z Z Ui (x07y)7
k>0 >0 k>0 =0 '
(1.22)
g k k g
anuext e anuext To + =, y| = Z € anuext To + =, Yy
1—‘lext 2 2

k>0

1
= ngz 21 ‘a’flj_l ’gXt ‘7:07 Z Z 2@ az+1 Iegxtz x07y)'

k>0 k>0 =0

Equations for the coefficients of the electric potential

Substituting the Ansatz (1.20) and the identities (1.21), (1.22) in the Equations
(1.3) and collecting the terms with the same powers in €, for every k € N we obtain
the following set of equations
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O-intAu{cnt(x7 y) = fint(:c7 y)ég in Qin‘ca (1233‘)
Oext AUE (2,9) = foa(T,9)08 0 Qe (1.23b)
11
PLU(X, y) + O2UF2(X, y) = 0 in (—2,2) % (0,50), (1.23¢)
along with the following transmission conditions
i 1)1 i k—i k —1
> OLul " (xg,y) =U (,y) € (0,y0), (1.24a)
= 24! 2
i 1
Z i ‘8; ]ecxtz (IO y (2 ) c (O,yo), (124b)
Tint Z 21 ffl b (w0, y) = G00xU (_2 ) y € (0,y0), (1.24¢)
=0
k—4 1 1
Oext Z i1 aH—l l;xt4 ' (:L'(b - 003)( (2 > € (O,yo), (124(1)
and the following boundary conditions
u(0,y) = u*(L,y) =0 y € (0,0), (1.25a)
uF(2,0) = uF(2,) =0 x € (0,20) U (z0, L), (1.25b)
11
U*(X,0) = U*(X, yo) = 0 X € (—2, 2) , (1.25¢)

where 6 represents the Kronecker symbol. For determining the elemental problems
satisfied by each of the terms of the expansion, we will also need a compatibility
condition. To obtain it we apply the fundamental theorem of calculus for a smooth
function U*, along with Equations (1.23c), (1.24c), and (1.24d), and we obtain

U2 (X, y)dX

1
2
=1
2

k—4
_ 1 Z O_eXtaH—l k—4—i
- G 94 n  Uext

(zo,y) + (=

9 ¥

int

1)z‘+10int i+l k—4—

($0,Q)> :

(1.26)
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We adopt the convention that the terms with negative indices in Equation (1.23)
- (1.26) are equal to 0. Employing Equations (1.23) - (1.26) we can determine the
elementary problems satisfied outside and inside the layer for any k € N. For that
purpose, we use the following algorithm composed of three steps.

Algorithm for the determination of the coefficients

We assume that the first terms of expansion (1.20) up to order *~! have already
been calculated and we calculate the equations for the k-th term. The first two
steps consist in determining U* and the third step consist in fixing u¥, and u”,.
For every k =0,1,2,..., we follow the next steps:

First step:

We select Equations (1.23¢), (1.24¢), and (1.24d), and we build the following
differential problem in the variable X for U* (the variable y plays the role of a
parameter)

11
RUH(X.y) = 020" *(X. y) Xe(-35)

. 1 i i
anXUk< 9 ay) = Ulntz 2i;1 an—’—1 fnt4 (any)v (127)

~ 1 i i
UOaXUk <27 y) Oext Z 941 a a ngt4 (x()a y) .

There exists a solution U* to (1.27) provided the compatibility condition (1.26)
is satisfied. We deduce the expression of U* up to a function in the variable y,
denoted by 9f(y). The function U* has the following form

UMX,y) = V*(X,y) + g (v),

where V* represents the part of U* that is determined at this step and has the
form(see Proposition 2)

{ 0 if k=0,1,23,
Ve o)X 2+ () X+ (y) X if k> 3.

Function 9§ is determined at the second step.

VH(X,y) =
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Second step:

We involve the compatibility condition (1.26) for the k + 2 term, along with
Equation (1.25¢) to write the following differential problem in the variable y for
function 9%, present in the expression of U*.

d2
d?%(y) =h"(y) y e (0,),

vh(0) = 12

wg(y(J) = 07

1 h2 Oext o i i+10int o 7
h’k(y) == (/7\'70 =~ (2%' 8n+1 ngtz (.fl?o,y) + ( 1) ok 9i; 'an+1 fcnt2 (x(by))

VX, y) dX.

1

2

-1

2
Solving this differential equation we obtain function % and thus, the complete
expression of U*.

Third step:

We derive the equations outside the layer by employing Equations (1.23a),
(1.23b), (1.24a), (1.24b), (1.25a), and (1.25b). We infer that uf, and u’, are
defined independently in the two subdomains €2;,; and Qe

UintAuk - fintdk in Qintu
o o) = 0% (=2 ) =3 O gt (..
=1 L
uf, =0 on 00N Oy
(1.29)
UextAulsxt - f extég in Qext7
1 k 3 K3
ul;(t (z0,y) = Ut (271/) - Z 2ij |an ngt (0,9) ,
ub, =0 on QN Oext.

Now this algorithm is used to determine the first terms of the expansion.
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First terms of the asymptotics

Terms of order zero

We consider Problem (1.27) for U°

-1 1
a?(UO(X>y> =0 X € (272> )

1
aXZJO (_27y> = 07

1

The solution to the above equation has the form U°(X,y) = ¢(y). Then, using
(1.28) we build the following problem for 1))

d2

¥(0) =0,
?/)(())(?Jo) =0.

We deduce that ¢ (y) = 0 and thus, U°(X, y) = 0. Finally, employing (1.29) we ob-
tain that the limit solution u° satisfies homogeneous Dirichlet boundary conditions
on I'. Thus, the problem satisfied by u" reads as

0 .
Augyy = fine 0 Qg
w =0 on 0.

int

(1.30)

0
Ugy = 0 on O et

0 _ .
{ Auext - fext m QeXt7

Terms of order one

We consider Problem (1.27) for U*

-11
aXU( >y> 0 S 9 72 )
1
alel <_27y> = 07

1
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The solution to this equation has the form U'(X,y) = 1{(y). Then, from (1.28)
we deduce the following problem for )}

d2

1(0) = 0,
%(yo) = 0.

We thus have that ¢{(y) = 0 and U'(X,y) = 0. Finally, employing (1.29) we write
the problem satisfied outside the layer by u' as two uncoupled problems

Terms of order two

Auilnt =0 in Qu,
1 _ 18 0 F
uint - 2 nuint on ’
ui, =0 on 00NN O iy.
(1.31)
Auéxt =0 in Qe
1 _ —18 0 F
uext - 2 nuext on )
ul, =0 on 00N O0Nexs-

We consider Problem (1.27) for U?

—-11

1
aXU2 (—2,y> = O,

1

The solution to this equation has the form U?(X,y) = 12(y). Then, according to
(1.28) we build the following problem for )2

d? 2 0
dTﬁ?/Jo(y) = _?0 [Uextanu }F (y)

1
Yy € (07 y0)7

¥5(0)
wé(yo)

)

0
0.
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We deduce that 12 has the following form

vi(y) = ;01 [0 ]oon] at+ =2 [ =0 [po.] (0 (132

00Yo

Finally, (1.29) implies that the problem satisfied outside the layer by u? is

composed of two uncoupled problems

AuZ, =0 in Oy,
Uiy (0, y) = V5 (y) y € (0,%),
ul, =0 on 00N ONy.

AuZ, =0 in Qe
uZ (0, y) = U5 (y) y € (0, 90),
ul, =0 on 00N O0Nexs.

Terms of order three

We consider Problem (1.27) for U?
-11
a?(U:i(X?y):O X e (7)7
22
oxU® (—1 ) =0
X 27y — Y

1

The solution to this equation has the form U?(X,y) = ¥3(y).

(1.28) and build the following problem for ]

f;z/%(y) == [readia’], ) - 5 foeada},

0 5o
U5(0) =0,
%US(?/O) = 0.
We deduce that 1§ has the following form
Yo (y) :;01 /Oy(y - t)( [a&nulh (t) + {a@nuo}r (t)> dt
v
0o0Yo v0

(1.33)

Then, we employ

Y € (O) y0)7

" (o — t)( [aﬁnul]r () + {a@nuo}r (t)) dt.

(1.34)
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Finally, employing (1.29) we write the problem satisfied outside the layer by
u? as two uncoupled problems

Aui?’nt = O in Qint7
u?nt(x(h y) = wg’(y) Yy € (07 yO)a
ul, =0 on 00N Oy
(1.35)
Auzxt =0 in Qex,
ngt(x(), y) = wg(Z/) Y € (07 yO)a
ul, =0 on 00N O0Nexs.

Recapitulation of the asymptotic expansion

Proposition 2. The asymptotic expansion (1.20) has the following form outside
the layer

uiTLt(‘T’ y) = U’(i)nt<x7 y) + EU%nt(ZE, y) + €2u?nt<x7 y) + 63“?711&(1‘7 y) + O (64) 9

uezt(xa y) = ugxt($7 y) + Euixt(‘%‘? y) + ggu?m(x’ y) + €3U?nt(l', y) + O (84) !

11
and the following form inside the layer, that is, for (X,y) € (—2, 2) x (0,90),

U (X,y) = 5(y) + %65 (y) + O ().,

where functions u®, u', u?, and u® are defined by Equations (1.30), (1.31), (1.33),

and (1.35), respectively, and functions 13 and 13 are defined by Equations (1.32)
and (1.34), respectively. In addition, for k € N, the solution U* to Equation (1.27)
has the following form

0 k=01,

k—2
Sy X! k=20+2, €N,
Uk (X, y) — = J

k—3
Sy y)X) k=20+3, leN.
j=0

Proof. We prove it by induction on k. For k = 0,1, 2,3 we have already calculated
the expressions of ¥ and U* in the previous section. We distinguish two different
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cases for the proof: the case of an even number k£ > 4, and the case of an odd
number k£ > 4. Let us thus prove the result for an even number k£ by assuming
the result is true for all even numbers ¢ < k. Thanks to the inductive assumption,
function U’ has the form

U (X,y) =¥, (y) X 2+l _s() X2 + .+ 01 () X + (y).

We begin by considering Problem (1.27) for the even number k. Solving this
problem we obtain a solution of the form

UM (X, y) = 0 o)X + ) s () X572+ L+ 9 ()X + 46 (),

and
1 hd Oext o 4 i0int —4—i
wllg(y> = (/7\'70 ' (Qii;anJrlulethAl ('x()ay) + (_1) 2ii§an+1u{€nt4 (l‘o,]j)) ’
k 1 (& (et i+l k—4—i i+10int aj41 k—4—i
Vi) = 3 (X (Groh e (o) + ()M GH O o)) )
i=0 : :
d? k-2
Tl k—j—2<y) .
Ur_i(y) = —% : j=2.. . k-2
k-3(9) (k—j)(k—j—1)

In the above expression of U¥, we find function V* which reads as

VE(X,y) = () XP 2+ 5 (y) X2 4+ + 0 (y) X,

and has been defined at the first step of the algorithm. A similar argument can be
involved when k is an odd number.

O

1.4.2 Equivalent models

Now that we know the expressions for the first terms of the expansion, we truncate
the series and we identify a simpler problem satisfied by

u(k) = uo -+ €’LL1 + ...+ €kuk in Qint ) Qext

up to a residual term of order **!. We neglect the residual term of order %! to
obtain an approximate model satisfied by function u*. Here, we formally derive

two approximate models of order one and order two respectively.
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First-order model

For deriving the first-order model, we truncate the series from the first term and
we define u(® as

@ =4 in Qi U Qe (see Proposition 2).
From (1.30), we conclude that u(®) solves the problem
O-intAui(gt) = fint in Qint7

WY =0 on  O0pnt.

int
(1.36)

0) _ :
UextAuoxt - f ext m Qexta

ug)()t =0 on  00exs.
In this case, we have ul¥ = u(® as 4 does not depend on . We thus infer a

first-order model satisfied by ul% solution to Problem (1.36).

Second-order model

For deriving the second-order model, we truncate the series from the second term
and we define u") as

u =’ +eut  in Qe U Qexe (see Proposition 2).

From (1.30) and (1.31) we conclude that u(!) satisfies the following equations

UintAui(ét) = fint in - Qi
Wl = S0ty on T,
ul(&t) =0 on 02N 0Niys.
(1.37)
O-extAug()t - f ext in Qext7
ug(zz = _ianugxt on F7

u&)t =0 on 00N O0Nexs.
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Following the same procedure as in Section 1.3.2 we obtain the following second-
order asymptotic model for u!!

o intAui[i]t = fint in - Qi
ubl = Suuhi on T,
i on 99N .
(1.38)
o-extAu[eﬂt = .f ext in Qext7
ug}t = _g nug(}t on F?
uLﬂt =0 on 00N 0Nexs.

Third-order model

For deriving the third-order model, we truncate the series from the third term and
we define u® as

u? = +eut + %% in Qe U Qese (see Proposition 2).

From (1.30), (1.31), and (1.33) we conclude that u(? satisfies the following equa-
tions

O-intAui(r?t) = fint in Qinta
ul (zo,y) = g (y) y € (0,0),
ul(it) = on 002N 0Ny.
(1.39)
UextAug(z; = f ext in Qext7
Ugi{(fljg, y) = g%(y) Yy € <07 y0)7
ue(f()t = on 00N 0Ny
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where g7 and g3 are defined as follows

2(y) == = =0 o] () dt
5 (w) =P (r0.v) = = [y —1) [00,0], (1)
ety o 0
—1 t)dt
[~ ) [o0a], 1)t
2
2,y €4 0 I 0
B) == J0ua(zo.y) — = [y —1) [od] (1) at
52y Yo 0
e /0 (yo —t) |00,u’] (1) dt.

Following the same procedure as in Section 1.3.2 we obtain the following third-order
asymptotic model for ul?

O-intAui[i]t = fint in Qint7
O-extAUo[ei]t = f ext in Qext7
2 (u?)=0 on T, (1.40)

T2 (u[2]> =0 on T,

u([fx]t =0 on Of.

where T7 and T3 are defined as follows

T? (up]) = [um} +e {8nu[2}}r + % [8T2Lu[2]}r :
2 2 42 d
73 () = £ [otnu?], o+ 5 (o) S o] (),

Fourth-order model

For deriving the fourth-order model, we truncate the series from the fourth term
and we define u®® as

u® =00 +eul + 2 + %% in Qe U Qox (see Proposition 2).
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From (1.30), (1.31), (1.33), and (1.35) we conclude that u(® satisfies the following

equations

O'intAui(iz = fint in
3
ul (0, y) = g3 (y)
UI(I?;) =0 on
UextAue(jgc = f ext in

3
u) (x0,y) = g3 (y)

uéi)t =0 on

where ¢? and g3 are defined as follows

Qint )

Yy € (07 y0)7

0 N Os.
(1.41)
Qext7

Yy € (Oa ?JO),

02 M Ot -

5 Onting (0, ) ;Z/Oy(y —t) [a@nuoh (t)dt
;0 oy(y —t) ([c0nu!] (1) + {o0uu®} (1))t
;jyyo Oyo(yo — t) ([Uanul} (t) + {o.anuo} (t)) dt,
- ganuext(xoyy) fi/oy(y — 1) {U@nuo} (t)dt
;0 oy(y —t) ([o0nu'] () + {o0uu®} (1))t
# 20 [0 1) (o] )+ {ou), ) a
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Following the same procedure as in Section 1.3.2 we obtain the following fourth-
order asymptotic model for u!?!

o intAui[i]t = fint in - Qi
B8] _ :

UextAuext - f ext m Qext7

Tf’ (u[gl) =0 on I

T3 (u[3]) =0 on I

ugt =0 on S

where T} and T3 are defined as follows

1.4.3

3 (B S [3] < [3] e d s
15 (u ) o [Oa”u } +50 {Ua”u }r+ 6 dy? [8” ]r

Artificial boundaries

(1.42)

When deriving the variational formulation of the second-order model (1.38), we
notice that we cannot prove the coerciveness of the bilinear form, due to a negative
term. This negative term could cause instabilities when solving the problem with
the finite element method. However, to overcome this problem and restore stability
we are going to use a technique based on introducing some new artificial boundaries,
across of which we are going to rewrite the transmission conditions, see for example
[15,16]. We define these new artificial boundaries as follows

Definition 4. We define artificial boundaries 1'%, and T°,, as

Fgm ={(zg—de,y) : 6 >0,y € (0,40)},

I, = {(zo+de,y) : 0 > 0,y € (0,40)} -

We observe the new configuration defined by the artificial boundaries in Figure

1.3.
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Y
Yo ;
Q?nt i ngt
20¢
0 E 0
Fint ! I Fext
: >
Zo L

Figure 1.3: New configuration for the domain incorporating two artificial bound-
aries.

Remark 2. Domains Q3 and Q2,, and the boundaries I'%,, and T°, depend on ¢,

but we do not include it in the notation for the sake of simplicity.

We apply a formal Taylor series expansion on the variable normal to the thin
layer, x in this case, in order to write the boundary conditions over the artificial
boundaries.

Ut (20, Y) = Uext (To + 08, y) — 60 Uext (0 + 2, 7y) + O(£?),
Uing, ($07 y) = uint(-ro - 557 y) + 5€8nuint (xO - 587 y) + O(€2>7

anuext (.130, y) = anuext<x0 + 557 y) - 5€aiuext (130 + 557 y) + O(€2>7

anuint(xm ?J) = anumt(% — 0¢, y) + 5535U1nt($0 — de, y) + 0(52)-

We substitute these expressions in the boundary conditions over I' of Equation
(1.38) and neglecting the terms of order two or higher in e, we obtain the new
boundary conditions defined over the new artificial boundaries. The resulting
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asymptotic model reads as follows.

UintAu([;j}nt = fint in Q?nta
1-26
u([;i}nt = 6( 2 )anugﬂnt on ant’
U([ng =0 on INNIN,.
(1.43)
O‘eXtAu([S];}ext = f ext in ngt’
1 5(1 — 26) 1
uc[i}ext - = 9 a'n«u([i}ext on ngt7
u[;}ext =0 on 9NNV,

With this new formulation, if we select § > %, the negative term of the bilin-
ear form in the variational formulation becomes positive and stability is restored.
Henceforth, we will refer to this stabilized model as the stabilized d-order two
model.

Notation 3. We denote by Q0 the domain

Q= U

nt ext?

where Q2

mn

. and Q°,, are the domains defined at Figure 1.5.

1.5 Time-harmonic problem in a 2D configura-
tion

This section is dedicated to the derivation of asymptotic models when the frequency
is non zero. The derivation of an asymptotic expansion and equivalent models is
very similar to the one described in the previous sections. The main difference
resides on the resulting asymptotic models. Thus, instead of deriving the entire
process again, we will summarize it and we will concentrate on showing the ob-
tained results using the two considered approaches, which have been detailed in
the previous sections. We begin by presenting the model problem. Then, we derive
a multiscale expansion, and finally we present the obtained approximate models.
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1.5.1 Model problem

The problem we are interested in is the equation for the electric potential, which
reads as follows

div [(o —ieow) Vu] = f. (1.44)

Here, u represents the electric potential, o stands for the conductivity, f denotes
a current source, w is the frequency, and ¢, is the permittivity. We consider the
same domain we had in Section 1.2, which is depicted at Figure 1.1. We consider
the conductivity to be piecewise constant and to have a different value in each
subdomain, being of the form o,y = e~ inside the thin layer. Both the right-
hand side f and the conductivity ¢ have the same form as the ones considered in
Section 1.2. In this framework, the Problem (1.44) reads as follows

. . €
(Cint — 1€0w) Aling = fint in Qf,
. . . €
(Jext - Z€0w> Auext - fext m Qext’
(605_3 — ieow) Aty =0 in Q,
_ €
Uint = Ulay on Fint?
o - (1.45)
lay = Uext on ext)?

3 i60w> Optyy on I,

(Uint - iEOM) anuint - (5-05_ int»

~ 3 . . <
(005 — zeow) OnUlay = (Cext — 1€0W) OpUext on It

u=>0 on 0f2,

where 0,, represents the normal derivative in the direction of the normal vector,

inwardly directed to 2, on I';,, and outwardly directed to {2, on I';,, see Figure
1.1.

1.5.2 First class of ITCs: construction of a multiscale ex-
pansion

To begin with, we perform a scaling inside the thin layer in the same way we have
done in Section 1.3.1. Then, we perform an Ansatz in the form of power series of
functions ujyg, Uexs, and U, like the one performed in (1.4).

Substituting these expressions into the Equations (1.45) and collecting the terms
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with the same powers in ¢, for every k& € N we obtain the following set of equations
(Uint - ’iEOM) Aujknt (ZL’, y) = fint (ZL’, 9)53 in szta

(Uext - Z.EOW) Au’gxt (l‘, y) = fext (I, y)(Sg iIl QZXt’

11
ieow(?g(Uk_?’ - 608§U’“_2 + iéowajUk_5 = 5’08§(Uk in (—2, 2) X (0, yo) 5
(1.46)

along with the following transmission conditions
1 €
Uk (—279> = uﬁlt (xO - 2ay> 9
€

1
Uk (27y> = u’;xt <'IO + 2ay> )

N 1 . _ 1 . _ €
G00x U" (—2, y) — deqwdx UF3 (—2, y> = (Ot — t€0w) 8nuf€nt4 (:1:0 ~ y) ,

1 1
GoOxU" <2,y) — ieqwdx U*3 (2, y> = (Oext — i€w) Opuly? (:1:0 - %’ y) ,
(1.47)
where y € (0,7), and the following boundary conditions
uf(0,y) = u*(L,y) =0y € (0,10),
k _ .k . € 5
U(ZL’,O)—U (x,yo)—O $6(0,$0—2>,U<$0+2,L), (148)
k i £ €
UHX,0) = UM (X,0) =0 X e (=53],

where 0% still denotes the Kronecker symbol. Employing these equations we deduce
the problem satisfied outside and inside the layer for any & € N. The process is
similar to the one explained in Section 1.3.1. Then, we truncate the series and
neglect the higher order terms in € to derive new approximate models. We derive
a second-order and a fourth-order model that we exhibit in the following section.

1.5.3 First class of ITCs: equivalent models

We employ Equations (1.46) - (1.48) to obtain the expressions for the first terms
of the expansion. Then, we truncate the series and we identify a simpler problem

satisfied by

W= et 4. +efF in Q,UQ,

(
u int
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k+1

up to a residual term of order ¥*!. We neglect the residual term of order £5*! to

obtain an approximate model satisfied by function u¥l. Here, we formally derive
two approximate models of order two and order four respectively.

Second-order model

. 1y : €
(Uint - ZEOW) Aty = fint in Qf,

ul[lfll]t =0 on  0€,.

(1.49)
(Uext - iGOW) Au([;(]t = foxt in szta
u[eﬂt =0 on O0€,.
Fourth-order model
(Ot — 1€w) Auﬂ = fint in Q.
(Cext — i€ow) Aully = fuss in
[3] _
W] =0, (1.50)
~ 19
. 3 o ] d 3
[(a — iegw) Onul ]}FE BT {u[ ]}rs :
ubBl =0 on 00N oNE.

1.5.4 Second class of I'TCs: construction of a multiscale
expansion

To begin with, we perform a scaling inside the thin layer in the same way as in
Section 1.3.1. Then, we perform an Ansatz in the form of power series of functions
Uing, Uexs, and U, like the one performed in (1.4). Then, we employ some formal
Taylor series expansions to rewrite the transmission conditions across interface I'
as formerly done in Section 1.4.1.

Substituting these expressions in the Equations (1.45) and collecting the terms
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with the same powers in ¢, for every k& € N we obtain the following set of equations
(Uint - ’iEOM) Aufm (LL’, y) - fint (LL’, y)5g in Qex‘m
(Uext - iﬁow) Aulgxt (l’, y) = fext ([E, y)6§ iIl Qexta
11
ieow(‘?g(Uk_?’ — 60850”“_2 + ieowGSU’“_F’ = 5’08§(Uk in (—2, 2) X (0, y(]) 5
(1.51)

along with the following transmission conditions

1 L=,
0 (~ ) =2 S g (),

= 24!

~ k(1 - gz (1 , E (=1
000xU (2,y> — teqwix U <2,y> = (aint—zeow)z 5]

=0

a;+1uk_4 (an y) )

int

- 1 . 51 . A
GoOxU" (2,3/) — iewdxU"? <,y> = (Oexs — d€ow) Y = Ul (0, y)

2 = 2ul "
(1.52)
where y € (0,70), and the following boundary conditions

uk<0ay> :uk(L7y) =0 y e (an()):

k _ .k _ € €

u(x,0) = u"(z,y0) =0 x € <O,x0—2>,u<$o+2,L) (1.53)
& & € €

UMX,0) = U(Xo0) =0 X e (=5.5).

Employing these equations we deduce the problem satisfied outside and inside the
layer for any k € N. The process is similar to the one explained in Section 1.4.1.
Then, we truncate the series and neglect the higher order terms in € to derive new
approximate models. We derive a first-order model and a second-order model, as
described in the following section.

1.5.5 Second class of ITCs: equivalent models

Equations (1.51) - (1.53) are used to obtain the expressions for the first terms of
the expansion. Then, we truncate the series and we identify a simpler problem
satisfied by

U Qg

ext

u(k) — uO + gul + ...+ €kuk in Qisnt
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up to a residual term of order ¥*!. We neglect the residual term of order £5*! to

obtain an approximate model satisfied by function u¥l. Here, we formally derive
two approximate models of order one and order two respectively.

First-order model
(Uint - Z'600&1) Aui[?l]t = fint in - Qe

- on  Oy.

int —

(1.54)
(Uext - iGOW) AUgi]t = foxt in - Qex,
U!a?c]t = on .
Second-order model
(Uint - ’iéow) Aul[rll}t = fint in - Qi
= Soull o T,
ul[i}t =0 on 00N 0Ny.
(1.55)
(Uext - iGOw) Au&l‘c = fext in Qexta
uly = =S, on T,
2
ugﬂt = on 00N O0Nexs.

Remark 3. The models obtained in this section are very similar to the ones ob-
tained for the static case, (1.18) and (1.19) for the first class of ITCs and (1.36)
and (1.38) for the second class of ITCs. In fact, it is possible to obtain the models
we present in this section by simply substituting the conductivities oy and o ey by
Oint — 16w and Ty — 16w Tespectively.

1.6 3D axisymmetric configuration

The main objective of this section is the derivation of approximate models in a 3D
axisymmetric configuration. The plan of the section is the following. First we set
the model problem we are interested in. Then, we develop a multiscale expansion
in powers of ¢ for the solution to the model problem and we obtain the equations
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for the first terms of the expansion adopting the first approach. Finally, we derive
the desired approximate models. We then address the second class of problems,
and for avoiding repetition with the previous sections only the main results are
presented.

1.6.1 Model problem and scaling

Let Q C R3 be the domain of interest described at Figure 1.4. Domain Qis a
cylinder shaped domain and is decomposed into three subdomains: Qs Q.. and

int?» = “ext’
Qfay Subdomain €%, is a thin layer of umform thickness ¢ > 0. We denote by
the interface between th and Qlay, and by I'

1—‘6

int

lay
the interface between Qlay and

ext
ngt. In this domain, we study the static electric potential equation, which read as
follows

div(e Vi) = f. (1.56)

Here, @ represents the electric potential, o stands for the conductivity and f is
the right-hand side, which corresponds to a current source. The conductivity is a
piecewise constant function, with a different value in each subdomain. Specifically,
the value of the conductivity inside the thin layer Qfay is much larger than the
one in the other subdomains and we assume that it depends on parameter €. We
consider a conductivity of the following form

151
Oint in antJ
_ _ ~ -3 Q
0 = Olay = 00E in oy
15
Oext in Qext,

where gy > 0 is a given constant. We assume the right-hand side f is a piecewise
smooth function that is independent of ¢ and vanishes inside the layer.

fint in lenta
f - flay = 0 in Qlaay,
fext in Qth

We assume that we have a solution to (1.56) @ € H! (Q) Then, denoting the
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N
(¢
4

€ e

ext int ! c
O¢ OeE 0Oe
int lay ext

Y
e >
\5
(a) Sectioned three dimensional domain.
Z
IN
20 .
3 £ 5
int Ql&y Qext
€
Iy :
3 ' €
int .F ext
L > 7/:
7o Ro

(b) Meridian domain.

Figure 1.4: Domain of interest in three dimensions and meridian domain in terms
of cylindrical coordinates
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solution u by
~ . ~ £
Uint m Qint )

. ; OF
U=q Uy in O,

~ . ~ £
Uext 111 Qext )

Problem (1.56) becomes

~ ry . ~E’
Tint Alliyy = fint m Qint7
~ re . ~6
UextAuext = f ext m Qext?
~ _ . ~E’
Aty =0 in .,
~ ~ e
Uint = Ulay on Fint?
} (1.57)
~ ~ €
Ulay = Uext on Fext?

OintOnlling = 00 “Oplilay on I

~ =39~ _ ~ Te
0p€ anulay — Uextanuext on I

u=0 on 09,

where 0,, represents the normal derivative in the direction of the normal vector,

. . . . ~6 ~€ . ~6 ~€ .
which is interior to €, on I't,, and exterior to €, on I'{,, as shown at Figure
1.4.

We introduce a system of cylindrical coordinates (r,0,z). We assume that the
right-hand side f is an axisymmetric function and we know that the conductivity
o and the domain are also axisymmetric (a generalization of the results presented
in this section can be found in Appendix A.2; where the source is no more assumed
to be axisymmetric). As a consequence we eliminate one dimension because the
solution is independent of the angular variable 8. We denote by u the function that
meets

u(z,y,z) = u(rcos(),rsin(), z) = u(r, 2),

and by f the function that satisfies

f(x,y,2) = f(rcos(0),rsin(0), z) = f(r,z).
If we write the Laplace operator in cylindrical coordinates we obtain the fol-

lowing expression
A = lg g + lﬁ + iQ
“ror Uor r2002 022
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Taking into account that u does not depend on € the equation of interest
becomes

oAl = f = ai@ (royu) + cd*u = f.

Now the domain of interest is the meridian domain showed in Figure 1.4b and
the problem of interest is the following

1
2 . €
Tint ;a'r (rOpting) + OintO; Uint = fint in  Q,
L 0, (ro 0? = i Q
O-ext; T (T ruext> + Oext Zuext - fext mn ext’
13 0 0? =0 i 0
; r (T rulay) + Zulay - m lay»
15
Ulay = Uint on Fintu (1 58)
€
Ulay = Uext on Fext’

~ -3 e
0o€ aﬂﬂay = OintOn Uint on 1—‘intv

~ -3 _ 15
0o€ a7“ulay = Oext an Uext on Fext’

u=20 on 00— Ty,

& =0 on Fo.

In three dimensions there is no boundary condition on the axis z. When
reducing the problem to two dimensions, a new boundary arises at the z axis,
due to the symmetry of the solution, we adopt Neumann type conditions on this
boundary. A key point for the derivation of a multiscale expansion for the solution
to Problem (1.58) consists in performing a scaling along the direction normal to
the thin layer. We begin by describing domain f,  in the following way

11
laay = {’Y(Z) +eRn: 7(Z> S F7 Re <_27 2)} )
where 7y is a parametrization of the curve I' (see Figure 1.4), which is defined as

v(2) = (ro, 2), for all z € (0, z),

and n = (1,0) is the normal vector to the curve I'. This domain geometry induces
the following scaling

r=ro+eR & R=¢c'(r—rp)
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As a consequence, we have

o —foF kel

1

This scaling allows us to write the scalar operator —0, (rd,) + 02 in the following
r

way

e720% + et Or + 02

7’0+€R

Now we perform an expansion of the term n in powers of € so that we
To 3

obtain the following expression

o0 o k
e20% + Zsk_1< 3 Or + 02

R
[
k=0 To

We also notice that on the interfaces I'5, and I';, we rewrite the normal
derivative in the following form &, = 0, = ¢ '0z. Finally we denote by U the
function that satisfies

Ulay (T, 2) = Wy (10 + R, 2) = U(R, 2), (R, 2) € (— -

We rewrite Equations (1.58) with the newly defined variables and functions
and they satisfy the following equations

1
2 : €
Uint;ar (raruint) + Uintazuint = fint n Qint7

1 .
Uext;ar (Taruext) + O-extaguext = fext m szta (159)

e P0RU + >t

k=0 To

—R)* 11
CR o+ 20 =0 in (—2,2> % (0, 20),
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along with the following transmission and boundary conditions

€ 1
Uing <T0 272) - U <_27Z>
1
o (r0+5:2) =0 (5%)
OintOr U <T _ < z)—35_48 U —1 z
int Ur Wint 0 27 — 00 R 27
€ ~ 4
gextaruext <TO + 2,2’) = 0¢g€ 8RU <, z>
u =
aruint - 0

z € (0, zp),
z € (0, zp),

z € (0, zp), (1.60)

z € (0, zp),
00 — T,

on

on Fo,

1.6.2 First class of I'TCs: construction of a multiscale ex-

pansion

We now derive the asymptotic expansion. To begin with, we perform an Ansatz in
the form of power series of ¢ for the solution to Problems (1.59) and (1.60). We

look for solutions

Uint (7", Z) ~ Z Eku?nt<r7 Z) in
k>0

Uext (Tv Z) ~ Z 8kulgxt (T’ Z) in
k>0

UR,z)~ Y e"U"R,2) i
k>0

Equations for the coefficients of the electric

QE

int>

QE

ext?

(

(1.61)

11

—5 2> x (0, zg) -

potential

Substituting the previous expressions into Equations (1.59) and (1.60) and collect-
ing the terms with the same powers in ¢, for every k£ € N we obtain the following

set of equations
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1

k 2,k 0 : €
Oiat—0; (ropuby ) + ow02uly, = by in O,

1
k 2k 0 : €
Uext;ar (raruext) + Uextaz uext = fext(sk m Qext7

82 . k—1 (_R)k—l—la . 82 oo ' 11
RU +ZT RU + zU —0 1mn —5,5 X(O,ZO),
=0 0
(1.62a)
(1.62b)
(1.62c¢)

along with the following transmission conditions

=, z) z € (0, 2), (1.63a)

) €
>

Uk (; ) e (ro + ;z> 2€(0,20),  (1.63b)
) (

1
GoOrU* (—2, 2 ) = omOpult (g — g, z) z € (0,20), (1.63c)

1
GoOpU" (2, z) = O Opul (ro + %, z) z € (0,2), (1.63d)

and the following boundary conditions

ouk (0,2) =u (Ro,2) =0 z € (0,2), (1.64a)
uF(r,0) = u¥(r,2) = 0 re (O,ro — ;) U (7’0 + Z,R(]) ,  (1.64b)
U*(R,0) = UX(R, z0) = 0 Re (—2, 2) . (1.64c)

For determining the elemental problem satisfied by each of the terms of the expan-
sion, we will also need the following equation obtained by applying the fundamental
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theorem of calculus for a smooth function U*,

_ NI=

O2U*(R, 2) AR = 0rU* @ z> — OpU* (—; z) :

2

If we substitute Equation (1.62¢) to the left-hand side and Equations (1.63¢) and
(1.63d) to the right-hand side, we obtain the following compatibility condition

/— <8§Uk—2 o)+ TR g Z)> AR = = [o0,0"1] | (2)

2 1=0 To 90
(1.65)
We adopt the convention that the terms with negative indices in Equations (1.62)-
(1.65) are equal to 0. Employing Equations (1.62)- (1.65) we deduce the elementary
problems satisfied outside and inside the layer for any k € N. For that purpose we
employ the following algorithm composed of three steps.

Algorithm for the determination of the coefficients

Initialization of the algorithm:

Before showing the different steps to obtain function U* and u* for every k,
we need to determine function U up to a function in the variable z, denoted by ¢§.
For that purpose we consider Equations (1.62¢), (1.63c), and (1.63d), and we build
the following differential problem in the variable R for U (the variable z plays the
role of a parameter)

11
ORU (R,2) =0 Re<—2,2>,

1
a'()aRUO (—2, Z> = O,

1
5‘08}{(]0 (2, Z> =0.

From these equations we deduce that U° has the following form U°(R, z) = ¢)(z),
where function ¢f) has yet to be determined and this will be done during the first
step of the algorithm. After these preliminary steps, we move onto determining U*
and u* for any k.

We assume that the first terms of the expansion (1.61) up to the order e*~*
have already been calculated and we calculate the equations for the k-th term.
We also assume that at rank & we know the form of U* up to a function in the
variable z, denoted by ¢f. We obtain the expression of U* at rank k — 1. The first
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step consists in determining the expression of function U*! up to function ¢§ .
Then, at the second step we determine function % involved in the expression
of function U*. Finally, we determine u*, and u, at the third step. For every
k=0,1,2,..., we perform the following steps:

First step:

We select Equations (1.62c¢), (1.63c), and (1.63d), and we build the following
differential problem in the variable R for U*™! (the variable z plays the role of a
parameter)

11
DRUM (R, 2) = " (R, 2) Re (—2, 2) ,
~ e -3 €
000rU <—2, z) Oint Opul, <7"0 — 5 z) , (1.66)
~ ki1 (1 £
000rU X 2| = OextOr uext ro + 27 z),

where
k k l

g (R, 2) Z TR z+1 OrU' (R, 2) — O*°U" ' (R, 2).
0

1= T

There exists a solution U*™ to (1.66) provided the compatibility condition (1.65)
is satisfied. We deduce the expression of U**! up to a function in the variable z,
denoted by k™! (). The function U**! has the following form

UMY(R, 2) = V(R  2) + @57 (2),

where V**! represents the part of U¥*! that is determined at this step and has the
form (see Proposition 3)
0 if k£=0,1,2,3
V(R 2) =
OF (R4 of (R34 R (2R if k> 3.

1

Function @f*! represents the part of UF! that is determined at the following

rank.

Second step:
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We employ the compatibility condition (1.65) (at rank k + 2), along with
Equation (1.64c) to write the following differential problem in the variable z for
function @, present in the expression of U*.

Db =) e (0.2),
¢0<0) _0, (1.67)
SDO(ZO) 0,

% k+1 — R)k+1-1 1
hE(2) = — / 1 (agvk (R,2) + Y (Tklz_laRUl (R, z)> dR - = |o0,u*?]
2 0

1=0 90

Te

Solving this differential equation we obtain function % and thus, the complete
expression of U*.

Third step:

We derive the equations outside the layer by employing Equations (1.62a),
(1.62b), (1.63a), (1.63b), (1.64a), and (1.64b). We infer that uf, and u’, are
defined independently in the two subdomains €2, and €.

1
O'int;8 (7’8 ’U,mt) + O'mtaz fcnt = in anta
1
uﬁlt (T’O - ;72> = Uk <_272> )
ul, =0 on 00N, —
a ulnt on Fo,
(1.68)
1
Uext;a (7’0 uext) + O'exta uext 0 in szt,
1
&0”2):WQ4’
b, =0 on 990N A,,.

We will now employ this algorithm to obtain the equations for the first terms
of the expansion.
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First terms of the asymptotics

Terms of order zero

Thanks to the preliminary steps formerly performed during the initialization
of the algorithm we already know that UY has the form U° (R, z) = ] (z). In the
same way we consider Problem (1.66) for U*

-11
OxU'(R,2) =0  R¢€ (2,2),

1
OrU! (—2,z> =0,

aRUl (;,Z) =0.

We deduce that the solution to this equation has the form U'(R, z) = ©}(z). Then,
we employ (1.67) and we build the following problem for ()

d2 0

@900(2) =0 z € (0, 20),
©0(0) =0,
@8(2’0) =0.

We deduce that ¢J(z) = 0 and thus, U°(R, z) = 0. Finally, employing (1.68), we
obtain that the limit solution u° satisfies homogeneous Dirichlet boundary condi-
tions on I, and I'? ;. Thus, the problem satisfied by u° reads as

ext*

1
0 2.0 : €
Uint;ar (raruint) + Uintaz uint = fint m anta
0o _ 15
Ui =0 on 005, — Dy,
0o _
Orttiyy = 0 on  Jly, (1.69)
L, (ro.u Ol = n O
O-ext; e (TOr Uyt ) T OextOy Ugyy = fext mn ext?
0o _ €
Ugyy = 0 on 00 ,.

Terms of order one
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We consider Problem (1.66) for U?
9779 -1 1
0RU* (R, z) =0 RE( ),

1
aRUQ <—2,Z) = 0,

8RU2 (;,Z) =0.

We deduce that the solution to this equation has the form U? (R, 2) = ¢2 (z). Then,
we employ (1.67) and we obtain the following problem for ¢}

d? 1

@apo(z) =0 2z¢€(0,2),
©o(0) =0,
@é(zo) =0.

We deduce that ¢}(z) = 0 and thus, U'(R, z) = 0. Finally, employing (1.68) we
write the problem satisfied outside the layer by u! as two uncoupled problems

71’& (r&uilnt) + 0%l =0 in  Qf

z%int T int»

1 _ 5
Uy = 0 on 0,

- FO?

&uilnt =0 on F(), (170)

ext z Vext ext?

i& (r&.ul ) +0%ul, =0 in  €F

ul =0 on OS¢

ext T ext-

We deduce that u! = 0.
Terms of order two

We consider Problem (1.66) for U3

11
O2UP(R,2) =0 Re ( 2),

1
3RU3 <—2,Z>

8RU3 (;, Z)

0,

0.
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We deduce that the solution to this equation has the form U? (R, z) = ¢} (2). Then,
we employ (1.67) and ¢? satisfies

dz 1 0

@goo(z) = ~5 [a&u }re (z) z€(0,2),
5(0) = 0,
©5(z0) = 0.

We deduce that ©3(z) and thus, U?(R, z) have the following form

U*(R, 2) = ¢5(2)
(1.71)
_ 1 Z(Z —t) {U@Tu } (t)dt + — /Zo(zg —t) [OaTuo} (t)dt.
ag Jo N 00%20 Jo I
Finally, employing (1.68) we write the problem satisfied by u? outside the layer as
two uncoupled problems

1
76 (7‘8 ulnt) 83 12111: = in ant’
r
9
ut (=3 z) = ¢3(2),
mt =0 on 00N, —
oul, = on 0QNTy,
(1.72)
1
7”8 (Ta uext) + 83 623xt = 0 n QZXt?
ext (TO +3 9’ ) = gO%(Z),
w2, =0 on 90N,

Terms of order three

We consider Problem (1.66) for U*

&2, 11

1
GoORrU* (—2, z) Oint Oy umt (7"0 - g, z) ,

ORU* (R, 2) =

1
608RU4 (2, Z) O'exta uext <To —+ g, Z) .
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We deduce that the solution to this equation has the form

UXR,z) = Ai [aﬁruo} . (,Z)R—2 + Ai {a@ruo}rs (2)R + ¢y(2).

oy 2 oy

Then, we employ (1.67) and we build the following problem for ¢}

d? 3 1 0

@Sﬁo(@ = _7801“0 {Uaru }Fg (2) z€(0,20),
5(0) =0,
©(20) =0

We deduce that 3(z) and thus, U?(R, z) have the following form

U*(R, z) = ¢y(2)

. o (1.73)
It Y A Ct) {o0u®} (H)dt+ = /O (0= %) {o0,u®} (t)dt.

oo Jo 1 0020 70

Finally, employing (1.68) we write the problem satisfied outside the layer by u® as
two uncoupled problems

1
;& (r&,uf’m) + o 07Ul =0 in  Qf,,
1
uignt (TO - %7 Z) = U3 (_272> )
ul, =0 on 00N, — I,
oul =0 on T,
(1.74)

1

;@T (r&ug’xt> + Oext 02Ul = 0 in  Q,

3 1
o (n+52) =0 (32)

ul = on 00NN

ext ext*
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Recapitulation of the asymptotic expansion
Proposition 3. The asymptotic expansion (1.61), has the following form

Wing(7, 2) = ub (1, 2) + s (1, 2) + e3ud (r,2) + O (&?4) in Q5

int

Uerr(1, 2) = Ul (r, 2) + %ul,(r, 2) + %ul,(r, 2) + O (€4> in S,

ext ext ext

U(R,z) =e%pa(2) +3p3(2) + O (54) n (—;, ;) x (0, z0),

where functions u®, u?, u®, p3, and ¢} are defined by Equations (1.69), (1.72),
(1.74), (1.71), and (1.73) respectively. For k € N, the solution U* to Equation
(1.66) has the following form

0 if k=01,

(2 if k=23,

k—2
YR if k>4,
j=0

Proof. We conduct the proof by induction on k. For k = 0, 1,2, 3, we have already
calculated the expressions of u* and U* in the previous section. Now let us assume
that for any number i € N, such that ¢ < k, function U? has the form

U'(R,z) = ¢, ()R> + ¢, _3(2)R°+ ...+ i (2) R+ ¢)(2),

We begin by considering Problem (1.66) for U*. Solving this problem we
obtain a solution of the form

UM (R, 2) = 0 o(2) B2 + i _3(2) " + .+ i (2) R + 5 (2),
In the above expression of U* we find function V*, defined as
VE(R,2) = 0 o(2) "2 + 0 5(2)R" P + .. + 01 (2)R

at the first step of the algorithm.
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1.6.3 First class of I'TCs: equivalent models

Now that we know the expressions for the first terms of the expansion, we truncate
the series and we identify a simpler problem satisfied by
WP =0 et + . +FF in O

int

U Qe

ext

up to a residual term of order €¥*1. We neglect the residual term of order **! to

obtain an approximate model satisfied by function ul*). We formally derive three
approximate models of second, third, and fourth order respectively.

Second-order model

For deriving the model of order two, we truncate the series from the second term
and we define u") as

U Qe

ext

u =’ +eut =’ in QF (see Proposition 3).

int

From (1.69), we deduce that u") solves the following uncoupled problem

1
2 : 5
aim;8 (ra umt> + Ot OZu mt = fir in €,

ub) =0

on O

int

0, Umt = on Iy, (1'75)

1
2 : €
Uext Or (T’a uext) + Uexta ext = fext m Qext’

S({ =0 on 0§

ext”

In this case, we have ul! = 4™ as u(V does not depend on e. We infer a second-
order model satisfied by ul!l solution to Problem (1.75).

Third-Order model

For deriving the model of order three, we truncate the series from the third term
and we define u? as

2) U Qe

ext

u? =+ et + 2 =4+ % in O, (see Proposition 3).
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From (1.69), (1.70), and (1.72) we deduce that u? satisfies the following equations

1
O'int;ar (Tarul(i‘z) + O-intazui(r%t? = fint

1
Oext ;ar (rarug()t> + Oext azug(z; = fext

{u@)}ra =0,
d2
= (). = =25 oo
u® =0
ou® =0

in QF

int»

in

ext’

on 00QNIN —T,

on FO .

Following the same procedure as in Section 1.3.2 we obtain the following third-order

asymptotic model for u?

1
Oint — O, (r@rui[i]t) + aintafui[i]t = fint in
T
1
Oext—Of (r&nugt) + aextafu?x]t = fext In
T
{um] =0,
FE
d? 1
— 1,12 2~ (2] —
dz? {u }Fs te 5o [a@ru ]r =0,
u? =0 on
oul =0 on

Fourth-order model

Q€

int»

QE

ext)

(1.76)

002N o — Ty,

I'y.

For deriving the model of order four, we truncate the series from the fourth term

and we define u® as

u® = uteu' vt = WP reui4ed® in

QU

int ext

(see Proposition 3).
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From (1.69), (1.70), (1.72), and (1.74), we deduce that u®® satisfies the following
equations

1
O-intiar (Tarufi]t) + Uintazuﬂ = fint n ant’
T
1
Uextfar (raruvgc]t) + Uextazu[e?)’(]t = fext in QZX‘L?
r
{u(ﬂ =0,

Te

u® =0 on 00NN —T,

0u® =0 on I,

where

1 1 1
_ 2t o] _ .3 1 _ .3 0
g=—¢ 5 [a&u }rs € 5 [o&u }rs € Gore {a@u }rs'
Following the same procedure as in Section 1.3.2 we obtain the following fourth-

order asymptotic model for u!’!

1

O-int*ar (Tarufl]t) + O-intazuj[i]t = fint in Qianta
r
1

Oext —Or (Tarugﬂt) +o extaz u([a?;c]t = fext in
r

[u[gqrs =0,
2L [o0,u] + 2t L0} = _ 47 {u)
00 ' T0To " e dz? re
uPl =0 on 00NN —T,
oul =0 on T.

(1.77)
1.6.4 Second class of I'TCs: construction of a multiscale
expansion

In this section we expand the solution in power series of . Then, by truncating
this series and neglecting higher order terms in ¢, we derive approximate models
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coupled with equivalent transmission conditions across interface I'. Since we use
the same procedure as in the previous sections, we will concentrate on presenting
the obtained results, regarding the multiscale expansion and the derivation of the
asymptotic models. The domain where the approximate models are defined is
depicted at Figure 1.5. For deriving the equivalent models, we first use an Ansatz
in the form of power series of e for the solution to problems (1.59) and (1.60). We
look for solutions

z z
AN AN
20 20
1
1
Q¢ 953 (953 Qint Qext
r o int !ay ext FOI
1
I
1
€ ! 3
I‘int :F I‘ext I
1
L (¢ (¢
T T
To R()’ To Ro’

(a) Meridian domain for the reference (b) Meridian domain for the second class
model. of ITCs.

Figure 1.5: Meridian domains for the reference model and the second class of
asymptotic models.

Uing (1, 2) = Z ekl (r,z) in

int int»

k>0
k, k : €
Uext (T, 2) R ) € UG (T, 2 in
o(r,2) ICEZZO o(r:2) : (1.78)
kyrk : 11
U(R,z) = Y "U*R,z) in <—2,2> x (0, z0) -

k>0

where functions (ufnt) and (ulgxt) are now defined in e-independent domains,
keN keN

contrary to the first approach. We emphasize that the sequence (ufnt)keN (respec-

tively (ulgxt>keN) is defined in Q¢ (respectively Q) even if its associated series

does not approach u in the thin layer. We assume that for k € N, the terms uf

int
and uf  are as regular as necessary, we refer to [19] which provides some regularity
k

results. Then, we conduct a formal Taylor series expansion of the terms u; and

1>

int

uk of the series, in order to write the transmission conditions across interface
ext )

£

I Wéxberform the formal Taylor series expansion in the same way as formerly done
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in Section 1.4.1. Substituting this Ansatz and the formal Taylor series expansions
into the Equations (1.59) and (1.60), and grouping the terms with the same powers
in € together, for every k£ € N we obtain the following set of equations

1
O_int*a (7"8 umt) + Ulnta umt fintél(g) in Qinta
r

1 .
Uext;a (Ta uext) + GextaQ ext fext(sl?; m Qexta

Lo AL (—R)yki . o ks _ -11
ORUS + > ~————0pU"+ 02U * =0 m <—, ) x (0, 20),
=0 To 22
(1.79)

along with the following transmission conditions

i 1
az k—i —_ Uk (_ ) c 0, ’
; 2%! rWing (7“0,2) 2,2 Z ( ZO)
k 1
Z 214 |a:‘ l;th (7’072) = Uk (27Z> S (0720)7
= (1.80)
1
Tint Z 22 1z”+1 fntl 4 (To, Z) = aOaRUk <_27 Z) z € (0, ZO)7
=0
G| 1
Oext Z 2Z Z+1 ]gxtZ 4 (’f‘o, Z) = a\-OaRUk <27 Z> FARS (07 ZO)a
and the following boundary conditions
8 1nt(O Z) ext(R(]? ) =0 KBS (0720)7
uF(r,0) = uF(r, ) =0 rE(O r0—€>U<ro+6RO)
’ ’ ’ 2 9’ ’ (1.81)
K K 11
UM(R,0) = UK(R, z9) = 0 Re(—z,z).

Employing these equations ((1.79) - (1.81)), we determine the elementary problems
satisfied outside and inside the layer for any k € N.

Proposition 4. Following the same procedure as for the first class, we deduce that
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U =U'=0. Thus, the asymptotic expansion (1.78), has the following form

Wing(r, 2) = Ul (1, 2) + eu;  (r, 2) + O (52> in

int nt?

Ueqs(1, 2) = u, (1, 2) + eul,(r, 2) + O (52) in  QF

int ext’

U(R,z)=0 (52> in (—;, ;) x (0, 2).

where the functions u® and u' satisfy the following problems

o intAU?nt = f int in Qmu
u?m =0 on 0 — Lo,
ol , =0 on T, (1.82)

0 .
{ O-extAuezt = fe]:t m Qemta

U’gzt = O on aQexb
and
o intAuzl'nt = fimt in o Qi
1 1 1
Uit = §anumt on T
uzl.nt =0 on 0y N O — Ty,
oy =0 on Ty, (1.83)
O-ethuelzmt - f ext in Qexta
1 1 1
Uegt = _ianuext on r
ul, =0 on 0y N OS.

1.6.5 Second class of ITCs: equivalent models

Once we know the expressions for the first terms of the expansion, we truncate the
series and we identify a simpler problem satisfied by

k)

WP =0 4 et +.. P in Qint U Qext
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up to a residual term of order ¥*'. We neglect the residual term of order e
g

k+1 to

obtain an approximate model satisfied by function u¥l. Here, we formally derive
two approximate models of order one and order two respectively.

First-order model
1 0
Uint;a (7”8 UEH]t) + Ulntazz Eg]t fint
0
ujy = 0

o, u[O]

int —

Uext a (T‘a U’ext) + Uext82 ext f ext

u[e())gt =0
Second-order model
Ulnt (9 (7"8 umt) + O'mtaQ mt fint in
M =Z0ull on
[Ht =0 on
0 uLllt =0 on
1
Oext ;ar (raru([;gt) + O'extagug(]t = fext
1 € 1
,U/([;X]t = _5 ( (L)gt
ext O

in Qinta
on as2int - FU)
on Iy,
in Qexta
on  0Ney.
Qint:
L,
0 N Oy, — To,
FO)
m Qext7
on I,

on 0L N ONext.

(1.84)

(1.85)



CHAPTER

DERIVATION OF ITCS WITH MIXED
EXTERNAL BOUNDARY
CONDITIONS

2.1 Introduction

This chapter is devoted to the derivation of asymptotic models in a configuration
similar to the one considered in Chapter 1. The framework is the one that has
been explained in Section 1.1. We consider the equations for the static electric
potential (1.2) set in the domain described in Figure 1.1. The main difference with
the previous chapter is that now we will consider mixed boundary conditions. We
consider homogeneous Dirichlet boundary conditions in some parts of the boundary
and homogeneous Neumann boundary conditions in the rest of the boundary. To
clarify, the boundary conditions are set as follows

{ u=>0 on I'p,

O,u =10 on Iy,
where the boundaries I'p and I'y are defined by

{ I-‘D = {(079) VRS (an0>} U {(L7y) VRS (anO)}a
Iy ={(z,0):2 € (0,L)} U{(z,y0) :z € (0,L)}.

These boundary conditions are more realistic towards the application we will
consider in the following chapters. The process of derivation of the asymptotic
models differs from the previous one (Chapter 1) because of this change in the
boundary conditions, and also do the resulting asymptotic models. The first steps
of the process are very similar to the ones described in Chapter 1, so we refer the
reader to sections 1.1 and 1.2 for more details concerning these steps and we will
directly explain the remaining steps, which are original.

107
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2.2 Static 2D configuration: first class of I'TCs

2.2.1 Construction of a multiscale expansion

In order to derive an asymptotic expansion, we begin by performing an Ansatz in
the form of power series of € for functions iy, Uext, and U in the same way we
have done in (1.4).

Uine (2, ) = > el (z,y) in  Qf, (2.1a)
k>0
Ut (2, y) = D eFul (. y) in Q. (2.1b)
k>0
kyrk : L1
U<X> y) ~ ZE U (X7 y) m _57 5 X (07y0) . (210)
k>0

Equations for the coefficients of the electric potential

Substituting the expansions (2.1) into the Equations (1.3) and collecting the terms
with the same powers in ¢, for every k € N we obtain the following set of equations

UintAuiknt (‘Ta y) = fint (IE, y>6g in QZXt? (22&)

UextAu’gXt (Ia y) = fext (.f, y>5§ in QZXt’ (22b)
11

RUNX. ) = 00" *(X.) i (<5:5) xOw), (220

along with the following transmission conditions
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1
U* (—2, y> = uf, (:vo - ;y> y€(0,90), (2.3a)
k(1 k €
U (2a y> = Ueyy, <£L’0 + 57 y> ) S (07 yO)v (23b)
~ r(_1 k—4 £
UOaXU <_2a y> - Uintanuint <$0 - 57 y) Yy € (07 yO)v (23C)
1
a\-OaXUVk (2a y> - Uextanulg);g4 (ZL‘() + ga y) ) € (07 yO)a (23d)
and the following boundary conditions
u®(0,y) = u*(L,y) = 0 y € (0, 40), (2.4a)
& & € €
Opu™(,0) = Opu”(z,y0) =0 x € <0,£E0 — 2) U <£B0 + 27L> , (2.4b)
" " 11
OxU*(X,0) = OxU*(X, o) = 0 X e (—2, 2) , (2.4¢)

where 6 still represents the Kronecker symbol. For determining the elemental
problems satisfied by each of the terms of the expansion, we will also need a com-
patibility condition. To obtain it we apply the fundamental theorem of calculus
for a smooth function U*, along with the Equations (2.2¢), (2.3c), and (2.3d), and
we obtain

1
8§Uk_2(X, y)dX = — [a@nuk_ﬂ

0o

(). (2.5)

1
2
=1 Ie
2

We adopt the convention that the terms with negative indices in Equations (2.2) -
(2.5) are equal to 0. Employing Equations (2.2) - (2.5) we deduce the elementary
problems satisfied outside and inside the layer for any £ € N. For that purpose, we
employ the following algorithm composed of four steps.

Algorithm for the determination of the coefficients

Initialization of the algorithm:

Before showing the steps for the general algorithm for any k, we have to
determine U up to a constant \g. For that purpose we consider Equations (2.2¢),
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(2.3¢), and (2.3d), and we end up with the following differential problem in the
variable X for U°, where the variable y plays the role of a parameter,
-11

1
aXUO (_27y> = 07

1

We deduce that the solution to this equation has the form U°(X,y) = ¢)(y). Then,
we employ the compatibility condition (2.5) (at rank k = 2), along with Equation
(2.4¢) to obtain the following differential problem in the variable y for function ¢,
related to UY

d2

diyzgﬁg@) =0 y € (0,%),
d ,

—,(0) =0

d

@wg(yo) = 0.

We deduce that ¢ has the form ¢3(y) = Ao and thus, U%(X,y) = A9, where
constant Ay has yet to be determined and we will do it at the first step of the
algorithm. After these preliminary steps, we can search to determine U* and u*
for any even k.

We assume that the first terms of the expansion (2.1) up to the order 1
have already been calculated, and we obtain the equations for the k-th term. In
the same way as for the Dirichlet case, u* and U* will vanish for odd values of k,
so we will only concentrate on determining them for even values of k.

The algorithm is divided in four steps. The first step consist in determining
U**2 at the rank k + 2 up to a function in the variable y, denoted by ©E+2. The
second step is plainly different form what we set for the Dirichlet case, it consists
in determining a constant ), for fully determining the expression of U* at the rank
k. This constant was not involved in the Dirichlet case. The third step consists in
determining u¥, and ¥, and finally the fourth step consists in determining the ex-

pression of U**2 up to a constant A\, which will be calculated at the second step
of the following rank. For every rank k = 0,1, 2, ..., we perform the following steps:

First step:
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When the rank k of the algorithm begins, we already know function U* has
the following form

UM(X,y) = VH(X, ) + 0§ (y) + A,
where the only term we have not determined at this point is constant \p. We
begin by selecting Equations (2.2c¢), (2.3c), and (2.3d), and we build the following

differential problem in the variable X for U*¥*2 (the variable y plays the role of a
parameter)

11
RUM(X, ) = ~02UH(X. y) Xe(-35)
~ k42 1 k-2 €
ao0xU —579 = Uint@zuim To — 57 v, (2-6)
~ g2 (1 k—2 €
UOaXU (27 y) = O-extanuext (x() + 57 y) .

There exists a solution U™ of (2.6) provided the compatibility condition (2.5) is
satisfied. We deduce the expression of U**? up to a function in the variable y,

denoted by k2. The function U**? has the following form

UM (X, y) = VF(X,y) + o5 (y),

where V**2 represents the part of U* that is determined at this step and has the
form(see Proposition 5)

0 if k=0,

VER2 (X, y) = .
Cr) X+l (X ey X i k>0.

Function @™ represents the part of U* that is determined at the following steps.

Second step:

We use the compatibility condition (2.5) (at rank k +4), along with Equation

(2.4c) to write the following differential problem in the variable y for function @™

involved in the expression of U2,

1

d2 k+2 k
g () = =5 |oow’] . )

I

1
— 2 RVHR(X, ) dX  y € (0,y0),
2

d k+2
“@ _ 2.7

d
@so'é”(yo) =0.
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Integrating the volumic Equation (2.7) from 0 to y, and applying the boundary
conditions we obtain a compatibility condition for u* of the following form

_/Oyo 010 |:0‘a u } (y)dy :/Oy

For the sake of simplicity we introduce the following notation

- /Oyo

2VETA(X,y) dX dy. (2.8)

N",L Nl

RVE(X,y) dX dy. (2.9)

’\",_. Nl

We employ Equations (2.3a) and (2.3b) for determining the values of u”* at

I'¢ . and I'¢... We have

int ext”

mt = Uk on ant’
(2.10)

_ 77k €
ukb, =U on I'

ext»

where UF = V% 4 cpo + Az. We derive u* by performing a decomposition into two
different functions in the following way. We consider

ub = o + A, (2.11)
where @* satisfies the problem
O-intA?jiknt = fint(sloc in ant?
ant =V*+ 9;775 on I,
k=0 on 095, NTp,
Oput . = on 0095, NIy,
(2.12)
OextAalgxt = feXt(S(])C in QZXU
a]ecxt = Vk + QD’& on FZXt’
k. =0 on O, NIp,
Otk =0 on 0O, NIy,
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and u satisfies the problem

ATipg =0 in Qf,

Ui = 1 on I%,.

Ut =0 on 007, NIp,
OnTint = 0 on 00, NIy,

(2.13)

ATy, = 0 in O,

Uext = 1 on It

Uxt =0 on 00, NITp,
OnText = 0 on O, NIy,

Then, we choose constant A, such that the condition (2.8) is satisfied, which
yields the following expression

Yo 1 _
Co— [ < [o0aa] . )y
A = 20 00 a . (2.14)
= ni e d
| = looulr. )y

00

It is not difficult to derive an analytical solution for @, which has the form

x €
ﬂint(xay) - To — € (x,y) € (0,% - 2) X (anO)a
2
ulx,y) =
(z,9) ) T .
Uext(l’,y) = m (%Z/) € ($0 + 2;[/) X (07310)-
2

Thus, we deduce that
Yo
|7 o0t ()dy # 0
and Ay is well defined.

Third step:

We derive the equations outside the layer by employing Equations (2.2a),
(2.2b), (2.3a), (2.3b), (2.4a), and (2.4b). We infer that uf, and u”, are defined
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independently in the two subdomains €2, and €2,.

k k : €
OintAine = fidg 0 Oy,
kK _ k €
uint - U on Fint’
k 5
UL, = on I'pnNoQ,,
k 15
Ontiny =0 on I'nynNox,.,
(2.15)
AuF = oF i Q:
OextRAUeyy = f ext¥Q m ext)?
k. _ k 15
uext - U on Fext’
k €
Ugyy = 0 on I'pnNoQ,,
k. _ e
Opllayy = 0 on I'yNoQL,.

Fourth step:

As we have already obtained the expression of function ©* and since condition
(2.8) is satisfied, there exists a solution to (2.7), which is denoted by @i*2. The

solution is unique up to the choice of a constant A\yyo. Function 52 has the form

k42 kte
0y T =9yt Ay,

—~—

where 2 represents the part of ¢f™? that is determined at this step and constant

Apro Will be calculated at the rank k + 2 of the algorithm. Thus, we have the
following expression of function U**2

—~—

UM(X,y) = VF(X, y) + o6 (y) + Mg,

which is the used in the first step of the following rank and where the only unde-
termined term at this point is constant Agyo.

First terms of the asymptotics

Terms of order zero

At this point we remark that thanks to the preliminary steps we performed
in the initialization of the algorithm, we already know that U 9 has the following
form U%(X,y) = Ag. We have V? = 0 and ¢} = 0. At this rank, we will calculate
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constant g and functions V2 and 3. We begin by considering Problem (2.6) for
U2
9 9 -1 1

1
8)((]2 (_27y> = 07

1

We deduce that the solution to this equation has the form U?(X,y) = ¢2(y), and
so V2= 0. Then, thanks to (2.7) we get the following problem for (3

d? 2 1 0

dTJQSOO(y) = "% [Uﬁnu }re y € (0,%),
d
@903
d

d*y@%(@/o) = 0.

(0) =0, (2.16)

Integrating the first equation from 0 to yy and injecting the boundary conditions,
we obtain condition (2.8) for u°

/0 " oou] (t)dt =0, (2.17)

The constant (2.9) takes the value Cy = 0. We employ this condition to calculate
constant Ao, from Equation (2.10) we deduce that

int — int»

{uo =) on I¢

0o _ 15
Uy =N on I

ext*

Thus, we derive u’ by performing a decomposition (2.11) into two different func-
tions in the following way

UO = ﬂo + )\0@7
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where u0 satisfies the Problem (2.12)

o intAﬂ?nt = fint in - O,
ﬂ?nt =0 on Fiant’
u, =0 on 9%, NTp,
Ot =0 on 0095, NIy,
TextMigyy = foxt in
ﬁgxt =0 on szw
., =0 on 90 . NTp,
Ot =0 on 90 NTy,

and u satisfies the Problem (2.13). Then, we choose constant Ay such that the
condition (2.17) is satisfied, we obtain expression (2.14) for Ag

/ ” 00,°] _ (1) dt
Ao = — 0 a (2.18)

/0 * 00y (t)dt

Employing (2.15), we obtain that the limit solution u" satisfies Dirichlet
boundary conditions on T, and I',. The problems satisfied by v, and ul,
are then

0o _ : €
Oint Ay = fint in O,

w o=\ on I%

int»

uo = on FD N 898

int»

Opud. =0 on I'yNosY

int»

(2.19)

0 : €
UextAueXt = fext m Qexta

w, =X on TI°.

ul, =0 on I'pnNoQE

ext?

ol = on I'ynNoQe

ext*

Finally, from Equation (2.16) we deduce that ©?2 has the following form

oY) = v3(y) + A,
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where 923 is defined by

cily) = —/Oy /08610 00| (t)dtds.

and Ao is a constant to be determined at the rank 2.

Terms of order two

At this point we already know that U? has the form

U(X,y) = ¢a(y) = a(y) + Ao (2.20)

At this rank we will calculate constant A, and functions V* and 923. To begin
with, we consider Problem (2.6) for U

RUNX,y) = — [o0,] () xe(53),

g0
oxU* (=1.4) = ool (w0 — £
X 2>y = OintOnUjpg | To 27y )

1 €
oxU* (2,y> = aextanugxt (xo + Q,y) )

We deduce that the solution to this equation has the form

4 _ 1 0 2 1 0 4
UNXoy) = 55 00.u°] () X* + B {000} ()X +3(y).

Thus, we have

VHX,y) = 2;\0 [a@nuo}

(y)X?+ Ai {U@nuo}

r 0o

WX

Then, we employ (2.7) and we build the following problem for ¢

) == [o0] L )~ g [0 ) we O
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Integrating the volumic equation from 0 to yy, and employing the boundary condi-
tions, we obtain condition (2.8) for u?

/OyO (00,7 (1)t = 214dd [00,0%) (o) - 214(;; [00,u%) _(0). (2.21)

and we get that constant (2.9) takes the value

1d

Cy = 24d [08 }E(yo)_

1d

2dy {J@nuo] (0).

FE
We employ this condition along with equation (2.10) to calculate constant Ay, which
gives rise to

mt SDO + /\2 on Plsnin

2 9 €
Uext _900—’_)\2 on Fext

Thus, we derive u* by performing a decomposition (2.11) into two different func-
tions in the following way

u2 = ’l~L2 + )\gﬂ,

where u2 satisfies the Problem (2.12)

Ot AL, = 0 in Qf,,
1nt 900 on anta
ur, =0 on 0, NIp,
Oz, =0 on 9%, NTy,
Ot A2, = 0 in Q.
W= on Tog
w2, =0 on O, NIp,
T on 096, NIy,

and u satisfies the Problem (2.13). Then, we choose constant Ay such that the
condition (2.21) is satisfied, we find expression (2.14) for A,

yol
)\2202_/0 5 [aﬁu} Edy.

vo 1
/0 — [00,74]p- dy

00
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Employing (2.15), we obtain the Dirichlet boundary conditions on I%, and

re, for u?. Thus, we write the problems satisfied by u2, and u2, as

ext

2 : €
TintAuy,, =0 in Q.

154
1nt SDU + )\2 on Flnt )

1nt =0 on FD N ant?
Opu2, = on I'nyNox,,
(2.22)
JextAugxt =0 in QZXfJ

ext QDO + /\2 on PZXt’
Opu?, = on I'yNoQ,,

ext ’

Finally, from Equation (2.16) we deduce that g has the following form

Co(y) = @b(y) + A4,

where ;ﬁ is defined as

R R 1
/0/an (00,02 () dt ds //2400 [00,u°) _ (t) d ds.

and )4 is a constant to be determined at the rank 4.

Recapitulation of the asymptotic expansion
Proposition 5. The asymptotic expansion (2.1), has the following form
uint(xa y) = u?nt<x7 y) + €2u12'nt(x7 y) + O (€4> n Qint?

uemt(ma y) = u?za:t(‘ra y) + EZUiIt(Z’, y) + O (84> Z’ﬂ, Qimt?

. 11
U (Xv y) = )‘0 + 62903 (y) + ) (54) m <_27 2) X (0=yo),

where constant \g and functions @3, u°, and u? are defined by Equations (2.18),
(2.20), (2.19), and (2.22), respectively. For k € N, the solution U* of Equation
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(2.6) has the following form

0 if  k odd,

Uk (X7 y) = k-2 . —
S W)X+ k() + A if K even,
j=1

where 4,,073 is derived at the fourth step of the algorithm as a solution to (2.7) and
solution u® = (uk ., u¥ ) to Problem (1.12) satisfies

ub =uf =0, if Kk odd
Proof. The proof is similar to the one performed for the Dirichlet case. In addition,
once we have proved that for an even k function U* has the form

UM(X,y) = 0f o X 2+ i s XF 72+ L 4+ 0f X + o,

Equation (2.7) at the rank k allows us to deduce that ¢F has the form

Cely) = Oh(y) + A,

where function Jg is obtained from Equation (2.7), and )y is obtained following
the same arguments as the ones set at the second step of the algorithm. O]

2.2.2 Equivalent models

Now that we know the expressions for the first terms of the expansion, we truncate
the series and we identify a simpler problem satisfied by

k) k, k

u® = 4 eut + ..+ EFu in Qf

up to a residual term of order **'. We neglect the residual term of order %! to

obtain an approximate model satisfied by function ul¥l. Here, we formally derive
two approximate models of order two and order four respectively.

Second-order model

For deriving the second-order model, we truncate the series from the second
term and we define uV) as

D= 4eut =0 in O,

U Qg

ext

ul (see Proposition 5).
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From (2.19), we conclude that u" solves the following uncoupled problems

Cinluly = fur 0 O,
ugg - >\0 on F‘isnw
ut) =0 on 0. NI
int — int D,
&lul(it) =0 on 00, NIy,
(2.23)
UextAué)lc{ = f ext in QZXb?
u(&i{ = )\0 on szta
ug({ = on 00, NIp,
&Lug& =0 on 00 . NIy

ext

In this case, we have ul! = u™ as u(!) does not depend on e. We infer a second-
order model satisfied by ul!l solution to Problem (2.23).

Fourth-order model

For deriving the fourth-order model, we truncate the series from the fourth
term and we define u(® as

u® = +eut 4 2P+ P = 4% in Q5 UQ,

(see Proposition 5).

From (2.19) and (2.22), and employing the same procedure we employed for the
Dirichlet case in the Section (1.3.2), we deduce that u® satisfies the following
transmission problem

UintAui(ig = fint in Qienta
UextAUg?t = f ext n QZXt’
{u(?’)} =0,
FE

e —_2la.0] Lo
d—yQ{u }FE——Ea—O[a U }F€+ (e%),

O,u® =0 on Uy,

u® =0 on OUlp.
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We define as ul¥! the function we obtain when truncating the solution at the fourth
element of the expansion and neglecting the terms of order four or higher in e.
Then, ul® satisfies the following transmission problem

O-intAui[i] = fint in ant’
UextAuc[s?;c]t = fext in sztv
[u[zﬂ =0,
v (2.24)
o~ 2 *
g _ _%0d o
|:O—anu :|F5 = 5‘2 dy2 {U }FE )
o,ull =0 on FUTly,
wlBl =0 on Q°UTIp.

We remark that the obtained transmission conditions for the fourth-order
model with mixed external boundary conditions coincide with the ones obtained
for the fourth-order model (1.19) with Dirichlet external boundary conditions.

2.3 Static 2D configuration: second class of I'TCs

2.3.1 Construction of a multiscale expansion

In this section we perform an expansion of the solution in power series of € as we
have done in Section 2.2.1. Then, by truncating this series and neglecting higher
order terms in €, we derive approximate models composed by equivalent conditions
in Section 2.3.2. As in the previous chapter, the main difference with the first class
of ITCs is that now we employ some formal Taylor series expansions to write the
terms of the expansion across an artificial interface I' situated in the middle of the
thin layer. The resulting asymptotic models will be defined in the domain depicted
at Figure 1.2b.

In order to avoid repetition, we will restrict ourselves to showing the obtained
asymptotic models without showing the details regarding the calculi, due to them
being similar to the ones performed in the previous sections and chapters.

We begin by performing an Ansatz in the form of power series of ¢ for functions
Uing, Uext, and U just as formerly done in (2.1) and we employ a formal Taylor series
expansion of the terms u¥, and u*_ to extend the domain up to interface I' as in
Section 1.4.1.
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Equations for the coefficients of the electric potential

Substituting the expansions (1.20) into the Equations (1.3) and collecting the terms
with the same powers in ¢, for every k € N we obtain the following set of equations

along with the following transmission conditions

Oint Aufm (I, y)

Text Aigy (7, ) =

= fint(xa y)ég

fext (LE’ y)(;g

HxUMX,y) + ;U (X, y) =0

iIl Qext>

il’l Qext7

11

(-

22

(2.25a)
(2.25b)

) % (0,50), (2.25¢)

k 1 ) _1
Z )@Z b (wo,y) = U" (,y € (0,50), (2.26a)
= 24! 2
k
Z 57 ,5% g (20, ) = ( ) € (0,5), (2.26h)
T Z L gl (an,) = oo () € (0,30), (2260
k=1 q 1
oeth F0n ube ™ (o, y) = 500xU (2 ) € (0,y), (2.26d)
and the following boundary conditions
u*(0,y) = u*(L,y) = 0 y € (0, %0), (2.27a)
k k € €
Opu”(2,0) = 0pu”(z,y0) =0 € (O,xo - 2) U (xo + 2,L> , (2.27b)
k k 11
OxU(X,0) = OxU*(X,y) =0 X € (—2, 2) , (2.27¢)
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For determining the elementary problems satisfied by each term of the expansion,
we will also need the following compatibility condition

=

— | UM (X, y)dX

|
L

(2.28)
1 k=t Oext itl k—4—i i+10int qit1 k—4—;
— 8—0 g 721.2,' an Uext, (1E07 y) + <—1) 72%' 871 (TH (x(), y) .
=0 : .

We adopt the convention that the terms with negative indices in Equations (2.25)
- (2.28) are equal to 0. Employing Equations ((2.25) - (2.28)) we deduce the
elementary problems satisfied outside and inside the layer for every k& € N.

First terms of the asymptotics

Terms of order zero

We consider Equations (2.25¢), (2.26¢), and (2.26d), and we end up with the
following differential problem governing function U in the variable X (the variable
y has the role of a parameter)

~1 1
HRU(X,y) =0 Xe(,),
272
%) UO(—1 )—0
X 27y — Y

1
oxU° (2,y> =0.

The solution to this equation has the form U%(X,y) = ¢)(y). Then, we consider
Equations (2.28) and (2.27b) and we build the following differential problem for
function ¢f in the variable y

d2
d 0
A0 =0 (2.29)
d
@@8(1/0) =0

We deduce that the solution to this equation has the form J(y) = Ag. Again,
we consider Equations (2.25¢), (2.26¢), and (2.26d) and we build the following
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differential problem for function U? in the variable X (the variable y has the role
of a parameter)

—-11

1
aXU2 <_2ay> = Oa

1

We obtain that the solution to this equation has the form U?(X,y) = ¢2(y). Then,
we consider Equations (2.28) and (2.27b), and we get the following differential
problem for function (3 in the variable y

d2 2 1 0
dTJQ%(Z/) = 5 [Uanu }FE y € (0,90),

Integrating the volumic equation from 0 to y, and employing the boundary condi-
tions, we obtain condition

/0 v [000°) () dt =0. (2.30)

We employ this condition with Equations of (2.26a) and (2.26b) to calculate con-
stant A\g. We get

0 _ 5
Ut = A0 on I

0o _ 5
{ Uing = AO on Fint?

ext*

Thus, we construct «° by performing a decomposition into two different functions
in the following way

UO = ﬂo + )\0@7
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where 10 satisfies the problem

O-intAa?nt = fint in
Uiy = 0 on I,
. =0 on 005, NIp,
Ot =0 on 0%, NTy,
UextAﬁgxt = fext in Qf,
ﬁgxt =0 on I,
., =0 on 00, NIp,
Ol =0 on 90, NTy,
and w satisfies the problem
ATy =0 in Q.
Uit = 1 on I,
Uipt = 0 on 095, NITp,
Onling = 0 on O, NIy,
(2.31)
ATy, = 0 in Q.
Uext = 1 on I,
Uext = 0 on OO, NIp,
OnText = 0 on O, NTy.

Then, we choose constant Ay such that the condition (2.17) is satisfied. It has
the expression

/ v |00,i°] (t)dt
N = — 0 4 : (2.32)
/0 (00, (t) dt

In the same way we did in Section 2.2.1 it is possible to prove that
(00, (t) dt # 0 and thus, Ag is well defined. Finally, employing Equations
(2.25a), (2.25b), (2.26a), (2.26b), (2.27a), and (2.27b), we obtain that the limit

Yo
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solution u° satisfies Dirichlet boundary conditions on T, and I'? ;. The problems
satisfied by v, and v, are thus

0 : €
Ot AUy = fie  in

int»

0o _ 15
Uing = >\0 on Fint?

u). =0 on [I'pnNoQk

int int>

8nu?nt =0 on I'yNoQks,,

(2.33)

0 : €
UextAuext = fext m Q

ext’

0o _ 5
Uext = >\0 on Fext?

ul . =0 on [I'pnNoQe

ext ext?

Opul, =0 on I'y NOQL,.

Terms of order one

We consider Equations (2.25c¢), (2.26¢), and (2.26d) , and we build the follow-
ing differential problem for function U! in the variable X (the variable y has the
role of a parameter)

-1 1
a;(Ul(Xay):O XE (272>7

1
8XU1 <_27y> = 07

1

The solution to this equation has the form U'(X,y) = }(y). Then, we consider
Equations (2.28) and (2.27b), and we build the following differential problem for
function ¢} in the variable y

d2

di?ﬂgo(l](y) =0 y € (0,%0),
d 1

—:(0) =0

d

dfysOé(yo) = 0.

We deduce that the solution to this equation has the form ©}(y) = A;. Again,
we consider Equations (2.25¢), (2.26¢), and (2.26d), and we build the following
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differential problem for function U? in the variable X (the variable y has the role
of a parameter)

AU Xy =0 Xe(F.3).
1
aXZ]3 (_27y> 07
1
aX(]3 <2,y> =0

We obtain that the solution to this equation has the form U3(X,y) = ©3(y). Then,
we consider Equations (2.28) and (2.27b), and we build the following differential
problem for function ¢} in the variable y

d* 1 1 1 0

diyﬂ?o(y) = _870 [Uanu ]r - ?70 {Uanu }r y € (0,%),
d

d

dfysog(yo) = 0.

Integrating the first equation from 0 to yo and employing the boundary conditions,
we obtain

/0 v 0| (t)dt = — /0 v {o0,u} () dt. (2.34)

We employ (2.34) to calculate constant A\; with the help of Equations (2.26a) and
(2.26b). We have

1
ut =M\ + =0,u on IF%

int 9 int int»
1 _ A\ — 1 a 0 Fs
Uext = M 2 nUext on ext"

Thus, we derive u! by performing a decomposition into two different functions in
the following way

ul = ﬂl + )\0@,



2.3. STATIC 2D CONFIGURATION: SECOND CLASS OF ITCS 129

where u! satisfies the problem

~1 . e
Oint Aty = 0 in O,
1 e
1nt - 28 ulnt on Flnt?
1nt =0 on annt N FD,
~1 15
Ontiy = 0 on O, NTy,
~1 : 5
Oext Algyy = 0 in Q.
1
~1 0 €
Uext 58 Wext on Fext7
€
., =0 on 00, NIp,
~1 €
Oy, = 0 on 00, NIy,

and u satisfies the Problem (2.31). Then, we choose constant A; such that the
condition (2.34) is satisfied, we obtain

[ ety 0= [T oo (@) ar
/0 "ol (1) de |

A = (2.35)

We remark / v (00,1 (t) dt # 0 and thus, Ay is well defined. Finally, employ-
0

ing Equations (2.25a), (2.25b), (2.26a), (2.26b), (2.27a), and (2.27b), we obtain the
problems satisfied by v, and ul,

1 . 5
O-intAujnt — Jint m Q]nt?

mt =\ + 8 umt on %

int>

mt =0 on I'pNoQk,,
0, umt on I'y NoSx,,
(2.36)
UextAuéXt = f ext in sz‘m
uéxt 8 U’ext on szm
ul, =0 on I'pNoQ,,

0, uext =0 on I'nynNoQ,
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Recapitulation of the asymptotic expansion
Proposition 6. The asymptotic expansion (1.4) has the following form
uint(xa y) = u(i)nt(xv y) + 5uz1'nt(x7 y) + ) (52) in Qinta

uezt<x7 y) = ngt(ffa y) + guixt(xa y) + O (52) mn Qemta

11
UX,y)=X+eN+0 (52) n (—2, 2) x (0,%0),

where functions uy and uy are defined by Equations (2.33) and (2.36), respectively.
Constants Ao and X\ are defined by Equations (2.32) and (2.35).

2.3.2 Equivalent models

From Equations (2.25) - (2.28) we deduce the expressions for the first terms of the
expansion. Then, we truncate the series and we identify a simpler problem satisfied
by

WP =0 eut + . i Qe U Qe

up to a residual term of order **!. We neglect the residual term of order £5*! to
obtain an approximate model satisfied by function u¥l. Here, we formally derive
two approximate models of order one and order two respectively.

First-order model

o intAui[?l}t = fit I g,
uﬂ =X on [I%,,
uﬂ =0 on 00, NIp,
ﬁnui[g}t =0 on 00, NIy,
(2.37)
UextAUgt = fext 0 Sy,
Ugt = Ao on TGy,
ul? =0 on 09, NI'p,
Boul% =0 on 095, NTy.
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Second-order model

o intAui[Ill}t = fint in Oy,
=+ Zoall o T
Uit = on 9%, N,
8nu1[111}t =0 on 00, NIy,
(2.38)
antAu[egt = foxt in QL
- Soall o T,
ull =0 on 90, NTp,
Baull =0 on 095, NTy.
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CHAPTER

ANALYSIS OF THE ITCS

3.1 Introduction

This chapter is devoted to the validation of the multiscale expansion we have de-
rived in Chapter 1 and the convergence results. We perform proofs of existence,
uniqueness, and uniform estimates for the reference model problem we have studied
and then, we prove the convergence of the asymptotic models towards the solution
to the reference model.

This chapter is structured as follows. Section 3.2 is devoted to the study of
reference model (1.2), regarding the well-posedness of the model and the derivation
of uniform estimates. Then, in Section 3.3, we study the convergence of the asymp-
totic expansion for the reference model and we give estimates for the expansion of
the reference model. Sections 3.4 and 3.5 are dedicated to the study of the asymp-
totic models we have derived employing the first and second approach respectively.
In these sections we derive the variational formulations for the asymptotic models
and we prove stability and convergence results.

3.2 The reference model: well-posedness and
uniform estimates

In this section we will prove that there exists a solution to Problem (1.2) and
that this solution is unique. Instead of considering directly Problem (1.2), we will
consider a similar one. This problem is defined employing the same configuration
we have defined in Section 1.2. We remark that constants oy, ey, and gg are
strictly positive, and this fact will play an important role in the following proofs.
We remark Figure 1.1 shows the configuration of the domain we are working with.

133
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In this framework we consider the following problem

: 154
O-intAuint = fint in Q

int»

_ : £
UextAuext - fext 1mn Qexta
£

~ -3 .
00 "AUjay = flay in oy

£
Uint = Ulay OI Fint?

(3.1)

P 1>
Ulay = Uext ON  L'cyy,

~ =3 €
0o€ anulay - Uintanuint = Gint on I

int»

~ -3 o €
0o€ 8nulay - Uextanuext = Gext on Fext?

u=20 on Of).

This problem is similar to Problem (1.2) and it generalizes it because the right-
hand side fi,, does not vanish inside the layer any more and because it includes
the right-hand side functions gi,; and gey. The results obtained for this problem
will be useful in later sections, where we prove the convergence of the asymptotic
models.

We write the variational formulation of Problem (3.1). Assuming f € L? (Q),
gt € L*(T%,), and ge € L*(T%,,), a weak solution to (3.1) is a function u €

int ext

H; (Q) that for all w € Hj () verifies
a(u,w) = l(w) (3.2)

where

QE

lay

a(u,w) zaim/ Vu - Vwdr + oy / Vu - Vwdz + G2 Vu - Vwdz,
Qignt Qegext
l(w) =— / fimw do — / fextw dz — / Srayw dz + / Gintw ds
Qignt ngt ngay ant

+ / Jextw ds.
ngt

We will see that a strong solution to (3.1) is also a weak solution. We denote
as C! (Q) the space of functions which are continuously differentiable and with
compact support. We select w € C! (), we multiply the equations in (3.1) with
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w and we integrate over the domain in order to obtain:

Cint / Auw dr + Teyt / Avw dx + Gy 3 Avw dzx
Qe Qexe

o
lay

= / fintw da + / fextw dx + / frayw d.
ant szt Qisay
We integrate by parts and we have

Cint / Vu - Vw + Oext / Vu-Vwdr + e 3 Vu-Vwdr
ant ngt

QS

lay

= _/ fintw dr — / fextw dr — / flayw dx + / JintW ds + / GintW ds.
QiEnt QZXt ngay Fignt ngt

We say that a function u € C* () satisfying the above variational equation is
a weak solution to (3.1). As C! (Q2) is dense in H} (©2), this identity is also true for
w € H} (). We check that a weak solution is also a strong solution. If we assume
ueC? (ﬁ), u =0 in 0N and it satisfies (3.2), (i.e. u is a classical solution of (3.1))
integrating by parts we obtain

Uint/ (Au — fint) wdz + Uext/ (Au — fou) wdz
Qg Qe

int ext

+G0e 2 /QE (Au — fiay) wdz = 0.

lay

As C(Q) is dense in L? (), we deduce that u satisfies (3.1) almost everywhere,
and in fact everywhere because u € C? (ﬁ) If u is not a classical solution, it is
still possible to prove this result using the green formula in

HY (A)={u:ue H () and Au € L? (Q°)}. Now we give the theorem and proof
that guarantees the existence and uniqueness of a solution to this problem and
present some uniform estimates for this solution.

Theorem 1. For all € > 0 there exists a unique u € H}(Q), solution to Problem
(3.2) with data f € L*(), gimt € L*(T5,,), gext € L*(T,,). Moreover, there exists

ext

g0 > 0 and a constant C' > 0, such that for all € € (0, &),

lull,g < € (IFlog + lgalor:, + lgeallor: ) -

Proof. We would like to employ the Lax-Milgram Lemma. For that purpose, we
have to first prove that the bilinear form a is coercive and continuous in H{ (), and
that the linear form [ is continuous in Hy (). We start by proving coerciveness of
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ain H} (). For that purpose, applying Poincaré inequality, there exist a constant
kq such that for all w € Hy(Q)

[l de <k [ Ve de = il < ks Vol (33)

where ky = ky 4+ 1. Substituting v = w in the definition of @ and applying (3.3) we
obtain

€
int ext Q1

a(w,w) :aint/ \Vw|2dx—|—aext/ |Vw|2d:1:+505_3/ Vw|* do
Qs O
ay

(3.4)

> min (Uint7 Oext 305_3> ||Vw”§,sz
2
> ks |lwll g,

1
where ks = k—min (aint,aextﬁoe’?’). With this, the coerciveness of a in H}(Q)
2
gets proved. Now we would like to prove the continuity of [ in Hj(Q2). For that

purpose, let us first define the Dirichlet trace operator. Let X be the boundary of
O, where O € {2, 2.}, the Dirichlet trace operator is defined as

int»

e HY(O) —  H2(D)
w — Wy = wls.

(3.5)

Let k4 > 0 be the continuity constant of the Dirichlet trace operator vs. Then,
for all w € H' (O) we obtain

sl s = llwslls g < kalwll o

For the sake of simplicity, we write w instead of wrs and wr: . Applying this
result and the Cauchy-Schwarz inequality to the definition of , we obtain

[l(w)] < ||fint||0,Q§nt ||w||o,Qi€nt + ||fext||0,ngt ||w||0,Qgxt + || fray 0.5, ||w||079fay

+ ||gint||0,1“§nt ||w||0,1“§m + ||gext||o,1“gxt ”wHO,FgXt

<k Nolly o (Wil g, + W fexllogs, + sl

O’ngt > !

+ HgintHO,ant + ”gext
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where ks = max (1, k4). This proves the continuity of [ in space H}(Q). Finally,
we prove the continuity of a in Hj (), applying the Cauchy-Schwarz inequality to
the definition of a, for u € H} (), we deduce

a(u, )] <ow [Valloge [Vwlog: + e IVullgge IV0lloq:

+ Goe? ||VUHO,Qfa ||Vw||07915
y ay
S (Uint + Oext + 605_3) ”quO,Q va”O,Q

<ks ||U||1,Q ||w||1,Q ’

where kg = Oint + Oext + 0o °. The identity (3.4) proves that a is coercive in

H} (Q), the identity (3.7) assures that a is continuous in Hj (), and the identity
(3.6) demonstrates that [ is continuous in H} (£2). We now apply the Lax-Milgram
Lemma to conclude that there exists a unique u € H}(Q) such that for all w €
Hy (),

a(u,w) = l(w).

To prove the second part of the theorem, dealing with uniform estimates, we

select
00
Min(Ting, Text )

Then, for any € € (0,9) and taking w = w in (3.4), we obtain

ja(u,w)] = ke flullf g (3-8)

1
where k; = k—min (Cint, Oext)- On the other hand, we take w = u in (3.6), and we
2
obtain

)] < ks Nl o (Wil + el + sl

(3.9)
+ gl + ol )

Finally, taking w = wu in the variational formulation

|a(u, w)| = [1(u)]
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and applying (3.8) in the left-hand side and (3.9) in the right-hand side, we obtain

2
b llull? g < Fs lull g (1l + Mosilog, + Ifiaslor

+ llgmellope,, + [[gextllo,re )

ks
Denoting C' = . we derive the desired result
7

Il < € (I, + Mol + fislloos ron + lgoalore, )

3.3 Convergence of the asymptotic expansion for
the reference model

We start by defining the residue for the reference Problem (1.2). We use domain
2 defined in Figure 1.1. The residue of order N of the asymptotic expansion (1.4)
is defined by removing the first NV terms to the solution u of the reference Problem
(1.2).

Definition 5. Let u be the solution to Problem (1.2). Given the expansion in
power series (1.4) and a specific order N € N, we define the residue r™ as

N k . €
rint(x>y) umt z Z/ E € umt x y m th’
N . €
Tezt(x7y> - uemt z y E 8 uext x y m Qext?
N krrk €
Tlay(l‘7 y) ulay x y § e"U ( ,y) lay®

Proposition 7. Let N € N. The residue v defined in Definition 5 satisfies the
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following equations
O'imAT%t =0 in Q5
amAr o =0 in Q.
GOS’SArﬁy = f{jy in Qg
N N
Tint = Tlay on Finﬂ
N N
Tlay =Tegt ON Fizt?
805_38nrlay O intOn rmt giNm on IS,
605_38nrlay JeiEta Temt gemt on Fixt?
N =0 on 0f2,
where
fl](:’y =N+ ( &082ulay — 50082ulay>
g%t = N 3 (O’mta U"Lt —3 +...+¢ Umt@numt> (310)

N 4 -3
gemt (O-ezta U’emt +...t¢€ Ueftanuext)

Proof. We deduce this result by applying Equations (1.5), (1.6), (1.7), and (3.1)

to the definition of the residue.

Equation in € ;:

N
UintAri]Xt(xa y) - O-intAuint - Z 5k0‘intAuﬁlt (l’, y)
k=0

= fi(z,y) — amtAulm x,y) Z € UmtA’LLmt(iE y) = 0.
k=1

Equation in Q,:

N
Oext AT (T, ) = OextAtiexy — Y € Oexs Al (. y)

- fext(x7y) O-extAuext T y Z £ UextAueXt(x y) = 0.

k=1
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Equation in Qf, : We remark that we have defined the variable X as X =
r — X9

. Then, we have

€
N
605_3Arﬁy(x, y) =60 Ay (z,y) — > "G AU* (X, y)
k=0
N N
= 3 TR (X, y) + Y U (X, y)
k=0 k=0

=e%6005%U" (X, y) + £ 16005U" (X, y)
+ NG 05 UNT (X, y) 4+ eV 25005 UN T (X, y)
N-2
+ 3 06 (RUM (X, y) — Q2UF (X, y))
k=0

—N g0 (<020 (X.) BV (X.),

:gN ( 82ulay (SU y) _EaZUIay (:E y))
Equation on I :

£ £ N 1
rl];[y (900 - 27y> = ulay (900 - 27y> - ngUk (_27y>

Equation on I',;:

N € € N1
Tlay($0+2,y)Zulay<$o+2,y>—z5 U (2,y>
k=0
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Equation on I ;:

N
~ 3 ~ € N _ 1
00 S&Lrgy <xo — 5 y) = Goe > Opyay (:cg — 2,y) — Gy y_ " oxU” <_2’ y)

k=0

€ N hdg ke €
:O-intanuint <I’0 - q y> — Oint Z € a nUWint <.T0 ) y)
2 P 2
N
15 €
:Uintanuint <$0 - y> — Oing Z Ekanuiknt <$0 I y)
2 P 2
N—3 -3 € €
+ & OintOn umt o 2,y + ...+ 00, umt o 2,y
€
O-mta Tmt (ZL‘O - 57 y)

c €
+ €N_3 (Umta umt . <.T0 - 57 Z/) +...+¢€ Ulnta umt <$0 n 5’ y)) .
Equation on I't ;:

N
~ € - € N _ 1
Goe *OnTiny (xo + 3 y> = G OpUlay <m0 + 5 y> — G0y e toxU” (, y)

k=0 2

£ £
=0t (20 5.) = 0 S o a0+ 500)
k=0

£ N k k g
:Uextanuext (xO + a) y> — Oext Z € anuext <$0 + a) y)
2 s 2
N-3 € £
+e€ Uext(3 uext o + 57 Yy +...+¢€ Uexta uext o + 57 Y
9
=0 extOn rext (:co + > y)

c 3
+ 5N_3 <Uextanuext (IO + 57 y) et UeXtanueXt («To + 57 y)) '

Theorem 2. Let N € N. For ¢ € (0,e0) and under the assumptions fy, €
L2 (Qfag) gant € L2 (F€ ) gezt € L2( ext) fN+5 € L2 (QE ) gz]X?S € L2 (Fint>

int lay lay
g e L2(12,,), and uF € H' () for k < N +5, the following estimate holds for
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the residue defined in Definition 5,

N
ext

N

N+1
r int < (Ce ,

+ \/_Hrlay

+‘7°

1,06 . 1,98, ’1 Qa -

for a positive constant C' > 0 independent of ¢.

Proof. Applying Theorem 1 and Proposition 7, for € € (0,¢0), we deduce that there
exists a unique r € H} () and it satisfies the following estimate

N N—4z |52 2
<C(" a0 || 750 |25
Hr H1Q —C( 0 ulay 0,05, te o ulay 0.95,,
N-3 N-3
+¢ Oint ‘a u HO,ant +... .+ 5 Oint ’8 Ulnt IO’FiEnc
N-3 -3
+ 7 0ext H& ull ‘ ore., + oot N oo H8 ul, ‘o e )
We deduce that HrN H = O(eV~1). We concentrate now on the part of the domain
which is outside the thm layer. In €25, we have

N ‘ ‘ N+5H N+1 H N—HH N+2 H N+2’
T : +¢€ : +e :
t — t t t
‘ m 17Qi5nt " 1 stnt m 1 lent m 1 ant
N+3 ||, N+3 N+4 ||, N+4 N+5 ||, N+5
A (o e [ e
m 1’Qlisnt m 17Q(iznt m 1 ngnt
_ N+1 €
We deduce that ||r, = 0(c™). In QF,, we have
N ‘ N+5H N+1 H N+1H N+2 H N+2H
T < +¢€ +ée
‘ ext 17Q§xt ext 17ngt ext 1 ngt ext 1 ngt
N+3 ||, N+3 N+4 ||, N+4 N+5 ||, N+5
e ugd?]| g+ st g+ et
ext LQth ext LQZX: ext LQth

We conclude that ’ = O(eM™). Now we focus on the part corresponding

eXt 17Q§xt
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to the layer. Here we have

o, = (]
(L s [ ) ot (50
7L e () )
(/“/_ cofeaxags [ [
g

k
Hulay

1
2 5
dx)

dz+ [ |Vuf,
Qs Y
lay

dx dy

D=

oxU* (X, y)‘ edX dy

m\»—A

(x| eax dy)

We conclude that Huﬁ‘y _— O (5_%) Thus, taking this into account, we
" lay

obtain

N

N+5
7alahy

lay H 105,

+ N+ HUN+1

N+2 ||, N+2
+e ‘
lay H Ko

1,0 —‘ lay Hl,Qe
ay lay

N+6

N+3 H N+3 H
+e U
lay 1,08
ay

N+4 ||, N+4
+ée Hu
lay H 1O

N+5
+ e
lay H 1,05,

u

We deduce that ‘ r{jy .

" lay

=0 (5N +%>. Now we deduce the desired result

N

ext

N

int

CEN—H
Los — ’

+
17QZXC

+ Ve i

r r

1,00, Tay

]
Remark 4. We remark that the assumptions of Theorem 2 are rather strong as-

sumptions because in general the expansion consumes reqularity at each order and
the first term of the expansion u®, solution to (1.13), belongs only to H? ().
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3.4 Validation of the equivalent conditions: first
class of I'TCs

3.4.1 Second-order model: variational formulation

This section is devoted to the derivation of a variational formulation for the second-
order asymptotic model we have derived in Section 1.3.2. This is required to develop
a performance assessment by applying a finite element method and it will also be
necessary for the convergence proofs presented in the following sections.

Problem (1.18) is uncoupled into two independent problems. Therefore we
write two variational formulations, one for each problem. We introduce functional
spaces Hy (Qf ) and H{ (QF,,) as the functional framework.

int ext

and Q°

ext

We multiply the equations of Problem (1.18) defined over €

by
int

test functions wiy € Hy (9%,) and wey € Hy (©5,,). Then, we integrate over the
domains and we obtain

/E fintwint dz = /E UintAuintwint dl’,
Qint Q

int

/E fextwext do = /5 UextAuextwext dz.
Qext ext
Integrating by parts, we obtain
_/QE fintwint dz :/QE Uintvuint : VU)int dz _/ R O_inténuintwint d57
int

int int

_‘/QE fextwext dJ] :‘/(25 Uextvuext : vU)ext dZE _/ . Uextanuextwext dS-
ext

ext ext

If we take into account the properties of the test functions, we directly deduce
the variational formulations for both uncoupled problems (1.18). Assuming fi,, €

L2 (Q5,) and fox € L? (95,,), the problem reduces to finding i, € H{ (95,,) such
that for all wy,, € Hy (Q5,,)
—/ JintWing d2 = / Tint VUint * V Wiy A, (3.11)
Qignt QiEnt

and finding ue € HY (9

ext

) such that for all wey € HY (5,,)

— / SoxtWext dx = / Ooxt VUext * V Wext AT. (3.12)
ngt o

ext
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3.4.2 Fourth-order model: variational formulation

In this section we derive a variational formulation for the fourth-order asymptotic
model we have derived in Section 1.3.2. This is required to perform a performance
assessment by applying a finite element method and it will also be necessary for
the convergence proofs performed in the following sections. Instead of considering
Problem (1.19) directly, we will consider the following problem

. €
UintAuint = fint mn Qinta

: €
UextAuext - fext n Qext7

[ulre =0, (3.13)

. d
8’200d—y2 {u}pe + [00,ulpe = 9,

u=0 on 00NN

This problem is similar to Problem (1.19) and it generalizes it by including the
right-hand side function g. Thus, the results obtained for this problem can also
be applied to Problem (1.19) by simply setting ¢ = 0. We begin by selecting the
functional space, denoted by V; and defined as follows.

Definition 6. Functional space Vy is given by

VZ; :{’LU P Wint € Hl (ant

),’[UemEHl (Qa

ext

), Ve {w} € L? (),

Wirs , = W

int

FE

= » Wlagnaas , = 0, w|aana0:,, = 0}

Remark 5. Mean values and jumps are defined over the interfaces I';,, and ' ,.
As jump and mean values only depend on the variable y, when we write I' we are
referring to the interval y € (0, o).

Proposition 8. Functional space Vy, characterized in Definition 6, equipped with
the norm

1
2 2 2
1,06 + HVFE {w}HO,FE)Q 3

lwlly, = (Jlw

is a Hilbert space.

Proof. As H' (£2¢) is a Hilbert space and Vj is a subspace of H! (Q), if we prove
that V} is closed, then, we deduce that V} is a Hilbert space. Let us prove that V}
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is closed. Let (wn), oy € V4 be a convergent sequence in V; and let w be its limit.
We have to prove that w € Vj.

Since (wy), ey € (H' (€)),,cn, we deduce that w € H' (Q°). It is enough to
verify that w re_ and that Vp- {w} € L*(I'*). For the first step, let iy
be the Dirichlet trace operator of boundary I, and e be the Dirichlet trace

operator of boundary I':_,, defined in the same as in (3.5). For any n € N, w,, € Vj,
we know that

1—‘iEnt =w

(3.14)

Wint,n

Then, since (w,),, oy s convergent in H' (QF), we obtain

Wint,n 7 Wint,
n—00

wext,n ? Wext-
n—00

Finally, as the Dirichlet trace operator is continuous, we deduce that

Yint (wmt,n) oo Yint (wmt) ) N int,n g, n—oo e Fient’
w —_— w
Vext ( ext,n) o0 Vext ( ext) ) Wext,n re . nooo ext e t,
ex ex

and thus, by employing (3.14) we obtain

For the second step, it is only necessary to verify that Vp-w € L? (T'°). We
know that for any n € N, Vrew, € L? (I'°). Then, as L? (T¢) is a closed space, we
deduce that Ve € L? ().

]

We now derive the variational formulation. For that purpose, we select a test
function w € V; and we multiply the equations in 2, and Q¢ of Problem (3.13)
with this test function

/ fintwdx+/ fextwdx: /
Qs Q. Qs

int int

Oint Aingw do + / Ooxt Allexiw d.
Qixt
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Integrating by parts we obtain
— / fipw dx — / foxqw dx = / Oint VUint + VW dz + / Oext Vlext * VW AT
Qisnt Q:xt QiEnt Qth

- Uintanuintw dS - /

Uextanuextw dS - / Uintanuintw dS
0QNOQE 0QNONE . e

int
_/E O-extanuextwds-
Fext

We rewrite the traces of functions i, and uey using the jump and mean value
expressions, whose definitions have been presented in Definition 1. We proceed in
the following way

€ 1
Uintanuint <£E0 - 57 y) = {Janu}FE (y) - 5 [Janu]FE (y)a

1
Uextanuext <IO + ga y) = {Janu}FE (y) + 5 [Uanu]rf (y>

Substituting these expressions in the previous equation, we derive an identity in
the form of a Green formula for the configuration we are working with

- / fingw dz — / Jeww dz = / Oint VUing - Vw dz
Qs et Tt
+ /QE Ooxt Vlext * VW dx + /F {00 u}pe [w]pe ds
(3.15)
+ / (00 ulpe {w}pe ds — /a Oint O Uingw s
1—‘6

QNONE,,

~ ooronr O et On Uext W d5S.
N

ext

Taking into account the properties of the test functions, we directly deduce the
variational formulation in V} for Problem (1.19) from Equation (3.15). Assuming
fiw € L2(Q5,) and feor € L*(2,,) the variational problem reduces to finding

int ext

u € Vj, such that for all w € Vj,
a(u,w) = l(w), (3.16)
where
a(u,w) = Uim/ Vu-Vwdr + O’ext/ Vu - Vwdr
Qignt ngt
+60c2 /FE Ve {u}pe Ve {w}. ds,

l(w) = —/QE finw dx — /ngt fextw dx — /FE g{w}p. ds.

int
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3.4.3 Stability results

We will develop an expansion in power series of € for the Problem (1.19) in the
form

Bl k~k : €
Uext ~ € Ugyt m ant?
- (3.17)
3.17
[3] : €
Uing ~ Z eu 1nt m Qext
k>0

We substitute these series in Equations (1.19) and we collect the terms with the
same power in €. For every £ € N we obtain the following set of equations

~k 0 : €
UintAuint - fint5k 1 ant’
~k 0 : €
OextAUext = fext5k 1 Qext7
Ak}
u =0
[ e ’ (318)

" =0 on 90N 0.

Definition 7. Given the expansion in power series (3.17) and N € N, we define
the residue ™ as

N _ , 5
7’mt<x y) umt z y ZE umt X y m th,
N . .
Tezt<x7y) - ue:rt x y Zé U’emt x y m Qe:ﬂt

In order to prove the existence, uniqueness, and uniform estimates of Problem
(3.16), we will write a Poincaré inequality for the configuration we are working on.

Theorem 3. There exists a constant C' > 0 such that for all u € Vy,
/ lu|? do < C’/ |Vul?dz.
QE QE

Proof. We follow a similar reasoning to the one presented in [4] (Proposition 8.13
and corollary 9.19). For all u € Vj, u is continuous across the interfaces I'f, and
Ic,,, and it vanishes in the rest of the boundary. We take (z,y) € Q° and we

ext’
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distinguish two possible cases. Case I: if (z,y) € Q,,, we obtain

L
/ Ou(t,y)dt

[u(a, )| = [u(L,y) — ulz,y)] = < [ 10wty .

where we have defined I = (O,xo — %) U (xo + %,L). Case IL: if (z,y) € Qf,, we
obtain

L

[u(w )| = (L, y) = u(e,p)] = | [ 7 Dt ) i+

Oru(t,y) dt‘

zo+5

<
< [ 1ow(t.y)ldt.

Thus, we deduce that for all (z,y) € QF

uley)| < [ |t ) dt.
We now apply Cauchy-Schwartz inequality to obtain
ue,y)? < L [ |ty dt
We continue by integrating in the x variable and we obtain
J ey de < LL—e) [1ow(t.y)at < L2 [ oty
Finally, we integrate in the y variable to deduce the desired result
/QE |u|? do < L? /Qe |0,u)? dor < L /Qs |Vul?dz.
O

Theorem 4. For all € > 0 there exists a unique u € Vy solution to Problem (3.16)
with data fumy € L*(Q5,,) , fe € L*(9,,), and g € L*(T¢). Moreover, there erists
g0 > 0 and a constant C' > 0, such that for all € € (0, ),

lelly, < C (I fmlloar, + [l feutlloor, + ll9llore) -

Proof. We first employ the Lax-Milgram Lemma. To do so, we have to prove first
that the bilinear form a is coercive and continuous in Vj, and that the linear form
[ is continuous in V. We begin by proving the coerciveness of a. Using Theorem
3, we know that there exists a constant k; such that for all w € V}

| lwPde <k [ Vel de = il <k IVelig,  (3.19)
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where ky = k1 4+ 1. Then, applying this result to the definition of a, we obtain

a(w,w) = aim/ |Vw|* dz + aext/ |Vw|* dz + 805_2/ Ve {w} |*ds
Qs 0c,, re

e,

€
in

> min (Gint, Oext) /QE |Vw|* do + Goe 2 /FE Ve {w} |* ds

> kg [|wll7,
(3.20)

1
where k3 = o min (aint, Oexty O0E 2).The above result shows the coerciveness of a

in V4. We now prove the continuity of [ in V4. For that purpose, we employ the
Dirichlet trace operator s as in Equation (3.5). Let k4 > 0 be the continuity
constant of the Dirichlet trace operator. Then, for all w € V}, we obtain

el = lwslly g < kallwl, o

For the sake of simplicity in the notations, we shall write w instead of wrs and
wre_ . Applying this result and the Cauchy-Schwarz inequality to the definition of
[ we obtain

|L(w)] < || fins]

{w}lor-

0,08, ”wHopfm + ||fext||0,ngt ”wHo,ngt + ||g||0,1“5

<ks [|wlly qr (Il fine

o0s, T fextllogs,, + l9llo,re) (3.21)

<ks llwlly, (I finllogs, + Ifexillogs, + 9llor:) -

where ks = max(1, k4). This proves the continuity of [ in V;. Finally, we prove the
continuity of a in V4, applying the Cauchy-Schwarz inequality to the definition of
a, for u € Vy, we deduce

[a, w)] < |Vl gp, 10l 0, + e [Vullogr, [Vwllor,
+ G072 || Ve {utlore [Vre {w}lor-
<(@ins + o) [0l g 0] (3.22)
+ Goe 2| Ve {ubllore Ve {w}lore

<ks [|ully, lwlly,
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where kg = (Oins + Text + 00 2). Identity (3.20) proves that a is coercive in V,
identity (3.22) shows that a is continuous in Vj,, and identitiy (3.21) demonstrates
that [ is continuous in V;. We now apply the Lax-Milgram Lemma to deduce that
there exists a unique u € Vj such that for all w € Vj,

a(u,w) = l(w).

Now only the uniform estimates remain to prove. For that purpose, we consider
€o as

e
€= ——.
Min(Cine, Oext )

Then, for any ¢ € (0,¢q), taking w = u in Equation (3.20), we deduce that
a(u,u) > kr |lully, , (3.23)

1
where k; = = min (Oint, Text). On the other hand, we take w = u in (3.21)
2

1w)] < ks lfully, (Wincllog, + Wostllogs + 9llor-) (3.24)
Finally, taking w = v in the variational formulation
|a(u, u)| = [I(u)]

and applying (3.23) in the left-hand side and (3.24) in the right-hand side we obtain

2
b lull?, < ks llully, (1 fmlloos + [ fextlone, + lgllor) -

k
Introducing C = k‘j’ we obtain the desired result
7

lully, < C (I fmlloos, + I follogs, + lgllor)
]

Proposition 9. Let N € N, the residue 7V defined in Definition 7 satisfies the
following equations

o intA?z]‘Xt =0 i Qg
TentAT = 0 n Qo
[?N] re 0,
o A N N
< JodT/? {r }FE + [Oﬁnr ]I‘E —9
=0 on 00N OO,
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where
g% = N ([0, e 00" ] ).

Proof. We deduce this result by applying Equations (3.18) and (1.19) to the defi-
nition of the residue.
Equation in € ,:
N N
O-intA’;a\j]I\lft = UintAui[i}t — Z 6kaintAﬁfm = fint — O'intAa?nt — Z EkUthAafnt =0.
k=0 k=1

£ .
ext”

Equation in 2

N N
SN 3] k ~k ~0 k ~k
UextArext - O_extAuext - Z € O_extAuext - fext - O_intAuext - Z € UextAuext - O
k=0 k=1

First transmission condition:

RS > )

k=0

Second transmission condition:
d2 N d2 N d2
- o~ [3] o~ k;i ~k
O_OdyQ {T }1—‘5 - O-Ody2 {U }FE 0—01;6 dy2 {U }FE

N

=¢? [a@nu[gq — Z ek [a@n@k_ﬂ .
k=0
N
=¢? [a@nu[gq —e?y ek [a&nﬂk] .
k=0

4 N+ {a@nﬁN“} .

=¢? [a@n?N] .t gh+3 [aﬁn@NH} . g+ [aﬁn@N”] e

]

Theorem 5. Let N € N. For e € (0,g0) and under the assumption g~ € L* ('),
the following estimate holds for the residue 7 defined in Definition 7, for a constant
C > 0 independent of €

=N

SN
r exrt

N+1
r < Ce
int 1,08, —

int

1’(2iwt
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Proof. We deduce this result directly from Theorem 4 and Proposition 9

N IR <ceNH H (00,0 +é| [00,a"?]
1’Qext 1’Qint Ire O,FE re O,FE
We deduce that
ﬁ?}f(t Qe ?ijr\lft Qe :O(gNH)-
17 ext 17 int

3.4.4 Convergence results

Theorem 6. Let u be the solution to the reference Problem (1.2) and let ul!! be
the solution to the second-order asymptotic model (1.18), which writes as

1 _ : €
O-intAuint - fint m Qint?

uE}}t =0 on  O0S)

mt*

1 _ ; €
UeztAuezt - fezt m Qexta

u[elga]t = on 0

ext”

Under the assumptions of Theorem 2 for N =1, € € (0,e9) and with data fi; €

L2 (,,) and fen € L*(Q2,,). The following estimate holds: there exists a constant
C > 0 independent of ¢, such that
(1] (1] 2
Uing — Uiy, + | Uegt — Ugy < Ce”.
’ t o, ’ t tloe,

Proof. We deduce this result directly from Theorem 2. For the second-order model,
we have that the truncated series ul") satisfies Problem (1.18). Thus, we have
ul = 4 and we deduce the desired result

Uint — ul(rllg M

Uext — Uext

(1]

L (1]
Uing Uing

Uext — Uext

+

+

LOs, ‘

1,08

int 17Qisnt I’QE

ext

1
int

1
ext

< Ce2.

+
1?ngt o

I’ant

r
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Theorem 7. Let u be the solution to the reference Problem (1.2) and let ul® be
the solution to the fourth-order asymptotic model (1.19), which writes as

O-intAug'i]t = fint in Q?m&a
O-eﬂvtAu[eSagt = f ext in Qizt?
[u[g]} =0,
FE
~ 19
Bl _ _00d (o
[Uanu :|F5 = 52 dy2 {U }FE’
ubBl =0 on 00N ONE.

Under the assumptions of Theorem 2 and Theorem 5 for N = 3, € € (0,&0) and
with a data fi, € L* (95,,) and feu € L? (Q%,,). The following estimate holds: there
exists a constant C' > 0 independent of €, such that

Proof. To begin with, we consider the expansion (3.17) of ul®! that we have de-
scribed above. More specifically, we consider Equations (3.18). We deduce that for
k =0,1,2,3, we obtain the following expressions for @*

3]

3] _
Uegt Uyt

4
WUint — WUint < C&f .

192G —

+

1’Q§nt

k=0:
~0 : €
{ UintAuint = fint 1mn Qint7
~0 __ e
Uy = 0 on  0€X,.
~0 : 15
{ OextQUgy = foxs in e,
Fo _ €
Ugyy = 0 on 00 .
k=1:

We deduce that a! = 0.



3.4. VALIDATION: FIRST CLASS OF ITCS

155

T ATZ, = 0 in 0,
T A2, =0 in O,
. =0
o0n],. = =0 {1}y,
a* =0 on 00N oS¥.

k=3:

We deduce that a° = 0.

If we compare the above expressions with the ones in Section 1.3.2, we deduce

that

o = uf k=0,1,2,3.

Thus, using Theorem 2 and Theorem 5 we deduce the desired result

(3] (3]

Uint — Uing o T ||Uext — Uext 105,

S Uint — ul(l’?l’t?, 1,060, + u[rdl]t - ul(r?;t) ’I’Qisn + Uext — Ug’()t 1,00, + uv[a?)’(]t -
= ||Uint — Ul(r?t) L0, + ul[?l]t - Al(iz ll,ﬂfm + || Uext — Uéi)t 105, + Ugt -
= T13nt LOg, + ?‘\i?’nt 1,08, + rgxt 1,08, + ‘ ?Sxt 1,05, S 054'

uin

I’Q:xt

~(3)

ext

1’ngt
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3.5 Validation of the equivalent conditions: sec-
ond class of I'TCs

3.5.1 First-order model: variational formulation

This section is devoted to the derivation of a variational formulation for the first-
order and second-order asymptotic models we have derived in Section 1.4.2. This is
required to develop a performance assessment by applying a finite element method
and it will also be necessary for the convergence and stability proofs performed in
the following sections.

We remark that the domain and configuration for these models have been
presented in Section 1.4.1 and Figure 1.2. Problem (1.36) is uncoupled into two
independent problems. Therefore we write two variational formulations, one for
each problem. We first introduce functional spaces Hy (Qin) and H} (Qext) as the
functional framework.

We select as test functions wi € H} (Qne) and wexy € Hi (Qext), and we
multiply the equations in i, and Qe of Problem (1.36) with these test functions.
Then, we integrate over the domains and we obtain

/ fintwint dz = / UintAuintwint dx
Qint int

/ f ext Wext do = / UextAuextwext dz.
Qext Qext

Integrating by parts, we obtain
_/Q fintwint dr = ,/(26 Uintvuint : vU)int dz — / O-intanuintwint dS,
int i

int int

_/Q fextwext dx :/ Uextvuext : vrwext dx — / Uextanuextwext ds.
ext

ext Qext

If we take into account the properties of the test functions, we directly deduce
the variational formulation for both the uncoupled problems (1.36). Assuming
fint € L? (Qung) and fexy € L? (Qext), the variational formulations reduce to finding
Uins € Hg (Qing) such that for all wiy, € H (Qint)

- / fintwint dZE = / Uintvuint . Vu}int dea (325)
Qint Qint
and finding Uey; € H} (Qext) such that for all wey € HY (Qext)

— / SoxtWext dx = / Oext VUext * VWext AT. (3.26)
Qext Qext
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3.5.2 Second-order model: variational formulation

In this section, we derive a variational formulation for the second-order asymptotic
model (1.38) we have derived in Section 1.4.2. We introduce functional spaces Viy
and V. as the functional framework, which are defined as follows

V;nt = {w € Hl (Qint) : w|8§2ﬂaﬂint = 0}7
(3.27)
Vi = {w € H' (Qext) : wlo0rno0, = 0} -

We select as test functions wi,y € Viye and wexy € Vg, and we multiply the
equations in i, and Qe of Problem (1.38) with these test functions. Then, we
integrate over the domain and integrating by parts we obtain

- /Q fintwint do = / O-intvuint ' v'wint do — / Uintanuintwint d57
int

Q int o0 int

- /Q fextwext do = / Uextvuext : Vu}ext do — / Uextanuextwext ds.
ext

Qext 8Qext

Taking into account the properties of the test functions and the boundary
conditions in I', we deduce the variational formulation for both the uncoupled
problems (1.38). Assuming fix € L? (Que) and foxe € L? (Qeyt), the variational
formulations consist in finding i, € Ving, such that for all wy,, € Vigg

2O-int

- /Q fintWing dx = / Tint VUint * VWine dT — / 78 Uint Wing ds,
int

Qint T

and finding ey € Vixe, such that for all weyy € Vexs

2Uext
_/Q fextwext dz = / Jextvuext : Vwext dz — / - Uext Wext ds.
ext

Qext r

Observing these variational formulations, we notice that we cannot prove the co-
erciveness of the bilinear form due to the terms

20_int d d 20_ext d
- UintWint AS an - UextWext AS
r ¢ I £

being negative. These negative terms could cause instabilities when numerically
solving the problem with the finite element method. However, to overcome this
problem and recover stability, we have derived new models across some artificial
boundaries in Section 1.4.3. With these models, we will no longer have instability
problems, as we will prove in the following section.
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3.5.3 Stabilized /-order two model: variational formulation

In this section, we derive a variational formulation for the stabilized d-order two
model (1.43) we have derived in Section 1.4.3. Instead of directly considering
Problem (1.43), we will consider the following problem

UintAuint = fint in Qé
1—26
Uint — uanuint = Jint on F(s

2
Ui = 0 on 90NN

. 4
UextAuext = f ext m Q

1—-29
Uext T €(2)8nuext = Jext on Fé

Uext = 0 on 9NN ..

This problem is similar to Problem (1.43) and it generalizes it by including the
right-hand side functions g; and g,. Thus, the results obtained for this problem
can also be applied to Problem (1.43) by simply applying ¢g; = 0 and g» = 0. We
begin by selecting the functional framework. We introduce functional spaces V;°

int
and V22, which are defined as follows

V;flt = {w € H' (Qiént) L Wgonans = O}a

int

Vot = {w e ' (ngt> L w|ponaas,, = O} :

Proceeding in the same way as in the previous section, we derive the follow-
ing variational formulation. Assuming fi, € L? (Q?nt) and fo € L? <Q5 ), the

ext

variational formulations reduce to finding uiy, € V2., such that for all wy, € Vigt

int»
aint(uinta wint) = lint (wint)7 (328)

and finding ue € V2., such that for all wey € Ve‘it

ext?

Qext (uexta wext) = lext(wext)a (329)

where
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Uint Wint dS,

2O-in
Gint (Uint; Wing) = /(25 Oint V Uing * V Wing AT — /Ff‘ t m

int

20ex
ant(ueXt, wext) = /Qé Oext VUext * VWext dor — /Fg ) m

Uext Wext dS,

ext

and
2O-int

lll’l wll’l = / int Win dz — / 1 oo YintWin d$>
t t mtf t Wint P 5(1—25)9 t Wint

20 ox
lext (wext /Cxt fextwext d.T /CXt u%;(s)gextwext d$>
Now, with these variational formulations, we observe that if we select § > %,
the last term of the bilinear form is positive, which enforces the coerciveness of the

corresponding bilinear form.

3.5.4 Stability results

We first develop an expansion in power series of ¢ for the Problem (1.43) in the
form

U(; ext ™ Z € u(5 ext m Qint’
k>0 ( )
3.30
: 1)
U(; int ~ Z € U(; int m Qext
k>0

We substitute these series into the Equations (1.43) and we collect the terms with
the same powers in €. For every k& € N we obtain the following set of equations

UintAalg,int = fint52 in anm
~k e(1=20), 1 . 5
u5 int — 2 aTlué,in‘c m Fint’
ulg it = 0 on  INNIN,.
(3.31)
O-extAagext = fext(sl?; in ngh
ok e(1—20), 41 . 5
6ext = - 9 aV”Luci,ext m Fext?
ulgext =0 on 9NNIN,,.
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Definition 8. Given the expansion in power series (3.30) and N € N, we define
the residue 75 as

N

~ 3 ~

P () = ulh(,y) — 30 Rk i, y),
k=0

?(]SYea:t(x7y) = U(; ext ZL’ y Z&“ U(; ext ZL’ y ’

We now prove the existence, uniqueness, and uniform estimates of the solution
to problems (3.28) and (3.29).

Theorem 8. For alle >0 and 6 > 5 L there exists a unique u = (Wing, Uezy) where
Uint € V2, and Uey € V2, are solutzons to (3.28) and (3.29) respectively with data
fint € L2(22,), feur € L*(5,), gt € L*(T%,), gewr € L*(T°,,). Moreover there
exists g and a constant C' > 0 such that for all € € (0, &)

[lly g < e 'C (Hfmt”o,agm + ertho,ngt + Hgtho,Ffm + ngﬂctuo,rgﬂ) : (3.32)

Proof. We focus on the problem over domain Q¢ and the same reasoning can be
applied for the problem over domain 2 .. For proving the existence and uniqueness
result, we employ the Lax-Milgram Lemma. To do so, we have to prove that the
bilinear form a;y is coercive and continuous in V%, , and that the linear form i is

int>»
continuous in V;3,. We start by proving coerciveness of a in V;,. Applying Poincaré

int*

inequality, there exists a constant ki, such that for all w € V;3,

2 2 2
/mt w2 dz < &y /Q Vol de = [lwl g < ke |[Vellgs (3.33)
where ko = k1 + 1. Substituting u;,; = w into the definition of a;y,; and applying
(3.33) to this expression, we obtain

2 2
aint(w,w) = Oint 1)5 |Vw|2dx + m /I‘{5 JintW ds Z Oint ||V’w||079;snt
int int (334)
Z k3 ‘ M)
Oint

where ks = The above result shows the coerciveness of a,; in V‘s . We now

ko
prove the continuity of /iy in th For that purpose, we define the Dirichlet trace
operator for the subdomain Q2. as in (3.5). Let k4 > 0 be the continuity constant

of the Dirichlet trace operator Yrs - Then, for all w € H! <Q5 ) we obtain

int

Mg, = vy g < b ol

"71" 1168
int §7Fint
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For the sake of simplicity in the notations, we shall write w instead of wrs .
Applying this result and the Cauchy-Schwarz inequality to the definition of I, we
obtain

20int
|lint (w)] < ||fint||o,9§m ||w||o,Q;5nt + m ||9mt||o,r§nt Hw||o,r§nt
(3.35)
<ks lwl g, (Illoa, + l9mlos, )-
2k4aint . . . : 5 :
where ks = max [ 1, m . This proves the continuity of l;,; in Vi2,. Finally,
6 J—

applying the Cauchy-Schwarz inequality to
we deduce

we have the continuity of a, in V{5:

the definition of ayy, for all u,w € V%

int»

e 1,0 <o |V, 1900, + 5 Wl ol

(3.36)

<ks [lull; g5 |l o5

2Uintk4
£(26 — 1)
the identity (3.36) assures that a;, is continuous in V},, and the identity
(3.35) demonstrates that Iy, is continuous in Vi3,. As a conclusion we apply the
Lax-Milgram Lemma to deduce that there exists a unique uy; € V2., such that for

int»
all w e V2

int»

where kg = oyt + + Oexs- The identity (3.34) proves that a;, is coercive

in V2

int»

aint(uinta w) = ling (w)

To prove the second part of the theorem regarding the uniform estimates, we
select ¢ as

2ka0ing
g0 = :
T 251
Then, for any ¢ € (0,9) and taking w = wuy in (3.35)
)] < & ol o, (o, g, ) (3.37)
2k40in

where k; = On the other hand, taking w = uy, in (3.34), we obtain

20 —1°
| Gint (Uing, Uing )| > ko3 ||uint||iQ§nt . (3.38)
Finally, taking w = u;,; in the variational formulation

|aint(uint7uint)| - |lint(uint)‘
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and applying (3.38) in the left-hand side and (3.37) in the right-hand side we obtain

?nt)

We introduce Ci,; = ki Employing the same process as for the variational for-
3

mulation over domain Q% , we obtain a similar estimate involving a constant Cey;.
Defining C' = max (Clyt, Cext) We obtain the desired result

2 _
Fo 5 g, < &l g, (1o,

[ull; g5 < 510( Hfmt”o,ﬂfnt

o T lgmillors,

]

Proposition 10. Let N € N. The residue 7Y defined in Definition 8 satisfies the
following equations

aimAfé\fmt =0 in Q.
?évmt O;m?ﬁm giNnt on ant?
r5 =0 on 00NN .
O-’mtA?(]S\,[ea:t =0 in
?év eat T (1;25)?55\[ ext — gé\;t on Fim
7“5 ot = 0 on 00NN,
where - 5
giNnt =" ——=9 umw
gezt eN 12268711‘?;#

Proof. We deduce this result by applying Equations (3.31) and (1.43) to the defi-
nition of the residue.

Equation in Q¢ :

N
~N (1] ~0 k ~k
UintATJ,int = UintAué,int Z € UmtAué int = Jint — UintAué,int - Z € UintAué,int = 0.
k=0 k=1
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Equation in Q°,:

N
SN k ~k ~0 k ~k
UextAré,ext 0 extAu& ext Z € UextAué,ext = fext—0 eXtAu(S,ext_Z € UextAué,ext = 0.

k=0 k=1
Equation in 'Y, :
N 1—-20
e(1— 25 25) .
_u6 int Z € u5 int T n 61nt + Z k+1 anulg,int
al k[ ~k e(1—20), 44 Nyl =20,
== Z € | Usint — 9 3n“5,int +e Tanua,int
k=0
1—-20 . _
8N+1 5 anué\,fint

Following the same procedure we prove the equations for ?(];Yext.

O

Theorem 9. Let N € N. Fore € (0,2¢) and under the assumptions g3, € L*(T9 ),
9o € LP(T%,), gimi € LA(T%,), giud € LA(TY,,), and u* € H' () for k < N +1,
there exists a constant C' > 0, independent of e, for which the following estimate
holds for the residue 7Y defined in Definition 8,

N+1
Lt < Ce™' ™,

H 6eact 1Q5 +H 5mt

Proof. We deduce this result directly from Theorem 8 and Proposition 10

S chfl €N+1
17Qint

Lo l=20 25 H

25
.2

Hréext IQ‘S _'_H 51nt

61nt 0F5

0,I% )

6 ext

We deduce that

_ N
L5, = O(e™).

Hréext 195 + H 61nt

Finally, writing

~N ~N+1 N+1~N+1
Té int — T(S int +e ué int »

<N ~N+1 N+1~N+1
T& ext — Té ext +e u6 ext
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we deduce the desired result

=N

+ ||F]|, oy = OEN),

|73
§,ext
17ngt 17Q?nt

3.5.5 Convergence results

Theorem 10. Let u be the solution to reference Problem (1.2) and let ul® the
solution to the first-order asymptotic model (1.36), which writes as
o intAUE'?z]t = fine I Qi

uE’?z]t = on O,

[0] .
UextAuext - femt m Qemt;

u? =0 on 0oy

ext

Under the assumptions of Theorem 2 for N = 0 and € € (0,g¢9) , with the data
fint € L? (iny) and feuy € L* (Qewr). The following estimate holds: there exists a
constant C' > 0 independent of €, such that

Proof. We deduce this result directly from Theorem 2. For the first-order model,
we have that the truncated series u(® satisfies Problem (1.36). Thus, we have
ul” = 4 and we deduce the desired result

[0]

Uegt — Uegt

0
WUing — uEn]t < Ce.

17Qizt -

+)

I’Q(Z?nt

(0)

Uext — Uext

(0)

(0] o
Uint Uing

int

(U
Uext, Uext

+

+]

|

Uint — U = ‘
1,95 17Qth

£ £
17Qint ext 17Qint

0
int

0
ext

< Ce.
1,08

ext

+
17Qi€nt

r

]

Theorem 11. Let u be the solution to reference Problem (1.2) and let ugl] be the
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solution to the stabilized §-order two model (1.43), which writes as

o intAu([;]int = fint i Q?nt;
=20, o T,
uih, =0 on 00NNV .
o extAut[Sl,]ext = fext in Q0
il = 2ol on T,
ugl,]ext =0 on  0QNIQ°,.

Under the assumptions of Theorem 2 and Theorem 9 for N = 1 and ¢ € (0,¢y),
with the data fiy € L? (ing) and fesr € L? (Qewt). The following estimate holds:
there exists a constant C' > 0 independent form e, such that

(1]

(1] _
Uert u&, ext

WUint — Us jnt

< e

5 =
17Q’ﬁzt

+

Proof. To begin with, we consider the expansion (3.30) of u([;” that we have de-
scribed above. More specifically, we consider Equations (3.31). We deduce that for
k = 0,1, we have the following expressions for u}

é
I’Qint

=0 _ : 0
{ UintAué,int - fint mn Qint?

. o P
Ugint = 0 on 08 ,.

~0 : é
{ UextAu&,ext = fie 0 Qg

~0 _ 1
U ey = 0 on 000 ,.
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in
20, o
(3nu57mt on
on
20,
anu(?,ext

in

on

If we truncate the series from the second term and we consider the truncated
series Gt = 412 + eul, we obtain the followin i
5 = Us 5 g equations

ué,int

R 1—26
u((5:,le)xt + Tan

~(1)
UintAu&int =0

1—26
Qi — —— —Onligyy = O()  om

n

z(5,1i)nt = on
UextAﬁg}e)xt =0 in
Gy = O(")  on
A((S,le?xt = 0 on

(3.39)

Now we rewrite the equations of Problem (1.37) to derive transmission condi-
Following the same procedure
we have employed in Section 1.4.3, we use a formal Taylor series expansion of func-
tion u(Y, solution to Problem (1.38) and we derive the following expressions for the

tions across the artificial boundaries I

and T

int

ext*
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jump and mean value

[ulp = [u]ps — 20e {Opu}ps
{ufr = {u}ps — ;55 [On]ps

(Ol = [Ont] s — 20 {D2u f

s’

{Onu}y = {0hu}rs — ;(55 {Gfbu}

I

Applying these expressions, we obtain the equations for the new function ugl)

UintAu((S}i)nt =0 in Q?nt?
1-26
ug,li)nt - anug,li)nt = 0(52) on antv
ugﬂm =0 on INNIW.,.
(3.40)
UextAug}e)xt - O in Qixiﬂ
1-26
ufs,le)xt Tanug,le)xt = 0(52) on ngta
u§l =0 on 9NN,

Now we define v := ﬂgl) - u((;l). From Equations (3.40) and (3.39) we deduce

that v satisfies the following equations

O—intAUint =0 in Q?nt’
1-26
Vint — Tanvint = 0(52) on F?nt’
Ving = 0 on 90NN,
(3.41)
UextAUext =0 in Qixt’

1—-20
Vext + Tanvext =0(¢?) on e

Vext = 0 on 90NN .
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Thus, if we apply Theorem 8, we deduce

Iolly g5 = [Ja5" = us”|, , < Ce

1,00

Now we finally derive the desired convergence result. Applying Theorem 2
and Theorem 9 we deduce the desired result

1] (1]
int 8,int 179?11: ext d,ext Lngt
1) (1] 1)
< Nt — ! —|—HU — Uy
>~ int int 17Q§nt d,int int 17Q§nt
M) 1] 1)
+ Uext — Uext, + Us ext — Uext
Lngt X I’ngt
1) (1] ~(1) 1) _ =)
<uint_u'( —|—Hu — Uy —+ [|usi — Uy
= int §,int d,int int 6,int
1vﬂfnt m " 17Q§nt . 1’Q(isnt
1) (1] ~(1) 1) _ =~
+ || Uext — Uext + Usext — Us,ext || Uext — Us ext
17ngt o X 17ngt X 17ngt
1) (1] ~(1) 1) _ =)
o e e e
- int int 179?nt 6,1111? 5,11113 17ant int 671nt ]"Q?nt

T 4

Uext — Uext

+ [ utse = i

+
17Q?nt

& S5
1vgext 17Qext

(1) (1)

o g (1)
ext d,ext

~(1)
+ + Hu6,ext - ué,ext

§ 8
1 7Qext 1 7Qext

<Ce?.



CHAPTER

NUMERICAL RESULTS

4.1 Introduction

This chapter is devoted to numerical tests regarding the approximate problems
we have derived. For this purpose, we have implemented a finite element code
that we employ to discretize the variational formulations derived in Chapter 3
in order to obtain approximate solutions of the models. The code is capable of
solving the 2D Laplace equation and the 3D axisymmetric Laplace equation in the
meridian domain. For a deeper explanation about the finite element method and
the developed code, we refer the reader to Appendix B.

4.2 2D configuration

4.2.1 Dirichlet conditions

First class of ITCs

We first compare the solutions obtained with the reference model against our de-
rived asymptotic models. In this section, we consider non-realistic model problems
useful for analyzing the convergence behaviour. More physically meaningful results
will be depicted on section 4.5.

We first show some figures of the reference model so that we can qualitatively
understand the solution we are trying to approximate. For these experiments, the
considered domain is a 2 m X 1 m rectangle domain formed by a thin layer with

169
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thickness equal to 0.25 m. We also consider a conductivity of the following form

Ot = 5 S/m in

int»

0=F{ 0y =064S/m in

lay>»

Oext =3 S/m  in QF

ext?

and the following right-hand side

fa=1C in QF

int»

f=< fay=0C in €

lay>»

for=1C in OF

ext?

(4.1)

where the units S/m and C correspond to Siemens per meter and Coulomb. We
solve the reference Problem (1.2) by employing the Finite Element Method. For
discretizing the domain, we use 384 triangular shaped elements and Lagrange in-
terpolating Polynomials of second degree. In Figure 4.1, we observe the solution

we obtain for the reference Problem (1.2) in this case.

1 0.025(
0.9

0.8

0.7

0.6

Eos

>

0.4

0.3

0.2

0.1

O0 0.5 1 1.5 2

x (m)

|

(a) x-y axis view. (b) x-z axis view.

Figure 4.1: Solution to the reference Problem (1.2) .

Now, we perform a qualitative comparison between the solution to the refer-
ence model we have shown and the approximate models (1.18) and (1.19). Using
the same parameters and configuration, we solve these approximate models. Figure
4.2 shows the solution we obtain for the asymptotic models of order two, (1.18),
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and order four, (1.19). We notice that the fourth-order model is more accurate
and approximates better the effect of the highly conductive thin layer than the
second-order model. In order to better observe this behaviour, in the following
lines we show a quantitative comparison of these models.

1 0.025¢

0.9

0.8

0 0.5 1 1.5 2
X (m)

(a) Second-order model, x-y view. (b) Second-order model, x-z view.

1 0.025¢

0.9

0.8 0.02r

N

L

\W
i

i§

0.6 0.015r

0.4 0.01]

|

0 0.5 1 1.5 2 0 0.5 1 15 2
x (m) X (m)

0.2 0.005¢

(c¢) Fourth-order model, x-y view. (d) Fourth-order model, x-z view.

Figure 4.2: Solution to the second-order model (1.18) and the fourth-order model
(1.19) of the first class.

To do so, we calculate the H! error between the reference solution and the
approximate models for different thicknesses of the thin layer. In Figure 4.3 we
observe the obtained convergence rates for the H! relative error and Table 4.1
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shows the slopes of the curves corresponding to this figure. From these results we
observe that the numerical convergence rates we have obtained coincide with the
theoretical convergence rates proved in Chapter 3. As expected, the fourth-order
model performs better than the second-order model.

—~ 10_1 [ B

> 1

s e——

&

ii 10—5 - X |

s o7 HAl—, |

— —— Order 2

m 10—9 [ —a— OrdeI‘ 4: —

| | | | |

0.0039 0.0066 0.0110 0.0186 0.0312

Casing thickness (m)

Figure 4.3: H! error of the second-order model (1.18) and fourth-order model (1.19)
of the first class for different values of ¢.

Casing thickness (¢) | 0.0052 0.0088 0.0985 0.1086 || Expected (¢ — 0)
Order 2 H' slopes 2.0103 2.0152 2.0082 1.9275 2
Order 4 H' slopes 4.0066 4.0003 3.9506 3.7250 4

Table 4.1: Slopes corresponding to the curves of Figure 4.3.

Second class of ITCs

We first compare the solution to the reference model and the asymptotic models
of the second class. We employ the same physical parameters as explained in the
previous section for these new tests. In Figure 4.4, we observe the solution we
obtain for the reference Problem (1.2) and in Figure 4.5, we observe the solution
we obtain for the asymptotic models of order one (1.36), and order two (1.38).

As we stated in the previous sections, the stability of the second-order model
cannot be guaranteed. As a result, large variations in the solution occur when
we slightly change the material parameters. We illustrate this fact in Figure 4.6,
where we show the solution for the second-order model for different values of £. We
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Figure 4.4: Solution to the reference Problem (1.2) .

observe that the solution drastically changes around the transmission conditions
for every small variation in the value of €.

To deliver a more quantitative comparison of the models we have derived, we
calculate the L? and H'! errors between the reference solution and the approximate
models for different thicknesses of the thin layer. In Figure 4.7, we observe the ob-
tained convergence rates for the L? relative error and in Figure 4.8 the convergence

rates for the H! relative error.

Casing thickness (g) | 0.0052 0.0088 0.0985 0.1086 || Expected (¢ — 0)
Order 1 L? slopes 0.9833 0.9713 0.9500 0.9103 1
Order 1 H! slopes 0.9888 0.9810 0.9673 0.9421 1
Order 2 L? slopes 1.9968 2.0420 2.0059 2.0460 2
Order 2 H' slopes 1.3788 1.9847 1.2003 1.6763 2
5-Order 2 L? slopes | 2.0035 2.0054 2.0084 2.0076 2
5-Order 2 H* slopes | 2.0002 2.0038 2.0074 2.0078 2

Table 4.2: Slopes corresponding to the curves of Figures 4.7 and 4.8.

We observe that the numerical convergence rates we have obtained coincide
with the theoretical convergence rates proved in Section 3.5 for the first-order
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Figure 4.5: Solution to the first-order model (1.36) and the second-order model

(1.38) of the second class.
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Figure 4.6: Instabilities of the solutions to the second-order model (1.38) for dif-
ferent values of €.
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model. On the other hand, for the second-order model, even though we still recover
the expected theoretical order of convergence for the L? relative error, due to the
instabilities, it does not perform as well for the H' relative error. Even so, it still
outperforms the first-order model.

To overcome these instabilities, in Section 1.4.3, we have derived a new second-
order model by defining some artificial boundaries and moving the transmission
conditions to these new boundaries. To derive this new model (1.43) we employ a
parameter 0 that controls the distance between the artificial boundaries. In Chapter
3 we prove that for 6 > 0.5 this approach solves the problem of instabilities.
Figure 4.9 shows a problem with instabilities and how they can be eliminated
when applying a 0 parameter greater than 0.5. However, the instabilities are not
completely removed if this § parameter is not greater than 0.5. To illustrate this
fact, the example of Figure 4.9 shows that for =0.1 the instabilities are still present,
whereas when 0 = 0.51 is applied, the instabilities disappear.

Figure 4.7 compares the obtained convergence rates for the L? relative error.
Figure 4.8 shows the convergence rates for the H! relative error for the unstable
second-order model and for the stabilized J-order two model. We observe that
for the L? error both models behave similarly. For the H! error, the second-order
model does not converge properly, whereas the stabilized d-order two model delivers
the correct convergence rates. In Table 4.2 we display the slopes of the curves
corresponding to those figures which show the expected theoretical convergence
rates.

We observe that if we apply the artificial boundary technique with a ¢ greater
than 0.5, instability problems disappear, and the numerical convergence rates co-
incide with the theoretical convergence rates proved in Section 3.5, for both the L?
and the H! errors.

Comparison

In this section, we will do a brief comparison between the different derived asymp-
totic models. We mention the strong and weak points of each class of I'TCs. For the
first class of ITCs, the model with highest order reaches a convergence of order four,
whereas for the second class of ITCs, the model with highest order only reaches a
convergence of order two. We observe these convergence rates in L? norm for the
four models we have derived in Figure 4.10 and in H' norm in Figure 4.11. We
see that all the models converge with the expected order of accuracy in L? norm.
On the other hand, in H! norm, all models converge with the expected order of
accuracy except the second-order model of the second class due to the instabilities.
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Figure 4.9: Removing the instabilities of the second-order model (1.38) with the
artificial boundaries.
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Another drawback of the second class of ITCs is that the model of order two
presents instabilities whereas the models derived with the first approach are both
stable.

Regarding the domain, a strong point of the second class of I'TCs is that the
domain does not depend on e, while the domain for the first class I'TCs depends on
. Even though this point is not very relevant for our configuration, due to the thin
layer having a straight shape, it could be very interesting when considering more
complex configurations, in which the shape of the thin layer is curved. In such a
case, the fact of having a single interface between the two subdomains instead of
having a gap greatly reduces the complexity of implementation of the model. All
these features are summarized in Table 4.3.

Model Numerical order | Stability | e-independent domain
Class 1: Order 2 2 v X
Class 1: Order 4 4 v X
Class 2: Order 1 1 v v
Class 2: Order 2 1-2 X v
0-Order 2 2 v X

Table 4.3: Comparison of the different derived models.

4.2.2 Mixed boundary conditions

Second class of ITCs

Here we consider the case of approximate problems with mixed conditions. We
follow the same plan we have considered for the Dirichlet case. We use the material
properties of Equation (4.1) and the following source:

fint(x7 y) - y2 C in Q‘isntu
f(x,y) = flay(xay) =0C in Qfay?
fext(xa y) = y2 C in szt'

We begin with a qualitative comparison between the solution to the reference
model and the asymptotic models. We show some figures of the reference model,
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as an illustration of the solution we intend to approximate and then, we show some
figures of the approximate models to visualize how they approximate the reference
solution. Figure 4.12 depicts the solution we obtain for the reference model.

1
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Eos E 002
> N
4
0 0.015¢
0.3
0.01F
0.2
"y 0.005}
0 0 : : :
0 0.5 1 15 2 0 05 1 15 2
x (m) x (m)
(a) x-y axis view. (b) x-z axis view.

Figure 4.12: Solution to the reference problem with mixed boundary conditions.

Now, we provide a qualitative comparison between the solution to the reference
model we have shown and the approximate models (2.23) and (2.24). Figure 4.13
shows the solution we obtain for the asymptotic models of order two, (2.23), and
order four, (2.24). As expected, we notice that the fourth-order model is more
accurate and approximates better the effect of the high conductive thin layer than
the second-order model.

As in the previous section, we have calculated the H! error between the refer-
ence solution and the approximate models for different thicknesses of the thin layer.
Figure 4.14 displays the obtained convergence rates for the H! relative error. Table
4.4 shows the slopes of the curves corresponding to this figures. From these results
we conclude that the numerical rates of converge are the expected ones.

Casing thickness (¢) | 0.0117 0.0234 0.0469 0.0938 || Expected (¢ — 0)
Order 2 H' slopes | 1.9864 2.0529 2.0817 2.0984 2

Order 4 H! slopes 4.0221 4.032  4.0454 4.0523 4

Table 4.4: Slopes corresponding to the curves of Figure 4.14.
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Figure 4.13: Solution to the second-order model (2.23) and the fourth-order model
(2.24) of the first class with mixed conditions.
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Figure 4.14: H' error of the second-order model (2.23) and fourth-order model
(2.24) of the first class with mixed conditions for different values of €.

4.3 2D time-harmonic configuration

This section is devoted to numerical tests regarding the approximate problems
we have derived when the frequency is not zero any more. For this purpose, we
employ the finite element method along with the variational formulations derived
in Appendix A.3. We employ the same physical parameters previously introduced
in Section 4.2.1, but now we have to also consider the permittivity ¢y and the
frequency w. We select these two parameters as follows

e =3Fm,
w = 8 Hz.

Figure 4.15 depicts the solution we obtain for the reference Problem (1.45). In
the same way, Figure 4.16 shows solution we obtain for the asymptotic models of
order two (1.49), and order four (1.50). We observe that the fourth-order model is
more accurate and approximates better the effect of the high conductive thin layer
than the second-order model.

Again, we calculate the H' error between the reference solution and the ap-
proximate models for different thicknesses of the thin layer. Figure 4.17 displays the
convergence rates for the H! relative error. Table 4.5 shows the slopes of the curves
corresponding to this figure. From these results we deduce that the numerical rates
of converge are the expected ones
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(a) x-y axis view. (b) x-z axis view.

Figure 4.15: Real part of the solution to the frequency dependent model Problem
(1.45).

Casing thickness () | 0.0052 0.0088 0.0148 0.0249 || Expected (¢ — 0)

Order 2 H' slopes 1.9980 1.9871 1.9491 1.8227 2

Order 4 H' slopes 4.0437 4.05641 4.0234 3.7893 4

Table 4.5: Slopes corresponding to the curves of Figure 4.17.

4.4 3D Axisymmetric configuration

In this section we consider the case of an axisymmetric cylinder shaped domain.
For this purpose, we employ the finite element method along with the variational
formulations derived in Appendix A.4. We use the physical parameters defined in
Section 4.2.1.

Figure 4.18 displays the solution to the reference Problem (1.58). Figure
4.19 shows the solution to the asymptotic models of order two (1.75), and order
four (1.77). As in the 2D case, we notice that the fourth-order model is more
accurate and approximates better the effect of the high conductive thin layer than
the second-order model.

We calculate the H' error between the reference solution and the approximate
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Figure 4.16: Real part of the solution to the second-order model (1.49) and the
fourth-order model (1.50) for the frequency dependent configuration.
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Figure 4.17: H! relative error of the second-order model and fourth-order model
for different values of ¢ for the frequency dependent configuration.

0.025,
0.9
0.8 0-02,
0.7
0.6 0.015} VI‘ ‘\
Eos B ‘
> N
0.4 0.01} \\
03 m i
0.2 0.005}
0.1
0
0 0.5 1 15 2 0 05 1 15 2
x (m) x (m)
(a) x-y axis view. (b) x-z axis view.

Figure 4.18: Solution to the 3D axisymmetric reference Problem (1.58) .
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Figure 4.19: Solution to the second-order model (1.75) and the fourth-order model
(1.77) for the 3D axisymmetric configuration.
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models for different thicknesses of the thin layer. Figure 4.20 depicts the con-
vergence rates for the H! relative error. Table 4.6 shows the slopes of the curves
corresponding to this figure. From these results we deduce that the numerical rates
of converge are the expected ones
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Figure 4.20: H' error of the second-order model (1.75) and fourth-order model
(1.77) for different values of ¢ for the 3D axisymmetric configuration.

Casing thickness (¢) | 0.0117 0.0234 0.0469 0.0938 || Expected (¢ — 0)
Order 2 H! slopes 2.0117 2.0182 2.0150 1.9425 2
Order 4 H! slopes | 4.0150 4.0206 4.0060 3.8967 4

Table 4.6: Slopes corresponding to the curves of Figure 4.20.

4.5 Application

According to [28], the second derivative of the electric potential in the vertical axis
direction can be employed to determine the resistivity of the rock formations. This
second derivative of the potential in the axis direction can be approximated by a
second difference formula, which we explicit later in this section.

The configuration is similar to the one employed in Section 1.6. We begin
with a three dimensional cased borehole where we consider the equations for the

electric potential
div (cAu) = f.
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Since all the elements composing the configuration are axisymmetric, we em-
ploy cylindrical coordinates to eliminate one dimension due to the solution not
being dependent of the angular variable. We place a transmitter inside the bore-
hole, in the part of the domain denoted as €2 ., touching the casing from the inside.
Then, we place three equidistant receivers several meters above the transmitter, in
the same way we have done with the receiver, touching the casing from the inside.
This configuration is depicted at figure 4.21. We consider the following right-hand

side

f=

1 at the transmitter,
0 in the rest of the domain,

and a conductivity of the following form

Ot In - €

int»

13

0 =1 Oy 1In Tay

Oext in Q°

ext)

where o,y is several magnitudes greater that i, and oex. The electric potential
should tend to 0 when far away from the transmitter. Thus, we consider homoge-
neous Dirichlet boundary conditions, © = 0, on the exterior face of the cylinder.
On both bases of the cylinder, we consider homogeneous Neumann boundary con-
ditions, d,u = 0.

The receivers are 1.85 m above the transmitter and there is a 0.15 m separation
between them. The three receivers and the transmitter form what we call the
instrument. Even if we move the instrument, this distance between transmitter
and receivers remains fixed. The inside of the borehole has a radius of 0.16 m and
the thickness of the casing is 0.01 m. The whole domain, is 10 m in the horizontal
direction and several km in the vertical direction.

According to [28], the electric field, when in the presence of a casing, can be
divided into a near zone, an intermediate zone and a far zone. In the intermediate
zone, the second derivative of the potential in the axis direction can be applied to
determine the resistivity of the formation. For approximating the second derivative
of the potential, we employ the second difference of potential measured at the
receivers. Let (rq1, 21), (r1, 22), and (r1, z3) be the positions of the first, second, and
third receivers respectively and let i denote the distance between the receivers. We
perform the following formal Taylor series expansion on the z variable around the
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Figure 4.21: 2D domain considered for the application.

point (rq, z2)

h2
w(ry, 2o+ h) = u(ry, 22) + 0u(ry, 22) b+ 92u (r1, 22) -t O(h?),

h?
u (7’1, Z9 — h) = U(Tl,ZQ) — 82’21, (7”1, 22) h -+ agu (7"1,22) ? + O(h3>

Adding both expressions and taking into account z; = zo — h and 23 = 20 + h
we obtain the following second difference formula for the second derivative of the
potential

w(ry, z3) — 2u (ry, 29) + u (rq, 21)

h2

(fu (r1,22) =

+O(h).

According to [28], if we measure this values at the receivers, we can recover the
values of the resistivity in the rock formations, more precisely, the second derivative
of the potential should be proportional to the square root of the rock conductivity:

1
) 1
Ou(ry, z) = C o, C>0.
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4.5.1 One rock layer with varying conductivity

For the first experiment we consider oy, = 1 S/m and o1,y = 10° S/m. We will per-
form several simulations employing different conductivities in the rock formations
to check if our method can recover these conductivities. In these simulations, the
resistivity in the rock formation, pey = oy, Will vary between 1 - m and 10000
Q-m, where € corresponds to ohm. In Figure 4.22 we observe the results of measur-
ing the second difference of potential at the receivers for different configurations in
which the resistivity of the rock formation is varying from one another. The graphic
is plotted in logarithmic scale and the curve has a slope of —0.5, which means we
are properly recovering the values of resistivity in the rock formations. What is
more, we observe that when we perform this procedure applying the fourth-order
asymptotic model derived in Section 1.6.3, we also recover perfectly the values of
the resistivity in the rock formations and we produce a negligible error with respect
to the reference model.

10000

—— Reference
e Order 4

1000

100

Second Difference of Potential

10 | | |
1 10 100 1000 10000

Rock Resistivity (£2-m)

Figure 4.22: Second difference of potential for different rock resistivities.

4.5.2 Two rock layers with fixed conductivity

Now we perform a second experiment. In this case, we consider two rock formations
with different conductivity values. Then, we try to recover the conductivity of both
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rock formations applying the same method we have explained above. For that
purpose we calculate the second difference of potential for different positions of
the instrument along the z axis. The expected outcome is that when we place the
instrument horizontally aligned with the first rock formation we should measure
the conductivity of that rock formation and when we horizontally align it with
the second rock formation we should measure the conductivity of the second rock
formation. The interface is located between the two rock formations at z = 0. We
consider the resistivity of the top rock formation to be 10 €2-m and the conductivity
of the down rock formation to be 1000 §2-m. We observe this configuration in Figure
4.23a.
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(a) Two layered rock formation. (b) Second difference of potential for dif-

ferent positions of the instrument in a
two layered formation.

Figure 4.23: Borehole surrounded by a two layered formation and second difference
of potential measured at the receivers for the reference model and the approximate
model of order four.

Figure 4.23b shows the second difference of potential for different positions
of the instrument along the vertical direction. The y axis shows the position of
the transmitter along the vertical direction. We observe that when the transmitter
is located at z = —2, when the second receiver is located at z = 0, the instru-
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ments measures a change in the conductivity, it goes from measuring 10 €2 - m to
measuring 1000 €2 - m, which indeed are the values of the conductivity in the two
rock formations we have considered. Moreover, we observe that when we apply
this procedure to the fourth-order asymptotic model derived in Section 1.6.3, we
also recover perfectly the values of the resistivity in both rock formations and we
produce a negligible error with respect to the reference model.

4.5.3 Several rock layers with fixed conductivity

Finally Figure 4.24a shows a more complex configuration where several rock layers
with different conductivities are present. We perform a similar experiment by
moving the instrument along the z axis while we record the second difference of
potential in each position. Figure 4.24b shows the results of such recordings. We
observe that again we perfectly recover the values of the conductivity in the rock
formations with both models, the reference model and the fourth-order asymptotic
model, once again the error being negligible.
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model of order four.



CHAPTER

SEMI-ANALYTICAL SOLUTIONS

5.1 Introduction

In this chapter we follow the methodology presented in [30] to derive semi-analytical
solutions for several asymptotic models in a 3D cylindrical configuration. Similar
results regarding the derivation of semi-analytical solutions can be found in [39].
The main advantage of this approach is that from the computational point of view,
once they are derived, the evaluation of these solutions is much more efficient than
to compute purely numerical solutions. By providing semi-analytical solutions of
the problems, we are able to reduce the computational cost for computing the
solutions of the asymptotic models. The more complex the considered geometry of
the problem is, the more complex the construction of these solutions is. The main
results of these chapters are Propositions 11, 12, and 13, where we characterize a
decomposition in Fourier series for the solutions to asymptotic models of orders
one, two, and four.

5.2 Framework

In this chapter we consider the following model problem
div(eVu) = f in Q.

We assume that the domain €2 is a cylinder which is infinite and homogeneous in
the z direction, and axisymmetric around the z axis

Q:{(T,H,z)ER3:0§7’<R0,0§9<27T,—oo<z<oo}

195
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This domain is decomposed into three subdomains described as follows

int 7

QF —{(T,G,z)€R3:0§T<To—;70§9<27T7_°O<z<00}’

fay:{(r,0,2)6R3:To—§<T<To+;70§9<27ﬂ—00<2<00}7 (5.1)

3 _
Qext -

{(r,8,2)6R3:r0+;<r<R0,0§9<27r,—oo<z<oo}.

Figure 1.4a, shows a similar configuration to the one considered here. The first
step for deriving semi-analytical solutions consists in employing a Fourier transform
along the variables z and 6 as follows

1 ,
U(r, &) = —/ u(r, 0, 2) cos (k@) % df dz. (5.2)
27 (—m,m)xR
Using the Fourier modes iy, we can use the following inverse Fourier transform to

obtain the expression of u

u(r,0,z) = kz:%) 2(; /R@k(r, £)e % d¢ cos (k0) (5.3)
where
1 k=0,
Gk =
2 k>0.

5.3 Dirichlet conditions

This section is devoted to the derivation of semi-analytical solutions for a problem
with homogeneous Dirichlet boundary conditions. We cite the work [18] related
to this topic, where the method of separation of variables is employed to derive
analytical solutions for the Poisson equation in a cylinder. We adopt the second
approach developed in Chapter 1 to derive approximate models of the second class
in a 3D cylindrical domain €. Doing so, we obtain the following first-order asymp-
totic model

{ Oint Aling = f int in Qint7

Uint — 0 on aQint,

{ UextAuext = fext in Qexta

Uext = 0 on 0.
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In this chapter, the Laplace operator is considered to be written in cylindrical
coordinates. It gets the following form

1 1
A= ;& (r0,) + ﬁag + 02

This model can be seen as a generalization to a 3D cylindrical domain of Problem
(1.84) we have derived in Section 1.6.5. We remark that domain €, is the cylinder

{(T,Q,z)€R3:O§T<T0,O§0<27T,—oo<z<oo}
and domain ey is defined as
{(r,@,z)€R3:ro<T<R0,O§0<27T,—oo<z<oo}.

The right-hand side is a punctual source situated inside the borehole. Thus, we
will consider a right-hand side of the following form

~ J?int(aja Y, Z) = A(S(l’ - wt>5(y)5(z) in Qint7
fl@y,z) =4 _ (5.4)
fext(«'ﬁ,y,Z) =0 in Qext7

where § represents the Dirac distribution, (z;,0,0) represents the position of the
punctual source and A € C is a given complex constant. A detailed definition of
the Dirac distribution can be found in [18]. We see it as a distribution that meets
the property

/OO 6(z — x) f(z) dz = f(a),

—o0
for a smooth enough function f. Since equations (1.84) are written in cylindrical
coordinates, we explicit the right-hand side with cylindrical coordinates as follows

A
St (r,0,2) = —8(r —r)0(0)(2 in Qi,
0,2y = § T RO RENCE)
fext(ra 97 Z) =0 in Qext-
With this right-hand side, we deduce that the solution vanishes inside €2.. Thus,

taking this into account and the fact that the domain we consider is infinite along
the z direction, we have the following volumic equation

omAu(r, 0, 2) = é(5(7“ —14)0(0)d(z) (5.6)

r

where
(T7972> S (07T0) X [07 27T) X <—O0,00),

with the following boundary condition

u(ro,0,2) =0, (0,z)€[0,27) x (—o0,0). (5.7)
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Definition 9. Following [1], for k € 7Z, the Bessel functions of first kind Jy, and
second kind Yy, are defined as two independent solutions to the Bessel equation

According to the Frobenius method, it is possible to obtain the following series
expression for function Jj,

J(a) = i (_1)j <x)2j+k7

20 + k+1) \2

where ' represents the Gamma function. Function Ji can then be used to define
Yi:

Yo(w) = lim Ji(x) cos(lm) — J_ (x)

I—k sin(lm)

Definition 10. Following [1], for k € Z, the modified Bessel functions of first kind
I, and second kind K are defined as two independent solutions to the modified
Bessel equation

2d23/ dy

2 2 _

We can obtain the expression of these functions from the Bessel functions given
in Definition 9
Ii(z) = limi " Jy (i
k() = lim ™y (i),

Ky(r) = %ﬂgw

Notation 4. For the sake of shortness we introduce the following notation

Au(€) = 2o Killglro) T€lre) = (gl Blglro) )

The main result of this section is the following proposition:

Proposition 11. The differential problem composed of Equation (5.6), together
with boundary condition (5.7), admits a decomposition in Fourier series of the
form (5.3), where the Fourier modes 1y, are bounded around the z axis and have
the following form

ar(r,6) = CY(IEN Ik (€]r), re(0,m),f €R,

ar(r,€) = C3(|ENIk(€]r) + CT(IENKr(lglr), 7 € (re,70),€ € R.



5.3. DIRICHLET CONDITIONS 199

The coefficients C¥, C%, C¥ are defined as

k A (—Ki(|€]re) L (1€|ro) + Kik([€|ro) Ik(|€] 7))
crikh = 1 (Elro) Tl €TA(E) ’
x AK(|Ero) Ik (|€]re)
D = T llero)omlelAn©)
—AL(Er)
Cf(|§|) - O-int|;|Ak:(€)'

Proof. In the following we will describe the steps to prove the result of Proposition
11. We proceed as in [30], we begin by applying the Fourier transform (5.2) to
Equations (5.6) and (5.7) so that we obtain the following equation

1 k? A
af’u\k + ;8rak - (52 + 702> ak 5(T — Tt), (58)

2T Ot T

for
(Tu f) € (Ovrﬂ) X (_OO7OO>’

along with the boundary condition

tg(ro,§) =0, &€ (—00,00).

These equations define an ordinary differential equation (ODE) in the variable
r whose right-hand side is a Dirac distribution. For the sake of shortness we will
forget about the variable ¢ for the moment, as it plays the role of a parameter
inside the ODE. For dealing with this kind of right-hand side, as it has no support
outside the punctual source, we consider a homogeneous ODE outside the punctual

source
2

PO DN k2N .
2Tk + ;&nuk — <§2 + 7‘2> iy =0 in (0,7¢) U (rs, o).

Regarding the behaviour at the punctual source, we begin by imposing the
following transmission condition at the point 7, to ensure the continuity of uy at
this point

iy(ry) = ar(r]). (5.9)

Then, we integrate Equation 5.8 in a neighbourhood of ;. For § > 0, we integrate
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in the interval (r, — 0,7, + J) and then, we will make § tend to zero.

11 IQ 13
Tt+5 9~ ’f‘t+6 1 =R 'I’t+5 9 kQ =R
/ (9Tuk dr+ *aruk dr —/ f + ) UL dr
re—0 re—0 T re—0 T

T‘t+5
= A S(r —ry)dr.

re—8 2MTiptT

Iy

This equation involves four integrals, denoted as I, I5, I3, and I4, to be determined.
From the definition of the Dirac distribution, we deduce the integral for the right-
hand side I, gets the value %(;‘nm. For the first integral on the left-hand side I,
we obtain the following value

T‘z+6
/ 5 83@ d?” = 8Tﬁk(rt + 5) - arﬁk(rt - 5)

i
Making ¢ tend to zero, as 0,1 is not necessarily continuous at r;, we obtain the
value 9,1 (r;") — O,4x(r; ). Then, integrating by parts the integral I, we obtain

) 1
/ 0,0y dr =

1—6 T

rt+6 re+0 ]
+ —5 U, dr.
Tt -4 re—=0 T

*ak

L and L are

As we are seeking for a continuous function @ and since functions 3

continuous, making ¢ tend to zero we deduce that this integral vanishes. Finally,
regarding the integral I3, once again as we are seeking a continuous function iy,
and —¢&2 — ’:—j is also continuous in a neighbourhood of r;, making ¢ tend to zero
we deduce that this integral also vanishes. Thus, from this integration we obtain

the following transmission condition at the point 7,
A

arﬂk(rj) — 8rﬂk(T;) = m

(5.10)

Taking these transmission conditions into account, we consider the following ODE

dFanr) + o)~ (€45 ) i) =0 i (0m)
Otg(r) + i@rﬁk(r) - (52 + :i) ur(r)=0 in  (ry,70),
ur(r; ) = uk(ry),
Oty (1) — Oyt (1) = 27T<:ilnt7“t
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These volumic equations are homogeneous linear differential equations and we can
analytically solve them. For that purpose we begin by doing the following change
of variables

xr = [¢|r.

We define function v as
. [z
o(o) = ollel) = () = 1)
Applying this change of variables and multiplying both sides of the equation by x2,
we obtain the following equation for v
220" (z) + 20/ (z) — (2 + k*)v(z) = 0.

This differential equation is the modified Bessel differential equation formerly pre-
sented in Definition 10 and the solutions to this equation are the modified Bessel
functions of the first kind (/) and second kind (K}). We select then [}, and K}
as the two independent solutions to our ODE. Using the change of variables we
performed, x = [£|r, we obtain a solution of the following form

U(r) = CYL(J€]r) + C5 Kp([€lr)  in (0,7y),
t(r) = C5 I (|€|r) + CYKk(|€]r) in (o),

where CF, Ck C% and CF are coefficients (independent of r) to be determined
thanks to the following transmission and boundary conditions

Oty (ri) — O, tx(r; ) = (5.11)

We have to take into account that function Kj tends to infinity when r tends
to zero, we conclude that C5 = 0, since the Fourier modes 1 are bounded around
the 2z axis . Then, employing the transmission and boundary conditions (5.11), we
obtain the following set of equations for the coefficients C¥, C% and C¥

L([glr) €Y = L(lglr) CF — Ki(lglr) CF = 0,
— L(lglr) CF + L(glr) CF + Ki(gln) CF = 555

2moineTt|E|?

I([lro)  C5 + Ki(lglro) CF = 0.
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Solving this linear system we obtain the values for the coefficients C¥, C§¥ and
C%, which have been shown in Proposition 11. Now that we have made explicit
the expression of Uy we employ the inverse Fourier transform (5.3) to obtain the
expression of function wu.

]

5.4 Robin conditions

In this section, we derive semi-analytical solutions for a problem with robin bound-
ary conditions. We cite the work [39] related to this topic, where semi-analytical
solutions are derived for the Helmholtz equation in a cylinder. We adopt the sec-
ond approach developed in Chapter 1 to derive approximate models of the second
class in a 3D cylindrical domain €2. Doing so, we obtain the following second-order
asymptotic model

JintAuint = fint in Qinta

Uint = %aruint on Fa

Uit = 0 on 00N O,
O_extAuext = fext in Qexta

Uext = _garuext on F»

Uext = 0 on 00N O0Next,

where the domains €2, and ). are the same of the previous section. This model
can be seen as a generalization to a problem defined over a 3D cylindrical domain
of Problem (1.85) we have derived in Section 1.6.5 . We consider the right-hand
side (5.4) we introduced in the previous section. With this right-hand side, once
again we deduce that the solution vanishes inside domain §2.,;. Then, the problem
set inside an infinite domain along the z direction is written as in Equation (5.6),
along with the following boundary condition

u(ro,0,z) = %@u(ro,e,z) (0,2) € [0,27) x (—o00,00). (5.12)

The main result of this section is the following proposition:
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Proposition 12. The differential problem composed of Equation (5.6), together
with the boundary condition (5.12), admits a decomposition in Fourier series of the
form (5.3),where the Fourier modes 1y, are bounded around the z axis and have the
following form

Ui (r, €) = CY(IEN Ik (I€]r), r € (0,7y),

g (r, €) = C5(IENL(I8]r) + CE(EN Kx(I€lr), 7 € (ri,m0)-
The coefficients C¥, C%, C§ are defined as

A 2Ky (I€]rd) Le(|€lro) — 2K (€lro) Ik (1€]re))
Tint|§|AR(E) (=20 (|€]r0) + l&| L (1€]T0))
N A (el Ki([§]re) I (1€lmo) + el€| K5 (1€]ro) Ik ([€]re))
Tint||Ak(€) (—=2Lk(1]70) + el&| L (€]70)) ’

Cr(lel) =

CE (e _ AL(|E]re) (=2K([€]ro) + l€| KL, (1€]70))
’ intl €] Ak (€) (=21k([€|ro) + €l€] I (1€]r0))”

— AL (|€]r1)
Tt S| AR(E)

Remark 6. [t is worth noting that if we apply € = 0 to the expression of the
coefficients obtained in Proposition 12, we obtain the expression of the coefficients
obtained in Proposition 11.

Ci(lel) =

Proof. 1f we apply Fourier transform (5.2) to Equation (5.6), we obtain the ordinary
differential equation in the variable r (5.8). We employ the same reasoning as in
Section 5.3 to deduce the behaviour at the point r;, obtaining the transmission
conditions (5.9) and (5.10). The main difference between this configuration and
the configuration of Section 5.3, corresponds to the following boundary condition,
obtained by applying the Fourier transform (5.2) to Equation (5.12)

(o) = g@rﬁk(ro). (5.13)

Following the same reasoning as in Section 5.3, we conclude that the solution to
the volumic equation (5.8) has the following form

{ak(mcflk(&r)wé“m(ér) in (0,7),

u(r) = CsIu(l&]r) + CYKR(€lr)  in (re,70),



204 CHAPTER 5. SEMI-ANALYTICAL SOLUTIONS

where CF, C§. C¥ and CF are coefficients (independent of r) to be determined
thanks to the transmission and boundary conditions (5.9), (5.10), and (5.13)

Uy (ry ) = ug(r)),

A

Orln(r) — Oyug(ry) = Gy — (5.14)

(o) = g@rﬂk(ro).

Again as function K}, tends to infinity when r tends to zero, we will consider C§ = 0.
Then, employing the transmission and boundary conditions (5.14), we obtain the
following set of equations for the coefficients C¥, C¥, and C¥

Ii(€lre)CY = I(|&]re) C5 — Ki(I€lr)C = 0,
A
— L (I€lr) CF + L ([Elr ) Cs + K (I€]r:) CF =

B 27TUint7’t|f|7
(Bllglro) = SIelTilglro) ) % + (Kalelro) - SIé1RAElro) ) CF = 0.

Solving these equations we obtain the values for the coefficients CF, C¥, and C¥
which have been given in Proposition 12. Now that we have made explicit the
expression of U, we employ the inverse Fourier transform (5.3) to obtain the ex-
pression of function wu.

]

5.5 Impedance Transmission conditions

In this section we derive semi-analytical solutions for a problem with transmission
conditions. We adopt the first approach developed in Chapter 1 to derive approxi-

mate models of the first class in a 3D domain Q° = QF  UQZ ;. Doing so, we obtain
the following fourth-order asymptotic model

Oint Alling = fint in Q5

UextAuext = fext in sztu

[ulp =0, (5.15)

1 1
2 3
E — 007« e T+ - oﬁr e — A €
AO [ U’]F € oTo { U’}F r {U}F

u="0 on 00NN,
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where Ap = 92 + %93. This model can be seen as a generalization to a 3D
0

cylindrical domain of Problem (1.77) we have derived in Section 1.6.3 . We remind
that domains €, and Qf , have been defined in (5.1). We consider again the

right-hand side (5.4). Then, the problem set inside an infinite domain along the z
direction is written as follows

omtAu(r, 0, z) = 2217”5(7" —14)8(0)0(2) (5.16)
for
(r,0,z) € <0,r0 — ;) x [0,27) x (—00, 00),
and
Au(r,8,z) =0 (5.17)
for

(r,0,2) € (7"0 + ;,Ro> % [0,27) X (=00, 50).

These equations are coupled with the following transmission conditions

[U]FE =0,
(o0l + €= {oduly. = ~Ar {u) o
55_700'7«’&1—\5 €%UTUFE— rUspe,
and the following boundary condition
u(Ry,0,2) =0, (6,2) €0,2m) x (—o0, 00). (5.19)

For the sake of simplicity we introduce the following notation

g

+
T075_T0+§7
_ g
T =To— —.
0,e 2

The main result of this section is the following proposition:

Proposition 13. The differential problem composed of FEquations (5.16) and
(5.17), together with transmission conditions (5.18) and the boundary condition
(5.19), admits a decomposition in Fourier series of the form (5.3), where the Fourier
modes Uy, are bounded around the z axis and have the following form

an(r,€) = CY(IEN Ik (€]r), r € (0,7),

i (r,€) = CE(EN I (€lr) + CEIEN Kr(l€lr), 7€ (rerg.),

x(r.€) = CEIENTElr) + CE(ENER(Elr). 7 € (ries Ro).-
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The coefficients C¥, C5, C%, CF, and C¥ are defined as

kel — Chleh
CHED = G ey

i=1,3,4,5,6,

where

Chi(lg) = —24( Ke(gl R L(€lr.) = a1 Ro) )
(Rel€lroTel€lri) = K€l T€lr) ) (12 + €43 )3

— 2A¢e?

AN ATEARSAEESIAIIS)

(Kel€lroBedI€lra.) = Kel(€lrz ) 1€l ) o

~ (= KREl R IElr) + K€l 161 Ro) ) (Kel€lr Tl€lri)

— Kyl (gl ) €l | — A¢*(( = Kul61Ro) T (€Ir)

+ KLEE )T (€1R) ) (K€l Tl €lri) = K€l ) T(€1))
€lroc + (= KullElR)(€IrE) + Kl (€1 o))

(Fu(lelr) €)= Ki€lro ) €l ) €lroons ).
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Chi1€) = 2001l ) (K€ Ro) () — K€l ) Tul €] o)
[€1Ak(E) <k2 + 527‘c2)>500z‘m +[€|AR(E)e* Tine [ — 21 ([€]ro)
(ErI€Bo) (Il) = Ki(€lrg ) u(I€]Ro) ) €lrto + 213

(FrlIE1Ro)(1€1ri) = (Il €1 o)) €l

+ €] Ak (€)e>Timt
[_ ]k(|§|740_,s> (KIC(K’RO)]I::(KV(—{E) - Kllc(|§|r(—)~:s)lk(|§|R0)> ’§|T00-eact

= 1615 (g Ro) (€15.) = K€l (€ o) |§|7”00mt] ,

C1€) = 24K, (el ) (Ke(€1 R Tu(lglrit,) — Ki(€lrg ) T(€l o))
L6 (K + €78 )30 + AL(€lr)e? [ - 2K(I¢lrg)
(K€l R 1 (€lr) = i€ )1 Ro) ) €lroas + 2K54€lr5.)

(e (€l R)I€lri) = K€l (1€ Ro) ) €lro| + AL((€lro)e?

[— Kul[€lri2) (K€L Ro)(€lr32) = Ki€lrd D Tu(IE1Ro) ) lelrao

— K ([€lro) (Kk(\f’Ro)[k(\ﬂrafg) - Kk(\flrafg)fk(\ﬁmo)) ff\roamt] :
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C1€1) = 201l ) (KulI€Ro) (1) — K€l ) Tu( €1 o)
[€1Ak(E) (k2 + 527”3)500mt + €| Aw(§)e Tt [ — 21 ([€]ro)
(EulI€ o) (I2) = K€l ) €] o)) €lroan + 214k

(Eu(1¢ Ro) (€17 = Fn(lglrs) (€1 o) ) €l | + €1 Au(€)e

[ — 1€l (Kl B B glri) = Ki (€l (€] Ro) ) oo

= 13(1€lri) ( Ku (€ Ra)(€lr) = K€l (¢ Ro) ) |s|roamt] 7

Cf1(|§|) = —AL(|¢]ry),

Cia(l€]) = [€1AK(E)Tin,

Ch(16) = ~2AK (€1 Ro) (Knllglri Iu(Iglris) = KAl ) (i) )
T(€lr)etes + AK€l o) (Kl ) 1€l

— Ky (gl 1€l ) Dullglr"ro,
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Chy(1€) = 201l ) (K€ Ro) () — K€l ) Tul €] o)
A(©) (K + €78 )30 + Aul©)e* [ — 214l
(e (€1 R HIElri) — KLElrt (g Ro) ) €lroa + 2141l

(e (€A (I€lri) — K€l (€ Ro) ) €lro| + Ae(€)e?

[_ ]k(|§|7ﬂ()_,s> (KIC(K’RO)]I::(KV(—{E) - Kllc(|§|r(—)~:s)lk(|§|R0)> ’§|T00-eact
= 1615 (g Ro) (€1r5.) = K€l (€ o) |§|7”00mt] ,

Cii(1€1) = 2A( il M1€lri) — (il ) 1€l
11RO e(€lr)ens = A( K€l ) Telrs)

— L€l e(€lr5.) ) (I Ro) (I )<
CaIg1) = 21(Iglrie) (Kl Ro) el €lr) — K€l (1€ o)
A(©) (K + €78 )30 + Au(©)e” [ — 21, (el
K Ro) €17 = K€1) (1€ Ro) ) o + 214(1€lr5)

+ Ak(f)€3

(FrEI RO €l ) = K€l (61 Ro) ) €lrion
[ TI€175.2) (K€L R I €lri ) = I (61 Ro) ) €lroorc

= 1l (K61 RO (€)= Kl (€] Fo) ramam] ,
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Remark 7. It is worth noting that if we apply ¢ = 0 to the expression of the
coefficients obtained in Proposition 13, we obtain the expression of the coefficients
obtained in Proposition 11.

Proof. 1f we apply Fourier transform (5.2) to Equations (5.16) and (5.17), we obtain
the following ordinary differential equations in the variable r

2~ k2 A c
027y, + aw— &4 )i = 5@—n)re(um—) (5.20)
2Ot 2
and
o1 , K%\ 5
OZuy + —0yuy, — | & + 5 |u=0 re <T0+,Ro> : (5.21)
r T 2

We employ the same reasoning as in Section 5.3 to deduce the behaviour at the point
¢, obtaining the transmission conditions (5.9) and (5.10). The main difference
with the previous sections corresponds to the following transmission and boundary
conditions, obtained by applying the Fourier transform (5.2) to Equations (5.18),

and (5.19)
~ 9 N 5
ug, (7"0—2> = U, (7“0+2)a
2 1 1

e’ — (00, k). + € L {00,y }pe = ( k;) (kY pe (5.22)

00 o000

in(Ro) = 0.

Here, for the sake of simplicity, we keep the same notation for the jump and mean
values, even though the meaning now is the following

[ak]f‘ﬁ (f) = ak(r(—)i_,s’ f) - ak(r(]_@? g)a

{3 (©) = 5 (lri, ©) + Ul 0).

Following the reasoning of Section 5.3, the solution to volumic Equations (5.20)
and (5.21) have the following form

a(r) = CYIu([g]r) + CyRx(I€lr)  in - (0,70),

(r) = C3k([€]r) + CiKi(lélr) i (mm_;)

An(r) = CEI(IE|r) + CEKL(|€lr)  in Qﬁéﬂg,
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where CF, C%, C¥, C¥ CE and CF are coefficients (independent of r) to be de-
termined thanks to the transmission and boundary conditions (5.9), (5.10) and
(5.22)

~ £ - €
Uy, (7’0—2) = Ug <T0+2)7 (5.23)

1 R 1 R 2\
e>— (00, ke + &°—— {00, 1s }p. = (52 + 2) {Gr}pe
ooTo 7"0

0o

Again, as function K} tends to infinity when r tends to zero, we will consider
C§ = 0. Then, employing the transmission and boundary conditions (5.23), we
obtain the following set of equations for the coefficients C¥, C%, C¥, CF, and C¥

Ii(€lre)CY = Ti(|&]re) C5 — Ki(I€|r)C = 0,

A

27| €|

—Ii(I€]r) CF + L (1) Cs + K (1€]r)CF =

BECY + BFCY + BECY 4 BECE =0,

T (|| Ro)CE + Ki(|€|Ro)CE = 0,

where the coefficients BY, B, BF and BY are defined as

B =0 (e ) S 208D (i) + (5 +k> 1 (€l

Bff € U;r;t’ﬂKk (|§| 05) _ 826(7;;1t‘§|}(k (|§| 05) ; <§2 + f;) Ky (|§|To_,a) )

Bf = “’;j'f'fkoa i) - ngﬂﬂfk(|f|r05) (£+k2)fk(|€|ﬁie)’

2
Bt = - S22l (gns.) - Sl () + 5 (€4 5 ) e
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Solving this equation we obtain the values for the coefficients CF, C¥, C¥, C¥,
and C¥  which have been shown in Proposition 13. Now that we have made explicit
the expression of Uy we employ the inverse Fourier transform (5.3) to obtain the
expression of function w.

]



CONCLUSIONS AND FUTURE WORK

In this work, we have studied the problem of the acquisition of borehole through-
casing resistivity measurements by employing the electric potential. We have
mainly considered configurations which include boreholes for performing these re-
sistivity measurements. These boreholes are surrounded by a highly conductive
metallic casing. The thickness and high conductivity of the casing give rise to
difficulties and an increase of the computational cost when performing numerical
simulations. The aim of this study has been to develop approximate models to deal
with the numerical instabilities this metallic casing creates. In this framework, we
have obtained results in four main directions.

First we have derived approximate models. Here, we have worked on 2D and
on 3D axi-symmetric configurations with different external boundary conditions.
We have also considered both static and frequency dependent problems. For all
these diverse scenarios, we have obtained two different classes of asymptotic models
by employing two different approaches. Each of them has delivered several models
with different characteristics, like coupled and uncoupled models or different orders
of convergence.

The second set of results consists of a mathematical analysis of the new ap-
proximate models. In this aspect, we have derived the corresponding suitable vari-
ational formulations for these models. Then, we have obtained stability results by
proving the existence and uniqueness of a solution to these problems, together with
uniform estimates. Moreover, we have proved the convergence of the approximate
models with a determined order of convergence.

The third direction we have worked on is related to the numerical simulations
of the different reference models we have considered and the different approximate
models we have derived. For this purpose, we have developed a code in Matlab
and C programming languages to numerically solve such models by using a clas-
sical Finite Element Method. Thanks to this, we have obtained several numerical
results and we have been able to asses the numerical performance of the models.
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Moreover, we have also performed several applications to our models concerning
the acquisition of resistivity measurements.

Lastly, we have constructed semi-analytical solutions for the approximate mod-
els. We have applied a Fourier transform involving two dimensions of the problem,
to transform it from a 3D problem into a 1D problem. Then, we have obtained the
analytical solution of this 1D problem and applied the inverse Fourier transform to
obtain a 3D semi-analytical solution. These semi-analytical solutions provide a less
expensive way for evaluating the solutions to our asymptotic models as compared
to full numerical solutions.

There are several natural directions in which we could advance concerning this
problem. A possible step forward would be to analyze the possible singularities of
the problem and observe their impact in the performance of the ITCs. Related to
this, it would also be interesting to study the case of deviated wells. This case is
specially challenging due to the corners that appear in the configuration, which are
known to reduce the performance of the I'TCs and require a special treatment.

Another continuation of this work could be to keep on working in the direction
of 3D Electromagnetism. Here we have presented some preliminary numerical
simulations for assessing the numerical performance of a limit problem. Regarding
this subject it would be interesting to perform a thorough derivation of approximate
models by finding a suitable Ansatz for the asymptotic expansion.

In the same way, the continuation on the semi-analytical solutions is another
suitable research line. Here we have presented the derivation of these solutions.
The natural step forward in this direction would be the implementation of these
solutions and the acquisition of several numerical results. Then, a comparison
between these results and the results we have obtained with fully numerical solu-
tions could be done regarding aspects like the performance and the accuracy of the
solutions.

Finally it would also be interesting to perform a study of this problem, depicted
in Figure 5.1, by performing a different expansion of the solution than the one
we have considered in this document. Here, we have performed an expansion
in powers of the thickness of the casing. As the conductivity in the casing is
several magnitudes bigger than the conductivity in the rock formations, we could
investigate an expansion in powers of the conductivity contrast of these two values.
The expansion would have the following form

Oext
U~ Z §kuk,  where 6= )
k>0 Olay
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Figure 5.1: Domain with different conductivities, where o1,y >> Oext, Tint.
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CONCLUSIONS ET TRAVAIL FUTUR

Dans ce travail, on a étudié le probleme d’acquisitions des mesures de résistivité
en forage a travers un tube métallique, en utilisant le potentiel électrique. On a
considéré en général des configurations qui incluent des forages pour réaliser ces
mesures de résistivité. Les forages sont couverts par un tube métallique haute-
ment conducteur. La faible épaisseur et la haute conductivité du tube induisent
une augmentation du cotit de calcul lors de simulations numériques, ainsi que des
instabilités numériques. Le but de ce travail a été de développer des modeles ap-
prochés pour traiter les difficultés crées par ce tube. Dans ce contexte, on a obtenu
des résultats dans quatre directions principales.

Tout d’abord on a obtenu des modeles approchés. Ici on a travaillé avec des
configurations 2D et 3D axisymétriques, avec diverses conditions de bord. On a
considéré le probleme pour le potentiel électrique statique, aussi bien que le prob-
leme a fréquence non-nulle. Pour toutes ces configurations, on a obtenu deux classes
différentes de modeles asymptotiques en utilisant deux approches différentes. Cha-
cune d’elles a délivré plusieurs modeles de caractéristiques différentes, comme des
modeles couplés ou non-couplés, ou des modeles de différents ordres de convergence.

Le deuxieme groupe de résultats consiste en une analyse mathématique des
modeles approchés. On a explicité les formulations variationnelles pour ces mod-
eles. Ensuite, on a obtenu des résultats de stabilité en démontrant des estimations
uniformes. De plus, on a prouvé la convergence des modeles approchés avec un
ordre de convergence déterminé.

La troisieme direction dans laquelle on a travaillé est liée aux simulations
numériques des différents problemes modeles qu'on a considéré, et les différents
modeles approchés qu’on a obtenu. A cet effet, on a développé un code en Matlab
et en C pour résoudre numériquement ces modeles, en utilisant la méthode des
éléments finis. On a obtenu ainsi plusieurs illustrations numériques et on a évalué
la performance numérique des modeles. De plus, on a aussi implémenté plusieurs
applications pour nos modeles, concernant 1’acquisition de mesures de résistivité.
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Enfin, on a construit des solutions semi-analytiques pour les modeles ap-
prochés. On a utilisé une transformé de Fourier pour transformer le probleme
3D en un probléme 1D. Ensuite, on a obtenu la solution analytique de ce probleme
1D et on a utilisé la transformé de Fourier inverse pour obtenir une solution semi-
analytique 3D. Ces solutions semi-analytiques permettent d’évaluer les solutions
de nos modeles asymptotiques de facon moins cotiteuse, par rapport aux solutions
purement numériques.

Il y a plusieurs directions naturelles dans lesquelles on pourrait poursuivre
I’étude de ce modele. Un possible pas en avant serait d’analyser les singularités
éventuelles du probleme et d’observer leur impacte dans la performance des I'TCs.
A ce sujet, il serait intéressant d’étudier le cas des puits déviés. Ce cas est plus
difficile en général a cause des coins qui apparaissent dans la configuration, lesquels
réduisent la performance des I'TCs et exigent un traitement spécial.

Une autre piste intéressante a poursuivre est ’étude du probleme électroma-
grnétique 3D. Ici on a présenté quelques simulations numériques préliminaires pour
évaluer la performance numérique d’un modele limite. Il serait aussi intéressant
d’effectuer une dérivation minutieuse des modeles approchés en trouvant un Ansatz
approprié pour le développement asymptotique.

Une étape suivante consisterait a implemanter les solutions semi-analytiques
qu’on a calculé. Il serait intéressant de comparer la performance et la précision de
ces solutions avec celles des solutions purement numériques.

Enfin, il serait aussi intéressant d’étudier le probleme, dont le domaine d’étude
est représenté par la Figure 5.2, a 'aide de développements en puissances de ¢, ol
0 représente un contraste de conductivité:

N Oext
U~ Z skuk, on 6= )
k>0 Olay

Oint Olay Oext

Figure 5.2: Domaine avec des conductivités différentes, olt 010y >> Oext, Oint-



CONCLUSIONES Y TRABAJO
FUTURO

En este trabajo, hemos estudiado el problema de la adquisicion de medidas de
resistividad en perforaciones a través de un tubo metalico, por medio del poten-
cial eléctrico. En general, hemos considerado configuraciones que incluyen pozos
para realizar estas medidas de resistividad. Los pozos estan cubiertos de un tubo
metalico altamente conductivo. Debido a la finura del tubo y a la alta conduc-
tividad del mismo, surgen dificultades y un aumento en el coste de computacion,
al realizar simulaciones numéricas. El objetivo de este trabajo ha sido desarrollar
modelos aproximados para lidiar con las dificultades que crea este tubo metalico.
En este contexto, hemos obtenido resultados en cuatro principales direcciones.

Primero de todo, hemos desarrollado modelos aproximados. En este punto,
hemos trabajado con configuraciones 2D y 3D con simetria axial, considerando
diferentes condiciones de frontera. Asimismo, hemos considerado tanto problemas
estaticos, como problemas con frecuencias no nulas. Para todos estos diversos
escenarios, hemos obtenido dos clases de modelos asintéticos por medio de dos
enfoques diferentes. Cada uno de ellos ha generado varios modelos de caracteristicas
diferentes, como modelos acoplados y desacoplados, o modelos de diferentes érdenes
de convergencia.

El segundo conjunto de resultados consiste en un analisis matematico de los
modelos asintéticos obtenidos. En este aspecto, hemos obtenido las formulaciones
variacionales correspondientes para estos modelos. Igualmente, hemos obtenido
resultados sobre la estabilidad, analizando aspectos como la existencia y unicidad
de soluciones a estos problemas. Ademas, hemos demostrado la convergencia de
los modelos aproximados con un determinado orden de convergencia.

La tercera direccion en la que hemos trabajado corresponde a las simulaciones
numéricas de los diferentes problemas modelo que hemos considerado, y los difer-
entes modelos aproximados que hemos obtenido. Para ello, hemos desarrollado un
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c6digo en Matlab y C para resolver dichos modelos empleando el método de ele-
mentos finitos. Gracias a esto, hemos obtenido varios resultados numéricos y hemos
podido evaluar el rendimiento numérico de los modelos. Ademads, hemos consider-
ado varias aplicaciones de nuestros modelos, en lo que respecta a la adquisicion de
medidas de resistividad.

Por 1ltimo, hemos construido soluciones semi-analiticas para los modelos
aproximados. Hemos utilizado una transformada de Fourier involucrando dos di-
mensiones del problema, asi lo transformamos de un problema 3D a uno 1D. En-
tonces, hemos obtenido la solucién analitica de este problema 1D y hemos empleado
la transformada inversa de Fourier para obtener una soluciéon semianalitica 3D. Es-
tas soluciones semianaliticas proporcionan una manera menos costosa de evaluar
las soluciones de nuestros modelos asintoticos en comparacioén con soluciones pu-
ramente numeéricas.

Existen varias direcciones naturales para avanzar en el estudio de este prob-
lema. Un posible paso adelante podria ser el analisis de las posibles singularidades
del problema, y una observacién de su impacto sobre el rendimiento de las I'TCs.
En relacion con esto, seria también interesante estudiar el caso de perforaciones
altamente desviadas. Este caso es especialmente complejo debido a las esquinas
que presenta la configuracién del problema, las cuales es sabido que reducen el
rendimiento de las I'TCs y requieren un tratamiento especial.

Otra posible forma de continuar este trabajo podria ser el trabajo realizado
en lo que respecta al Electromagnetismo en 3D. Aqui, se han presentado varias
simulaciones numéricas preliminares para evaluar el rendimiento numérico de un
problema limite. Respecto a este tema, seria interesante realizar una minuciosa
derivacion de los modelos aproximados encontrando un Ansatz apropiado para la
expansion asintética.

Del mismo modo, la continuacion de las soluciones semianaliticas es otra linea
de investigacién apropiada. En el presente documento, hemos presentado la ob-
tencién de dichas soluciones. El pasado adelante natural en esta direccion consis-
tiria en la implementacién de estas soluciones y la adquisicion de varios resultados
numéricos. Mas tarde, se podria realizar una comparacion entre estos resultados
y los resultados obtenidos mediante soluciones puramente numéricas, analizando
aspectos como el rendimiento y la precision de las soluciones.

Por ultimo, seria también interesante realizar un estudio de este problema,
ilustrado en la Figura 5.3, realizando una expansién de la solucién diferente de
la que se ha presentado en este documento. Aqui, hemos realizado una expan-
sion en potencias del grosor del tubo. Como la conductividad en el tubo es varias
magnitudes mayor que la conductividad de las formaciones rocosas, seria apropi-
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ado considerar una expansion en potencias del contraste de conductividades. La
expansion tendria la forma siguiente

U~ Z §ku*,  donde ¢ = Oext

k>0 Olay

Oint Olay Oext

Figura 5.3: Dominio con conductividades diferentes, donde o1y >> Oext, Oint.
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ONDORIOAK ETA
ETORKIZUNERAKO LANA

Lan honetan, potentzial elektrikoa erabiliz, hobietan egindako eroankortasun neur-
keten problemari ekin diogu. Orokorrean, neurketa hauek egiteko, hodi metaliko
batez inguraturiko hobiak kontsideratu ditugu. Hodi metaliko hauen lodiera txikia
eta eroankortasun altua direla eta, hainbat zailtasun eta koste konputazionalaren
igoera bat ikusi ditzakegu zenbakizko simulazioak egiterako orduan. Lan honen
helburua hodi metaliko honek sortzen dituen zailtasunei aurre egiteko eredu hurbil-
duak garatzea da. Testuinguru honetan, hainbat emaitza lortu ditugu lau norabide
nagusitan.

Lehenik eta behin eredu hurbilduak garatu ditugu. Atal honetan 2D eta ar-
datz bertikalarekiko simetria duten 3D konfigurazioekin lan egin dugu, aldi berean
muga baldintza ezberdinak kontsideratu ditugularik. Gainera, bai kasu estatikoa,
bai frekuentziarekiko dependentea den problema kontsideratu ditugu. konfigurazio
ezberdin hauentzako guztientzako, bi ikuspegi ezberdin erabiliz, bi eredu asintotiko
klase ezberdin garatu ditugu. Bietako bakoitzarekin ezaugarri ezberdinak dituzten
hainbat eredu garatu ditugu, adibidez, akoplaturiko eta ez akoplaturiko ereduak,
edo konbergentzia orden ezberdineko ereduak.

Bigarren emaitza multzoa garaturiko ereduen analisi matematiko baten on-
dorioa da. Alde honetatik, ereduei dagokien formulazio ahul aproposak garatu
ditugu. Ondoren, egonkortasun emaitzak eskuratu ditugu, eredu hauen existentzia
eta bakartasuna frogatuz, aldi berean estimazio uniformeak garatu ditugularik.
Gainera, eredu hurbilduek orden jakin batekin konbergitzen dutela frogatu dugu.

Lan egin dugun hirugarren norabidea kontsideratu ditugun erreferentzia ere-
duen eta garatu digutun eredu hurbilduen zenbakizko simulazioekin erlazionatuta
dago. Hau burutzeko Matlab eta C erabiliz kode bat garatu dugu eredu hauek guz-
tiak Elementu Finituen Metodoa erabiliz ebazteko. Honi esker, hainbat zenbakizko
emaitza eskuratu ditugu eta ereduen zenbakizko errendimendua ebaluatzeko gai
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izan gara. Halaber, eroankortasun neurketekin erlazionaturiko hainbat aplikazio
garatu ditugu.

Azkenik, eredu hurbilduentzako soluzio semi-analitikoak eraiki ditugu. Prob-
lemaren bi dimentsio kontuan hartzen dituen Fourierren transformada bat erabiliz,
3D problema 1D problema batean eraldatu dugu. Orduan, 1D problema honen
ebazpen analitikoa eraiki dugu eta Fourierren alderantzizko transformada erabili
dugu gure 3D problemaren soluzio semi-analitikoa lortzeko. Soluzio semi-analitiko
hauek, kostu komputazional txikiago batekin, gure problemaren soluzioak ebalu-
atzeko bide bat eskeintzen digute zenbakizko soluzio hutsekin konparatuta.

Hainbat norabide natural daude problema honen inguruan aurrera egiteko.
Aurrera pausu posible bat, problemaren singulartasun posibleak aztertzea izan
liteke, eta aldi berean, hauek eredu hurbilduen errendimenduan duten eragina
aztertzea. Honekin erlazionatuta, desbideratutako hobiak aztertzea interesgarria
izango litzateke. Kasu honek erronka berezi bat planteatzen du, izan ere konfigu-
razioan azaltzen diren izkinek eredu hurbiluden errendimendua txikitzeagatik eta
arreta berezia eskatzeagatik ezagunak dira.

Lan honen beste jarraipen posible bat 3D elektromagnetismoaren inguruan
lan egiten jarraitzea izango litzatzeke. Lan honetan haibat zenbakizko simulazio
aurkeztu ditugu problema limite baten zenbakizko errendimendua azterteko. Arlo
honetan, eredu hurbilduen garapen sakon bat egitea interesgarria izango litzateke,
hedapen asintotikoarentzako Ansatz apropos bat bilatuz.

Era berean, soluzio semi-analitikoen norabidean lan egiten jarraitu beharko
litzateke. Hemen, soluzio hauen garapena aurkeztu dugu. Norabide honetan, aur-
rera pausu naturala, soluzio hauen inplementazioa eta hainbat senbakizko emaitza
lortzea izango litzateke. Orduan, emaitza hauen eta zenbakizko soluzio hutsekin es-
kuratutako emaitzen konparazio bat egitea posible izango litzateke, errendimendua
eta zehaztazuna bezalako alderdiak aztertuz.

Azkenik, Irudi 5.4-ean erakusten den problemaren analisi bat egitea posi-
ble izango litzateke beste ikuspuntu bat erabiliz. Dokumentu honetan hedapen
asintotiko bat garatu dugu hodi metalikoaren lodieraren berreturetan. Jodi-
aren eroankortasuna lur geruzen eroankortasuna baino hainbat magnitude al-
tuagoa denez, posible izango litzateke hedapen asintotiko berri bat aztertzea, zeina
eroankortasun hauen kontrastearen berreturetan egina izango litzateke. Hedapenak
ondorengo forma edukiko luke

Oext
ur Y 0" uF, non §=-".
k>0 Olay



ONDORIOAK

225

Oint

Olay

Oext

Irudi 5.4: Eroankortasun ezberdinetako eremua, non o,y >> Oext, Oint-
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APPENDIX

ADDITIONAL RESULTS

A.1 Introduction

In this Appendix we present several additional results related to the models ob-
tained in the previous chapters. We begin by presenting the derivation of the 3D
axi-symmetric asymptotic models we have employed in chapter 5. Then we show
the variational formulations for the time-harmonic problems obtained in section
1.5. In the same way, we continue by giving the variational formulations for the
problems set in the 3D axisymmetric configuration considered in section 1.6. Then,
we show some steps towards an extension of the results obtained in the previous
chapters to a 3D electromagnetic problem. The next section is devoted to a unified
notation for the different asymptotic models we have derived. Finally, we compare
our models with several similar models that can be found in the literature.

A.2 3D axisymmetric configuration

The main objective of this section is the derivation of approximate models in a 3D
axisymmetric configuration. The plan of the section is the following. First we set
the model problem we are interested in. Then, we develop a multiscale expansion
in powers of € for the solution to the model problem and we obtain the equations
for the first terms of the expansion adopting the first approach. Finally, we derive
the desired approximate models. We then address the second class of problems,
and for avoiding repetition with the previous sections only the main results are
presented.
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A.2.1 Model problem and scaling

Let © C R? be the domain of interest described at Figure A.1. The Domain € is a

cylinder shaped domain and is decomposed into three subdomains: €)X, €2 ,, and
&

fay- Subdomain f, is a thin layer of uniform thickness ¢ > 0. We denote by
s ; the interface between €2, and f, , and by I'; , the interface between f,  and

€ €
int lay>» ext lay

(2. In this domain, we study the static electric potential equation, which read as

follows

div(eVu) = f. (A.1)

€
ext

2

X

Figure A.1: Sectioned three dimensional domain for the model problem and asymp-
totic models of the first class.

Here, u represents the electric potential, o stands for the conductivity and f is
the right-hand side, which corresponds to a current source. The conductivity is a
piecewise constant function, with a different value in each subdomain. Specifically,
the value of the conductivity inside the thin layer Qf —is much larger than the
one in the other subdomains and we assume that it depends on parameter e. We
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consider a conductivity of the following form

: €
Oint m Qint)
_ =~ -3 : Q¢
0 = Olay = 00€ m lay»
: €
Oext m Qext?

where gy > 0 is a given constant. We assume the right-hand side f is a piecewise
smooth function that is independent of € and vanishes inside the layer.

f int n Qisnt>
f = flay = 0 in Qlaay,
fext in Qth'

We assume that we have a solution u € H' (Q2) to (A.1). Then, denoting the
solution u by
Uint in ant’

€

u=q Uy in O,

Uext in €

Problem (A.1) becomes

OintAuint = fint in Qignt7
UextAuext = f ext in ngm
Aulay =0 in leaw
Uint = Ulay on anw

(A2)
Ulay = Uext on FZXt7
Uintanuint = C/;Oic:_ganulay on Fjantv
5’08_38nulay — Uextanuext on Fixm
u=0 on €,

where 0,, represents the normal derivative in the direction of the normal vector,
which is interior to €2, on I't,, and exterior to €2, on I, as shown at Figure
A.1. Due to the cylindrical shape of the considered domain, we consider these
equations to be written in cylindrical coordinates. Thus, the Laplacian operators

of equation (A.2) have the following form
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1 1
A=-0, (rd,) + ﬁag + 2.

A key point for the derivation of a multiscale expansion for the solution to
Problem (A.2) consists in performing a scaling along the direction normal to the
thin layer. We begin by describing domain €}, in the following way

Tay
) 11
y = {7(«9, 2)+eRn:v(z)el,R € <—2, 2)} ,

where 7 is a parametrization of the interface I' (see Figure A.1), which in cylindrical
coordinates is defined as

(0, 2) = (19,0, z), for all 6 € [0,27),z € (0, 2p),

and n = (1,0,0) is the normal vector to the curve I'. This domain geometry induces
the following scaling

r=rg+eR & R=c"'(r—r).
As a consequence, we have

o —+oF kel

1 1
This scaling allows us to write the scalar operator =0, (rd,) + —9; + 2 in the
r r

following way

1
S04 + 02,

7282 —1 a
c R+€ T0+€R R+(T0+€R>

and _
1
To +eR (ro +eR)?

Now we perform an expansion of the terms in powers of ¢

so that we obtain the following expression

B [e's) B _Rk 00 _Rk
e 20+ > & 1 k+3 0R—|—Zsk( k+3 Iy + 02
k=0 To k=0 To

We also notice that on the interfaces I'5, and I'f,, we rewrite the normal

derivative in the following form 8, = 9, = ¢ '0g. Finally we denote by U the
function that satisfies

g (1,0, 2) = ey (ro-+2 R, 0, 2) = U(R,0,2), (R,0,2) € (-i ;) < [0, 27) x (0, 20)
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We rewrite Equations (A.2) with the newly defined variables and functions
and they satisfy the following equations outside the thin layer

OintAUing = fine I Oy,
(A.3)
ontAucxt = f ext in Qixm
the following equation inside the thin layer
R R)*
*282U+Z 1 k+3 6RU+Z k+1)< ,HQ BU + 92U =0
k=0 To k=0 To (A.4)
_ 11
in <—2, 2> x [0,27) x (0, z0) ,
and the following transmission and boundary conditions
€ 1
i (ro = 5.0.2) = U (=3.0.) (6,2) € [0,27) x (0, z0),
1
o (0 +5,0.2) = U (5.0.2) (6,2) € 0,27) x (0, 2),

0, z) — Goe0RU (—;,9, z) (0, 2) € [0,27) x (0, 2),

Oext anuext

Uintanuint (7"0

0,.2) = 5o 0L (; 0.2)  (0,2) € [0,2m) x (0, )

u=0~0 on ).
(A.5)

A.2.2 First class of ITCs: construction of a multiscale ex-
pansion

We now derive the asymptotic expansion. To begin with, we perform an Ansatz in
the form of power series of ¢ for the solution to Problems (A.3), (A.4) and (A.5).
We look for solutions

Uint (7'7 9) Z) ~ Z Ekufnt(n 97 Z) in Q

int»

k>0
3 3
Uext (7, 0, 2) ZE ug (1,0, 2) in O, (A.6)
k>0 ‘

11
U(R,0.2) ~ Y *UMR,0,2)  in (—, ) % [0,27) x (0, 20) .
>0 22
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Equations for the coefficients of the electric potential

Substituting the previous expressions into Equations (A.3), (A.4), and (A.5), and
collecting the terms with the same powers in €, for every k£ € N, we obtain the
following set of equations outside the layer

Ot AUF . = finiOn in Qs (A.7a)
O—extAulgxt = fextdlg- in QF (A?b)

ext?

and the following equations inside the layer

k 1 N\ 277l 277k—2 _
8U+§j R)kH&U+§: l 1)( RS gt 4 o2 0
R R (% z -
1=0 7’0 1=0 To
. 11
mn —5, 5 X [07277') X (O,ZQ), (A8)

along with the following transmission conditions

U* (—;,9,z> =k, <7’0 - ;,9,2’) (0,2) € [0,2m) x (0, 29), (A.9a)
Ut @e z> _— <7’0 + ;Qz) (0, 2) € [0,27) x (0, 20), (A.9D)
OrU" (—1,0,,2) = T;zt@nufnf (7"0 — ;,9,,2) (0,2) € [0,2m) x (0, 20), (A.9c)
OpU* (;,9,,2) = 2l (m + ;,6,2) (0,2) € [0,27) % (0, 20), (A.9d)

and the following boundary conditions

u*(Ro,0,2) =0 (0,z) € 0,2m) x (0,2), (A.10a)

uk(r,G,O) = uk(r,e,zo) =0 (r0)e€ (0,7"0 — ;) U (ro + ;,RO)

x[0,27), (A.10Db)

UF(R,0,0) = U(R, 0, 20) = 0 (R.6) € (—1 1) < [0,27).  (A.100)

272
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For determining the elemental problem satisfied by each of the terms of the expan-
sion, we will also need the following equation obtained by applying the fundamental
theorem of calculus for a smooth function U,

AU (R, 2) AR = OxU* (; z> — OpU* (-é z) .

1
2

=1
2

If we substitute Equation (A.8) to the left-hand side and Equations (A.9¢) and
(A.9d) to the right-hand side, we obtain the following compatibility condition

s k-l (L R)k-1-t l
/4 2UR2(R,0,2)+ 3 ~—7——0pU" (R, 0, 2)

= 1=0 To
k—2 (_R)k—Q—l _
+ 3 (k= 1= 1) 03U (R,0,2) | dR = — [00,u"| _(2). (A.11)
1=0 o o re

We adopt the convention that the terms with negative indices in Equations (A.7)-
(A.11) are equal to 0. Employing Equations (A.7) - (A.11) we deduce the elemen-
tary problems satisfied outside and inside the layer for any £ € N. For that purpose
we employ the following algorithm composed of three steps.

Algorithm for the determination of the coefficients

Initialization of the algorithm:

Before showing the different steps to obtain function U* and u* for every k, we
need to determine function U° up to a function in the variables § and z, denoted
by 9. For that purpose we consider Equations (A.8), (A.9¢), and (A.9d), and we
build the following differential problem in the variable R for U° (the variables 6
and z play the role of a parameter)

11
D2U° (R,0,2) =0 Re (—2,2),

1
6083(]0 <—2,9, Z) = 0,
. 01
UgaRU (2,9, Z) = 0.

From these equations we deduce that U° has the following form U°(R,0,z) =
©3(0, 2), where function ¢f has yet to be determined and this will be done during the
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first step of the algorithm. After these preliminary steps, we move onto determining
U* and u* for any k.

We assume that the first terms of the expansion (A.6) up to the order e¢~*

have already been calculated and we calculate the equations for the k-th term.
We also assume that at rank k& we know the form of U* up to a function in
the variables # and z, denoted by (. We obtain the expression of U* at rank
k — 1. The first step consists in determining the expression of function U**! up to
function it . Then, at the second step we determine function ok involved in the
expression of function U*. Finally, we determine uf, and u”, at the third step.
For every k =0,1,2,..., we perform the following steps:

First step:

We select Equations (A.8), (A.9¢), and (A.9d), and we build the following
differential problem in the variable R for U**! (the variables § and z play the role
of a parameter)

11
812%Uk+1 (Ra 07 Z) = gk+1<R7 97 Z) R € <_27 2> )
1
GoORrUM! <—2, 0, z) = OintOn, umt?’ <T0 — %, 0, z) , (A.12)
~ k1 (1 £
000rU (2,9,2) OextOn uext <7“0 + 2,8,2’) ,

where
k+1 a k : l =l (_ )kilil 2771
R 8 Z C k=1 l+1 aRU (R7 97 Z) - Z(k - Z)W@)U (R, 0, Z)
=0 "0 1=0 To

— Q*U(R,0,2).

There exists a solution U to (A.12) provided the compatibility condition (A.11)
is satisfied. We deduce the expression of U**! up to a function in the variables 4
and z, denoted by ©5*1(6, z). The function U**! has the following form

UMN(R,0,2) = VFTUR, 0, 2) + b (0, 2),

where V**! represents the part of U**! that is determined at this step and has the
form (see Proposition 14)

0 if k=0,1,2,3

vt (R.0,2) = { k k—2 k k—3 k .
Vi o0, 2) R4+ f (0, 2)R" "+ ...+ ¢i(0,2)R if k> 3.
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Function pit! represents the part of UF*! that is determined at the following
rank.

Second step:

We employ the compatibility condition (A.11) (at rank k + 2), along with
Equation (A.10c) to write the following differential problem in the variables 6 and
z for function of, present in the expression of U*.

1
02¢5(0, 2) + 7723390]5(9, 2) =h(0,2) (0,2) €[0,27) x (0, 20),
0

(0,0) = 0 oel2m), A3
©oh(0,20) =0 0 € [0,2n),
where
1 b+l (_ Ryk+1-l
h*(0,2) = —/_1 (aﬁvk (R,0,2)+ > (rkz?_laRUl (R, 0, 2)
2 =0 0

= (=R L ook 1 k—2
+Z(k—l+1)W69U (R,0,2)+50;V*(R,0,2) | dR—— 00,04 72] (6, 2).
0 0

=0 (o)

Solving this differential equation we obtain function % and thus, the complete
expression of U*.

Third step:

We derive the equations outside the layer by employing Equations (A.7a),
(A.7b), (A.9a), (A.9b), (A.10a), and (A.10b). We infer that uf, and u*, are
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defined independently in the two subdomains €2, and €2,.

UintAufnt = 0 in Qien‘w
1
ufnt (TO — ;,Q,z> = Uk (—2,9, z> ,
uf, =0 on 00N ONL,.
(A.14)
Oext Aur . = 0 in QL
u® (ro—l—g 0 z) :Uk(1 0 z)
ext 27 9 27 1] )
uk . =0 on 00NN

ext ext*

We will now employ this algorithm to obtain the equations for the first terms
of the expansion.

First terms of the asymptotics

Terms of order zero

Thanks to the preliminary steps formerly performed during the initialization
of the algorithm we already know that U° has the form U° (R, 0, 2) = ¢} (0, 2). In
the same way we consider Problem (A.12) for U*

11
D2U'(R,0,2)=0 Re (2,2),

Ol (—;,0,z> —0,

Ol (;,0,z> —0.

We deduce that the solution to this equation has the form U'(R, 6, z) = ¢}(0, 2).
Then, we employ (A.13) and we build the following problem for ]

1
D205(0, 2) + 7383@8(9, 2)=0  (0,2) €10,2m) x (0, 2),

©0(0,0)

0,
@8(97 ZO) = VU.
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We conclude that ¢)(6, 2) = 0 and thus, U(R, 6, z) = 0. Finally, employing (A.14),
we obtain that the limit solution u° satisfies homogeneous Dirichlet boundary con-

ditions on I'f, and I'S,,. Thus, the problem satisfied by u° reads as

0 : €
{ UintAuint = fint in - Q,
0o __ €
Uy = 0 on 0€),.

(A.15)
{ UextAugxt = f ext in szta

0 _ €
Uy = 0 on  O00,,.

Terms of order one

We consider Problem (A.12) for U?
97119 —-11
92U (R, 6, 2) = 0 Re( )

ORI (—;,9,z> —0,

Ol (;,9,,2) —0.

We deduce that the solution to this equation has the form U? (R, 0, z) = 3 (6, 2).
Then, we employ (A.13) and we obtain the following problem for ¢}

1
D2p0(0,2) + paﬁwé(e, 2)=0 (6,2)€[0,27m) x (0, 20),
0

6(0,6) =0,
gpé(zo,e) = 0.

We conclude that ¢} (6, 2) = 0 and thus, UY(R, 0, 2) = 0. Finally, employing (1.68)
we write the problem satisfied outside the layer by u! as two uncoupled problems

int»

Aul, =0 in
ul =0 on I

int int*

(A.16)

ext?

ul =0 on 0S¥

ext ext*

{ Aul, =0 in
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We deduce that u! = 0.

Terms of order two

We consider Problem (A.12) for U?

b

-1 1
OxU* (R,0,2) =0 RE<2 ),

1
aRU3 <—2,9,Z> = 0,

8RU3 <;,Q,Z> =0.

We deduce that the solution to this equation has the form U? (R, 0, z) = 3 (6, 2).
Then, we employ (A.13) and ¢? satisfies

1 1
83@3(9a Z) + 7200290(2)(07 Z) = = [Uaruo} (97 Z) (97 Z) € [07 27T) X (Oa ZU) )
U 0o re

05(0,0) =0,

903(97 20) = 0.
(A.17)
Solving this problem we obtain the function ¢3(6,z) and thus, the complete ex-

pression of U?(R,0,z). Finally, employing (A.14) we write the problem satisfied
by u? outside the layer as two uncoupled problems

Aui, =0 in  Qf,
ul, <r0 — ;,9,Z> = a0, 2),
ul, =0 on 00N OL,.
(A.18)
AuZ, =0 in QL
ul,, (7’0 + %, 9, z) = pa(0, 2),
ul, =0 on 00 NINL,,.

Terms of order three
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We consider Problem (A.12) for U*

1 -11
0

1
5’06RU4 <_27 07 Z) = O-intanuiont (7’0 - %7 07 Z) ’

1
6-08RU4 (27 07 Z) - Uextanugxt (TO + %7 67 Z) .

We deduce that the solution to this equation has the form

2
UYR,0,z) = Ai [a@nuo} (0, z)R— + Ai {aanuo}rg (0, 2) R+ ¢3(0, 2).

0o Ie 2 go

Then, we employ (A.13) and we build the following problem for (3

1 1
O30, 2) + —O3e}(6,2) = ——— {00} (6,2) (6,2) € [0,27) x (0.20),

(2) 0oTo
903(97 0) = 07

0o (0, z9) = 0.
(A.19)
Solving this problem we obtain the function p3(6, z), and thus, the complete ex-
pression of U?(R,0,z). Finally, employing (A.14) we write the problem satisfied
outside the layer by u? as two uncoupled problems

Au?nt = 0 in Q?nt?
1
u?nt (ro — ;,8,z> = U3 <—2,9,z) ,
ul, =0 on 00N OKL,.
(A.20)
Auzxt =0 in QL

€ 1
ugxt (7’0 + 2787’Z> = U3 (27872) ’

ul, =0 on 00N oS

ext*
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Recapitulation of the asymptotic expansion

Proposition 14. The asymptotic expansion (A.6), has the following form
Uing(1,0,2) = ul (r,0,2) + 2u2 (r,0,2) + *u’ (r,0,2) + O (54> in 5,
Ueat(1,0,2) = (1,0, 2) + 2u?,(r, 0, 2) + *u? ,(r,0,2) + O (54) in o 5,

U(R,6,2) = %5(6,2) + 40, 2) + O (<) n(-3:3)

x [0,2m) x (0, zp),

where functions u®, u?, u®, o3, and @3 are defined by Equations (A.15), (A.18),
(A.20), (A.17), and (A.19) respectively. For k € N, the solution U* to Equation
(A.12) has the following form

0 if k=01,

k0, if k=23,

k—2
Y0, 2)R if k>4,
7=0

Proof. We conduct the proof by induction on k. For £k = 0,1, 2,3, we have already
calculated the expressions of u* and U* in the previous section. Now let us assume
that for any number ¢ € N, such that ¢ < k, function U* has the form

U'(R,0,2) = ¢l_o(0,2) R + @l _3(0,2) R + ...+ (0, 2) R+ ¢}(0, wz),

We begin by considering Problem (A.12) for U*. Solving this problem we
obtain a solution of the form

U*(R,0,2) = @) 5(0,2)R" 72 + @p_5(0, 2) R + ...+ (0, 2) R+ 5 (0, 2),
In the above expression of U* we find function V*, defined as
VE(R,0,2) = o0, 2)R* 2 + o _3(0,2) R + ...+ ¢}(0,2)R

at the first step of the algorithm.
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A.2.3 First class of ITCs: equivalent models

Now that we know the expressions for the first terms of the expansion, we truncate
the series and we identify a simpler problem satisfied by

U Qe

u® =0 +eut +. . +fuF in QF ext

int
up to a residual term of order e**!. We neglect the residual term of order 5! to
obtain an approximate model satisfied by function ul*!. We formally derive three
approximate models of second, third, and fourth order respectively.

Second-order model

For deriving the model of order two, we truncate the series from the second term
and we define u() as

U Qe

(1) _,,0 1_ .0 : 15
u =u +eu =uw in () oxt

int

(see Proposition 3).

From (A.15), we deduce that u!) solves the following uncoupled problem

(1) : e
UintAuint = fint m Qint?

u) =0 on OS¢

int int-

(A.21)
UextAUSc)t = f ext in Qixt’
ull) =0 on  0€Q,.

In this case, we have ull = u™ as u(!) does not depend on e. We infer a second-
order model satisfied by ul') solution to Problem (A.21).

Third-Order model

For deriving the model of order three, we truncate the series from the third term
and we define u® as

u? =l feut + 2 =4+ % in 5, UQ, (see Proposition 3).
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From (A.15), (A.16), and (A.18) we deduce that u® satisfies the following equa-
tions

T Auin) = in O,
antAug{)t = fext in QL
{u(z)}rs =0,
Ar {u(Q)}FE = —52; [aﬁnuo] .
0o
u® =0 on 02N O,

where Ar = 82+ 58j. Following the same procedure as in Section 1.3.2, we obtain
0

the following third-order asymptotic model for u?

o intAui[i]t = fint in O,
gextAu([i]t = fext in
W)L =0, (A.22)
Br {ul},, =~ [s0,u?]
u? =0 on 00 NoQr.

Fourth-order model

For deriving the model of order four, we truncate the series from the fourth term
and we define u® as

u® = w0teut+2ul4etud = ulreul 4P in Q5 UQS,  (see Proposition 3).

From (A.15), (A.16), (A.18), and (A.20), we deduce that u® satisfies the following
equations
UintAUi(ig = fint in  Qf

int»

RTNT S A
[u(g)]re =0,

AF {u(3)}

u® =0 on 02N 0N*,

=9
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where
g= —52610 [aanuo} . 63810 {a@nul}rs — 638017"0 {a@nuo}w .

Following the same procedure as in Section 1.3.2 we obtain the following fourth-
order asymptotic model for ul?l

JintAui[fl]t - fint in Qignt7
O—extAuE;]t - f ext in Qixt?
Bl —
W, =0, (A.23)
Ar {u[B]} __c [aanu[i’r]] £ {a@num} 7
e 00 re  ggro
ubl =0 on O NoNE.

A.2.4 Second class of ITCs: equivalent models

In this section we show the asymptotic models we obtain when we write the asymp-
totic conditions across the interface I'. We expand the solution in power series of
€. Then, by truncating this series and neglecting higher order terms in &, we de-
rive approximate models coupled with equivalent transmission conditions across
interface I'. Since we use the same procedure as in the previous sections, we will
concentrate on presenting the obtained results, regarding the multiscale expansion
and the derivation of the asymptotic models. The domain where the approximate
models are defined is depicted at Figure A.2.

Here, we formally derive two approximate models of order one and order two
respectively.

First-order model

[0 _ :
UintAuint - fint m Qinta

ul[?l}t = on ag]int; .

(A.24)

o] _ :
UextAuext - fext m Qext;

ugt =0 on 0.
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Qint Qext
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ﬁ_

1
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1

1

1

1
L 2

X

Figure A.2: Sectioned domain for the asymptotic models of the second class.



A.3. VARIATIONAL FORMULATIONS FOR THE TIME-HARMONIC
PROBLEM 245

Second-order model

O-intAui[Ill]t = fint in Qint)
M=ol o
ul[rll]t =0 on 00N OQyt.
(A.25)
O—extAuLﬂt = f ext n Qex‘w
Ugc]t = _% n gc]t on T,
u([;(]t =0 on 0NN O0exs-

A.3 Variational formulations for the time-
harmonic problem

In this section we focus on presenting the resulting variational formulation for the
different models we have considered.

A.3.1 Reference model

We write the variational formulation of Problem (1.45). Assuming f € L? (Qiy) ,
we look for u € H}(Q), such that for all w € H}(Q)

(Oint — T€0w) Vu - Vde + (e — i€gw) Vu - Vwdz
Qs s

int ext

+ (50 —icw) [ Vu-Vwde= - / fo@ Az — / foqwdu.
Qignt Qixt

QE
lay

A.3.2 First class of ITCs

Second-order model

Here we deal with the variational formulation for the second-order asymptotic
model we have derived in Section 1.5.3. Problem (1.49) is uncoupled into two
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independent problems, therefore we write two variational formulations, one for
each problem. Assuming fi,, € L?(%,) and foq € L*(£2,), the variational

int ext

formulations consist in finding ui,, € Hy (Q5,,), such that for all wy,, € Hy (€5,,)

— /Qa fintWine dz = /Qa (Oint — 1€0w) VUing - VWi de,

int int

and finding ue € HY (2

ext

) such that for all wey € H ()

- /Qe fextwext dr = /QS (Uext - ieow) Vuext : Vwext dx.
ext

ext

Fourth-order model

The fourth-order asymptotic model (1.50) has been derived in Section 1.5.3. The
corresponding functional space V; has been defined in Definition 6. Assuming
fie € L*(%,) and fo € L*(%,,), the variational problem reduces to finding

u € Vjy, such that for all w € V,

(Cint — T€0w) Vu-Vwdzr + (o — iegw) Vu-Vwdr
Qs Qs

int ext

+Ge 2 /1“6 Ve {u}pe Ve {W}p. ds = — /QE fingw dz — /QE fextw da.

A.3.3 Second class of ITCs

First-order model

Here we write a variational formulation for the first-order asymptotic model (1.54)
we have derived in Section 1.5.5. Problem (1.54) is uncoupled into two indepen-
dent problems, which explain why we have two variational formulations, one for
each problem. Assuming fis € L? (Qn) and foxe € L? (Qeys), the variational for-
mulations of these problems consist in finding uiy € Hi (Qing) such that for all
Wint € H(% (Qint)

— / fint@int dx = / (Uint - Zfo&)) Vuint : vwint dIE,
Qint Qint

and finding ey € Hy (Qexr) such that for all wex € HE (Qext)
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- A fextwext de = /Q (Jext - 7;600‘-)) Vuext : vwext dx.
ext ext

Second-order Model

In this section we introduce a variational formulation for the second-order asymp-
totic model (1.55) we have derived in Section 1.5.5. Again, Problem (1.55) is
uncoupled into two independent problems, thus, we derive two variational formu-
lations, one for each problem. The spaces Vi, and V. are the functional spaces,
which have been defined in (3.27). Assuming fi,x € L? (Qne) and fexr € L (Qext),
the variational formulations reduce to looking for wy, € Viy, such that for all
Wing € V;nt

—/ fintWing dz = / (Oint — t€ow) Ving - VWine d
Qint Qint
_/ 2 (Uint — Zfobd)
r

3

uintwint dS,
and looking for ey € Vext, such that for all wey € Vgt

- / fext@ext dz = / (Uext - Z.GOW) Vuex‘c : Vwext dx
Qext Qext
_/ 2 (Oext — 1€w)
I

3

uextwext dS .

A.4 Variational formulations for the problem in
the 3D axisymmetric configuration

A.4.1 Reference model

In this section we derive the variational formulation for the reference model (1.57).
This is used when doin the performance assesment with our finite element method.
We begin by introducing the functional framework.

Definition 11. For a € R, space L% (Q) is defined as
L2 (Q) = {v measurable : ||v|| 2 q) < oo} :

where

2 o
||v||L(21(Q):/Q|v\ r®drdz.
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Definition 12. For m € N, the spaces H* (Q) and Vi, are defined as

HP (9) = {ve L} (Q)

olortv e L3 (Q),1 € [0,m]},

Vi (@) = {v e H" (2) |v=0 on 92 - T} .

We select Vﬁo (Q2) as the suitable functional space. We assume that fi,; €
L3 (9,) and fe € L7 (€,,), and we select a test function w € Vi, (Q). We
multiply the equations in 5, QF, and Qf, & with this test function and we integrate
over the domain. Then, we integrate by parts and we apply the transmission
and boundary conditions. We obtain the following variational formulation, find

u € Vi'y () such that for all w € V!, (Q),

—/QE fingwr drdz—/gs fotwrdrdz = /QE Cint Or Uint Oy wr dr dz
int ext

int

QE

lay

+ / O et Op Uext Opwr dr dz + 605_38rulay8rwr drdz
ngt

+ / Oint Oz Uint O, wr dr dz + / Oext Oz Uext O, wT dr dz
Qignt ngt

+/ 805_38Zulay82w7" drdz.
QE

lay

A.4.2 First class of ITCs

Second-order model

This section is devoted to the derivation of a variational formulation for the second-
order asymptotic model we have derived in Section 1.6.3. Problem (1.75) is un-
coupled into two independent problems, therefore, we write two variational for-
mulations, one for each problem. We introduce functional spaces Vi'y (€2,,) and
Vi'o (€%,) as the functional framework.

ext

We select the test functions wine € Vi (€5,) and wext € Vi (2, ), we multiply

the equations in €5, and €, in Problem (1.75) with these test functions and we

int

integrate over the domains. Then, we integrate by parts and we apply the boundary
conditions. Assuming fie € LT (%) and fexe € LT ($2,), we obtain the following

ext
variational formulations, find uiy, € Vi!y (€%5,,), such that for all wine € V7' ()

- /QE fintwintr drdz = /E O-intaruintarwintr dr dz+/ﬂe O-intazuintazwintr drdz.

int int int
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and find uex € Vi (€2,,), such that for all wee € Vi'y ()

_/g fextwextrdrdz = /E
cht Q

ext

Oext aruext ar WextT d?" dZ + /QE Oext azuext az WextT d?" dZ .
ext

Fourth-order model

In this section we derive a variational formulation for the fourth-order asymptotic
model we have derived in Section 1.6.3. We remark the problem is governed by
Equations (1.77), which define the problem. Using Vj as the functional space of
the problem, and defined by

Definition 13. We define the Hilbert functional space Vy in the following way

Vi :{w L Wiy € HY (S

wmnt

€ d 154
)7w€$t € ‘Ell1 (Qea:t)7&{w} S L2 (F )7

w ’69(7895.

int

Wre, =W

int

F€

ext’

= 0, w|pano0:,, = 0}

1
2 3
0,

—/QS fintwrdrdz—/ﬂs foxqwrdrdz = /8 Oint Op Uint Orwr dr dz
int ext

provided with the norm

d
2
ol = (nwnw) Flg )

We obtain the variational formulation

int

+ / Oext Orlext Opwr dr dz + / Oint Oz Uint O, wr dr dz
Q’th Qient

+ / Oext Oz Uext O, wr dr dz — / Oint OnUintWw ds — / O exct OpUext W dS.
Qs 0,

5
int aQext

We rewrite the traces of uy,; and ue employing the jump and mean value
expressions, whose definitions have been set in Definition 1.

€ 1

e (w0 = 5,) = {0l (4) = 5 IOl (),

€ 1
Jextanuext (330 + 57 y) = {O_anu}l‘f (y) + 5 [Oanu]rf (y)
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We also take into account that

Substituting these expressions in the previous equation, we derive an identity
as follows

—/QE fintwrdrdz—/gs foxtwrdrdz = /E Oint Oy Uing Opwr dr dz
int ext

int

+ / O ext OpUext Opwr dr dz + / Oint Ox Uint O, wr dr dz
QZXC ant

+ / Oext OxUext O, wr dr dz — / Oint OpUintW ds
Qs O0N0E,,
(A.26)

_ /anBQE O et OpUext W ds + /rs zo {00, u}p. [W]p ds

ext

+ /1*6 e{o0,u}p. {w}p. ds — /rs zo (00 up. {w}pe ds

£
— ) (00 u)p [w]pe ds.

Taking into account the properties of the test functions, we directly deduce
the variational formulation for Problem (1.77) from Equation (A.26). Assuming
fie € L2 (Q5,) and fo € L2 (Q2,,), it reduces to finding u € V} such that for all
w eV,

- / finpwrdrdz — / fotwrdrdz = / Oint Op Uint Orwr dr dz
Qe Qxe Qf

int

+ / Uextaruextaer d’l" dZ + / Uintazuintazwr d’f‘ dZ (A27)
szt Qignt

N o d d
+ /sz Ooxt Oz Uext O, wr dr dz + /FE 00xoE 2@ {u} e {w} ds.
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A.4.3 Second class of ITCs

First-order model

This section is devoted to the derivation of a variational formulation for the first-
order asymptotic model we have derived in Section 1.6.5. Problem (1.84) is un-
coupled into two independent problems, therefore, we write two variational for-
mulations, one for each problem. We define first functional spaces V}'; (Qin) and
V1o (Qext) which are well-suited for the analysis of the problem.

We select the test functions wine € Vi (Qine) and wexs € Vi (Qext ), we multiply
the equations in i, and gy in Problem (1.75) with these test functions and we
integrate over the domains. Then, we integrate by parts and we apply the boundary
conditions. Assuming fi,e € L? (Qine) and fox; € L? (Qeyt), We obtain the following
variational formulations, find w;,; € Vﬁo (Qint), such that for all wy, € Vll,o (Qint)

- / fintwintT drdz = / O-intaruintarwintr drdz + / O-intazuintazwintr dr dZ7
Qint Qint Qint

and find Uey € Vf}o (Qext ), such that for all wey, € Vll,o (Qext ),

- ‘/Q fextwext'r d?" dZ = /Q O-extaruextarwextr dT dZ + /Q Uextazuextazwextr dT dZ
ext ext ext

Second-order model

In this section we derive a variational formulation for the fourth-order asymptotic
model we have derived in Section 1.6.5. The Equations governing the problem are
given at (1.85).

We introduce functional spaces Vi and V. as the functional framework,
which are defined as follows

V;nt = {U) € Hll (Qint) : w’aﬂﬁaﬁint = 0}’

Vext = {w < Hl1 (Qext) : wlaﬂﬁfmext - 0}'

We select as test functions wi, € Vi and weyy € Ve, and we multiply the
equations in Qj,; and ey in Problem (1.85) with these test functions. Integrating
by parts over the domain of interest we obtain the variational formulation for
both uncoupled problems (1.85). Assuming fi,e € L (Qine) and foxe € L? (Qext),
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the variational formulations consist in looking for wu;,; € Vi, such that for all
Wing € ‘/int

— / fintWingr drdz = / Tint Op Uint Op Winer dr dz + / Oint O Uint O, Wing T dr dz
Qint Qint Qint

20—1111:
— | —— UintWin ds.
r €
and looking for ey € Vext, such that for all wey € Vgt

— /Q JextWextr drdz = /Q Oext OrUext O Wex T dr dz + /Q Text Oz Uext O Wexy T dr dz
ext ext ext

2Uext d
- Uext Wext AS.
r g

A.5 Numerical results for 3D Electromagnetism

A.5.1 Introduction

In this section we show some steps towards an extension of the techniques em-
ployed in this document to a 3D electromagnetic problem. We consider a thin
layer problem in the framework of a borehole shaped domain with a thin casing of
uniform thickness and the objective is to derive equivalent transmission conditions
for replacing this thin layer. The equations that govern Electromagnetism are the
Maxwell’s equations. This is a set of four equations that explain the behaviour
of the electric and magnetic fields. The first of these equations is Gauss’ Law,
which explain how the Electric field behaves under the influence of electric charges.
Gauss’ Law is written as follows,

divE=", (A.28)

€0
where E represents the electric field, p represents the electric charge density, and ¢
represents the permittivity of the medium we are measuring the field at. The second

equation corresponds to the Gauss’ Law for the Magnetic Field. This equation
explains the behaviour of the magnetic field H and is written as follows,

div H = 0. (A.29)

The third equation is called Faraday’s Law and it shows that the magnetic
and electric fields are in fact related to each other,

oH

curl £ = —ILLE,

(A.30)
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where g represents the permeability. Finally, the last equation that compose
Maxwell’s equation is Ampere’s Law, which is expressed as

OFE
curl H = 05y +oE+j, (A.31)

where o represents the conductivity and j represents the free current densities.
These two last laws show how a varying electric field produces a magnetic field
and also how a varying magnetic field produces an electric field. Putting all these
equations together we obtain the time-domain Maxwell equations.

div £ = ﬁ,
€o
div H =0,
curl £ = —ua—H, (A52)
ot
curl H = 606@? +oFE + 7.

In this text, we are interested in the time-harmonic Maxwell equations, which
eliminate the time derive 0; by introducing the frequency w. Time-harmonic
Maxwell equations can be written as follows

div £ = ﬁ,
€o
div H =0, (A.33)
curl £ = piwH,
curl H = —epiwE + o E + 3.

Employing these equations, we obtain a second-order equation where only the
electric field appears. Taking the curl in both sides of time-harmonic Faraday’s Law
and substituting it in the time-harmonic Ampere’s Law, we obtain the following
differential equation for the electric field

curl curl B — k*E = dwpj (A.34)

where k is the wave number defined as k* = puw? <eo + Uz’), Im(k) > 0.
w
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A.5.2 Model problem

Let © C R? be the domain of interest described in Figure A.3. This domain is
a cylinder shaped domain which is composed of three subdomains €2, €2, and
O,y In particular, the subdomain €2, is a thin layer of uniform thickness & > 0.
We denote by I'5,; the interface between f and Qf, , and as I't,; the interface
between Q¢ and 2 . In this domain, we study the equation for the electric field

(A.34) we presented in the introduction.

Z}\

€
ext

2

Figure A.3: Sectioned three dimensional domain.

Here, FE represents the electric field, k is the wave number, w stands for the
frequency, p is the permeability, and j represents the free current densities. Like
in the previous chapters, the conductivity, involved in the expression of the wave
number, is a piecewise constant function, which takes a different value inside each
subdomain, and in particular, inside the casing, it depends on ¢

: €
Cint in Qf,,

_ o~ =3 0O
g = U]ay — 0-06 m lay7

: €
Cext in Q.
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where 09 > 0 is a given constant. The rest of the physical parameters are also con-
stant piecewise functions, which take different values inside each of the subdomains,
we denote them as follows

. c . c . . &
kint 1 Qinm Hint mn Qinta Jint m Qinta

. c . c . . . c
k= kla}’ﬁ n Qlay7 H=19 Hay 1M QlaLy’ J =9 Jlay 11 Qlay’

. e . e . : €
kext In S, Mext N gy, Jext in Q.

We remark that as the wave number depends on the conductivity, and this
last one depends on ¢ inside the casing, the wave number also depends on ¢ inside
the casing. To express this fact we have denoted as kjny . the wave number inside
the casing. We denote the electric field in the following way for each subdomain

Eint in QF

int»

FE = Elay in Qf

lay»
: €
Eew in Q.

Employing these notations, we rewrite Equation (A.34) inside each subdomain so
that the resulting problem can be written as follows

2 . . . €
curl curl Fiy — ki Bint = 10 Hint Jint in €.,
2 . . . €
curl curl By, — klay,gEmy = W h1ay Jlay in Tay
2 . . . e
curl curl Eey — ko Pext = 10 kext Jext in Q.
151
Eing X n = Flay X 1 on I%,,
15
Eext X = By X 1 on I, (A.35)
curl By X n = curl B,y X n on I,
Hint Hiay
curl ey X n = curl By X n on I,
Hext Nlay
Exn=0 on Of).

where n represents the normal vector exterior to €2, on I'f, and interior to €2,
on I't ;. We will consider these equations to be written in cylindrical coordinates
(r,0, z) because it is much more suitable for the shape of the domain we are dealing

with. Thus, the expression of the curl operator in this equations is the following

1 o 1
cwl E = (agEz _ azEe) P (@Er _ @EZ)Q n (Ee OB, — 89Er) 5
T T T
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A.5.3 Approximate model

Following the same path employed in the previous chapters it is natural to consider
the following limit problems as approximate models for Problem (A.35)

int int»

curl curl By — k2, By = 1W Ming Jint in
Eint xn=0 on aQiEnt7

(A.36)
{ curl curl Euyy — k2 Foxt = W lext Joxt in QF

ext ext?
Eei xn =0 on 0€Q,.

The order of convergence of this model is not yet established, and in the following
section we perform a numerical study of its performance.

A.5.4 Numerical results

Here we present some numerical tests regarding model Problem (A.35) and ap-
proximate model (A.36). domain €2 employed for these simulations is the following
cylinder

Q={(r0,2):0<r<1,0<0<2m,-1<z<1},

which is composed of the following subdomains

Q‘.fnt:{(r,e,z):0§r<r0—;,O§9<27r,—1<z<1},

lay —

5 —{(7“,9,2’):7”0—;<7“<7"0+;,O§9<27r,—1<z<1},

ext T

Q —{(r,@,z):r0+;<r<1,0§«9<27r,—1<z<1},

where o = 0.35. We consider a toroidal source term in the form of a Gaussian
function of the following form

J(z,y,2) = (6_7(” x2+y2_0'2) 0, 0 ) .

9

Under this configuration and with these parameters we solve problems (A.35)
and (A.36) by employing the Finite Element Code Montjoie developed by professor
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Figure A.4: Example of a mesh (x-y axis view) employed to solve Problem (A.35)

Marc Duruflé. For discretizing the domain, we use curved hexahedral shaped ele-
ments as illustrated in Figure A.4. We observe the numerical solution to problems
(A.35) and (A.36) in Figure A.5.

Now we proceed to perform a more quantitative comparison of the models we
have presented here. For that purpose, we calculate the L? error between these two
models for different thicknesses of the thin layer, in order to observe a numerical
order of convergence for the approximate model (A.36). The results are depicted
in Figure A.6, from which we deduce that this model has a numerical convergence
of order two.

A.6 Unified notation for Equivalent Conditions

The objective of this section is to introduce a unified notation for the different
asymptotic models we have derived. In this way, it is easier to compare and observe
the differences between these models. However, there are some drawbacks with this
way of writing the models. For example, some of the derived models are uncoupled,
whereas some are transmission problems, and with a unified notation this property
is difficult to highlight, as all the models will be written as coupled problems.
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0.5

0 0.5

_0.5 s’

(a) First, second, and third component
of the solution to model Problem (A.35).

0.5 :
0 0.2

-0.9 05"

(b) First, second, and third component
of the solution to approximate model
(A.36).

Figure A.5: Solution for the model Problem (A.35) and the approximate model

(A.36).
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2
=
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=
[}
~
[
1074 | | I
0.01 0.0178 0.0316 0.0562 0.1

Casing thickness (m)

Figure A.6: L? relative error between problems (A.35) and (A.36) for different

values of e.
2D configuration
We begin by rewriting the asymptotic models of the first class in the following way

[u] e 0 0 {00 u}p.

{U}rs 0 ng [Uanu]re

where the operator m22 is defined as

Order two (first class)

mgf =0,
Order four (first class)
2D e?  apy-!
Mes = "5, (da 1) ,
and
d20 = Ap = 0.

Before presenting the asymptotic conditions derived for the second class of
problems, we introduce the following notation for the mean value and jump of the
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conductivity in order to simplify the equations for these conditions.
_ 1
{U} = 5 (Uext + Uint) 5
[E] = Oext — Oint-

The asymptotic conditions derived for the second class of problems are sum-
marized as follows

[ulr _ {o0nulr
{utr 7 [00nuly,
where E2}) is defined as

Order one: (second class)
0 0

E?,j(? - )
0 0

Order two: (second class)

e{o} e [0]
E?f — OintOext 40int Oext :
e [0] e{v}
4O-int Oext 4=O'int Oext

Order three: (second class)

_e{a} (dQD)_l e [0] (dw)_l

€,2 €,2
E2 D __ OintOext 4Uintaext
€2 =

_ela] (aidgg)*l <_fz _ 5{U}> (agdgg)*l

4O-int Oext 0o 40int Oext

2
where  d25 =1—$0;,
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Order four: (second class)

(223),,  (£23),,

E?Y = ,
(£25),, (E2),,
where
= &3
(), = (i g D) (5)
[ elo] &3 [o] -1
<E62§>1 2 <4O—int0—ext - 96Uintaext aj) (d?g) 7
2 { } { }
(), = (5~ o+ o o) (o528)
3 — 3 [~
(5),.- (””) 59

3D axisymmetric configuration

As we have done for the 2D case, we rewrite the models derived for the 3D axisym-
metric configuration employing a unified notation. The asymptotic conditions we
have derived for the first class of problems can be summarized in the following way

[U]FE _ Mg’ f lo anu]rs

{u}p. "\ {o0wu}r.

where M2} is defined as

Order two (first class)

0 0
MEY = ,
0 0
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Order three (first class)

Y
&2 = 3D
mZs 0
where
€ -1
3D _ 3D
m.o = —— (dg ) ;
0o
3D __ _ a2
2" = Ap = 0.
Order four (first class)
T
&3 3D 3p |’
me,2 m€,3
where
g3 —1
3D _ 3D _ 3D
ma,S - T~ (de ) = &M o
0o

On the other hand, the asymptotic conditions derived for the second class of
problems are summarized as follows

[U]F E3D {Uan“}r
ek )
{utr [00nulr
where E2} is defined as
Order one (second class)
0 0
Egﬁ - )
0 0
Order two (second class)
_ {7} e (o]
E3D . OintOext 4Uint0ext
el
e [o] __e{o}

4EO—int Oext 4O-int Oext
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A.7 Comparison with other models

Similar models to ours have been derived in the literature regarding 2D thin layer
problems for the electric potential. In our approach, the conductivity inside the
layer o1,y depends on the thickness of the thin layer . If we consider a constant
conductivity, without any dependence on ¢, and applying the second approach,
we obtain the following models. A first-order asymptotic model, composed of the
following transmission conditions

{J@nu[o]} . 0.

We observe this model differs from model (1.54). A main difference comes
from the fact that model (1.54) is uncoupled, whereas this model is coupled. Then,
we obtain a second-order asymptotic model composed of the following transmission

conditions -
{um}r - {ga”um }I‘ - {a”um}r ’

Olay

[a@numh = —salay8§ {um}r —€ {O‘@ZUD]}F

Again we observe that this model differs from model (1.55), the main difference
being that this model is coupled and model (1.55) is uncoupled. In this framework
we can mention [7,59], where this approach is considered for the 2D electric po-
tential. These models are not directly comparable with the ones presented in this
document because the authors consider a model composed of two subdomains, one
of which is a thin layer, whereas in this document, we consider three subdomains.
In [47], the author considers the Helmholtz equation

1
div (Vu) +qu=0 in
W

where domain 2, showed in Figure A.7, has the shape of a biological cell. This
domain is composed of three subdomains, one of which is a thin layer of uniform
thickness ¢ and is situated between the two other subdomains. This equation
is directly comparable to ours by applying ¢ = 0. The author derives equivalent
conditions across the interface that separates the thin layer and the interior domain,
which matches exactly none of the two approaches considered in this document, but
is not far from the second class of problems we consider. Due to these similarities,
even though the configuration and the considered approach are not exactly the
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Figure A.7: Biological cell.

same, it is logical to compare these models with the ones we present in this work.
One of the main differences with our work is that the thin layer is curved and it does
not touch any boundary, whereas in our configuration, the thin layer is straight
and it touches the boundary. Two models of first and third order are presented
in [47], whose equivalent conditions can be summarized as follows. The first-order
asymptotic transmission conditions write as

[U[quo =0,

[Uanu[ol] . 0,

0

and the second-order asymptotic transmission conditions read as

] = ettty

He To’
1 1
[a@nu[”} =e ( — ) ofull| .
Lo Hm He Lo

A.8 Asymptotic expansion in a geometry inde-
pendent of ¢

A.8.1 Introduction

In the first approach considered in Section 1.3, the elementary terms of the asymp-
totic expansion have a dependence on ¢ due to the geometry being dependent on
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e. This way, the estimates proved in Chapter 3 are not completely justified, even
though the results have been validated numerically. This approach is not new in
the literature, we can find for example the works [10,12] which adopt the same
approach.

In this section, we propose a more rigorous procedure for deriving a different
asymptotic expansion than the one presented in Section 1.3. We perform a scaling
in the thin layer, but we also apply a change of variables in the exterior and interior
domains. This way, we transform these domains, which were dependent on e, and
we obtain a geometry independent of epsilon.

The section is structured as follows. Section A.8.1 presents the change of
variable we perform as a first step towards deriving a multiscale expansion in
terms of powers of € for the solution to the model problem. Then, Section A.8.2
tackles the construction of the multiscale expansion. Here, we explicit the equations
satisfied by the first terms of the expansion. Finally, in Section A.8.3, we compare
the expansion developed in this section with the one obtained in Section 1.4.1.

Change of variables

We adopt the same configuration as in Section 1.2. Here, we propose to perform
a different change of variables in each of the three subdomains that compose (2.
These changes of variables have the following form

Xlay:€_1(l‘—£(]0) xG(mo—E,xo—i—g),
2 2
Xint = l’ogw xG(O,zO—E),
x0—§ 2
IO—L ZEO—L ( 9 )
X = —>~ o+ L[1-——2 2 € - L),
’ I’O+%—Lx+ ( [E0—|—;—L> v x0+2

As a consequence, we have

—1

ax =& @Xlayy

Lo

ax = I Xint
o — 5

9 To — L

= X

xo + € _ L ext
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For Yy € (07?/0)7 Xlay € (_%7%>7 Xint € (0,1’0), and Xext € (waL)a we denote by
Ulay, Uint and Uy the functions that satisfy

U1ay<l', y) = ulay(xo + gXlay7 y) = Ulﬂ}’(Xlaya y)v

To — £
Uint(fE,y) = Uint <:U2Xintay> = Uint(Xintay)v
0

xo— L xo+<—L
uext<x7y) = Uext <<Xext - L (1 - To _'O_ % _ L)) 0.1'0 i L 7?/> = Uext(Xext7y)a

We define the domains €, and Q. as follows

Qint:{(x,y)6R2:O<x<wo,0<y<yo},
Qext:{(x,y)€R2:x0<x<L,0<y<yo}.

We rewrite System (1.2) with the newly defined variables and functions. Then,
we expand the terms P and —2ZL_ in powers of ¢, and we perform a Taylor
2

xo+%—L
expansion of the right-hand sides fi,; and fe. we obtain the following problem

00 k‘ _|_ k 1 00 chk . .

a " 1nt + a Umt 711“:8 : tfint m Qinta
= 2 ZEO Xin Oint I;) k'( )k Xin

(k+ )( 1) k2 > 1 & e (Xexs — L)'“ :

Ak’ T\ 8 tUext + 8 Uext tfext mn Qexta
];] ( )k Xex Y ext b k|2k‘( L)k Xex
—202 2 11
€ aXlaLvalauy + ay[]lay =0 77 5 X (07 ?/0) )
1
Uint (:I:O?y) = Ulay (_27y) Y € (07 y0)7
1
Uext (xo,y) = Ulay (27 y) Yy € (07 y0)7
o ii’fa U, = G ton, U (— 1 0
int ok k{-: Xint YVint (ff(),y) = 0¢o€ Xlay 2ay Yy e ( 7y0)’
k=0 < L0
k k 4 1

Oext Z 2k .fC(] _ ) 8XextUeXt (96073/) = (/7\'087 aXlayUlay (27Z/> (VRS (07 yO)
U=0 on 0f).

(A.37)
These functions represent the new unknowns of the problem.
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A.8.2 Construction of a multiscale expansion

In the following, we asymptotically expand the solution in a power series of €. We
first perform an Ansatz in the form of power series expansion of € for the solution

to Problem (A.37),

Uint

inty Y

Uext

exty Y

Ulay (Xlaya y)

i.e. we look for solutions

Z € mt 1nt7 ) in
k>0
Z gkaxt exty y) in
k>0

~ Z EkU{;y(Xlay,y) in

k>0

Qint7

Qext )

(4 <om

(A.38)

Equations for the coefficients of the electric potential

Substituting the previous Expressions (A.38), into the Equations (A.37) and col-
lecting the terms with the same powers in ¢, for every k € N we obtain the following

set of equations

i _

>

0 2j(ZL’0 — L)

along with the following transmission conditions

=+ (=1)

RO f;

k—j 2 1nt Xint / Int )

Kint Umt + a 1nt intk!(—QﬂfO)k m ant;
2 _ (Xext _ L)kaég(extfext
8Xext ext + a ext O’extk’!Qk(.’L'o _ L)k m Qexta
-1 1

8X1 Ulay + 82 lay =0 (27 2) X (07y0)
(A.39a)
(A.39D)
(A.39¢)
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2y

Oext hd <_]-)]

0

and the following boundary conditions

Uilflt(ov y) - U(f:xt(Lvy) - 0

Uk (Xintao) = Ui’flt(XintayO) =0

int

fot(Xextu O) = U(fxt(Xext’ yO) - 0

Ulléy(Xla}H O) = Ullzly(Xlaya yO) =0

1 Oin k=4 1
Ox Uy (_2’y> "> 5O

6o =2 (xo — L)

00U’ (0, 9)

y € (0,%0),

y € (0,%0),

y € (0,%0),

y € (0,%0),

(A.40a)

(A.40D)

(A.40c¢)

(A.40d)

(A.41a)
(A.41b)
(A.41c)

(A.41d)

where 6% represents the Kronecker symbol. For determining the elemental problem
satisfied by each of the terms of the expansion, we will also need the following
equation obtained by applying the fundamental theorem of calculus for a smooth
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function U*, along with equations (A.39¢), (A.40c) and (A.40d)

62Ulay (Xiay, y) dXiay =

1 o kzé‘ (—1)/ Ox. UL~ (¢ . Z UF=17% (20, 1)

G ext - 2]( L)J Xext Yext 0,Y 1ntj —~ %y ] cht int 0 .
(A.42)

We adopt the convention that the terms with negative indices in Equations (A.39)

- (A.42) are equal to zero. Employing equations (A.39) - (A.42) we deduce the

elementary problems satisfied outside and inside the layer for any k € N. For that
purpose, we employ the following algorithm composed of three steps.

First terms of the asymptotics

Terms of order zero

We consider Problem (A.39¢), along with conditions (A.40c) and (A.40d) for
UO

-1 1
agqayUlgy(me,y) =0 Xy € (2’ 2) )

1
aAXlauyljlg.y (_27 y) = 07

1
aXlayUlgy (2, y) = O
The solution to the above equation has the form UQ (Xiy,y) = ©J(y). Then, we

employ Equation (A.42) and Conditions (A.41d) to build the following problem for
0
%0

d2

dy2soo( y)=0  ye(0,y),
@0(0) =0,
@o(yo) = 0.

We deduce that ¢{(y) = 0 and thus, Up, (Xiay, y) = 0. Finally, employing Equations
(A.39a) and (A.39b), along with Transmission Conditions (A.40a) and (A.40b),
and Boundary Conditions (A.41a), (A.41b), and (A.41c), we obtain that the limit
solution U° satisfies homogeneous Dirichlet boundary conditions. Thus, we write
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the problem satisfied by U° as

0%, Uy + 02U, = Jint

int —

in Qint )
int
U2, =0 on 0.

(A.43)

2 0 2770 __ f ext
aXext Uext + ay Uext -
ext

=0 on aQeXt .

in Qexta

UO

ext

Terms of order one

We consider Problem (A.39¢), along with conditions (A.40c) and (A.40d) for
Ul

-11
O Uby Koy 1) =0 Xy € (53).

1
0%, Uly (=5:0) =0,

1
aXlayUlzy <2,y) = 0

The solution to the above equation has the form Uﬁly(Xlay, y) = ©4(y). Then, we
employ Equation (A.42) and Conditions (A.41d) to build the following problem for

0

d? 1
din%(y) = y € (0,%),

Y

©p(0) =0
0.

90(1)(%)

We deduce that ¢y(y) = 0 and thus, Uil (Xiay, y) = 0. Finally, employing Equations
(A.39a) and (A.39b), along with Transmission Conditions (A.40a) and (A.40b),
and Boundary Conditions (A.41a), (A.41b), and (A.41c), we obtain that the limit
solution U° satisfies homogeneous Dirichlet boundary conditions. Thus, we write
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the problem satisfied by U as

—1 X.
2 1 2771 2 0 int .
axmt Ut + ay Ut = ?Oaxmt Ut — DO aXint Jint in Qi
Ul.=0 on 0.
1 (Xewt — L) .
82 Ul aQUl — 782 UO ex—a - ch
Xext ~ ext + Yy~ ext 13() _ L Xext ~ ext + 2(:170 o L)O-ext Xextf t m ty
Uelxt =0 on 0.

(A.44)

A.8.3 Comparison

In this section we compare the expansion performed in the previous section with
the one considered in Section 1.4. In this case, the elemental problems are defined
over e-independent domains €2, and .. In this sense, we could expect this
expansion to have similarities with the second approach considered in Section 1.4,
or even coincide. We concentrate on the part of the solution defined over 2;,;. We
have an asymptotic expansion of the following form

Uint(Xinmy) = Ui?lt(Xintvy) + 6Uelxt<Xint>y) + 52U§1t(Xint>y) +..

If we consider only the first term of the expansion, thanks to Problem (A.43), we
deduce that the obtained model coincides with the first-order model of the second
class (1.30). Then, if we also consider the second term and we neglect the terms of
order two or higher in ¢, we obtain:

1
(Ui + €Uint) (Xint, ) = (Ughy +€Upy) (15957 y)

- 2x0

= (U8 +eUk) (14 5o + 0 ) 2.9)
0

T
= Upela.9) + 2 (5=0uUh + Ul ) (2.0) + O,

If we evaluate the first order term, 5%-0,US, 4+ Uy, at @ = o we obtain the condition
0

1
Uﬁn(ﬁoay) = —§8ccUi?1t($o,y)a

which coincides with the condition obtained for the first order term (1.30). Then,
if we calculate the Laplacian over €2;,;, we obtain

A (xamUi?lt(xOMy) + Uiilt(x())y)> = 07
21’0
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which also coincides with the equation obtained for the first order term of the
second approach (1.30).



APPENDIX

FINITE ELEMENT METHOD
IMPLEMENTATION

B.1 Introduction

Chapters 1 and 2 were devoted to the derivation of several asymptotic models,
which after have been numerically analyzed in Chapter 4. These tests are useful to
numerically validate the derived models and to illustrate the convergence results
proved in Chapter 3.

For obtaining such numerical results, a classical Finite Element Method code
has been implemented. The code is based on straight triangular elements for dis-
cretizing the domain of the problem and piecewise polynomials of any given degree
for representing the numerical solution. Such polynomials correspond to the La-
grange Polynomials.

This appendix provides a brief explanation about how this code has been im-
plemented. We set the model problem solved by the code from the strong formula-
tion of the differential problem and we explain how we derive a weak formulation
on which the Finite Element Method is applied. We also describe how the weak
formulation is discretized and also how to proceed when we consider Dirichlet and
Robin type boundary conditions. To provide a self-contained description of the
code, we also give some details on the construction of the mesh and the creation
of the corresponding data structures.

In this appendix, one can also find information on the construction of the
shape functions and on the different data structures which are used for getting a
numerical solution.

The code is divided into two main parts. The first one consists in the assem-
bling of a linear system and the second one deals with solving such linear system.
The code is implemented in C and Matlab programming languages, where the part
corresponding to the assembling is mainly coded in C and the part corresponding

273
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Figure B.1: Geometry of the problem: A smooth domain €.

to the resolution of the linear system is mainly coded in Matlab. Moreover, Matlab
is used for the post processing of the solution, including tasks like the visualization
of the solution or the calculus of the error in different norms.

B.2 Model problem: strong and weak formula-
tions

Here we explain the configuration and model problem we are interested in solving.
As stated before, the code is developed to discretize the models we have derived
in chapters 1 and 2. The configurations we are interested in have already been
explained in the previous chapters. They are quite complex, composed of several
subdomains, whose physical parameters take different values and include different
types of boundary conditions and also transmission conditions between the different
subdomains. Our code is adapted to deal with these kinds of complex configura-
tions, but for the sake of simplicity, here we will concentrate on explaining how the
code works for simple configurations. This is why we consider the Poisson equation

ocAu = f,

where constant ¢ and the right-hand side function f are given data. This problem
is set in a smooth domain € C R?, which can be observed in Figure B.1.

Remark 8. The code is also capable of working with the 3D Laplace equation in
an axisymmetric configuration, when everything in the configuration, including the
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right-hand side function f, has a symmetry with an axis, and thus, we simplify the
3D problem to a 2D problem. In such a configuration the problem is solved in the
meridian domain and the 3D Laplace operator takes the following form

A= iar (rd,) + O2.

We consider two types of boundary conditions to complement the Poisson
equiation: Dirichlet or Robin boundary conditions. Each boundary condition re-
quires a different procedure, thus, in the following we will explain both separately.

B.2.1 Homogeneous Dirichlet boundary conditions

We begin with Dirichlet homogeneous boundary conditions because this case
is slightly simpler and its handling is a required passage to deal with non-
homogeneous conditions. In this case, the continuous problem writes as follows

{aAu:f in Q,

(B.1)
u=0 on Of.

When using finite element discretization, it is usual to derive a variational
formulation for the problem. For that purpose, we consider functional space H} (Q)
and we assume that Problem (B.1) admits a solution regular enough (for instance
H? (). The source is supposed to be in L? (Q). We deduce the following variational
formulation: find u € H} (), such that for all w € H} ()

/QaVu -Vwdzr = —/wa dz. (B.2)

This is the variational formulation for the problem when we consider a Dirich-
let type boundary condition. The derivation of such a variational formulation is
necessary for deriving a numerical Finite Element solution and represents the first
step towards obtaining such a solution.

B.2.2 Non-homogeneous Dirichlet boundary conditions

In the case of non-homogeneous Dirichlet conditions, the strong problem writes as

follows
{UAU =f in Q

(B.3)
u=g on 0.



276 APPENDIX B. FINITE ELEMENT METHOD IMPLEMENTATION

It is no more possible to take the boundary condition directly inside the func-
tional space. This is why we are going to introduce a lifting operator allowing us
to modify the problem into a problem set in Hg (Q2). We begin by defining the
Dirichlet trace operator v as

v HYQ) —  H2(09)

w o () = wla.

Now, as the Dirichlet trace operator « is surjective, if g € H'/2(9Q), there
exists a function u, € H' (), for which we assume Au, € L?(), such that
v (ug) = g . This function u, is a Dirichlet trace lifting of ¢ in Q. From u, we
define function u as

U= U— Ug.

Function @ satisfies the following problem

oAU = f—-o0Au, in
u=20 on 0.

Function u satisfies a homogeneous Dirichlet problem, which can be solved with
the variational formulation formerly introduced. We then end up with the solution
through the formula:

u:u—i—ug.

B.2.3 Robin boundary conditions

The second type of boundary conditions we are going to consider are Robin type
boundary conditions. When these conditions are considered, both the solution and
its derivative take part in the formulation. In this case, the continuous problem is

written as follows
{ ocAu=f in €,

(B.4)
au + bo,u =g on O,

where the right-hand side function g and the two coefficients a and b are data. We
also write a variational formulation for the problem. For that purpose, we assume
the solution to the continuous problem is regular enough (for instance H? ({2)). we
select a test function w € D (ﬁ), we multiply the equation in §2 with this test

function, and assuming that f € L*(Q) and that g € H= (Q), we integrate over
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the domain. Then, we obtain

/Q(TVU -Vwdz — (00,u, w) y, = —/wad:c.

We apply the Robin boundary condition to the integral over 92 and from the
density of D (Q) into H! (2), we obtain the following variational formulation: find

u € H'(Q), such that for all w € H' (Q)

1
/JVU-dex%—g/ auwds:—/ fwdx—f/ ogwds. (B.5)
Q b Jog Q b Joq

Remark 9. We infer the weak formulation for Neumann type boundary conditions

Ou=g¢g on 0S,

by just employing the formulation for Robin type boundary conditions if we
apply a = 0 and b = 1. We could consider the formulation for Neumann type
conditions as a particular case of the formulation for Robin type conditions.

Remark 10. We can also consider a mix of the different boundary conditions
presented here. When we impose two different boundary conditions on two different
parts of the boundary, we say that we consider mized boundary conditions. In
general, the problem needs at least a Dirichlet boundary condition on one part of
the boundary to be well posed, so often the problems we consider have the following
form

cAu=f in £,

=g on TV,
u=0 on TP,

where 0 = TP UTYN, and I'P represents the part of the boundary where Dirich-
let boundary conditions are imposed, and I'N represents the part of the boundary
where Neumann conditions are imposed. In such a case, the variational formulation
writes: Find uw € V, such that for all w eV

/aVu~dex:—/fwdx—/ ogw ds,
Q Q N

where
V={weH (Q):wlo =0},
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B.3 Discrete formulation

Let us denote by V}, the discrete space and let us assume that Dim(V},)=N. This
space, in which we will search for our numerical solution, is called the trial space.
As it is a finite dimensional space, it is possible to find a set of functions {e;, ..., ex}
which form a basis of such space and as we want to search for a solution inside this
space, we will look for an approximate solution u; of the form

N
up(x,y) = Z Uiei(z,y) = Urer(x,y) + ...+ Unen(z,y). (B.6)
i=1
The choice of the approximate space Vj, and its basis functions {ey,...,en}

is arbitrary, we are free to choose them as we wish, but it has of course to be
coherent with the regularity problem you are solving. In this implementation, we
have selected basis functions to be piecewise polynomials of a given degree p. This
is a rather classical approach and we will explain better how to build the discrete
space in the following sections. Now that we know what kind of approximate
solution we are seeking, we are willing to set the discrete variational formulations
by substituting u = uy,.

B.3.1 Dirichlet boundary conditions

If we consider a solution of the form (B.6) and we substitute it in (B.2), we obtain
N
ZUZ-/ oVe; - Vwdr = —/ fwdzx.
=1 O &

Now we need to select a finite dimensional functional space containing the test
functions. This space takes the name of test space and in the same way as for the
trial space, we have are free to choose it. In this implementation we choose the same
test space as the trial one, but this choice is not at all mandatory. Thus, using
functions ey, ..., ey as test functions and substituting them into the variational
formulation we obtain

N
ZUi/UVeVVejdx:—/fejdx j=1,...,N.
= o Q

If we denote by A the N x N matrix composed by the entries

ai,j:/gavei'vejdl'7 t1=1,...,N, j=1,...,N,
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and we denote F' the vector with components

Fj:—/fejdx, j:]_,...,N,
Q
we obtain the following linear system

AU = F.

The matrix A is called the stiffness matrix and the vector F' is the force vector. Thits
is a linear system that can be solved to obtain the coefficients U = (Ul, cee UN> ,
and thus, obtain our approximate solution uy,.

B.3.2 Robin boundary conditions

We proceed in the same way for Robin boundary conditions. We consider a solution
of the form (B.6) and we substitute it into (B.5) to obtain

N Nooa 1
ZUi/OVei-dex—l—ZUi—/ Ueiwds:—/fw—f/ ogwds.
= Ja = bJoa Q b Joa

Now we select again the same test space and basis functions we selected for
the trial space, eq, ..., ey, and we substitute them into the variational formulation.
We then have

N N
a 1
Ui/ Ve; - Ve, d Ui—/ Z..01:_/ d _,/ ds,
; L oVe €; ac—i-; 2 89066] s Qfej T aﬂage] s
for j =1,...,N. If we denote by A the stiffness matrix with coefficients
am:/JVeZqux—i—%/ 0'67;6]'(157 7::17”'7N’ j:]-,---,N,
Q i)

and if F' stands for the force vector with components

1 )
Fj_—/ﬂfejdx—EAQ(Tgede, ,]—17--'7N7

we obtain again a linear system represented by the stiffness matrix A and the right
hand side F
AU = F.

t
The system can be solved to obtain the coefficients U = (Ul, L UN ) , which
define our approximate solution wuy,.
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Figure B.2: An example of a triangular mesh for domain Q.

B.4 Domain discretization

Here we explain how we proceed to discretize domain €2 . This step is not manda-
tory when employing the finite element method as you could consider trial and test
functions whose support takes the whole domain €2, but in such a case the resulting
linear system would have a full matrix which would be very costly to invert. As
stated before, in this implementation we employ piecewise polynomials of a given
degree p, which have support only in certain parts of the domain. This choice
is rather classical and it makes the basis functions interact only with a limited
number of basis functions, thus, inducing a more sparse stiffness matrix.

For accomplishing this, it is necessary to discretize domain €2 by dividing it
in several pieces, 2, k =1,..., N, called elements, inside of which we will define
our basis functions. The shape of these elements can be chosen among different
options, different shapes leading to different solutions and each one having their
advantages and drawbacks. For this implementation, we have chosen to implement
straight triangular shaped elements, which offer a simple solution to discretize
complex shaped domains. Then, the first step towards this discretization consists
in building a mesh composed of triangular shaped elements so that we approximate
the shape of domain 2. We observe an example of such a mesh in Figure B.2.

The implementation includes a mesh generator for discretizing rectangular
shaped domains in triangular shaped elements, which are the most used in this
study, but it can easily be used with any other mesh generator for more complex
domains.
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Once the domain is discretized we have to build the basis functions. As stated
before, we select these basis functions to be piecewise polynomials of degree p.
We impose them to take the value 1 at one node of the mesh and the value 0 at
the rest of the nodes that compose the mesh. For defining these basis functions,
we employ the so-called shape functions, whose support is defined only over one
element. Instead of directly defining them over the physical elements, the standard
procedure to define the shape functions is to define them over the triangle of vertices
(0,0), (1,0), and (0,1), which we refer to as the master element and denote by 7. We
observe the shape functions of first degree defined over the master element in Figure
B.3. Then, we define a map from the master element to every element, which allows
us to perform all the integrations over the master element instead of performing
them over each of the elements. Let € , &k € 1,..., N, be a given element of
physical vertices (z%,yY), (2%, 4%), and (2%, 4%), see Figure B.4, we explicit this
map X, employing the following equations

00

Figure B.3: Shape functions for p = 1.

(ol B) = b+ (af —af) o+ (of - af) B,
X : (B.7)
uk(en B) = ot + (vh —of) o+ (uf —of) B,

whose Jacobian matrix has the following form

k k k k
Ty — Xy Ys — Y1

J = ,
k k k k
T3 — Ty Ys —

and its inverse
) vh— @y yh
o — o) (vh —ob) — (b — o) (b —ob) \ sk —ob byt

Q=J"=
(
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Figure B.4: Map from the master element to the physical element.

Finally, the Jacobian takes the following value

1] = (25 — o) (v — ob) = («f —21) (8 —ob).

These expressions will be useful when applying this map to the calculi of the
integrals of the stiffness matrix and force vector, which will be presented later.

B.5 Meshes

Even though the code works with complex geometries, we mostly employ it for
solving rectangular shaped problems. Thus, most of the time we employ structured
meshes like the one showed in Figure B.5 for a [0,0.75] x [0, 0.5] rectangle.

In order to create this kind of meshes, we need several data structures. In the
following sections we will use the example of figure B.5 to explain how these data
structures work.

B.5.1 Nodes coordinates

The first data structure we need is a matrix containing the coordinates of all the
nodes composing the mesh. Following the example of Figure B.5, for this case the



B.5. MESHES

283

9 10 11 12
8 | \10| 12
7 9 \ |11
5 6 7 8
2 4 6
1 3 5
1 2 3 4 ,

Figure B.5: Structured mesh for a rectangular domain.

coordinate matrix would be the following

0
0.25
0.5
0.75
0
0.25
0.5
0.75
0
0.25
0.5
0.75

B.5.2 Connectivity matrix

o O o O

. 0.25
. 0.25
. 0.25
.05
.05
.05

The second data structure we need is the connectivity matrix. This is a matrix
employed to connect each basis functions with its corresponding shape functions
inside every element. We denote it as C' and the values inside it indicate that basis
function C; ; corresponds to shape functions j inside element ¢, for ¢ = 1,..., N,

and j =1,..., 5

(p+1)(p+2)

. Continuing with the example of Figure B.5, in this
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case, considering we are dealing with polynomials of degree p = 1, we would have
the following connectivity matrix

1 2 5
6 5 2
2 3 6
7 6 3
3 4 7
o 8§ 7 4
5 6 9
10 9 6
6 7 10
11 10 7
7 8 11
12 11 8

The main utility of this matrix is that it can be employed to assemble the global

stiffness matrix and global force vector in the following way. For k € {1,..., N.}
1 2
and i, € {1, . .,(p+)2(p+)}7 we have

_ k
ACk,i,Ck,j = ACk,ka,j + Q; ;s

Foy, = Foy; + F;k’

where the terms aﬁ ;and F f are the elements composing the local stiffness matrix
and local stiffness vector. We will explain how to calculate these values more in
details in Section B.7 and Section B.8

B.5.3 Robin nodes

If we have a Robin boundary condition on some part of the boundary, we need a
matrix that stores the nodes that touch such part of the boundary, and also what
elements are in touch with such boundary. For the example of Figure B.5, assuming
we have Robin boundary conditions all over the boundary, this matrix would look
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as follows,
1 1 2
3 2 3
5 3 4
6 4 8
12 8 12
12 12 11 |’
10 11 10
10 9
9

where we store the number of the element that is in contact with the boundary
with a Robin condition on the first column, and the two nodes of such element
which are over the boundary in the second and third column.

B.5.4 Dirichlet nodes

When we consider a Dirichlet boundary condition over some part of the boundary,
we need a matrix that stores the nodes that touch such part of the boundary. In
this case we do not need to know what elements touch the boundary, only which
nodes. Following the example of Figure B.5, assuming we have Dirichlet boundary
conditions in all the boundary, this matrix would have the following form,
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B

5p+1 15
13 \ 14
10 \J11 12

526 7 8 9

511 2 3 4 5)0{

a{l a2 e &p+1

Figure B.6: Nodes inside the master element for defining shape functions of degree
.

B.6 Shape functions of degree p and basis func-
tions

In this section we explain how to build the desired shape functions as piecewise

1 2
polynomials of any degree. For a given degree p, this makes a total of w

shape functions defined over the master element. We build a grid over the mas-

ter element by dividing each axis in p pieces of the same length. This creates

1 2
w nodes, as we show in Figure B.6. The shape functions must take

the value 1 at one of those nodes, and 0 at the rest of them. We number shape
functions starting from node (0,0) and moving from left to right and from bottom
to top, as we show in Figure B.6.

Thus, the shape functions are defined in the following way, for a shape function
that takes the value 1 at a node (ay, 5;) and 0 at the rest of nodes, shape function
J

—1
number s = ((p+1) + (p — j + 3)) Tt i, we employ the following expression
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Ha-—q T B-B HH at+f-o

v (e )= 1

L — o B — B 1:111 o + B —

. o — (X7 o — Qo o — ;1
B - —ar 0 — G
B—=51 B—Ppe B =B
Bi—061 Bj— DB Bj — Bj-
a+f— i a+ B — iy a+ B —apn
o+ B — i1 o+ B — Qi o + B — apy1

This is the expression of the shape function defined over the master element.
Employing this expression and the map (B.7), Xy(«,8) = (z(«, 8),y(a, B)), we
obtain the shape functions defined over the physical elements. We will denote the
shape function defined over the physical element corresponding to s as @;:

vs(2,y) = vs (2(, B),y(a, B)) = Ys(a, B).

We define the basis functions by employing these physical shape functions. As
stated before, this basis functions will be piecewise linear polynomials that take
the value 1 at one node and the value 0 at the rest of the nodes. Thus, we will
count with as many basis functions as nodes we have on the mesh. In general we
find three different types of basis functions.

The first ones are the basis functions corresponding to a node interior to an
element, like the nodes 7, 8, and 11 on the example of Figure B.6. These basis
functions will have support only inside that element and will vanish outside of it.

The second type of basis functions are the ones corresponding to a node which
is placed over the side of two elements that touch each other. In this case, these
basis functions will have support over those two elements and will vanish outside
them. In the example of Figure B.6, the nodes 2, 3, 4, 6, 10, 13, 9, 12, and 14
could correspond to basis functions of this type.

Finally, the last type of basis functions are the ones corresponding to a node
which is placed over a vertex of several elements that touch each other just at that
point. In this case, these basis functions will have support over all those elements
which touch the given node and will vanish outside of them. Nodes 1, 5, and 15 in
the example of Figure B.6 could correspond to basis functions of this type.



288 APPENDIX B. FINITE ELEMENT METHOD IMPLEMENTATION

B.7 Local stiffness matrix

Here we explain how to calculate the local stiffness matrices. For every element
Qr, k=1,..., N, we will calculate the matrices

b= Kz, y) - Vi e (p+Dp+2)
ai,j—/QkJVgoi(x,y) V@j(l’,y)dxdy, ih,j=1,..., 5 )

Then, we can employ these matrices to calculate the global stiffness matrix A
by employing the connectivity matrix. For calculating these local stiffness matrices,
we employ the following formula with the help of the map the map (B.7) to perform
the integration over the master element T,

afy = [ oVeka.y) - Veh(r.y) drdy

0 (0s,8y) ©f (@, y) - (05, 0y)" 5 (x,y) dz dy

k

I
S5~

0 (D 05) T4 E (a0, B), (v, B)) - (0 B5) T ) (a(ev, B), (e, B)) || devd

I
S~

0 (0o, 05) J " hi(, B) - T~ (D, Dp)" 15 (cx, B) | ]| v d.

S—

T

After calculating these integrals, we assemble them into the global stiffness
matrix A by using the connectivity matrix C,

_ k
Ack,i,ck,j - Ack,iack,j + Qg -

B.8 Local force vector

In the same way, we calculate the local force vector thanks to the following formula

k __ k
F; —/Qkf(r,y)%(x,y) dz dy

= [ F (@n(e )00l 8)) &} (el B), yile, B)) || derd B

:/Tf(xk(oz,ﬁ)ayk(a,ﬁ))%(a,@)|J|dad5, j:1,,”7(p+1)2(p+2)'
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AN N mk’yk
/y[ (0’1) Yk Fk(?) 3)k
/\ Yo /\ 3 FQ
o 0 | g\ o8t | (k)
o | > > X
0 1 (0,001 7 (1,0

TE(t) = Xi(n(t))

Figure B.7: Maps employed to calculate the integrals of the Robin boundary con-
ditions.

After calculating these integrals, we assemble them into the global force vector
F by employing the connectivity matrix C,

o, = o, + Fak‘

B.9 Robin boundary conditions

When the problem includes Robin type boundary conditions, like Problem (B.1),
we need to calculate some extra integrals over 0€). Thanks to the data structures
we have defined we already know which elements touch this boundary and which
vertices of these elements are placed over it. Let €, be an element and let us
assume that one of its edges is in contact with the part of the boundary where we
have imposed Robin boundary conditions. We denote such side of the element as
I'*. Then, we have to calculate integrals of the following form

P+ 1) +2)
5 ,

- p+1)(p+2
Rﬁj:/ma@f@fds, 2,‘7:1,...,¢.

Nf:/Fkag@?ds, 7=1,...,

2

For calculating these integrals we employ the map X, = (z(a, 3),y(a, 3))
defined in Section B.4, along with another map that goes from the [0,1] to the
sides of the master element 7. We observe this configuration in Figure B.7.
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We have to separate three possible cases for defining this map, depending on
which edge of the element touches the boundary, each case corresponding to one
of the edges, I'¥, T's or I't. We then define the map v, [ = 1,2,3, as

n(t) = (t,0),
M= '72(t) = (1 - t,t), te (Ov 1)‘
73(t) = (07 1— t)>

Composing this map with the map X; = (z(«, 3), y(a, 8)) defined in Section B.4,
we obtain

L5 (t) =(2f + (2§ — )t b + (0 — uh)t),

T5(t) = (o} + (2§ — ) (1 — 1) + (2§ — 2h)t,

I =Xip(n) =
yE+ (g5 — oy (1= 1) + (uf —yb)t),
(1) = (ot + (@ — 2§) (1 = 1), 9 + (5 — yD) (1 = 1))
We deduce
| =y/(ah — 2b)2 + (s — )2,
[l =3 o8 =/ ah — 252 + w5 - )2

8| =v/(ah — )2 + (v — )2

Now we calculate the integrals by using the following formulas, for [ € {1,2, 3},

NF :/rl agsOQ‘?dSZ/Ol og(Ti(t)w; (v(1)) ||TF ()] dt.

Rf,j—/ v dS—/lcr@/Jz-( () &5 (v HF'“’ Hdt

We assemble these integrals into the global stiffness matrix and global force vector
thanks to the connectivity matrix

k
ACk,i,C'k J ACk i:Ch,j + R

0,7

Fe,, = Fe,, + N¥.
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B.10 Dirichlet boundary conditions

When a Dirichlet boundary condition is set on a part of the boundary, thanks to
the data structures we have defined, we already know what vertices are placed over
this boundary. Then, Dirichlet conditions are imposed by directly modifying the
global stiffness matrix and global force vector in the linear system

AU = F.

Let us assume that the node (z;,v;), i € {1,..., N} touches the boundary
with a Dirichlet boundary condition. Then, we modify row number ¢ in the matrix
in the following way

A =0, j=1,....i—1,i+1,...,N,

1,3
Ai,i = 17

and we modify the force vector by imposing F; = f(z;,vy;). Now when we solve the
linear system, with these changes we enforce the solution to take the desired value
at the nodes we have a Dirichlet condition. In practice, instead of modifying the
global force vector and stiffness matrix, which are going to be very big and sparse
in the case of the stiffness matrix, we just avoid adding elements to those rows
when performing the assembling.

B.11 Transmission conditions

The models we have to deal with are sometimes composed of transmission con-
ditions between the different subdomains. These transmission conditions often
include terms like jumps and mean values of functions or their derivatives. These
transmission conditions have to be treated differently depending on the terms that
appear in their formulations. Here, to illustrate how we deal with this kind of con-
ditions, let us assume we have an integral of the following form in the variational

formulation.
/ (] [v] ds.
r

The procedure is similar when dealing with mean values instead of jumps.
For each pair of elements €, €);, whose boundaries are connected via a trans-
mission condition written on interface I', we have the shape functions ¥,
i= 1, ptDE+2)

5 defined over ), and the shape functions ¢!, i =



292 APPENDIX B. FINITE ELEMENT METHOD IMPLEMENTATION

(p+1)(p+2)

L., 5 defined over ;. Let us denote by I'* the part of the boundary
that meets I'* = I' N Q. Then, we have to calculate the following integrals
Lt = (p+1)(p+2)
/Fk [907'} [SOJ:| dS, 7’7]_1,--.,#'
Tt e (p+1)(p+2)
/Fk [QOJ [QOJ} dS, )= LH.’#‘
ek = P+1)p+2)
/rk [%] [%Dj} ds, ,7=1,.. Tt
il = (p+1)(p+2)
/rk [%Hsﬂj}ds, 2,]—1,...7f.

We will concentrate on the last integral since the three others are calculated
following the same procedure. We develop the integral in the following way

[ as = [ thaithonas— [, ot

k k
B /Fk Pi k+ ds + /Fk Pi

Among these integrals only the third one is non zero due to the shape functions
only having support over one element. To calculate this integral, we define the two
following maps from the master element 7" to the two elements 2, and €2;, and we
define another map from the segment [0, 1] to the corresponding side of the master
element in the same way we have done in Section B.9. We denote it by . Figure
B.8 illustrates what is going on with this case.

ds

k-

l l
Tk+ ©j rk+ ©j

ds.

k=

l l
Fk—(‘pj Tk— (pJ

Now we calculate the integral in the following way
k ! _ oyl o
[otl el [ (%) (o0

= /Fk (wz o Y;l) . (¢j oyl_l o X} o0 Y,Zl)

ds

k+

ds

rk+

ds

rk+

= /Fk (@/h ofgl) o (ij oylk oylzl)

= [ w0 () (450 o) (@) I (0] e

where ylk = yl_l @) yk.
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Figure B.8: Maps employed for the jump integrals.

B.12 Numerical intregration

During the whole process of applying the finite element method, we have to perform
several integrations. To achieve this goal, we employ the one dimensional Gaussian
quadrature points for numerically integrating functions. This quadrature rule is
very suitable for integrating over rectangles in two dimensions, but if we want to
employ it for integrating over our master triangle 7', we have to adapt it.

We consider a map @ that goes from the square @ = [0,1] x [0,1] , to the
master element 7. We explicit this map as follows

lonao.

We deduce that the Jacobian matrix has the following form

1 0
1 1-¢

J:

and the Jacobian
|J]=1-¢C.
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(0,0) (1,0) (0,0)

Figure B.9: Map from a square to the master element.

Now we employ this map into our numerical integrations in the following way.
Let us assume we want to integrate function h over T', then, we proceed as follows

[ hapyaads= [ [ htepydads = [ [Ta(c.ca-m)1aldcay

=/Qh<<,n<1—<>><1—<>d¢dn
= 3 e (G (1= O (1= ).

where (;, n; are the integration points and w;, w; are the weights of the Gaussian
quadrature rule for one dimension. These quadrature points and weights take
different values and increase or decrease in number depending on the degree of
the polynomials we want to integrate. This quadrature rule is suitable for the
type of integrations we want to perform, because if enough points and weights are
selected, it can integrate polynomials with no error, and our shape functions are
indeed polynomials.

The one dimensional Gaussian quadrature rule is capable of integrating poly-
nomials of degree 2n — 1 with no error by employing n points and weights. Thus,
in our case, if the degree of the shape functions is set to p we need 2p + 1 points
to integrate with no error the integrals of the stiffness matrix.

One of the drawbacks of this technique is that it works very well for squares
but when working with triangles it is not so efficient. When creating the map from
@ to T the integration points are no longer symmetrically distributed along the
domain, therefore, we need more points for integrating with no error polynomials of
a given degree. We observe this phenomenon in Figure B.9. The points employed
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in the example of the figure are the following for @)

and the following for T’

0.1127
0.1127
0.1127
0.5000
0.5000
0.5000
0.8873
0.8873
0.8873

0.1127
0.1127
0.1127
0.5000
0.5000
0.5000
0.8873
0.8873
0.8873

0.1127
0.5000
0.8873
0.1127
0.5000
0.8873
0.1127
0.5000
0.8873

0.1000
0.4436
0.7873
0.0563
0.2500
0.4436
0.0127
0.0564
0.1000
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