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1 Introduction

Since when Einstein-Podolsky-Rosen (EPR) pointed out in 1935, quantum entanglement

has fascinated many physicists because of its counterintuitive nature that a local measure-

ment on a particle may affect the outcome of a local measurement on a distant particle

instantaneously [1]. After Aspect et al. convincingly tested the quantum nature of entan-

glement by measuring correlations of linear polarizations of pairs of photons [2, 3], much

attention has been paid to this genuin quantum property in various research areas including

quantum information theory, quantum communication, quantum cryptography, quantum

teleportation and quantum computation.
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Turning our eyes on cosmology, in de Sitter space where the universe expands expo-

nentially, any two of mutually separated region eventually becomes causally disconnected.

This is most conveniently described by spanning open universe coordinates on two open

charts in de Sitter space. The positive frequency mode functions of a free massive scalar

field for the Euclidean vacuum (the Bunch-Davies vacuum) that have support on both

regions were derived in [4]. Using them, several studies have been made on the quantum

entanglement, particularly, entanglement entropy [5], on negativity [6], which is a measure

of entanglement for any mixed states involved in subsystems, and on quantum discord [7].

Quantum entanglement between two causally disconnected regions in de Sitter space

was first studied by Maldacena and Pimentel [5]. They showed that the entanglement

entropy, which is a measure of quantum entanglement, of a free massive scalar field between

two disconnected open charts is non-vanishing. Motivated by this result, there have been

several attempts to test the idea of multiverse by studying long range correlations of various

states that quantum entanglement naturally gives rise to [8–10].

In order to gain some insight into relativistic quantum information, qunatum entan-

glement between causally disconnected regions in flat space was investigated by Fuentes-

Schuller and Mann [11] by making use of the Rindler coordinates. They studied the en-

tanglement between two causally disconnected modes of a free scalar field as viewed by

two relatively accelerated observers in Rindler space. It was found that the entanglement

is degraded from the perspective of accelerated observers in flat space and, in particular,

the entanglement disappears for an infinitely accelerated observer. Interestingly, however,

Alsing et al. showed that unlike bosonic fields fermionic fields always remain entangled

even in the limit of infinite acceleration [12]. Then Datta showed that quantum discord,

which is a measure of all quantum correlations including quantum entanglement, never

disappears in this limit [13].

The two open charts of de Sitter space are analogous to the Rindler wedges in flat space

in the sense that an observer in the region described by one of the charts has no access to

the field modes in the other causally disconnected region. Therefore it is of interest to see

how the spacetime curvature will affect these results obtained in flat space.

In this paper, we first study the Bunch-Davies vacuum of the Dirac field in open charts

by extending the previous work on scalar fields [4]. Then using thus obtained spinor mode

functions, we compute the entanglement entropy.

The paper is organized as follows. In section 2, we consider the Dirac equation and its

conserved currents in the open chart. In section 3, we derive the mode functions in each of

the two open chart regions. In section 4, we analytically extend the solutions to construct

the positive frequency mode functions for the Bunch-Davies vacuum. In section 5, we

present the Bunch-Davies vacuum solutions in the open chart. In section 6, we discuss the

absence of supercurvature modes for fermions. In section 7, we compute the entanglement

entropy between the two causally separated open charts. Finally we summarize our reslut

and discuss the implications in section 8.
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Figure 1. De Sitter space and its Penrose diagram. The regions R and L are the two causally

disconnected open charts of de Sitter space.

2 The Dirac equation in open chart

The open de Sitter space in the case of a free massive scalar field is studied in detail in [4].

In figure 1, the de Sitter space and its Penrose diagram are depicted. We extend the

study [4] to the case of a Dirac field in this section. We do not include dynamical gravity

as in [4].

The metric in the open chart is

ds24 = gµν dx
µdxν = H−2

[
−dt2 + sinh2 t dS2

3

]
,

≡ ηAB e
A eB = −

(
e0
)2

+ sinh2 t δab ẽ
a ẽb , (2.1)

where the indices (µ , ν) run from 0 to 3 and H−1 is the curvature radius of the de Sitter

space. The second line is the metric in the tetrad system and the indices (A,B) and (a, b)

run from 1 to 4 and 1 to 3, respectively. The relation between curved and flat metrics

is given by gµν = ηAB eµ
A eν

B where the tetrad field satisfies eA = eµ
Adxµ. We defined

ea = sinh t ẽa.

We choose 4×4 gamma matrices in accordance with our metric signature (−,+,+,+)

such that

γ0 =

(
0 iI

iI 0

)
, γa =

(
0 iγ̃a

−iγ̃a 0

)
, (2.2)

where I and γ̃a are the 2 × 2 unit matrix and gamma matrices respectively. The gamma

matrices satisfy
{
γA , γB

}
= 2ηAB.

The Dirac equation for a four dimensional massive spinor Ψ is then expressed as

[γµDµ −m] Ψ = 0 where covariant derivative is Dµ = ∂µ + 1
2ωµEFΣEF involving the spin

connection ωµEF , [
γA
(
eA

µ∂µ +
1

2
γEFAΣEF

)
−m

]
Ψ = 0 . (2.3)
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Here commutators are ΣAB = 1
4

[
γA, γB

]
and the spin connection is given by ωAB =

γABC e
C = γABµdx

µ. If we use eq. (2.1), the above equation becomes

Hγ0
(
∂t +

3

2

f ′

f

)
Ψ +

H

f

(
0 i /̃∇
−i /̃∇ 0

)
Ψ−mΨ = 0 , (2.4)

where a prime denotes the derivative with respect to the time t, f(t) = sinh t, m is the

mass of Ψ and /̃∇ = γ̃a∇̃a.
If we define1

Ψ (t,Ω) =

(
φ+ (t,Ω)

φ− (t,Ω)

)
, (2.5)

where Ω is the three-dimensional angle, then the Dirac equation becomes

iH

(
∂t +

3

2

f ′

f

)
φ− + i

H

f
/̃∇φ− −mφ+ = 0 , (2.6)

iH

(
∂t +

3

2

f ′

f

)
φ+ − i

H

f
/̃∇φ+ −mφ− = 0 . (2.7)

Combining eqs. (2.6) with (2.7), the equation for φ+ is given by[(
∂t +

3

2

cosh t

sinh t

)2

+
cosh t

sinh2 t
/̃∇− 1

sinh2 t
/̃∇
2

+
m2

H2

]
φ+ (t,Ω) = 0 . (2.8)

Once we obtain a solution for φ+, we can get a solution for φ− by using eq. (2.7).

The Dirac equation gives its conserved Noether current expressed as

∂µ
[√
−g Jµ

]
= 0 , Jµ = −Ψ̄γµΨ . (2.9)

Here, the Dirac adjoint is defined by Ψ̄ ≡ Ψ†γ0. Then the charge Q is given by

Q =

∫
dΩ
√
−g J0 =

∫
dΩ
√
−gΨ†(t,Ω)Ψ(t,Ω) , (2.10)

where we used (γ0)2 = −1. We use the charge for mode functions to have orthonormality

relations below.

3 The mode function in each R or L region

In this section, we consider the mode functions in the region R or L. Since these two

regions are completely symmetric, the argument in this section can be applied to both R

and L regions although we don’t specify the region R or L below.

1The indices p, `,m of φ±p`m(t,Ω) are omitted for simplicity unless there may be any confusion.
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3.1 Positive frequency mode

We can separate variables according to [14]:(
φ+ (t,Ω)

φ− (t,Ω)

)
=

(
φp(z)χ

(−)
p`m(Ω)

ϕp(z)χ
(−)
p`m(Ω)

)
, (3.1)

where the three-dimensional spinors χ
(−)
p`m(Ω) have two components and satisfy

/̃∇χ(−)
p`m (Ω) = −ip χ(−)

p`m (Ω) , (3.2)

where p is positive and continuous. The spinors χ
(−)
p`m(Ω) are normalized as∫

dΩχ
(−)†
p`m χ

(−)
p′`′m′ = δ(p− p′) δ``′ δmm′ . (3.3)

Plugging eq. (3.1) into eq. (2.8), we get

χ
(−)
p`m (Ω)

[(
∂t +

3

2

cosh t

sinh t

)2

− ip cosh t

sinh2 t
+

p2

sinh2 t
+
m2

H2

]
φp(t) = 0 . (3.4)

Once we obtain a solution for φp(t), we can get a solution for φ− (t,Ω) = ϕp(t)χ
(−)
p`m(Ω) by

using eq. (2.7).

The positive frequency solution Ψ+ is found to be

Ψ+
↑ (z,Ω) =

(
φp(z)χ

(−)
p`m(Ω)

ϕp(z)χ
(−)
p`m(Ω)

)
(3.5)

where we defined z ≡ cosh t and the subscript ↑ indicates spin-up,

φp(z) =
(
z2 − 1

)− 3
4

(
z + 1

z − 1

)i p
2

F

(
−im
H
, i
m

H
,

1

2
− ip , 1− z

2

)
, (3.6)

ϕp(z) = −1

2

imH
1
2 − ip

(
z2 − 1

)− 1
4

(
z + 1

z − 1

)i p
2

F

(
1− im

H
, 1 + i

m

H
,

3

2
− ip , 1− z

2

)
. (3.7)

where p > 0. Note that φp and ϕp realize positive frequency in the distant past

t→ 0(z → 1).

This solution is normalized such that(
Ψ+
↑ ,Ψ

+
↑

)
= δ(p− p′) δ``′ δmm′ (3.8)

where the Dirac inner product for the mode function is given by

(Ψ↑,Ψ↑) =

∫
dΩ
√
−gΨ+†Ψ+ , (3.9)

at z → 1.
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3.2 Negative frequency mode

The negative frequency mode function of eq. (2.8) is given by separating variables as in [14](
φ+ (t,Ω)

φ− (t,Ω)

)
=

(
φ∗p(z)χ

(+)
p`m(Ω)

−ϕ∗p(z)χ
(+)
p`m(Ω)

)
≡ Ψ−↑ (z,Ω) , (3.10)

where the three-dimensional spinors χ
(+)
p`m(Ω) have two components and satisfy

/̃∇χ(+)
p`m (Ω) = ip χ

(+)
p`m (Ω) , (3.11)

where p is positive and continuous and the spinors χ
(+)
p`m(Ω) are normalized in the same

way as eq. (3.3). Note that the spinors χ
(+)
p`m are obtained by changing the sign p → −p

of χ
(−)
p`m.

Eq. (3.4) corresponding to the negative frequency mode is

χ
(+)
p`m (Ω)

[(
∂t +

3

2

cosh t

sinh t

)2

+ ip
cosh t

sinh2 t
+

p2

sinh2 t
+
m2

H2

]
φ∗p(t) = 0 . (3.12)

Thus, the negative frequency mode function is obtained by replacing eqs. (3.6) and (3.7)

by p→ −p. We find

φ∗p(z) =
(
z2 − 1

)− 3
4

(
z + 1

z − 1

)−i p
2

F

(
−im
H
, i
m

H
,

1

2
+ ip ,

1− z
2

)
(3.13)

ϕ∗p(z) =
1

2

imH
1
2 + ip

(
z2 − 1

)− 1
4

(
z + 1

z − 1

)−i p
2

F

(
1− im

H
, 1 + i

m

H
,

3

2
+ ip ,

1− z
2

)
(3.14)

where p > 0 and ∗ denotes complex conjugation. Here φ∗p and −ϕ∗p realize negative fre-

quency at t→ 0 (z → 1). This solution is normalized in the same way as eq. (3.8).

Note that the negative frequency mode is not simply the complex conjugate of the

positive frequency mode but a minus sign is necessary for the lower 2 components.

3.3 Spin-down solutions for the positive and negative mode functions

If we take negative p and interchange φ+ and φ− in eq. (2.5), we find the Dirac equation (2.4)

does not change. Such solutions correspond to spin-down solutions.

The spin-down solution corresponding to the positive frequency mode Ψ+
↑ in eq. (3.5)

is given by

Ψ+
↓ (z,Ω) =

(
ϕp(z)χ

(+)
p`m(Ω)

φp(z)χ
(+)
p`m(Ω)

)
. (3.15)

Note that the above solution is not only exchanging φ and ϕ in eq. (3.5) but also χ
(−)
p`m

changes to χ
(+)
p`m. Similary, the spin-down solution for the negative frequency mode Ψ−↑ in

eq. (3.10) is

Ψ−↓ (z,Ω) =

(
−ϕ∗p(z)χ

(−)
p`m(Ω)

φ∗p(z)χ
(−)
p`m(Ω)

)
. (3.16)

– 6 –
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The general solution is expressed as a linear combination of the spin-up and down

positive and negative frequency mode functions obtained in this section.

4 Analytic continuation

In this section, we pick up the positive frequency mode functions corresponding to the

Euclidean vacuum (the Bunch-Davies vacuum). To do this, we require that they are

analytic when they are continued to the lower hemisphere of the Euclidean de Sitter space.

4.1 The relation between the Lorentzian and the Euclidean coordinates

The open chart is obtained by analytic continuation of the Euclidean sphere S4. The

relation between the Lorentzian coordinate of three parts and the Euclidean coordinate is

as follows.  tR = i
(
τ − π

2

)
, tR ≥ 0

rR = iρ , rR ≥ 0
(4.1)

 tC = τ , −π
2
≤ tC ≤

π

2

rC = i
(
ρ− π

2

)
, 0 ≤ rC ≤ ∞

(4.2)

 tL = i
(
−τ − π

2

)
, tL ≥ 0

rL = iρ , rL ≥ 0
(4.3)

4.2 The analytic continuation of the positive frequency mode function

We first ignore the normalization and focus on the time dependent part of eq. (3.5) in

region R as

Ψ
+(R)
↑ =

(
φp(zR)

ϕp(zR)

)
, (4.4)

where the argument zR means that Ψ
+(R)
↑ has support only in region R and vanish in region

L. In order to construct positive frequency mode functions corresponding to the Euclidean

vacuum (the Bunch-Davies vacuum), we need to extend Ψ
+(R)
↑ analytically from region R

to region L. The analytic continuation from the region R to L with the branch cut [−1, 1]

goes through from Imz < 0 to Imz > 0.

To do it, we first extend Ψ
+(R)
↑ analytically from region R (zR ≥ 1) to region C

(−1 ≤ zR ≤ 1) by performing zR − 1 = e−πi(1 − zR). Then we change the variable by

zR = −zL in the C region. Since the hypergeometric function becomes singular at zL = 1,

we use some formulae in appendix A. Then we extend Ψ
+(R)
↑ analytically from the region

C to region L (zL > 1) by performing 1− zL = eπi(zL − 1). We then get

Ψ
+(R)
↑ =

(
Aϕp(zL) +B φ∗p(zL)

−Aφp(zL) +B ϕ∗p(zL)

)
, (4.5)

– 7 –
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where we have defined

A =
H

m

Γ(12 − ip) Γ(12 + ip)

Γ(−imH ) Γ(imH )
=

sinh m
Hπ

coshπp
, B =

e−πp Γ(12 − ip)
2

Γ(12 − ip− i
m
H ) Γ(12 − ip+ imH )

. (4.6)

Note that eq. (4.5) has support only in region L and vanishes in region R due to the causally

disconnected nature of region R and L. Note also that for the case of a massless Dirac field

(m = 0), A = 0 and B = e−πp. In the limit of p = 0, A = sinh m
Hπ and B = cosh m

Hπ.

From eq. (4.5), we find that the solution in the region L can then be given by2

Ψ
+(L)
↑ =

(
ϕp(zL)

−φp(zL)

)
. (4.7)

where the argument zL means Ψ
+(L)
↑ has support only in region L and vanishes in region R.

Thus if we extend Ψ
+(L)
↑ analytically from region L to region R, the above solution becomes

Ψ
+(L)
↑ = =

(
−Aφp(zR) +B ϕ∗p(zR)

−Aϕp(zR)−B φ∗p(zR)

)
. (4.8)

By using the solutions given in eqs. (4.4), (4.5), (4.7) and (4.8), we find that the above

solution satisfies the orthonormality relation(
Ψ+(R)
p ,Ψ

+(L)
p′

)
= (A∗ −A) δ(p− p′) = 0 , (4.9)

in the far past z → 1.

4.3 The analytic continuation of the negative frequency mode function

We write the time dependent part of eq. (3.10) as

Ψ
−(R)
↑ =

(
φ∗p(zR)

−ϕ∗p(zR)

)
. (4.10)

We want to extend Ψ
−(R)
↑ analytically from region R to region L. The analytic continuation

from the region R to L with the branch cut [−1, 1] goes through from Imz > 0 to Imz < 0.

The procedure is the same as what we did for the positive frequency mode. The solution

extended analytically from the region R to L is then give by

Ψ
−(R)
↑ =

(
A∗ϕ∗p(zL) +B∗φp(zL)

A∗φ∗p(zL)−B∗ϕp(zL)

)
, (4.11)

where A and B are given in eq. (4.6).

2One may think that the solution

(
φ∗p(zL)

ϕ∗p(zL)

)
could be another candidate solution in the region L.

However, the solution does not satisfy the orthonormality relation.

– 8 –
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The solution in the region L then can become

Ψ
−(L)
↑ =

(
ϕ∗p(zL)

φ∗p(zL)

)
. (4.12)

If we extend Ψ
−(L)
↑ from region L to R analytically, the above solution becomes

Ψ
−(L)
↑ = =

(
−A∗φ∗p(zR) +B∗ϕp(zR)

A∗ϕ∗p(zR) +B∗φp(zR)

)
. (4.13)

The above solution satisfies the orthonormality relation(
Ψ+(R)
p ,Ψ

+(L)
p′

)
= (A∗ −A) δ(p− p′) = 0 , (4.14)

in the far past z → 1.

5 The Bunch-Davies vacuum solutions

In the previous section, we found that mode functions obtained in one region are analy-

tically continued to the other region by φ → Aϕ + Bφ∗ and ϕ → −Aφ + Bϕ∗. In this

section, we present the Bunch-Davies vacuum solutions of positive and negative frequency

mode functions.

5.1 Positive frequency mode

The positive frequency mode functions that have support on both region R and L are found

to be

Ψ
+(R)
↑ (z,Ω) =


1
Nb

(
φp(z)χ

(−)
p`m(Ω)

ϕp(z)χ
(−)
p`m(Ω)

)
for z = zR ,

1
Nb

( (
Aϕp(z) +B φ∗p(z)

)
χ
(−)
p`m(Ω)(

−Aφp(z) +B ϕ∗p(z)
)
χ
(−)
p`m(Ω)

)
for z = zL ,

(5.1)

Ψ
+(R)
↓ (z,Ω) =


1
Nb

(
ϕp(z)χ

(+)
p`m(Ω)

φp(z)χ
(+)
p`m(Ω)

)
for z = zR ,

1
Nb

((
−Aφp(z) +B ϕ∗p(z)

)
χ
(+)
p`m(Ω)(

Aϕp(z) +B φ∗p(z)
)
χ
(+)
p`m(Ω)

)
for z = zL ,

(5.2)

Ψ
+(L)
↑ (z,Ω) =


1
Nb

((
−Aφp(z) +B ϕ∗p(z)

)
χ
(−)
p`m(Ω)

−
(
Aϕp(z) +B φ∗p(z)

)
χ
(−)
p`m(Ω)

)
for z = zR ,

1
Nb

(
ϕp(z)χ

(−)
p`m(Ω)

−φp(z)χ
(−)
p`m(Ω)

)
for z = zL .

(5.3)

Ψ
+(L)
↓ (z,Ω) =


1
Nb

(
−
(
Aϕp(z) +B φ∗p(z)

)
χ
(+)
p`m(Ω)(

−Aφp(z) +B ϕ∗p(z)
)
χ
(+)
p`m(Ω)

)
for z = zR ,

1
Nb

(
−φp(z)χ

(+)
p`m(Ω)

ϕp(z)χ
(+)
p`m(Ω)

)
for z = zL .

(5.4)

– 9 –
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The normalization factor Nb is computed by
√
−gΨ

+(R)†
p Ψ

+(R)
p = 1 at z → 1, which is

expressed as

N2
b = 1 +

sinh2 πmH
cosh2 πp

+
π2 e−2πp

cosh2 πp

1

|Γ(12 − ip− i
m
H ) Γ(12 − ip+ imH )|2

. (5.5)

Note that for a massless Dirac field, Nb = 1 + e−2πp.

5.2 Negative frequency mode

The negative frequency mode functions that have support on both region R and L are

found to be

Ψ
−(R)
↑ (z,Ω) =


1
Nb

(
φ∗p(z)χ

(+)
p`m(Ω)

−ϕ∗p(z)χ
(+)
p`m(Ω)

)
for z = zR ,

1
Nb

((
A∗ϕ∗p(z) +B∗φp(z)

)
χ
(+)
p`m(Ω)(

A∗φ∗p(z)−B∗ϕp(z)
)
χ
(+)
p`m(Ω)

)
for z = zL ,

(5.6)

Ψ
−(R)
↓ (z,Ω) =


1
Nb

(
−ϕ∗p(z)χ

(−)
p`m(Ω)

φ∗p(z)χ
(−)
p`m(Ω)

)
for z = zR ,

1
Nb

((
A∗φ∗p(z)−B∗ϕp(z)

)
χ
(−)
p`m(Ω)(

A∗ϕ∗p(z) +B∗φp(z)
)
χ
(−)
p`m(Ω)

)
for z = zL ,

(5.7)

Ψ
−(L)
↑ (z,Ω) =


1
Nb

((
−A∗φ∗p(z) +B∗ϕp(z)

)
χ
(+)
p`m(Ω)(

A∗ϕ∗p(z) +B∗φp(z)
)
χ
(+)
p`m(Ω)

)
for z = zR ,

1
Nb

(
ϕ∗p(z)χ

(+)
p`m(Ω)

φ∗p(z)χ
(+)
p`m(Ω)

)
for z = zL .

(5.8)

Ψ
−(L)
↓ (z,Ω) =


1
Nb

( (
A∗ϕ∗p(z) +B∗φp(z)

)
χ
(−)
p`m(Ω)(

−A∗φ∗p(z) +B∗ϕp(z)
)
χ
(−)
p`m(Ω)

)
for z = zR ,

1
Nb

(
φ∗p(z)χ

(−)
p`m(Ω)

ϕ∗p(z)χ
(−)
p`m(Ω)

)
for z = zL .

(5.9)

The normalization factor Nb is given by eq. (5.5).

6 Supercurvature modes

In this section, we examine if there is a supercurvature mode for the Dirac field. The

supercurvature modes exist in the open chart for a massive scalar field [4]. They are known

to be able to carry information about the pre-tunneling vacuum state and to be expected

that they may explain the dipolar statistical anisotropy [15–18]. For a massive vector field,

the paper [19] concluded that there is no supercurvature mode in the open chart.

We examine if the mode functions (3.6) and (3.7) for p = ip̃ is normalizable in C region

(see figure 1). The metric in the C region is

ds2 = H−2
[
dt2C + cos2 tC

(
−dr2C + cosh2 rC dΩ2

) ]
. (6.1)
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Note that the volume element is given by
√
h = H−3 cos2 tC cosh2 rC . By using eqs. (4.1)

and (4.2), we find the relation zR = cosh tR = sin tC , and zR = ±1 correspond to tC =

±π/2. The mode function Ψ
†(R)
↑ becomes real in the C region except for the irrelevant

overall phase when p is pure imaginary. Since the hypergeometric functions in eqs. (3.6)

and (3.7) converge to unity at z = 1, we can easily read the asymptotic behavior of the

mode function Ψ
†(R)
↑ at tC = ±π/2 from eqs. (4.4) and (4.5). If we focus on the behavior

around tC = π/2, i.e. zR = 1, the more singular is the upper component proportional to

φp(sin tC) ∼ (zR − 1)−
3
4
− ip

2 = (sin tC − 1)−
3
4
− ip

2 . Since the normalization is given by∫ π
2

−π
2

dtC
√
hΨ+(R)†

p Ψ+(R)
p ∼

∫ π
2

−π
2

dtC
√
h
[
φ2p(sin tC) + ϕ2

p(sin tC)
]
, (6.2)

the contribution from the vicinity of tC = π/2 converges if ip is negative. The behavior on

the other boundary of the region C can be read from (4.5). For ip < 0, the most singular

piece in (4.5) at tC = −π/2 is proportional to Bφ∗p(− sin tC). Thus as long as B does

not vanish, the above integral that determines the normalization diverges. Since B never

vanishes as easily seen from eq. (4.6), we conclude that there is no normalizable mode for

p2 < 0. Thus there exists no supercurvature mode.

7 Entanglement entropy

In this section, we quantize the Dirac field in the open chart in order to discuss quantum

entanglement. In order to discuss quantum entanglement from the point of view of, say

R region, we need to trace out the degree of freedom of inaccessible L region. Thus we

need to change basis to mode functions that have support on either R or L regions. Thus,

we consider the Bogoliubov transformation between the Bunch-Davies vacuum and R, L

vacua. We then derive the reduced density matrix in the region R by tracing over the

region L and compute the entanglement entropy with the reduced density matrix.

7.1 Canonical quantization

If we take into account the two sets of modes in each R and L region, the Dirac field

can be expanded in terms of the spin-up and down positive and negative frequency mode

Ψ
+(R)/(L)
s and Ψ

−(R)/(L)
s respectively such as

Ψ =

∫
dp
∑
`m

∑
s

(
aRs Ψ+(R)

s + bR†s Ψ−(R)
s + aLs Ψ+(L)

s + bL†s Ψ−(L)s

)
, (7.1)

where s = (↑, ↓). The operators aR†s , bR†s and aRs , bRs are the creation and annihilation

operators for the positive and negative frequency modes that satisfy the anticommutation

relations {
aσsp`m, a

σ′†
s′p′`′m′

}
=
{
bσsp`m, b

σ′†
s′p′`′m′

}
= δ

(
p− p′

)
δss′δ``′δmm′δσσ′ , (7.2)

where σ = R or L and we recovered abbreviated subscripts such as p, `,m temporally

but they are omitted below for simplicity unless there may be any confusion. All other
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anticommutators vanish. If we focus on a mode p, the Bunch-Davies vacuum is defined by

|0〉BD = |0〉+BD|0〉
−
BD , (7.3)

where the + superscript on the ket indicates the spin-down particle and spin-up antiparticle

vacua and the − superscript for the spin-up particle and spin-down antiparticle vacua

respectively, so that

aσ↓ |0〉+BD = bσ↑ |0〉+BD = 0 , (7.4)

where σ = R and L. Since (a†s)2 = (b†s)2 = 0, only two states are allowed for particles and

antiparticles.

7.2 The Bogoliubov transformation

We denote the spin-up (3.5) and down (3.15) positive frequency mode functions in region

R by ψ
+(R)
↑ and ψ

+(R)
↓ such as

ψ
+(R)
↑ =

(
φp(zR)

ϕp(zR)

)
χ
(−)
p`m(Ω) , ψ

+(R)
↓ =

(
ϕp(zR)

φp(zR)

)
χ
(+)
p`m(Ω) . (7.5)

Similarly for the spin-up (4.7) and down (5.4) mode functions in region L,

ψ
+(L)
↑ =

(
ϕp(zL)

−φp(zL)

)
χ
(−)
p`m(Ω) , ψ

+(L)
↓ =

(
−φp(zL)

ϕp(zL)

)
χ
(+)
p`m(Ω) . (7.6)

For the negative frequency mode functions, we express the spin-up (3.10) and down (3.16)

solutions by

ψ
−(R)
↑ =

(
φ∗p(zR)

−ϕ∗p(zR)

)
χ
(+)
p`m(Ω) , ψ

−(R)
↓ =

(
−ϕ∗p(zR)

φ∗p(zR)

)
χ
(−)
p`m(Ω) , (7.7)

and for the spin-up (4.12) and down (5.9) negative frequency mode functions in region L

we write

ψ
−(L)
↑ =

(
ϕ∗p(zL)

φ∗p(zL)

)
χ
(−)
p`m(Ω) , ψ

−(L)
↓ =

(
φ∗p(zL)

ϕ∗p(zL)

)
χ
(+)
p`m(Ω) . (7.8)

In region R, let us denote (cRs , c
R†
s ) as the annihilation and creation operators for

fermions and (dRs , d
R†
s ) as the annihilation and creation operators for antifermions. The

corresponding fermion and antifermion operators in region L are denoted as (cLs , c
L†
s ) and

(dLs , d
L†
s ). Then the Dirac field can be expanded as

Ψ =

∫
dp
∑
`m

∑
s

(
cRs ψ

+(R)
s + dR†s ψ−(R)

s + cLs ψ
+(L)
s + dL†s ψ−(L)s

)
. (7.9)

These obey the anticommutation relations{
cσsp`m, c

σ′†
s′p′`′m′

}
=
{
dσsp`m, d

σ′†
s′p′`′m′

}
= δ

(
p− p′

)
δss′δ``′δmm′δσσ′ , (7.10)

where σ = R or L. All other anticommutators vanish.3

3The indices p, `,m are omitted below for simplicity unless there may be any confusion.
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As the Dirac field operator should be the same under this change of basis, we can relate

the creation and annihilation operators in the Bunch-Davies vacuum to those in R,L vacua

by comparing eq. (7.1) with (7.9) It follows that(
cR↓ , c

L
↓ , d

R†
↑ , dL†↑

)
=
(
aR↓ , a

L
↓ , b

R†
↑ , bL†↑

)
M , (7.11)

We have another set of four relations with their spin-up and down exchanged but it is

totally equivalent. Thus, we focus on the relation (7.11) below. Here M is a 4× 4 matrix

M =

(
α β

−β∗ α∗

)
, (7.12)

where α and β are 2× 2 matrices respectively defined as

α =
1

Nb

(
1 −A
A 1

)
, β =

1

Nb

(
0 −B
B 0

)
. (7.13)

Note that A,B and Nb are given in eqs. (4.6) and (5.5). Then, we find(
aR↓ , a

L
↓ , b

R†
↑ , bL†↑

)
=
(
cR↓ , c

L
↓ , d

R†
↑ , dL†↑

)
M−1 , (7.14)

where

M−1 =

(
ξ δ

−δ∗ ξ∗

)
, (7.15)

and the components of the matrix M−1 are computed as

ξ =
(
α+ βα∗−1β∗

)−1
, δ = −α−1βξ∗ . (7.16)

Since aσ↓ mixes the spin-down particles and the spin-up antiparticles in region R and

L, the Bunch-Davies vacuum for mode p can be regarded as the Bogoliubov transformation

of R, L vacua of the form

|0〉+BD ∝ exp

 ∑
i,j=R,L

mij c
i†dj†

 |0〉+R|0〉−L , (7.17)

where mij is an antisymmetric matrix and operators ci and dj satisfy the anticommutation

relation {ci, dj} = 0. Here the normalization of the Bogoliubov transformation is omitted

because we will need another Bogoliubov transformation in eq. (7.22). Note that we drop

spin labels on operators for simplicity because we focus on operators c↓ and d↑ as defined by

cR↓ |0〉+R = dR↑ |0〉+R = 0 , cL↓ |0〉−L = dL↑ |0〉−L = 0 . (7.18)

If we apply aσ↓ in eq. (7.14) to eq. (7.17), we have

0 = aσ↓ |0〉+BD =⇒ mij =
(
δ∗ξ−1

)
ij
, (7.19)
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where σ = R and L, and we used the anticommutation relation eq. (7.2). Using the

expressions in eqs. (7.13) and (7.16), we find

mij = − B∗

1 +A2

A −1

1 A

 , (7.20)

where A and B are given in eq. (4.6). Since A = 0 in the case of masslessness, the

density matrix ρ = |0〉+BD
+
BD〈0| in terms of eq. (7.17) becomes diagonal in the |0〉+R|0〉

−
L

basis. In other cases, however, it is not diagonal and then it is difficult to trace out the L

degrees of freedom. Thus, we introduce new operators c̃R and d̃L and perform a further

Bogoliubov transformation

c̃R = u cR + v d†R , d̃L = u∗dL + v∗c†L ,

d̃R = u dR − v c†R , c̃L = u∗cL − v∗d†L , (7.21)

with |u|2 + |v|2 = 1, so that we obtain the form

|0〉+BD = N−1γp exp
(
γp c̃

†
R d̃
†
L + γp d̃

†
R c̃
†
L

)
|0〉+R′ |0〉

−
L′ , (7.22)

where |0〉+R′ = |0c〉+R′ |0d〉
+
R′ and |0〉−L′ = |0c〉−L′ |0d〉

−
L′ . The subscripts c and d in the kets are

used to indicate the vacua annihilated by the operators c̃σ and d̃σ, respectively. Note that

the Bogoliubov transformation in eq. (7.21) does not mix R and L Hilbert spaces because

eq. (7.21) is a linear transformation between c̃σ, d̃σ and cσ, dσ. The new operators satisfy

the anticommutation relation {c̃i, d̃†j} = δij . Normalization determines the N2
γp

+
BD〈0|0〉

+
BD = N−2γp

(
1 + |γp|2

)2
= 1 , (7.23)

where |γp| < 1 should be satisfied. Note that in the limit of p = 0, the Bogoliubov

transformation eq. (7.22) is expressed as

|0〉+BD =
1√
2

(
|0c〉+R′ |0d〉

−
L′ + |1c〉+R′ |1d〉

−
L′
)
⊗ 1√

2

(
|0d〉+R′ |0c〉

−
L′ + |1d〉+R′ |1c〉

−
L′
)
. (7.24)

If we use the anticommutation relations {c̃i, c̃†j} = δij and {d̃i, d̃†j} = δij , eq. (7.22) gives

the consistency conditions

c̃R|0〉+BD = γp d̃
†
L|0〉

+
BD , d̃L|0〉+BD = −γp c̃†R|0〉

+
BD , (7.25)

d̃R|0〉+BD = γp c̃
†
L|0〉

+
BD , c̃L|0〉+BD = −γp d̃†R|0〉

+
BD . (7.26)

Let us write mRR = mLL ≡ ω and mRL = −mLR = ζ in eq. (7.20). Then, the first

condition of eq. (7.25) imposes constraints on u and v

uω + v + γpvζ = 0 , uζ − γpu− γpvω = 0 , (7.27)

The first relation in eq. (7.27) gives u/v = − (γpζ + 1) /ω. Plugging this into the second

relation in eq. (7.27), we obtain

γp =
1

2ζ

[
ω2 + ζ2 − 1 +

√
(ω2 + ζ2 − 1)2 + 4ζ2

]
, (7.28)
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where a plus sign in front of the square root term is taken to satisfy |γp| < 1. Note that

the second condition of eq. (7.25) leads to the relations for u∗/v∗. We find u∗/v∗ = −u/v
and we obtain the same γp in eq. (7.28). The condition eq. (7.26) gives the same γp in

eq. (7.28) and the relation u∗/v∗ = −u/v as well. Note also that in the limit of p = 0,

ω = −A/B, ζ = 1/B and ω2 + ζ2 = 1 holds, thus we find γp = 1 independently of m.

7.3 The density matrix

By using eqs. (7.22) and (7.28), the reduced density matrix in region R is then found to be

ρR = TrL |0〉+BD
+

BD〈0|

=
1

(1 + |γp|2)2
(
|0c〉+R′

+
R′〈0c|+ |γp|

2|1c〉+R′
+
R′〈1c|

)
⊗
(
|0d〉+R′

+
R′〈0d|+ |γp|

2|1d〉+R′
+
R′〈1d|

)
, (7.29)

where the conservation of probability holds, TrρR = 1.

As an observer in the region R will observe particles defined by the operators c̃R, the

expected number of such particles will be given by

+
BD〈0|c̃

†
Rc̃R|0〉

+
BD = TrR c̃

†
Rc̃R ρR

=
|γp|2

(1 + |γp|2)2
+
R′〈1c|c̃

†
Rc̃R|1c〉

+
R′ +

|γp|4

(1 + |γp|2)2
+
R′〈1d 1c|c̃†Rc̃R|1c 1d〉+R′

=
1

|γp|−2 + 1
, (7.30)

where for notational convenience we have defined |1c 1d〉+R′ = |1c〉+R′ |1d〉
+
R′ . In the case of

masslessness, this is expressed by
(
e2πp + 1

)−1
, which is a thermal state with temperature

T =
H

2π
. (7.31)

The entanglement entropy for each mode is calculated to be

S(p,m) = −TrρR log ρR

= 2 log
(
1 + |γp|2

)
− 2|γp|2

1 + |γp|2
log |γp|2 . (7.32)

The final entanglement entropy per unit comoving volume between two causally discon-

nected regions are obtained by integrating over p and a volume integral over the hyperboloid

H3. That is, we use the density of states on the hyperboloid [5]

S(m) = 2π

∫ ∞
0

dpD(p)S(p,m) . (7.33)

The density of states for H3 in the case of the Dirac field is D(p) = (14 + p2)/(2π2) [14, 20].

The result is plotted in red line of figure 2 where ν is defined in eq. (7.36). We plotted the
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ν 2

S(ν )

Figure 2. Entanglement entropy between two causally disconnected regions for one degree of

freedom of a fermion (red) and a scalar field (blue).

entanglement entropy for one degree of freedom for comparison with a scalar field, that is,

the plot is 1/2 of eq. (7.33).4

Now let us compare the result with the entanglement entropy of a scalar field which is

computed by [5] and expressed as

S(p, ν) = −
∞∑
n=0

(
1− |γ|2

)
|γ|2n log

{(
1− |γ|2

)
|γ|2n

}
= − log

(
1− |γ|2

)
− |γ|2

1− |γ|2
log |γ|2 , (7.34)

where γ is given by

γ = i

√
2√

cosh 2πp+ cos 2πν +
√

cosh 2πp+ cos 2πν + 2
, (7.35)

and a mass parameter is defined by

ν =

√
9

4
− m2

H2
. (7.36)

In the case of a massless scalar field (ν = 3/2), we find γ = e−πp, and then the reduced

density matrix is found to be thermal

ρR =
(
1− e−2πp

) ∞∑
n=0

e−2πpn|n〉〈n| , (7.37)

with temperature T = H/(2π).

4As explained below eq. (7.11) we focus on two degrees of freedom of a fermion since two other degrees

of freedom satisfy the same relations.
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We integrate over p as in eq. (7.33). The density of states for H3 in the case of the

scalar field is D(p) = p2/(2π2) [20]. The result of the scalar field is plotted in blue line in

figure 2. In figure 2, we see that the Dirac field gets more entangled than the scalar field

as m2/H2 becomes small, and the difference is maximal in the massless limit.

7.4 Fermion seems more entangled than scalar in the massless limit

For the massless Dirac field (ν2 = 9/4), γp = e−πp which becomes 1 in the limit of p = 0.

Then the entanglement entropy of the Dirac field per each degree of freedom, eq. (7.32),

becomes log 2.5 Since the density of states of the Dirac field is finite even in the limit of

p = 0, the final entanglement entropy eq. (7.33) on large scales is finite. For a massless

scalar field, on the other hand, the entanglement entropy eq. (7.34) becomes logarithmi-

cally infinite in the limit of p = 0. But the density of states of the scalar field becomes

quadratically zero. Then the entanglement entropy summing over p gives zero in the limit

of p = 0. Thus the contribution of the states from large scales to the entanglement entropy

becomes large for the massless Dirac field compared to the case of the massless scalar field.

However, one should note that the scalar field entanglement entropy shows a strange

behavior as the mass decreases. For m2 < 2H2 (ν2 > 1/4), the entanglement entropy

once decreases as the mass decreases. It is known that there exits a supercurvature mode

for m2 < 2H2, and its contribution to the long-distance correlation becomes more and

more dominant as m2/H2 → 0 [4]. At the moment we have no clue about how the

supercurvature mode affects the entanglement. It seems possible that the contribution of

the supercurvatue mode, if it could ever be computed, would dominate the entanglement

entropy of the scalar field in the small mass limit. This issue needs further studies before

we make a firm conclusion.

8 Summary

We studied the entanglement entropy of a free massive Dirac field between two causally

disconnected open charts in de Sitter space. For this purpose, we first derived the Bunch-

Davies vacuum mode functions of the Dirac field in the coordinates that respect the open

chart. We then gave the Bogoliubov transformation between the Bunch-Davies vacuum

and the open chart vacua that makes the reduced density matrix diagonal. We derived the

reduced density matrix in one of the open charts (R region) after tracing out the other (L

region) and found that the Fermi-Dirac distribution is realized in the limit of masslessness.

We then computed the entanglement entropy of the Dirac field by using the reduced density

matrix. We compared the entanglement entropy of one degree of freedom of the Dirac field

with that of a scalar field calculated by [5].

We found that the entanglement entropy for the Dirac field gets more entangled than

that for a scalar field as m2/H2 becomes small, and the difference is maximal in the massless

limit. This is because the contribution of the states from large scales to the entanglement

entropy becomes large for the massless Dirac field compared to the case of the massless

5We consider two degrees of freedom of a fermion now as explained below eq. (7.11).
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scalar field. But there is a caveat. In the computation of the entanglement entropy of

a scalar field, it is assumed that the supercurvature mode does not contribute. If this

assumption were wrong, the entanglement entropy of the scalar field might become larger

than that of the Dirac fermion in the small mass limit. In connection with this issue, we

also showed that there is no supercurvature mode for the Dirac field.

A Necessary formulae

F (α, β, γ; z) =
Γ(γ)Γ(α+ β − γ)

Γ(α)Γ(β)
(1− z)γ−α−β F (γ − α, γ − β, γ − α− β + 1; 1− z)

+
Γ(γ)Γ(γ − α+ β)

Γ(γ − α)Γ(γ − β)
F (α, β, α+ β − γ + 1; 1− z) , (A.1)

and

F (α, β, γ; z) = (1− z)γ−α−β F (γ − α, γ − β, γ; z) . (A.2)
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