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1. Introduction

There is a wide scientific literature devoted to investigate the properties of the solutions of
nonlinear difference equations of several types [1–9]. Other equations of increasing interest
are as follows:

(1) stochastic difference equations and systems (see, e.g., [10] and references therein);

(2) nonstandard linear difference equations like, for instance, the case of time-varying
coefficients possessing asymptotic limits and that when there are contributions of
unmodeled terms to the difference equation (see, e.g., [11, 12]);

(3) coupled differential and difference systems (e.g., the so-called hybrid systems
of increasing interest in control theory and mathematical modeling of dynamic
systems, [13–16] and the study of discretized models of differential systems which
are computationally easier to deal with than differential systems; see, e.g., [17, 18]).
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In particular, the stability, positivity, and permanence of such equations are of increasing
interest. In this paper, the following system of difference equations is considered [1]:

x
(i)
n+1 = λix

(i)
n + fi

(
αix

(i+1)
n − βix

(i+1)
n−1

)
, ∀i ∈ k := {1, 2, . . . , k}, (1.1)

with x
(k+1)
n ≡ x

(1)
n , for all n ∈ N; λi ∈ R, αi ∈ R, βi ∈ R; and fi : R → R, for all i ∈ k, under

arbitrary initial conditions x(i)
0 , x

(i)
−1, for all i ∈ k. The identity x

(k+1)
n ≡ x

(1)
n allows the inclusion

in a unified shortened notation via (1.1) of the dynamics:

x
(k)
n+1 = λix

(k)
n + fi

(
αix

(1)
n − βix

(1)
n−1
)
, ∀i ∈ k, (1.2)

as it follows by comparing (1.1) for i = k with (1.2). The solution vector sequence of (1.1)
will be denoted as xn := (x(1)

n , x
(2)
n , . . . , x

(k)
n )T ∈ Rk, for all n ∈ N, under initial conditions xj :=

(x(1)
j , x

(2)
j , . . . , x

(k)
j )T ∈ Rk, j = −1, 0. The above difference system is very useful for modeling

discrete neural networks which are very useful to describe certain engineering, computation,
economics, robotics, and biological processes of populations evolution or genetics [1]. The
study in [1] about the permanence of the above system is performed under very generic
conditions on the functions fi : R → R, for all i ∈ k. It is only requested that the functions be
bounded from below, nondecreasing, and linearly upper bounded for large values, exceeding
a prescribed threshold, of their real arguments. In this paper, general conditions for the global
stability and positivity of the solutions are investigated.

1.1. Notation

R+ := {z ∈ R : z > 0}, R0+ := {z ∈ R : z ≥ 0}, R0− := {z ∈ R : z ≤ 0}. “∧” is the logic
conjunction symbol. N0 := N ∪ {0}. If P ∈ Rn×n, then PT is the transpose of P.

P 
 0, P � 0, P ≺ 0, P  0 denote, respectively, P positive definite, semidefinite
positive, negative definite, and negative semidefinite. P ≥ 0, P > 0, P � 0 denote,
respectively, P nonnegative (i.e., none of its entries is negative, also denoted as P ∈ Rn×n

0+ ),
P positive (i.e., P ≥ 0 with at least one of its entries being positive), and P strictly positive
(i.e., all of its entries are positive). Thus, P > 0 ⇒ P ≥ 0 and P � 0 ⇒ P > 0 ⇒ P ≥ 0,
but the converses are not generically true. The same concepts and notation of nonnegativity,
positivity, and strict positivity will be used for real vectors. Then, the solution vector sequence
inRk of (1.1)will be nonnegative in some interval S, denoted by xn ≥ 0 (identical to xn ∈ Rk

0+),
for all n ∈ S ⊂ N, if all the components are nonnegative for n ∈ S ⊂ N. If, in addition, at least
one component is positive, then the solution vector is said to be positive, denoted by xn > 0
(implying that xn ∈ Rk

0+), for all n ∈ S ⊂ N. If all of them are positive in S, then the solution
vector is said to be strictly on a discrete interval, denoted by xn � 0 (identical to xn ∈ Rk

+ and
implying that xn > 0 and xn ∈ Rk

0+), for all n ∈ S ⊂ N.
‖ ‖2 and ‖ ‖1 are the �2 and �1 norms of vectors and induced norms of matrices,

respectively. In is the nth identity matrix.

2. Preliminaries

In order to characterize the properties of system (1.1), firstly define sets of nondecreasing and
bounded-from-below functions fi : R→R in system (1.1) as follows irrespective of the initial
conditions:

B
(
Ki

)
:=
{
fi : R −→ R : fi(y) ≥ fi(x) ≥ Ki, ∀x, y(>x) ∈ R, Ki ∈ R

}
, ∀ i ∈ k, (2.1)
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and sets of linearly upper bounded real functions:

C
(
γi, δi,Mi

)
:=
{
fi : R −→ R : fi(x) ≤ δi

γi
x, ∀x > Mi ∈ R+, δi ∈ (0, 1)

}
, ∀ i ∈ k, (2.2)

for γi /= 0 irrespective of the initial conditions as well. In a natural form, define also sets
of nondecreasing, bounded-from-below, and linearly upper bounded real functions, again
independent of the initial conditions, BC(Ki, γi, δi,Mi) := B(Ki) ∩ C(γi, δi,Mi), that is,

BC
(
Ki, γi, δi,Mi

)
:=
{
fi : R −→ R : fi(y) ≥ fi(x) ≥ Ki ∧ fi(x) ≤ δi

γi
x,

∀x, y(>x) ∈ R, Ki ∈ R, δi ∈ (0, 1)
}
, ∀i ∈ k,

(2.3)

for γi /= 0. The above definitions facilitate the potential restrictions on the functions fi : R → R,
i ∈ k, required to derive the various results of the paper. The constraints on the functions
fi : R → R, for all i ∈ k, used in the above definitions of sets, have been proposed by Stević
for fi ∈ BC(Ki, γi, δi,Mi) and then used to prove the conditions of permanence of (1.1) in
[1] for some Ki = K, Mi = M > 0, and δi ∈ (0, 1), for all i ∈ k, subject to λi ∈ [0, βi/αi],
αi > βi ≥ 0, for all i ∈ k. The subsequent technical assumption will be then used in some of
the forthcoming results.

Assumption 2.1. αi > 0 and 0 < δi < min(1, α−1
i ).

The following two assertions are useful for the analysis of the difference system (1.1).

Assertion 2.2. For any given i ∈ k, fi ∈ B(Ki) ⇒ fi(αix
(i+1)
n − βix

(i+1)
n−1 ) ≥ Ki, for all n ∈ N ∪

{0,−1}.

Assertion 2.3. (i) For any given i ∈ k, fi ∈ C(γi, δi,Mi) ⇔ fi(γi((αi/γi)x
(i+1)
n − (βi/γi)x

(i+1)
n−1 )) ≤

(δi/γi)(αix
(i+1)
n −βix

(i+1)
n−1 ) if x(i+1)

n > (βi/αi)x
(i+1)
n−1 +(γi/αi)Mi, for all n ∈ N∪{0,−1}, for any real

constants βi, αi > 0.

(ii) fi ∈ C(αi, δi,Mi) ⇔ fi(αi(x
(i+1)
n −(βi/αi)x

(i+1)
n−1 )) ≤ (δi/αi)(αix

(i+1)
n −βix(i+1)

n−1 ) if x(i+1)
n >

(βi/αi)x
(i+1)
n−1 +Mi, for all n ∈ N ∪ {0,−1}, for any real constants βi, αi > 0.

(iii) fi ∈ C(1, δi,Mi) ⇔ fi(αix
(i+1)
n − βix

(i+1)
n−1 ) ≤ δi(αix

(i+1)
n − βix

(i+1)
n−1 ) if x

(i+1)
n >

(βi/αi)x
(i+1)
n−1 +Mi/αi, for all n ∈ N ∪ {0,−1}, for any real constants βi, αi > 0.

(iv) C(1, δi,Mi) = C(αi, αiδi,Mi/αi) if Assumption 2.1 holds.

Proof. Assertion 2.3(i)–(iii) follow directly from the definitions of B(Ki) and C(γi, δi,Mi), for
all i ∈ k.

Assertion 2.3(iv) The proof is split into proving the two claims below.

Claim 1. C(1, δi,Mi) ⊂ C(αi, αiδi,Mi/αi).

Proof of Claim 1. fi ∈ C(1, δi,Mi) ⇔ fi(αix
(i+1)
n − βix

(i+1)
n−1 ) = fi(αi(x

(i+1)
n − (βi/αi)x

(i+1)
n−1 )) ≤

δi(αix
(i+1)
n − βix

(i+1)
n−1 ) = δiαi(x

(i+1)
n − (βi/αi)x

(i+1)
n−1 ) if αix

(i+1)
n − βix

(i+1)
n−1 > Mi ⇒ fi ∈

C(αi, αiδi,Mi/αi) if Assumption 2.1 holds.
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Claim 2. C(αi, αiδi,Mi/αi) ⊂ C(1, δi,Mi).

Proof of Claim 2. fi ∈ C(αi, αiδi,Mi/αi) ⇒ fi(αi(x
(i+1)
n − (βi/αi)x

(i+1)
n−1 )) ≤ αiδi(x

(i+1)
n − (βi/

αi)x
(i+1)
n−1 ) = δi(αix

(i+1)
n −βix

(i+1)
n−1 ) if αix

(i+1)
n −βix

(i+1)
n−1 > Mi ⇒ fi ∈ C(1, δi,Mi) if Assumption 2.1

holds.

Then, Assertion 2.3(iv) has been proved from Claims 1-2.

The following result establishes that it is not possible to obtain equivalence classes
from any collection of parts of the sets of functions in the definitions of B(Ki), C(γi, δi,Mi),
and BC(Ki, γi, δi,Mi).

Assertion 2.4. For any i ∈ k, consider C(γi, δi,Mi) for some given 3-tuple (γi, δi,Mi) in R ×
(0, 1)×R, and consider any discrete collection of distinct admissible triples (γijiγ , δijiδ ,MijiM) ∈
R × (0, 1) × R (jiγ ∈ Jiγ , jiδ ∈ J, jiM ∈ JiM) subject to the constraints δijiδ ≤ δi and
MijiM ≥ Mi, for all (jiδ, jiM) ∈ Jiδ × JiM, leading to the associated C(γijiγ , δijiδ ,MijiM). Define
the binary relation Ri in C(γi, δi,Mi) as fiRigi ⇔ fi, gi ∈ C(γijiγ , δijiδ ,MijiM). Then, Ri is not an
equivalence relation so that C(γijiγ , δijiδ ,MijiM) are not equivalence classes in C(γi, δi,Mi)with
respect to Ri. Also, the sets B(KijiK) and BC(KijiK , γijiγ , δijiδ ,MijiM) for any given respective
collections KijiK ≤ Ki, δijiδ ≤ δi, MijiM ≥ Mi, for all (jiK, jiδ, jiM) ∈ JiK × Jiδ × JiM, are not
equivalence classes, respectively, in B(Ki) and BC(Ki, γi, δi,Mi).

Proof. In view of Assertion 2.3(iv), γijiγ can be all set equal to unity with no loss of
generality, which is done to simplify the notation in the proof. Note that fiRigi ⇔ fi, gi ∈
C(1, δijiδ ,MijiM) ⇒ fi, gi ∈ C(1, δijiδ ,MijiM) for some (δijiδ ,MijiM) ∈ (0, 1) × R. Now,
consider C(1, δ′

ijiδ
,MijiM) with δ′

ijiδ
> δi such that δi ≥ δ′

ijiδ
(> δijiδ) ∈ {δij : j ∈ Jiδ}.

Then, C(1, δijiδ ,MijiM) ⊂ C(1, δ′
ijiδ
,MijiM). Since the equivalence classes with respect to any

equivalence relation are disjoint, C(1, δijiδ ,MijiM) in C(1, δi,Mi) with respect to Ri is not an
equivalence class unless C(1, δijiδ ,MijiM) = C(1, δ′

ijiδ
,MijiM). Now, consider the linear function

hi : R → R defined by hi(x) := δ′
ijiδ
x > δijiδx so that C(1, δ′

ijiδ
,Mijiδ) � hi /∈C(1, δijiδ ,Mijiδ).

Thus,C(1, δijiδi ,Mi)/=C(1, δ′
ijiδ
,Mijiδ). Then, Ri (i ∈ k) are not equivalence relations, and there

are no equivalence classes in C(γi, δi,Mi) (i ∈ k) with respect to Ri (i ∈ k). The remaining
part of the proof follows in a similar way by using the definitions of the sets B(Ki) and
BC(Ki, γi, δi,Mi), and it is omitted.

3. Necessary conditions for stability and positivity

Now, linear systems for system (1.1) with all the nonlinear functions in some specified class
are investigated. Those auxiliary systems become relevant to derive necessary conditions for a
given property to hold for all possible systems (1.1), whose functions are in some appropriate
set B(Ki), C(γi, δi,Mi), or BC(Ki, γi, δi,Mi). This allows the characterization of the above
properties under few sets of conditions on the nonlinear functions in the difference system
(1.1). If fi ∈ C(1, δi,Mi), for all i ∈ k, then the auxiliary linear system to (1.1) is

x
(i)
n+1 = λix

(i)
n + δi

(
αix

(i+1)
n − βix

(i+1)
n−1

)
, ∀i ∈ k. (3.1)
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If fi ∈ C(αi, δi,Mi), for all i ∈ k, then the auxiliary linear system to (1.1) is

x
(i)
n+1 = λix

(i)
n + δi

(
x
(i+1)
n − βi

αi
x
(i+1)
n−1

)
, ∀i ∈ k. (3.2)

System (3.1) may be equivalently rewritten as follows by defining the state vector sequence
xn := (x(1)

n , x
(2)
n , . . . , x

(k)
n )T ∈ Rk, for all n ∈ N, as the kth-order difference system:

xn+1 = Axn + Bxn−1 = (Λ + C)xn + Bxn−1 = Λxn + Bxn−1, ∀n ∈ N, (3.3)

with initial conditions xi := (x(1)
i , x

(2)
i , . . . , x

(k)
i )T ∈ Rk for i = 0,−1, where xn := (xT

n

...xT
n−1)

T ∈
R2k and

A =

⎡
⎢⎢⎢⎣

λ1 δ1α1 0 · · · 0
0 λ2 δ2α2 0 · · · 0
...

...
. . .

... δk−1 αk−1
δkαk 0 · · · 0 λk

⎤
⎥⎥⎥⎦ ∈ Rk×k, (3.4)

B =

⎡
⎢⎢⎢⎣

0 −δ1β1 0 · · · 0
0 0 −δ2β2 0 · · · 0
...

...
. . .

... −δk−1 βk−1
−δkβk 0 · · · 0 0

⎤
⎥⎥⎥⎦ ∈ Rk×k, (3.5)

Λ = Diag
(
λ1, λ2, . . . , λk

)
, C =

⎡
⎢⎢⎢⎣

0 δ1α1 0 · · · 0
0 0 δ2α2 0 · · · 0
...

...
. . .

... δk−1 αk−1
δkαk 0 · · · 0 0

⎤
⎥⎥⎥⎦ , (3.6)

B =
(
B

... C
) ∈ Rk×2k. (3.7)

The one-step delay may be removed by defining the following extended 2kth-order system

of state vector xn := (xT
n

...xT
n−1)

T ∈ R2k satisfying

xn+1 = Axn, ∀n ∈ N, (3.8)

with x0 := (x(1)
0 , x

(2)
0 , . . . , x

(k)
0 , x

(1)
−1 , x

(2)
−1 , . . . , x

(k)
−1 )

T ∈ R2k and

A =

⎡
⎢⎢⎣
A

... B
· · ·

Ik
... 0

⎤
⎥⎥⎦ ∈ R2k×2k. (3.9)
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Note that the extended system (3.8)-(3.9) is fully equivalent to system (3.3)–(3.7) since both
have identical solutions for each given common set of initial conditions. Now, let ‖(·)‖2 be the
�2-norm of real vectors of any order and associated induced norms of matrices (i.e., spectral
norms of vectors and matrices). The following definitions are useful to investigate (1.1).

Definition 3.1. System (1.1) is said to be globally Lyapunov stable (or simply globally stable)
if any solution is bounded for any finite initial conditions.

Definition 3.2. System (1.1) is said to be permanent if any solution enters a compact set K for
n ≥ n0 for any bounded initial conditions with n0 depending on the initial conditions.

Definition 3.3. System (1.1) is said to be positive if any solution is nonnegative for any finite
nonnegative initial conditions.

The system is locally stable around an equilibrium point if any solution with initial
conditions in a neighborhood of such an equilibrium point remains bounded. Local or
global asymptotic stability to the equilibrium point occurs, respectively, under local or global
stability around a unique equilibriumpoint if, furthermore, any solution tends asymptotically
to such an equilibrium point as n → ∞. Definition 3.2 is the definition of permanence in the
sense used in [1], which is compatible with global and local stability and with global or local
asymptotic stability according to Definition 3.1 and the above comments if 0 ∈ K. However,
it has to be pointed out that there are different definitions of permanence, like, for instance,
in [2], where vanishing solutions (related to asymptotic stability to the equilibrium) or, even,
negative solutions at certain intervals are not allowed for permanence. On the other hand,
note that a continuous-time nonlinear differential system may be permanent without being
globally stable in the case that finite escape times t of the solution exist, implying that because
of unbounded discontinuities of the solution at finite time t, that solution is unbounded in
[t, t + ε) for some finite ε ∈ R+. This phenomenon cannot occur for system (1.1) under the
requirement fi ∈ BC(Ki, γi, δi,Mi), for all i ∈ k, which avoids the solution being infinity at
finite values of the discrete index n for any finite initial conditions. The following result is
concerned with necessary conditions of global Lyapunov stability of system (1.1) for all the
sets of functions fi ∈ BC(Ki, 1, δi,Mi), for all i ∈ k, since the linear system defined with
fi(x) = δix, for all i ∈ k, in (1.1) has to be globally stable in order to keep global stability for
any fi ∈ BC(Ki, 1, δi,Mi), for all i ∈ k.

Theorem 3.4. System (1.1) is globally stable and permanent for any given set of functions fi ∈
BC(Ki, 1, δi,Mi) for any given Ki ∈ R and any given Mi ∈ R, for all i ∈ k, only if the subsequent
properties hold.

(i) |λi| ≤ 1, for all i ∈ k.

(ii) ‖A‖2 ≤ 1, equivalently,

‖W‖2 =
∥∥AT

A
∥∥
2 ≤ 1, where W := A

T
A =

⎡
⎢⎢⎣
W11

... W12

· · ·
WT

12

... W22

⎤
⎥⎥⎦ ∈ R2k×2k, (3.10)
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where

W11 := ATA + Ik =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 + λ21 + δ2
kα

2
k λ1δ1α1 λ3δ3α3 · · · λkδkαk

λ1δ1α1 1 + λ22 + δ2
1α

2
1 λ2δ2α2 · · · λk−1δk−1αk−1

...
...

...
λk−2δk−2αk−2 λk−1δk−1αk−1 · · · λ2

k−1 + δ2
k−2α

2
k−2 λ2δ2α2

λkδkαk λk−1δk−1αk−1 · · · λ2δ2α2 1 + λ2
k
+ δ2

k−1α
2
k−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.11)

W12 := ATB, and W22 := BTB = Diag(δ2
k
βk, δ

2
1β1, . . . , δ

2
k−1βk−1), with Ik being the kth identity

matrix. A necessary condition is
∑k

i=1(λ
2
i + δ2

i (α
2
i + β2i )) ≤ k.

(iii) There exists

P = P
T
:=

⎡
⎢⎢⎣
P 11

... P 12

· · ·
PT
12

... P 22

⎤
⎥⎥⎦ 
 0 in R2k×2k, (3.12)

where Pij ∈ Rk×k (i, j = 1, 2), which is a solution to the matrix identity

⎡
⎢⎢⎣

(
ATP 11 + P

T

12
)
A +ATP 12 + P 22 − P 11

...
(
ATP 11 + P

T

12
)
B − P 12

· · ·
BT
(
P 11A + P 12

) − P
T

12
... BTP 11B − P 22

⎤
⎥⎥⎦ = −Q (3.13)

for any given

Q = Q
T
:=

⎡
⎢⎢⎣
Q11

... Q12
· · ·

Q
T

12
... Q22

⎤
⎥⎥⎦ � 0 in R2k×2k. (3.14)

Proof. (i) Note that the identically zero functions fi : R → 0, for all i ∈ k, are all in
BC(Ki, 1, δi,Mi) for any Ki ≤ 0, δi ∈ (0, 1), Mi > 0, for all i ∈ k. Proceed by contradiction
by assuming that |λi| > 1 and fi ≡ 0 for some i ∈ k := {1, 2, . . . , k}, with the system being
globally stable. Thus, |x(i)

n+1| > |x(i)
n | if x(i)

0 /= 0 so that |x(i)
n | → ∞ as n → ∞, and then the system

is unstable for some function fi ∈ BC(Ki, 1, δi,Mi). Thus, the necessary condition for global
stability has been proved, implying also the permanence of all the solutions in some compact
real interval K.

(ii) Assume fi(x) = δix with δi ∈ (0, 1) everywhere in R so that fi ∈ C(1, δi,Mi), Mi >
0. Let the spectrum of W be σ(W) := {σ1, σ2, . . . , σk}, with each eigenvalue being repeated
as many times as its multiplicity. Then, ‖A‖2 = max1≤i≤k σ

1/2
i . It is first proved by complete

induction that if x0 /= 0 is an eigenvector of A, then xk is an eigenvector of A for any k ≥ 1.
Assume that xk is an eigenvector ofA for some arbitrary k ≥ 1 and some eigenvalue ρi. Then,
Axk+1 = A(Axk) = A(ρixk) = ρi(Axk) = ρixk+1 so that xk+1 is also an eigenvector of A for the
same eigenvalue ρi. This property leads to

∥∥xk+1
∥∥2
2 =

∥∥Axk

∥∥2
2 = xT

k A
T
Axk = ρ2i

∥∥xk

∥∥2
2 = σi

∥∥xk

∥∥2
2 = ρ2ki

∥∥x0
∥∥2
2 = σk

i

∥∥x0
∥∥2
2. (3.15)
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Proceed by contradiction by assuming that system (1.1) is stable, for all fi ∈ C(1, δi,Mi),
with |ρi| = σ1/2

i > 1. From (3.15), |x(i)
n | → ∞ as n → ∞, and then the system is unstable for a

function fi ∈ C(1, δi,Mi) for any real constant Ki since it possesses an unbounded solution
for some finite initial conditions. Now, redefine the functions fi(x) from the above fi(x), i ∈ k,
as follows:

fi(x) =

⎧
⎪⎨
⎪⎩
fi(x) = δix if x ≥ 0,

R � λ < −
(
1 +max

1≤i≤k
(∣∣λi

∣∣)) < 0 if x < 0.
(3.16)

It is clear by construction that if fi(x) = fi(x) = δix on an interval of infinite measure
and if 0 > λ = fi(x)/= fi(x) occurs on a real interval of finite measure, then the above
contradiction obtained for fi ∈ C(1, δi,Mi) still applies for fi ∈ BC(Ki, 1, δi,Mi) for any
finite negative Ki < −λ. If fi(x) = fi(x) occurs on an interval of finite measure and if
fi(x)/= fi(x) occurs on an interval of infinite measure, then the linear system resulting from
(1.1) with the replacement fi(x) → fi(x) is unstable so that any nontrivial solution is
unbounded. Furthermore, since fi(x) → −∞ as x → ∞ (function diverging to −∞) and fi(x)
being unbounded on R (implying that fi(xk) → −∞ for {xk}∞0 being some monotonically
increasing sequence of real numbers) are both impossible situations for some i ∈ k since
fi : R → R (i ∈ k) are all nondecreasing, it follows again that the functions are bounded
from below so that fi ∈ BC(Ki, 1, δi,Mi) for some finite Ki < 0. If the real subintervals
within which fi(x) equalizes fi(x) or differs from fi(x) are both of infinite measure, the result
fi ∈ BC(Ki, 1, δi,Mi) with some unbounded solution still applies trivially for some finite
Ki < 0. Thus, system (1.1) is globally stable for any given set of functions fi ∈ BC(Ki, 1, δi,Mi)
for anyKi ∈ R and anyMi ∈ R, for all i ∈ k, only if the subsequent equivalent properties hold:
‖A‖2 ≤ 1, ‖W‖2 ≤ 1. The necessary condition

∑k
i=1(λ

2
i + δ2

i (α
2
i + β2i )) ≤ k follows by inspecting

the sum of entries of the main diagonal of W which equalizes the sum of nonnegative real
eigenvalues ofW (which are also the squares of the modules of the eigenvalues of A, i.e., the
squares of the singular values ofA)which have to be all of modules not greater than unity to
guarantee global stability.

(iii) The property derives directly from discrete Lyapunov global stability theorem

and its associate discrete Lyapunov matrix equation A
T
P A − P = −Q which has to possess a

solution P 
 0 for any given Q � 0. This property is a necessary and sufficient condition for
the global stability of the extended linear system (3.8)-(3.9), and then for that of system (3.3)–
(3.7). The proof ends by noting that system (3.8)-(3.9) has to be stable in order to guarantee
the global stability of system (1.1) for any set fi ∈ BC(Ki, 1, δi,Mi), for all i ∈ k, according to
Property (ii).

Concerning positivity (Definition 3.3), it is well known that in the continuous-time
and discrete-time linear and time-invariant cases, the positivity property may be established
via a full characterization of the parameters (see, e.g., [2, 13, 17] as well as references therein).
In particular, for a continuous-time linear time-invariant dynamic system to be positive, the
matrix of dynamics has to be a Meztler matrix, while in a discrete-time one it has to be
positive, where the control, output, and input-output interconnection matrices have to be
positive in both (continuous-time and discrete-time) cases [2]. Under these conditions, each
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solution is always nonnegative all the time provided that all the components of the control
and initial condition vectors are nonnegative [2, 13]. In general, in the nonlinear case, it is
necessary to characterize the nonnegativity of the solutions over certain intervals and for
certain values of initial conditions and parameters; that is, the positivity is not a general
property associated with the differential system itself all the time but with some particular
solutions on certain time intervals associated with certain constraints on the corresponding
initial conditions. The positivity of (1.1) for linear functions fi(x) = δix is now invoked
(in terms of necessary conditions) to guarantee the positivity of all the solutions of (1.1)
for any set of nonnegative initial conditions and any potential set fi : R0+ → R0+ with
fi ∈ BC(Ki, 1, δi,Mi) for any given Ki ∈ R and any given Mi ∈ R, for all i ∈ k. This is
formally addressed in the subsequent result.

Theorem 3.5. System (1.1) is positive for any given set of nonnegative functions fi : R0+ → R0+

with fi ∈ BC(Ki, 1, δi,Mi) for any given Ki ∈ R and any given Mi ∈ R, for all i ∈ k, only if
λi ∈ R0+, αi ∈ R0+, βi ∈ R0−, for all i ∈ k.

Outline of proof

As argued in the proof of Theorem 3.4 for stability, the linear system has to be positive in
order to guarantee that it is positive for any set fi : R0+ → R0+ with fi ∈ BC(Ki, 1, δi,Mi) for
any given Ki ∈ R and Mi ∈ R, for all i ∈ k. The linear system (3.8)-(3.9) for fi(x) = δix is
positive if and only if A ∈ Rn×n

0+ [3] since, in addition, this implies fi ∈ BC(Ki, 1, δi,Mi). The
proof follows sinceA ∈ Rn×n

0+ by direct inspection if and only if λi ∈ R0+, αi ∈ R0+, βi ∈ R0−, for
all i ∈ k.

Necessary joint conditions for stability, permanence, and positivity of (1.1) for any set
fi : R0+ → R0+ with fi ∈ BC(Ki, 1, δi,Mi) for any given Ki ∈ R and Mi ∈ R, for all i ∈ k,
follow directly by combining Theorems 3.4 and 3.5.

4. Main stability results

This section derives sufficiency-type conditions (easy to test) for global stability of the linear
system (3.3)–(3.7) independently of the signs of the parameters αi, βi, and δi, i ∈ k (which
are also allowed to take values out of the interval (0, 1), but on their maximum sizes). It is
allowed that λi be independent of the above parameters and negative, but fulfilling that their
modules are less than unity. The mechanism of proof for the linear case is then extended
directly to the general nonlinear system (1.1). The αi, βi, and λi, i ∈ k, are allowed to be
negative but δi ∈ (0, 1), i ∈ k, is required to formulate an auxiliary result for the main proof.

Theorem 4.1. Assume that |λi| < 1, for all i ∈ k, and

max
(
max
1≤i≤k

∣∣αi

∣∣,max
1≤i≤k

∣∣βi
∣∣) <

1 −max1≤i≤k
∣∣λi
∣∣

2
√
kmax1≤i≤k

∣∣δi
∣∣ . (4.1)

Then, the linear system (3.3)–(3.7), equivalently system (3.8)-(3.9), is globally Lyapunov stable for
any finite arbitrary initial conditions. It is also permanent for any initial conditions:

x0 ∈ K0
(
a1, . . . , a2k, b1, . . . , b2k

)

:=
{
x =

(
x1, x2, . . . , x2k

)T ∈ R2k : xi ∈
[
ai, bi

]
, ∞ > bi > ai > −∞, ∀i ∈ 2k

} ⊂ R2k.
(4.2)
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Proof. The successive use of the recursive second identity in (3.3) with initial condition x0 =
(xT

0 , x
T
−1)

T leads to

xn+k = Λn+kx0 +
n+k−1∑
i=0

Λn+k−i−1Bxi, ∀n ∈ N, ∀k ∈ k, (4.3)

and taking �2-norms in (4.3) with λ := max1≤i≤k|λi| < 1, we get

∥∥xn+k
∥∥
2 =

∥∥Λn+k∥∥
2

∥∥x0
∥∥
2 +

n+k−1∑
i=0

∥∥Λn+k−i−1∥∥
2‖B‖2

∥∥xi

∥∥
2

≤ λn+k
∥∥x0

∥∥
2 +

1 − λn+k

1 − λ
‖B‖2 max

0≤i≤n+k−1

∥∥xi

∥∥
2

≤ λn
∥∥x0

∥∥
2 +

1 − λn

1 − λ
‖B‖2 max

0≤i≤n+k−1

∥∥xi

∥∥
2

≤ λn
∥∥x0

∥∥
2 +

δmax(α, β)
(
1 − λn

)

1 − λ

√
k max
0≤i≤n+k−1

∥∥xi

∥∥
2

≤ λn
∥∥x0

∥∥
2 +

2δmax(α, β)
(
1 − λn

)

1 − λ

√
k max
−1≤i≤n+k−1

∥∥xi

∥∥
2, ∀n ∈ N, ∀k ∈ k,

(4.4)

where δ := max1≤i≤k(|δi|), α := max1≤i≤k(|αi|), and β := max1≤i≤k(|βi|) since λ < 1 and

‖B‖2 =
√
λmax

(
B
T
B
) ≤

√
k‖B‖1 ≤

√
kδmax(α, β) for any x ∈ Rk,

∥∥Λj
∥∥2
2 = max

1≤i≤k
(∣∣λi

∣∣2j) = λ2j ≤ λ < 1, ∀j ∈ N,

max
0≤i≤n+k−1

(∥∥xi

∥∥
2

)
= max

0≤i≤n+k−1
(
xT
i xi + xT

i−1xi−1
)1/2

≤ max
0≤i≤n+k−1

(∥∥xi

∥∥
2 +
∥∥xi−1

∥∥
2

)

≤ 2 max
−1≤i≤n+k−1

∥∥xi

∥∥
2.

(4.5)

Note that (4.4) is still valid if the term preceding the equality is any ‖xn+�‖2, for all � ∈ N \
n + k, since they are all upper bounded by all the right-hand side upper bounds. Then,

∥∥xn+�
∥∥
2 ≤ λn

∥∥x0
∥∥
2 +

2δmax(α, β)
(
1 − λn

)

1 − λ

√
k max
−1≤i≤n+k−1

∥∥xi

∥∥
2, (4.6)

for all n ∈ N, for all k ∈ k, for all � ∈ N \ n + k, which implies directly that

max
−1≤i≤n+k−1

(∥∥xn+i
∥∥
2

)

≤ λn
∥∥x0

∥∥
2 +

2δmax(α, β)
1 − λ

√
k max
−1≤i≤n+k−1

∥∥xi

∥∥
2 +
(∥∥x0

∥∥
2 +
∥∥x−1

∥∥
2

)
,

∀n ∈ N, ∀k ∈ k.

(4.7)
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If the condition max(α, β) < (1 − λ)/2δ
√
k with λ ∈ [0, 1) holds, then the second term of the

right-hand side of (4.7) may be combined with the left-hand-side term to yield

∥∥xn

∥∥
2 ≤ max

−1≤i≤n+k−1

∥∥xn+i
∥∥
2

≤
(

1 − λ

1 − λ − 2
√
kδmax(α, β)

)((
1 + λn

)∥∥x0
∥∥
2 +
∥∥x−1

∥∥
2

)

≤
(

1 − λ

1 − λ − 2
√
kδmax(α, β)

)((
1 + λn0

)∥∥x0
∥∥
2 +
∥∥x−1

∥∥
2

)

≤ (1 + ε)
(

1 − λ

1 − λ − 2
√
kδmax(α, β)

)(∥∥x0
∥∥
2 +
∥∥x−1

∥∥
2

)

≤ (1 + ε)
(

1 − λ

1 − λ − 2
√
kδmax(α, β)

)( 2k∑
i=1

max
(
a2
i , b

2
i

))1/2

≤ (1 + ε)
(

1 − λ

1 − λ − 2
√
kδmax(α, β)

)( 2k∑
i=1

max
(∣∣ai

∣∣, ∣∣bi
∣∣)
)

(4.8)

≤ 3
(

1 − λ

1 − λ − 2
√
kδmax(α, β)

)
max

(∥∥x0
∥∥
2,
∥∥x−1

∥∥
2

)
, (4.9)

for all ε ∈ R+, for all n(≥n0) ∈ N, depending on n0, which depends on ε, for any N � n0 ≥
ln ε/ lnλ, for all x0 ∈ K0. SinceK0 is compact, it follows from (4.9) that any solution sequence
is bounded for any n ∈ N and any finite initial conditions. Thus, the linear system (3.3)–(3.7)
is globally Lyapunov stable. Also, sinceK0 is compact, it follows from (4.8) that any solution
sequence is permanent since it enters the prefixed compact set

K :=

{
x ∈ Rk :

∣∣xi

∣∣ ≤ (1 + ε)
k

(
1 − λ

1 − λ − 2δ
√
kmax(α, β)

)( 2k∑
i=1

max
(∣∣ai

∣∣, ∣∣ai

∣∣)
)
, ∀i ∈ k

}

(4.10)

for any n(≥ n0) ∈ N and any finite initial conditions (x0
...x−1)

T in K0. Furthermore, K is
independent of each particular set of initial conditions in K0. Thus, the linear system (3.3)–
(3.7) is permanent.

The following technical result will be then useful as an auxiliary one to prove the
stability of (1.1) under a set of sufficiency-type conditions based on extending the proof
mechanism of Theorem 4.1 to the nonlinear case. Basically, it is proved that the functions
fi : R → R, i ∈ k, grow at most linearly with their argument.

Lemma 4.2. fi ∈ C(αi, δi,Mi) ⇒ fi(x) = O(x), for all i ∈ k. In addition, fi(x) is bounded for all
x ≥ Mi. The result also holds if fi ∈ BC(Ki, αi, δi,Mi), for all Ki ∈ R, for all i ∈ k.
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Proof. Now, it is proved that fi(x) = O(x) (notation of “big Landau O” of x) for any fi ∈
C(αi, δi,Mi), for all i ∈ k. First, note that for all i ∈ k for some εi : [M,∞) → R0+, fi ∈
C(αi, δi,Mi) ∧ x ≥ Mi ∈ R+ ⇒ fi(x) = δix − εi(x) ≤ δix ⇒ fi(x) = O(x) since fi(x) ≤ δix +K
for any K ∈ R0+, for all x ≥ Mi. The result also holds if fi ∈ BC(Ki, αi, δi,Mi), for all Ki ∈ R,
since BC(Ki, αi, δi,Mi) ⊂ C(Ki, αi, δi,Mi). It is now proved by a contradiction argument that
if fi ∈ C(Ki, αi, δi,Mi), then it is bounded, for all x < Mi. Assume x < Mi ∈ R+ with fi(x1)
being arbitrarily large for some x1i < Mi. Thus, there existsM2i ∈ R+ being arbitrarily large so
thatM2i ≤ fi(x1i) ≤ fi(Mi) ≤ δiMi < ∞ for x1i = αix

(i+1)
n −βix(i+1)

n−1 < Mi since fi ∈ C(αi, δi,Mi)
so that it is monotonically nondecreasing. This is a contradiction sinceM2i is arbitrarily large.
Thus, fi ∈ C(αi, δi,Mi) is bounded, for all x < Mi. Since it is bounded, then fi(x) = O(x) ≤
|fi(x)| ≤ δ|x| + C1 for some finite C1 ∈ R+ for x < Mi as a result, so that fi(x) = O(x) on R.
Again, the result still holds if fi ∈ BC(Ki, αi, δi,Mi), for all Ki ∈ R.

Theorem 4.3. If λ := max1≤i≤k|λi| < 1 − δ, δ := max1≤i≤kδi ∈ (0, 1), fi ∈ BC(Ki, αi, δi,Mi), for all
Ki ∈ R, for all i ∈ k, andmax(max1≤i≤k|αi|,max1≤i≤k|βi|) < (1−max1≤i≤k|λi|−δ)/4

√
kmax1≤i≤kδi,

then system (1.1) is globally Lyapunov stable for any finite arbitrary initial conditions. It is also
permanent for any initial conditions x0 ∈ K0(a1, . . . , a2k, b1, . . . , b2k)with the compact setK0 defined
in Theorem 4.1.

Proof. If system (1.1) is taken, then (4.4) is replaced with

xn+1 = Λxn + B xn−1 +
(
f
(
xn−1

) − B xn−1
)
, ∀n, j ∈ N, (4.11)

where

f
(
xn−1

)
=
(
f1
(
α2x

(2)
n − βi+1x

(2)
n−1
)
, . . . , fk

(
α1x

(1)
n − βi+1x

(1)
n−1
))T

. (4.12)

The description (4.6) is similar to (1.1) via an unforced linear system (3.3)–(3.7)with a forcing
sequence {(f(xn−1) − B xn−1)}∞0 so that both solution sequences are identical under identical
initial conditions. One gets directly from (4.11) that

xn+k = Λn+kx0 +
n+k−1∑
i=0

Λn+k−i−1(B xi +
(
f
(
xn−1

) − B xn−1
))
, ∀n ∈ N, ∀k ∈ k, (4.13)

so that

∥∥xn+k
∥∥
2 ≤ λn

∥∥x0
∥∥
2 +

1 − λn

1 − λ

(
‖B‖2 max

0≤i≤n+k−1

∥∥xi

∥∥
2 + max

0≤i≤n+k−1

∥∥f(xi

) − Bxi

∥∥
2

)

≤ λn
∥∥x0

∥∥
2 +

1 − λn

1 − λ

(
2‖B‖2 + δ

)
max

0≤i≤n+k−1
(∥∥xi

∥∥
2

)
+

(
1 − λn

)
C1

1 − λ
.

(4.14)

Then by direct extension of (4.7) when using (4.14),

max
−1≤i≤n+k−1

(∥∥xn+i
∥∥
2

) ≤ λn
∥∥x0

∥∥
2 +

1
1 − λ

((
4δ max(α, β)

√
k + δ

)
max

−1≤i≤n+k−1

∥∥xi

∥∥
2 + C1

)

+
(∥∥x0

∥∥
2 +
∥∥x−1

∥∥
2

)
, ∀n ∈ N, ∀k ∈ k,

(4.15)



M. De la Sen 13

with δ ∈ (0, 1) for some finite C1 ∈ R+ since |fi(x)| ≤ δ|x| + C1, for all i ∈ k, from Lemma 4.2.
Thus, max−1≤i≤n+k−1(‖xn+i‖2)may be regrouped in the left-hand side provided that

1 >
1

1 − λ

(
4 δ max(α, β)

√
k + δ

)⇐⇒ max(α, β) <
1 − λ − δ

4 δ
√
k

. (4.16)

Then, under similar reasoning as that used to derive (4.8)-(4.9), one gets from (4.15) that

∥∥xn

∥∥
2 ≤ max

−1≤i≤n+k−1

∥∥xn+i
∥∥
2

≤
(

1

1 − λ − δ
(
1 + 4

√
kmax(α, β)

)
)(

(1 − λ)
((
1 + λn

)∥∥x0
∥∥
2 +
∥∥x−1

∥∥
2 + C1

))

≤
(

1

1 − λ − δ
(
1 + 4

√
kmax(α, β)

)
)(

(1 − λ)
((
1 + λn0

)∥∥x0
∥∥
2 +
∥∥x−1

∥∥
2 + C1

))

≤ (1 + ε)
(

1

1 − λ − δ
(
1 + 4

√
kmax(α, β)

)
)(

(1 − λ)
(∥∥x0

∥∥
2 +
∥∥x−1

∥∥
2

)
+ C1

)

≤ (1 + ε)
(

1

1 − λ − δ
(
1 + 4

√
kmax(α, β)

)
)(

(1 − λ)
2k∑
i=1

max
(
a2
i , b

2
i

)
+ C1

)1/2

≤ (1 + ε)
(

1

1 − λ − δ
(
1 + 4

√
kmax(α, β)

)
)(

(1 − λ)max
(∥∥x0

∥∥
2,
∥∥x−1

∥∥
2

)
+ C1

)

≤ 3
(

1

1 − λ − δ
(
1 + 4

√
kmax(α, β)

)
)(

(1 − λ)max
(∥∥x0

∥∥
2,
∥∥x−1

∥∥
2

)
+ C1

)
,

(4.17)

for all ε ∈ R+, for all n(≥n0) ∈ N, depending on n0, which depends on ε, for any N � n0 ≥
ln ε/ lnλ. The solution sequences are all bounded under any finite initial conditions and enter
the compact set K defined by

{
x ∈ Rk :

∣∣xi

∣∣ ≤ (1 + ε)
k

((
1

1 − λ − δ
(
1 + 4

√
kmax(α, β)

)
)

×
(
(1 − λ)

2k∑
i=1

max
(∣∣ai

∣∣, ∣∣ai

∣∣) + C1

))
, ∀i ∈ k

}
,

(4.18)

for all n(≥n0) ∈ N, for any set of initial conditions in the compact set K0. Furthermore, K is
independent of each particular set of initial conditions in K0. Then, system (1.1) is globally
Lyapunov stable and permanent.

Some simple properties concerning the instability of (1.1) based on simple constraints
on the nonlinear functions, such as the stated boundedness from below of the strongest one
of boundedness from above and below, are now established in the subsequent result.
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Theorem 4.4. The following properties hold.

(i) If |λi| ≤ 1 and fi : R → R is bounded from above and below, then |x(i)
n | is bounded, for all

n ∈ N. If |λi| > 1 and fi : R → R is bounded from above and below, then almost all solution
sequences {x(i)

n }∞0 for sufficiently large finite absolute values of the initial conditions are
unbounded. Thus, system (1.1) is unstable under sufficiently large absolute values of the
initial conditions for some i ∈ k.

(ii) Assume that fi ∈ B(Ki) and |λi| > 1 for some i ∈ k. Then |x(i)
n+1| > |x(i)

n |, for all n ∈ N,
and |x(i)

n | → ∞ as n → ∞ if |x(i)
0 | > |Ki|/(|λi| − 1) (|x(i)

0 | ≥ |Ki|/(|λi| − 1) ifKi /= 0).
Thus, system (1.1) is unstable under such sufficiently large absolute values of the initial
conditions for some i ∈ k.

Proof. (i) If −∞ < M1i ≤ fi(x) ≤ M2i < ∞, for all x ∈ R, for some Mji, j = 1,2, and some i ∈ k,
then

∣∣λni
∣∣
(∣∣x(i)

0

∣∣ +
∣∣∣∣∣
∞∑
j=0

λ
−j−1
i

∣∣∣∣∣max
(∣∣M1i

∣∣, ∣∣M2i
∣∣)
)

≥ ∣∣x(i)
n

∣∣ ≥ ∣∣λni
∣∣
(∣∣x(i)

0

∣∣ −
∣∣∣∣∣
n−1∑
j=0

λ
−j−1
i

∣∣∣∣∣max
0≤j≤i

∣∣fi
(
αix

(i+1)
j − βix

(i+1)
j−1

)∣∣
)

≥ ∣∣λni
∣∣
(∣∣x(i)

0

∣∣ −
∣∣∣∣∣
n−1∑
j=0

λ
−j−1
i

∣∣∣∣∣max
(∣∣M1i

∣∣, ∣∣M2i
∣∣)
)

≥ ∣∣λni
∣∣
∣∣∣∣∣
∣∣x(i)

0

∣∣ −
∣∣∣∣∣
∞∑
j=0

λ
−j−1
i

∣∣∣∣∣max
(∣∣M1i

∣∣, ∣∣M2i
∣∣)
∣∣∣∣∣.

(4.19)

If |λi| ≤ 1, then the sequence {|x(i)
n |}∞0 is bounded so that the sequence {|x(i)

n |}∞0 may be

unbounded only if |λi| > 1. If |λi| > 1, then 0 ≤ ||x(i)
0 | − |∑∞

j=0λ
−j−1
i |max(|M1i|, |M2i|)| < ∞,

and, furthermore, if |x(i)
0 | > (|λi|/(|λi| − 1))max(|M1i|, |M2i|) ≥ |∑∞

j=0λ
−j−1
i |max(|M1i|, |M2i|),

then there is a strictly monotonically increasing subsequence {|x(i)
n |}n∈S of {|x(i)

n |}∞0 , where

S := {n1, n2, . . .} is a countable subset of N, so that |x(i)
nj+1 | > |x(i)

nj
|, for all nj ∈ S, and |x(i)

nj
| → ∞

as S � nj → ∞ (i.e., it diverges).
If fi ∈ BC(Ki, 1, δi,Mi), then −∞ < −|K′

i| ≤ fi(x) ≤ δx, for all x(≥Mi) ∈ R and all K′
i,

such that Ki + |K′
i| ≥ 0.

(ii) From (1.1), fi ∈ B(Ki), and |λi| > 1, it follows that

(
x
(i)
n+1

)2 − (x(i)
n

)2 = (λ2i − 1
)(
x
(i)
n

)2 + f2
i

(
αix

(i+1)
n − βix

(i+1)
n−1

)
+ 2λifi

(
αix

(i+1)
n − βix

(i+1)
n−1

)
x
(i)
n

≥ g
(i)
n

(∣∣x(i)
n

∣∣) := K2
i −
(
2λi
∣∣Ki

∣∣ − (λ2i − 1
)∣∣x(i)

n

∣∣)|x(i)
n | > 0

(4.20)

if |x(i)
0 | > 2|λi||Ki|/(λ2i − 1) (|x(i)

0 | ≥ |Ki|/(|λi| − 1) ifKi /= 0) ⇒ |x(i)
n+1| > |x(i)

n |, for all n ∈ N,
so that the absolute value of the solution sequence is monotonically increasing so that it
diverges. Less stringent condition for the initial conditions follows by calculating the zeros of
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the convex function g
(i)
n (|x(i)

n |)g(i)
n (|x(i)

n |) which are g(i)
2n = |Ki|/(|λi| − 1) ≥ g

(i)
1n = |Ki|/(|λi| + 1),

which implies that g(i)
n (|x(i)

n |) ≤ 0 if |x(i)
n | ∈ [g(i)

1n , g
(i)
2n ], and (x(i)

n+1)
2 − (x(i)

n )2 ≥ g
(i)
n (|x(i)

n |) > 0 if

|x(i)
n | ∈ (−∞, g

(i)
2n ) ∪ (g(i)

2n ,∞). This directly completes the proof.

5. Positivity results

Some positivity properties of the solution sequences of system (1.1) are now formulated in
the subsequent formal result.

Theorem 5.1. The following properties hold.

(i) Any solution vector sequence xn := (x(1)
n , x

(2)
n , . . . , x

(k)
n )T of (1.1) is nonnegative, for all

n ∈ N, and any finite nonnegative x(i)
0 ≥ 0, for all i ∈ k, if fi(αix

(i+1)
0 − βix

(i+1)
−1 ) ≥ −λix(i)

0 ,
for all i ∈ k, and

fi
(
αix

(i+1)
n − βix

(i+1)
n−1

) ≥ −λix(i)
n = −

(
λn+1i x

(i)
0 +

n−1∑
j=0

λ
n−j
i fi

(
αix

(i+1)
j − βix

(i+1)
j−1

))
, (5.1)

for all i ∈ k, for all n ∈ N. Then, system (1.1) is positive.

(ii) Any solution vector sequence of (1.1) is nonnegative, for all n ∈ N, and any finite
nonnegative x(i)

0 ≥ 0, for all i ∈ k, if λi ∈ R0+ and fi : R → R0+, for all i ∈ k. Then,
system (1.1) is positive.

(iii) Assume that λi ∈ R0+, for all i ∈ k, and that there exist 2k real constants C(i)
j ∈ R+

0 , i ∈ k,
j = 1, 2, independent of n, such that

−∞ < −C(i)
1 ≤ fi

(
αix

(i+1)
0 − βix

(i+1)
−1

)
≤ C

(i)
2 < ∞, ∀i ∈ k,

−∞ < −C(i)
1 ≤

n−1∑
j=0

λ
n−j−1
i fi

(
αix

(i+1)
j − βix

(i+1)
j−1

)
≤ C

(i)
2 < ∞, ∀i ∈ k, ∀n ∈ N.

(5.2)

Then, the solution vector sequence is nonnegative, for all n ∈ N0 \ n0, for some finite
n0 ∈ N0, depending on x

(i)
j (j = 0,−1, for all i ∈ k), for any given finite x(i)

0 > 0, for all

i ∈ k.

(iv) Assume that fi ∈ B(Ki) and λi > 1, for all i ∈ k. Then, any solution vector sequence of
(1.1) is nonnegative; that is, xn ∈ Rn

0+, for all n ∈ N, for any given finite x−1 ∈ Rk and some
Rk

� x0 � 0 of sufficiently large components (i.e., x0 ∈ Rk
+ and x

(i)
0 ≥ υ(i) > 0, for some

positive lower bound, with υ(i) being sufficiently large, for all i ∈ k). The solution vector
sequence is positive by increasing the size of the initial condition of at least one component,
and strictly positive by increasing simultaneously the sizes of the initial conditions of all
the components. If fi ∈ B(Ki) with Ki ∈ R0+, for all i ∈ k, then the constraints λi > 1 are
weakened to λi ∈ R0+, for all i ∈ k (Property (ii)).

(v) Assume that [A
...B] > 0 with at least a positive entry per row, with the matrices A and B

defined in (3.4), and that λi > 1 and fi ∈ BC(Ki, 1, δi,Mi), for all i ∈ k. Thus, there exists
x0 � 0 of sufficiently large finite components so that any solution is strictly positive, that
is, xn � 0, for all n ∈ N, under initial condition x0 � 0. The sizes are quantifiable from
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the knowledge of the scalars Ki, δi, Mi (i ∈ k) and upper bounds of the nonzero entries of
A and B.

Proof. (i) The recursive use of (1.1) yields

x
(i)
n = λni x

(i)
0 +

n−1∑
j=0

λ
n−j−1
i fi

(
αix

(i+1)
j − βix

(i+1)
j−1

)
, ∀i ∈ k, ∀n ∈ N, (5.3)

for any given x
(i)
i (i = 0,−1), for all i ∈ k. Then,

fi
(
αix

(i+1)
n − βix

(i+1)
n−1

)
≥ −λix(i)

n = −
(
λn+1i x

(i)
0 +

n−1∑
j=0

λ
n−j
i fi

(
αix

(i+1)
j − βix

(i+1)
j−1

))
, ∀n ∈ N0

=⇒ x
(i)
n+1 = λix

(i)
n + fi

(
αix

(i+1)
n − βix

(i+1)
n−1

)
≥ 0, ∀n ∈ N0.

(5.4)

(ii) x(i)
n = λix

(i)
n−1 + fi(αix

(i+1)
n−1 − βix

(i+1)
n−2 ) ≥ 0, for all n ∈ N, if x(i)

0 ≥ 0, λi ∈ R0+, and
fi : R → R0+, for all i ∈ k.

(iii) x(i)
n = λni x

(i)
0 +

∑n−1
j=0 λ

n−j−1
i fi(αix

(i+1)
j − βix

(i+1)
j−1 ) ≥ λni x

(i)
0 − C

(i)
1 ≥ 0, for all n ≥ n0 :=

max1≤i≤k(ln(C
(i)
1 /x

(i)
0 )/ lnλi) − 1, for all i ∈ k. Such an n0, being dependent on x

(i)
0 ,

always exists for λi > 1 since C(i)
1 < ∞ and λni x

(i)
0 → ∞ as n → ∞ for any x

(i)
0 > 0, for

all i ∈ k.

(iv) Since fi : R → R, for all i ∈ k, are bounded from below onR, thenmaxn∈Nfi(αix
(i+1)
n −

βix
(i+1)
n ) ≥ Ki > −∞, lim infn→∞fi(αix

(i+1)
n −βix(i+1)

n ) ≥ Ki > −∞ for some finiteKi ∈ R,
for all i ∈ k. Irrespective of the value of Ki, since it is finite, there always exists a
finite constant K′

i ∈ R+ fulfilling Ki ≥ −K′
i such that

max
n∈N

fi
(
αix

(i+1)
n − βix

(i+1)
n

)
≥ −K′

i = −∣∣K′
i

∣∣ > −∞,

lim inf
n→∞

fi
(
αix

(i+1)
n − βix

(i+1)
n

)
≥ −∣∣K′

i

∣∣ > −∞,
(5.5)

for all i ∈ k. Since λi > 1, the series
∑∞

j=0λ
−j
i converges so that

n∑
i=0

λ
−j
i =

1 − λ
−(n+1)
i

1 − λ−1i
=

λn+1i − 1

λni
(
λi − 1

) ≤
∞∑
j=0

λ
−j
i =

1
1 − λ−1i

=
λi

λi − 1
, ∀i ∈ k, ∀n ∈ N. (5.6)

Then,

x
(i)
n = λni

(
x
(i)
0 −

n−1∑
j=0

λ
−j−1
i

∣∣∣fi
(
αix

(i+1)
n − βix

(i+1)
n

)∣∣∣
)

≥ λni

(
x
(i)
0 −

n−1∑
j=0

λ
−j−1
i max

n∈N

∣∣∣fi
(
αix

(i+1)
n − βix

(i+1)
n

)∣∣∣
)

≥ λni

(
x
(i)
0 −

(
λn+1i − 1

)∣∣K′
i

∣∣
λni
(
λi − 1

)
)

≥ λni

(
x
(i)
0 − λi

∣∣K′
i

∣∣
λi − 1

)
,

(5.7)
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for all i ∈ k, for all n ∈ N. As a result, x(i)
n ∈ R0+, for all i ∈ k, for all n ∈ N, if

x
(i)
0 ≥ λ|K′

i|/(λ− 1) > 0, for all i ∈ k. Then, xn ≥ 0, for all n ∈ N. If x(i)
0 > λ|K′

i|/(λ− 1)
for at least one i ∈ k, then xn > 0, for all n ∈ N. If x(i)

0 > λ|K′
i|/(λ − 1), for all i ∈ k,

then xn � 0, for all n ∈ N.

(v) Define M := (M1,M2, . . . ,Mk)
T � 0 with the constants Mi of the sets BC(Ki,

1, δi,Mi), for all i ∈ k. Since fi(x) = δix − f̃i(x) for some f̃i : [M,∞) → R0+, for all
i ∈ k, for all x ≥ Mi, from the definition of the sets C(1, δi,Mi), it follows from (3.9)
that

xn ≥ A
n
x0 −

n−1∑
i=0

A
n−1−i

BK̃′ (5.8)

for any K̃′ := (K̃′
1, K̃

′
2, . . . , K̃

′
k)

T � 0 such that Ki ≥ −|K̃′
i|, for all i ∈ k. Since λi > 1,

for all i ∈ k, then from the structure of the matrix A in (3.9),

x
(i)
n ≥ λni x

(i)
0 +

n−1∑
i=0

eTi Λ
n−1−i B xi −

n−1∑
i=0

eTi Λ
n−1−i BK̃′

≥ λni x
(i)
0 +

n−1∑
i=0

eTi Λ
n−1−i B

(
A

i
x0 −

i−1∑
j=0

A
i−1−j

BK̃′
)

−
n−1∑
i=0

eTi Λ
n−1−i BK̃′

= λni x
(i)
0 +

n−1∑
i=0

eTi Λ
n−1−i B A

i
x0 − eTi

(
Λn−1−i +

i−1∑
j=0

A
i−1−j

)
BK̃′

= eTi

(
λni In +

n−1∑
i=0

Λn−1−i B A
i

)
x0 − eTi

(
Λn−1−i +

i−1∑
j=0

A
i−1−j

)
BK̃′ � Mi,

(5.9)

since λi > 1, for all i ∈ k, provided that it is sufficiently large, x(i)
0 ≥ max(Mi, υi) > 0

(i.e., x0 � 0 has sufficiently large positive components), for all i ∈ k, for all n ∈ N,
where eTi is the ith unity vector in Rk of components eij = δij (the Kronecker delta),
for all i, j ∈ k.

Note that the properties associated with fi ∈ BC(Ki, 1, δi,Mi), for all i ∈ k, have not
been invoked in Theorem 5.1(i)–(iii). Theorem 5.1(ii) implicitly assumes fi ∈ B(Ki), since
they are assumed to be nonnegative, for all i ∈ k.
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