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with the weaker property of global asymptotic stability is also obtained as being independent
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1. Introduction

Time-delay systems are gaining important attention in the last years. The reason is that they
offer a very significant modelling tool for dynamic systems since a wide variety of physical
systems possess delays either in the state (internal delays) or in the input or output (external
delays). Examples of time-delay systems are war/peace models, biological systems, like,
for instance, the sunflower equation, Minorsky’s effect in tank ships, transmission systems,
teleoperated systems, some kinds of neural networks, and so forth (see, e.g., [1–12]). Time-
delay models are useful for modelling both linear systems (see, e.g., [1–4, 13]) and certain
nonlinear physical systems (see, e.g., [4, 7–9, 14]). A subject of major interest in time-
delay systems, as it is in other areas of control theory, is the investigation of the stability
as well as the closed-loop stabilization of unstable systems, [2–4, 6–9, 13–16] either with
delay-free controllers or by using delayed controllers. Dynamic systems subject to internal
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delays are infinite—dimensional by nature so that they have infinitely many characteristic
zeros. Therefore, the differential equations describing their dynamics are functional rather
than ordinary. Recent research on time-delay systems is devoted to numerical stability tests,
to stochastic time-delay systems, diffusive time-delayed systems, medical and biological
applications, [17–20], and characterization of minimal state-space realizations, [21]. Another
research field of recent growing interest is the investigation in switched systems including
their stability and stabilization properties. A general insight to this problem is given in
[22–24]. Switched systems are related to the fact that a system possesses several distinct
parameterizations and commutes in between them through time according a certain
switching rule. The problem is relevant in applications since the corresponding models are
useful to describe changing operating points or relevant to synthesize different controllers
which can adjust to operate on a given plant according to situation of changing parameters,
dynamics and so forth. Specific related problems are the following.

(1) The nominal order of the dynamics changes according to the frequency content of
the control signal since fast modes are excited with fast input where they are not excited under
slow controls. This circumstance can imply the need to use different controllers through time.

(2) The systems parameters are changing so that the operation point changes. Thus, a
switched model being adjusted to several operation points may be useful, [22–24].

(3) The adaptation transient has a bad performance due to a poor estimates
initialization due to very imprecise knowledge of the true parameters. In this case, a mul-
tiparameterized adaptive controller, whose parameterization varies through time governed
by a parallel multiestimation scheme, might improve the whole system performance. For this
purpose, the parallel multiestimation scheme selects trough time, via a judicious supervision
rule, the particular estimator associated with either the best identification, tracking or
mixed identification/tracking objectives. Such strategies can improve the switched system
performance compared to the use of a single estimator/controller pair [5, 25]. The asymptotic
stability of switched system has been investigated exhaustively along the last decade (see,
e.g., [22–24] and references there in). However, parallel general results for switched time-
delay systems are not abundant in the literature. Stability results of time-delay switched
systems have been obtained recently for the case of one single delay by decomposition of the
dynamics into a sum of a linear ordinary differential equation and a linear delay differential
equation, [12]. Related results have also been obtained by adapting switching rules for
ordinary differential equations to those describing time-delay systems, [11]. Some further
recent related research investigates time-varying systems under point delays. In that context,
switches are considered to produce an impulsive time derivative of the matrix of dynamics,
[26]. This paper is devoted to the investigation of the stability properties of switched systems
subject to internal constant point delays. A first package of results is concerned with the
global exponential stability of switched systems either independent of or dependent on the
delay sizes based on the use of Gronwall’s lemma, [27]. Exponential stability independent
of the delay size is proved under the restriction of small dynamics (characterized in terms
of norms) of the delayed dynamics provided that the current delay free matrix of dynamics
is stable. Exponential stability dependent on the delay size is proved under the restriction of
sufficiently small delays provided that the delay-free system is exponentially stable. Note that
it is well known that both of them have to be stable for any linear time-invariant configuration
in order that the corresponding time-delay system may be asymptotically stable, [1, 4, 13].
It has to be pointed out that Gronwall’s lemma has been chosen as elementary analysis
tool for exponential stability of switched systems since Lyapunov techniques are direct
only for discussing the weaker property of asymptotic stability in the case of time-delay
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systems since either the Lyapunov functional, its time-derivative, or both depend on the state-
squared norm on a time interval depending on the delay size rather than on each current
time instant. A minimum residence time at each particular configuration, which depends
on the parameterization, is required in order to guarantee exponential stability for this first
set of stability results. A second package of weaker stability results concerning asymptotic
stability is also discussed based on the use of “ad hoc” Krasovsky-Lyapunov’s functionals,
[1]. Contrarily to the first package of results, those of the second one do not require the
maintenance of a minimum residence time between any two consecutive switching instants
since it is assumed that all the parameterizations possess a common Krasovsky-Lyapunov
functional. Basically, four types of systems are included in different sections of this paper,
namely: (a) all the configurations are time invariant with identical delays, (b) the various
distinct parametrical configurations can eventually posses distinct delays, (c) the system has
a polytopic structure with the vertices being associated with limit configurations, and (d)
the various system parameters vary continuously through time under the restriction that
the dynamics possesses time derivative almost everywhere and there are finite parametrical
jumps of sufficiently small sizes at isolated time instants. In this case, asymptotic stability is
guaranteed if the jumps occur at sufficiently large intervals compared to available bounds
depending on other parameters of the dynamic system establishing worst-case situations for
the stability degree.

2. Stability results based on the use of
Gronwall’s lemma and matrix measures

Consider the nth linear and time-invariant dynamic system with internal (i.e., in the state)
delayed dynamics with constant discrete (or point) delay:

ẋ(t) = A0x(t) +A1x(t − h), (2.1)

where x(t) ∈ Rn is the state vector and Ai ∈ Rn×n (i = 0, 1) are matrices of delay-free
and delayed dynamics, respectively, for delay h ∈ [0, h], either for some admissible delay
upper-bound 0 ≤ h < ∞ or for all h ∈ [0,∞). The first characterization will lead to stability
dependent on the delay size results while the second one will lead to results about stability
independent of the delay size. The initial condition is defined by any piece-wise absolutely
continuous function ϕ : [−h, 0] → Rn with ϕ(0) = x(0) = x0. The generalization of
potential results for (2.1) for more general systems involving q delays 0 = h0 < hi−1 < hi
(i ∈ q := {1, 2, . . . , q}) of the form

ẋ(t) =
q∑

i=0

Aix
(
t − hi

)
(2.2)

is direct, and some related results will be discussed in Section 3. Thus, the attention is focused
on the behavior and properties of (2.1). The solution of (2.1) over R0+ := {R � t ≥ 0}
is unique for each given such a function of initial conditions from the well-known Picard-
Lindeloff uniqueness theorem [27]. One expression of such a solution may be calculated
via the superposition principle for linear systems with the unforced solution calculated as
associated with the C0-semigroup of infinitesimal generator A0 with the particular correction
due to the forcing term A1x(t − h). If h = 0, then (2.1) becomes ẋ(t) = (A0 + A1)x(t), so that
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(2.1) is delay free. Norm-upper bounds of the solution of (2.1) through time can be computed
by adapting the well-known Gronwall’s lemma [27] to calculate a norm upper-bound for the
solution of (2.1). Note thatGronwall’s lemma is a useful tool to prove exponential stability
either under small delays or for the case of small norms of the matrices of delayed dynamics
provided that the delay-free system counterpart or the system without delay dynamics
matrices, respectively, are stable. Exponential stability is a stronger property than asymptotic
stability which is the one usually proved for time-delay systems with Lyapunov stability
tools. The following results are proved in Appendix A and extend their weaker previous
statement for asymptotic stability (see, e.g., [1]). They are of interest for the subsequent study
related to results on exponential stability under switching among distinct parameterizations
of time-delay systems with point delays.

Theorem 2.1. Assume that (A0+A1) is a stable matrix (i.e., all its eigenvalues are in Re s < 0). Then,
it exists a maximum allowable delay h ∈ R+ := {R � t ≥ 0} such that (2.1) is globally exponentially
stable for any delay h ∈ [0, h).

Theorem 2.2. Assume that A0 is a stable matrix. Then, (2.1) is globally exponentially stable
independent of the delay (i.e., for any delay h ∈ R0+ provided that ‖A1‖ is sufficiently small
compared to the stability abscissa of A0). For �2 (spectral)-norms, a related specific testable condition
is ‖A1‖2 < ρ0, for any real constant ρ0 ∈ R+ satisfying ρ0 ∈ (0, |μ2(A0)|), where μ2(A0) :=
(1/2)max1≤i≤ξ Reλi(A0 + AT

0 ) is the matrix measure of A0 with respect to the �2-norm, and
λi(A0 +AT

0 ) (i ∈ ξ := {1, 2, . . . , ξ}, ξ ≤ n) denote the distinct eigenvalues of such a matrix.

If the condition of Theorem 2.2 is relaxed to ‖A1‖2 ≤ ρ0, then the time-delay system
is guaranteed to be globally Lyapunov’s stable since −ρ0 < 0. Theorem 2.3(i) below states
that stability independent of delay implies that A is a stable matrix, related to the case of
arbitrarily large delay while (A0 + A1) is also a stable matrix which is related to the case of
zero delay [1]. Theorem 2.3(ii) is to some extent the converse of Theorem 2.2. It is proved
that if ‖A1‖2 ≥ |μ2(A0)|, with μ2(A0) := (1/2)max1≤i≤ξ Reλi(A0 + AT

0 ) < 0 being the matrix
measure of A0 with respect to the �2-norm, then some dynamic system of the same structure
as (2.1), eventually (2.1) itself, and some matrix of delayed dynamics of the same �2-norm as
that of A1 becomes at least critically stable, or even instable, for small delay size. As a result,
it cannot be globally exponentially stable even if the delay-free system matrix A0 is a stable
matrix.

Theorem 2.3. The following properties hold.

(i) If μ2(A0) < 0 and ‖A1‖2 < |μ2(A0)|, then (2.1) is globally exponentially stable
independent of the delay size and both A0 and (A0 +A1) are stable matrices.

(ii) If A0 is a stable matrix and ‖A1‖2 ≥ |μ2(A0)|, then there exists a system (2.1) with a
matrix A∗1 fulfilling ‖A1‖2 = ‖A∗1‖2 (so that μ2(A0) + ‖A∗1‖2 ≥ 0) such that the system
ẋ(t) = A0x(t) +A∗1x(t − h) is either critically stable or unstable.

3. Switching among distinct parameterizations

Consider the nth linear and time-invariant dynamic switched system with internal delayed
dynamics:

ẋ(t) = A0σ(t)(t)x(t) +A1σ(t)(t)x(t − h), (3.1)
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where x(t) ∈ Rn is the state vector and Aiσ : R0+ → {Ai1, . . . , Aip} ⊂ M(Rn×n); i = 0, 1;
j ∈ p := {1, 2, . . . , p} are matrix functions of piecewise constant entries of delay-free and
delayed dynamics, respectively, for some delay h ∈ [0, h] and some admissible delay upper-
bound h ∈ R+, or for h ∈ [0,∞), where M(Rn×n) denotes the set of real-square matrices of n
order. In other words, Aiσ(t) ∈ {Ai1, . . . , Aip} ⊂ M(Rn×n); i = 0, 1. The piecewise constant real
function σ : R0+ → p ⊂ N is the switching law defined by σ(t) = j ∈ p for all t ∈ [tk, tk+1),
and {tk ∈ R0+}k∈Ns

is a strictly increasing real sequence of switching instants and Ns ⊂ N is
the switching indicator of either finite cardinal (i.e., the switching process stops in finite time)
or infinity cardinal (i.e., the switching process never ends). The initial condition function
is defined by any given piece-wise absolutely continuous function ϕ : [−h, 0] → Rn with
ϕ(0) = x(0) = x0.

3.1. Constrained switching

Some results of Section 3, obtained for a single parameterization, are directly extendable to
the case of switched systems for constrained switching between different parameterization
of the same structure as that of (2.1). The switching law is required to respect a minimum
residence (or dwelling) time between any two consecutive switches. The following result,
proved in Appendix B, extends Theorem 2.1 for sufficiently small delay.

Theorem 3.1. Assume that (A0j+A1j) are stable matrices for all j ∈ p. Thus, there exists a maximum
allowable delay h ∈ R+ := {R � t ≥ 0} such that (3.1) is globally exponentially stable for any delay
h ∈ [0, h) for any switching law σ : R0+ → p ∈ N fulfilling σ(t) = j ∈ p for all t ∈ [tk, tk + h + T)
with T ∈ R+ being a minimum residence time which depends on the set {Ai1, . . . , Aip}; i = 0, 1; with
{tk}k∈Ns

being the sequence of switching instants.

Note that Theorem 3.1 holds also if there are many infinite parameterizations with (A0j +
A1j) being stable matrices for all j ∈ N with a switching law σ(t) = j ∈ N. Theorem 2.2
is now extended to the switched system (3.1) possessing internal delay of arbitrary size. Its
proof is given in Appendix B. It is stated that global exponential stability holds if all the
parameterizations are stable and an appropriate minimum residence time in between any
two consecutive distinct parameterizations is respected. A minimum size of the residence
time required for stability is calculated in the proof.

Theorem 3.2. Assume that A0j are stable matrices for all j ∈ p. Thus, (3.1) is globally exponentially
stable independent of the delay provided that the following hold.

(1) ‖A1j‖ for all j ∈ p are sufficiently small compared to the maximum stability abscissa ofA0j

for all j ∈ p.
(2) The switching law σ : R0+ → p ∈ N which generates the switching instants fulfils σ(t) =

j ∈ p for all t ∈ [tk, tk + h + T) with T ∈ R+ being a minimum residence (or dwelling)
time which depends on the set {Ai1, . . . , Aip}; i = 0, 1, with {tk}k∈Ns

being the switching
instants.

For �2 (spectral)-norms, a related specific testable condition in Theorem 3.2 is
max1≤j≤p (−ρ0j + ‖A1j‖2) < 0 for any real constant ρ0j ∈ R+ satisfying ρ0j ∈ (0, |μ2(A0j)|)
for all j ∈ p, where μ2(A0j) := (1/2)max1≤i≤ξ Reλi(A0j +AT

0j) for all j ∈ p is the measure of the

matrix A0j with respect to the �2-norm, and λi(A0j +AT
0j) (i ∈ ξ := {1, 2, . . . , ξ}, j ∈ p) denote

the distinct eigenvalues of such a matrix.
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Figure 1: Switching rule evolution.

3.1.1. Simulation example 1

Consider the linear switched system (3.1) with h = 0.75 second, and three parameterizations:

A01 =

(
−7 −1

2 −4

)
, A02 =

(
−5.5 1

−2 −8

)
, A03 =

(
−7 1

−1.5 −9

)
, A11 =

(
1 1

−1 2

)
,

A12 =

(
−2 1

−1 1

)
, A13 =

(
−3 1

−1 −2

)
.

(3.2)

According to Theorem 3.2, all the matrices A0j are stable for j = 1, 2, 3, and μ2(A01 + ‖A11‖2 <
−1.61 < 0, μ2(A02) + ‖A12‖2 < −2.8 < 0, and μ2(A03) + ‖A13‖2 < −3.7 < 0. Also, note
that the matrices A11 and A12 are not stable since it is not required in Theorem 3.2. The
initial conditions are ϕ1(t) = 12500, ϕ2(t) = 13500, t ∈ [−0.75, 0]. They are taken of large
amplitudes to visualize the exponential behavior of the solution under eight switches of this
exponentially stable system with high stability degree. The residence time is given by T = 1
second. The simulated results are shown in Figure 2 for the switching rule of Figure 1.

3.2. Arbitrary switching

It is well known for the case of time-delay time-invariant systems that if all the
parameterizations possess a common Lyapunov function, then the switching law can be
arbitrary (i.e., without requiring a minimum residence time in contrast with Theorems 3.1,
3.2) while keeping global asymptotic stability. It has been also proved that the various
parameterizations possess a common Lyapunov function independently of their stability
abscissas if and only if all the matrices of dynamics pair-wise commute [2]. A stronger
sufficient condition for existence of a common Lyapunov function which does not require
pair-wise commutation is that the norm deviations among the various parameterizations be
sufficiently small related to any of the stability abscissas. A generalization for the switched
time-delay system (3.1) under sufficiently small delay is given below. Its proof is provided
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Figure 2: State variables evolution.

in Appendix B under the assumption that a sum of any number of matrices parameterizing
the switched system (3.1) is a stable matrix and pair-wise commutes with its transpose. The
global exponential stability of the switched system (3.1) for an arbitrary switching law is
also guaranteed under the less restrictive assumption that all the above matrices pair-wise
commute while being stable matrices.

Theorem 3.3. The following properties hold.

(1) The switched system (3.1) is globally exponentially stable for any arbitrary switching law
σ : R0+ → p ∈ N, provided that the delay is sufficiently small if A0j + A1j are all stable
matrices such that (A0j +A1j) and (A0j +A1j)

T pair-wise commute for all j ∈ p.
(2) The switched system (3.1) is globally exponentially stable for any arbitrary switching law

σ : R0+ → p ∈ N, provided that the delay is sufficiently small if (A0j +A1j) are all stable
matrices and pair-wise commute for all j ∈ p.

An alternative condition for the existence of common Lyapunov functions follows
by direct calculation for arbitrarily close parameterizations of the switching system. Define
ΔAikj := Aik − Aij (i = 0, 1) for any j ∈ p and for all k(/= j) ∈ p(ΔAijj = 0 (i = 0, 1 for all
j ∈ p)) and let ρj < 0 be any real constant to the right of the stability abscissa of (A0j + A1j)
and close to it. Since (A0j + A1j) is a stable matrix, for any positive definite square real n-
matrix Q, P =

∫∞
0 e

(A0j+A1j )
T τQe(A0j+A1j )τdτ is a positive definite symmetric solution matrix to

the Lyapunov equation (A0j +A1j)
TP + P(A0j +A1j) = −Q for all j ∈ p. For all k(/= j) ∈ p,

(
A0k +A1k

)T
P + P

(
A0k +A1k

)
= −Q +

(
ΔA0k + ΔA1k

)T
P + P

(
ΔA0k + ΔA1k

)
. (3.3)

The right-hand side of the above equation is guaranteed to be negative definite if

λmin(Q) >
Kjλmax(Q)

ρj

∥∥ΔA0k + ΔA1k
∥∥

2 ≥ 2λmax(P)
∥∥ΔA0k + ΔA1k

∥∥
2 (3.4)
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for all k(/= j) ∈ p, with Kj ≥ 1 being such that ‖e(A0j+A1j )t‖2 ≤ Kje
−ρj t for all t ∈ R0+, ‖·‖2

denoting the �2 vector and corresponding (induced) matrix norm, and λmin(M), λmax(M)
denoting the minimum and maximum eigenvalues of the real symmetric matrix M = P,Q.
The last constraint is identical to

λmin(Q) >
Kjλmax(Q)

ρj

∥∥ΔA0k + ΔA1k
∥∥

2 =
Kjλmax(Q)

ρj
λ1/2

max
((
ΔA0k + ΔA1k

)T(ΔA0k + ΔA1k
))

(3.5)

for all k(/= j) ∈ p which guarantees the existence of (at least) a common Lyapunov function
for all the parameterizations of the switched system. More than one common Lyapunov
function may exist if all the parameterizations are close to each other in terms of small
norm deviations. The above constraint implies a physical one on the stability abscissas of
the various parameterizations. Note that the choice Q = In can be made and Kj = 1 in the
better case. Thus, a common Lyapunov function for zero delay exists, even if not all the p
parameterizations pair-wise commute, provided that

ρj > max
i /= k∈p

λ1/2
max

((
ΔA0k + ΔA1k

)T(ΔA0k + ΔA1k
))

∀j ∈ p. (3.6)

Two simple consequences of Theorem 3.3(i) follow as specific results.

Corollary 3.4. The switched system (3.1) is globally exponentially stable for any arbitrary switching
law σ : R0+ → p ∈ N provided that the delay is sufficiently small if (A0j +A1j) are all stable matrices
for all j ∈ p and all the matrices in the set {A0i, A1i; i ∈ p} pair-wise commute.

The above result is direct since the commutation condition implies that of Theorem 3.3.
The subsequent results refer to the feature that any two matrices of product compatible orders
commute if and only if any one of them is a matrix function of the other, [2].

Corollary 3.5. The switched system (3.1) is globally exponentially stable for any arbitrary switching
law σ : R0+ → p ∈ N if and only if A0j + A1j = fji(A0i + A1i) for all j ∈ p, and any given i ∈ p
(i.e., all the matrices are function matrices on any particular one in the set) provided that the delay is
sufficiently small.

Estimations for the maximum sizes of the delay which guarantee global exponential
stability are given in the proofs of the results. It has been proved formerly that two matrices
of the same order commute if and only if any of them is a matrix function of the other
[2, 24]. For any arbitrary switching law, the switching instants may be arbitrarily close
and the switching from each current parameterization can occur to any other in the set
of p parameterizations. Subsequently, sufficient-type conditions for exponential stability
independent of the delay for arbitrary switching are discussed by using Krasovsky Lyapunov
functionals [1] for stability testing. Denote that xt = x(t+θ) for all θ ∈ [−h, 0]. The subsequent
notations M > 0, M ≥ 0, M < 0, M ≤ 0 mean that the real square matrix M is positive
definite, positive semidefinite, negative definite, and negative semidefinite, respectively.
Consider the Krasovsky-Lyapunov functional candidate defined with matrices P = PT > 0,
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S = ST > 0 [1]:

V
(
t, xt

)
= xT (t)Px(t) +

∫ t

t−h
xT (τ)Sx(τ)dτ. (3.7)

Theorem 3.6. The following properties hold.
(1) The switched system (3.1) is globally asymptotically stable independent of the delay size

for any switching law σ : R+
0 → p and each admissible function of initial conditions if

Qi :=

⎡

⎣
AT

0iP + PA0i + S PA1i

AT
1iP −S

⎤

⎦ < 0 ∀i ∈ p, (3.8)

for some Rn×n � P = PT > 0, Rn×n � S = ST > 0. For such a system, the functional (3.7) is a common
Krasovsky-Lyapunov functional parameterization for its p distinct parameterizations.

(2) Consider the general polytopic switched system

ẋ(t) = A0σ(t)(t)x(t) +
q∑

j=1

ωjσ(t)Ajσ(t)(t)x
(
t − hj

)
, (3.9)

where x(t) ∈ Rn is the state vector, Aiσ : R0+ → {Ai1, . . . , Aij} ⊂ M(Rn×n); i ∈ q ∪ {0}; j ∈ p are
matrix functions defining the switched dynamics and the hj (j ∈ q) are the q delays (being eventually
distinct) for each of the p distinct parameterizations, and ωji are either zero or unity scalars while ωji

is unity for at least one i ∈ q for each j ∈ p. Thus, if

Qi :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AT
0iP + PA0i +

q∑

i=1

Si ω1iPA1i · · · ωqiPAqi

ω1iA
T
1iP −S1 0 · · · 0

... 0
...

. . .
...

ωqiA
T
qiP 0 · · · −Sq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 ∀i ∈ p (3.10)

for some Rn×n � P = PT > 0, Rn×n � Si = STi > 0 (for all i ∈ q), then the switched system (3.9) is
globally asymptotically stable independent of the delays for any switching law σ : R0+ → p and each
admissible function of initial conditions. Also,

V
(
t, xt

)
= xT (t)Px(t) +

q∑

i=1

∫ t

t−hi
xT (τ)Six(τ)dτ, (3.11)

with xt redefined by x(t) = x(t+θ) for all θ ∈ [−ĥ, 0] and ĥ := max1≤i≤q(hi) is a common Krasovsky-
Lyapunov functional parameterization for its p distinct parameterizations.



10 Mathematical Problems in Engineering

The proof of Theorem 3.6(1) follows straightforwardly by direct calculation noting
since the time-derivative of (3.7) along any trajectory solution of (3.1) is V̇ (t) = x(t)Qσ(t)x(t) ≤
−η‖x(t)‖2

2 < 0 for some η ∈ R+, provided that x(t) := (xT (t), xT (t − h))T /= 0, so that it is
a negative quadratic form in R2n since Qi < 0 for all i ∈ p. Theorem 3.6(2) follows since
V̇ (t) = x(t)Qσ(t)x(t) ≤ −η‖x(t)‖2

2 < 0 if x(t) := (xT (t), xT (t − h1), . . . , xT (t − hp))T /= 0 for some
η ∈ R+, so that it is a negative quadratic form in Rqn since Qi < 0 for all i ∈ p from (3.10).
Thus, V (t, xt) (3.11) is a Krasovsky-Lyapunov functional for the switched system (3.9).

Remark 3.7. Theorem 3.6(2) applies when each of the p-switched parameterizations has a
unique delay and all of them are distinct, that is, q = p, ωii = 1, ωij = 0, hi /=hj for all
j, i(/= j) ∈ q. This situation means that switching implies modifications of the delays and
that of the matrices of dynamics. Another particular case of Theorem 3.6(ii) is that dealt with
in Theorem 3.6(1), that is, there is a single delay h for all the parameterizations, that is, q = p,
ωii = 1, ωij = 0, h = hi, S = Si, for all j, i(/= j) ∈ p.

Remark 3.8. Note that Theorem 3.6 does not involve necessary stability conditions. The reason
is that in the delay-free case of linear and time-invariant systems, the solvability Lyapunov
matrix equation, and then the existence of its associate Lyapunov function is a necessary
and sufficient condition for global asymptotic stability (which also implies and is implied
for exponential stability) but the property does not extend to functional equations and
Krasovsky-Lyapunov functionals like (3.7) or (3.11).

Theorem 3.6 extends for stability dependent on the delay size as follows.

Theorem 3.9. The following properties hold.
(1) The switched system (3.1) is globally asymptotically stable for any delay h ∈ [0, h] and for

any switching law σ : R0+ → p and each admissible function of initial conditions if

Q̂i :=

⎡

⎣

(
AT

0i +A
T
1i

)
P + P

(
A0i +A1i

)
+ h

(
S0 + S1

)
hPA1iMi

hAT
1iPMi −hS

⎤

⎦ < 0 ∀i ∈ p, (3.12)

Mi :=
[
A0i, . . . , A1i

]
∈ Rn×2n ∀i ∈ p,

S := diag
(
S0, S1

)
∈ R2n×2n

(3.13)

for some Rn×n � P = PT > 0, Rn×n � Sj = STj > 0 (j = 1, 2). The real functional,

V̂
(
t, xt

)
= xT (t)Px(t) +

2∑

j=1

∫−(j−1)h

−jh

∫ t

t+θ
xT (τ)Sjx(τ)dτ dθ, (3.14)

is a common Krasovsky-Lyapunov functional for its p distinct parameterizations.
(2) The switched system (3.9) is globally asymptotically stable independent of the delays for

any switching law σ : R0+ → p and all delays hi ∈ 
0, ĥi�; (for all i ∈ q)if
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Q̂i :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
q∑

j=0

AT
ji

)
P + P

(
q∑

j=0

Aji

)
+

q∑

i=1

q∑

j=0

ĥiSij ω1iĥ1PA1iM1 · · · ωqiĥqPAqiMq

ω1iĥ1M
T
1A

T
1iP −R1 0 · · · 0

... 0
...

. . .
...

ωqiĥqM
T
qA

T
qiP 0 · · · −Rq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 ∀i ∈ p,
(3.15)

Mi :=
[
A0i, . . . , Aqi

]
∈ Rn×(q+1)n,

Ri := diag
(
Si0, Si1, . . . , Siq

)
∈ R(q+1)n×(q+1)n ∀i ∈ p,

(3.16)

for some Rn×n � P = PT > 0, Rn×n � Sij = STij > 0 (for all i ∈ q, for all j ∈ q ∪ {0}). The real
functional,

V̂
(
t, xt

)
= xT (t)Px(t) +

q∑

i=1

q∑

j=0

∫−hj

−hi−hj

∫ t

t+θ
xT (τ)Sijx(τ)dτ dθ, (3.17)

with Rn×n � P = PT > 0, Rn×n � Sij = STij > 0 (for all i ∈ p, for all j ∈ q ∪ {0}) is a common
Krasovsky-Lyapunov functional for its p distinct parameterizations with xt being redefined by x(t) =
x(t + θ) for all θ ∈ [−ĥ, 0] and ĥ := max1≤i≤q (ĥi).

The proof is direct since it is very close to that of Theorem 3.6. ˙̂V (t) = x(t)Q̂σ(t)x(t) ≤

−η̂‖x(t)‖2
2 < 0 if x(t) := (xT (t), xT (t − h1), . . . , xT (t − hq))T /= 0 for Theorem 3.9(1) and

˙̂
V (t) =

x(t)Q̂σ(t)x(t) ≤ −η̂‖x(t)‖2
2 < 0 for any nonzero x(t) for Theorem 3.9(2).

Remark 3.10. Note that if the conditions (3.8), (3.10), (3.12), and (3.15) of Theorems 3.6(1), (2)

and 3.9(1), (2) are relaxed to Qi < 0, Qi < 0, Q̂i < 0, and Q̂i < 0 for all i ∈ p, respectively, then
the corresponding switched system (3.1) or (3.9) is guaranteed to be globally Lyapunov’s
stable.

A generalization of interest of the polytopic switched system (3.9) is

ẋ(t) =
ϑ∑

i=1

λi(t)

(
A0σ(t)(t)x(t) +

q∑

j=1

ωjσ(t)Ajσ(t)(t)x
(
t − hj

)
)

(3.18)

with σ : R0+ → p, ωij being either zero or unity scalars and at least one ωji = 1 for j ∈ q for
each i ∈ p and λi : R0+ → [0, 1] subject to

∑ϑ
i=1λi(t) = 1. The results of Theorems 3.6(1), (2)

and 3.9(1), (2) correspond to switches through time among the various parameterizations of
(3.18) at any of the ϑ vertices of the polytope of parameters all of them being stable [3, 4].
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Figure 3: Switching law.

The switched system (3.18) is more general since any parameterization built with the convex
hull of the sets of matrices Aji for all (j, i) ∈ (q ∪ {0}) × p is admissible. The following result
extends directly Theorems 3.6(2) and 3.9(2) to the switched polytopic system (3.18).

Theorem 3.11. The following properties hold.

(1) Assume that Qi < 0 (3.10) for all i ∈ p. Then, the switched system (3.18) is globally
asymptotically stable independent of the delays (i.e., for all hi ∈ [0,∞); for all i ∈ p)
irrespective of the switching law σ : R0+ → p. The real functional (3.11) is a Krasovsky-
Lyapunov functional for the switched polytopic system (3.18).

(2) If Q̂i < 0, (3.15) for all i ∈ p, then the switched system (3.18) is globally asymptotically
stable for any delays hi ∈ 
0, ĥi� for all i ∈ p, irrespective of the switching law σ : R0+ → p.
The real functional (3.17) is a Krasovsky-Lyapunov functional for the switched polytopic
system (3.18).

The proof of Theorem 3.11 is direct since all the real functions λi : R0+ →
[0, 1] are nonnegative and they cannot be simultaneously zero at any time instant. This

leads to functional time derivatives V̇ (t) =
∑ϑ

i=1λi(t)x(t)Qσ(t)x(t) < 0 and
˙̂
V (t) =

∑ϑ
i=1λi(t)x(t)Q̂σ(t)x(t) < 0 for all nonzero x(t) along any nonzero state trajectory solution,

respectively. The subsequent direct refusal of the conditions of Theorem 3.11, supported by
“ad-hoc” Lyapunov’s instability theorems, leads to situations where asymptotic stability of
the switched system is impossible.

Theorem 3.12. The following properties hold.
(i) Assume that Qi ≥ 0 (3.8) for all i ∈ p. Then, the switched system (3.1) is not globally

asymptotically stable independent of the delay size for any switching law σ : R0+ → p but it can be
still globally Lyapunov’s stable for some switching law σ : R0+ → p. Those properties also hold for
any particular delay. If Qi > 0 for all i ∈ p, then the switched system (3.1) is instable for any delay
and any given switching law σ : R0+ → p for any given admissible function of initial conditions.

(ii) Assume that Qi ≥ 0, (3.10) for all i ∈ p. Then, neither the switched system (3.9)
nor any parameterization of the polytopic switched system (3.18) are globally asymptotically stable
independent of the delay size for any switching law σ : R0+ → p but it can be still globally Lyapunov’s
stable for some switching law σ : R0+ → p. Those properties also hold for any particular delay. If
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Figure 4: State-space variables evolution.

Qi > 0 for all i ∈ p, then the switched systems (3.9) and (3.18) are both instable for any delay and any
given switching law σ : R0+ → p for any given admissible function of initial conditions.

(iii) Assume that Qi < 0 for at least some i ∈ p. Then, there are infinitely many switching
laws σ : R0+ → p for which the switched system (3.1) is globally asymptotically stable and infinitely
many for which it is globally Lyapunov’s stable. The same property holds for the switched system (3.9)
and infinitely many (but not all) parameterizations of the polytopic switched system (3.18) provided
that Qi < 0 for at least some i ∈ p.

3.2.1. Simulation example 2

Consider the linear switched system (3.1) with h = 0.75 seconds and parameterizations

A01 =

(
−7 −1

2 −4

)
, A02 =

(
−15 −1

3 −2

)
, A03 =

(
−5 2

1 −0.5

)
,

A11 =

(
1 1

−1 2

)
, A12 =

(
−12 1

−3.5 1

)
, A13 =

(
−4 −2

−1 −0.5

)
.

(3.19)

According to Theorem 3.3, all the matrices A0j + A1j are stable and pair-wise commute for
j = 1, 2, 3. The initial conditions are given by ϕ1(t) = 250, ϕ2(t) = −350, t ∈ [−0.75, 0]. The
arbitrary switching is defined by the switching law of Figure 3 where the residence time
between consecutive switching time instants ranges from a small to a larger one. Figure 4
shows that the state variables tend asymptotically to zero.

3.3. A more general time-varying switched system

In the following, global asymptotic stability independent of the delay is stated for the linear
time-varying system

ẋ(t) = A0(t)x(t) +A1(t)x(t − h), (3.20)
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which is a generalization of (3.1) since, in general, parametrical switches are admitted at
sufficiently large separated time instants. It is assumed that the A(t) matrix is a stable matrix
for all time which is time differentiable almost everywhere, namely, except at the time instants
where its parameters have bounded discontinuities at some of its entries. Those time instants
may be considered as switching instants for the system parameterization. The proof is given
in Appendix B.

Theorem 3.13. Consider (3.1) under the following assumptions.

(1) Each value A0(t) of the matrix function A0 : R0+ → Rn×n is a stable matrix satisfying
Re (λi(A0(t))) ≤ −ρ0 < 0 for all t ∈ R0+.

(2) A0(t), A1(t) has uniformly bounded entries for all time.

(3) Ȧ0(t) exists and it is bounded almost everywhere in R0+ with sufficiently small upper-
bound γdA ≥ ‖Ȧ0(t)‖2, where Ȧ0(t) in R0+ exists.

(4) There exist positive definite real n-matrix functions P(t) and S(t) satisfying

⎡
⎢⎢⎣
S(t) +

(
K2

2ρ2
γdA − 1

)
In P(t)A1(t)

AT
1 (t)P(t) −S(t − h)

⎤
⎥⎥⎦ < 0 ∀t ∈ R0+. (3.21)

(5) The time interval between any two consecutive time instants at which Ȧ0(t) does not exist
is sufficiently large according to the amplitude-bound KA (in terms of �2-norm) of the
corresponding bounded discontinuities of A0(t), the absolute value of the stability abscissa
ρ, γdA, and P(t) and S(t).

Then, (3.20) is globally asymptotically stable independent of the delay.

However, (3.20) is a special case of switched system, the switches being of arbitrary
but sufficiently small size at sufficiently large separated time instants. The dynamics are time-
varying and one of the matrices is almost everywhere time differentiable with bounded norm
time derivative. An alternative characterization which does not require time differentiability
of the matrix entries can be developed directly for the case that the matrix function A(t),
which is not required to be either continuous or time differentiable, is locally deviated in
norm for all time with respect to a comparison stability constant matrix with sufficiently
large absolute stability abscissa with respect to the constant matrix. Stability results based
on Gronwall’s lemma are direct even if the matrix entries have sufficiently small bounded
jumps, related to the absolute stability abscissa of the constant comparison matrix, through
time.

Remark 3.14. In the light of Theorem 3.13, Theorems 3.6–3.11 can be extended for the case of
time-varying systems possessing also eventual jumps in the entries of the matrix functions
defining their dynamics. The extensions apply to more general systems under the structures
of (3.1), (3.9), and (3.18) but where the parameters are uniformly bounded for all time
and almost everywhere continuous and almost everywhere time-differentiable functions. A
common property is that the stability is not independent of the switching law consisting of
the rule for selecting the time instants where parametrical jumps appear. The conditions are a
“mutatis-mutandis” modification of those of Theorem 3.13 by using the extended quadratic
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form of the time derivatives of the corresponding borrowed Krasovsky-Lyapunov candidates
and extended directly from those in Theorems 3.6–3.11. Therefore, such conditions are not
made explicit. In particular, note that the following hold.

(a) Theorem 3.13 is an extension of Theorem 3.6(1) if (3.1) is generalized to (3.20).

(b) In the same way, Theorem 3.6(2) may be generalized for asymptotic stability
independent of the delay if the polytopic system (3.9) is generalized to one
possessing a similar structure based on the linear time-varying system (3.20).

(c) Theorem 3.9 is extendable with the ideas of Theorem 3.13 for global asymptotic
stability dependent on the delay size. Also, Theorem 3.9(1) is extendable for the
extended system (3.20) from (3.1) for stability dependent on the delay provided
that (A0(t) + A1(t)) is a bounded stable matrix with a prescribed stability abscissa
which is almost everywhere time differentiable with bounded derivative and
which possess jumps of sufficiently small amplitudes at sufficiently separated
time instants according to their sizes and the remaining system parameters.
Theorem 3.9(2) may be extended for the generalization of (3.9) to (3.20).

(d) Theorem 3.11(1) is extendable for stability independent of the delay directly to
the generalization of the polytopic system (3.18) to a similar polytopic form with
A0(t) being a matrix function under Theorem 3.13. However, Theorem 3.11(2) is
extendable for stability dependent on the delay size to such an extended polytopic
system provided that (A0(t) + A1(t)) is bounded and stable with prescribed
abscissa and almost every where time-differentiable entries with eventual jumps
at sufficiently large time-intervals.

Remark 3.15. Note that the various systems dealt with through this manuscript might be
reformulated to consider asynchronous switching laws in the sense that the matrices associated
with each delay may belong to its own set of matrices each governed by an independent
switching law. Consider, for instance, (3.1) extended to the more general one:

ẋ(t) = A0σ0(t)(t)x(t) +A1σ1(t)(t)x(t − h), (3.22)

where σj : R0+ → p select for all time matrices Ajσj (t) ∈ {Aj1, . . . , Ajp} for all j ∈ {0, 1}, for all
t ∈ R0+. Also, (3.9) extended to the more general one:

ẋ(t) = A0σ0(t)(t)x(t) +
q∑

j=1

ωjσj (t)Ajσj (t)(t)x
(
t − hj

)
, (3.23)

where σj : R0+ → p select for all time matrices Ajσj (t) ∈ {Aj1, . . . , Ajp} for all j ∈ q∪{0}, for all
t ∈ R0+. A close extension is valid for the polytopic switched system (3.20). The various given
stability results either for arbitrary switching laws or those requiring a minimum residence
time extend directly to these more general systems if one considers the combined natural
synchronous switching law σ(t) defined with the whole set of asynchronous ones by a (q +
1)-tuple of positive integers σ(t) := (σ0(t), σ0(t), . . . , σq(t)) which is a vector mapping on a
Cartesian product

σ : R0+ −→

q
︸︷︷︸

p × · · · × p . (3.24)
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Figure 5: State-variables evolution.

The above to a synchronous switching law has at most pq+1 distinct parameterizations of the
switched system formed with all the combinations of matrices associated with each particular
delay with q = 1 for the switched system (3.1). If the set of matrices for some particular delay
is less than p, the total number of distinct parameterizations decreases accordingly.

3.3.1. Simulation example 3

Consider now the time-varying system given by (3.20) with h = 0.75 sec., ϕ1(t) = 25, ϕ2(t) =

−35, t ∈ [−0.75, 0], A0(t) =
( −1 a0(t)

0 −1

)
, and A1(t) =

( −1 1/(2+t)

0 −2

)
with

a0(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
1 + tn

, n − 1 < t ≤ n; n = 1, 2, . . . , 6,

1
1 + t7

, t > 6,
(3.25)

and a0(0) = 1. Note that a0(t) is a discontinuous function implying that A0(t) has impulsive
behavior at integer times. The solution of (3.20) with the above parameterization is depicted
in Figure 5.

4. Concluding remarks

This paper has discussed the global exponential stability and the global asymptotic
stability of standard classes of switched linear system subject to internal point time delays.
The considered classes of systems have been those involving a set of time-invariant
parameterizations, those having a polytopic structure, and those being time varying for
all time with potential parametrical switches at certain times. The properties of global
exponential and global asymptotic stability dependent on and independent of the delay
size have been investigated for arbitrary switching laws and for switching laws subject to
minimum residence time among any two consecutive switches. As in the delay-free case,
stability under arbitrary switching requires commutation conditions on the system matrices
of the various parameterizations. Otherwise, minimum residence times which depend on the
parameterizations are required to keep the stability of the switched system.
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Appendices

A. Proofs of the results of Section 2

A.1. Proof of Theorem 2.1

It holds that (2.1) may be equivalently rewritten as

ẋ(t) =
(
A0 +A1

)
x(t) − hA1ẋ(t) +

(
xT (t), xT (t − h)

)T
o(h), (A.1)

where the standard Landau’s “small o” and “ bigO” notations are used; that is, f(h) = o(h)⇔
f(h) → 0 as h → 0 provided that f(h) = O(h) ⇔ |f(h)| ≤ χ1h + χ2 with χi ∈ R0+. It is
obvious that for all h ∈ [0, h) and some sufficiently small h ∈ R+ := R0+ \ {0}, (In + hA1)

−1 =
In − hA1 + o(h) exists where In is the nth identity matrix. Thus,

ẋ(t) =
(
In + hA1

)−1(
A0 +A1

)
x(t) + x(t)o(h) + x(t − h)o(h)

=
(
A0 +A1

)
x(t) − hA1

(
A0 +A1

)
x(t) + x(t)o(h) + x(t − h)o(h) ∀h ∈

[
0, h

) (A.2)

from (A.1). The unique solution of (A.2) over R0+ by any piece-wise absolutely continuous
function ϕ : [−h, 0] → Rn with ϕ(0) = x(0) = x0, which is the same as that of (2.1) for all
h ∈ [0, h), some sufficiently small h ∈ R+, is

x(t) = e(A0+A1)tx0 +
∫ t

0
e(A0+A1)(t−τ)[x(τ)o(h) + x(τ − h)o(h) − hA1

(
A0 +A1

)
x(τ)

]
dτ, (A.3)

so that

∥∥x
(
t′
)∥∥ = Sup

t−h≤τ≤t

∥∥x(τ)
∥∥ ≤

∥∥e(A0+A1)t′x0
∥∥

+
∥∥∥∥

∫h

0
e(A0+A1)(t′−τ)

[(
|o(h)| + h

∥∥A1
(
A0 +A1

)∥∥) Sup
τ−h≤τ ′≤τ

∥∥x
(
τ ′
)∥∥

]
dτ

∥∥∥∥

+
∥∥∥∥

∫ t′

h

e(A0+A1)(t−τ)
[(
|o(h)| + h

∥∥A1
(
A0 +A1

)∥∥) Sup
τ−h≤τ ′≤τ

∥∥x
(
τ ′
)∥∥

]
dτ

∥∥∥∥,

(A.4)

where

t′ = t′(t) := max
(
τ ∈ [t − h, t] :

∥∥x(t′)
∥∥ = Sup

t−h≤τ≤t

∥∥x(τ)
∥∥ ∧

∥∥x(τ)
∥∥ ≤

∥∥x(t′)
∥∥

∀τ(/= t′) ∈ [t − h, t]
) (A.5)
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is the largest time instant of maximum state norm within [t − h, t]. Since (A0 + A1) is a
stable matrix, there exist real constants K ≥ 1 (being norm-dependent) and ρ ∈ R+ such
that ‖e(A0+A1)(t−τ)‖ ≤ Ke−ρ(t−τ). Then, one gets from (A.4) via Gronwall’s lemma [27]

Sup
t−h≤τ≤t

∥∥x(τ)
∥∥ ≤ K

(
1 +

(∣∣o(h)
∣∣ + h

∥∥A1
(
A0 +A1

)∥∥)e
ρh − 1
ρ

)
Sup
−h≤τ≤0

∥∥ϕ(τ)
∥∥

× e−(ρ−K(|o(h)|+h‖A1(A0+A1)‖))t′ .

(A.6)

It follows from (A.6) that there exists a sufficiently small h ∈ R+ fulfilling h < ρ/‖A1(A0+A1)‖
such that∞ > Supt−h≤τ≤t ‖x(τ)‖ → 0 exponentially as t → ∞ for all h ∈ [0, h) since t′(t) → ∞
as t → ∞. Thus, ‖x‖ ∈ L∞ and ‖x(t)‖ → 0 exponentially as t → ∞.

A.2. Proof of Theorem 2.2

The solution of (2.1) is

x(t) = eA0t

(
x0 +

∫h

0
e−A0τA1ϕ(τ − h)dτ +

∫ t

h

e−A0τA1x(τ − h)dτ
)
. (A.7)

Since A0 is a stable matrix, there exist real constants K0 ≥ 1 (being norm-dependent) and
ρ0 ∈ R+ such that ‖eA0(t−τ)‖ ≤ Ke−ρ0(t−τ). Then, if

t′ = t′(t) := max
(
τ ∈ [t − h, t] :

∥∥x
(
t′
)∥∥ = Sup

t−h≤τ≤t

∥∥x(τ)
∥∥ ∧

∥∥x(τ)
∥∥

≤
∥∥x

(
t′
)∥∥ ∀τ

(
/= t′

)
∈ [t − h, t]

)
,

(A.8)

then one gets from (A.7) with the application of Gronwall’s lemma for v(t) := eρ0t‖x(t)‖:

∥∥x(t)
∥∥ ≤ Sup

t−h≤τ≤t

∥∥x(τ)
∥∥

≤ K0

(
1 +

eρ0h − 1
ρ0

∥∥A1
∥∥
)(

sup
−h≤τ≤0

∥∥ϕ(τ)
∥∥
)
e−(ρ0−K0‖A1‖)t′ .

(A.9)

If ρ0 > K0‖A1‖, then∞ > Supt−h≤τ≤t ‖x(τ)‖ → 0 exponentially as t → ∞ for all h ∈ R0+ since
t′(t) → ∞ as t → ∞. Thus, ‖x‖ ∈ L∞ and ‖x(t)‖ → 0 exponentially as t → ∞. It turns out
that for t ≥ t0 := lnK0/(ρ0−ρ′0)+h and any real constant ρ′0 ∈ (0, ρ0) or, equivalently, for t ≥ t0,
and any (dependent on t0) real constant ρ′0 ∈ (0, ρ0 − lnK0/(t0 −h)), for any given sufficiently
large finite t0 > h, it follows from (A.9) that

∥∥x(t)
∥∥ ≤ Sup

t−h≤τ≤t

∥∥x(τ)
∥∥ ≤

(
1 +

eρ0h − 1
ρ0

∥∥A1
∥∥
)(

Sup
−h≤τ≤0

∥∥ϕ(τ)
∥∥
)

× e−(ρ′0−‖A1‖)t′ ∀t ≥ t′ + h ≥ t0 :=
lnK0

ρ0 − ρ′0
+ h,

(A.10)
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since K0e
−ρ0t

′
< e−ρ

′
0t
′
. If �2-(spectral) norms ‖·‖2 are used for vectors and matrices, then the

following choices of parameters are made in (A.10):

0 < ρ′0 < ρ0 ≤
∣∣μ2

(
A0

)∣∣ =
1
2

max
1≤i≤ξ

∣∣Reλi
(
A0 +AT

0

)∣∣ =
1
2

max
1≤i≤ξ

∣∣λi
(
A0 +AT

0

)∣∣,

μ2
(
eA0t

)
≤
∥∥eA0t

∥∥
2 := max

1≤i≤ξ
λ1/2
i

(
eA

T
0 teA0t

)
= σ

(
eA0t

)
≤ e−|μ2(A0)t| ≤ e−ρ′0t ∀t ≥ lnK0

ρ0 − ρ′0
+ h,

∥∥A1
∥∥

2 := max
1≤i≤ξ

λ1/2
i

(
AT

1A1
)
= σ

(
A1

)
,

(A.11)

where μ2(M) := limδ→ 0+ ((‖In + δM‖2 − ‖In‖2)/δ), with ‖In‖2 = 1, denotes the matrix
measure with respect to the �2-norm of the square matrix M; and λi(M) (i ∈ ξ :=
{1, 2, . . . , ξ}) and σ(M) denote, respectively, the distinct eigenvalues and the maximum
singular value of such a matrix. Note that μ2(A0) := (1/2)max1≤i≤ξ Reλi(A0 + AT

0 ) < 0
since A0 is a stable matrix. The inequality ρ0 < |μ2(A0)| is strict if the maximum eigenvalue
of A0 + AT

0 is multiple. The matrix measure with respect to the �2-norm of the matrix
M is identical for all similar matrices to Mwhich follows directly from the definition of
such a matrix measure. Since the stability properties of linear time-invariant systems are
independent of the chosen state-space representation, it follows directly from (A.10) that (2.1)
is globally exponentially stable independent of the delay if ‖A1‖2 < ρ0 for some real constant
0 < ρ0 < −μ2(A0).

A.3. Proof of Theorem 2.3

Note that μ2(A0) + ‖A1‖2 < 0 ⇒ μ2(A0) < 0. From the definition of the matrix measure with
respect to the �2-norm, all the eigenvalues ofA0+AT

0 and also those ofA0 are in Re s < 0 so that
A0 is a stable matrix. Since A0 is a stable matrix, Theorem 2.2 applies so that (2.1) is globally
exponentially stable independent of the delay since μ2(A0) + ‖A1‖2 < 0. Since the system is
globally exponentially stable independent of the delay, it is globally exponentially stable for
zero delay so that (A0 + A1) is a stable matrix. The first part of the result has been proved.
The second part is proved by finding by construction a system which is not exponentially
stable of delayed dynamics being of identical �2-norm to that of A1 as follows. Construct
A∗1 = −kA0 with some k ∈ R+ to be specified later so that ‖A1‖2 = ‖A∗1‖2 = |k|‖A0‖2. Since A0

is a stable matrix, A∗1 is, by construction, an antistable matrix (i.e., with all its eigenvalues
in Re s > 0). From the definitions of spectral norms and associate matrix measures and
their properties, one has μ2(A∗1) = ‖A∗1‖2 = μ2(−kA0) = −kμ2(A0) = k|μ2(A0)| > 0, and
then

μ2
(
(1 − k)A0

)
= (1 − k)μ2

(
A0

)

= μ2
(
A0

)
− kμ2

(
A0

)

= μ2
(
A0

)
+ μ2

(
A∗1

)

= (k − 1)
∣∣μ2(A0)

∣∣

(A.12)
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so that for k ≥ 1, μ2(A0 +A∗1) ≥ 0 since

0 ≤ μ2
(
A0

)
+
∥∥A∗1

∥∥
2

= μ2
(
A0

)
+
∥∥A1

∥∥
2

= μ2
(
A0

)
+ μ2

(
A∗1

)

= μ2
(
A0 +A∗1

)

= (k − 1)
∣∣μ2

(
A0

)∣∣.

(A.13)

As a result, (A0 + A∗1) is not a stable matrix and the system ẋ(t) = A0x(t) + A∗1x(t − h) is not
globally exponentially stable independent of the delay size while being either critically stable
or unstable for zero delay.

B. Proofs related to Section 3

B.1. Proof of Theorem 3.1

Note that ‖e(A0i+A1i)(t−τ)‖ ≤ Kie
−ρi(t−τ) ≤ Ke−ρm(t−τ) for all (t, τ) ∈ R0+ × R0+ for pairs (Ki, ρi) ∈

R+ × R+ since the matrices (A0i + A1i) are all stable matrices for all i ∈ p; with K ≥ max(Ki :
i ∈ p) and 0 < ρm ≤ min(ρi : i ∈ p). After defining ρM ∈ R+, so that ρm ≤ min(ρi : i ∈ p) ≤
max(ρi : i ∈ p) ≤ ρM, (A.6) in the proof of Theorem 2.1 is now replaced on the interval [ti, ti+1)
between two consecutive switching instants with

Sup
ti+1−h≤τ≤ti+1

∥∥x(τ)
∥∥ ≤ K

(
1 +

(∣∣o(h)
∣∣ + h

∥∥A1σ(ti)
(
A0σ(ti) +A1σ(ti)

)∥∥)
eρMh − 1
ρm

)
Sup

ti−h≤τ≤ti

∥∥x(τ)
∥∥

× e−(ρm−K(|o(h)|+h‖A1σ(ti)(A0σ(ti)+A1σ(ti))‖))(ti+1−ti−h)

≤ δ Sup
ti−h≤τ≤ti

∥∥x(τ)
∥∥ < Sup

ti−h≤τ≤ti

∥∥x(τ)
∥∥

(B.1)

with R+ � δ ∈ (0, 1) if ti+1 ≥ ti + T − h and T ∈ R+ being a sufficiently large minimum
residence time provided that the delay h ∈ [0, h) for sufficiently small h ∈ R+. Assume
that the switching law satisfies σ(t) = j ∈ p for all t ∈ [tk, tk+1) ⊃ [tk, tk + T), for all
k ∈ Ns and that (B.1) holds for any k ∈ Nαs ⊂ Ns with Nαs being a proper subset of Ns

of finite cardinal α ∈ N. Assume that Suptj−h≤τ≤tj ‖x(τ)‖ ≤ δ
j Suptj−1−h≤τ≤tj−1

‖x(τ)‖ for all j ∈ α
adopting the convention 0 = t0 /∈Ns. From (B.1), taking initial conditions at tj and final ones
at tj+1, it follows that Suptj+1−h≤τ≤tj+1

‖x(τ)‖ ≤ δj Suptj−h≤τ≤tj ‖x(τ)‖ < ∞ for all j ∈ α since
the minimum residence time in between consecutive switches is respected for all switches.
Thus, by complete induction Suptj+1−h≤τ≤tj+1

‖x(τ)‖ → 0 is exponentially fast and all the
sequence is uniformly bounded provided that Ns has infinite cardinal. Otherwise, t′ and t
are kept without modification from (A.6) for t ≥ tns + h with initial conditions at finite tns
if card (Ns) = ns < ∞. Thus, the proof still follows from (A.9) with Suptj−h≤τ≤tj ‖x(τ)‖ ≤
δj Suptj−1−h≤τ≤tj−1

‖x(τ)‖ < ∞ for all j ∈ ns, and limN�i→∞ Suptns+iT−h≤τ≤tns+iT ‖x(τ)‖ ≤
limN�i→∞ δ

ns+i Suptns+(i−1)T−h≤τ≤tns+(i−1)T ‖x(τ)‖ = 0.
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B.2. Proof of Theorem 3.2

Note that ‖eA0i(t−τ)‖ ≤ K0ie
−ρ0i(t−τ) ≤ K0e

−ρ0m(t−τ) for all (t, τ) ∈ R0+ × R0+, for pairs (K0i, ρ0i) ∈
R+ × R+, since the matrices A0i are all stable matrices for all i ∈ p; with K0 ≥ max(K0i : i ∈ p)
and 0 < ρ0m ≤ min(ρ0i : i ∈ p). After defining ρ0M ∈ R+, so that ρ0m ≤ min(ρ0i : i ∈
p) ≤ max(ρ0i : i ∈ p) ≤ ρ0M, (A.9) in the proof of Theorem 2.2 is now modified on the time
interval [ti, ti+1) in between two consecutive switching instants ti, ti+1, as follows after using
Gronwall’s lemma for the real function v(t) := eρ0t‖x(t)‖:

Supti+1−h≤τ≤ti+1

∥∥x(τ)
∥∥

supti−h≤τ≤ti
∥∥x(τ)

∥∥ ≤ K0

(
1 +

eρ0mh − 1
ρ0M

max
1≤i≤p

∥∥A1i
∥∥
)
e−(ρ0m−K0 max1≤i≤p ‖A1i‖)T ≤ δ < 1 (B.2)

if ti+1 ≥ ti + T − h and T ∈ R+ being a sufficiently large minimum residence time satisfying:

T =
lnK0 + ln

(
1 +

((
eρ0mh − 1

)
/ρ0M

)
max1≤i≤p

∥∥A1i
∥∥) + | ln δ|

ρ0m −K0 max1≤i≤p
∥∥A1i

∥∥ , (B.3)

and being identical for any switching instant provided that max1≤i≤p ‖A1i‖ < ρ0m/K0 for any
prefixed R+ � δ ∈ (0, 1). An alternative weaker condition than (B.2) is to switch with ti+1 ≥
ti + Tσ(ti) + h subject to a switching-dependent minimum residence time:

Tσ(ti) =
lnK0i + ln

(
1 +

((
eρ0ih − 1

)
/ρ0i

)∥∥A1i
∥∥) + | ln δ|

ρ0i −K0i
∥∥A1i

∥∥ , (B.4)

provided that ‖A1i‖ < ρ0i/K0i for any prefixed R+ � δ ∈ (0, 1) and any i ∈ p provided that
σ(ti) = i ∈ p. Both constraints lead to limN�i→∞ (Supti+1−h≤τ≤ti+1

‖x(τ)‖/supti−h≤τ≤ti ‖x(τ)‖) ≤
limN�i→∞ δ

i = 0 if switching never stops. Under a maximum finite switching instant tns and
σ(tns) = i ∈ p, then

∞ >
Supt−h≤τ≤t

∥∥x(τ)
∥∥

suptns−h≤τ≤tns
∥∥x(τ)

∥∥ ≤ K0i

(
1 +

eρ0ih − 1
ρ0i

∥∥A1i
∥∥
)
e−(ρ0i−K0i‖A1i‖)(ti−tns−h) −→ 0 (B.5)

as t → ∞with exponential convergence rate. It switching never stops, then

∞ >
Supt−h≤τ≤t

∥∥x(τ)
∥∥

sup−h≤τ≤0

∥∥x(τ)
∥∥ −→ 0 =⇒ lim

R�t→∞
Sup
t−h≤τ≤t

∥∥x(τ)
∥∥ = 0 (B.6)

with exponential convergence rate. Thus, global exponential stability is guaranteed by
any switching law respecting a minimum residence time in between any two consecutive
switching instants. If �2-norms are used, then the particular stability result follows directly
from the above general proof and the last part of the proof of Theorem 2.2. The proof is
omitted.
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B.3. Proof of Theorem 3.3

(i) Take t ∈ [ti, ti+1) with {ti}i∈Ns
being the switching instants generated by the switching law

σ(t) and define the extended indicator Ns := Ns ∪ {0} of switching instants with t0 = 0 and
interswitching periods Ti := ti+1 − ti for all i ∈ Ns. Thus, the switched system (3.1) for zero
delay becomes

∥∥x
(
ti+1

)∥∥2
2 = xT

(
ti
)
e(A0σ(ti)+A1σ(ti))Tie(A0σ(ti)+A1σ(ti))

T Tix
(
ti
)

= zT
(
ti)eΛσ(ti)tz

(
ti)

= xT (0)
(
e
∑

Ns�j≤i(A0σ(tj )+A1σ(tj ))Tj+(A0σ(tj )+A1σ(tj ))
T Tj

)
x(0)

= xT (0)

(
∏

Nsj≤i

e
(A0σ(tj )+A1σ(tj ))Tj+(A0σ(tj )+A1σ(tj ))

T Tj

)
x(0)

= zT (0)e
∑

Ns�j≤iΛσ(tj )Tj z(0)

= zT (0)

(
∏

Ns�j≤i

e
Λσ(tj )Tj

)
z(0),

(B.7)

where QTe(A0j+A1j )t+(A0j+A1j )
T tQ = eΛit for all j ∈ p is a real diagonal matrix with real positive

eigenvalues less than unity since (A0j + A1j) are all stable matrices. The real nonsingular
matrix Q ∈ Rn×n defining the state transformation x(ti) = Qz(ti) is orthogonal since
e(A0σ(ti)+A1σ(ti))t+(A0σ(ti)+A1σ(ti))

T t are all symmetric and identical for σ(ti) = j any j ∈ p (i.e.,
independent on the current σ(ti) = j ∈ p) and for all t ∈ R, since (A0j +A1j); for all j ∈ p pair-
wise commuting with its transpose implies that e(A0i+A1i)t+(A0i+A1i)

T t pair-wise commute; for all

i ∈ p, for all t ∈ R, [28]. Thus,
∏

Ns�j≤ie
Λσ(tj )t = QT (

∏
Ns�j≤ie

(Aoσ(tj )+A1σ(tj ))t+(Aoσ(tj )+A1σ(tj ))
T t)Q is real

diagonal with eigenvalues less than unity for all t ∈ R+. During the interswitching periods,

∥∥x(ti+1 + τ)
∥∥2

2 = zT (0)eΛσ(tns )τ

(
∏

Ns�j≤i

e
Λσ(tj )Tj

)
z(0); τ ∈

[
0, Ti+1

)
∀i ∈ Ns. (B.8)

If ns <∞ is the cardinal of Ns, then

∥∥x(t)
∥∥2

2 = zT (0)eΛσ(tns )(t−tns )
(

∏

Ns�j≤ns

eΛσ(ti)Tj

)
z(0); R+ � t ≥ tns . (B.9)

Therefore, (B.7)–(B.9) imply the following in terms of matrix measures:

∥∥x(t)
∥∥2

2 = e−2(μ(Aoσ(ti)+A1σ(ti))(t−ti)+
∑

Ns�j≤i−1μ(Aoσ(tj )+A1σ(tj ))Tj ) ≤ e−2ρt∥∥z(0)
∥∥2

2 (B.10)
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for all t ∈ [ti, ti+1) or for all t ≥ tns if i = ns is the finite cardinal of Ns, where ρ ≥
(1/2)|min1≤j≤ξi,1≤i≤p λj(A0i + A1i + AT

0i + AT
1i)| ∈ R+ with ςi being the number of distinct

eigenvalues of A0i + A1i, i ∈ p. Thus, ‖x(t)‖2
2 tends exponentially to zero irrespective of the

switching law σ(t) provided that the delay is zero. The switched system (3.1) is identical to

ẋ(t) =
(
Aoσ(t) +A1σ(t)

)
x(t) +A1σ(t)

(
x(t − h) − x(t)

)
(B.11)

for any t ∈ R0+ and any delay h ∈ [0, h]. In view of (B.10) for the case of zero delay, the
solution of (B.11) for any admissible vector function of initial conditions is subject to

∥∥x(t + τ)
∥∥

2 ≤
∥∥∥∥e

(A0σ(t)+A1σ(t))t
(
x0 +

∫h

0
e−(A0σ(τ)+A1σ(τ))τA1σ(τ)

(
ϕ(τ − h) − ϕ(τ)

))
dτ

∥∥∥∥
2

+
∥∥∥∥

∫ t

h

e(A0σ(τ)+A1σ(τ))(t−τ)A1σ(τ)
(
x(τ − h) − x(τ)

)
dτ

∥∥∥∥
2
,

(B.12)

so that according to the proof of Theorem 2.1(A.4), one has for sufficiently small delay h ∈
[0, h] by using Gronwall’s lemma:

Sup
t−h≤τ≤t

∥∥x(τ)
∥∥

2 ≤
(

1 + 2
eρh − 1
ρ

∥∥A1σ(0)
∥∥

2

)
e−(ρ−hmax1≤j≤p ‖A1j (A0j+A1j )‖2−|o(h)|)t Sup

−h≤τ≤0

∥∥ϕ(τ)
∥∥

2.

(B.13)

It follows from (B.18) that for any sufficiently small h, limt→∞ Supt−h≤τ≤h ‖x(τ)‖2 = 0 at
exponential rate for any arbitrary switching law σ : R0+ → p for all h ∈ [0, h] since the
above property holds if

(
1 + 2

eρh − 1
ρ

∥∥A1σ(0)
∥∥

2

)
e−(ρ−2hmax1≤j≤p ‖A1j (A0j+A1j )‖2)(t−h) < 1 (B.14)

for t > h. By fixing ε = ε(h) = max(2((eρh − 1)/ρ)max1≤j≤p ‖A1j‖2, 2hmax1≤j≤p ‖A1j(A0j +
A1j)‖2), the constraint (B.14) is guaranteed for all real ε ∈ [0, ε] with 0 and ε being the zeros
of the convex parabola g(ε) = ε2 − ρε − ln(1 + ε). Thus, (B.14) holds for all h ∈ [0, h) and
h = min((1/ρ) ln(1 + (ρε/2 max1≤j≤p ‖A1j‖2)), (1/2 max1≤j≤p ‖A1j(A0j +A1j)‖2)) independent
of the switching law σ : R0+ → p.

(ii) Let {ti}i∈Ns
be the switching instants generated by the switching law σ(t) and

define the extended indicator Ns = Ns ∪ {0} of switching instants with t0 = 0 and
interswitching periods T (σ(ti))

i := ti+1 − ti for all i ∈Ns. The superscript in T (σ(ti))
i indicates that

the switched system is parameterized by Aiσ(ti) for all t ∈ [ti, ti+1) if ti is not the maximum
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switching instant. Otherwise, λ ∈ R0+ so that t ∈ [ti,∞). Thus, the solution of the switched
system (3.1) for zero delay becomes

x(t) = x
(
ti+1 + τ

)
=

i+1∏

j=0

(
e
(A0σ(tj )+A1σ(tj ))τe

(A0σ(tj )+A1σ(tj ))T
(σ(tj ))

i

)
x0

∀t ∈
[
ti, ti+1

)
, ∀τ ∈

[
0, Ti+1

)
for x0 = x(0).

(B.15)

The above product of matrices is defined from right to left as the running index increases.
Since (A0j + A1j) pair-wise commute for all j ∈ p, the above product can be rearranged
regardless the switching rule to obtain

x(t)=x
(
ti+1+τ

)
=e(A0σ(ti+1)+A1σ(ti+1)))τ

[
p∏

j=1

(
e
(A0j+A1j )(

∑
k∈Nsj

T
(j)
k

)
)]
x0 ∀t ∈ [ti, ti+1), ∀τ ∈ [0, Ti+1),

(B.16)

where Ns ⊃ Nsj := {i ∈ Ns : σ(ti) = j ∈ p}; for all j ∈ p, so that one has for any norm,

‖x(t)‖ ≤
∏p

i=1[Ki]e−ρσ(ti+1)τ[
∏p

j=1(e
−ρj (

∑
k∈Nsj

T
(j)
k

))]‖x0‖ ≤ Ke−ρt‖x0‖ for all t ∈ [ti, ti+1), for all
τ ∈ [0, Ti+1) with ‖e(A0i+A1i)t‖ ≤ Kie

−ρit, some R � Ki ≥ 1, ρi ∈ R+, for all i ∈ p (since (A0i +A1i)
are stable matrices; for all i ∈ p); K :=

∏p

i=1[Ki], and

ρ := min
i∈p

(
ρi
)
≥ 1

2

∣∣∣∣ min
1≤j≤ξi,1≤i≤p

λj
(
A0i +A1i +AT

0i +A
T
1i

)∣∣∣∣ ∈ R+, (B.17)

where ξi denotes the number of distinct eigenvalues of (A0i+A1i) for all i ∈ p for any switching
time {ti}i∈Ns

. Thus, ‖x(t)‖ tends exponentially to zero as time tends to infinity irrespectively
of the switching law σ(t) for zero delay. The remaining part of the proof is similar to that of
property (i).

B.4. Outline of proof of Theorem 3.12

The properties (i)-(ii) follow since the functionals (3.7) and (3.11) are nonnegative for
any nonzero state trajectory solution with time-derivative non-less than zero so that the
equilibrium is not asymptotically reachable by any of those trajectories under any switching
law. If, in additions, the matrices referred to are positive definite, then those functionals are
unbounded as time increases so that (3.1), (3.9), (3.18), respectively, are instable from “ad-
hoc” Lyapunov’s instability theorems since any nontrivial state trajectories are unbounded
with time. Property (ii) can be proved by constructing some appropriate switching laws. If
one parameterization i ∈ p is stable, any switching law σ : R0+ → p leading to such a
parameterization in finite time and staying at it later on for all time leads to global exponential
stability of the corresponding switched system (3.1), (3.9), or (3.18). Any switching law
σ : R0+ → p which leads to such a parameterization and stays at it during a sufficiently large
residence time after the last time the same parameterization was switched off guarantees
global Lyapunov’s stability.
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B.5. Proof of Theorem 3.13

Let the Krasovsky-Lyapunov functional candidate for the switched system (3.1) be

V
(
t, xt

)
= xT (t)P(t)x(t) +

∫0

−h
xT (t + τ)S(t + τ)x(t + τ)dτ ∀t ∈ R0+ (B.18)

(see [1]), for some P(t) = PT (t) > 0, S(t) = ST (t) > 0 for all t ∈ R0+. Since Re (λi(A(t))) ≤
−ρ0 < 0 (for all i ∈ n including eventual eigenvalues with the same real parts), then the
Lyapunov equation AT

0 (t)P(t) + P(t)A0(t) = −In has a unique symmetric positive definite
solution P(t) =

∫ t
0e

AT
0 (t)τeA0(t)τdτ with uniformly bounded norm ‖P(t)‖2 ≤ K0/2ρ0 for some

R+ � K0 ≥ 1. The time derivative of this Lyapunov function is a Lyapunov equation of the
form AT

0 (t)Ṗ(t) + Ṗ(t)A0(t) = −(ȦT
0 (t)P(t) + P(t)Ȧ0(t)) having a unique solution

Ṗ(t) =
∫ t

0
eA

T
0 (t)τ

(
ȦT

0 (t)P(t) + P(t)Ȧ0(t)
)
eA0(t)τdτ (B.19)

and, from (B.19), ‖Ṗ(t)‖2 ≤ (K0/ρ0)‖P(t)‖2‖Ȧ(t)‖2 ≤ (K2
0/2ρ2

0)‖Ȧ0(t)‖2. Taking time
derivatives in (B.18) and using the above norm constraints:

V̇
(
t, xt

)
≤ −xT (t)

((
1 −

K2
0

2ρ2

∥∥Ȧ0(t)
∥∥

2

)
In − S(t)

)
x(t) − xT (t − h)S(t − h)x(t − h)

+ xT (t)
(
P(t)A1(t) +AT

1 (t)P(t)
)
x(t − h)

≤ xT (t)Q(t)x(t) ∀t ∈ R0+,

(B.20)

where xT (t) := (xT (t), xT (t − h))T , and

Q(t) :=

⎡
⎢⎢⎣
S(t) +

(
K2

0

2ρ2
γdA − 1

)
In P(t)A1(t)

AT
1 (t)P(t) −S(t − h)

⎤
⎥⎥⎦ ∀t ∈ R0+ (B.21)

so that V̇ (t, xt) < 0 for x(t)/= 0 if Q(t) < −0 for all t ∈ R0+ \STimp, where Ȧ0(t) is not impulsive
and satisfies ‖Ȧ0(t)‖2 ≤ γdA for some γdA ∈ R0+. A necessary condition is that the matrix
blocks of the main diagonal ofQ(t) be negative definite, that is, 0 < S(t) < (1−(K2

0/2ρ2
0)γdA)In

for all t ∈ R0+ \ STimp. STimp is the set of zero measure where A(t) has (isolated) jump-
bounded discontinuities, so that Ȧ0(t) is, equivalently, impulsive at t = tα, then satisfying
Ȧ0(t+α) − Ȧ0(t−α) = K(tα)δ(t − tα) so that

V
(
t, xt

)∣∣
t=t+α
− V

(
t, xt

)∣∣
t=t−α
≤
K2

0KA

2ρ2
0

∥∥x
(
t−α
)∥∥2

2 ∀tα ∈ ST imp , (B.22)
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where δ(t) is the Dirac distribution at t = 0 and KA is an upper-bound for the �2-norm of all
the impulsive matrices maxtα∈STimp

∫ t+α
t−α
‖Ȧ0(τ)‖2dτ ≤ K2

0KA/2ρ2
0 for the set of impulses. On the

other hand, note from (B.18), that

V
(
t, xt

)

λmin
(
P(t)

) ≥
V
(
t, xt

)
−
∫0
−hx

T (t + τ)S(t + τ)x(t + τ)dτ

λmin
(
P(t)

) ≥
∥∥x(t)

∥∥2
2

≥
V
(
t, xt

)
−
∫0
−hx

T (t + τ)S(t + τ)x(t + τ)dτ

λmax
(
P(t))

∀t ∈ R0+,

(B.23)

λmin
(
P(t)

)∥∥x(t)
∥∥2

2 ≤ γ1 Inf
−h≤τ≤0

∥∥x(t + τ)
∥∥2

2 ≤ V
(
t, xt

)
≤ γ2 Sup

−h≤τ≤0

∥∥x(t + τ)
∥∥2

2 (B.24)

for some γ1,2 ∈ R+.
Then, from (B.20), (B.21), V (t, xt) is positive and monotonically decreasing along any

nontrivial solution trajectory within any open impulse-free time-interval and within any
semiopen (right-closed) time interval starting in a point of STimp for any two consecutive
tαi , tαi+1 ∈ STimp since Q(t) < 0 within such intervals. More precisely, V (t, xt)−V (t, xt)|t=t+αi < 0,
V (t′) − V (t′′) < 0 for all tαi ∈ STimp, for all t(> tαi) ∈ R0+ \ STimp, for all t′(> t′′) ∈
R0+ \ STimp. Thus, global asymptotic stability holds if V (t, xt)|t=t+αi+1

− V (t, xt)|t=t+αi < 0 for
any two consecutive tαi , tαi+1 ∈ STimp. One gets from (B.24) that V (t, xt)|t=t+αi+1

≤ (1 +
K2

0KA/2ρ2
0λmin(P(t−αi+1)))V (t, xt)|t=t−αi+1

. From (B.20), (B.23), and (B.24),

V
(
t, xt

)∣∣
t=t+αi+1

− V
(
t, xt

)∣∣
t=t+αi

≤
K2

0KAV
(
t, xt

)
|t=t−αi+1

2ρ2
0λmin

(
P
(
t−αi+1

)) −
∫ tαi+1−tαi

0

∣∣xT
(
tαi + τ

)
Q(τ)x

(
tαi + τ

)∣∣dτ < 0,

(B.25)

provided that

tαi+1 > tαi +
K2

0KAV
(
t, xt

)∣∣
t=t−αi+1

2ρ2
0λmin

(
P
(
t−αi+1

))
Inf0≤τ≤tαi+1−tαi

∣∣xT
(
tαi + τ

)
Q(τ)x

(
tαi + τ

)∣∣
∀tαi , tαi+1 ∈ STimp.

(B.26)

Then, V (t, xt) is uniformly bounded and converges asymptotically to zero as t → ∞. Thus,
the maintenance of a minimum time interval

T imp ≥ Sup
t∈R0+

K2
0KAV

(
t, xt

)∣∣
t=t−αi+1

2ρ2
0λmin

(
P
(
t−αi+1

))
Inf0≤τ≤tαi+1−tαi

∣∣xT
(
tαi + τ

)
Q(τ)x

(
tαi + τ

)∣∣
≥ tαi+1 − tαi (B.27)

between any two consecutive impulses at times tαi , tαi+1 ∈ STimp guarantees the global
asymptotic stability and the result is proved.
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