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1. Introduction

Fixed point theory is a powerful tool for investigating the convergence of the solutions of
iterative discrete processes or that of the solutions of differential equations to fixed points
in appropriate convex compact subsets of complete metric spaces or Banach spaces, in
general, [1–12]. A key point is that the equations under study are driven by contractive
maps or at least by asymptotically nonexpansive maps. By that reason, the fixed point
formalism is useful in stability theory to investigate the asymptotic convergence of the
solution to stable attractors which are stable equilibrium points. The uniqueness of the fixed
point is not required in the most general context although it can be sometimes suitable
provided that only one such a point exists in some given problem. Therefore, the theory
is useful for stability problems subject to multiple stable equilibrium points. Compared
to Lyapunov’s stability theory, it may be a more powerful tool in cases when searching
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a Lyapunov functional is a difficult task or when there exist multiple equilibrium points,
[1, 12]. Furthermore, it is not easy to obtain the value of the equilibrium points from that
of the Lyapunov functional in the case that the last one is very involved. A generalization
of the contraction principle in metric spaces by using continuous nondecreasing functions
subject to an inequality-type constraint has been performed in [2]. The concept of n-times
reasonable expansive mapping in a complete metric space is defined in [3] and proven to
possess a fixed point. In [5], the T -stability of Picard’s iteration is investigated with T being
a self-mapping of X where (X, d) is a complete metric space. The concept of T -stability is
set as follows: if a solution sequence converges to an existing fixed point of T , then the error
in terms of distance of any two consecutive values of any solution generated by Picard’s
iteration converges asymptotically to zero. On the other hand, an important effort has been
devoted to the investigation of Halpern’s iteration scheme and many associate extensions
during the last decades (see, e.g., [4, 6, 9, 10]). Basic Halpern’s iteration is driven by an
external sequence plus a contractive mapping whose two associate coefficient sequences sum
unity for all samples, [9]. Recent extensions of Halpern’s iteration to viscosity iterations
have been proposed in [4, 6]. In the first reference, a viscosity-type term is added as
extraforcing term to the basic external sequence of Halpern’s scheme. In the second one,
the external driving term is replaced with two ones, namely, a viscosity-type term plus
an asymptotically nonexpansive mapping taking values on a left reversible semigroup of
asymptotically nonexpansive Lipschitzian mappings on a compact convex subset C of the
Banach space X. The final iteration process investigated in [6] consists of three forcing terms,
namely, a contraction on C, an asymptotically nonexpansive Lipschitzian mapping taking
values in a left reversible semigroup of mappings from a subset of that of bounded functions
on its dual. It is proven that the solution converges to a unique common fixed point of all
the set asymptotic nonexpansive mappings for any initial conditions on C. The objective of
this paper is to investigate further generalizations for Halpern’s iteration process via fixed
point theory by using two more driving terms, namely, an external one taking values on C
plus a nonlinear term given by a continuous nondecreasing function, subject to an inequality-
type constraint as proposed in [2], whose argument is the distance between pairs of points of
sequences in certain complete metric space which are not necessarily directly related to the
sequence solution taking values in the subsetC of the Banach spaceX. Another generalization
point is that the sample-by-sample sum of the scalar coefficient sequences of all the driving
terms is not necessarily unity but it converges asymptotically to unity.

2. Stability and Boundedness Properties of
a Viscosity-Type Difference Equation

In this section a real difference equation scheme is investigated from a stability point of
view by also discussing the existence of stable limiting finite points. The structure of such an
iterative scheme supplies the structural basis for the general viscosity iterative scheme later
discussed formally in Section 4 in the light of contractive and asymptotically nonexpansive
mappings in compact convex subsets of Banach spaces. The following well-known iterative
scheme is investigated for an iterative scheme which generates real sequences.

Theorem 2.1. Consider the difference equation:

xk+1 = βkxk +
(
1 − βk

)
zk (2.1)
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such that the error sequence {ek := xk − zk} is generated by

ek+1 = βkek − z̃k+1, (2.2)

for all k ∈ Z0+ := N ∪ {0}, where z̃k := zk+1 − zk.
Assume that x0 and z0 are bounded real constants and 0 ≤ βk < 1; for all k ∈ Z0+. Then, the

following properties hold.
(i) The real sequences {xk}, {zk}, and {ek} are uniformly bounded if 0 ≤ ek ≤ 2xk/(1−βk) if

xk > 0 and 2xk/(1 − βk) ≤ ek ≤ 0 if xk ≤ 0; for all k ∈ Z0+. If, furthermore, 0 < ek < 2xk/(1 − βk)
if xk > 0 and 2xk/(1 − βk) < ek ≤ 0, if xk ≤ 0, with ek = 0 if and only if xk = 0; for all k ∈ Z0+, then
the sequences {xk}, {zk}, and {ek} converge asymptotically to the zero equilibrium point as k → ∞
and {|xk|} is monotonically decreasing.

(ii) Let the real sequence {�k} be defined by �k := z̃k+1/ek = (zk+1 −zk)/(xk −zk) if xk /= zk
and �k = 1 if xk = zk (what implies that zk+1 = xk+1 = xk = zk from (2.1) and �k = 1). Then, {ek} is
uniformly bounded if �k ∈ [βk − 1, 1 + βk]; for all k ∈ Z0+. If, furthermore, �k ∈ (βk − 1, 1 + βk); for
all k ∈ Z0+ then ek → 0 as k → ∞.

(iii) Let x0 ≥ 0 and let {zk} a positive real sequence (i.e., all its elements are nonnegative
real constants). Define �k := z̃k+1/ek if xk /= zk and �k = 1 if xk = zk. Then, {xk} is a positive
real sequence and {ek} is uniformly bounded if �k ∈ [0, 1 − βk]; for all k ∈ Z0+. If, furthermore,
�k ∈ (0, 1 − βk); for all k ∈ Z0+, then ek → 0 as k → ∞.

(iv) If |βk| ≤ 1; for all k ∈ Z0+ and
∑∞

k=0 |zk| < ∞, then |xk| < ∞; for all k ∈ Z0+. If
|βk| ≤ β < 1 and |zk| < ∞; for all k ∈ Z0+, then |xk| < ∞; for all k ∈ Z0+. If |βk| ≤ β < 1/(1 + 2β0)
and |zk| ≤ β0|xk| < ∞; for all k ∈ Z0+ for some β0 ∈ R+ := {z ∈ R : z > 0}, with R0+ := {z ∈ R :
z ≥ 0} = R+ ∪ {0}, then |xk| <∞; for all k ∈ Z0+ and xk → 0 as k → ∞.

(v) (Corollary to Venter’s theorem, [7]). Assume that βk ∈ [0, 1], for all k ∈ Z0+, (1−βk) → 0
as k → ∞ and

∑k
j=0(1 − βj) → ∞ (what imply βk → 1 as k → ∞ and the sequence {βk} has only

a finite set of unity values). Assume also that x0 ≥ 0 and {zk} is a nonnegative real sequence with∑∞
k=0(1 − βk)zk <∞. Then xk → 0 as k → ∞.

(vi) (Suzuki [8]; see also Saeidi [6]). Let {βk} be a sequence in [0, 1] with 0 < lim infk→∞βk ≤
lim supk→∞βk < 1, and let {xk} and {zk} be bounded sequences. Then, lim supk→∞(|zk+1 − zk| −
|xk+1 − xk|) ≤ 0.

(vii) (Halpern [9]; see Hu [4]). Let zk be zk = Pxk; for all k ∈ Z0+ in (2.1) subject to x0 ∈ C,
βk ∈ [0, 1]; for all k ∈ Z0+ with P : C → C being a nonexpansive self-mapping on C. Thus, {xk}
converges weakly to a fixed point of P in the framework of Hilbert spaces endowed with the inner
product 〈x, Px〉, for all x ∈ X, if βk = k−β for any β ∈ (0, 1).

Proof. (i) Direct calculations with (2.1) lead to

x2
k+1 − x2

k =
(
β2k − 1

)
x2
k +
(
1 − βk

)2(
x2
k + e2k − 2xkek

)
+ 2βk

(
1 − βk

)
xk(xk − ek)

=
(
1 − βk

)2
e2k − 2

(
1 − βk

)
xkek

=
((

1 − βk
)2|ek| − 2

(
1 − βk

)
xk sgn ek

)
|ek| if ek /= 0

(2.3)

so that x2
k+1 ≤ x2

k
if (1 − βk)2 ek sgn ek ≤ 2(1 − βk)xk sgn ek, and equivalently, if (1 − βk)|ek| ≤

2|xk| and ekxk = (xk − zk)xk ≥ 0 with ek /= 0, and

x2
k+1 − x2

k = 0 if ek = xk − zk = 0. (2.4)
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Thus, x2
k+1 ≤ x2

k ≤ x2
0 < ∞, |ek| ≤ 2|xk|/(1 − βk) ≤ 2|x0|/(1 − βk) < ∞ and |zk| = |(xk+1 −

βkxk)/(1 − βk)| ≤ (1 + βk)/(1 − βk)|x0| < ∞; for all k ∈ Z0+. If, in addition, (1 − βk)|ek| < 2|xk|
and ekxk = (xk − zk)xk ≥ 0 with ek /= 0 then xk → 0 and {|xk|} is a monotonically decreasing
sequence, zk → 0 and ek → 0 as k → ∞. Property (i) has been proven.

(ii) Direct calculations with (2.2) yield for ek /= 0,

e2k+1 − e2k =
(
β2k − 1 + �2k − 2βk�k

)
e2k ≤ 0 if g(�k) := �2k − 2βk�k + β2k − 1 ≤ 0. (2.5)

Since g(�k) is a convex parabola g(�k) ≤ 0 for all � ∈ [�k1, �k2] if real constants �ki exist such
that g(�ki) = 0; i = 1, 2. The parabola zeros are �k1,2 = βk ± 1 so that e2k+1 ≤ e2k ≤ e20 < ∞ if
�k ∈ [βk − 1, βk + 1]. If ek = 0, then ek+1 = −z̃k+1 = zk − zk+1 = xk+1 − zk+1 = ek = 0 with �k = 1.
Thus, e2

k+1 ≤ e2
k
≤ e20 < ∞ if �k ∈ [βk − 1, βk + 1], for all k ∈ Z0+. If �k ∈ (βk − 1, βk + 1), then

ek → 0 as k → ∞. Property (ii) has been proven.
(iii) If {zk} is positive then {xk} is positive from direct calculations through (2.1). The

second part follows directly from Property (ii) by restricting �k ∈ [0, βk + 1] for uniform
boundedness of {ek} and �k ∈ (0, βk + 1) for its asymptotic convergence to zero in the case of
nonzero ek.

(iv) If |βk| ≤ 1; for all k ∈ Z0+ and
∑∞

k=0 |zk| < ∞, then from recursive evaluation of
(2.1):

|xk| =
∣∣∣∣∣∣

k∏

j=0

[
βj
]
x0 +

k∑

j=0

k∏

�=j+1

[
β�
](
1 − βj

)
zj

∣∣∣∣∣∣
≤ |x0| +

∣∣∣∣∣∣
x0 +

k∑

j=0

zj

∣∣∣∣∣∣
<∞; ∀k ∈ Z0+. (2.6)

If, |βk| ≤ β < 1 and |zk| <∞; for all k ∈ Z0+, then

|xk| ≤
∣∣∣βkx0

∣∣∣ +

∣∣∣∣∣∣

k∑

j=0

k∏

�=j+1

βk−�
(
1 − βj

)
zj

∣∣∣∣∣∣

≤
∣∣∣βkx0

∣∣∣ +
2

1 − β
(
1 − βk−1

)
max
0≤j≤k

∣∣zj
∣∣

≤ |x0| + 2
1 − β max

0≤j≤k

∣∣zj
∣∣

<∞; ∀k ∈ Z0+.

(2.7)

If |βk| ≤ β < 1/(1+ 2β0) and |zk| ≤ β0|xk| <∞, for all k ∈ Z0+ for some β0 ∈ R0+ := {0/= z ∈ R+},
then |xk+1| ≤ β|xk|+2ββ0|xk| ≤ (1+2β0)β|xk| < |xk|, for all k ∈ Z0+; thus, {|xk|} is monotonically
strictly decreasing so that it converges asymptotically to zero.

Equation (2.1) under the form

xk+1 = βkxk +
(
1 − βk

)
Pxk (2.8)

with x0 ∈ C and P : C → C being a nonexpansive self-mapping on C under the weak or
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strong convergence conditions of Theorem 2.1(vii) is known as Halpern’s iteration [4], which
is a particular case of the generalized viscosity iterative scheme studied in the subsequent
sections. Theorem 2.1(vi) extends stability Venter’s theorem which is useful in recursive
stochastic estimation theory when investigating the asymptotic expectation of the norm-
squared parametrical estimation error [7]. Note that the stability result of this section has
been derived by using discrete Lyapunov’s stability theorem with Lyapunov’s sequence
{Vk := x2

k} what guarantees global asymptotic stability to the zero equilibrium point if it is
strictly monotonically decreasing on R+ and to global stability (stated essentially in terms of
uniform boundedness of the sequence {xk}) if it is monotonically decreasing on R+. The links
between Lyapunov’s stability and fixed point theory are clear (see, e.g., [1, 2]). However, fixed
point theory is a more powerful tool in the case of uncertain problems since it copes more
easily with the existence of multiple stable equilibrium points and with nonlinear mappings.
Note that the results of Theorem 2.1 may be further formalized in the context of fixed point
theory by defining a complete metric space (R, d), respectively, (R0+, d) for the particular
results being applicable to a positive system under nonnegative initial conditions, with the
Euclidean metrics defined by d(xk, zk) = |xk − zk|.

3. Some Definitions and Background as Preparatory
Tools for Section 4

The four subsequent definitions are then used in the results established and proven in
Section 4.

Definition 3.1. S is a left reversible semigroup if aS ∩ bS/= ∅; for all a, b ∈ S.

It is possible to define a partial preordering relation “≺” by a ≺ b ⇔ aS ⊃ bS; for all
a, b ∈ S for any semigroup S. Thus, ∃c = aa′ = bb′ ∈ S, for some existing a′ and b′ ∈ S, such
that aS ∩ bS ⊇ cS ⇒ (a ≺ c ∧ b ≺ c) if S is left reversible. The semigroup S is said to be
left-amenable if it has a left-invariant mean and it is then left reversible, [6, 13].

Definition 3.2 (see [6, 13]). S := {T(s) : s ∈ S} is said to be a representation of a left reversible
semigroup S as Lipschitzian mappings on C if T(s) is a Lipschitzian mapping on C with
Lipschitz constant k(s) and, furthermore, T(st) = T(s)T(t); for all s, t ∈ S.

The representation S := {T(s) : s ∈ S} may be nonexpansive, asymptotically
nonexpansive, contractive and asymptotically contractive according to Definitions 3.3 and
3.4 which follow.

Definition 3.3. A representation S := {T(s) : s ∈ S} of a left reversible semigroup S as
Lipschitzian mappings on C, a nonempty weakly compact convex subset ofX, with Lipschitz
constants {k(s) : s ∈ S} is said to be a nonexpansive (resp., asymptotically nonexpansive, [6])
semigroup on C if it holds the uniform Lipschitzian condition k(s) ≤ 1 (resp., limSk(s) ≤ 1)
on the Lipschitz constants.

Definition 3.4. A representation S := {T(s) : s ∈ S} of a left reversible semigroup S as
Lipschitzian mappings on C with Lipschitz constants {k(s) : s ∈ S} is said to be a contractive
(resp., asymptotically contractive) semigroup on C if it holds the uniform Lipschitzian
condition k(s) ≤ δ < 1 (resp., limSk(s) ≤ δ < 1) on the Lipschitz constants.
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The iteration process (3.1) is subject to a forcing term generated by a set of Lipschitzian
mappings S � T(μk) : Z∗ ×C → Cwhere {μk} is a sequence of means on Z ⊂ �∞(S), with the
subset Z (defined in Definition 3.5 below) containing unity, where �∞(S) is the Banach space
of all bounded functions on S endowed with the supremum norm, such that μk : Z → Z∗

where Z∗ is the dual of Z.

Definition 3.5. The real sequence {μk} is a sequence of means on Z if ‖μk‖ = μk(1) = 1.

Some particular characterizations of sequences of means to be invoked later on in the
results of Section 4 are now given in the definitions which follow.

Definition 3.6. The sequence of means {μk} on Z ⊂ �∞(S) is

(1) left invariant if μ(�sf) = μ(f); for all s ∈ S, for all f ∈ Z, for all μ ∈ {μk} in Z∗ for
�s ∈ �∞(S);

(2) strongly left regular if limα‖�∗s μα − μα‖ = 0, for all s ∈ S, where �∗s is the adjoint
operator of �s ∈ �∞(S) defined by (�sf)(t) = f(st); for all t ∈ S, for all f ∈ �∞(S).

Parallel definitions follow for right-invariant and strongly right-amenable sequences
of means. Z is said to be left (resp., right)-amenable if it has a left (resp., right)-invariant
mean. A general viscosity iteration process considered in [6] is the following:

xk+1 = αkf(xk) + βkxk + γkT
(
μk

)
xk; ∀k ∈ Z0+, (3.1)

where

(i) the real sequences {αk}, {βk}, and {γk} have elements in (0, 1) of sum being identity,
for all k ∈ Z0+;

(ii) S := {T(s) : s ∈ S} is a representation of a left reversible semigroup with identity
S being asymptotically nonexpansive, on a compact convex subset C of a smooth
Banach space, with respect to a left-regular sequence of means defined on an
appropriate invariant subspace of �∞(S);

(iii) f is a contraction on C.

It has been proven that the solution of the sequence converges strongly to a unique common
fixed point of the representation S which is the solution of a variational inequality [6]. The
viscosity iteration process (3.1) generalizes that proposed in [13] for αk = 0 and γk = 1 − βk
and also that proposed in [14, 15] with βk = 0, γk = 1 − βk and T(μk) = T ; for all k ∈ Z0+.
Halpern’s iteration is obtained by replacing γkT(μk) → (1 − αk)u and βk = 0 in (3.1) by using
the formalism of Hilbert spaces, for all k ∈ Z0+ (see, e.g., [4, 9, 10]). There has been proven
the weak convergence of the sequence {xk} to a fixed point of T for any given u, x0 ∈ C if
αk = k−α for α ∈ (0, 1) [9], also proven to converge strongly to one such a point if αk → 0
and (αk+1 − αk)/α2

k+1 → 0 as k → ∞, and
∑∞

k=0 αk = +∞ [10]. On the other hand, note that if
αk = 0, γk = 1 − βk, and zk = T(μk)xk with xk ∈ R, for all k ∈ Z0+, then the resulting particular
iteration process (3.1) becomes the difference equation (2.1) discussed in Theorem 2.1 from
a stability point of view provided that the boundedness of the solution is ensured on some
convex compact set C ⊂ R; for all k ∈ Z0+.
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4. Boundedness and Convergence Properties of
a More General Difference Equation

The viscosity iteration process (3.1) is generalized in this section by including two more
forcing terms not being directly related to the solution sequence. One of them being
dependent on a nondecreasing distance-valued function related to a complete metric space
while the other forcing term is governed by an external sequence {δkr}. Furthermore the sum
of the four terms of the scalar sequences {αk}, {βk}, and {γk} and {δk} at each sample is not
necessarily unity but it is asymptotically convergent to unity.

The following generalized viscosity iterative scheme, which is a more general
difference equation than (3.1), is considered in the sequel

xk+1 = αkf(xk) + βkxk + γkT
(
μk

)
xk +

(
sk∑

i=1

νikϕi

(
d
(
ωk,ωk−p

))
+ δkr

)

; ∀k ∈ Z0+, (4.1)

for all x0 ∈ C for a sequence of given finite numbers {sk} with sk ∈ Z0+ (if sk = 0, then
the corresponding sum is dropped off) which can be rewritten as (2.1) if 0 < βk < 1; for all
k ∈ Z0+ (except possibly for a finite number of values of the sequence {βk} what implies
0 < lim infk→∞βk ≤ lim supk→∞βk < 1) by defining the sequence

zk =
1

1 − βk

(

αkf(xk) + γkT
(
μk

)
xk +

(
sk∑

i=1

νikϕi

(
d
(
ωk,ωk−p

))
+ δkr

))

(4.2)

with x0 ∈ C, where

(i) {μk} is a strongly left-regular sequence of means on Z ⊂ �∞(S), that is, μk ∈ Z∗. See
Definition 3.5;

(ii) S is a left reversible semigroup represented as Lipschitzian mappings on C by S :=
{T(s) : s ∈ S}.

The iterative scheme is subject to the following assumptions.

Assumption 1. (1) {αk}, {γk}, and {δk} are real sequences in [0, 1], {βk} is a real sequence in
[0, 1), and {νik} are sequences in R0+, for all i ∈ k := {1, 2, . . . , k} for some given k ∈ Z+ ≡ N :=
Z0+ \ {0} and r ∈ R.

(2) limk→∞αk = limn→∞δk = 0, lim infk→∞γk > 0.
(3) limk→∞

∑k
j=1 αj =∞, limk→∞

∑k
j=1 δj <∞.

(4) 0 < lim infk→∞βk ≤ lim supk→∞βk < 1.
(5) αk + βk + γk + δk = 1 + (1 − βk)εk; for all k ∈ Z0+ with {εk} being a bounded real

sequence satisfying εk ≥ 1/(βk − 1) and limk→∞εk = 0.
(6) f is a contraction on a nonempty compact convex subset C, of diameter dC =

diam C := sup{‖x − y‖ : x, y ∈ C}, of a Banach space X, of topological dual X∗, which is
smooth, that is, its normalized duality mapping J : X → 2X

∗ ⊂ X∗ from X into the family of
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nonempty (by the Hahn-Banach theorem [6, 11]), weak-star compact convex subsets of X∗,
defined by

J(x) :=
{
x∗ ∈ X∗ : x∗(x) = 〈x, x∗〉 = ‖x∗‖2 = ‖x‖2

}
⊂ X∗, ∀x ∈ X (4.3)

is single valued.
(7) The representation S := {T(s) : s ∈ S} of the left reversible semigroup S with

identity is asymptotically nonexpansive on C (see Definition 3.3) with respect to {μk}, with
μk ∈ Z∗ which is strongly left regular so that it fulfils limk→∞‖μk+1 − μk‖ = 0.

(8) lim supk→∞supx,y∈C(‖T(μk)x − T(μk)y‖ − ‖x − y‖)/min(αk, δk) ≤ 0.
(9) (W,d) is a complete metric space andQ : W → W is a self-mapping satisfying the

inequality

ϕi

(
d
(
Qy,Qz

)) ≤ ϕi

(
d
(
y, z
)) − φi

(
d
(
y, z
))
; ∀y, z ∈W, (4.4)

where ϕi, φi ∈ R0+ → R0+, for all i ∈ k are continuous monotone nondecreasing functions
satisfying ϕi(t) = φi(t) = 0 if and only if t = 0; for all i ∈ k.

(10) {ωk} is a sequence in W generated as ωk+1 = Qωk, k ∈ Z0+ with ω0 ∈ W and
p ∈ Z+ is a finite given number.

Note that Assumption 1(4) is stronger than the conditions imposed on the sequence
{βk} in Theorem 2.1 for (2.1). However, the whole viscosity iteration is much more general
than the iterative equation (2.1). Three generalizations compared to existing schemes of
this class are that an extracoefficient sequence {δk} is added to the set of usual coefficient
sequences and that the exact constraint for the sum of coefficients αk + βk + γk + δk being
unity for all k is replaced by a limit-type constraint αk + βk + γk + δk → 1 as k → ∞ while
during the transient such a constraint can exceed unity or be below unity at each sample
(see Assumption 1(5)). Another generalization is the inclusion of a nonnegative term with
generalized contractive mapping Q : W → W involving another iterative scheme evolving
on another, and in general distinct, complete metric space (W,d) (see Assumptions 1(9)
and 1(10)). Some boundedness and convergence properties of the iterative process (4.1) are
formulated and proven in the subsequent result.

Theorem 4.1. The difference iterative scheme (4.1) and equivalently the difference equation (2.1)
subject to (4.2) possess the following properties under Assumption 1.

(i) max(supk∈Z0+
|xk|, supk∈Z0+

|T(μk)xk|) < ∞; for all x0 ∈ C. Also, ‖xk‖ < ∞ and
‖T(μk)xk‖ < ∞ for any norm defined on the smooth Banach space X and there exists
a nonempty bounded compact convex set C0 ⊆ C ⊂ X such that the solution of (4.2)
is permanent in C0, for all k ≥ k0 and some sufficiently large finite k0 ∈ Z0+ with
maxk≥k0(‖xk‖, ‖T(μk)xk‖) ≤ dC0 := diamC0.

(ii) limk→∞‖T(μk)xk −xk‖ = 0 and xk → zk → γkT(μk)xk/(1−βk) → T(μk)xk → x∗ ∈
C0 as k → ∞.
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(iii)

∞ > |x∗ − x0|

=

∣
∣
∣
∣
∣
∣
lim
k→∞

k∑

j=0

(
xj+1 − xj

)
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∞∑

j=0

(

αjf
(
xj

)
+
(
βj − 1

)
xj + γjT

(
μj

)
xj +

( sj∑

i=1

νijϕi

(
d
(
ωj,ωj−p

))
+ δjr

))∣∣
∣
∣
∣
∣
.

(4.5)

(iv) Assume that {xk} ∈ C such that each sequence element xk ∈ Rm
0+ (the first closed orthant of

Rm); for all k ∈ Z0+, for some m ∈ Z+ so that (4.1) is a positive viscosity iteration scheme.
Then,

(iv.1) {xk} is a nonnegative sequence (i.e., all its components are nonnegative for all k ≥ 0,
for all x0 ∈ C), denoted as xk ≥ 0; for all k ≥ 0.

(iv.2) Property (i) holds for C0 ⊆ C and Property (ii) also holds for a limiting point x∗ ∈ C0.

(iv.3) Property (iii) becomes

∞ > |x∗ − x0|

=

∣∣∣∣∣∣

∞∑

j=0

(

αjf
(
xj

)
+γjT

(
μj

)
xj+

( sj∑

i=1

νijϕi

(
d
(
ωj,ωj−p

))
+δjr

))

−
∞∑

j=0

((
1−βj

)
xj

)
∣∣∣∣∣∣

(4.6)

what implies that either

∞∑

j=0

(

αjf
(
xj

)
+ γjT

(
μj

)
xj +

( sj∑

i=1

νijϕi

(
d
(
ωj,ωj−p

))
+ δjr

))

<∞,

∞∑

j=0

((
1 − βj

)
xj

)
<∞

(4.7)

or

lim sup
k→∞

k∑

j=0

(

αjf
(
xj

)
+γjT

(
μj

)
xj+

( sj∑

i=1

νijϕi

(
d
(
ωj,ωj−p

))
+δjr

))

=∞,

lim sup
k→∞

∞∑

j=0

((
1 − βj

)
xj

)
=∞.

(4.8)
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Proof. From (4.2) and substituting the real sequence {γk} from the constraint Assumption
1(5), we have the following:

zk+1−zk =
1

1−βk+1

(

αk+1f(xk+1)+γk+1T
(
μk+1

)
xk+1+

(
sk+1∑

i=1

νi,k+1ϕi

(
d
(
ωk+1, ωk+1−p

))
+δk+1r

))

− 1
1 − βk

(

αkf(xk) + γkT
(
μk

)
xk +

(
sk∑

i=1

νi,kϕi

(
d
(
ωk,ωk−p

))
+ δkr

))

=
1

1 − βk+1

(

αk+1f(xk+1) +
(
1 +
(
1 − βk+1

)
εk+1 − αk+1 − βk+1 − δk+1

)
T
(
μk+1

)
xk+1

+

(
sk+1∑

i=1

νi,k+1ϕi

(
d
(
ωk+1, ωk+1−p

))
+ δk+1r

))

− 1
1 − βk

(

αkf(xk) +
(
1 +
(
1 − βk

)
εk − αk − βk − δk

)
T
(
μk

)
xk

+

(
sk∑

i=1

νi,kϕi

(
d
(
ωk,ωk−p

))
+ δkr

))

=
(
1 − αk+1 + δk+1

1 − βk+1 + εk+1

)
T
(
μk+1

)
xk+1 −

(
1 − αk + δk

1 − βk
+ εk

)
T
(
μk

)
xk

+
αk+1

1 − βk+1 f(xk+1) − αk

1 − βk f(xk) +
(

δk+1
1 − βk+1 −

δk
1 − βk

)
r

+
1

1 − βk+1

(
sk+1∑

i=1

νi,k+1ϕi

(
d
(
ωk+1, ωk+1−p

))
)

− 1
1 − βk

(
sk∑

i=1

νi,kϕi

(
d
(
ωk,ωk−p

))
)

.

(4.9)

Thus,

‖zk+1 − zk‖ ≤
∥∥T
(
μk+1

)
xk+1 − T

(
μk

)
xk

∥∥

+
∥∥∥∥

(
αk+1 + δk+1
1 − βk+1 + εk+1

)
T
(
μk+1

)
xk+1 −

(
αk + δk
1 − βk + εk

)
T
(
μk

)
xk

∥∥∥∥

+ K1(αk + αk+1 + (δk + δk+1)|r| +K2s ν); ∀k ≥ k0

≤ ∥∥T(μk+1
)
xk+1 − T

(
μk

)
xk+1

∥∥ +
∥∥T
(
μk

)
xk+1 − T

(
μk

)
xk

∥∥

+
∥∥((αk+1 + δk+1)K1 + εk+1)T

(
μk+1

)
xk+1 − ((αk + δk)K1 + εk)T

(
μk

)
xk

∥∥

+K((αk + αk+1)K1 + (δk + δk+1)|r| +K2s ν); ∀k ≥ k0
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≤ ∥∥T(μk+1
)
xk+1 − T

(
μk

)
xk+1

∥
∥ +
∥
∥T
(
μk

)
xk+1 − T

(
μk

)
xk

∥
∥

+ ((αk + δk)K1 + εk)
∥
∥(1 + ρk

)
T
(
μk+1

)
xk+1 − T

(
μk

)
xk

∥
∥

+K((αk + αk+1)K1 + (δk + δk+1)|r| +K2s ν); ∀k ≥ k0

≤ (1 + ((αk + δk)K1 + εk))
(∥∥T
(
μk+1

)
xk+1 − T

(
μk

)
xk+1

∥
∥)

+ (1 + ((αk + δk)K1 + εk))
∥
∥T
(
μk

)
xk+1 − T

(
μk

)
xk

∥
∥

+ ((αk + δk)K1 + εk)
∥
∥ρkT

(
μk+1

)
xk+1 − T

(
μk

)
xk

∥
∥

+K((αk + αk+1)K1 + (δk + δk+1)|r| +K2s ν); ∀k ≥ k0,

(4.10)

where k0 ∈ Z0+ is an arbitrary finite sufficiently large integer, and

s = s(k0) := max
k≥k0

sk, ν = ν(k0) := max
k≥k0

max
i∈sk

νik,

ρk := (αk+1 + δk+1 − αk − δk)K1 + εk+1 − εk; ∀k ∈ Z0+,

K :=
1

1 − lim supk→∞βk − εβ
<∞, K1 = K1(x0, k0) := sup

k≥k0

∣∣f(xk)
∣∣ ≤ sup

x∈C

∣∣f(x)
∣∣ <∞,

∞ > K2 = K2(ω0, k0) := 2s(k0)ν(k0)sup
k≥k0

max
i∈sk

ϕi

(
d
(
ωk,ωk−p

)) −→ 0 as k0 −→ ∞

(4.11)

since the functions ϕi are continuous on R0+ with ϕi(0) = 0 and d(ωk,ωk−p) → 0 as k → ∞,
[2]with εβ > 0 being prefixed and arbitrarily small. The constantsK,K1, andK2 are finite for
sufficiently large k ∈ Z0+ since lim supk→∞ βk < 1 (Assumption 1(4)), f is a contraction on C
(Assumption 1(6)), andQ is a self-mapping onW satisfying Assumption 1(9). Since αk → 0,
δk → 0 and εk → 0 as k → ∞ from Assumptions 1(1) and 1(5) and K1 is finite, ρk → 0 as
k → ∞ and |ρk| ≤ ρ(k0); for all k ≥ k0 being arbitrarily small since k0 is arbitrarily large. Since
from Assumption 1(7), S is an asymptotically nonexpansive semigroup on C, and αk → 0,
δk → 0, and εk → 0 as k → ∞:

(1 + ((αk + δk)K1 + εk))
∥∥T
(
μk

)
xk+1 − T

(
μk

)
xk

∥∥

+ ((αk + δk)K1 + εk)
∥∥ρkT

(
μk+1

)
xk+1 − T

(
μk

)
xk

∥∥

≤ (1 + ςk)‖xk+1 − xk‖ + ξk, ∀k ≥ k0

(4.12)

with R0+ � ςk, ξk → 0 as k → ∞. One gets from (4.12) into (4.10),

‖zk+1 − zk‖ ≤ (1 + ((αk + δk)K1 + εk))
(∥∥T
(
μk+1

)
xk+1 − T

(
μk

)
xk+1

∥∥) + (1 + ςk)‖xk+1 − xk‖
+ ξk +K((αk + αk+1)K1 + (δk + δk+1)|r| + s νK2(ω0, k)); ∀k ≥ k0

(4.13)
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what implies that

lim sup
k→∞

(‖zk+1 − zk‖ − ‖xk+1 − xk‖)

≤ lim sup
k→∞

(‖zk+1 − zk‖ − ςk‖xk+1 − xk‖)

≤ lim sup
k→∞

(
(1 + ((αk + δk)K1 + εk))

(∥∥T
(
μk+1

)
xk+1 − T

(
μk

)
xk+1

∥
∥)

+ξk +K((αk + αk+1)K1 + (δk + δk+1)|r| + s νK2(ω0, k)))

= 0 =⇒ lim
k→∞

‖xk − zk‖ = 0

(4.14)

(see [8]) since ‖T(μk+1)xk+1 − T(μk)xk+1‖ → 0 as k → ∞ since {xk} is in C and {μk} is a
strongly left-regular sequence of means on X such that limk→∞‖μk+1 − μk ‖ = 0; furthermore,
αk → 0, δk → 0, εk → 0, ςk → 0, ξk → 0 as k → ∞ and K2(ω0, k) → 0 as k → ∞. Thus,
from (4.14) and using the above technical result in [8] for difference equations of the class
(2.1) (see also [2]), it follows that

lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

(
1 − βk

)‖xk − zk‖ = 0 =⇒ lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

‖xk − zk‖ = 0

=⇒ xk+1 −→ xk −→ zk −→
γkT
(
μk

)
xk

1 − βk as k −→ ∞
(4.15)

since 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1 from Assumption 1(4) since αk → 0, δk → 0,
and εk → 0 as k → ∞. From (4.1),

xk+1 − xk = αkf(xk) +
(
1 − βk

)(
T
(
μk

)
xk − xk

)
+
((
1 − βk

)
εk − αk − δk

)
T
(
μk

)
xk

+

(
sk∑

i=1

νikϕi

(
d
(
ωk,ωk−p

))
+ δkr

)

; ∀k ∈ Z0+

(4.16)

so that

∥∥T
(
μk

)
xk − xk

∥∥

=
1

1 − βk

(‖xk+1 − xk‖ + αk

∥∥f(xk) − T
(
μk

)
xk

∥∥ +
((
1 − βk

)
εk − αk − δk

)∥∥T
(
μk

)
xk

∥∥)

+

(
sk∑

i=1

νikϕi

(
d
(
ωk,ωk−p

))
+ δk|r|

)

; ∀k ∈ Z0+.

(4.17)

Using Assumption 1 and using (4.15) into (4.17) yield

lim
k→∞

∥∥T
(
μk

)
xk − xk

∥∥ = 0 =⇒ xk −→ T
(
μk

)
xk as k → ∞ (4.18)
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since ϕi(d(ωk,ωk−p)) → 0, αk → 0, δk → 0, εk → 0 as k → ∞. Also, it follows that
xk → zk → γkT(μk)xk/(1 − βk) → T(μk)xk as k → ∞ from (4.15) and (4.18). Note
that it has not been proven yet that the sequences {xk} and {zk} converge to a finite limit
as k → ∞ since it has not been proven that they are bounded. Thus, the four sequences
{xk}, {zk}, {γkT(μk)xk/(1−βk)}, and {T(μk)xk} converge asymptotically to the same finite or
infinite real limit. Proceed recursively with the solution of (4.1). Thus, for a given sufficiently
large finite n ∈ Z0+ and for all k ∈ Z+, one gets

|xk+n| =
∣
∣
∣
∣
∣

(
k+n−1∏

i=n

[
βi
]
)

xn

+
k+n−1∑

�=n

⎛

⎝

⎛

⎝
k+n−1∏

j=�+1

[
βj
]
⎞

⎠(α�f(x�) +
((
1−β�

)
(1+ ε�)ε� − α� − δ�

)
T
(
μ�

)
x�

)

+
s�∑

j=1

νj�ϕj

(
d
(
ω�,ω�−p

))
+ δ�r

⎞

⎠

∣∣∣∣∣∣

(4.19)

≤ σkMn +
1 − σk

1 − σ

(

sup
0≤j≤k+n−1

ρj+n +

(

sup
0≤j≤k+n−1

λj+n

)(

sup
0≤j≤k+n−1

Mj+n

))

≤Mk+n,

(4.20)

for all x0 ∈ C0, for some positive real sequences{Mj+n}, {ρj+n}, and {Mj+n} satisfyingMj+n ≥
sup0≤i≤j |xi+n| and Mj+n ≥ sup0≤i≤j |T(μi+n)xi+n|, ∞ > ρ ≥ ρj+n → 0 and ∞ > λ ≥ λj+n → 0
as j → ∞ with ρ = ρ(n) > 0 and λ = λ(n) > 0 being arbitrarily small for sufficiently large
n ∈ Z0+, and

0 < σ = σ(n, n + 1, . . . , n + k − 1) := 1 − max
n≤j≤n+k−1

βj ≤ σ := 1 − lim sup
k→∞

βk − b < 1 (4.21)

for sufficiently large n ∈ Z0+ and a sufficiently smallR+ � b = b(n) < 1−lim supk→∞βk ∈ (0, 1)
which exists from Assumptions 1(1) and 1(4). Note that the sequences {Mj+n} and {Mj+n}
may be chosen to satisfy Mn ≤ Mj+n and Mn ≤ Mj+n; for all j ∈ Z0+. Now, proceed
by complete induction by assuming that 0 < sup−n≤j≤k−1 max(Mj+n,Mj+n) ≤ M < ∞
for given sufficiently large n ∈ Z0+ and finite k ∈ Z+. Then, one gets from (4.20) that
0 < sup−n≤j≤k max(Mj+n,Mj+n,M0) ≤M <∞ for any prescribed M0 ∈ R+ if

σkM +
1 − σk

1 − σ
(
ρ + λM

) ≤M ⇐⇒ ρ

M
+ λ ≤ 1 − σ ⇐⇒ 0 < σ ≤ 1 − λ − ρ

M
(4.22)

with λ = λ(n) and ρ = ρ(n) which always holds for sufficiently large finite n ∈ Z0+ since
0← max(ρ(n), λ(n)) ≤ (1 − σ)M/(M + 1) < 1 − σ as n → ∞. It has been proven by complete
induction that the first part of Property (i) holds with the set C0 being built such that M =
dC0 = diamC0 for the given initial condition x0. For a set of initial conditions x0 ∈ C00 ⊂ X
with any set C0in ⊂ X convex and bounded, a common set C0 might be defined for any initial
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condition of (4.1) in C00 with a redefinition of the constant M as M = sup(Mxo : x0 ∈ C00) =
dC0 = diamC0. The second part of Property (i) follows for any norm on E from the property of
equivalence of norms. Furthermore, the real sequences {xk}, {zk}, {γkT(μk)xk/(1 − βk)}, and
{T(μk)xk} converge strongly to a finite limit in C0 since they are uniformly bounded so that
Property (ii) has also been proven. Property (iii) follows directly from (4.1) and Property (ii).
Property (iv.1) follows since {xk} is a nonnegativem-vector sequence provided that x0 ∈ Rm

0+
if r ∈ R0+ what follows from simple inspection of (4.1). Properties (iv.2)-(iv.3) follow directly
from separating nonnegative positive and nonpositive terms in the right-hand side of the
expression in Property (iii).

The convergence properties of Theorem 4.1(ii) are now related to the limits being fixed
points of the asymptotically nonexpansive semigroup S := {T(s) : s ∈ S} which is the
representation as Lipschitzian mappings on C of a left reversible semigroup S with identity.

Theorem 4.2. The following properties hold.
(i) Let F(S) ∈ C be the set of fixed points of the asymptotically nonexpansive semigroup S on

C. Then, the common strong limit x∗ ∈ C0 ⊆ C of the sequences {xk}, {zk}, {γkT(μk)xk/(1 − βk)},
and {T(μk)xk} in Theorem 4.1(ii) is a fixed point of C located in C0 and, thus, a stable equilibrium
point of the iterative scheme (4.1) provided that diamC0, and then diamC, is sufficiently large.

(ii)F(S) ⊆ C0 ⊆ C.

Proof. (i) Proceed by contradiction by assuming thatC0 � x∗ /∈F(S) so that there exists εT ∈ R+

such that

0 < εT

≤ lim inf
k→∞

∥∥T
(
μk

)
x∗ − x∗∥∥

≤ lim sup
k→∞

∥∥T
(
μk

)
x∗ − T(μk

)
xk

∥∥ +

(

lim sup
k→∞

∥∥T
(
μk

)
xk − xk

∥∥ + lim sup
k→∞

‖xk − x∗‖
)

= lim sup
k→∞

∥∥T
(
μk

)
x∗ − T(μk

)
xk

∥∥

≤ lim sup
k→∞

‖xk − x∗‖ = 0

(4.23)

since limk→∞‖T(μk)xk − xk‖ + limk→∞‖xk − x∗‖ = 0, where the above two limits exist and
are zero from Theorem 4.1(ii). Then, x∗ ∈ F(S), with F(S) being nonempty since, at least one
such finite fixed point exists in C0 ⊆ C.

Property (ii) follows directly from Theorem 4.1(iii)-(iv).

Remark 4.3. Note that the boundedness property of Theorem 4.1(i) does not require explicitly
the condition of Assumption 1(7) that S := {T(s) : s ∈ S} is asymptotically nonexpansive. On
the other hand, neither Theorem 4.1 nor Theorem 4.2 requires Assumption 1(3).

Definition 4.4 (see [8]). Let the sequence of means {μk} be in Z ⊂ �∞(S), and let S := {T(s) :
s ∈ S} be a representation of a left reversible semigroup S. Then Z is S-stable if the functions
s �→ 〈T(s)x, x∗〉 and s �→ ‖T(s)x − y‖ on S are also in Z ⊂ �∞(S); for all x, y ∈ C, for all
x∗ ∈ X∗.
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Definition 4.5 (see [8, 11]). Let B andD be convex subsets of the Banach spaceX, with ∅/=D ⊂
B under proper inclusion, and let P : B → D be a retraction of B onto D. Then P is said to
be sunny if P(Px + t(x − Px)) = Px; for all x ∈ B, for all t ∈ R0+ provided that Px + t(x − Px)
∈ B.

Definition 4.6. D is said t be a sunny nonexpansive retract of B if there exists a sunny
nonexpansive retraction P of B onto D.

It is known that if C is weakly compact, μ is a mean on Z (see Definition 3.5), and s �→
〈T(s)x, x∗〉 is in Z for each x∗ ∈ X∗, then there is a unique x0 ∈ X such that μs〈T(s)x, x∗〉 =
〈x0, x

∗〉 for each x∗ ∈ X∗. Also, if X is smooth, that is, the duality mapping J of X is single
valued then a retraction P of B ontoD is sunny and nonexpansive if and only if 〈x−Px, J(z−
Px)〉 ≤ 0, for all x ∈ B, for all z ∈ D [6, 11].

Remark 4.7. Note that Theorem 4.2 proves the convergence to a fixed point in S, with F(S)
being constructively proven to be nonempty by first building a sufficiently large convex
compact C0 so that the solution of the iterative scheme (4.1) is always bounded on C0.
Note also that Theorems 4.1 and 4.2 need not the assumption of Z ⊂ �∞(S) being a left-
invariant S-stable subspace of containing “1” and to be a left-invariant mean on Z, although
it is assumed to be strongly left regular so that it fulfils limk→∞‖μk+1 − μk‖ = 0; for all
μk ∈ Z∗ (Assumption 1(7)), see Definition 3.6. However, the convergence to a unique fixed
point in the set F(S) is not proven under those less stringent assumptions. Note also that
Assumption 1(8) required by Theorem 4.1 and also by Theorem 4.2 as a result is one of the
two properties associated with the S-stability of Z.

The results of Theorems 4.1 and 4.2 with further considerations by using Definitions
4.4 and 4.5 allow to obtain the convergence to a unique fixed point under more stringent
conditions for the semigroup of self-mappings T(μk) : C → C, μk ∈ Z∗ as follows.

Theorem 4.8. If Assumption 1 hold and, furthermore, Z is a left-invariant S-stable subspace of
�∞(S) then the sequence {xk}, generated by (4.1), converges strongly to a unique x∗ ∈ F(S); for
all x0 ∈ C, for all ωk ∈ W , for all r ∈ R which is the unique solution of the variational inequality
〈(f − I)x∗, J(y − x∗)〉 ≤ 0, for all y ∈ F(S). Equivalently, x∗ = Pfx∗ where P is the unique sunny
nonexpansive retraction of C onto F(S).

The proof follows under similar tools as those used in [6] since F(S) is a nonempy
sunny nonexpansive retract of C which is unique since T(μk) is nonexpansive for all μk

∈ Z∗.

Proof. Let {xk} be the sequence solution generated by the particular iterative scheme resulting
from (4.1) for any initial conditions x0 = x0 ∈ C when all the functions ϕj and r are zeroed. It
is obvious by the calculation of the recursive solution of (4.1) from (4.19) that the error from
both solutions satisfies

xk = xk −
k−1∑

�=0

⎛

⎝
k−1∏

j=�+1

[
βj
]
⎞

⎠

⎛

⎝
s�∑

j=1

νj�ϕj

(
d
(
ω�,ω�−p

))
+ δ�r

⎞

⎠; ∀k ∈ Z+. (4.24)
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Since the convergence of the solution to fixed points of Theorems 4.1, 4.2, and 4.8 follows also
for the sequence {xk} it follows that a unique fixed point exists satisfying

x∗ = x∗ −
∞∑

�=0

⎛

⎝
∞∏

j=�+1

[
βj
]
⎞

⎠

⎛

⎝
s�∑

j=1

νj�ϕj

(
d
(
ω�,ω�−p

))
+ δ�r

⎞

⎠, (4.25)

where x∗ ∈ F(S) is unique since x∗ ∈ F(S) is also unique from Theorem 4.8. Assume that
βi ∈ (0, β) with β < 1. Then,

∣
∣x∗ − x∗∣∣ ≤ lim

k→∞

k∑

�=0

⎛

⎝
k∏

j=�+1

[
βj
]
⎞

⎠

⎛

⎝
s�∑

j=1

νj�ϕj

(
d
(
ω�,ω�−p

))
+ δ�r

⎞

⎠

≤ 1
1 − β lim sup

k→∞

∣∣∣∣∣∣

s�∑

j=1

νj�ϕj

(
d
(
ω�,ω�−p

))
+ δ�r

∣∣∣∣∣∣
.

(4.26)

If δk = 1 and βk = β < 1; for all k ∈ Z0+ and the ϕj -functions are zero then both fixed points
are related by the constraint x∗ = x∗ − r/(1 − β). Thus, consider a representation S := {T(s) :
s ∈ S} of a left reversible semigroup S as Lipschitzian mappings on C (see Definitions 3.2
and 3.3), a nonempty compact subset of the smooth Banach space X with Lipschitz constants
{k(s) : s ∈ S}which is asymptotically nonexpansive. Consider the iteration scheme:

xk+1 = βkxk + αkf(xk) + γkT
(
μk

)
xk = βkxk +

(
1 − βk

)
zk, (4.27)

zk =
1

1 − βk
(
αkf(xk) + γkT

(
μk

)
xk

)
, (4.28)

with x0 ∈ C, where

(i) {μk} is a strongly left-regular sequence of means on Z ⊂ �∞(S), that is, μk ∈ Z∗ (the
dual of Z). See Definitions 3.5 and 3.6;

(ii) S is a left reversible semigroup represented as Lipschitzian mappings on C by S :=
{T(s) : s ∈ S}.

Assumption 2. The iterative scheme (4.27) keeps the applicable parts of Assumptions 1(1)–
1(5), 1(8) for the nonidentically zero parameterizing sequences {αk}, {γk}, and {βk}.
Assumptions 1(6) and 1(7) are modified with the replacements C → C, S → S, and S → S.

Theorems 4.1 and 4.8 result in the following result for the iterative scheme (4.27) for
T(μk) : C → C, μk ∈ Z∗.
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Theorem 4.9. The following properties hold under Assumption 2.

(i) max(supk∈Z0+
|xk|, supk∈Z0+

|T(μk)xk|) < ∞; for all x0 ∈ C. Also, ‖xk‖ < ∞ and
‖T(μk)xk‖ < ∞ for any norm defined on the smooth Banach space X and there exists
a nonempty bounded compact convex set C0 ⊆ C ⊂ X such that the solution of (4.2)
is permanent in C0, for all k ≥ k0 and some sufficiently large finite k0 ∈ Z0+ with
maxk≥k0(‖xk‖, ‖T(μk)xk‖) ≤ dC0

:= diamC0.

(ii) limk→∞‖T(μk)xk −xk‖ = 0 and xk → zk → γkT(μk)xk/(1−βk) → T(μk)xk → x∗ ∈
C0 as k → ∞.

(iii) ∞ > |x∗ − x0| = |limk→∞
∑k

j=0(xj+1 − xj)| = |
∑∞

j=0(αjf(xj) + (βj − 1)xj + γjT(μj)xj)|.
(iv) Assume that the nonempty convex subset C of the smooth Banach space X, which contains

the sequence {μk} of means on Z, is such that each element μk ∈ Rm
0+; for all k ∈ Z0+, for

somem ∈ Z+ so that (4.1) is a positive viscosity iteration scheme (4.27). Then,

(iv.1) {xk} is a nonnegative sequence (i.e., all its components are nonnegative for all k ≥ 0,
for all x0 ∈ C), denoted as xk ≥ 0; for all k ≥ 0.

(iv.2) Property (i) holds for C0 ⊆ C and Property (ii) also holds for a limiting point x ∗ ∈ C0.
(iv.3) Property (iii) becomes

∞ >
∣∣x ∗ − x0

∣∣ =

∣∣∣∣∣∣

∞∑

j=0

(
αjf
(
xj

)
+ γjT

(
μj

)
xj

) −
∞∑

j=0

((
1 − βj

)
xj

)
∣∣∣∣∣∣

(4.29)

what implies that either

∞∑

j=0

(
αjf
(
xj

)
+ γjT

(
μj

)
xj

)
<∞,

∞∑

j=0

((
1 − βj

)
xj

)
<∞, (4.30)

or

lim sup
k→∞

k∑

j=0

(
αjf
(
xj

)
+γjT

(
μj

)
xj

)
=∞, lim sup

k→∞

∞∑

j=0

((
1−βj

)
xj

)
=∞. (4.31)

(v) If, furthermore, Z is a left-invariant S-stable subspace of �∞(S), then the sequence {xk},
generated by (4.27), converges strongly to a unique x ∗ ∈ F(S); for all x0 ∈ C, for all
r ∈ R which is the unique solution of the variational inequality 〈(f − I)x ∗, J(y − x ∗)〉 ≤
0, for all y ∈ F(S). Equivalently, x ∗ = Pfx ∗ where P is the unique sunny nonexpansive
retraction of C onto F(S). Furthermore, the unique fixed points of the iterative schemes
(4.1) and (4.27) are related by

x ∗ = x∗ −
∞∑

�=0

⎛

⎝
∞∏

j=�+1

[
βj
]
⎞

⎠

⎛

⎝
s�∑

j=1

νj�ϕj

(
d
(
ω�,ω�−p

))
+ δ�r

⎞

⎠. (4.32)

If, in addition, δk = 1 and βk = β < 1; for all k ∈ Z0+ and the ϕj-functions are identically
zero in the iterative scheme (4.1), then x ∗ = x∗ − r/(1 − β).
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Remark 4.10. Note that the results of Section 4 generalize those of Section 2 since the iterative
process (4.1) possesses simultaneously a nonlinear contraction and a nonexpansive mapping
plus terms associated to driving terms combining both external driving forces plus the
contribution of a nonlinear function evaluating distances over, in general, distinct metric
spaces than that generating the solution of the iteration process. Therefore, the results about
fixed points in Theorem 2.1(vi)-(vii) are directly included in Theorem 4.1.

Venter’s theorem can be used for the convergence to the equilibrium points of the
solutions of the generalized iterative schemes (4.1) and (4.27), provided they are positive, as
follows.

Corollary 4.11. Assume that
(1) f, T(μk) : C ×Z0+ → Rm

0+ are both contractive mappings with ∅/=C ⊂ Rm
0+ being compact

and convex, {μk}k∈Z0+
∈ Z∗, such that Z is a left-invariant S-stable subspace of �∞(S) with S being

a left reversible semigroup;
(2) x0, x0 ∈ C ⊂ Rm

0+, r ∈ R0+, with C ⊃ {0} being compact and convex, αk ∈ [0, α],
γk ∈ [0, γ], δk ∈ [0, δ] and βk ∈ [0, 1); for all k ∈ Z0+ for some real constants α, γ, δ ∈ [0, 1), and∑∞

k=0 δk <∞ if r /= 0;
(3) limk→∞(

∑k
j=0(1 − βj)) = +∞ and ∃ limk→∞βk = 1.

Then, the sets of fixed points of the positive iteration schemes (4.1) and (4.27) contain a
common stable equilibrium point 0 ∈ Rm

0+ which is a unique solution to the variational
equations of Theorems 4.8 and 4.9; that is, F(S) ∩ F(S) ⊃ {0} and that x∗ = x ∗ = 0.

Outline of Proof

The fact that the mappings f, T(μk) : C × Z0+ → Rm
0+ are both contractive,

∑∞
k=0 rδk < ∞ and

x0, r ∈ R0+ imply that the generated sequences {xk}, {xk} are both nonnegative and bounded
for any x0, x0 ∈ C ⊂ Rm

0+ and they have unique zero limits from Theorem 2.1(v).
The following result is obvious since if the representation S is nonexpansive, con-

tractive or asymptotically contractive (Definitions 3.3 and 3.4), then it is also asymptotically
nonexpansive as a result.

Corollary 4.12. If the representation S := {T(s) : s ∈ S} is nonexpansive, contractive or
asymptotically contractive, then Theorems 4.1, 4.2, and 4.8 still hold under Assumption 1, and
Theorem 4.9 still holds under Assumption 2.
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