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Abstract 
 
The increasing ability to gather, store and process health care information, 
through the electronic health records and improved communication 
methods opens the door for new applications intended to improve health 
care in many different ways. Crucial to this evolution is the development of 
new computational intelligence tools, related to machine learning and 
statistics. In this thesis we have dealt with two case studies involving 
health data. The first is the monitoring of children with respiratory diseases 
in the pediatric intensive care unit of a hospital. The alarm detection is 
stated as a classification problem predicting the triage selected by the 
nurse or medical doctor. The second is the prediction of readmissions 
leading to hospitalization in an emergency department of a hospital. Both 
problems have great impact in economic and personal well being. We 
have tackled them with a rigorous methodological approach, obtaining 
results that may lead to a real life implementation. We have taken special 
care in the treatment of the data imbalance. Finally we make propositions 
to bring these techniques to the clinical environment. 
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1 

Chapter 1  
Introduction 

This Chapter provides the introduction to the Thesis giving its motivation, 

objectives and actual contributions. The Chapter is intended for a quick 

assessment of the Thesis content and the merits of the doctoral candidate, 

so it contains additionally the list of publications achieved. 

1.1 Motivation 

The present Thesis deals with the use of machine learning tools towards 

the improvement of health care by predicting specific conditions. The 

increasing facility to gather data and to analyze it, with solidly established 

methodologies and techniques has fostered this kind of approaches. 

However, this work does not deal with big data per se, because the data 

sets that we have exploited, though bigger than academic toy problems, are 

far from being considered big data. Another trend that we are not following 

is the cloud based processing of the data [ABU12] [SUL14] [STA14]. In 

essence, cloud computing poses many issues regarding data protection that 

cannot be risked when dealing with health data [ROD13], though it can be 
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seen as an empowerment in isolated rural areas [LIN14] achieving 

ubiquitous healthcare [HE13], or an easy way to collaborate [LAI12]. The 

fact is that intelligent computing is becoming increasingly used to create 

predictive models in many areas of medicine and health-care [PAN09]. 

Data mining as a specific aspect of intelligent processing bordering 

statistics is very relevant [HAN11]. In this Thesis we are concerned with 

the quantitative measures gathered in electronic health records, so we do 

not need to deal with the already difficult problem of extracting 

information from free style written reports [NEU14], requiring text 

processing and natural language techniques. 

            

1.1.1 Triage prediction in respiratory pediatric 
intensive care units 

 

This manuscript details a study based on data obtained monitoring children 

hospitalized in the pediatric intensive care unit because of respiratory 

complications in the city of Santiago de Chile. Respiratory diseases have 

an increasing prevalence in large urban concentrations of the world, due to 

the apparently unstoppable increase of air pollution originated from a 

diversity of sources. Children are specially a fragile part of the population 

suffering these conditions. Improved monitoring of critical patients by 

means of automatized data gathering and processing, i.e. alarm raising, 

aims to alleviate the risks of critical patients. Pediatric respiratory critical 

care has not received much attention in the literature; most of it is devoted 

to adult patients suffering specific degenerative conditions. However, 

children care has specific conditions, such as the strong dependence of 

some physiological signals, i.e. heart rate, on the patient age. We approach 

the problem as triage prediction problem, formulated as multi-class 
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classification problem, taking special care in the age normalization of 

physiological variables. Available data for use as classification features is 

scarce, in the sense that only a few variables are available, and that much 

of the qualitative information used by the medical doctors is not available. 

In this Thesis we report the experimental results obtained on a data sample 

covering patients of two years provided by a local pediatric hospital. The 

results conclude that it is possible to some extent to predict the triage that 

the medical doctors will assign the critical patients. However, we have also 

detected that medical doctors follow very conservative policies, i.e. taking 

into consideration the previous state allows almost perfect prediction. We 

consider these results preliminary steps towards a more comprehensive 

automation of the pediatric intensive care units, especially regarding the 

automatic raising of some flags when critical situation appears. Timeliness 

of the alert may be a life or death difference. Working with actual local 

hospital data in the design of the alerts is quite important, because studies 

made in countries like the USA may be biased by local customs, from food 

to exercise habits. Also, equipment available in one country may not be 

available in another, or in a different level hospital budget. Finally, local 

environmental conditions may invalidate conclusions taken from another 

environment. For instance, the local features of the pollution in Santiago, 

chemical contaminants and kind of particles, may be quite different from 

other cities. Even more, the specific epidemic conditions in Santiago may 

be irreproducible in other countries/towns, i.e. there is no high prevalence 

of respiratory diseases in children of the Basque Country.   
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1.1.2 ED Readmission prediction 
 
Emergency Departments (ED) suffer heavy overload due to lack of 

primary attention service. Increasingly geriatric admissions pose specific 

problems contributing to this overload. A consequence is the increase of 

patient returning short time after discharge, i.e. readmissions, sometimes 

requiring hospitalization. In this latter case the patient problem was not 

solved in the first admission and its condition has aggravated.  Therefore, 

the economic issues involved in the administration of the readmission 

event are worsened by the unsolved or aggravated health problem. 

Readmission has been tackled in many aspects by health care systems, and 

for various specific populations, each having specific features that impede 

porting solutions from one domain to another. Take for example the 

definition of the readmission threshold, i.e. the specific time interval within 

which the next visit of a patient will be considered a readmission. The 

insurance companies in the USA have set a threshold of 30 days for 

economical reason for the general hospitalization of patients. However, 30 

days is a long term horizon in ED, where critical situations must be solved 

in a matter of minutes. For this reason, some countries, i.e. Chile, have 

adopted a threshold of 3 days to declare ED readmissions. 

According to these readmission threshold variations, we have 

considered several such thresholds in our prediction experiments. 

Prediction of hospitalization following ED readmission is posed over a 

heavily imbalanced class distribution, so we have considered several 

approaches to deal with class imbalanced datasets and several base 

classifiers, as well as performance measures that enhance the critical 

comparison between approaches. Experimental works are carried out on 

real data from a university hospital in Santiago, Chile, corresponding to the 
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period between January 2013 and April 2016, including pediatric and adult 

admissions to the ED. We achieve results that encourage the development 

of real life application of the data balancing and classification approach for 

prediction of hospitalization after readmission.  

1.2 Objectives 
 
The general objective of the Thesis is to tackle health care data problems 

from a Computational Intelligence perspective, building predictors that 

solve the problems stated in a machine learning framework. Mostly we 

formulate the problems as classification problems. We do not deal with 

regression problems for forecasts.  

The general approach is data driven, i.e. a problem is defined by the 

available data, and models are induced from the data, instead of extracting 

knowledge rules from the expertise of the medical doctors.  

The specific objectives are related to the specific problems 

attacked. We formulate each problem as a classifier learning problem; 

hence the classification performance is the measure of success. We assess 

the classification performance via cross-validation, obtaining estimations 

of the expected performance.  

For the respiratory crisis monitoring, we look for the maximal 

accuracy predicting the case of transition to the worst state, equivalent to 

raising an alarm to notify the nurse that some critical situation is about to 

happen. 

For the readmission prediction, we try to predict the event of the 

hospitalization of a readmitted patient, because it is a worst case scenario, 

where the medical condition has worsened dramatically, and it was not 

completely solved in the first visit.  
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From the operational point of view, to carry out the experiments we 

needed to set the working environment, which was based on the R 

language and packages available, and preprocess the data in order to be 

able to use them for training and testing. Data preprocess was different in 

each case, filling missing values, correcting manually some variable 

values, or discarding records with too many errors. Also we ensured that 

the data was fully anonymized. 

In the readmission case, the data set was not small, so managing 

needed to carefully tap on the resources of the R environment and the 

available computing power. Therefore, managing data consistently was an 

additional operational objective.  

Data classes were strongly imbalanced, especially in the case of the 

readmission prediction. Therefore, we had to deal with this imbalance 

treating the datasets before training, and ensuring that the manipulation of 

the training data did not contribute any bias to the testing phase.  

The goal from the real life application point of view is to make 

recommendations about the actual classifier learning technique as well as 

which preprocessing (i.e. class balancing) is more appropriate for the data 

at hand. 

 

1.3 Contributions 
 

1. We have tackled two non-trivial realistic problems in the domain of 

health data processing, using real life datasets provided by hospitals 

in Santiago, Chile. Pending permission from the hospitals, we plan 

to publish the anonymized data to allow reproducibility of our 

results, or development of advanced solutions. 
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2. We provide a literature review and state of the art of each of the 

topics covered by the thesis. 

3. We report results on the performance of the tested classifiers on the 

respiratory intensive care unit, identifying the most appropriate 

classifier training strategy. We provide recommendations for a real 

life implementation. 

4. We report results on the performance of both the tested classifiers 

and the class balancing method tested to improve sensitivity of the 

classifiers. We provide recommendations on the class balancing 

method, and the classifier to be used for real life implementations.  

5. Some ideas and discussion for future work are provided. 

 

1.4 Contents of the thesis 
 
● Chapter 2 contains a review of the literature concerning the main 

aspects of the Thesis, i.e. classification validation methodology, 

data imbalance preprocessing, pediatric respiratory crisis 

monitoring, and patient readmission. 

● Chapter 3 contains our contribution regarding the triage prediction 

of children with respiratory crisis. State of the art classifier learning 

methods are applied successfully to the available dataset. 

Recommendations for real life techniques are proposed. 

● Chapter 4 contains our contribution regarding prediction of 

hospitalization after readmission. We have to deal with imbalanced 

datasets, so the carefully designed data processing pipeline is 

described, and results of the entire data balancing and classification 

performance were provided. Recommendations on the most 

appropriate classifiers and data balancing methods are provided 
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● Chapter 5 contains some discussion of the paper contributions, 

conclusions and ideas for future work. 

● Appendix A recalls definitions of the classifier learning methods. 

● Appendix B recalls definitions of class data balancing methods. 

 

1.5 Publications achieved 
 

In this section we gather the publications that have been achieved during 

the works ending up in this Thesis. Some are directly related to the actual 

content of the Thesis, others are indirectly related in the sense that are the 

fruit of collaborations that have in some way involved methods also used 

in the actual Thesis work 

1.5.1 Main publications in the work of the thesis 
 
Asier Garmendia, Sebastian A. Rios, Jose M Lopez-Guede, Manuel Graña, 

“Triage prediction in pediatric patients with respiratory problems”.  

Neurocomputing (accepted) 

       

Asier Garmendia, Manuel Graña, Jose Manuel López-Guede, Sebastián 

Ríos. “Predicting patient hospitalization after emergency readmission”. 

Cybernetics and Systems (accepted) 
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1.5.2 Publications achieved as a collaboration 
indirectly related to the Thesis 
 
Jose Manuel Lopez-Guede, Jose Antonio Ramos-Hernanz, Jesus Maria 

Larrañaga, Asier Garmendia, Valeriu Manuel Ionescu., (2015), “Study on 

the influence of Lambda parameter on several performance indexes in 

Dynamics Matrix Control”. Journal of Electrical Engineering, Electronics, 

Control and Computer Science, Vol 1, No 2, pp 1-8, ISSN 2457-7812 

 

Eneko Solaberrieta, Aritza Brizuela, Cristina Fraile, Rikardo Minguez, 

Asier Garmendia, Olatz Etxaniz, Guillermo Pradies., (2015), “Integration 

of Reverse Engineering and Dental Mandibular Dynamics”. DYNA, Vol. 

90 Issue 6, pp 643-646, ISSN 0012-7361 

 

Eneko Solaberrieta, Asier Garmendia, Rikardo Minguez, Aritza Brizuela, 

Guillermo Pradies., (2015), “Virtual facebow technique”. The Journal of 

Prosthetic Dentistry, Volume 114, Issue 6, pp 751-755, ISSN 0022-3913 

 

Eneko Solaberrieta, Asier Garmendia, Aritza Brizuela, Jose Ramon Otegi, 

Guillermo Pradies, Andras Szentpétery.(2016), “Intraoral Digital 

Impressions for Virtual Occlusal Records: Section Quantity and 

Dimensions”. BioMed Research International, Volume 2016, pp 1-7, ISSN 

2314-6141 
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Chapter 2  
Literature review 
 
 

In this Chapter we provide a review of the literature regarding the two 

main topics covered in this Thesis in Chapters 3 and 4, namely prediction 

of respiratory crisis in children, and prediction of hospital readmission. 

The Chapter starts with some recall of Machine Learning role in 

modern health care data processing in Section 2.1. Section 2.2 reviews 

literature related to children respiratory disease monitoring. Section 2.3 

reviews the literature related to readmission prediction. 

 

2.1 Data processing and Machine 

Learning  

The use and analysis of large amounts of data is increasingly frequent in 

the health industry with the aim of improving the quality of healthcare. The 

volume of data and other properties such as the velocity of production and 

the need for real time response put the health care data into the realm of big 

data [BAT14][SUT15]. The promise of tackling with these large quantities 

of data is improvement on the quality of care and reduction of costs. The 
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big data approach promises the ability to pose questions at multiple levels 

and multiple scales, from the nano to the macroscopic, from the molecular 

interaction to the level of large human populations [HER14]. 

However, the quantities of data processed in this paper are far 

below any threshold for big data. For the analysis of such data, Machine 

Learning approaches have been suggested, and caution about the statistical 

value of conclusions have been also raised [CRO15]. Methodological rigor 

is critical for the appropriate validation of the models, using cross-

validation approaches that clearly separate training from testing data, thus 

avoiding any circularity or double dipping effect.  

Machine Learning approaches encompass supervised and 

unsupervised learning methods. The latter better represented by the 

clustering approaches, such as the k-means [HAR15], that do not use any 

gold standard information to drive the learning. Clustering methods are 

exploratory in nature, proposing alternative representations of the data that 

may ease visualization and interpretation. On the other hand, supervised 

methods require some gold standard labeling of the data in order to 

estimate the error committed by the model, so training is guided by the 

minimization of such error. Supervised methods are predictive, either of 

the class label in classification problems, or of the given continuous index 

in regression problems. The distinction between regression and 

classification can be not so easy in cases where a continuous dependent 

variable is quantized in some intervals, and the predicted variable becomes 

a set of class labels.  

The frontier between Machine Learning and traditional statistics 

may also become blurred as far as any of the two basic tasks are carried 

out. In [SON04] a comparison between linear and non linear learning 

methods for survival prediction has been carried out, showing consistent 

superiority of the artificial neural networks. However, the greater 
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differences in prediction performance were related to the differences in 

population, from acute short term to long term predictions. Hinting that the 

quality of the data may be more critical than the learning algorithm. 

Machine Learning have been also used to tackle the problem of generating 

health care recommendations, much like in Amazon or Netflix,  in the form 

of medication and other treatment orders [CHE16] after mining the 

existing electronic health records. Machine learning techniques widely 

used are artificial neural networks [AMA13], decision trees [POD02], k-

nearest neighbor (kNN) classification [KHA14], k-means clustering 

[HAR15], and logistic regression [BAG01]. 

An important aspect of many health care datasets is the existence of big 

class imbalances, i.e. one of the classes is much more represented in the 

population than the other [LOP13]. Such kind of populations presents a big 

problem for most Machine Learning techniques which are naturally biased 

towards the majority class. In essence, the a priori probability of the class 

weights too much in most algorithms. The problem can be tackled in two 

basic ways: 

● Manipulating the dataset in order to achieve a more balanced 

representation of the classes. For the fair evaluation it is required 

that the testing phase is carried out over an imbalanced sample of 

the data, even if the actual training has been carried out on an 

artificially balanced dataset 

● Manipulating the learning algorithm so that it minimizes a version 

of the error function that takes into account the differences in the 

cost of misclassification, often much higher for the minority class.  
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2.2. Children respiratory disease 
monitoring 
      
The prevalence of respiratory diseases in the world is increasing 

alarmingly [CRU07]. This situation is particularly severe in the city of 

Santiago, capital of Chile [GAR14]. Children are one of the most affected 

groups by these diseases in Santiago [PRI07], as happens in other major 

world cities, such as Sao Paulo (Brazil) [SOB89]. Children respiratory 

diseases are a pandemic in the developing countries, and in regions of 

developed countries suffering high air pollution levels.  

There are a host of diseases related with respiratory problems 

[FIS65], although it is true that the particularities of the specific region 

clearly determine the greater or lesser incidence of these diseases. In the 

city of Santiago, besides the pollution caused by reasons inherent to a big 

city, the particular topography of the city, which is surrounded by the 

Andes, hinders the removal of pollutant particulates. The Environment 

Ministry of Chile provides through an internet portal daily data about air 

quality in the metropolitan region [MAP16]. Respiratory diseases often 

become chronic, passing from childhood to adulthood. According to the 

World Health Organization, chronic diseases kill more than 36 million 

people each year. If we analyze the situation in Chile, as  illustrated in 

Figure 2.1, deaths caused by most chronic diseases show a clear downward 

trend [WHO16], however not all chronic diseases follow the same pattern. 

While cardiovascular diseases show a clear decrease in the mortality rate in 

recent years, chronic respiratory diseases remain steady (shown in more 

detail in Figure 2.2). One reason for decrease in mortality is better patient 

care. Therefore, care improvements for respiratory disease patient are 

strongly needed. Data mining techniques [FAY96] have been 

acknowledged as potential source of improvements for patient treatment 
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and follow up. Specifically, in this Thesis we are dealing with the 

prediction of the risk level as specified by the triage classification 

performed by the nurse or the doctor. 

Machine learning has already produced predictive models in the 

pediatric area, such as PRISM (Pediatric Risk of Mortality), a system that 

delivers an index that determines the probability of death of a patient 

admitted in the unit of critical hospitalization, up to mechanisms that 

attempt to identify abnormal behaviors in vital signs in order to prevent 

diseases using as a basis statistical studies of data [HAN10]. Other 

predictive systems seek to predict the likelihood of mortality in patients 

based on a traditional regression approach. For example, the Predictive 

Index of Mortality (PIM) system performs a measurement of variables as 

vital signs, fan pressure, among others. These are measured in the first 24 

hours after admission of a patient in the PICU (Pediatric Intensive Care 

Unit) [BRA06]. Other authors consider the impact of variables using a 

scoring system based on the values of the variables [RAD14]. Other studies 

discover patterns of deviation of vital signs by analyzing its percentiles, so 

that signal deviations from expected ranges of can be identified on 

hospitalized children [BON13] [SUB11].  

In this Thesis we apply Machine Learning techniques to predict the 

Triage variable, which is revised by the nurses and doctors each hour while 

the patient is under intensive care. The  

     

2.3. Readmission risk prediction 

approaches 

Nurse practice and culture [FLE09] [KOV08] [SCO05] is evolving thanks 

to the advent of new technologies that allow the use of data and 



 
 
 

CHAPTER 2. LITERATURE REVIEW 
 
 

 
16 

 
 
 
 
 

accumulated evidence [ZIM14]. Though the introduction of electronic 

health records meets some reluctance by the practitioners because they 

claim that non justified additional effort must invested  filling the them, the 

accumulated information allows for a posteriori processing and extracting 

conclusions from more extensive and accurate data collection. One not 

minor task is to assess from the gathered information conditions that can 

have health or economic impact, such as the likelihood of the readmission 

event. In Spain, 12.4% of the internal medicine admissions in the period 

2006-2007 were rehospitalized within 30 days [ZAP12]. This prevalence 

of readmissions is widespread in the health care systems, with a huge 

economic and personal health cost. In this Thesis we focus on the 

readmissions in emergency departments (ED), which suffer additional 

stress due to the kind of patients and the fact that many non emergency 

patients resort to this service as a way to obtain quicker response due to the 

malfunction of other services. Therefore, readmissions can be especially 

cumbersome for these patients because they imply that somebody that was 

supposed to have an acute urgent condition was returned home without 

appropriate care.  

The issue of deciding if a patient revisiting the service is a 

readmission or not is not trivial. Many papers in the literature assume that 

30 days is the threshold for readmission [ZAP12], mainly because this 

timeline was set in USA by the medical insurance companies to enforce 

economic conditions on hospitals. However, 30 days may be too large 

interval for an ED readmission, because the repetition of a condition after 

so many days implies that it is more a long term disease than an 

emergency. Therefore some countries, i.e. Chile, have set a shorter interval 

for the categorization of a revisit as a readmission, i.e. 3 days.   
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Prediction of readmission risk has been approached for specific 

populations, as discussed in a recent review [KAN11]. Often indices are 

limited to specific subpopulations, such as people suffering from Chronic 

Obstructive Pulmonary Disease [NGU14] or Acute Myocardial Infarction 

[ZAI13], or services, such as internal medicine [ZAP12].  The modeling 

approaches often combine several administrative, demographic, 

biochemical measures, and psychological tests to compute a risk index, 

which can be estimated by some regression approach based on actual data. 

Differences between centers in electronic medical records and recorded 

patient information lead to the need to develop institution specific models, 

i.e. predictive models trained with institution specific data [YU15], or 

specific healthcare networks [HAO15].  

Aging population poses new problems to the health care systems 

[PAR07], and it is a growing global concern [BLO10] [REC09]. This 

situation is also felt in the ED suffering of additional workload caused by 

geriatric patients. Prediction works focused on a stratified sample of 

�older patients reported in [BES15] developed specific predictors for each 

kind of patient. Patient strata were the following: diabetes mellitus, heart 

failures, chronic respiratory problems, and general care problems. Feature 

predictive value for each population strata was modeled by the Gini index 

associated to the variable in a decision tree built over the dataset, following 

the method suggested in [BRE01]. The results showed wide differences in 

the set of most discriminant variables between population strata, 

suggesting that specific population strata predictors are justified. 

The highest rates of ED readmission, the longest stays, and greatest 

resources invested in ancillary tests correspond to adults above 75 years of 

age [PER15] [SIL15]. Despite this intense use of resources, these patients 

often leave the ED unsatisfied, with poorer clinical outcomes, and higher 

rates of misdiagnosis and medication errors compared to younger patients. 



 
 
 

CHAPTER 2. LITERATURE REVIEW 
 
 

 
18 

 
 
 
 
 

Additionally, they have a higher risk of ED readmission, hospitalization 

after readmission, death and institutionalization [CAR11]. Readmission 

risk prediction is therefore critical for this kind of patients [DES15].  

A widely accepted approach is the LACE readmission index 

[VAN10] developed from data of a network of Canadian hospitals. It has 

defined on the base of logistic regression analysis of physiological and 

demographical variables of a sample of near 50000 patients. Though not 

small dataset is smaller than our own database in this paper. The LACE+ 

[VAN12] makes use of administrative data to improve the risk assessment.  

Closely related to LACE, HOMR (Hospital patient One year Mortality 

Risk) by [VAN15] is a model for predicting death within one year after 

hospital admission. According to the authors the goal is to predict long-

term survival after admission to hospital. The variables used are included 

in the following categories: Demographics (age, sex, etc.), Health status 

(Charlson comorbidity index, number of visits to hospital emergency etc.), 

and Acuity disease (emergency admissions, direct intensive care unit 

admissions etc.). The dataset used for the development and validation of 

this model consists of more than three million instances obtained from 

several hospitals in the areas of Ontario, Alberta and Boston. 

Most modeling approaches use logistic regression as an established 

statistical technique that allows also assessing the significance of specific 

variables [ZAP12] [VAN10]. An approach based on classification by 

support vector machines (SVM) [YU15], allows tuning the prediction 

model to particular, avoiding to apply a risk index developed on a specific 

population to potentially very different populations. In this Thesis we 

follow this approach to tune the model to pediatric and adult 

subpopulations of a specific hospital.  

Variables taken into account vary from population to population. 

Most works deal with physiological, biochemical and 
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administrative/demographic information. The most predictive variables can 

be selected following various methods related to the machine learning 

approach used. For instance, logistic regression allows to assess the most 

sensitive variables analytically. Other approaches use the classifier 

building information, such as the Gini index used in [BES15].  Specific 

traits, such as medication regime are less predictive than expected, but 

clustering patients have been found to improve prediction [OLS16]. For 

instance, in the stratified study [BES15] the five most discriminant 

variables for the case management population are: Use of antipsychotic 

drugs, availability of caregiver, age, use of insulin, and mental disorder 

diagnosis. For the heart failure population, the five most discriminant 

variables are: diagnosis of vascular disease, renal disease, memory 

complaint, living alone, and use of inhalers. For the diabetes mellitus 

population, these five variables are: diagnosis of sensing impairment, use 

of heparin, comorbidity index, and arrhythmia and medication 

reconciliation. Therefore, wide variations in the collection of most 

significant variables must be expected, which hinders seriously the 

practical use of predictive models for large heterogeneous populations. 
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2.4. Figures 

 
 
Figure 2.1: Deaths from chronic diseases in Chile in the period 2000 - 2012 

[DEPT]. 
     

 
 
Figure 2.2: Deaths from respiratory diseases in Chile in the period 2000 to 

2011[DEPT] 
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Chapter 3  
Prediction of respiratory crisis 
 
          
 

This Chapter is devoted to the first practical application of computational 

intelligence and predictive approaches to a health care problem. 

Specifically, we tackle the problem of respiratory crisis prediction in 

children, which is a rather critical situation, because children crisis evolve 

quite fast and dramatically, if not treated. Crisis prediction is considered as 

the prediction of the Triage value for the children in an hourly monitoring 

environment. 

The structure of the Chapter is as follows. Section 3.1 provides a 

short introduction to the Chapter objectives, and a short review of the state 

of the art of data mining applications in health care, with the aim of setting 

the stage for applications in respiratory disease assistance. Section 3.2 

provides the description of the actual dataset employed for the 

computational experiments, explaining the variables included in the study, 

and their preprocessing.   Section 3.2.1 provides descriptive statistics of the 

data, which serve as an analysis previous to the application of machine 

learning approaches. Specifically, we look closely at the dependence of 

some variables with respect to the patient age. Section 3.2.2 discusses two 

ways of normalization of the dependent variables to make them 
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uncorrelated with patient age that we have explored. Section 3.3 describes 

the computational experiments conducted seeking to predict the triage at 

each time instant. Section 3.4 presents the results of these experiments. 

Finally, Section 3.5 gives our conclusions. 

  

3.1 Introduction 
      
The prevalence of respiratory diseases is increasing in big populated areas 

which also attract industries and heavy traffic. Air pollution is the leading 

cause for children hospitalization in developing countries. Children are the 

most vulnerable sector of the population to air pollution for several 

reasons: they are still developing the respiratory system; they have greater 

income of volume of air per unit of bodyweight per breath than adults; they 

perform rapid and deep breaths; and they are more typically mouth-

breathers [BAT07]. There are definitive evidences that areas with 

industries that are emitters of fine particles (PM2.5), sulfur dioxide (SO2) 

and nitrogen dioxide (NO2) have a greater prevalence of respiratory 

complications, increasing related hospital admissions [BRA16][MOO16]. 

A clear effect of diesel engine traffic on the increase of critical respiratory 

hospital admittances has been found [NIR15b]. However, pollution due to 

industry and transportation is not the unique cause. Regions naturally 

having high amounts of ambient dust in the air, like deserted zones 

[NIR15B], also suffer this kind of children respiratory pandemics. 

 Increasingly automated health monitoring systems are desirable, 

though they require advanced electronic equipment [URB15] that may not 

be widely available, such as the direct connection of continuous reading 

physiological sensors to decision support systems [CHA13][PER15b]. 

Already developed monitoring systems that use computational intelligence 
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tools, such as Markov models [RAV14], may have not taken into 

consideration the specific characteristics of the children population, i.e. the 

strong dependence between physiological variable values in the healthy 

state and the patient age. This neglect ion may render useless for children 

the proposed automated solutions.  In other words, it is not viable to apply 

successfully alarm detection systems developed for adults and aging 

subjects, over data extracted from them, to children. Monitoring and 

respiratory assistance has been received attention in the care of acute cases, 

such as children with muscular weakness [ABU15] or ventilated newborns 

[ACH16], but not very much for milder cases that can become acute when 

untreated, such as is often the case of low income children [STE16]. 

 The main focus of the work reported in this Chapter is building 

predictive models of the risk levels of pediatric patients hospitalized for 

diseases related with respiratory problems. These risk levels are 

determined by a "triage" process [ROB06]. In the data considered in this 

paper, risk levels are coded by numbers from 1 to 4, with 1 being the 

mildest and 4 the most severe, risking death. Predictive models have been 

built by machine learning approaches [BAG01] [HAR15] [KHA14] 

[POD02], applying a strict cross-validation methodology to assess 

generalization of prediction results. The available data comes from health 

records previous to any electronic implementation so that they have been 

entered manually in excel spreadsheets.  Therefore they are noisy and need 

some preprocessing to remove erroneous values and records with missing 

variable values. After preprocessing and data cleaning, we carry out a 

feature selection process, which can be exhaustive because of the small 

dimensionality of the data. We have not performed any transformation, 

such as Principal Component Analysis, in order to preserve the original 

meaning of the variables, and, therefore, to be able to argue with the 

experts about the value of findings. In medical applications it is essential to 
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have clear explanation of the actual rules that lead to a conclusion; 

otherwise the medical doctors tend to dismiss conclusions not supported by 

medical explanation and intuition. Besides, it is not clear up to what point 

the original data space is continuous enough to allow sensible data 

transformations.  

3.2. Description of the dataset 
      
The experimental data for the  work reported in this chapter is based on 

records obtained in pediatric units and CPU (Critical Patient Unit) of the 

Hospital Dr. Exequiel González Cortés (HEGC), which is a pediatric 

medical center belonging to the public health system of Chile, located in 

the municipality of San Miguel in Santiago de Chile. These records belong 

to patients who have different diagnoses, but all of them fall in the class of 

diseases considered as respiratory conditions. The initial number of records 

is 22025, corresponding to the hourly monitoring of  45 patients (29 boys 

and 16 girls) aged between a few months to 16 years, that were 

hospitalized in the intensity care unit sometime in the period between 2012 

and 2014. We had access to anonymized physiological measurements and 

record annotations. Before carrying out the analysis of the starting data, 

there has been a preprocessing of the data, considering, on the one hand, 

the contained variables, and, on the other hand, the records. Regarding the 

variables, we have the following ones:  

● Ancillary information: the patient Age, number of days 

hospitalized, time instant of variable measurement. The care 

protocol states that measurements are to be taken each hour of the 

day. There are two special times in the morning and afternoon 

when a more detailed medical visit is paid to the patient.   
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● Physiological variables measured: Temperature, Heart Rate, 

Respiratory Frequency, Systolic and Diastolic Blood Pressure. 

      

● The Triage assigned by the physician. This variable indicates the 

severity of the patient condition. There are four triage levels, being 

classified as 1 the mildest, and ranked 4th most severe.  

     

The objective is the prediction of triage. In other words, we aim to imitate 

the medical doctor decisions.      

            

3.2.1. Descriptive statistics of the dataset 
      
Considering the gender variable, from the 45 patients considered, 64.4% 

are male (29) and 35.6% women (16). Age is a quite important variable, 

because many normal physiological variable values are strongly dependent 

on it. For instance, heart rate is much quicker in small age children. The 

minimum, mean, and maximum age in the dataset are 0.08, 3.43, and 16.75 

years, respectively. Figure 3.1 gives a more precise idea of the distribution 

of patient age variable (measured in years). Most of the patients are of 

tender age, with mean around three years and half. On the other hand, there 

is a tail in the age distribution corresponding to adolescent patients of 

fifteen and sixteen years, which can be considered as chronic patients 

passing to the next layer of care. The Triage distribution is also irregular: 

7.3% with triage 1, 36.4% triage 2, 20.9% triage 3, and 35.4% triage 4. 

 To assess the dependence of the physiological variables on the age, 

we show the scatter plots and regression line of the Heart Rate, Respiratory 

Frequency,  Systolic Blood Pressure, and Diastolic Blood Pressure versus 

Age in Figures 3.2, 3.3, 3.4, and 3.5, respectively, separating the plots by 
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each Triage value. It can be appreciated that the younger patients have 

much higher Heart Rate and Respiratory Frequency than older children. 

The blood pressure variables do not show such trends. For this reason, it is 

necessary to normalize these variables removing the age dependent trend. 

3.2.2 Data preprocessing 

The respiratory monitoring data missing values were filled by using the 

previous value of the variable in the time sequence, because the natural 

behavior of the nurse is to write down only variables that have changed. 

The original data was written in paper sheets, the digitization was carried 

out manually to fill an excel spreadsheet with the data. Some variables 

were incorrectly transcribed in some registries giving inconsistent values 

that had to be corrected manually. When a register had too many errors it 

was removed. 

3.2.3. Approaches to the normalization of the age 
dependent variables 
      
Taking into account the age dependence of the physiological variables, 

before applying classification models, we have normalized the variables 

Heart Rate, Respiratory Frequency, Systolic Blood Pressure, and Diastolic 

Blood Pressure in order to achieve age independent classifiers. We have 

tried two normalization approaches:       

     

1. The first approach, denoted Norm1 in the results below, computes a 

linear regression model considering each of the dependent variables 

and the age variable. Then, the regression residuals are the 

classification feature new values corresponding to each of these 
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variables.         

     

2. The second approach, denoted Norm2, takes into account the 

published normal values of these variables by age ranges in healthy 

subjects [FLE11] [NORM]. The values of each record of each patient 

have been interpolated to the same common age range, obtaining 

standardized values.         

     

3.3. Experimental design 
      
To build Triage predictors from the normalized physiological features we 

have applied four kinds of classification algorithms: Multilayer Perceptron 

(MLP), Decision Trees (DT), k-Nearest Neighbors (k-NN), and Naive 

Bayes (NB). We have used the Caret package [CARET] (short for 

Classification and Regression Training) in the R programming 

environment, which provides a set of functions to streamline the process 

for predictive model creation and validation. This package allows to 

process the dataset applying "Repeated k-fold Cross Validation" using the 

learning algorithm as a parameter. Some further details are given in 

Appendix A. For the experiments in this Chapter we have applied 10-fold 

Cross-Validation repeated 3 times. We have carried out a feature selection 

process as detailed in Table 3.1, and the exploration of the value of each 

feature independently. 

Overall, 10 cross-validation experiments were carried out. Five 

experiments with the values of the variables that have some dependency on 

the age normalized by using the residuals of a linear regression on the age 

(Norm1). Other five experiments in an analogous manner, but with the 
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values of the dependent variables of the age normalized by interpolation 

inside the range of normal values of healthy children (Norm2). 

Notice that we have not used other conventional intelligent system 

tools such as case based reasoning [CHI93] because they are not easy to 

train, and they are not as robust to noise and uncertainty as the numerical 

methods referred that we apply. Specifically, case based reasoning has 

great difficulties to increase in a robust way the database, while neural 

network and probabilistic methods assume continuous representations that 

interpolate naturally between data samples. However, it can be the tool of 

choice in other applications where the cases are precisely described by 

crisp values, such as RFID information manipulation [CHO09] [POO09]. 

Some extensions using grey codes to achieve some kind of noise 

robustness have been proposed [XIN12] but need careful evaluation before 

being of use in our problems. Hybridizations of case based reasoning 

approaches may be of use in health care data, i.e. adolescent health care 

[WAN07], but are rare and have not been further exploited. 

3.4. Results 
      
The average accuracy obtained in cross-validation experiments where each 

input record contains only one feature, i.e. assessing the prediction power 

of each feature independently, is presented in Table 3.2. It can be 

appreciated that the only feature that provides a result above 0.70 accuracy 

is the Respiratory Frequency after normalization by linear regression 

(Norm1). The normalization by linear regression is significantly better than 

the categorization in age intervals (Norm2), confirmed by a one-sided t-test 

(p<0.01) computed over all results obtained with each normalization. The 

results, still, are far from being satisfactory. Table 3.3 provides the results 

for the combinations of features specified in Table 3.1. Significantly best 
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results are achieved by feature set #5 which includes past Triage values in 

the features for classification. (p<0.001 in pairwise t-test between feature 

set #5 against the others). An unexpected result is that the Respiratory 

Frequency seems to have a more salient role in the Triage decision that the 

Blood Oxygen Saturation, which is often referred by clinicians as the 

preferred biomarker for the severity of the respiratory condition.   

     

3.5. Conclusions 
      
The aim of this work is to develop automatized systems to monitor 

children suffering from respiratory diseases in a pediatric intensive care 

unit. We proceed by trying to emulate the Triage decisions of the 

physicians as recorded in a dataset containing the physiological variable 

measurements and the Triage decision. The dataset original recordings are 

quite noisy, with many missing values and some inconsistent variable 

values. Direct recording of physiological sensors and storage without 

human intervention would improve this situation, but these technologies 

are not widely available yet. The actual experiment allows extracting 

several conclusions on the data and the clinical protocol followed by the 

clinicians. First, it is surprising that the Respiratory Frequency appears to 

be much more influential in setting the risk level than the Blood Oxygen 

Saturation. When asked, clinicians answer that BOS is the primary variable 

to take decisions of patient state. The second important conclusion is that 

the clinical practice is guided by conservative decision strategies, 

explaining the big increase of accuracy achieved when the feature vector 

includes recent past Triages, and the fact that the decision “do not change 

the Triage” achieves 85% prediction accuracy. Thirdly, the very low 

prediction rates using the current value feature vectors (i.e. without past 
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triages) is an indication that there are unrecorded qualitative information 

that it is also very influential on the physician decisions. 

The improvement of clinical care practices requires additional 

feedback on the value of the actual stream of decisions taken by the 

practitioners. New data gathered will be including continuous monitoring 

of physiological variables, as well as analysis of ancillary information, in 

order to extract additional clues. The eventual outcome of the 

hospitalization, as well as the information about readmissions will help 

improve the Triage predictive system and the patient care. The ultimate 

goal is to obtain a continuous monitoring of the children to raise alarms in 

advance. Future works may also address the integration of the free style 

written information put down by either nurses or doctors in order to fill 

gaps in the actual information gathered from the monitoring [KIM16]. 

Such hybrid systems may greatly improve the knowledge extraction from 

the past monitoring records. 
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3.6. Tables and figures 
   

# Features 

1 T, HR, RF, BOS, SBP, DBP 

2 t ,T, HR, RF, BOS, SBP, DBP 

3 #H, T, HR, RF, BOS, SBP, DBP 

4 t , #H, T, HR, RF, BOS, SBP, DBP 

5 t , #H, T, HR, RF, BOS, SBP, DBP, TRt-i i=1, … 
,6 

  
Table 3.1: Feature selection experimental design. Variables T= 
Temperature, HR= Heart Rate, RF= Respiratory Frequency, BOS= Blood 
Oxygen Saturation, SBP= Systolic Blood Pressure, DBP= Diastolic Blood 
Pressure, #H =Hospitalized days, TRt= Triage at time t. 
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  Classifier 

Feat. Norm. MLP DT k-NN NB 

HR 
Norm1 0.3726 0.3741 0.4242 0.3733 

Norm2 0.3971 0.3965 0.3904 0.3959 

RF 
Norm1 0.5546 0.6987 0.7163 0.5555 

Norm2 0.5822 0.5919 0.5935 0.58 

T 
Norm1 0.4058 0.406 0.4109 0.4081 

Norm2 0.4058 0.406 0.4109 0.4081 

BOS 
Norm1 0.4474 0.4521 – 0.4573 

Norm2 0.4443 0.4511 – – 

SBP, DBP 
Norm1 0.4652 0.5188 0.4263 0.4457 

Norm2 0.4815 0.4935 0.4496 0.4506 

 
Table 3.2: Average accuracy achieved by each feature independently. 
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Classifier   

#Feat Norm MLP DT k-NN NB 

1 
Norm1 0.5749 0.5981 0.5521 0.5608 

Norm2 0.5952 0.5969 0.5534 0.5941 

2 
Norm1 0.5739 0.6014 0.5608 0.5665 

Norm2 0.5937 0.6017 0.5427 0.5999 

3 
Norm1 0.5812 0.6336 0.6179 0.5905 

Norm2 0.5939 0.671 0.6219 0.6173 

4 
Norm1 0.5814 0.6378 0.6171 0.5946 

Norm2 0.5965 0.6728 0.6023 0.6228 

5 
Norm1 0.8962 0.969 0.685 0.9359 

Norm2 0.8779 0.9695 0.6961 0.9353 

  
Table 3.3: Average accuracy for each of the feature sets in Table 3.1. 
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Figure 3.1: Frequency distribution of the variable age of patients. 
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Figure 3.2: Scatter plots of the Heart Rate versus Age for each triage value. 
     
     

 
    

       
Figure 3.3: Scatter plots of the Respiratory Frequency versus Age for each triage value. 
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Figure 3.4: Scatter plots of the Systolic Blood Pressure versus Age for each triage value. 
      
     

       

 
 

Figure 3.5: Scatter plots of the Diastolic Blood Pressure versus Age for each triage value. 
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Chapter 4  
Prediction of hospitalization 
after readmission 
 
 

This Chapter is devoted to another important healthcare problem: the 

prediction of the readmissions that end up in hospitalization of the patient. 

Such events are symptomatic of bad quality health care, and they have 

some relevant economical impact that can be prevented. The approach in 

this Chapter to tackle this issue is to build predictors of this event based on 

the information of the patient at the time of admission. The problem is 

heavily imbalanced, so that we test several class balancing procedures in 

order to improve sensitivity of the predictors. The computational 

experiments on the dataset provided by a university hospital allow 

recommending some specific class balance method and classifier training. 

Structure of the Chapter is as follows. Section 4.1 gives some 

introductory remarks. Section 4.2 presents the dataset and the features for 

classification. Section 4.3 presents the experimental design. Section 4.4 
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gives the computational experiments results. Finally, Section 4.5 gives 

some conclusions. 

 

4.1 Introduction 

Emergency department (ED) readmissions within a short period of time 

after a previous patient discharge are indicative of either a bad quality of 

healthcare service or structural problems in the healthcare systems, such as 

chronic patients being attended in the ED for lack of a proper planning of 

their care. There is a growing need for sensitive predictive tools in order to 

improve planning and distribution of resources, as well as to provide a 

better healthcare experience to the patient. Some tools are specifically 

tailored to geriatric patients treated at ED [BES15], others are developed to 

address the needs of general healthcare services  [HAO15], some are 

proposed as institution specific prediction models [YU15], finally some are 

focused on specific fragile populations [NGU14][OLS16][PER15]. 

In this paper we focus on the event of hospitalization after 

readmission prediction, which has received little attention in the literature. 

These events imply that the aggravation of patient condition since the last 

admission could have been prevented. We pose its prediction as a 

classification problem. Hospitalization is a rare event; therefore the class 

distribution in the dataset is forcefully very imbalanced, requiring the 

application of class balancing method before training the classifiers. We 

have carried out cross-validation experiments testing all combinations of 

class balancing method, classifier training techniques, and readmission 

thresholds. Readmission thresholds range from 3 days up to 30 days 

depending on political circumstances, so considering several corresponds 
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to the a discrete survival time estimation problem. Figure 4.1 shows the 

percentage of readmission events and patients as the readmission threshold 

grows in the actual database used in the experiments. Notice that, as 

expected, the number of readmission grows with the time allowed to count 

as a follow up and undesired return of the patient. Hence in some 

administrations, the threshold is set in order to justify some predetermined 

quality criteria, e.g. 3 days to achieve a rate of readmission below 5%.  

The anonymised dataset used in the computational experiments 

covers more than three years of the activity of the ED in a university 

hospital of Santiago in Chile, while the dataset explored in this paper 

includes adult and pediatric patients, which have quite different patterns of 

attention and readmission. Therefore, we have carried out separate 

experiments of hospitalization prediction for pediatric and adult 

populations. In this Chapter, Section 2 describes the dataset and the 

classification features. Appendices A and B describe the classification 

training and data balancing methods. Section 3 gives the experimental 

design ensuring that there is no bias in the results. Section 4 presents our 

results, and Section 5 ends with some conclusions and directions of future 

work. 

4.2 Dataset and classification features 

Our raw dataset is composed of ED admission events of N=101507 

patients divided into 2 groups, namely adults NA=80508 (78.82%) and 

pediatrics NP=21269 (20.96%). Some pediatric patients have changed into 

adults, so they appear in both lists. The dataset contains 156120 admission 

cases recorded between January 1st, 2013 and April 30, 2016 in the 

electronic medical record system of the Hospital José Joaquín Aguirre of 
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the Universidad de Chile.  At admission time a set of 17 variables were 

collected, including physiological measures, such as temperature, breath 

rate, heart rate and blood pressure, biochemical measures such as glucose 

level, demographic variables such as gender, age, fragility index. There are 

five triage levels to distribute the patients. Besides, the nurse had to select a 

motive for the admission, which is a categorical value among five 

hundreds. If the time between visits to the ED falls below the readmission 

threshold, then it is a readmission event, otherwise it is an unrelated event. 

Readmission thresholds vary between countries for political or economical 

reasons. We have considered four possible thresholds (3, 7, 15 and 30 

days). At discharge patients can go home (74.02 %), be hospitalized 

(12.72%), translated to another center (3.26%), or other situations (9.6%) 

including left without being seen (8.88%). We are concerned with the 

event of patient hospitalization as a result of readmission, because it is 

symptomatic of some lack of diagnosis or treatment leading to worsening 

of patient condition. Figure 4.1 shows the distribution of such events 

according to the readmission threshold.  Though these events are rare 

compared to the total ED events (2% at most), they are significant relative 

to the readmission events (more than 20%). Hence they deserve some 

special attention. Table 4.1 provides the most salient ED visiting motives, 

those accounting for 1.5% of the cases or more, for patients that are labeled 

as readmitted under the different readmission thresholds. To assess the 

difference in the patient profile, Table 4.4 provides the most frequent 

admission motives for the patients that end up hospitalized after 

readmission, according to the readmission threshold.  In all cases the non-

informative category OTHER is the most frequent, pointing to excessive 

workload on the nurses or difficulty to assess precisely the predefined 

categories. There is little difference on the main causes of readmission, 
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save for some minor changes in order.  Besides, it can be appreciated that 

the distribution of motives is similar for all the readmission thresholds, 

with little variations in their ordering. More acute symptoms have greater 

prevalence in the shorted threshold (3 days) than in the larger one (30 

days). 

The feature set is composed of the numerical codification of the 

variables measured at admission time. This codification is trivial in all 

variables, but not for the variable motive of the admission. One way to 

encode the motive is to define a binary variable per value, ending up with a 

feature space of more than 500 dimensions very sparsely populated, which 

poses many difficulties for training predictors. In this paper we have 

encoded the motive in a single numerical feature whose value is computed 

in one of two ways: (a) the percentage of hospitalizations for a given 

motive relative to the number of readmissions for this motive, and (b) the 

position of the motive in the ranking of readmissions. Notice that this 

ranking, according to Table 4.1 is different for each readmission threshold, 

so that this feature encoding depends on that threshold.    

Finally, we must consider the strong statistical differences that exist 

between adult and pediatric populations. Figure 4.2 shows the percentage 

of patients (figure 4.2a) and of events (figure 4.2b) that end up in a 

hospitalization, segregated into adults and pediatric populations. It can be 

appreciated a big difference in the number of readmissions between both 

populations. Figure 4.4 shows the distributions of the hospitalization events 

relative to the readmissions for the adult (fig. 4.4a) and pediatric (fig 4.4b) 

populations. It can be appreciated the adult population percentage of 

hospitalization is much higher for all the readmission thresholds (33%) 

than in the pediatric population (14%). There are many other differences 
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that counsel to tackle each population separately, as will be done in our 

experiments in Section 4.4, such as the distribution of motives for the visit. 

Table 4.2 and Table 4.3 show the distribution of motives for the adult and 

pediatric patients readmission, respectively. Analogously, Table 4.5 and 

Table 4.6 show the distribution of motives for the adult and pediatric 

patients that end up hospitalized after readmission. It can be appreciated 

that some causes that have little impact in the adult population, i.e. cough, 

are very salient in the pediatric population, and vice versa. 

4.3 Experimental design 

Figure 4.5 shows the data selection process carried out at each cross-

validation experiment repetition, in order to ensure that no bias is 

introduced in the classification evaluation. The process starts with the 

collection of all relevant data of readmission events (lower left corner) and 

proceeds by random splitting the data into 70/30 % subsets, which are 

used, respectively, for training and testing. Training includes the 

application of data balancing technique and the training of a classifier, 

which is applied to the test data. This process is repeated ten times for each 

combination of readmission threshold, data balancing method and classifier 

learning approach. That means that we carry out 5x4x4x10x2 cross-

validation experiments, each featuring independent data balancing 

processes (5), classifier training (4), readmission threshold (4), and coding 

of the “motive” variable (2). The performance indices reported in the 

experiments are the following: 

● Accuracy (A) computed as A=(TP+TN)/N 
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● Sensitivity (S) computed as S=TP/ (TP+FN) measures how much 

of the actual positive class we have discovered. 

● Positive Predictive Value (PPV)  PPV=TP/(TP+FP) measures how 

confident we can be of our positive predictions 

●   F= (PPVxS)1/2 is a kind of f-score which combines S and PPV to 

assess the power of prediction of the positive class in the case of 

imbalanced data. 

4.4 Computational results 

We have summarized the cross-validation results in two aspects. First we 

have considered which of the data balancing methods can be recommended 

for further exploitation of the data. To this end, we compute the average 

performance metrics achieved with each balancing method for the separate 

populations of adults and pediatric patients. Average is computed over all 

readmission thresholds and learning methods. We compute pairwise one 

sided t-test on the cross-validation results achieved by each pair of data 

balancing methods, declaring as winner the method that has significant 

improvement (p<0.001) in all comparisons. Second, we compare the 

classifier approaches in the same way. 

Table 4.7 shows the average results of the data balancing methods 

on the adult and pediatric populations, bold results per column signal the 

winner method. When ties occur both methods are highlighted. Notice the 

poor performance of the SMOTE approach. The winner method is the 

undersampling (UNDER) if we consider sensibility (S) and f-measure (F). 

Considering the positive predictive value (PPV), however, the winner is 

the TOMEK. Notice that the accuracy (A) is highly misleading, especially 

for the pediatric population which is much more imbalanced. Table 4.8 
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gives the average results of the learning methods tested. Attending to the S 

and F values, the multilayer perceptron (MLP) provides the best results; 

however Naive Bayes (NB) provides the best A and PPV values.  Notice 

the difference in results between adult and pediatric populations due to 

their statistical properties. Specifically, the value of A is strongly 

influenced by results on the majority population. As a final 

recommendation for a practical hospitalization prediction we propose the 

data balancing by undersampling and the use of MLP as the classifier 

training method. One reason for the comparatively poor results of SMOTE 

is that the interpolation of the motive cause is meaningless, because minor 

alterations may change dramatically its meaning, i.e. it is not truly a 

continuous valued variable. Finally, Table 4.9 shows the results averaged 

for each value of the readmission threshold, from 30 down to 3 days. 

Consistently with the results of the Tables 4.7 and 4.8, it can be 

appreciated that the results for the pediatric population are much worse 

than for the adult population. The average per readmission threshold is 

more biased towards the majority class as can be appreciated by the high 

accuracy and very low sensitivity and PPV values. The threshold of the 30 

days allows more precise prediction, but thought may be statistically 

significant they are not big differences, so that we can assert that prediction 

would be insensitive to the readmission threshold.  

4.5 Conclusions 

Readmissions can be taken as a measure of the quality of service in 

healthcare systems. In some countries, i.e. USA, hospitals are penalized by 

readmissions under a time threshold, i.e. 30 days. The problem is not 

widely tackled in the case of emergency departments (ED), which may 
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have stringent requirements, i.e. 3 days threshold in Chile. We have 

considered in this paper the case of hospitalizations as a result of 

readmission, which is a severe indication of the lack of medical solutions 

to the patient. We have approached the problem as a classification 

problem, with some success after testing several class balancing 

approaches and classifier learning methods. From our cross-validation 

experiments, we recommend the use of artificial neural networks as the 

classification training method, and majority class undersampling as the 

class balancing method. We found that the prediction results are relatively 

insensitive to the readmission threshold set. 

Future works on this same database may involve trying other 

codification methods for the variable "motive", such as the use of 

orthogonal binary codifications. Other approaches may deal with 

independent one class classifiers trained for each motive value. The results 

in this Chapter may serve to enhance the information collected at 

admission time, in order to improve prediction and treatment. 
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4.6 Tables and figures 

 

Readmission 

<3 days <7 days <15 days <30 days 

Motive % Motive % Motive % Motive % 

OTHERS 30.13 OTHERS 27.25 OTHERS 25.36 OTHERS 23.37 

GAP 8.20 GAP 8.02 GAP 7.54 GAP 7.36 

1/3DF 5.40 COUGH 5.16 COUGH 5.68 COUGH 6.87 

COUGH 4.28 1/3DF 4.91 24HF 5.21 24HF 6.68 

24HF 4.10 24HF 4.27 1/3DF 4.64 1/3DF 4.79 

HA 3.04 HA 3.11 HA 3.11 HA 3.01 

D 2.59 D 2.90 D 2.82 T 2.91 

T 2.43 T 2.63 T 2.62 D 2.79 

EP 1.86 EP 1.72 LegP 1.87 LegP 1.80 

LuP 1.51 LegP 1.72 LuP 1.69 AD 1.69 

LegP 1.45 4/7DF 1.71 EP 1.61 LuP 1.65 

4/7DF 1.44 LuP 1.61 AD 1.56 EP 1.49 

IFPr 1.27 AD 1.32 4/7DF 1.40 GD 1.47 

RFPr 1.25 RFPr 1.31 GD 1.33 NAUSEA/T 1.38 

NAUSEA/T 1.22 GD 1.28 NAUSEA/T 1.31 DYSURIA 1.25 

 

Table 4.1: Distribution of the most salient motives for readmission to the 
ED, for various readmission thresholds. Motive codes: GAP: general 
abdominal pain, 24HF: fever <24 hours, HA: headache, 1/3DF: fever 
between 1 and 3 days, GD: general discomfort, EP: epigastric pain, T: 
throwing up, D: diarrhea, LegP: leg pain, LuP: lumbar pain, AD: acute 
disnea, IFPr: pain in the right iliac fossa, RFPl: pain in the left renal fossa, 
RFPr: pain in the right renal fossa. 
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Readmission_adults 

<3 days <7 days <15 days <30 days 

Motive % Motive % Motive % Motive % 

OTHERS 16.57 OTHERS 16.70 OTHERS 17.16 OTHERS 17.01 

GAP 11.08 GAP 10.38 GAP 9.62 GAP 9.59 

HA 4.94 HA 4.95 HA 4.75 HA 4.64 

EP 3.44 LegP 3.09 LegP 3.27 LegP 3.24 

LuP 2.81 EP 3.05 LuP 2.96 LuP 2.94 

LegP 2.73 LuP 2.88 EP 2.80 EP 2.66 

RFPr 2.32 RFPr 2.36 GD 2.35 GD 2.66 

RFPl 2.27 GD 2.30 AD 2.21 AD 2.52 

IFPr 2.18 RFPl 2.09 RFPr 1.97 24HF 2.14 

GD 2.13 HYPr 1.95 24HF 1.94 RFPr 1.81 

HYPr 2.10 AD 1.87 HYPr 1.82 D 1.80 

D 1.88 IFPr 1.80 RFPl 1.77 HYPr 1.73 

24HF 1.75 24HF 1.80 D 1.75 RFPl 1.59 

AD 1.67 D 1.76 KP 1.55 KP 1.50 

NAUSEA/T 1.37 NAUSEA/T 1.47 AP 1.54 NAUSEA/T 1.49 

 

Table 4.2: Distribution of the most salient motives for readmission of 
adults to the ED, for various readmission thresholds. Motive codes: GAP: 
general abdominal pain, 24HF: fever <24 hours, HA: headache, 1/3DF: 
fever between 1 and 3 days, GD: general discomfort, EP: epigastric pain, 
T: throwing up, D: diarrhea, LegP: leg pain, LuP: lumbar pain, AD: acute 
disnea, IFPr: pain in the right iliac fossa, RFPl: pain in the left renal fossa, 
RFPr: pain in the right renal fossa, HYPr:right hypochondrium pain, 
D:diarrhea, KP: knee pain, AP: arm pain 
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Readmission_pediatrics 

<3 days <7 days <15 days <30 days 

Motive % Motive % Motive % Motive % 

OTHERS 45.60 OTHERS 40.23 OTHERS 35.95 OTHERS 31.12 

1/3DF 10.36 COUGH 9.73 COUGH 11.28 COUGH 13.56 

COUGH 7.59 1/3DF 9.68 24HF 9.45 24HF 12.20 

24HF 6.78 24HF 7.30 1/3DF 9.43 1/3DF 9.42 

GAP 4.92 T 5.52 T 5.58 T 6.03 

T 4.89 GAP 5.12 GAP 4.86 GAP 4.65 

D 3.39 D 4.31 D 4.20 D 4.01 

4/7DF 2.49 4/7DF 3.16 4/7DF 2.67 4/7DF 2.26 

FP3 1.06 EARACHE 1.28 EARACHE 1.63 EARACHE 1.81 

NAUSEA/T 1.06 EXANTH 1.09 NAUSEA/T 1.12 NAUSEA/T 1.25 

EXANTH 1.00 FP3 1.09 DYSURIA 1.10 DYSURIA 1.16 

EARACHE 0.90 NAUSEA/T 1.05 FP3 1.06 HA 1.02 

HA 0.87 HA 0.86 EXANTH 1.04 FP3 1.01 

AD 0.68 DYSURIA 0.81 HA 0.98 EXANTH 0.90 

DYSURIA 0.62 AD 0.64 AD 0.72 CRYING 0.71 

 

Table 4.3: Distribution of the most salient motives for readmission of 
pediatrics to the ED, for various readmission thresholds. Motive codes: 
GAP: general abdominal pain, 24HF: fever <24 hours, HA: headache, 
1/3DF: fever between 1 and 3 days, GD: general discomfort, EP: epigastric 
pain, T: throwing up, D: diarrhea, LegP: leg pain, LuP: lumbar pain, AD: 
acute disnea, IFPr: pain in the right iliac fossa, RFPl: pain in the left renal 
fossa, RFPr: pain in the right renal fossa, FP3: pediatric fever 3 years, 
4/7DF: fever between 4 and 7 days 
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Hospitalization (after readmission in X days) 

<3 days <7 days <15 days <30 days 

Motive % Motive % Motive % Motive % 

OTHERS 21.57 OTHERS 20.49 OTHERS 19.67 OTHERS 19.49 

GAP 12.74 GAP 12.68 GAP 12.68 GAP 12.33 

HA 3.57 HA 3.44 AD 3.77 AD 4.40 

1/3DF 3.25 1/3DF 3.29 24HF 3.49 24HF 4.25 

HYPr 3.12 AD 3.00 HA 3.22 COUGH 3.04 

EP 3.05 24HF 3.00 1/3DF 3.10 1/3DF 2.97 

AD 2.79 HYPr 2.95 COUGH 2.87 HA 2.91 

24HF 2.79 COUGH 2.95 D 2.79 D 2.57 

COUGH 2.73 EP 2.80 EP 2.79 HYPr 2.57 

D 2.53 D 2.75 HYPr 2.75 EP 2.51 

IFPr 2.47 RFPr 2.75 RFPr 2.32 GD 2.42 

RFPr 2.34 IFPr 2.11 LegP 2.28 LegP 2.32 

T 2.27 T 2.06 T 1.85 RFPr 2.14 

RFPl 1.75 RFPl 1.97 IFPr 1.81 LuP 1.61 

LegP 1.69 LegP 1.87 GD 1.73 IFPr 1.58 

 

Table 4.4: Distribution of the most salient motives for readmission to the 

ED that lead to hospitalization, for various readmission thresholds. Motive 

codes: GAP: general abdominal pain, 24HF: fever <24 hours, HA: 

headache, 1/3DF: fever between 1 and 3 days, GD: general discomfort, EP: 

epigastric pain, T: throwing up, D: diarrhea, LegP: leg pain, LuP: lumbar 

pain, AD: acute disnea, IFPr: pain in the right iliac fossa, RFPl: pain in the 

left renal fossa, RFPr: pain in the right renal fossa, HYPr:right 

hypochondrium pain 
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Hospitalization_adults (after readmission in X days) 

<3 days <7 days <15 days <30 days 

Motive % Motive % Motive % Motive % 

OTHERS 15.76 OTHERS 15.37 OTHERS 15.48 OTHERS 16.05 

GAP 14.47 GAP 14.03 GAP 13.85 GAP 13.47 

HA 4.48 HA 4.25 HA 3.89 AD 4.55 

HYPr 4.13 HYPr 3.81 AD 3.84 24HF 3.91 

EP 3.96 EP 3.56 EP 3.45 HA 3.45 

IFPr 3.10 RFPr 3.56 HYPr 3.45 HYPr 3.15 

RFPr 3.10 AD 2.98 24HF 3.15 EP 3.03 

AD 2.50 IFPr 2.60 RFPr 2.91 GD 2.96 

RFPl 2.33 24HF 2.60 LegP 2.86 LegP 2.85 

LegP 2.24 RFPl 2.54 IFPr 2.17 RFPr 2.62 

24HF 2.15 LegP 2.41 GD 2.17 D 2.09 

LuP 1.89 D 1.90 D 2.12 LuP 1.97 

D 1.72 GD 1.84 RFPl 2.12 RFPl 1.90 

GD 1.72 LuP 1.78 LuP 1.87 IFPr 1.82 

1/3DF 1.46 1/3DF 1.78 1/3DF 1.72 1/3DF 1.82 

  

Table 4.5: Distribution of the most salient motives for readmission of 

adults to the ED that lead to hospitalization, for various readmission 

thresholds. Motive codes: GAP: general abdominal pain, 24HF: fever <24 

hours, HA: headache, 1/3DF: fever between 1 and 3 days, GD: general 

discomfort, EP: epigastric pain, T: throwing up, D: diarrhea, LegP: leg 

pain, LuP: lumbar pain, AD: acute disnea, IFPr: pain in the right iliac 

fossa, RFPl: pain in the left renal fossa, RFPr: pain in the right renal fossa, 

HYPr:right hypochondrium pain 
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Hospitalization_pediatrics (after readmission in X days) 

<3 days <7 days <15 days <30 days 

Motive % Motive % Motive % Motive % 

OTHERS 39.42 OTHERS 38.04 OTHERS 36.10 OTHERS 34.86 

COUGH 9.52 COUGH 10.87 COUGH 11.58 COUGH 13.54 

1/3DF 8.73 1/3DF 8.48 1/3DF 8.49 1/3DF 8.12 

GAP 7.41 GAP 8.04 GAP 8.11 GAP 7.28 

T 7.14 T 7.17 T 6.95 T 6.09 

D 5.03 D 5.65 D 5.41 24HF 5.75 

24HF 4.76 24HF 4.35 24HF 4.83 D 4.74 

AD 3.70 4/7DF 3.48 AD 3.47 AD 3.72 

4/7DF 2.65 AD 3.04 4/7DF 3.28 4/7DF 3.55 

NAUSEA/T 1.59 NAUSEA/T 1.30 CC 1.16 CC 1.18 

CC 1.06 CC 1.09 NAUSEA/T 1.16 NAUSEA/T 1.02 

HA 0.79 HA 0.65 F>1W 0.97 F>1W 0.85 

AAP 0.53 F>1W 0.65 HA 0.58 FP3 0.68 

IFPr 0.53 FP3 0.65 FP3 0.58 JAUNDICE 0.68 

F>1W 0.53 AAP 0.43 JAUNDICE 0.58 HA 0.51 

 

Table 4.6: Distribution of the most salient motives for readmission of 

pediatric patients to the ED that lead to hospitalization, for various 

readmission thresholds. Motive codes: GAP: general abdominal pain, 

24HF: fever <24 hours, HA: headache, 1/3DF: fever between 1 and 3 days, 

GD: general discomfort, EP: epigastric pain, T: throwing up, D: diarrhea, 

AD: acute disnea, IFPr: pain in the right iliac fossa, RFPl: pain in the left 

renal fossa, RFPr: pain in the right renal fossa, HYPr:right hypochondrium 

pain; F>1W: fever > 1 week; 4/7DF: fever between 4 and 7 days; FP3: 

pediatric fever 3 years; CC: Convulsive crisis 
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Balan. Adult Pediatric 

  A S PPV F A S PPV F 

UNDER 0.64 0.61 0.43 0.51 0.66 0.60 0.15 0.29 

OVER 0.65 0.48 0.44 0.45 0.73 0.49 0.20 0.30 

SMOTE 0.63 0.58 0.42 0.49 0.80 0.35 0.25 0.28 

OSS 0.69 0.42 0.49 0.45 0.90 0.10 0.47 0.21 

TOMEK 0.69 0.42 0.50 0.45 0.90 0.10 0.50 0.21 

 

Table 4.7: Average performance of the data balancing methods across 

classifier training methods and readmission threshold. Undersampling 

majority class (UNDER), Oversampling minority class (OVER), random 

interpolation (SMOTE), selective removal (TOMEK), one side selection 

(OSS). Bold indicates that the approach difference is significant (p<0.001) 

in all pairs of t-test one side comparisons. 
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Classif. Adult Pediatric 

  A S PPV F A S PPV F 

MLP 0.67 0.57 0.47 0.51 0.79 0.37 0.21 0.21 

DT 0.66 0.49 0.45 0.46 0.81 0.31 0.37 0.28 

kNN 0.62 0.51 0.40 0.45 0.75 0.34 0.26 0.24 

NB 0.69 0.44 0.51 0.47 0.84 0.29 0.42 0.30 

 

Table 4.8: Average performance of the classifier training methods across 

data balancing methods and readmission threshold. Multilayer perceptron 

(MLP), Decision Tree (DT), k nearest neighbors (kNN), Naive Bayes 

(NB). Bold indicates that the approach difference is significant (p<0.001) 

in all pairs of t-test one side comparisons. 
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Readm. 

Thresh. 

Adult Pediatric 

  A S PPV F A S PPV F 

30 days 0.68 0.51 0.47 0.49 0.82 0.34 0.32 0.25 

15 days 0.67 0.51 0.46 0.48 0.81 0.32 0.30 0.24 

7 days 0.66 0.51 0.45 0.47 0.80 0.33 0.35 0.28 

3 days 0.65 0.50 0.46 0.47 0.78 0.34 0.31 0.28 

 

Table 4.9: Average performance of the readmission threshold across 

classifier training and data balancing methods. Bold indicates that the 

approach difference is significant (p<0.001) in all pairs of t-test one side 

comparisons. 
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Figure 4.1: Percentage of patients suffering readmission, and percentage 
of readmission events relative to the number of patients and events, 
respectively  
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Percentage of patients suffering readmission, and percentage 
of readmission events relative to the number of patients and events, 

(a) 

 

Percentage of patients suffering readmission, and percentage 
of readmission events relative to the number of patients and events, 
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Figure 4.2: Decomposition of the trends for patients (fig. 4.2a) and events 
(fig. 4.2b) of the readmission of adults and pediatric according to the 
readmission threshold.
 
 
 

 
Figure 4.3: Distribution of the number of readmission leading to 
hospitalization according to the threshold for readmission.
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(b) 
Decomposition of the trends for patients (fig. 4.2a) and events 

(fig. 4.2b) of the readmission of adults and pediatric according to the 
readmission threshold. 

Distribution of the number of readmission leading to 
hospitalization according to the threshold for readmission. 

HOSPITALIZATION AFTER 

 

Decomposition of the trends for patients (fig. 4.2a) and events 
(fig. 4.2b) of the readmission of adults and pediatric according to the 
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Figure 4.4: Distribution of the number of readmission leading to 
hospitalization according to the threshold for readmission. (a) 
population, (b) pediatric population.
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(a) 

(b) 
Distribution of the number of readmission leading to 

hospitalization according to the threshold for readmission. (a) 
population, (b) pediatric population. 

 

 

Distribution of the number of readmission leading to 
hospitalization according to the threshold for readmission. (a) adult 
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 Figure 4.5: Distribution of the dataset into training and test datasets in 
order to avoid circular effects and biasing of test results by training data 
misuse. 
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Chapter 5  
Conclusions and ideas for 
future work  
 
 

This chapter concludes the Thesis giving some conclusions and ideas for 

future work. We discuss some aspects of processing health care data.  We 

tackle independently the main applications. 

5.1Processing health care data 
 

The processing of health care data poses several challenges. The first and 

paramount is the availability of data. Legal and economical issues make 

quite tricky to obtain data to carry out the computational experiments. In 

the best case it requires a good deal of work to capture the data 

systematically. Once the data has been obtained, the intent of the original 

data capture may be different to the actual research work carried out, so 

that critical information may be missing, while redundant information may 

be overflowing. Besides, data can be very noisy even with the use of 

electronic health records. For instance, in the readmission data we have 

detected an extraordinary abundance of “OTHER” as the motive of the 



 
 
 

CHAPTER 5. CONCLUSIONS AND IDEAS FOR FUTURE WORK 
 
 

 
60 

 
 
 
 
 

visit. This fact has two interpretations: (a) the nurse was overwhelmed by 

the work and the interface of the system was cumbersome, (b) the actual 

motives considered were not comprehensive enough. Either interpretation 

poses a lot of questions for the design and the working environment. We 

must have in mind that the systems are embedded in a clinical stressful 

scenario.  

The noise in the data includes missing values, as well as erroneous 

values, so that missing value imputation may be a promising field of work 

for future research efforts. Intelligent techniques guessing the data values 

may include fuzzy system approaches as well as bayesian estimation based 

on Markov random field models. Appropriate methods have a great value 

and may improve performance of ensuing classification methods. 

Furthermore, data distributions in health care tend to be uncomfortable, i.e. 

with some properties that make them difficult to treat. One such properties 

is the imbalance of classes in the data, where often the emphasis is in the 

minority class. Though there is a large body of literature on the topic of 

class balancing, most is devoted to continuous data that allow interpolation 

with good results. However, in the health care domain many variables are 

qualitative, so that numerical interpolation is meaningless for them. 

Dealing with qualitative imbalanced datasets is an open question of great 

interest for health care data. 

Finally, data in the health care environment is becoming huge, so it 

may fall in the realm of Big Data, techniques and methods developed to 

deal with big data may have straightforward application in health care.  
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5.2 Monitoring of pediatric respiratory 
crisis 
 

We have dealt with the monitoring and alarm detection in pediatric 

intensive care unit as a classification problem, trying to predict the triage 

set by the nurse and doctor. Data were records of a small number of 

patients taken each hour. We have successfully tackled the noise and the 

missing values, achieving high predictive performance. The work in this 

Thesis sets the stage for real life clinical applications that may help to save 

many lives. However, data was manually captured, so there is a need to 

develop and implement electronic devices for the capture of the data, 

possibly interfacing between equipments. Such devices may be mobile, 

like the tablets and iPad, with easy interfaces, and may implement the 

alarms built from the classifiers tested in this Thesis. They can embed 

some life-long learning procedure, so that they can adapt to changing 

conditions and populations.  

 
 

5.3 Prediction of readmission and 
hospitalization 
 

Hospitalization after readmission is a critical event with strong economical 

and health costs. The actual dataset is big and very imbalanced; therefore 

we had to focus on the readmitted people population, predicting the 

hospitalization event in such environment.  We have explored state of the 

art data balancing methods and classifier learning methods, with some 

relative success. So we were able to make some recommendation for 



 
 
 

CHAPTER 5. CONCLUSIONS AND IDEAS FOR FUTURE WORK 
 
 

 
62 

 
 
 
 
 

potential real life prediction products. A note on the readmission threshold, 

which is set based on economical and political reasons: we have tested 

several definitions (72hours, 7, 15, 30 days) finding that our approach is 

rather robust against the precise setting of the readmission threshold. We 

attribute the limitation of the results to the coding of the Motive variable. 

New codifications of this variable, such as a collection of orthogonal 

binary variables one per motive, may help to improve results. But this kind 

of state variables definition introduces some problems on the data 

interpolation carried out for class balancing. Research in this line of work 

may contribute greatly to the literature on class data balancing. Further 

statistical work may be done based on survival theory, which is a branch of 

stochastic processes that has been exploited in areas such as insurance risk 

assessment, and cancer survival. 
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Appendix A  
Classifier training methods 
 
 
 

A.1 Methods 
 

We tackle the hospitalization prediction as a classification problem into 

two classes. The class distribution in the dataset is strongly unbalanced. 

Moreover, the statistical and qualitative differences between adult and 

pediatric populations counsel to treat them separately. The computational 

tools have been borrowed from the R project, including the methods for 

cross-validation (package caret), and the data balancing methods for 

unbalanced datasets (package unbalanced) introduced by [DAL2013]. 

To build hospitalization event predictors from the physiological and 

demographic features we have tried four kinds of classification algorithms: 

Multilayer Perceptron (MLP), Decision Trees (DT), k-Nearest Neighbors 

(k-NN), and Naive Bayes (NB). We have applied the default settings of 

these algorithms in the caret package: the same number of hidden units as 

inputs in the MLP, one neighbor in k-NN, and a maximum of 10 levels in 

DT. Details of the algorithms are well known and can be found elsewhere 

(Graña et al. 2015, Haykin  1998) 
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Appendix B  
Class balancing techniques 
 

B.1 Class Balancing 

 

Real life classification problems are often imbalanced, that is, the number 

of samples of one class is much greater than the other. Most classifier 

building approaches are biased towards the majority class, so that they 

achieve high classification accuracy but low sensitivity on the minority 

class, which is often the interesting one. Therefore, accuracy is less 

relevant as a measure of performance than other measures focused on the 

positive minority class prediction. The case at hand fits into this picture, 

because the target hospitalization event is much scarcer than the 

readmission, and it has specific economic value. There are two basic ways 

of dealing with the issue of class imbalance. One manipulates the cost 

function weighting differently training examples, so the errors committed 

on the minority class are most costly. The other pre-processes the original 

dataset, either by over- sampling the minority class and/or under-sampling 

the majority class. In this paper we apply five methods following the later 

approach: 
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• Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al. 

2002) consists in the random linear interpolation between nearest 

neighboring samples of the minority class. Notice that SMOTE may 

“fill the gaps” in data distributions that show disperse connected 

regions. 

• The under-sampling (UNDER) consisting in randomly removing 

samples of the majority class until the desired balance is reached. 

•  The oversampling (OVER) of the minority class, consisting in the 

random repetition of some of the samples. 

• The method proposed by (Tomek 1976) (TOMEK) that consists in the 

removal of samples that do not affect the performance of 1-NN 

classifiers. 

• The one sided selection (Kubat 1997) (OSS) focus on the positive 

class, retaining all samples and removing all redundant samples, which 

are far from the decision boundary. 
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