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Abstract

The increasing ability to gather, store and process health care information,
through the electronic health records and improved communication
methods opens the door for new applications intended to improve health
care in many different ways. Crucial to this evolution is the development of
new computational intelligence tools, related to machine learning and
statistics. In this thesis we have dealt with two case studies involving
health data. The first is the monitoring of children with respiratory diseases
in the pediatric intensive care unit of a hospital. The alarm detection is
stated as a classification problem predicting the triage selected by the
nurse or medical doctor. The second is the prediction of readmissions
leading to hospitalization in an emergency department of a hospital. Both
problems have great impact in economic and personal well being. We
have tackled them with a rigorous methodological approach, obtaining
results that may lead to a real life implementation. We have taken special
care in the treatment of the data imbalance. Finally we make propositions
to bring these techniques to the clinical environment.
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Chapter 1
Introduction

This Chapter provides the introduction to the Thesis giving its motivation,
objectives and actual contributions. The Chapter is intended for a quick
assessment of the Thesis content and the merits of the doctoral candidate,
so it contains additionally the list of publications achieved.

1.1 Motivation

The present Thesis deals with the use of machine learning tools towards
the improvement of health care by predicting specific conditions. The
increasing facility to gather data and to analyze it, with solidly established
methodologies and techniques has fostered this kind of approaches.
However, this work does not deal with big data per se, because the data
sets that we have exploited, though bigger than academic toy problems, are
far from being considered big data. Another trend that we are not following

is the cloud based processing of the data [ABU12] [SUL14] [STA14]. In
essence, cloud computing poses many issues regarding data protection that
cannot be risked when dealing with health data [ROD13], though it can be
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seen as an empowerment in isolated rural areas 1f]INachieving
ubiquitous healthcargiE13], or an easy way to collaborate [LAI12]. The
fact is that intelligent computing is becoming e&singly used to create
predictive models in many areas of medicine andtlineare [PANQ9].
Data mining as a specific aspect of intelligent gessing bordering
statistics is very relevant [HAN11]. In this Thesi® are concerned with
the quantitative measures gathered in electroradttheecords, so we do
not need to deal with the already difficult probleai extracting
information from free style written reports [NEUZl4tequiring text

processing and natural language techniques.

1.1.1 Triage prediction in respiratory pediatric
intensive care units

This manuscript details a study based on datarmddanonitoring children
hospitalized in the pediatric intensive care urgcduse of respiratory
complications in the city of Santiago de Chile. Blestory diseases have
an increasing prevalence in large urban conceatrginf the world, due to
the apparently unstoppable increase of air poltutimiginated from a
diversity of sources. Children are specially a ifeagart of the population
suffering these conditions. Improved monitoring asftical patients by
means of automatized data gathering and processegalarm raising,
aims to alleviate the risks of critical patientgditric respiratory critical
care has not received much attention in the liteatmost of it is devoted
to adult patients suffering specific degeneratienditions. However,
children care has specific conditions, such asstheng dependence of
some physiological signals, i.e. heart rate, onpdaeent age. We approach

the problem as triage prediction problem, formwates multi-class
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classification problem, taking special care in #ge normalization of
physiological variables. Available data for usecksssification features is
scarce, in the sense that only a few variables@adable, and that much
of the qualitative information used by the medidacttors is not available.
In this Thesis we report the experimental resuitsioed on a data sample
covering patients of two years provided by a Iqmadliatric hospital. The
results conclude that it is possible to some extemredict the triage that
the medical doctors will assign the critical pateetHowever, we have also
detected that medical doctors follow very conseéveapolicies, i.e. taking
into consideration the previous state allows alnpestect prediction. We
consider these results preliminary steps towardeoae comprehensive
automation of the pediatric intensive care unitpeeially regarding the
automatic raising of some flags when critical ditbmappears. Timeliness
of the alert may be a life or death difference. Wiy with actual local
hospital data in the design of the alerts is quitportant, because studies
made in countries like the USA may be biased bglloastoms, from food
to exercise habits. Also, equipment available ie eountry may not be
available in another, or in a different level haapbudget. Finally, local
environmental conditions may invalidate conclusitasen from another
environment. For instance, the local features efpbllution in Santiago,
chemical contaminants and kind of particles, maybie different from
other cities. Even more, the specific epidemic aibmk in Santiago may
be irreproducible in other countries/towns, i.eeréhis no high prevalence

of respiratory diseases in children of the Basqaeriy.
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1.1.2 ED Readmission prediction

Emergency Departments (ED) suffer heavy overloaé ¢t lack of
primary attention service. Increasingly geriatroimassions pose specific
problems contributing to this overload. A consegqueeis the increase of
patient returning short time after discharge, ieadmissions, sometimes
requiring hospitalization. In this latter case thatient problem was not
solved in the first admission and its condition aggravated. Therefore,
the economic issues involved in the administratddnthe readmission
event are worsened by the unsolved or aggravatedthheroblem.
Readmission has been tackled in many aspects lith lvaae systems, and
for various specific populations, each having sppedéeatures that impede
porting solutions from one domain to another. Tdke example the
definition of the readmission threshold, i.e. tpedfic time interval within
which the next visit of a patient will be considgra readmission. The
insurance companies in the USA have set a thresbbld0 days for
economical reason for the general hospitalizatiopatients. However, 30
days is a long term horizon in ED, where critidgalaions must be solved
in a matter of minutes. For this reason, some c@sjti.e. Chile, have
adopted a threshold of 3 days to declare ED reaonis.

According to these readmission threshold variatiome have
considered several such thresholds in our predictexperiments.
Prediction of hospitalization following ED readm@s is posed over a
heavily imbalanced class distribution, so we hawemsaered several
approaches to deal with class imbalanced datasadls saveral base
classifiers, as well as performance measures thharee the critical
comparison between approaches. Experimental wakscarried out on

real data from a university hospital in Santiagbil€&; corresponding to the
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period between January 2013 and April 2016, inclggiediatric and adult
admissions to the ED. We achieve results that eageuthe development
of real life application of the data balancing ataksification approach for

prediction of hospitalization after readmission.

1.2 Objectives

The general objective of the Thesis is to tacklalthecare data problems
from a Computational Intelligence perspective, ding predictors that
solve the problems stated in a machine learninghdwork. Mostly we

formulate the problems as classification problelve do not deal with

regression problems for forecasts.

The general approach is data driven, i.e. a proldesefined by the
available data, and models are induced from the, dastead of extracting
knowledge rules from the expertise of the medicataoks.

The specific objectives are related to the specproblems
attacked. We formulate each problem as a clasddi@ming problem;
hence the classification performance is the measiuseiccess. We assess
the classification performance via cross-validatiohtaining estimations
of the expected performance.

For the respiratory crisis monitoring, we look fttre maximal
accuracy predicting the case of transition to tluesivstate, equivalent to
raising an alarm to notify the nurse that somacaitsituation is about to
happen.

For the readmission prediction, we try to predie¢ event of the
hospitalization of a readmitted patient, becausge & worst case scenario,
where the medical condition has worsened drambtjcahd it was not

completely solved in the first visit.
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From the operational point of view, to carry out gxperiments we
needed to set the working environment, which wasettaon the R
language and packages available, and preprocessathein order to be
able to use them for training and testing. Datpmeess was different in
each case, filling missing values, correcting mégpuaome variable
values, or discarding records with too many erréiso we ensured that
the data was fully anonymized.

In the readmission case, the data set was not ,semalinanaging
needed to carefully tap on the resources of then®Rrament and the
available computing power. Therefore, managing datssistently was an
additional operational objective.

Data classes were strongly imbalanced, especrallgd case of the
readmission prediction. Therefore, we had to deih wthis imbalance
treating the datasets before training, and ensuhagthe manipulation of
the training data did not contribute any bias ®testing phase.

The goal from the real life application point ofewi is to make
recommendations about the actual classifier legrtechnique as well as
which preprocessing (i.e. class balancing) is nagmeropriate for the data
at hand.

1.3 Contributions

1. We have tackled two non-trivial realistic problemgshe domain of
health data processing, using real life datasetgiged by hospitals
in Santiago, Chile. Pending permission from thepitats, we plan
to publish the anonymized data to allow reproduitybiof our

results, or development of advanced solutions.
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2. We provide a literature review and state of theafireach of the
topics covered by the thesis.

3. We report results on the performance of the tesleskifiers on the
respiratory intensive care unit, identifying the shappropriate
classifier training strategy. We provide recommeiots for a real
life implementation.

4. We report results on the performance of both tlseetkclassifiers
and the class balancing method tested to impronsitsety of the
classifiers. We provide recommendations on thesclaalancing
method, and the classifier to be used for realnifglementations.

5. Some ideas and discussion for future work are gexli

1.4 Contents of the thesis

e Chapter 2 contains a review of the literature camog the main
aspects of the Thesis, i.e. classification val@atmethodology,
data imbalance preprocessing, pediatric respiratamsis
monitoring, and patient readmission.

e Chapter 3 contains our contribution regarding tiegé prediction
of children with respiratory crisis. State of the @assifier learning
methods are applied successfully to the availabltaset.
Recommendations for real life techniques are pregos

e Chapter 4 contains our contribution regarding potah of
hospitalization after readmission. We have to aati imbalanced
datasets, so the carefully designed data processiogline is
described, and results of the entire data balarmmbclassification
performance were provided. Recommendations on thest m

appropriate classifiers and data balancing methoglprovided
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e Chapter 5 contains some discussion of the papetrilcotions,
conclusions and ideas for future work.
e Appendix A recalls definitions of the classifieataing methods.

e Appendix B recalls definitions of class data balagenethods.

1.5 Publications achieved

In this section we gather the publications thatehbeen achieved during
the works ending up in this Thesis. Some are dyeetated to the actual

content of the Thesis, others are indirectly relatethe sense that are the
fruit of collaborations that have in some way inedl methods also used

in the actual Thesis work

1.5.1 Main publications in the work of the thesis

Asier Garmendia, Sebastian A. Rios, Jose M LopegdéuManuel Grafia,
“Triage prediction in pediatric patients with resgory problems”.
Neurocomputing (accepted)

Asier Garmendia, Manuel Grafia, Jose Manuel LopezdéuSebastian
Rios. “Predicting patient hospitalization after egesmcy readmission”

Cybernetics and Systems (accepted)
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1.5.2 Publications achieved as a collaboration
indirectly related to the Thesis

Jose Manuel Lopez-Guede, Jose Antonio Ramos-Hernwsus Maria
Larrafiaga, Asier Garmendia, Valeriu Manuel lones(2015), “Study on
the influence of Lambda parameter on several pmadoce indexes in
Dynamics Matrix Control”. Journal of Electrical Engering, Electronics,
Control and Computer Science, Vol 1, No 2, pp IS§&N 2457-7812

Eneko Solaberrieta, Aritza Brizuela, Cristina FeaiRikardo Minguez,
Asier Garmendia, Olatz Etxaniz, Guillermo Pradi€2Q15), “Integration
of Reverse Engineering and Dental Mandibular DyramiDYNA, Vol.
90 Issue 6, pp 643-646, ISSN 0012-7361

Eneko Solaberrieta, Asier Garmendia, Rikardo Mirgueritza Brizuela,
Guillermo Pradies., (2015), “Virtual facebow tedune”. The Journal of
Prosthetic Dentistry, Volume 114, Issue 6, pp 75%;1SSN 0022-3913

Eneko Solaberrieta, Asier Garmendia, Aritza Briaudlose Ramon Otegi,
Guillermo Pradies, Andras Szentpétery.(2016), dotal Digital
Impressions for Virtual Occlusal Records: Sectioruaftity and
Dimensions”. BioMed Research International, Volu2®d.6, pp 1-7, ISSN
2314-6141
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Chapter 2
Literature review

In this Chapter we provide a review of the literature regarding the two
main topics covered in this Thesis in Chapters 3 and 4, namely prediction
of respiratory crisisin children, and prediction of hospital readmission.

The Chapter starts with some recall of Machine Learning role in
modern health care data processing in Section 2.1. Section 2.2 reviews
literature related to children respiratory disease monitoring. Section 2.3

reviews the literature related to readmission prediction.

2.1 Data processing and Machine

Learning

The use and analysis of large amounts of data is increasingly frequent in
the health industry with the am of improving the quality of healthcare. The
volume of data and other properties such as the velocity of production and
the need for real time response put the health care datainto the realm of big
data [BAT14][SUT15]. The promise of tackling with these large quantities
of data is improvement on the quality of care and reduction of costs. The

11
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big data approach promises the ability to pose questions at multiple levels
and multiple scales, from the nano to the macroscopic, from the molecular
interaction to the level of large human populations [HER14].

However, the quantities of data processed in this paper are far
below any threshold for big data. For the analysis of such data, Machine
Learning approaches have been suggested, and caution about the statistical
value of conclusions have been aso raised [CRO15]. Methodological rigor
is critical for the appropriate validation of the models, using cross-
validation approaches that clearly separate training from testing data, thus
avoiding any circularity or double dipping effect.

Machine Learning approaches encompass supervised and
unsupervised learning methods. The latter better represented by the
clustering approaches, such as the k-means [HAR15], that do not use any
gold standard information to drive the learning. Clustering methods are
exploratory in nature, proposing alternative representations of the data that
may ease visuadization and interpretation. On the other hand, supervised
methods require some gold standard labeling of the data in order to
estimate the error committed by the model, so training is guided by the
minimization of such error. Supervised methods are predictive, either of
the class label in classification problems, or of the given continuous index
in regression problems. The distinction between regression and
classification can be not so easy in cases where a continuous dependent
variable is quantized in some intervals, and the predicted variable becomes
aset of classlabels.

The frontier between Machine Learning and traditional statistics
may also become blurred as far as any of the two basic tasks are carried
out. In [SON0O4] a comparison between linear and non linear learning
methods for survival prediction has been carried out, showing consistent

superiority of the artificial neura networks. However, the greater

12
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differences in prediction performance were related to the differences in
population, from acute short term to long term predictions. Hinting that the
qguality of the data may be more critica than the learning algorithm.
Machine Learning have been also used to tackle the problem of generating
health care recommendations, much like in Amazon or Netflix, intheform
of medication and other treatment orders [CHEL6] after mining the
existing electronic health records. Machine learning techniques widely
used are artificial neural networks [AMA13], decision trees [POD02], k-
nearest neighbor (KNN) classification [KHA14], k-means clustering
[HAR15], and logistic regression [BAGO1].

An important aspect of many health care datasets is the existence of big
class imbalances, i.e. one of the classes is much more represented in the
population than the other [LOP13]. Such kind of populations presents a big
problem for most Machine Learning techniques which are naturally biased
towards the majority class. In essence, the a priori probability of the class
weights too much in most algorithms. The problem can be tackled in two
basic ways:

e Manipulating the dataset in order to achieve a more balanced
representation of the classes. For the fair evaluation it is required
that the testing phase is carried out over an imbalanced sample of
the data, even if the actual training has been carried out on an
artificially balanced dataset

e Manipulating the learning algorithm so that it minimizes a version
of the error function that takes into account the differences in the

cost of misclassification, often much higher for the minority class.

13
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2.2. Children respiratory disease
monitoring

The prevaence of respiratory diseases in the world is increasing
aarmingly [CRUQ7]. This situation is particularly severe in the city of
Santiago, capital of Chile [GAR14]. Children are one of the most affected
groups by these diseases in Santiago [PRIQ7], as happens in other major
world cities, such as Sao Paulo (Brazil) [SOB89]. Children respiratory
diseases are a pandemic in the developing countries, and in regions of
devel oped countries suffering high air pollution levels.

There are a host of diseases related with respiratory problems
[FIS65], although it is true that the particularities of the specific region
clearly determine the greater or lesser incidence of these diseases. In the
city of Santiago, besides the pollution caused by reasons inherent to a big
city, the particular topography of the city, which is surrounded by the
Andes, hinders the remova of pollutant particulates. The Environment
Ministry of Chile provides through an internet portal daily data about air
quality in the metropolitan region [MAP16]. Respiratory diseases often
become chronic, passing from childhood to adulthood. According to the
World Health Organization, chronic diseases kill more than 36 million
people each year. If we anayze the situation in Chile, as illustrated in
Figure 2.1, deaths caused by most chronic diseases show a clear downward
trend [WHO16], however not al chronic diseases follow the same pattern.
While cardiovascular diseases show a clear decrease in the mortality ratein
recent years, chronic respiratory diseases remain steady (shown in more
detail in Figure 2.2). One reason for decrease in mortality is better patient
care. Therefore, care improvements for respiratory disease patient are
strongly needed. Data mining techniqgues [FAY96] have been

acknowledged as potential source of improvements for patient treatment

14
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and follow up. Specificaly, in this Thesis we are dealing with the
prediction of the risk level as specified by the triage classification
performed by the nurse or the doctor.

Machine learning has aready produced predictive models in the
pediatric area, such as PRISM (Pediatric Risk of Mortality), a system that
delivers an index that determines the probability of death of a patient
admitted in the unit of critical hospitalization, up to mechanisms that
attempt to identify abnormal behaviors in vital signs in order to prevent
diseases using as a basis datistical studies of data [HAN10]. Other
predictive systems seek to predict the likelihood of mortality in patients
based on a traditional regression approach. For example, the Predictive
Index of Mortality (PIM) system performs a measurement of variables as
vital signs, fan pressure, among others. These are measured in the first 24
hours after admission of a patient in the PICU (Pediatric Intensive Care
Unit) [BRAOE]. Other authors consider the impact of variables using a
scoring system based on the values of the variables [RAD14]. Other studies
discover patterns of deviation of vital signs by analyzing its percentiles, so
that signal deviations from expected ranges of can be identified on
hospitalized children [BON13] [SUB11].

In this Thesis we apply Machine Learning techniques to predict the
Triage variable, which is revised by the nurses and doctors each hour while

the patient is under intensive care. The

2.3. Readmission risk prediction
approaches

Nurse practice and culture [FLEO9] [KOV08] [SCO05] is evolving thanks

to the advent of new technologies that alow the use of data and

15
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accumulated evidence [ZIM14]. Though the introduction of electronic
health records meets some reluctance by the practitioners because they
claim that non justified additional effort must invested filling the them, the
accumulated information allows for a posteriori processing and extracting
conclusions from more extensive and accurate data collection. One not
minor task is to assess from the gathered information conditions that can
have health or economic impact, such as the likelihood of the readmission
event. In Spain, 12.4% of the internal medicine admissions in the period
2006-2007 were rehospitalized within 30 days [ZAP12]. This prevalence
of readmissions is widespread in the health care systems, with a huge
economic and persona health cost. In this Thesis we focus on the
readmissions in emergency departments (ED), which suffer additional
stress due to the kind of patients and the fact that many non emergency
patients resort to this service as a way to obtain quicker response due to the
malfunction of other services. Therefore, readmissions can be especially
cumbersome for these patients because they imply that somebody that was
supposed to have an acute urgent condition was returned home without

appropriate care.

The issue of deciding if a patient revisiting the service is a
readmission or not is not trivial. Many papers in the literature assume that
30 days is the threshold for readmission [ZAP12], mainly because this
timeline was set in USA by the medical insurance companies to enforce
economic conditions on hospitals. However, 30 days may be too large
interval for an ED readmission, because the repetition of a condition after
so many days implies that it is more a long term disease than an
emergency. Therefore some countries, i.e. Chile, have set a shorter interval
for the categorization of arevisit as areadmission, i.e. 3 days.

16
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Prediction of readmission risk has been approached for specific
populations, as discussed in a recent review [KAN11]. Often indices are
limited to specific subpopulations, such as people suffering from Chronic
Obstructive Pulmonary Disease [NGU14] or Acute Myocardia Infarction
[ZAI113], or services, such as internal medicine [ZAP12]. The modeling
approaches often combine several administrative, demographic,
biochemical measures, and psychological tests to compute a risk index,
which can be estimated by some regression approach based on actual data.
Differences between centers in electronic medical records and recorded
patient information lead to the need to develop institution specific models,
i.e. predictive models trained with institution specific data [YU15], or
specific healthcare networks [HAO15].

Aging population poses new problems to the health care systems
[PARO7], and it is a growing global concern [BLO10] [RECQ9]. This
situation is also felt in the ED suffering of additional workload caused by
geriatric patients. Prediction works focused on a stratified sample of
“lolder patients reported in [BES15] devel oped specific predictors for each
kind of patient. Patient strata were the following: diabetes mellitus, heart
failures, chronic respiratory problems, and genera care problems. Feature
predictive value for each population strata was modeled by the Gini index
associated to the variable in a decision tree built over the dataset, following
the method suggested in [BREO1]. The results showed wide differences in
the set of most discriminant variables between population strata,
suggesting that specific population strata predictors are justified.

The highest rates of ED readmission, the longest stays, and greatest
resources invested in ancillary tests correspond to adults above 75 years of
age [PER15] [SIL15]. Despite this intense use of resources, these patients
often leave the ED unsatisfied, with poorer clinical outcomes, and higher

rates of misdiagnosis and medication errors compared to younger patients.
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Additionally, they have a higher risk of ED readmission, hospitalization
after readmission, death and institutionalization [CAR11]. Readmission
risk prediction is therefore critical for thiskind of patients [DES15].

A widely accepted approach is the LACE readmission index
[VAN1Q] developed from data of a network of Canadian hospitals. It has
defined on the base of logistic regression analysis of physiological and
demographical variables of a sample of near 50000 patients. Though not
small dataset is smaller than our own database in this paper. The LACE+
[VAN12] makes use of administrative data to improve the risk assessment.
Closely related to LACE, HOMR (Hospital patient One year Mortality
Risk) by [VAN15] is a model for predicting death within one year after
hospital admission. According to the authors the goal is to predict long-
term survival after admission to hospital. The variables used are included
in the following categories. Demographics (age, sex, etc.), Health status
(Charlson comorbidity index, number of visits to hospital emergency etc.),
and Acuity disease (emergency admissions, direct intensive care unit
admissions etc.). The dataset used for the development and validation of
this model consists of more than three million instances obtained from
severa hospitalsin the areas of Ontario, Alberta and Boston.

Most modeling approaches use logistic regression as an established
statistical technique that allows also assessing the significance of specific
variables [ZAP12] [VAN10]. An approach based on classification by
support vector machines (SVM) [YU15], alows tuning the prediction
model to particular, avoiding to apply arisk index developed on a specific
population to potentially very different populations. In this Thesis we
follow this approach to tune the model to pediatric and adult
subpopulations of a specific hospital.

Variables taken into account vary from population to population.

Most works deal  with  physiological, biochemical and
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administrative/demographic information. The most predictive variables can
be selected following various methods related to the machine learning
approach used. For instance, logistic regression allows to assess the most
sensitive variables analyticaly. Other approaches use the classifier
building information, such as the Gini index used in [BES15]. Specific
traits, such as medication regime are less predictive than expected, but
clustering patients have been found to improve prediction [OLS16]. For
instance, in the stratified study [BES15] the five most discriminant
variables for the case management population are: Use of antipsychotic
drugs, availability of caregiver, age, use of insulin, and mental disorder
diagnosis. For the heart failure population, the five most discriminant
variables are: diagnosis of vascular disease, renal disease, memory
complaint, living alone, and use of inhalers. For the diabetes mellitus
population, these five variables are: diagnosis of sensing impairment, use
of heparin, comorbidity index, and arrhythmia and medication
reconciliation. Therefore, wide variations in the collection of most
significant variables must be expected, which hinders seriously the

practical use of predictive models for large heterogeneous populations.
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2.4. Figures
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Figure 2.1: Deaths from chronic diseases in Chile in the period 2000 - 2012
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Chapter 3
Prediction of respiratory crisis

This Chapter is devoted to the first practical aapion of computational
intelligence and predictive approaches to a healtlre problem.
Specifically, we tackle the problem of respiratassisis prediction in
children, which is a rather critical situation, base children crisis evolve
quite fast and dramatically, if not treated. Crizsigdiction is considered as
the prediction of the Triage value for the childiaran hourly monitoring
environment.

The structure of the Chapter is as follows. Sec8dh provides a
short introduction to the Chapter objectives, arsthart review of the state
of the art of data mining applications in healthecavith the aim of setting
the stage for applications in respiratory diseassistance. Section 3.2
provides the description of the actual dataset eysgul for the
computational experiments, explaining the varialetuded in the study,
and their preprocessing. Section 3.2.1 proviéssmptive statistics of the
data, which serve as an analysis previous to tipéicafion of machine
learning approaches. Specifically, we look closalythe dependence of
some variables with respect to the patient agetid®e8.2.2 discusses two

ways of normalization of the dependent variables nmake them
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uncorrelated with patient age that we have explogedtttion 3.3 describes
the computational experiments conducted seekingredict the triage at
each time instant. Section 3.4 presents the resfilthese experiments.

Finally, Section 3.5 gives our conclusions.

3.1 Introduction

The prevalence of respiratory diseases is incrgdnibig populated areas
which also attract industries and heavy traffict pollution is the leading
cause for children hospitalization in developingiivies. Children are the
most vulnerable sector of the population to airlygmn for several
reasons: they are still developing the respiratystem; they have greater
income of volume of air per unit of bodyweight fpeeath than adults; they
perform rapid and deep breaths; and they are mypeally mouth-
breathers [BATO7]. There are definitive evidencdwtt areas with
industries that are emitters of fine particles (PBj2sulfur dioxide (SO2)
and nitrogen dioxide (NO2) have a greater prevaent respiratory
complications, increasing related hospital admissifBRA16][MOO16].
A clear effect of diesel engine traffic on the m&se of critical respiratory
hospital admittances has been found [NIR15b]. H@amepollution due to
industry and transportation is not the unique caul®egions naturally
having high amounts of ambient dust in the airge li#deserted zones
[NIR15B], also suffer this kind of children respimay pandemics.
Increasingly automated health monitoring systemes gesirable,
though they require advanced electronic equipmdRE15] that may not
be widely available, such as the direct connectibrcontinuous reading
physiological sensors to decision support syste@SA13][PER15b].

Already developed monitoring systems that use cdatjmnal intelligence
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tools, such as Markov models [RAV14], may have maken into
consideration the specific characteristics of thiédecen population, i.e. the
strong dependence between physiological variableesain the healthy
state and the patient age. This neglect ion magerenseless for children
the proposed automated solutions. In other watdks,not viable to apply
successfully alarm detection systems developed aftults and aging
subjects, over data extracted from them, to childr@lonitoring and
respiratory assistance has been received attantitve care of acute cases,
such as children with muscular weakness [ABU15}antilated newborns
[ACH16], but not very much for milder cases thah teecome acute when
untreated, such as is often the case of low inodmidren [STE16].

The main focus of the work reported in this Chapgebuilding
predictive models of the risk levels of pediatriatipnts hospitalized for
diseases related with respiratory problems. Thes& ftevels are
determined by a "triage" process [ROBO06]. In theadaonsidered in this
paper, risk levels are coded by numbers from 1,twith 1 being the
mildest and 4 the most severe, risking death. Btigdimodels have been
built by machine learning approaches [BAGOl1l] [HARIKHA14]
[PODO02], applying a strict cross-validation methlody to assess
generalization of prediction results. The availatié¢éa comes from health
records previous to any electronic implementatiortheat they have been
entered manually in excel spreadsheets. Ther#feseare noisy and need
some preprocessing to remove erroneous valueseaondds with missing
variable values. After preprocessing and data abganwe carry out a
feature selection process, which can be exhaubeoause of the small
dimensionality of the data. We have not performag @wansformation,
such as Principal Component Analysis, in order ries@rve the original
meaning of the variables, and, therefore, to be abl argue with the

experts about the value of findings. In medicall@pgions it is essential to
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have clear explanation of the actual rules thatd lém a conclusion;
otherwise the medical doctors tend to dismiss emnghs not supported by
medical explanation and intuition. Besides, it && olear up to what point
the original data space is continuous enough towalsensible data

transformations.

3.2. Description of the dataset

The experimental data for the work reported irs tthhapter is based on
records obtained in pediatric units and CPU (Gilteatient Unit) of the
Hospital Dr. Exequiel Gonzalez Cortés (HEGC), whisha pediatric
medical center belonging to the public health systé Chile, located in
the municipality of San Miguel in Santiago de Chil&éese records belong
to patients who have different diagnoses, butfahem fall in the class of
diseases considered as respiratory conditionsiniitied number of records
is 22025, corresponding to the hourly monitoring 45 patients (29 boys
and 16 girls) aged between a few months to 16 yefnst were
hospitalized in the intensity care unit sometiméhia period between 2012
and 2014. We had access to anonymized physiologieasurements and
record annotations. Before carrying out the analydithe starting data,
there has been a preprocessing of the data, comgjden the one hand,
the contained variables, and, on the other hamdrabords. Regarding the
variables, we have the following ones:

e Ancillary information: the patient Age, number ofayd
hospitalized, time instant of variable measuremerie care
protocol states that measurements are to be tad@ntour of the
day. There are two special times in the morning aftdrnoon

when a more detailed medical visit is paid to thggmnt.
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e Physiological variables measured: Temperature, tHdzate,

Respiratory Frequency, Systolic and Diastolic Bl&wdssure.

e The Triage assigned by the physician. This variahtiécates the
severity of the patient condition. There are fatage levels, being

classified as 1 the mildest, and ranked 4th mostree

The objective is the prediction of triage. In othesrds, we aim to imitate

the medical doctor decisions.

3.2.1. Descriptive statistics of the dataset

Considering the gender variable, from the 45 p&ieonsidered, 64.4%
are male (29) and 35.6% women (16). Age is a gmimortant variable,
because many normal physiological variable valuestongly dependent
on it. For instance, heart rate is much quickesrmall age children. The
minimum, mean, and maximum age in the dataset.@6; 8.43, and 16.75
years, respectively. Figure 3.1 gives a more peeidisa of the distribution
of patient age variable (measured in years). Méghe patients are of
tender age, with mean around three years and®@althe other hand, there
is a tail in the age distribution correspondingattolescent patients of
fifteen and sixteen years, which can be conside®dhronic patients
passing to the next layer of care. The Triage ibistion is also irregular:
7.3% with triage 1, 36.4% triage 2, 20.9% triagard] 35.4% triage 4.

To assess the dependence of the physiologicalhtas on the age,
we show the scatter plots and regression lineeHbart Rate, Respiratory
Frequency, Systolic Blood Pressure, and Dias®lond Pressure versus

Age in Figures 3.2, 3.3, 3.4, and 3.5, respectjvedparating the plots by

25



CHAPTER 3. PREDICTION OF RESPIRATORY CRISIS

each Triage value. It can be appreciated that thenger patients have
much higher Heart Rate and Respiratory Frequenawg tiider children.
The blood pressure variables do not show such $rdfat this reason, it is

necessary to normalize these variables removinggkedependent trend.

3.2.2 Data preprocessing

The respiratory monitoring data missing values widhed by using the

previous value of the variable in the time sequemhezause the natural
behavior of the nurse is to write down only varesbthat have changed.
The original data was written in paper sheets,digéization was carried

out manually to fill an excel spreadsheet with ttega. Some variables
were incorrectly transcribed in some registriesrgjvinconsistent values
that had to be corrected manually. When a regisadrtoo many errors it

was removed.

3.2.3. Approaches to the normalization of the age
dependent variables

Taking into account the age dependence of the ploggcal variables,
before applying classification models, we have ralized the variables
Heart Rate, Respiratory Frequency, Systolic Bloogsgure, and Diastolic
Blood Pressure in order to achieve age indepenclassifiers. We have

tried two normalization approaches:

1. The first approach, denoté&brml in the results below, computes a
linear regression model considering each of thedeégnt variables
and the age variable. Then, the regression residaat the

classification feature new values correspondingeach of these
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variables.

2. The second approach, denotdbrm2, takes into account the
published normal values of these variables by agges in healthy
subjectdFLE11] [NORM]. The values of each record of each patient
have been interpolated to the same common age,rabtgning

standardized values.

3.3. Experimental design

To build Triage predictors from the normalized pbiagical features we
have applied four kinds of classification algoriginMultilayer Perceptron
(MLP), Decision Trees (DT), k-Nearest NeighborsNIM), and Naive
Bayes (NB). We have used the Caret pack@QeRET] (short for
Classification and Regression Training) in the Rogpamming
environment, which provides a set of functions tteamnline the process
for predictive model creation and validation. Thpackage allows to
process the dataset applying "Repeated k-fold Cvadiglation” using the
learning algorithm as a parameter. Some furthemildetare given in
Appendix A. For the experiments in this Chapterhage applied 10-fold
Cross-Validation repeated 3 times. We have cawidda feature selection
process as detailed in Table 3.1, and the expboraif the value of each
feature independently.

Overall, 10 cross-validation experiments were edrrbut. Five
experiments with the values of the variables tlaatehsome dependency on
the age normalized by using the residuals of atimegression on the age

(Norml). Other five experiments in an analogous mannet, viith the
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values of the dependent variables of the age narethby interpolation
inside the range of normal values of healthy ckitdfNorm2).

Notice that we have not used other conventionalligent system
tools such as case based reasoning [CHI93] bedhageare not easy to
train, and they are not as robust to noise andrtaiogy as the numerical
methods referred that we apply. Specifically, chased reasoning has
great difficulties to increase in a robust way ttetabase, while neural
network and probabilistic methods assume continuepgesentations that
interpolate naturally between data samples. Howewean be the tool of
choice in other applications where the cases ageigmly described by
crisp values, such as RFID information manipulafiGhiO09] [POOO09].
Some extensions using grey codes to achieve someé &f noise
robustness have been proposed [XIN12] but needutaealuation before
being of use in our problems. Hybridizations of ecdsased reasoning
approaches may be of use in health care dataadmescent health care
[WANO7], but are rare and have not been furthedatgd.

3.4. Results

The average accuracy obtained in cross-validatkperments where each
input record contains only one feature, i.e. assgdbe prediction power
of each feature independently, is presented in ef&. It can be
appreciated that the only feature that providessalt above 0.70 accuracy
is the Respiratory Frequency after normalization limngar regression
(Norml). The normalization by linear regression is sigaiftly better than
the categorization in age intervaldofm2), confirmed by a one-sided t-test
(p<0.01) computed over all results obtained witbheaormalization. The
results, still, are far from being satisfactoryblea3.3 provides the results

for the combinations of features specified in Tahle Significantly best
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results are achieved by feature set #5 which irrdyzhst Triage values in
the features for classification. (p<0.001 in pasevi-test between feature
set #5 against the others). An unexpected resulbhas the Respiratory
Frequency seems to have a more salient role ifiriage decision that the
Blood Oxygen Saturation, which is often referred dicians as the

preferred biomarker for the severity of the regpimacondition.

3.5. Conclusions

The aim of this work is to develop automatized eyst to monitor
children suffering from respiratory diseases inedligtric intensive care
unit. We proceed by trying to emulate the Triagecisglens of the
physicians as recorded in a dataset containingphtysiological variable
measurements and the Triage decision. The dategetab recordings are
quite noisy, with many missing values and some nsient variable
values. Direct recording of physiological sensorsl astorage without
human intervention would improve this situationt ltliese technologies
are not widely available yet. The actual experimahbws extracting
several conclusions on the data and the clinicalopol followed by the
clinicians. First, it is surprising that the Respary Frequency appears to
be much more influential in setting the risk letlegdn the Blood Oxygen
Saturation. When asked, clinicians answer that BQBe primary variable
to take decisions of patient state. The second itapbconclusion is that
the clinical practice is guided by conservative isiea strategies,
explaining the big increase of accuracy achieveénme feature vector
includes recent past Triages, and the fact thatéugsion “do not change
the Triage” achieves 85% prediction accuracy. Tijrdhe very low

prediction rates using the current value featuretors (i.e. without past
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triages) is an indication that there are unrecorglealitative information
that it is also very influential on the physiciagectsions.

The improvement of clinical care practices requiesklitional
feedback on the value of the actual stream of aewm@staken by the
practitioners. New data gathered will be includoantinuous monitoring
of physiological variables, as well as analysisan€illary information, in
order to extract additional clues. The eventual come of the
hospitalization, as well as the information aboe&dmissions will help
improve the Triage predictive system and the pattame. The ultimate
goal is to obtain a continuous monitoring of thddsen to raise alarms in
advance. Future works may also address the integraf the free style
written information put down by either nurses orctos in order to fill
gaps in the actual information gathered from thenitooing [KIM16].
Such hybrid systems may greatly improve the knogdeextraction from
the past monitoring records.
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3.6. Tables and figures

# Features

1 T, HR, RF, BOS, SBP, DBP

2 t,T, HR, RF, BOS, SBP, DBP

3 #H, T, HR, RF, BOS, SBP, DBP

4 t,#H, T, HR, RF, BOS, SBP, DBP

5(t,#H, T, HR, RF, BOS, SBP, DBP, TR-1, ...
6

Table 3.1: Feature selection experimental desigraria¥fles T=
Temperature, HR= Heart Rate, RF= Respiratory FreqyeBOS= Blood
Oxygen Saturation, SBP= Systolic Blood PressureP®Biastolic Blood
Pressure, #H =Hospitalized days,:¥Hriage at timd.
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Classifier

Feat. Norm. | MLP DT k-NN NB

Norm1l | 0.3726| 0.3741| 0.4242| 0.3733
HR

Norm2 | 0.3971| 0.3965| 0.3904| 0.3959

Norm1l | 0.5546| 0.6987| 0.7163| 0.5555
RF

Norm2 | 0.5822| 0.5919(| 0.5935| 0.58

Norm1 | 0.4058| 0.406 | 0.4109| 0.4081
T

Norm2 | 0.4058| 0.406 | 0.4109| 0.4081

Norm1l | 0.4474| 0.4521 - 0.4573
BOS

Norm2 | 0.4443| 0.4511 - -

Norm1 | 0.4652| 0.5188| 0.4263| 0.4457

SBP, DBP
Norm2 | 0.4815| 0.4935| 0.4496| 0.4506

Table 3.2: Average accuracy achieved by each featdependently.
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Classifier
#Feat| Norm | MLP DT k-NN NB
Norml | 0.5749| 0.5981| 0.5521 0.5608
' Norm2 | 0.5952| 0.5969( 0.5534( 0.5941
Norml | 0.5739| 0.6014| 0.5608( 0.5665
’ Norm2 | 0.5937| 0.6017( 0.5427| 0.5999
Norml | 0.5812| 0.6336| 0.6179( 0.5905
’ Norm2 | 0.5939| 0.671 | 0.6219( 0.6173
Norm1l| 0.5814( 0.6378( 0.6171| 0.5946
) Norm2 | 0.5965( 0.6728( 0.6023| 0.6228
Norm1l| 0.8962| 0.969 | 0.685 | 0.9359
° Norm2 | 0.8779| 0.9695( 0.6961| 0.9353

Table 3.3: Average accuracy for each of the feagate in Table 3.1.

33



CHAPTER 3. PREDICTION OF RESPIRATORY CRISIS

5 a0

20

frequency

0 5 10 15
AGE

Figure 3.1: Frequency distribution of the variaidge of patients.
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Chapter 4

Prediction of hospitalization
after readmission

This Chapter is devoted to another important heatth problem: the
prediction of the readmissions that end up in lafpation of the patient.
Such events are symptomatic of bad quality headite,cand they have
some relevant economical impact that can be prederithe approach in
this Chapter to tackle this issue is to build peeatis of this event based on
the information of the patient at the time of adsia. The problem is
heavily imbalanced, so that we test several classnbing procedures in
order to improve sensitivity of the predictors. Thmputational
experiments on the dataset provided by a univerbibgpital allow
recommending some specific class balance methodlassifier training.
Structure of the Chapter is as follows. Section gides some
introductory remarks. Section 4.2 presents thesgatand the features for

classification. Section 4.3 presents the experialetiésign. Section 4.4
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gives the computational experiments results. RmaHection 4.5 gives

some conclusions.

4.1 Introduction

Emergency department (ED) readmissions within atsperiod of time
after a previous patient discharge are indicatifveither a bad quality of
healthcare service or structural problems in tretheare systems, such as
chronic patients being attended in the ED for latk proper planning of
their care. There is a growing need for sensitiegligtive tools in order to
improve planning and distribution of resources,wadl as to provide a
better healthcare experience to the patient. Sauks tare specifically
tailored to geriatric patients treated at ED [BESb%hers are developed to
address the needs of general healthcare servicé8O15], some are
proposed as institution specific prediction mod¥ld15], finally some are
focused on specific fragile populations [NGU14]|[QIBPER15].

In this paper we focus on the event of hospitalratafter
readmission prediction, which has received littkeraion in the literature.
These events imply that the aggravation of pawenidition since the last
admission could have been prevented. We pose ggighion as a
classification problem. Hospitalization is a raremt; therefore the class
distribution in the dataset is forcefully very inidmaced, requiring the
application of class balancing method before trgjnihe classifiers. We
have carried out cross-validation experiments rigséill combinations of
class balancing method, classifier training techegy and readmission
thresholds. Readmission thresholds range from 3 dgy to 30 days
depending on political circumstances, so consides@veral corresponds
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to the a discrete survival time estimation probléagure 4.1 shows the

percentage of readmission events and patientseag#umission threshold
grows in the actual database used in the experanédtice that, as
expected, the number of readmission grows withithe allowed to count

as a follow up and undesired return of the patidiénce in some
administrations, the threshold is set in ordemsdiify some predetermined
quality criteria, e.g. 3 days to achieve a rateeafimission below 5%.

The anonymised dataset used in the computationaérements
covers more than three years of the activity of Bi2 in a university
hospital of Santiago in Chile, while the dataseplesed in this paper
includes adult and pediatric patients, which hawgecdifferent patterns of
attention and readmission. Therefore, we have emrmut separate
experiments of hospitalization prediction for pédéa and adult
populations. In this Chapter, Section 2 descrides dataset and the
classification features. Appendices A and B desctilve classification
training and data balancing methods. Section 3sgie experimental
design ensuring that there is no bias in the res@ection 4 presents our
results, and Section 5 ends with some conclusiodsdaections of future

work.

4.2 Dataset and classification features

Our raw dataset is composed of ED admission eveht®l=101507
patients divided into 2 groups, namely adults NAS@® (78.82%) and
pediatrics NP=21269 (20.96%). Some pediatric pttibave changed into
adults, so they appear in both lists. The datasatiams 156120 admission
cases recorded between January 1st, 2013 and 3@yil2016 in the

electronic medical record system of the HospitaéJdoaquin Aguirre of
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the Universidad de Chile. At admission time aafell7 variables were
collected, including physiological measures, sushteanperature, breath
rate, heart rate and blood pressure, biochemicabkures such as glucose
level, demographic variables such as gender, aagilify index. There are
five triage levels to distribute the patients. Blesi, the nurse had to select a
motive for the admission, which is a categoricalugaamong five
hundreds. If the time between visits to the EDsféklow the readmission
threshold, then it is a readmission event, otheniss an unrelated event.
Readmission thresholds vary between countriesdbtigal or economical
reasons. We have considered four possible thresh@d7, 15 and 30
days). At discharge patients can go home (74.02 18&),hospitalized
(12.72%), translated to another center (3.26%)ptber situations (9.6%)
including left without being seen (8.88%). We amneerned with the
event of patient hospitalization as a result ofdre@sion, because it is
symptomatic of some lack of diagnosis or treatnieatling to worsening
of patient condition. Figurel.1 shows the distribution of such events
according to the readmission threshold. Thouglsehevents are rare
compared to the total ED events (2% at most), #reysignificant relative
to the readmission events (more than 20%). Heneg tteserve some
special attention. Tablk.1 provides the most salient ED visiting motives,
those accounting for 1.5% of the cases or morgydtients that are labeled
as readmitted under the different readmission kiules. To assess the
difference in the patient profile, Tabk4 provides the most frequent
admission motives for the patients that end up italsgged after
readmission, according to the readmission threshbidall cases the non-
informative category OTHER is the most frequentinpog to excessive
workload on the nurses or difficulty to assess igedg the predefined

categories. There is little difference on the meauses of readmission,
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save for some minor changes in order. Besidesntbe appreciated that
the distribution of motives is similar for all theadmission thresholds,
with little variations in their ordering. More aeusymptoms have greater
prevalence in the shorted threshold (3 days) tmathé larger one (30
days).

The feature set is composed of the numerical aditn of the
variables measured at admission time. This codifinais trivial in all
variables, but not for the variable motive of trimgssion. One way to
encode the motive is to define a binary variablevadue, ending up with a
feature space of more than 500 dimensions verysslyapopulated, which
poses many difficulties for training predictors. this paper we have
encoded the motive in a single numerical featuresghvalue is computed
in one of two ways: (a) the percentage of hospidiibns for a given
motive relative to the number of readmissions fas tmotive, and (b) the
position of the motive in the ranking of readmissio Notice that this
ranking, according to Tabk1l is different for each readmission threshold,
so that this feature encoding depends on thathhbles

Finally, we must consider the strong statisticffiedences that exist
between adult and pediatric populations. Figh&shows the percentage
of patients (figure4.2a) and of events (figurel.2b) that end up in a
hospitalization, segregated into adults and peddiatpulations. It can be
appreciated a big difference in the number of raasions between both
populations. Figurd.4 shows the distributions of the hospitalizationrése
relative to the readmissions for the adult (figla) and pediatric (figt.4b)
populations. It can be appreciated the adult pajmapercentage of
hospitalization is much higher for all the readnassthresholds (33%)
than in the pediatric population (14%). There am@nynother differences
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that counsel to tackle each population separassdywill be done in our
experiments in Section 4.4, such as the distributiomotives for the visit.
Table4.2 and Table4.3 show the distribution of motives for the adult and
pediatric patients readmission, respectively. Agalsly, Table4.5 and
Table 4.6 show the distribution of motives for the adult apediatric
patients that end up hospitalized after readmisdiocan be appreciated
that some causes that have little impact in thet gayulation, i.e. cough,

are very salient in the pediatric population, are wersa.

4.3 Experimental design

Figure 4.5 shows the data selection process carried out @t eeoss-
validation experiment repetition, in order to emsuhat no bias is
introduced in the classification evaluation. Thegass starts with the
collection of all relevant data of readmission d@sgower left corner) and
proceeds by random splitting the data into 70/3G@bsets, which are
used, respectively, for training and testing. Tiran includes the
application of data balancing technique and thanitrg of a classifier,
which is applied to the test data. This processpgated ten times for each
combination of readmission threshold, data balapoiethod and classifier
learning approach. That means that we carry outx&Bx¥0x2 Cross-
validation experiments, each featuring independéiata balancing
processes (5), classifier training (4), readmissivashold (4), and coding
of the “motive” variable (2). The performance ingcreported in the

experiments are the following:

e Accuracy (A) computed as A=(TP+TN)/N
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e Sensitivity (S) computed as S=TP/ (TP+FN) meashis much
of the actual positive class we have discovered.

e Positive Predictive Value (PPV) PPV=TP/(TP+FP) sugas how
confident we can be of our positive predictions

e F= (PPVxSY?is a kind of f-score which combines S and PPV to
assess the power of prediction of the positivesclasthe case of
imbalanced data.

4.4 Computational results

We have summarized the cross-validation resultsvonaspects. First we
have considered which of the data balancing metbhad$e recommended
for further exploitation of the data. To this emdg compute the average
performance metrics achieved with each balancintpogefor the separate
populations of adults and pediatric patients. Ageras computed over all
readmission thresholds and learning methods. Wepuateanpairwise one
sided t-test on the cross-validation results agdelby each pair of data
balancing methods, declaring as winner the methad has significant
improvement (p<0.001) in all comparisons. Secon& @ompare the
classifier approaches in the same way.

Table4.7 shows the average results of the data balancingaug
on the adult and pediatric populations, bold resplr column signal the
winner method. When ties occur both methods arbligigted. Notice the
poor performance of the SMOTE approach. The wirmethod is the
undersampling (UNDER) if we consider sensibility éhd f-measure (F).
Considering the positive predictive value (PPV)whkuoer, the winner is
the TOMEK. Notice that the accuracy (A) is highlysteading, especially
for the pediatric population which is much more at@mced. Tablel.8
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gives the average results of the learning methested. Attending to the S
and F values, the multilayer perceptron (MLP) pdegi the best results;
however Naive Bayes (NB) provides the best A andf RP&lues. Notice
the difference in results between adult and pedigtopulations due to
their statistical properties. Specifically, the wal of A is strongly
influenced by results on the majority population.s Aa final
recommendation for a practical hospitalization préoh we propose the
data balancing by undersampling and the use of MERhe classifier
training method. One reason for the comparativelyrpesults of SMOTE
Is that the interpolation of the motive cause isamegless, because minor
alterations may change dramatically its meaning, it is not truly a
continuous valued variable. Finally, Tal#l® shows the results averaged
for each value of the readmission threshold, fradnd®dwn to 3 days.
Consistently with the results of the Tablds/ and 4.8, it can be
appreciated that the results for the pediatric faimn are much worse
than for the adult population. The average per messlon threshold is
more biased towards the majority class as can peecajated by the high
accuracy and very low sensitivity and PPV valud® Threshold of the 30
days allows more precise prediction, but thoughty ba statistically
significant they are not big differences, so thataan assert that prediction

would be insensitive to the readmission threshold.

4.5 Conclusions

Readmissions can be taken as a measure of thetygodliservice in
healthcare systems. In some countries, i.e. US#pitads are penalized by
readmissions under a time threshold, i.e. 30 day® problem is not

widely tackled in the case of emergency departm@3), which may
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have stringent requirements, i.e. 3 days thresholcChile. We have
considered in this paper the case of hospitalimatias a result of
readmission, which is a severe indication of tfek laf medical solutions
to the patient. We have approached the problem adassification
problem, with some success after testing severaksclbalancing
approaches and classifier learning methods. From cooss-validation
experiments, we recommend the use of artificialralenetworks as the
classification training method, and majority classdersampling as the
class balancing method. We found that the prediatesults are relatively
insensitive to the readmission threshold set.

Future works on this same database may involvengryther
codification methods for the variable "motive", bua@as the use of
orthogonal binary codifications. Other approachesy mdeal with
independent one class classifiers trained for eaative value. The results
in this Chapter may serve to enhance the informatollected at

admission time, in order to improve prediction amtment.
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4.6 Tables and figures

Readmission
<3 days <7 days <15 days <30 days
Motive % Motive % Motive % Motive %
OTHERS 30.13 | OTHERS | 27.25 | OTHERS 25.36 | OTHERS 23.37
GAP 8.20 | GAP 8.02 | GAP 7.54 | GAP 7.36
1/3DF 5.40 | COUGH 5.16 | COUGH 5.68 | COUGH 6.87
COUGH 4.28 | 1/3DF 4.91 | 24HF 5.21| 24HF 6.68
24HF 4.10| 24HF 4.27 |1/3DF 4.64|1/3DF 4.79
HA 3.04 | HA 3.11| HA 3.11 |HA 3.01
D 2.59|D 2.90|D 2.82|T 2.91
T 243|T 2.63|T 2.62|D 2.79
EP 1.86 | EP 1.72 | LegP 1.87 | LegP 1.80
LuP 1.51 | LegP 1.72 | LuP 1.69 | AD 1.69
LegP 1.45|4/7DF 1.71|EP 1.61|LuP 1.65
4/7DF 1.44 | LuP 1.61|AD 1.56 | EP 1.49
IFPr 1.27|AD 1.32|4/7DF 1.40|GD 1.47
RFPr 1.25 | RFPr 1.31|GD 1.33 | NAUSEA/T | 1.38
NAUSEA/T 1.22|GD 1.28 | NAUSEA/T 1.31 | DYSURIA 1.25

Table 4.1: Distribution of the most salient motives for reassion to the
ED, for various readmission thresholds. Motive ®d&AP: general
abdominal pain, 24HF: fever <24 hours, HA: headacti8DF: fever
between 1 and 3 days, GD: general discomfort, Eijastric pain, T:
throwing up, D: diarrhea, LegP: leg pain, LuP: lanlpain, AD: acute
disnea, IFPr: pain in the right iliac fossa, RARin in the left renal fossa,
RFPr: pain in the right renal fossa.
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Readmission_adults
<3 days <7 days <15 days <30 days
Motive % Motive % Motive | % Motive %

OTHERS |16.57 |OTHERS |16.70 | OTHERS [17.16 | OTHERS |17.01
GAP 11.08 | GAP 10.38 | GAP 9.62 | GAP 9.59
HA 4.94 | HA 4,95 | HA 4,75 | HA 4.64
EP 3.44 | LegP 3.09 | LegP 3.27 | LegP 3.24
LuP 2.81|EP 3.05| LuP 2.96 | LuP 2.94
LegP 2.73 | LuP 2.88 | EP 2.80 | EP 2.66
RFPr 2.32 | RFPr 2.36|GD 2.35|GD 2.66
RFPI 2.27|GD 2.30| AD 2.21|AD 2.52
IFPr 2.18 | RFPI 2.09 | RFPr 1.97 | 24HF 2.14
GD 2.13 | HYPr 1.95 | 24HF 1.94 | RFPr 1.81
HYPr 2.10|AD 1.87 | HYPr 1.82|D 1.80
D 1.88 | IFPr 1.80 | RFPI 1.77 | HYPr 1.73
24HF 1.75| 24HF 1.80|D 1.75 | RFPI 1.59
AD 1.67|D 1.76 | KP 1.55|KP 1.50
NAUSEA/T| 1.37 | NAUSEA/T| 1.47 |AP 1.54 | NAUSEA/T| 1.49

Table 4.2: Distribution of the most salient motives for reaslsion of

adults to the ED, for various readmission threshioMotive codes: GAP:
general abdominal pain, 24HF: fever <24 hours, HAadache, 1/3DF:
fever between 1 and 3 days, GD: general discomid?t, epigastric pain,
T: throwing up, D: diarrhea, LegP: leg pain, Luémbar pain, AD: acute
disnea, IFPr: pain in the right iliac fossa, RARin in the left renal fossa,
RFPr: pain in the right renal fossa, HYPr:right aghbondrium pain,
D:diarrhea, KP: knee pain, AP: arm pain
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Readmission_pediatrics
<3 days <7 days <15 days <30 days
Motive % Motive % Motive % Motive %
OTHERS 45.60 | OTHERS 40.23 | OTHERS 35.95 | OTHERS 31.12
1/3DF 10.36 | COUGH 9.73 | COUGH 11.28 | COUGH 13.56
COUGH 7.59|1/3DF 9.68 | 24HF 9.45 | 24HF 12.20
24HF 6.78 | 24HF 7.30|1/3DF 9.43|1/3DF 9.42
GAP 492|T 552|T 558 |T 6.03
T 4.89 | GAP 5.12 | GAP 4.86 | GAP 4.65
D 3.39|D 431|D 4.20|D 4.01
4/7DF 2.49|4/7DF 3.16 | 4/7DF 2.67 | 4/7DF 2.26
FP3 1.06 | EARACHE 1.28 | EARACHE 1.63 | EARACHE 1.81
NAUSEA/T 1.06 | EXANTH 1.09 | NAUSEA/T 1.12 | NAUSEA/T 1.25
EXANTH 1.00 | FP3 1.09 | DYSURIA 1.10 | DYSURIA 1.16
EARACHE 0.90 | NAUSEA/T| 1.05|FP3 1.06 | HA 1.02
HA 0.87 | HA 0.86 | EXANTH 1.04 | FP3 1.01
AD 0.68 | DYSURIA 0.81| HA 0.98 | EXANTH 0.90
DYSURIA 0.62 | AD 0.64 | AD 0.72 | CRYING 0.71
Table 4.3: Distribution of the most salient motives for reassion of

pediatrics to the ED, for various readmission thoéds. Motive codes:

GAP: general abdominal pain, 24HF: fever <24 hotttd, headache,

1/3DF: fever between 1 and 3 days, GD: generabdisart, EP: epigastric

pain, T: throwing up, D: diarrhea, LegP: leg pdiaP: lumbar pain, AD:

acute disnea, IFPr: pain in the right iliac foR&PI: pain in the left renal
fossa, RFPr: pain in the right renal fossa, FP3tigiec fever 3 years,

4/7DF: fever between 4 and 7 days
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Hospitalization (after readmission in X days)

<3 days <7 days <15 days <30 days
Motive % Motive % Motive % Motive %
OTHERS | 21.57 | OTHERS | 20.49 | OTHERS | 19.67 | OTHERS | 19.49
GAP 12.74 | GAP 12.68 | GAP 12.68 | GAP 12.33
HA 3.57 | HA 3.44 | AD 3.77 |AD 4.40
1/3DF 3.25|1/3DF 3.29 | 24HF 3.49 | 24HF 425
HYPr 3.12|AD 3.00 | HA 3.22 | COUGH 3.04
EP 3.05 | 24HF 3.00|1/3DF 3.10 | 1/3DF 2.97
AD 2.79 | HYPr 2.95 | COUGH 2.87 |HA 291
24HF 2.79 | COUGH 295D 2.79|D 2.57
COUGH 2.73 | EP 2.80 |EP 2.79 | HYPr 2.57
D 253D 2.75 | HYPr 2.75 | EP 2.51
IFPr 2.47 | RFPr 2.75 | RFPr 2.32|GD 2.42
RFPr 2.34 | IFPr 2.11 | LegP 2.28 | LegP 2.32
T 2.27|T 206 |T 1.85 | RFPr 2.14
RFPI 1.75 | RFPI 1.97 | IFPr 1.81 | LuP 1.61
LegP 1.69 | LegP 1.87|GD 1.73 | IFPr 1.58

Table 4.4: Distribution of the most salient motives for reassion to the
ED that lead to hospitalization, for various reassron thresholds. Motive
codes: GAP: general abdominal pain, 24HF: fever <irs, HA:
headache, 1/3DF: fever between 1 and 3 days, Gizrgediscomfort, EP:
epigastric pain, T: throwing up, D: diarrhea, Ledfy pain, LUP: lumbar
pain, AD: acute disnea, IFPr: pain in the righadlifossa, RFPI: pain in the
pain in the right renal slnos HYPr:right

left renal

fossa, RFPr:

hypochondrium pain
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Hospitalization_adults (after readmission in X days)

<3 days <7 days <15 days <30 days
Motive % Motive % Motive % Motive %
OTHERS | 15.76 | OTHERS | 15.37 | OTHERS | 15.48 | OTHERS | 16.05
GAP 14.47 | GAP 14.03 | GAP 13.85 | GAP 13.47
HA 4.48 | HA 4.25|HA 3.89|AD 4.55
HYPr 4.13 | HYPr 3.81|AD 3.84 | 24HF 3.91
EP 3.96 | EP 3.56 | EP 3.45 | HA 3.45
IFPr 3.10 | RFPr 3.56 | HYPr 3.45 | HYPr 3.15
RFPr 3.10|AD 2.98 | 24HF 3.15|EP 3.03
AD 2.50 | IFPr 2.60 | RFPr 291|GD 2.96
RFPI 2.33 | 24HF 2.60 | LegP 2.86 | LegP 2.85
LegP 2.24 | RFPI 2.54 | IFPr 2.17 | RFPr 2.62
24HF 2.15| LegP 2.41|GD 217D 2.09
LuP 1.89|D 1.90|D 2.12 | LuP 1.97
D 1.72|GD 1.84 | RFPI 2.12 | RFPI 1.90
GD 1.72 | LuP 1.78 | LuP 1.87 | IFPr 1.82
1/3DF 1.46 | 1/3DF 1.78|1/3DF 1.72|1/3DF 1.82

Table 4.5: Distribution of the most salient motives for reasision of
adults to the ED that lead to hospitalization, f@rious readmission
thresholds. Motive codes: GAP: general abdominal, @HF: fever <24
hours, HA: headache, 1/3DF: fever between 1 anc&y®,dGD: general
discomfort, EP: epigastric pain, T: throwing up, @arrhea, LegP: leg
pain, LUP: lumbar pain, AD: acute disnea, IFPr:npia the right iliac
fossa, RFPI: pain in the left renal fossa, RFPm pathe right renal fossa,
HYPr:right hypochondrium pain
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Hospitalization_pediatrics (after readmission in X days)
<3 days <7 days <15 days <30 days
Motive % Motive % Motive % Motive %
OTHERS [39.42| OTHERS |38.04| OTHERS |36.10| OTHERS |34.86
COUGH 9.52 | COUGH |10.87| COUGH |11.58| COUGH |[13.54
1/3DF 8.73 1/3DF 8.48 1/3DF 8.49 1/3DF 8.12
GAP 7.41 GAP 8.04 GAP 8.11 GAP 7.28

T 7.14 T 7.17 T 6.95 T 6.09
D 5.03 D 5.65 D 5.41 24HF 5.75
24HF 4.76 24HF 4.35 24HF 4.83 D) 4.74

AD 3.70 4/7DF 3.48 AD 3.47 AD 3.72
4/7DF 2.65 AD 3.04 4/7DF 3.28 4/7DF 3.55
NAUSEA/T| 1.59 | NAUSEA/T| 1.30 CcC 1.16 CcC 1.18
CC 1.06 CcC 1.09 | NAUSEA/T| 1.16 | NAUSEA/T| 1.02

HA 0.79 HA 0.65 F>1W 0.97 F>1W 0.85
AAP 0.53 F>1W 0.65 HA 0.58 FP3 0.68
IFPr 0.53 FP3 0.65 FP3 0.58 | JAUNDICE | 0.68
F>1W 0.53 AAP 0.43 | JAUNDICE | 0.58 HA 0.51

Table 4.6: Distribution of the most salient motives for reaslsion of
pediatric patients to the ED that lead to hosmtdion, for various
readmission thresholds. Motive codes: GAP: genataominal pain,
24HF: fever <24 hours, HA: headache, 1/3DF: fewdwieen 1 and 3 days,
GD: general discomfort, EP: epigastric pain, Towing up, D: diarrhea,
AD: acute disnea, IFPr: pain in the right iliac $as RFPI: pain in the left
renal fossa, RFPr: pain in the right renal fosséPHright hypochondrium
pain; F>1W: fever > 1 week; 4/7DF: fever betweeantl 7 days; FP3:
pediatric fever 3 years; CC: Convulsive crisis
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Balan. Adult Pediatric
A S PPV | F A S PPV | F

UNDER [(0.64 |0.61 [0.43 [0.51 |0.66 | 0.60 |0.15 | 0.29
OVER 0.65 |10.48 |0.44 |0.45 (0.73 [ 0.49 | 0.20 | 0.30
SMOTE | 0.63 [0.58 [{0.42 [0.49 [0.80 [0.35 [0.25 | 0.28
0ss 0.69 [ 0.42 | 049 |0.45|0.90 |0.10 |0.47 |0.21
TOMEK |0.69 | 0.42 [0.50 |0.45 [0.90 |0.10 | 0.50 | 0.21

Table 4.7: Average performance of the data balancing methamess
classifier training methods and readmission thrieshtdndersampling
majority class (UNDER), Oversampling minority cla€&3VER), random
interpolation (SMOTE), selective removal (TOMEK))e side selection
(OSS). Bold indicates that the approach differascggnificant (p<0.001)

in all pairs of t-test one side comparisons.
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Classif. Adult Pediatric
A S PPV | F A S PPV | F
MLP 0.67 |057 (047 (051 (0.79 1037 |0.21 |0.21
DT 0.66 |0.49 (045 (0.46 (0.81 |0.31 |0.37 | 0.28
KNN 0.62 |0.51 [{0.40 [{0.45 |0.75 |0.34 |0.26 | 0.24
NB 0.69 [0.44 (051 [0.47 [0.84 [0.29 [0.42 [0.30

Table 4.8: Average performance of the classifier trainingtimes across
data balancing methods and readmission thresholdtild§er perceptron
(MLP), Decision Tree (DT), k nearest neighbors (RNNlaive Bayes
(NB). Bold indicates that the approach differengesignificant (p<0.001)

in all pairs of t-test one side comparisons.
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Readm. Adult Pediatric
Thresh.

A S PPV | F A S PPV | F

30 days| 0.68 [0.51 |0.47 | 049 (082 |0.34 [0.32 |0.25

15 days| 0.67 [0.51 [0.46 | 0.48 [ 0.81 | 0.32 | 0.30 | 0.24

7 days [0.66 [0.51 | 0.45 |0.47 |0.80 |0.33 |0.35 |[0.28

3days |0.65 | 0.50 |0.46 |0.47 |0.78 |0.34 |0.31 |[0.28

Table 4.9: Average performance of the readmission threshastbss
classifier training and data balancing methods.dBioidicates that the
approach difference is significant (p<0.001) in @diirs of t-test one side
comparisons
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Chapter 5

Conclusions and ideas for
future work

This chapter concludes the Thesis giving some csiahs and ideas for
future work. We discuss some aspects of procesmalh care data. We

tackle independently the main applications.

5.1Processing health care data

The processing of health care data poses sevealiécpes. The first and
paramount is the availability of data. Legal andremmical issues make
quite tricky to obtain data to carry out the congbiainal experiments. In
the best case it requires a good deal of work tptuca the data
systematically. Once the data has been obtainedntbnt of the original
data capture may be different to the actual rebeaark carried out, so
that critical information may be missing, while vedlant information may
be overflowing. Besides, data can be very noisynew#h the use of
electronic health records. For instance, in thelmession data we have

detected an extraordinary abundance of “OTHER” hes motive of the
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visit. This fact has two interpretations: (a) these was overwhelmed by
the work and the interface of the system was custmee, (b) the actual
motives considered were not comprehensive enougjimerBnterpretation
poses a lot of questions for the design and th&kiwgrenvironment. We
must have in mind that the systems are embeddeddimical stressful
scenario.

The noise in the data includes missing values, elsag erroneous
values, so that missing value imputation may beoasing field of work
for future research efforts. Intelligent techniqugessing the data values
may include fuzzy system approaches as well asstyestimation based
on Markov random field models. Appropriate methbdse a great value
and may improve performance of ensuing classificatnethods.
Furthermore, data distributions in health care tenlde uncomfortable, i.e.
with some properties that make them difficult teatr One such properties
is the imbalance of classes in the data, wherendfte emphasis is in the
minority class. Though there is a large body dadréiture on the topic of
class balancing, most is devoted to continuous tihatizallow interpolation
with good results. However, in the health care domaany variables are
qualitative, so that numerical interpolation is megless for them.
Dealing with qualitative imbalanced datasets isopan question of great
interest for health care data.

Finally, data in the health care environment isobeiag huge, so it
may fall in the realm of Big Data, techniques anetimds developed to

deal with big data may have straightforward appilicain health care.
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5.2 Monitoring of pediatric respiratory
crisis

We have dealt with the monitoring and alarm detectin pediatric
intensive care unit as a classification probleming to predict the triage
set by the nurse and doctor. Data were records small number of
patients taken each hour. We have successfullyeddke noise and the
missing values, achieving high predictive perforoenThe work in this
Thesis sets the stage for real life clinical agdlans that may help to save
many lives. However, data was manually capturedthsce is a need to
develop and implement electronic devices for thptwa of the data,
possibly interfacing between equipments. Such @svimay be mobile,
like the tablets and iPad, with easy interfaces] aray implement the
alarms built from the classifiers tested in thise3is. They can embed
some life-long learning procedure, so that they edapt to changing

conditions and populations.

5.3 Prediction of readmission and
hospitalization

Hospitalization after readmission is a critical evevith strong economical
and health costs. The actual dataset is big andiwdralanced; therefore
we had to focus on the readmitted people populatpedicting the
hospitalization event in such environment. We hexplored state of the
art data balancing methods and classifier learmreghods, with some

relative success. So we were able to make somanmeadation for
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potential real life prediction products. A notettie readmission threshold,
which is set based on economical and political aegswe have tested
several definitions (72hours, 7, 15, 30 days) figdihat our approach is
rather robust against the precise setting of tlaemession threshold. We
attribute the limitation of the results to the awggliof the Motive variable.
New codifications of this variable, such as a atiten of orthogonal
binary variables one per motive, may help to improasults. But this kind
of state variables definition introduces some prpid on the data
interpolation carried out for class balancing. Reske in this line of work
may contribute greatly to the literature on classadbalancing. Further
statistical work may be done based on survivalhashich is a branch of
stochastic processes that has been exploited &s atech as insurance risk

assessment, and cancer survival.
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Appendix A
Classifier training methods

A.1 Methods

We tackle the hospitalization prediction as a dfasdion problem into

two classes. The class distribution in the datésetrongly unbalanced.
Moreover, the statistical and qualitative differescbetween adult and
pediatric populations counsel to treat them sepbralhe computational
tools have been borrowed from the R project, incdgdhe methods for
cross-validation (package caret), and the datanbalg methods for
unbalanced datasets (package unbalanced) introdyd@&AL2013].

To build hospitalization event predictors from fiteysiological and
demographic features we have tried four kinds a$sification algorithms:
Multilayer Perceptron (MLP), Decision Trees (DT}Nearest Neighbors
(k-NN), and Naive Bayes (NB). We have applied trdéadlt settings of
these algorithms in the caret package: the samé@uaof hidden units as
inputs in the MLP, one neighbor in k-NN, and a maxin of 10 levels in
DT. Details of the algorithms are well known ancd ¢e found elsewhere
(Grana et al. 2015, Haykin 1998)
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Appendix B
Class balancing techniques

B.1 Class Balancing

Real life classification problems are often imbaleah, that is, the number
of samples of one class is much greater than ther.oMost classifier

building approaches are biased towards the majatags, so that they
achieve high classification accuracy but low sérigit on the minority

class, which is often the interesting one. Theesfaaccuracy is less
relevant as a measure of performance than othesuresafocused on the
positive minority class prediction. The case atchéits into this picture,

because the target hospitalization event is mucarcec than the

readmission, and it has specific economic valuerd@lare two basic ways
of dealing with the issue of class imbalance. Oranipulates the cost
function weighting differently training examplesy the errors committed
on the minority class are most costly. The othergmocesses the original
dataset, either by over- sampling the minority £lasd/or under-sampling
the majority class. In this paper we apply five noels following the later

approach:
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Synthetic Minority Over-sampling Technique (SMOTEhawla et al.

2002) consists in the random linear interpolaticgtwieen nearest
neighboring samples of the minority class. NoticattSMOTE may
“fill the gaps” in data distributions that show pésse connected
regions.

The under-sampling (UNDER) consisting in randomimoving

samples of the majority class until the desirecihed is reached.

The oversampling (OVER) of the minority class, sisting in the

random repetition of some of the samples.

The method proposed by (Tomek 1976) (TOMEK) thatsegis in the
removal of samples that do not affect the perforreanf 1-NN

classifiers.

The one sided selection (Kubat 1997) (OSS) focusthen positive

class, retaining all samples and removing all reldmh samples, which

are far from the decision boundary.
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