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SUMMARY 

The main objective of this thesis is to investigate the effects of mounting 

eccentricities or shaft to bore misalignments on the tribological 

behaviour of elastomeric seals in an attempt to contribute to the lack of 

studies related to the life expectancy of seals. To this aim, this work 

deals with the study of the effect of rod eccentricities on the contact 

pressure distribution on seals, the friction generated, the volume loss 

and the contact temperature distribution along elastomeric seals during 

operation combining analytical, numerical and experimental methods. 

 

Mounting misalignments are unavoidable and their nature may be very 

diverse. Among the different sources of mounting misalignments are 

mounting errors and incorrect design or manufacturing tolerances. 

Furthermore, in most cases, misalignments result from the combination 

of all these factors.  

 

The main effect of rod mounting eccentricities is a non-uniform contact 

force distribution along the seal. As a consequence, some sections of 

the seal will be subjected to an excessive contact pressure (radial 

overload) whereas in other sections, the contact between parts may be 

lost. In the latter case, the immediate consequence is the leakage of the 

seal. In the former case, radial overloads will lead to a reduced service 

life of the seal due to the breaking down of the lubricant film and 

therefore to a temperature rise that may cause thermal degradation and 

abrupt wear. Hence, immediate consequence of an incorrect seal 

mounting is a premature seal failure due to radial overloads. 

Nevertheless, even if mounting eccentricities affect considerably the life 
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expectancy of seals, their effect on the tribological performance of seals 

has not been studied in detail up to now. Hence the present work is 

mainly motivated by the need to understand how the inevitable mounting 

misalignments alter the performance of seals. The main objectives of the 

thesis and the structure of the research work are presented in Chapter 1. 

Moreover, although this research work is focused on the study of the 

effects of rod mounting misalignments on seals, a failure guide of the 

most common elastomeric seal failures as well as their main causes are 

also presented within this chapter.  

 

In an attempt to meet the challenge of measuring experimentally the 

contact pressure distribution between a specific seal and the rod under 

certain mounting conditions, in this thesis a novel analytical method has 

been developed. In particular, a procedure to build an analytical tri-

dimensional eccentricity model of seals that enables calculating the 

contact force distribution along a complete seal as a function of radial 

mounting eccentricities is herein proposed and presented in Chapter 2. 

The model was completed and adjusted by means of numerical results. 

In order to complete and validate the model, experimental misalignment 

tests were carried out in a specific test rig designed to this aim. The 

proposed methodology may be a useful tool for design purposes in order 

to avoid the high computational costs associated with long 

computational times of simulations carried out on numerical 3D models. 

Moreover, the procedure may be also very useful for the industry since 

knowing the contact forces between the seals and the counterparts is of 

great interest and the base for further friction, wear and temperature 

predictions as demonstrated in this work. 
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With the aim of investigating the effect of radial overloads on the service 

life of seals under actual operating conditions, experimental tests were 

carried out on seals under both concentric and controlled eccentric 

mounting conditions. The test rig used for sealing system 

characterization and the results of the tests are presented in Chapter 3. 

In particular, friction and wear measurements were carried out, and 

volume loss vs. sliding distance curves of the tested seals were built in 

order to evaluate and compare the tribological performance of seals 

working under concentric and eccentric mounting conditions. 

Furthermore, wear rate and friction distribution calculations of the seal 

samples have been also herein addressed through the use of the 

eccentricity contact model developed. 

 

Regarding the effect of radial overloads arising from mounting 

eccentricities on the temperature rise of seals due to frictional heating, 

this investigation has been carried out through the development of a 

specific methodology presented in Chapter 4. Radial overloads may lead 

to an excessive temperature rise on seals that may result in an 

overheating of the surfaces in certain seal sections due to frictional 

heating, even in lubricated contacts. Hence, knowing the temperatures 

reached at the contact is of great interest but also a challenge 

considering that seals are usually mounted in closed grooves and 

moving relative to their mating surfaces. The methodology herein 

proposed overcomes this challenge and enables estimating the contact 

temperature distribution on seals during operation combining analytical 

models, thermo-mechanical properties of the materials involved and 

some experimental inputs. The investigation was carried out in two 

stages. In a first stage, an experimental investigation on the frictional 
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heating phenomenon on elastomeric seals was carried out at laboratory 

scale. In a second stage, the knowledge gained from this basic study 

was extended to develop a procedure to calculate the temperatures 

reached at the contact between an entire seal and its mating surfaces 

during operation. In line with the topic of this thesis, the proposed 

procedure was applied to estimate and compare the contact temperature 

distribution on seals subjected to concentric and eccentric mountings. It 

is thought that the proposed methodology may be useful and of great 

interest for the industry, considering the lack of applicable experimental 

techniques and given the low thermal resistance of elastomers.  

 

At the end of this thesis, in Chapter 5, the main conclusions of the work 

carried as well as future possible research in line with this thesis are 

presented.  



Resumen 

 

ix 
 

RESUMEN 

El principal objetivo de esta tesis es investigar los efectos que producen 

las excentricidades de montaje en el comportamiento tribológico de las 

juntas elastoméricas de cara a contribuir a la falta de estudios existentes 

relacionados con la expectativa de vida en servicio de éstas. Con este 

fin, este trabajo aborda el estudio del efecto de posibles 

desalineamientos radiales del eje en la distribución de la presión de 

contacto de las juntas, en la fricción generada, en el desgaste producido 

y en la distribución de la temperatura en el contacto, mediante la 

combinación de técnicas analíticas, numéricas y experimentales. 

 

La presencia de excentricidades en elementos de máquina es inevitable 

y su naturaleza puede ser muy diversa. Los errores de montaje, y de 

tolerancias de diseño o de fabricación, son algunas de las fuentes más 

frecuentes de excentricidades. Es más, en la mayoría de los casos, son 

el resultado de una combinación de varios de estos factores.  

 

El principal efecto de las excentricidades de eje es una distribución no-

uniforme de la fuerza de contacto a lo largo de la junta. Como 

consecuencia, algunas secciones de la junta estarán sometidas a una 

excesiva fuerza de contacto (sobrecarga radial), mientras que en otras 

secciones podría llegar a perderse el contacto entre la junta y su contra-

superficie. En este último caso, la consecuencia inmediata será la 

pérdida de sellado y, por lo tanto, la fuga del fluido a sellar. En el primer 

caso, las sobrecargas radiales darán lugar a una reducción de la vida de 

servicio de la junta debido a la rotura de la película de lubricante y, 
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como consecuencia, a un aumento de temperatura en el contacto, lo 

que acelerará el proceso de desgaste de la junta pudiendo incluso 

degenerar en la degradación térmica de ésta. En definitiva, el efecto 

inmediato de un montaje incorrecto de las juntas es un fallo prematuro 

de las mismas, debido a sobrecargas radiales. Si bien las 

excentricidades afectan considerablemente a la vida útil de las juntas, 

su efecto en el comportamiento tribológico de las mismas no se ha 

estudiado en detalle hasta ahora. Por ello, la principal motivación del 

presente trabajo ha sido la necesidad de investigar en detalle y entender 

la manera en que afectan las excentricidades de montaje al 

funcionamiento y vida en servicio de las juntas elastoméricas. Los 

principales objetivos y la estructura del presente trabajo de investigación 

se presentan en el Capítulo 1. Este capítulo también recoge un listado 

de los fallos más comunes de las juntas elastoméricas, así como 

principales causas.  

 

Con objeto de superar el reto que supone la medición experimental de 

la distribución de la presión de contacto entre una determinada junta y 

su vástago bajo unas condiciones de montaje específicas, en este 

trabajo de tesis se ha desarrollado un modelo analítico novedoso. En 

particular, en esta investigación se ha propuesto un procedimiento para 

desarrollar modelos analíticos tri-dimensionales de excentricidad de 

juntas que permiten calcular la distribución de la fuerza de contacto a lo 

largo de éstas en función del desalineamiento. Este procedimiento se 

recoge en el Capítulo 2. El modelo se ha completado y ajustado 

mediante resultados numéricos. La validación del modelo se ha llevado 

a cabo mediante ensayos experimentales en un banco de ensayos 

diseñado y fabricado para esta finalidad. La metodología propuesta en 
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este trabajo puede ser una herramienta útil para fines de diseño de cara 

a evitar los grandes costes computacionales asociados a las 

simulaciones numéricas 3D. A su vez, la metodología también puede 

resultar de gran utilidad para la industria ya que conocer la distribución 

de la fuerza en el contacto resulta indispensable de cara a realizar 

posteriormente predicciones sobre la fricción, desgaste y distribución de 

temperatura en las juntas, tal y como se ha demostrado en este trabajo.  

 

Con objeto de investigar sobre el efecto de las sobrecargas radiales en 

la vida en servicio de las juntas elastoméricas, en este trabajo se ha 

llevado a cabo una campaña de ensayos en juntas sometidas a 

montajes concéntricos y de excentricidad controlada bajo condiciones 

operativas reales. Tanto el banco de ensayos empleado para la 

caracterización tribológica de las juntas como los resultados de los 

ensayos llevados a cabo, se recogen en el Capítulo 3. En particular, se 

realizaron medidas de fricción y degaste, y se construyeron curvas de 

desgaste vs. distancia recorrida por las juntas, a fin de evaluar y 

comparar el comportamiento tribológico de juntas sometidas a un 

montaje concéntrico y excéntrico. Además, en este trabajo también se 

ha abordado el cálculo de la tasa de desgaste y de la distribución de la 

fricción a lo largo de las juntas mediante el uso del modelo tri-

dimensional de contacto desarrollado. 

 

En lo que respecta al incremento de la temperatura en la junta debido al 

calentamiento por fricción, y originado por la presencia de sobrecargas 

radiales en la misma, en esta tesis se ha desarrollado una metodología 

específica que se presenta en el Capítulo 4 para estimar la temperatura 

en el contacto entre la junta y su contra-superficie, bajo condiciones 
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operativas. En efecto, las sobrecargas radiales pueden dar lugar a un 

aumento excesivo de temperatura en secciones específicas de las 

juntas debido al calentamiento por fricción, incluso en condiciones 

lubricadas. Por ello, conocer las temperaturas alcanzadas en el contacto 

suscita un gran interés que representa además un gran desafío, puesto 

que las juntas están montadas en alojamientos cerrados de difícil 

acceso y están sometidas a un movimiento relativo con respecto a su 

contra-superficie. Además, cualquier técnica basada en el contacto no 

es aplicable, porque su uso podría alterar las mediciones. La 

metodología propuesta en este trabajo supera este reto y permite 

estimar la distribución de la temperatura en el contacto de juntas en 

condiciones operativas mediante una combinación de modelos 

analíticos, propiedades termo-mecánicas de los materiales implicados y 

algunos datos experimentales. La investigación se ha llevado a cabo en 

dos fases. En una primera fase, se ha realizado un estudio experimental 

a escala laboratorio del aumento de temperatura en elastómeros debido 

al fenómeno de calentamiento por fricción. En una segunda fase, 

gracias al conocimiento adquirido durante el estudio experimental se ha 

desarrollado un procedimiento que permite estimar la temperatura 

alcanzada en el contacto entre una junta y su contra-superficie en 

condiciones operativas. En línea con la temática de esta tesis, la 

metodología ha sido aplicada a fin de estimar y comparar la distribución 

de temperaturas en una junta sometida a un montaje concéntrico, y otra 

sometida a un montaje excéntrico. La metodología planteada en este 

trabajo puede resultar de gran interés y utilidad para la industria, 

teniendo en cuenta que las técnicas experimentales aplicables 

actualmente son muy escasas y relativamente baja la resistencia 

térmica de los elastómeros. 



Resumen 

 

xiii 
 

 

El Capítulo 5 recoge las principales conclusiones del trabajo llevado a 

cabo en esta tesis, así como algunas de las posibles líneas de 

investigación futuras en este ámbito. 
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Chapter 1: Introduction, objectives and 

structure 

 

1.1 Introduction 

Elastomeric seals are components mounted in most of the devices were 

a fluid has to be sealed. Their use is extended to a wide range of 

industries such as the automotive, energy, aerospace and 

manufacturing industries. They are critical components in engines, 

landing gears, flight controls, airframes, transmissions and pumps, 

among others. Their function is to avoid the transfer of fluid from one 

area of the device to another, and even to avoid the entry of dirt particles 

into the system.  

 

Sealing systems usually comprise the combination of different seal 

types. Rod seals, piston seals, wiper seals, guide rings and static seals 

are usually combined in order to avoid fluid leakages and the entry of 

dust into the system. In Figure 1 the different configurations forming the 

sealing system of a pneumatic actuator are shown. The function of the 

rod seal is to prevent fluid leakages to the ambient side. The wiper or 

scraper rings prevent penetration of dirt particles into the system. Rod 

and wiper seals work together to protect the system keeping it free from 

dust, water and other contaminants. O-rings are static seals used to 

avoid leakages through static parts of the system. Finally, the main role 
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of the guide or wear rings is to accommodate the side loads maintaining, 

to the extent possible, the concentricity of seals. In some cases, sealing 

systems also include back-up rings whose main role is to prevent seal 

extrusion. 

 

 

Figure 1: Sealing system of an actuator. 

 

Seals are usually classified according to different criteria in: rod or piston 

seals, static or dynamic seals, and hydraulic or pneumatic seals. 

Whether the seal is dynamic or static, it must seal in general against two 

surfaces one of which is in relative motion to the other, in the former 

case, and stationary, in the latter case. Moreover, in both cases, a 

certain interference or compression is needed between sealing surfaces 

in order to prevent leakage. According to the type of relative motion, 

seals are usually classified in two main groups: rotary seals and 

reciprocating seals. Rotary seals are mainly used to provide adequate 

sealing between a rod and a bore rotating (or oscillating) one respect to 
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the other, while reciprocating seals are commonly used to seal two 

surfaces in a relative reciprocating motion.  

Rotary seals, also known as “shaft seals”, could be found in a wide 

range of devices such as industrial pumps, couplings, gearboxes, 

turbines, engines, bearings, compressors and washing machines. 

Among all the rotary seal types, lip seals are the most used ones (in 

many catalogues referred as “radial oil seals”). Their geometry (Figure 2) 

is usually asymmetric and their main characteristic is that they have a 

sealing lip usually known as “dynamic lip”. Rotary seals are energized by 

a metallic garter spring whose main roles are: to provide a 

circumferential spring force, to increase their load carrying capacity and 

even to compensate the change in rubber properties that may occur due 

to temperature and chemical attacks. The spring material is usually steel 

SAE1074 or stainless steel AISI304 [1]. Designers adapt the stiffness of 

the garter spring in order to adjust the contact pressure provided by the 

seal to desired values. The different parts of a rotary seal are presented 

in Figure 2. Regarding materials, most of the rotary seals found in the 

industry are made from rubber materials such as: Nitrile Butadiene 

Rubber (NBR), Acrylic Rubber (ACM), Silicone Rubber (VQM), 

Fluorinated Rubber (FKM) and Hydrogenated Nitrile Rubber (HNBR). In 

general, the maximum operating pressure of shaft seals is about 0.5 bar 

and their maximum operating velocity can be up to 30m/s in many 

cases. 
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Figure 2: Basic shaft seal design (Source: Trelleborg [1]). 

 

Reciprocating seals are usually found in devices such as pneumatic 

and hydraulic cylinders, injector pumps, brake cylinders, drill striker 

pistons, presses and injection moulding mills. Nowadays, there is a wide 

variety of commercial reciprocating seal geometries, dimensions and 

materials. Reciprocating seals are usually made from both elastomer 

and plastic. In the case of seals made from plastic materials, they must 

be energized to guarantee an adequate sealing due to their low load 

carrying capacity. In other words, plastic materials do not provide to the 

seal the necessary interference or contact pressure to seal, thus, an 

extra element that makes this function is needed. In particular, two 

energizing methods are mainly used: one method consists in introducing 

an elastomeric component (Figure 3a), and the other method consists in 

incorporating a metal spring in the U-seal or lip seal (Figure 3b). In the 

former case, the seal is composed of a plastic slipper seal and an 

energising O-ring which ensures enough interference even at low 
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pressures. In the latter case, the metal spring provides the primary 

sealing force at zero pressure, and as the pressure increases, the fluid 

energizes the seal. 

 

(a)                                                                 (b) 

Figure 3: Typical reciprocating seal designs: (a) elastomer energized, 

and (b) with metallic U spring (Source: Trelleborg [2]). 

 

The dynamic sealing mechanism of lip seals has been the subject of 

several studies during the last decades. Due to the geometry of the lip 

seal itself, as the shaft rotates, oscillates or reciprocates, a pumping 

mechanism is generated which originates a continuous oil film between 

the seal and the shaft. The pumping mechanism depends on two main 

factors: the asymmetric geometry of the lip seal and the texture or 

roughness pattern of the seal in the contact area [3]. Due to the 

geometric design, the inward pumping is stronger than the outward 

pumping and that is why the seal does not leak. Thus, a lip seal has to 

reach a compromise between sealing and good lubrication. Moreover, 

the shape of the cross-section of the seal affects its performance 

especially at low pressures. As the fluid pressure increases, the effect of 

the cross-section becomes more negligible [1]. 
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Several studies on sealing systems resulted in a wide variety of seal 

geometries and materials, and a better knowledge about the 

performance of sealing components during operation. Figure 4 presents 

some of the most typical rod and piston seal geometries for hydraulic 

actuators. In fact, the geometry of the dynamic sealing surface 

determines the most important sealing parameters such as the contact 

pressure between surfaces, friction, the film breaking ability, 

hydroplaning characteristics and contamination exclusion, among others 

[1,4]. 

 

 

Figure 4: Geometry examples of rod and piston seals (Source: [6]). 
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Due to the wide range of parameters involved in every sealing operation, 

designing the most appropriate sealing system for a specific application 

is a challenge. In Figure 5 the main factors affecting sealing are 

illustrated. Geometry of the cross section, material and roughness of 

seals and its relative counterparts, sealed fluid properties, manufacturing 

tolerances and operating conditions of the system affect leakage rate, 

friction and wear of sealing components.  

 

Figure 5: Factors affecting the seal performance (Source: [3]). 

 

Selection of the best combination of seal materials and mating materials 

is essential in order to increase the efficiency and the service life of 

sealing systems. Due to the continuous demand of the market for higher 

and higher performance mechanical devices, continuous advances in 

seals and in sealing materials are needed. Low friction, low wear and 

low leakage are desirable properties of seals. Moreover, the costs 

associated with seal replacements or system downtimes due to seal 
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failures could be of up to millions of euros. Hence, polymeric materials 

able to provide increased service life of seals and advanced materials 

with added functionalities are continuously investigated. The research on 

the design of new sealing solutions requires a deep knowledge on 

different disciplines such as material science, contact mechanics, 

tribology and modelling, being of vital importance to involve all of these 

factors at concept stage.  

 

Within this thesis, the effect of factors such as steel roughness, design 

tolerances, material and operating conditions, on seal performance will 

be investigated. 

 

Materials 

The different geometry types of seals existing nowadays combined with 

appropriate materials are able to cover most of the sealing applications 

demanded by the industry. Elastomers, thermoplastics and plastics play 

the most important role in fluid sealing due to their low cost and their 

viscoelastic properties. Polymers are based on long-chain molecules 

that are usually combined with other materials in order to get tailored 

properties. They present a non-linear stress-strain curve and their 

thermal and mechanical properties are very dependent on temperature. 

The wide range of polymeric materials existing nowadays enable sealing 

solutions covering diverse applications and operating conditions 

including low velocity (< 0.5 m/s) and high velocity applications (up to 15 

m/s).  

 

Elastomers consist of a very long chain of organic molecules with a 

repeated monomer unit. They usually include curing agents, fillers and 
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antioxidants. Hence, their properties are very dependent on their 

formulation and processing. Elastomers are subjected to curing 

processes to create cross-linking between molecules. When the polymer 

is mixed with a curing agent and subjected to heat or pressure, bonds 

are created between cross-links. Moreover, some fillers are usually 

added to the elastomers in order to increase their hardness. Thus, the 

properties and behaviour of elastomers will depend on the type of curing 

agent used in the process and on the material, size, shape and quantity 

of fillers added to be base material. In general, an elastomer could be 

defined as a type of polymer that presents high elasticity, visco-elasticity 

and a glass transition temperature far below from room temperature. 

Elastomers are suitable for sealing solutions because they easily 

accommodate different housings, tolerances, as well as pressure and 

temperature variations. Their adaptability is so good due to their: low 

elastic modulus, high elongation to break, high hysteresis and high 

resilience i.e. they accept large compressive, tensile and shear strains 

without permanent deformations.  

 

The main properties of elastomers are listed below: 

 Low elastic modulus (E) and high elongations to break: this fact 

involves that they could suffer high strains during installation. 

Furthermore, their low moduli allow them to accommodate more 

easily tolerances and mounting eccentricities. Figure 6 presents 

the stress-strain curve ranges of metals, plastics and elastomers. 

 Non-linear stress/strain curve. 

 Low hysteresis and high resilience: the combinations of these 

properties provide elastomers the capability to respond rapidly to 
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interference changes i.e. to pressure changes or to dynamic 

eccentricities, among others. 

 Low creep: creep is a time-dependent deformation at constant 

stress and high temperatures. This property is very important 

since seals have to guarantee sealing for long periods. 

 High Poisson ratio ( ): elastomers present a Poisson ratio of 

about 0.5 what means that they are almost incompressible. 

 Their chemical resistance depends on elastomer formulation. 

 Their thermomechanical properties are very dependent on 

temperature. 

 

 

Figure 6: Stress/strain curves of different seal materials (Source: [5]) 
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The principal limitations of elastomers are the following: 

 Limited operating temperature range: the temperature is the main 

limitation for the use of elastomers in sealing applications. The 

most common elastomers suitable for dynamic sealing purposes 

cover a temperature range between -30ºC and 100°C. Of course, 

nowadays there are elastomers able to cover broader 

temperature ranges. 

 High friction: they usually generate high friction during sliding. 

For this reason, their use in dry application is quite limited. 

 Fluid uptake: sealing fluids tend to dissolve in the surface of the 

material and diffuse into the interior until reaching equilibrium. 

This phenomenon softens the elastomer and may provoke an 

explosive decompression in the case of gases if a sudden 

depressurization happens. 

 Strain memory: when seals remain stationary for long periods of 

time they tend to adhere to the metallic counterfaces, thus, they 

present high friction during the starting up of motion, and may 

cause stick-slip and vibrations. 

 

Nitrile Rubbers (NBR), Polyurethanes (AU and EU), Hydrogenated 

Nitrile Rubbers (HNBR), Fluorocarbons (FKM), Perfluoroelastomer 

(FFKM), Ethylene Propylene Diene Monomer (EPDM), Fluorosilicone 

(FVMQ) and Silicone Rubber (Q) are some of the most commonly used 

elastomers for sealing purposes. This group of materials is able to cover 

a wide range of temperatures between -50ºC and + 270ºC under stable 

working conditions, and their used is generally limited to applications 

requiring sliding velocities lower than 3m/s. The working ranges of the 

most used elastomers are presented in Figure 7. 
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Figure 7: Operating temperature range of different elastomer materials 

(Source: Parker [8]). 

 

Plastics represent another group of polymers commonly used in the 

sealing industry. The main difference between elastomers and plastics is 

that the recovery of the latters is much lower. Moreover, plastics present 

a lower friction and a wider operating temperature range, so they may be 

used in dry contact or poor lubrication applications. Furthermore, they do 

not present stick-slip and vibrations due to adhesion to metallic surfaces 

after remaining stationary for long periods of time as elastomers do.  

The main advantages of plastics in comparison with elastomers are: 

https://www.google.es/url?sa=i&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwje0oyRhr3JAhUEbhQKHYaRDVQQjRwICTAA&url=http://www.dichtungstechnik-bensheim.de/o-rings.html&psig=AFQjCNEpzdgkM7kQO4MlowIh9IzE1sOABQ&ust=1449141292718769
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 Low friction and dry running potential: plastics generate lower 

friction forces than elastomers under the same operating 

conditions, so unlike elastomers, they can be used in dry contact 

or poor lubrication applications. 

 Wide temperature range. 

 Wide chemical resistance. 

 Possible good wear resistance. 

 Possible high hardness.  

 

And the main disadvantages of plastics are the following: 

 They have low load carrying capacity: metal springs or 

elastomeric components are added to plastic seals to enhance 

their load carrying capacity. 

 Low elasticity: this fact makes the mounting or installation of 

plastic seals more complicated than in the case of elastomers. 

 Creep: they are more likely to suffer creep i.e. sealing or variation 

of contact stresses with time. Thus, plastic seals are not very 

suitable for applications with cyclic forces acting on the seal. 

 Their thermomechanical properties are very dependent on 

temperature. 

 

Nowadays fillers are usually added to plastics in order to get tailored 

composites with an improved wear resistance, a higher load carrying 

capacity, a lower friction and a higher fatigue resistance. PTFE 

(Polytetrafluoroethylene) and PTFE composites are the plastics most 

commonly used in the sealing industry for their good tribological 

properties. Moreover, their working temperature range is around -190ºC 
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and +260 ºC, and they could be used in applications at velocities up to 

about 15 m/s under stable conditions. For tribological applications, PTFE 

is usually combined with carbon, bronze, glass fibres, graphite and 

molybdenum disulfide fillers in different percentages. PEEK 

(Polyetheretherketone) is another type of plastic commonly used in the 

sealing industry mainly used as a back-up ring and seal material for 

severe operating environments such as high temperature and pressure 

applications. 

Thermoplastics are also widely used in the sealing industry. These 

materials combine properties of both plastics and elastomers. The most 

commonly used materials in the sealing industry are the polyurethane 

and the polyester. 

Regarding the material of the mating parts in relative movement with 

seals, most of the manufacturers recommend to use chrome-plated 

42CrMo4V according to DIN50602. The minimum hardness 

recommended is of HRC45 and the minimum depth of 2.5mm. The 

coating thickness should be in the range of 20 and 30 µm. The final 

roughness of the counterparts should be between 0.1 and 0.3 µm [2]. As 

shown in Figure 8, some polymers adapt better than others to the 

asperities of the metallic counterparts. 
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Figure 8: Contact between sealing lips and metallic counterparts 

(Source: Kastas Sealing Technologies AS [7]). 

 

Main failure mechanisms 

Elastomeric seals are manufactured so that they have a minimum 

theoretical service life which varies depending on the final user 

specifications. Nevertheless, there are many factors that are inevitable 

or very difficult to control and that may lead to a premature seal failure. 

Maintenance costs associated with replacement of seals and downtimes 

due to failures of specific cylinders may range from a few hundreds of 

euros to millions in the case of offshore applications. Moreover, the 

failure of seals may even lead to a catastrophe in specific applications. 

In any case, it is of vital importance that the final user meets the 

specifications recommended by seal manufacturers regarding operating 

conditions, mating part characteristics and fluid compatibility. 
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The most evident sign of seal failure is an excessive fluid leakage. The 

causes of failure might be diverse and their origin very different. In 

general, the main causes of seal failure could be divided as shown in 

Figure 9 [5]. 

 

 

Figure 9: Pie chart of the main seal failure causes. 

 

Hence, most of the seal failures are attributable to an improper shaft 

mounting (eccentricities), an improper seal installation, a faulty seal, a 

premature leakage and to other causes such as 

vibrations/contaminants/lubricant incompatibility and overheating. 

 

Figure 10 summarizes the main failure mechanisms of radial shaft seals 

and the most common causes of these failure types. According to this 

classification, improper handling and manufacturing, contamination, 

vibrations, eccentricities and incorrect operating conditions are some of 
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the main seal failure causes, which lead to chemical and thermal 

damage of the seal as well as to an excessive wear. 

 

 

Figure 10: Possible causes of failure for radial shaft seals (Source: 

Freudenberg Simrit GmbH & Co.KG [9]). 

 

Moreover, it is important to highlight that the cause of leakage or failure 

hardly ever is just one i.e. seals usually fail due to a combination of 

different factors. In any case, visual inspection and surface analysis of 

the system are the most important actions to carry out when trying to 

identify main causes of seal failure [5]. 

 

When there is leakage from new, and there is no apparent damage in 

the seal or no wear debris, probable causes for leakage are: 

 Insufficient seal interference or contact pressure. 

 High viscosity oil causing excessive oil film thickness. 
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 Excessive application of grease. 

 System vibrations so that the sealing lip cannot follow them. 

 

In other cases, during visual inspection mechanical damage may be 

appreciated on seals. In general, main sources of problems for 

mechanical damage of seals are the followings [4,5,9,10,11]: 

 Incorrect roughness of the rod and/or the seal housing: rough 

surfaces may cause abrasive wear of seals. 

 Use of inadequate assembly tools which may cause damage of 

the seal during its mounting (see Figure 12). 

 Inadequate protection or handling of shafts. 

 Inadequate seal material. 

 Hardening of the material due to an excessive pressure or 

temperature: hardening of elastomers could be due to the 

underestimation of the frictional heating. Hardening impairs the 

elasticity and resilience of the polymer and leads to micro 

asperities deformation, weakening the dynamic sealing 

mechanism. 

 Compression set of the seal: compression set is the permanent 

deformation remaining when the force is removed. It reduces 

sealing forces what results in poor sealing at low pressure. In 

general, compression set occurs due to high temperatures. 

 Corrosion of the shaft and a subsequent malfunction of the 

system. 

 Ingress of contamination that provokes premature wear. 

 Poor lubrication or failure of the lubricant. 
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 Dirt and wear particles that cause severe damage on seals. 

Thus, continuous maintenance and filtering of the hydraulic fluid 

is required. Contaminants and wear particles cause abrasive 

wear in the seal and in its mating parts, and create scratches that 

may lead to leakage if they become too long. 

 Dieseling damage caused by the air bubbles present in the oil: 

when the system is not purged or there is an excessive pressure 

rise, there may be air bubbles in the oil that may cause burning 

of the seal (Figure 11). 

 

 

Figure 11: Dieseling damage on a seal (Source: [11]). 

 

 Chemical and thermal attack. 

 Mounting eccentricities: the combination of static and dynamic 

eccentricities may cause leakage. Even with lip seals which are 

more tolerant to eccentricities leakage may happen at high 

velocities because the seal can not follow the shaft. In any case, 

mounting eccentricities will decrease the service life of seals. 
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Figure 12: Seal damage due to an incorrect mounting (Source: IK4-

Tekniker). 

 

Most of these failure causes are common for static and dynamic seals, 

and every type of seal material. Similarly, failure causes of pneumatic 

seals working under dry conditions are similar to those of seals working 

under lubricated conditions; however, pneumatic seals are more prone 

to fail faster since the overheating of the material is more important. 

Moreover, these cause of failures are also common both for rotary and 

reciprocating seals. Nevertheless, in the case of reciprocating seals 

more failure sources such as the followings could be mentioned: 

 

 Leakage from new due to excessive velocity that originates a too 

thick fluid film. 

 Extrusion due to excessive pressure or temperature: extrusion 

usually occurs when the fluid pressure forces the seal into the 

clearance gap between the sealing surfaces. As a consequence, 

leakage and thus a premature failure of the seal may occur. 

Moreover, when extrusion occurs, the generated friction raises so 
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that the heat generated due to friction also increases. High 

temperatures may change the properties of the polymer 

substantially and cause compression set of the seal. In Figure 13 

two images of seals that failed due to extrusion are shown. The 

best way to prevent extrusion is to design the sealing system so 

that the clearance or gap behind the seal is as small as possible. 

Other possible causes of extrusion are high operating 

temperatures, the use of soft materials, side loads and chemical 

incompatibilities, among others. Backup rings made of hard 

materials are usually used in order to protect the seals against 

extrusion. Introducing wear rings to prevent side loadings and 

considering harder seal materials may also help to solve 

extrusion problems in sealing applications. 

 Overpressure generated by the reciprocating motion. 

 Scoring to the seal surfaces originated by debris in the oil or 

damaged mating faces. 

 

 

 

Figure 13: Extrusion damage (Source: Parker Hannifin Corporation [4]). 
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The main failure mechanisms arising from all the mentioned failure 

sources are usually the following: thermal degradation of the seal, 

chemical damage, crack formation, seal distortion and excessive wear of 

the seal.  

If there are carbon deposits around the sealing lip or axial cracks on it, 

the main cause of seal failure may be an excessive temperature i.e. 

material overheating. Cracks and carbon deposits are usually evident in 

conjunction. In the case of plastic seals, there may be also signs of 

plastic flow and extrusion. Solutions to this problem could be changing 

the seal material, the rod surface conditions or the oil in order to reduce 

friction, or to select another type of oil able to withstand higher 

temperatures. 

In cases where the seal is distorted or it presents blisters, the main 

cause of seal failure may be incompatibility problems between the seal 

material and the lubricant. These kinds of compatibility problems often 

arise because the lubricant additives chemically react due to a 

temperature rise of the lubricant. In particular, the problem may be 

severe if both the fluid and the seal material have a similar molecular 

structure. Hence, in order to know if a specific fluid and a specific seal 

material are compatible, compatibility tests are usually carried out 

according to standards such as the ASTM D471 [12]. 

 

Regarding wear, it is the result of the relative sliding motion between two 

bodies in contact rather than a specific property of a material. Possible 

causes of failure when an excessive wear of seals is observed may be: 

inadequate cleaning or assembly, or presence of debris in the sealing 

area, excessive pressure or duty, and insufficient lubrication. The main 
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wear mechanisms of a polymer sliding against a metal surface are: 

adhesion, abrasion, fatigue and chemical wear. Depending on the 

properties of the materials themselves and on the sliding conditions, one 

wear mechanism or the other will be more dominant during the wear 

process. The main characteristics of each of these wear types are the 

following [13-17]: 

 

- Adhesive wear  

Adhesive wear is associated with the formation of adhesive 

bonds at the interface. Adhesive wear of polymers usually 

happens when the adhesive bonds formed between materials in 

contact are higher than the cohesive strength of the polymer. 

When the adhesive junctions fail, some material is usually 

transferred from one surface to another, and other parts are 

removed from the friction zone as wear debris. In the case of 

polymer-metal contact, under certain conditions, a thin film of the 

soft material (polymer) is transferred onto the hard surface 

(metal). This film is known as “transfer film”. If the transferred 

polymer is carried away from the steel surface and it is 

continuously formed, the wear rate will increase. If the transfer 

film holds in place, by contrast, the friction force will increase but 

the wear change will be insignificant. The strength of adhesion is 

found to be related to the presence of reactives such as fluorine 

in the polymer. Polymers adhere to other materials by means of 

Van der Waals forces. Even if adhesive forces in polymer-metal 

contact are not strong enough to induce the rupture in the 

contact, they are a big source of friction resistance. In some 
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cases, the hard material could be even transferred on the soft 

surface. 

 

- Abrasive wear 

Abrasive wear maybe is the most common type of wear. The 

simplest model of abrasive wear is that in which hard particles 

indent and are forced across the surface of the material. In other 

words, when two bodies are in contact under the action of a 

normal load, and both materials have different hardness, the 

harder surface may penetrate the softer one. Hence, the 

abrasive wear mechanism is mainly dominated by plastic 

deformation and fracture processes. In the case of elastomers, 

the main wear mechanisms of elastomers sliding against blunt 

particles are tensile tearing and fatigue. In fact, the height of 

asperities or the roughness of the contact bodies also influences 

the resultant wear of the parts. When a polymer is sliding against 

a very rough surface, the main wear mechanism will be abrasion. 

The wear rate of a specific material is determined by the 

penetration depth of asperities into the polymer. In fact, the 

evolution of the wear varies with time. 

 

- Fatigue wear 

The friction type that leads to this type of wear is the “friction 

fatigue”. Fatigue causes change in materials as a result of 

repeated stressing. Hence, even if fatigue wear is usually 

associated with rolling contacts, asperities also are subjected to 

cyclic stressing during sliding, leading to stress concentration 

effects, and the formation and propagation of cracks. Friction 
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fatigue takes place at the surface and sub-surface regions where 

the maximum tangential stresses occur. In general, for low 

friction coefficients, the maximum shear stress point is below the 

surface while it emerges on the surface as the friction coefficient 

increases. Furthermore, the initiation of fatigue cracks is assisted 

by the defects, which are responsible for stress concentration. In 

addition to crack generation, fatigue may also result in the pitting 

and delamination of the material. In many cases wear debris is 

formed as a result of the growth and intersection of small cracks 

at the surface of the polymer.  

 

 

Figure 14: Fatigue damage on a seal (Source: IK4-Tekniker). 

 

- Chemical wear 

A tribo-mechanical reaction due to the interaction between the 

polymer and the metal may be originated as a result of diverse 

reasons such as the elevated interfacial temperatures originated 

due to frictional heating, and reactions originated by the clean 

metal or even by the fillers of the polymer. The surfaces react 

with the environment, creating reaction products deposited on 

Cracks 
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the surfaces. The reaction products are removed afterwards from 

the surface due to crack formation or abrasion. 

 

In general, as sliding proceeds, the typical wear process usually 

undergoes three different stages [18]: a first running-in stage in which 

the wear uniformity in the contact pair is being set up by elimination of 

the micro-asperities of the surfaces, a second stationary stage where a 

constant wear rate has been attained and the surfaces are worn in a 

steady and uniform way, and a third accelerated or catastrophic wear 

stage where the wear rate increases in an exponential way and leads to 

catastrophic failure. In order to characterize long-term properties of 

systems only the steady state conditions are useful [18]. Thus, most of 

the existing wear models are only applicable at that stage.  

 

Figure 15: Typical stages of wear processes. 
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1.2 Objectives 

Understanding the main wear mechanisms of elastomeric seals and 

building reliable models able to predict their life expectancy is a complex 

task. This thesis deals with the study of the effect of misalignments on 

the tribological performance of seals in an attempt to contribute to the 

lack of studies related to this issue. In fact, as pointed out in the previous 

section, among the seal failure factors that are unavoidable and difficult 

to control, mounting misalignments are one of the most relevant. Source 

of mounting misalignments comprehend mounting errors and incorrect 

design or manufacturing tolerances, among others. The main effect of 

rod mounting eccentricities is a non-uniform contact force distribution 

along the seal. As a consequence, some sections of the seal will be 

subjected to an excessive contact pressure (radial overload) whereas in 

other sections, the contact between parts may be lost. In the latter case, 

the immediate consequence is the leakage of the seal. In the former 

case, immediate consequence of an incorrect seal mounting is a 

premature seal failure due to radial overloads. Nevertheless, even if 

mounting eccentricities affect considerably the life expectancy of seals, 

their effect on the tribological performance of seals has not been studied 

in detail up to now. Hence the present work is mainly motivated by the 

need to understand how the inevitable mounting misalignments alter the 

performance of seals and their life expectancy. 

 

In particular, this thesis deals with the study of the effect of rod to bore 

misalignments on the main tribological parameters (contact forces, 

friction, wear and contact temperature) by means of the combination of 

analytical, numerical and experimental techniques. Hence, the study 
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herein presented may be extrapolated to research on the performance of 

those seals mounted in mechanical components usually subjected to 

considerable misalignments such as couplings, bearings and valves, 

among others.  

 

Due to the lack of studies related to the life expectancy of elastomeric 

seals, this work aims to contribute to this issue by determining the effect 

of unavoidable mounting misalignments on the tribological performance 

and life expectancy of elastomeric seals. To achieve this aim this thesis  

pursues other intermediate goals: 

 

- To develop a methodology for carrying out a tribological 

characterization of seals as complete as possible combining 

analytical, numerical and experimental techniques. 

- To design specific toolings and test rigs that enable evaluating 

the effect of misaligned seals, and to gain knowledge on this 

topic to be able to offer solutions to the industry. 

 

Hence, in order to fulfil the main goals, the following research work has 

been carried out within this thesis: 

 

- Development of a procedure to build an analytical tri-dimensional 

eccentricity model of seals that enables calculating the contact 

force distribution along them as a function of rod misalignment. 

This model may be useful for design purposes in order to avoid 

high computational costs associated with numerical 3D 

simulations. Moreover, the contact force eccentricity models 

establish the basis for further investigations about the effect of 
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rod to bore misalignments on the main tribological parameters: 

friction, wear and contact temperatures. 

- Experimental validation of the contact model developed through 

a specific test rig designed for this purpose. 

- Experimental tests on rod lip seals under both concentric and 

controlled rod to bore eccentricities, in order to investigate the 

effect of radial overloads on the service life and friction of seals. 

- Development of a methodology to estimate the contact 

temperature distribution on seals in order to overcome the 

challenge of measuring contact temperatures. The methodology 

herein proposed enables estimating the contact temperature 

distribution on seals during operation combining analytical 

models, thermo-mechanical properties of the materials involved 

and some experimental inputs. This methodology may be useful 

for the industry considering the lack of applicable experimental 

techniques and given the low thermal resistance of elastomers. 

- Validation of the models and methodologies developed in this 

thesis, and demonstration of their utility, through case studies of 

specific industrial applications. In particular, in line with the topic 

of this thesis, the models have been used for calculating contact 

force distributions, wear rates, and friction and contact 

temperature distributions of seals operating under concentric and 

eccentric mounting conditions.  
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1.3 Beneficiaries 

This thesis is focused on the study of the effect of design, manufacturing 

and mounting on the tribological performance of elastomeric seals. 

Direct beneficiaries of this work may be not only seal designers and 

manufacturers but also a wide range of companies with sealing 

components mounted on their products or working tools.  

 

The knowledge gained from this work is also very useful for IK4-

Tekniker, a research centre where the author of this thesis works as a 

researcher in the Tribology Unit. IK4-Tekniker built a test rig for sealing 

system characterization (described in Chapter 3) in order to offer 

technological services to the industry. In fact, the aim of IK4-Tekniker is 

to gain knowledge about the factors affecting the service life and wear 

processes of elastomeric seals. In this case, the work described in this 

thesis has been useful in order to: 

 

- Develop a methodology for carrying out a tribological 

characterization of seals as complete as possible combining 

analytical, numerical and experimental techniques. 

- Be sensitive to the importance of the accuracy of mounting and 

design tolerances of the seal seats and their counter-parts. 

- Meet the challenge of measuring contact forces between seals 

and their mating faces through the development of a tri-

dimensional eccentricity model that enables calculating the 

contact forces distribution on seals. 
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- Study the effect of mounting eccentricities not only on the contact 

force distribution under static conditions but also on friction and 

wear under dynamic ones. 

- Gain experience about the design of sealing systems in order to 

advise clients on their own specific applications. 

- Gain experience on the design of specific toolings and test rigs 

that enable evaluating the effect of misaligned seals, in order to 

be able to offer solutions to the industry. 

- Be sensitive to the importance of the selection of the surface 

conditions of the metallic parts in contact with the dynamic seals 

in terms of temperature rise, friction and wear. 

- Identify the main wear mechanisms and failure modes of seals 

made of the elastomers most commonly used in the sealing 

industry. 

- Develop a procedure that allows estimating the contact 

temperature of seals based on the results obtained from friction 

tests on seals. 

- Diagnose the causes of sealing systems failures. 

- Extrapolate the conclusions obtained from this work to the actual 

behaviour of many mechanical components that usually operate 

under eccentric conditions such as couplings, valves and 

bearings. 

 

And finally, it results obvious that the work is interesting also from the 

academic point of view. This interest is substantiated by one of the co-

directors of the thesis, from the Department of Mechanical Engineering 

of the University of the Basque Country at Bilbao. 
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Chapter 2: Tri-dimensional eccentricity 

model of seals 

2.1 Introduction 

As introduced in the previous chapter, among all the existing seal 

variety, lip seals are maybe the most used ones. Lip seals may be found 

in applications such as pneumatic and hydraulic actuators, engines, 

machine tools and gas springs, among others. They are characterized 

by a sealing lip, also known as dynamic lip, properly designed to ensure 

the sealing and pumping mechanisms of a specific fluid under a wide 

range of working conditions. Moreover, the design of lip seals must 

reach a compromise between dynamic sealing and good lubrication [1]. 

 

The performance of a specific lip seal is affected by several factors such 

as the geometry, the material and the roughness of the seal and of its 

mating surface, and its particular operating conditions. Lip seals provide 

a unidirectional sealing and their contact pressure profile under 

particular sealing conditions strongly depends on the lip angles at the air 

and fluid sides. Moreover, the performance of a lip seal is very 

influenced by the shape of its cross section, especially at low fluid 

pressures [2]. Some designs may include two lips in the sealing area in 

order to enhance the sealing capability at low pressures and to avoid the 

entry of dirt from the side opened to the atmosphere. Certain designs for 

extreme operating conditions may include elements moulded onto the 

air-side of the lip in order to provide an additional inward pumping [3]. 
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In general, most of the lip seals available for low velocity reciprocating 

applications (velocities lower than 0.5m/s) are made of Polyurethanes 

(PU) or Nitrile Rubbers (NBR) due to the low cost and good performance 

of these materials. Both materials, however, have a limitation in 

temperature since their maximum operating temperature under stable 

conditions is about 100ºC. Furthermore, this temperature threshold limits 

the operation temperature of seals because of the temperature rise due 

to frictional heating phenomena [2,4]. Thus, the main alternative in 

applications with high sliding velocity requirements is a seal made of 

PTFE (Polytetrafluoroethylene) composites because of their higher 

thermal resistance and low friction properties. Regarding the roughness, 

both the asperities of the lip and the roughness of the counterparts play 

an important role in sealing operation [5-7].  

 

Contact pressure distribution is one of the most important parameters to 

take into account when a specific seal is being designed. Seals are 

mounted in grooves with a certain interference in order to ensure an 

appropriate sealing at the interface and prevent leakage even at low fluid 

pressure. Contact pressure between seals and the mating surfaces 

depends on the interference value and the geometry of the sealing 

surface, among others. Unfortunately, measuring the contact pressure 

between a seal and its counterparts could be a difficult task. In order to 

measure static contact pressures, technologies such as photoelastic 

techniques [9], pressure film sensors [10,11], radial force integration 

techniques [12] and manganin wires [13], among others, have been 

widely used. In any case, however, there is not a standard technique or 
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device useful to measure contact forces in a rod or piston seal 

regardless the seal size. 

 

In most of the cases, a seal fails as a result of a combination of factors 

[14,15]. Radial overload due to rod misalignment, improper shaft 

preparation, overheating, lubricant failure and extrusion are some of the 

most common causes of seal failure. This chapter is focused on the 

study of the effects of an eccentric mounting on the contact force 

distribution of a seal. In fact, an eccentric mounting leads to an irregular 

distribution of contact pressure, which affects seal performance [16]. 

Moreover, the interference stress field originated under eccentric 

mounting conditions of the rod tends to twist the seal in the groove. Lip 

seals, however, are quite resistant to spiralization due to their design 

itself. Furthermore, the capacity of a specific seal subjected to an 

eccentric mounting to follow the rod depends on: the lip seal design, the 

material and any temperature effects on the resilience of elastomers 

[14]. 

 

Some authors studied the relation between rod eccentricity and the 

leakage rate of rotary rod lip seals for different speed regimes: Mokhtar 

et al. [17] experimentally demonstrated that an increase in shaft radial 

eccentricity results in higher leakage rates, whereas an increase in shaft 

angular misalignment results in lower leakage rates. Besides, results 

showed that for a specific shaft misalignment, an increase in shaft 

rotating speed results in lower leakage rates, however, increasing the 

fluid pressure the opposite effect is achieved. Amabili et al. [18] found a 

relationship between shaft rotating speed and dynamic eccentricity. 

Results showed that for any eccentricity, the leakage rate increases with 
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the shaft rotating speed until a maximum is reached, then the leakage 

rate decreases with speed. The lower the dynamic eccentricity the 

higher the speed at which this maximum leakage rate takes place. Conte 

[19] analytically studied the minimum fluid pressure needed to prevent 

fluid leakage when a rod angular eccentricity exists, modelling a rod lip 

seal in 2D as a link connected to the seal body by means of a torsional 

spring. Leakage rate as a function of fluid pressure was also studied in 

the same work. 

 

Of particular relevance are also the studies dealing with finding a 

correlation between the contact force and the sectional compression 

level of O-rings. Lindley et al. [20,21] offered a non-dimensional force-

deflection relationship for an O-ring based on Hertz theory. This 

relationship was composed by a term derived analytically assuming plain 

strain conditions and another correction term for high compression levels 

of the seal. Green et al. [22] presented general expressions of 

hyperelastic O-ring seal stiffness based on numerical data and 

compared the results with those estimated by Lindley. They also found 

that the differences between the results obtained from axisymmetric and 

plain strain loading conditions increase with the seal compression level. 

Some years later, Hyung-Kyu Kim et al. [23] analyzed elastomeric O-ring 

contact forces under compression, comparing Lindley´s analytical 

formula results with numerical and experimental results obtained by 

means of an opportune test rig. They found that the results by Lindley´s 

formula were closer to numerical results than to the experimental ones. 

They also found that numerical results underestimated contact forces 

under compressions up to 24% and overestimated them for 

compressions of 32%. So far, no exact analytical model of the contact 
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force variation as a function of compression level has been found. The 

main cause of difficulties to reproduce the contact force of seals regards 

elastomeric materials behaviour, that is, variable elastic modulus, 

Poisson ratio closed to 0.5 and stress relaxation phenomenon.  

 

Tasora et al. [24] presented a method for characterizing the deformation 

of an elastomeric seal under static conditions. They carried out 

experimental tests on a nitrile based rotating lip seal subjected to 

different radial loads. These results were used to calibrate a tri-

dimensional finite element model by means of Mooney-Rivlin 

parameters and to introduce the most adequate contact conditions at 

different temperatures. Consequently, numerical models were used to 

study the effect of static interference, temperature and radial 

displacements on the contact force between the seal and the rod. In [34] 

Frölich et al. presented a simulation axisymmetric approach to calculate 

numerically the resultant contact force between a seal and its mounting 

shaft, and they use those results for predict numerically the wear, friction 

and temperature on seals. 

 

This chapter aims to study the effect of an eccentric mounting on seals 

concerning contact force distribution along the seal and it has as main 

objective obtaining a reliable analytical 3D rod radial misalignment 

model for rod seals. Hence, the tri-dimensional analytical model herein 

presented enables calculating contact force distribution on seals as a 

function of rod position. The model not only includes normal forces 

between the seal and the rod, but also tangential and friction forces 

generated due to rod misalignment. In the specific, a thermoplastic 

polyurethane (TPU) reciprocating lip seal has been considered as case 
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study. However, the modelling method herein presented can be applied 

to any seal geometry. The main advantage of the modelling procedure is 

that it allows estimating the contact force distribution in the whole seal 

regardless of rod eccentricity. As a starting point, a quasi-static case 

was considered in absence of any supply pressure, in order to separate 

the contribution of the preload and the fluid pressure to the resultant 

contact pressure. The hyperelastic material was defined by means of a 

Mooney-Rivlin formulation. Thus, the proposed model is based on the 

characterization of the seal as an ensemble of springs subjected to 

traction/compression.  

 

The analytical model is completed and adjusted by combining a 

geometrical interference model with the results obtained from numerical 

simulations. Moreover, the model was validated by means of 

experimental tests carried out on a test rig designed and assembled for 

this purpose, in order to measure the resultant contact forces on seals 

when the rod is radially displaced. 

2.2 Static and dynamic eccentricities 

Eccentricities are present in all the mechanical systems even if a lot of 

care is taken during the manufacturing and mounting phases. 

Eccentricities can be usually classified in the following types attending to 

their nature [28]:  

 Static eccentricities (shaft to bore misalignments), 

 Dynamic eccentricities (run-out).  

The current work only deals with the study of static eccentricities that 

may be defined as the amount that the shaft or rod centre is misaligned 
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relative to the bore centre. In general, the static eccentricity will be the 

result of a combination of mounting eccentricities and manufacturing 

tolerances. The former type occurs due to an eccentric mounting of the 

shaft with respect to the bore centre. The origin of the latter, however, is 

an error in the manufacturing tolerances of both the shaft and the seal 

seat (groove). A schematic view of a shaft to bore misalignment is 

shown in Figure 16. 

 

 

Figure 16: Static eccentricity or shaft to bore misalignment. 

 

The main consequence of an eccentric mounting of seals is the 

reduction of the seal service life caused by a non-uniform contact 

pressure distribution and subsequently by a non-uniform wear 

distribution. Moreover, when the eccentricities are big enough, contact 

between metallic parts (rod and bore) may happen and seals may leak 

even if they are new. This contact between the rod and the bore may 

cause severe wear of parts and also system vibrations. 
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Dynamic eccentricity may be defined as a time dependent radial 

displacement of the seal. This type of eccentricity is caused by dynamic 

effects of the system itself such as vibrations, manufacturing 

inaccuracies, instabilities, etc. In the case of rotary components, 

dynamic eccentricities are also known as run-out and could be defined 

as the amount that the seal does not rotate around its centre. Figure 17 

shows a schematic drawing of dynamic run-out. 

 

Dynamic eccentricities expose the seal to repetitive loads and 

dimensional changes that may: 

 Cause accelerated extrusion damage, 

 Lubricating film breaking down, 

 Fluid leakage since the seal may not be able to follow the motion 

of the shaft, 

 Cause severe abrasion to the mating parts, 

 Accelerate the wear process of the seal because wear particles 

may be trapped in the extrusion gap, 

 Cause metal to metal contact between the rod and the bore. 



Chapter 2: Tri-dimensional eccentricity model of seals 

 

43 

 

Figure 17: Dynamic run-out. 

 

In most of the mechanical systems both types of eccentricities are 

present during operation even if the assembly has been carefully 

mounted. Hence, it is very important to bear in mind that these mounting 

and dynamic ‘errors’ are inevitable so that they will be always present. 

Nevertheless, while little eccentricities may be acceptable, big ones may 

cause significant damage to the sealing system and accelerate 

considerably the failure of many components. In the case of mechanical 

devices containing elastomeric seals, for instance, eccentricities may 

lead to leakage and/or a premature failure of seals. Hence, it is a 

parameter to take into account at the design stage. 

 

The amount of eccentricity that a specific sealing system could withstand 

depends on several factors such as seal geometry, size, material and 

operating conditions. In general, the bigger the seal size the higher the 

eccentricity amount that it can withstand. Moreover, seals rotating at 

lower velocities are often able to withstand also higher eccentricities. 
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The reason is that at high speeds, due to the high inertia and 

viscoelastic properties of rubber materials, the sealing lip is unable to 

follow the shaft surface. Figure 18 shows two graphics of the acceptable 

eccentricity and run-out values vs. the diameter and speed of the shaft. 

Hence, every seal manufacturer usually defines the maximum 

recommended gap value between the seal and the bore for design 

purposes so that a critical eccentricity value is not exceeded during 

operation. 

 

(a)                                                               (b) 

Figure 18: Acceptable eccentricity values: (a) shaft to bore 

misalignment, (b) dynamic run-out. (Source: Trelleborg Sealing 

Solutions [28]) 

 

2.3 Experimental measurements 

First of all, experimental misalignment tests were carried out on rod lip 

seals made from TPU (Thermoplastic Polyurethane), suitable for 

hydraulic applications. The main objective is to obtain experimental data 

that will be used to complete and validate the tri-dimensional analytical 
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eccentricity model of seals proposed in this chapter. Thus, in the 

following sections, the same seal used for experimental tests will be 

modelled. 

2.3.1 Experimental setup and specimens 

The designed test rig consists of a gas cylinder where two test seals are 

located, a metallic structure, two force measurement devices (load 

cells), a PC for data visualization and a universal device for 

displacement measurements.  

 

The gas cylinder was provided by the company Azol-Gas S.L. (from 

Vitoria-Gasteiz, Basque Country, Spain). A schematic drawing and the 

main dimensions of the gas spring designed by Azol-Gas S.L. for this 

particular test rig are shown in Figure 19. 
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Figure 19: Drawing of the gas spring (Source: Azol-Gas S.L.). 

 

A schematic image and a photograph of the test rig are shown in Figure 

20. Seals under test (1) are mounted in the test chamber (2), one on 

each cylinder end. The rod rests on a low friction and high stiffness 

polymeric base (3) made from PTFE (Polytetrafluoroethylene) due to its 

low friction coefficient. The cylinder rod (4) is vertically positioned in 

order to minimize the weight effects and it is fixed to the frame (5) 

through a couple of tension/compression load cells with an accuracy of 

±0.01N (6). Misalignments are applied by means of two micrometric 

positioners (7) fixed to the frame. The cylinder position is controlled by 

means of a vertically guided probe located in a Tesa micro Hite manual 

(Renens, Switzerland) measuring device (8), which has a resolution of 

1μm. 
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(a) 

 

(b) 

Figure 20: Experimental setup for misalignment tests: (a) schematic view 

and (b) test rig assembly. 
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The experimental tests consist in applying different displacements to the 

cylinder bore and in measuring the forces generated on the rod as a 

consequence of the applied displacements. These reaction forces are 

measured by means of two load cells connected to the rod. Only seals 

are in contact with the bore and the rod. Hence, when applying a 

displacement to the cylinder, seals will be compressed and two reaction 

forces normal to the contact will be created, one on the bore to seal 

contact, and the other on the rod to seal contact. 

 

Measurements were carried out on commercial rod lip seals, made of 

TPU (Thermoplastic polyurethane), suitable for a 45 mm diameter rod 

(Figure 21). Main details of the seals under study are shown in Table 1. 

 

Seal type Rod lip seal 

Application Hydraulic 

Material TPU 

Rod diameter (mm) 45 

Groove diameter (mm) 55 

Seal width (mm) 6 

Temperature range (ºC) -30 ÷ 105 

Maximum pressure (bar) 400 

Maximum speed (m/s) 0.5 

 

Table 1: Main properties of the seal under study. 

 

TPU is a thermoplastic elastomer very used in the sealing industry. This 

material is an intermediate solution between elastomers and plastics, 
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since it combines the properties of both. Due to its good resistance to 

mineral oils and excellent mechanical properties, most of the seals for 

hydraulic cylinders are made from this material. It presents a higher 

strength and wear resistance than most of the elastomers. Due to its 

high strength, TPU seals hardly ever require backup rings. Their 

operating temperature range is in general from about -30ºC up to 

+110ºC, depending on the formulation. At low temperatures TPU shows 

a limited flexibility whereas it will be subjected to plastic flow at elevated 

temperatures. It is suitable to work with fluids such as mineral oils, 

greases, hydraulic fluids and synthetic hydrocarbons. It is not suitable for 

glycols, alcohols, solvents, brake fluids and acids, among others. 

 

Misalignment tests were performed at room temperature and in absence 

of supply pressure. Before seal installation, a small amount of oil (0.1ml) 

was applied on the contact surfaces. The cylinder bore was displaced in 

radial direction only. Measurements were carried out under controlled 

environment, 20 ± 1ºC. 

 

The cylinder rod has a roughness value of Ra=0.32μm; it was measured 

by means of a manual profilometer (Perthometer M2, Mahr, Göttingen, 

Germany). 
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Figure 21: Principal dimensions of the seal groove (in mm). 

 

At the beginning of the process, the cylinder rod was vertically placed 

adjusting the micro-positioners. Subsequently, consecutive controlled 

radial misalignment values were monotonically applied. The maximum 

applicable misalignment is limited by the nominal gap,  , with a value of 

0.2mm (Figure 21). Misalignments were applied in steps of 5μm up to 

the maximum allowed one. Reaction forces at each step were measured 

by means of the load cells after verifying and adjusting the vertical 

alignment of the cylinder. Measurements were repeated 3 times. 

2.3.2 Experimental results 

Figure 22 shows the reaction force curves of a set of consecutive tests 

relative to the misalignment applied to the bore. 
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Figure 22: Reaction forces on the seal as a function of the applied 

misalignment. 

 

Results showed a good repeatability. The error bars plotted show the 

standard deviations calculated considering all the repetitions. As can be 

observed, the stiffness of the whole seal in the misalignment direction is 

not constant. In particular, the seal under study presents the stiffest 

response when the rod misalignment is about 5 microns (K≈0.76 N/μm). 

Above that eccentricity value, the stiffness decreases exponentially until 

reaching a nearly constant value for rod misalignments ≥ 15 µm (K≈0.25 

N/μm). The curve trend is in close agreement with the work of Tasora et 

al. [24]. 
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2.4 Modelling method for seals 

This section presents a procedure to build an analytical tri-dimensional 

eccentricity model of seals which expresses the contact forces between 

a seal and the mounting rod, as a function of rod misalignment. Even if 

in this work the model has been applied to a rod lip seal, the procedure 

herein presented may be applied also to model other seal geometries 

and other seal types such as piston seals, for instance.  

 

Furthermore, it is important to remark that the model presented in this 

work only deals with the study of shaft to bore misalignments i.e. it has 

been considered that both the seal groove and the rod meet the 

tolerances recommended by the manufacturer. In Figure 23 the flow 

chart of the modelling procedure is shown. 

 

As represented in the flow chart, the tri-dimensional contact model was 

built from: a functional contact relation between the rod and the seal, 

and a geometrical interference model that takes into account the amount 

of interference of each seal section. The functional contact relation was 

obtained through numerical 2D simulations. Then, a geometrical 

interference model of the system, and contact equations were 

formulated. Hence, the proposed analytical model has been completed 

and adjusted by means of numerical results. The model was validated 

through the experimental results presented in the previous section. 

Furthermore, a 3D numerical model of the sealing system (Figure 31) 

was also built in order to compare the results with those obtained 

analytically and experimentally. 

 



Chapter 2: Tri-dimensional eccentricity model of seals 

 

53 

 

 

Figure 23: Proposed process scheme. 

 

It is particularly relevant to highlight that even if a quasi-static case is 

being studied, contact equations are based on the kinematic Coulomb 

model i.e. it has not been considered that some regions of the seal may 

be sticking. Hence, this assumption involves a simplification of the 

problem that could be valid due to the nature of the tests, where an 

increasing load is monotonically applied to the rod.  

 

Through the proposed methodology, a single 2D analysis is mandatory 

to obtain the stiffness of the seals in each section. Thus, the simplified 



Chapter 2: Tri-dimensional eccentricity model of seals 

 

54 

model may be acceptable and very useful for design purposes since the 

main goal of this work is to avoid time and expensive computational 

costs of a 3D numerical simulation.  

2.4.1 Functional contact relation 

2.4.1.1 Preliminary considerations 

A functional contact relation expresses the relation between the contact 

forces and the compression or interference of an element. In order to 

build the eccentricity model of the seal, it is necessary to know the 

functional contact relation of the sealing system. For many mechanical 

components, the functional contact relation can be usually expressed as, 

 

       ( 1 ) 

 

where   is the contact force,   is the stiffness of the contact,   is the 

relative approach between points and   is the load deflection exponent. 

 

For example, in the case of ball bearings, the contact stiffness is a non-

linear function of the materials in contact and their relative displacement, 

and the load deflection exponent   has a value of 3/2, due to the 

hertzian nature of the contact [29], which makes the contact area to be 

elliptic  

 

In this case, the nature of the shaft-seal-housing contact areas is not 

hertzian, and in addition, the shape of the contact area varies with the 

load. Therefore, Equation (1) may not be directly a good form to express 

the Force-displacement relation. Thus, a numerical bi-dimensional 
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model of the seal under study and plain strain simulations were carried 

out in order to obtain the functional contact relation of the sealing system 

under study. 

2.4.1.2 Numerical 2D Model 

The plane model was built in Ansys Workbench environment. As 

previously mentioned, the main objective of this simulation is to obtain 

the functional contact relation between the rod and the seal, as a 

function of the seal section compression. Resultant normal and 

tangential forces taken from these numerical simulations are mandatory 

inputs to build the analytical model. Seal geometry was obtained by 

means of an optical microscope (Leitz, model Libra 200, Germany). 

 

The model was built by means of quadrilateral and triangular elements 

and composed of a total of 1609 elements. The mesh used is the result 

of a number of analyses performed in order to determine the element 

sizes that do not produce significant variation in calculation accuracy. 

Furthermore, in order to compare the bi-dimensional and tri-dimensional 

numerical models it was preferable to build both of them with the same 

element type and size. Hence, the element size for the 2D is limited by 

the minimum affordable element size of the 3D due to the high 

computational costs and times arising from these models. Figure 24 

shows the generated mesh. 
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Figure 24: Bi-dimensional model of the sealing system. 

 

A surface to surface contact formulation was chosen to simulate both the 

seal/rod and the seal/groove contacts. Boundary conditions take into 

account friction at contact surfaces in order to constrain the free 

movement of the seal. During the experimental tests, contact surfaces of 

seals were lubricated before seal installation. Hence, these conditions 

were assumed for numerical simulations. The friction coefficients were 

set to 0.1 for both the seal/rod and the seal/groove contacts [30]. 

 

The seal material, TPU, was considered incompressible, isotropic and 

hyperelastic. It was assumed the compressive stress-strain curve shown 

in Figure 25. These data were obtained as a result of compression tests 

carried out in the universal testing machine Instron 3369 

(Massachusetts, USA) shown in Figure 26. 
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Figure 25: Experimental compressive stress-strain curve of TPU. 

 

 

Figure 26: Instron 3369 universal machine. 
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The hyperelastic material was defined by means of a second-order 

Mooney-Rivlin formulation. Due to the difficulties found to manufacture 

samples made of the seal material with the adequate shape to carry out 

traction tests, Mooney-Rivlin coefficients were obtained from the data 

provided by the manufacturers and applying the approximate formulas 

below. 

 

Considering the material homogeneous and isotropic, the following 

relation could be applied: 

 

                      ( 2 ) 
 

where E is the elastic modulus, G is the shear modulus, K is the bulk 

modulus and ν is the Poisson ratio. Hence, in the case of elastomers, 

        for elastomers since the Poisson modulus is around 0.5 [31]. 

 

On the other hand,  

 

        ( 3 ) 
  

                ( 4 ) 
 

The values E and ν for the TPU material under study were provided by 

manufacturers: E= 12 MPa and ν=0.499. Hence, applying the equations 

above, the following Mooney-Rivlin coefficients are obtained: C10= 1.98 

and C01= 0.16. 

 

The rod and the bore were considered rigid elements since polymer 

stiffness is much lower than that of steel. 
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In Figure 27 the forces obtained numerically are illustrated. The 

numerical results obtained from the plain strain simulations are shown in 

Figure 28. A relevant aspect of the results is that seal stiffness of the lip 

seal varies considerably with compression. Furthermore, the stiffness of 

a cross section of the studied seal can be divided in two regions where it 

remains nearly constant: a low stiffness region (K≈ 0.58 N/mm) and a 

high stiffness region (K≈ 6-11 N/mm).  

 

It is important to highlight that results showed that a sudden change in 

seal stiffness occurs for seal compression values nearby the nominal 

interference   . In particular, as can be seen, seal stiffness increases 

considerably for seal interferences a bit higher than the nominal values. 

 

 

Figure 27: Forces obtained from the differential element of seal. 
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Figure 28: Reaction and tangential forces in a seal section as a function 

of mounting interference or compression. 

 

In this study, the area of interest is bounded by the maximum and 

minimum possible interference values i.e. by      and     , 

respectively (Figure 28). The objective is to express analytically normal 

forces and tangential forces of a seal section in this area, and to 

introduce these expressions in the equations presented in 2.6. In order 

to fit the data points of the forces by the most appropriate function, R-

squared correlation was used. The closer the R2 coefficient is to 1, the 

more accurate the fitting. In this case, both force curves were fitted by a 

four degree polynomial. These fittings were considered acceptable since 

they led to R2 values of 0.997 in both cases.  
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Analytically, the functional contact relation between the rod and a 

differential seal section depending on the interference or compression 

can be expressed as, 

 

           
           

           
                   ( 5 ) 

 

In the same way, the tangential forces occurring when compressing the 

seal as a function of the interference is, 

 

            
           

           
                   ( 6 ) 

 

These two equations describe the behaviour of a seal section under 

different compression values. Thus, they are mandatory inputs to build 

the analytical model of the sealing system studied in this work. 

2.4.2 Geometrical interference model 

The analytical model consists of a geometrical interference model and 

contact equations based on numerical results. In a specific situation, 

where the rod and the bore are concentric, the interference is the same 

along the whole seal,   . Nevertheless, when there is a radial 

eccentricity, contact conditions will be different on each section of the 

seal. Figure 29 shows the geometrical interference between the rod and 

the seal for a specific misalignment   . The polar coordinate φ defines 

the position of each seal section, relative to the rod misalignment 

direction.  
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In order to express the geometrical-interference field as a function of 

misalignment, the following geometrical-interference model is 

formulated: 

 

              ( 7 ) 

 

 

Figure 29: Geometrical interference model. 

 

As already mentioned, the applicable maximum misalignment,  , and the 

nominal interference values are determined by manufacturing 

tolerances. Depending on the relation between     and   , it is possible 

to distinguish two different cases. Figure 30 shows the two possible 

interference configurations. If the radial misalignment value,   , is lower 

than the interference between the seal and its counterparts at a 

concentric position,   , all the seal sections will keep contact with the 

rod. Otherwise, contact between parts will be lost in a particular seal 

region.  
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Figure 30: Possible interference configurations. 

 

2.5 Numerical 3D model 

2.5.1 Modelling 

A tri-dimensional model of the considered lip seal was built in Ansys 

Workbench environment in order to validate the analytical 3D model. 
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The same geometry, materials and contact pairs that were used to build 

the 2D model were assumed. Due to the symmetry of the geometry and 

boundary conditions, only a half of the seal was modelled. The mesh 

was built by means of quadrilateral and triangular elements with a size of 

0.3mm. In total, 33586 elements were used. Figure 31 shows the 

generated mesh. 

 

In order to build the analytical model, two similar tri-dimensional models 

were developed: one considering all the contacts frictionless, and the 

other one considering frictional contacts. 

 

 

 

 

 

Figure 31: Tri-dimensional model of the sealing system under study. 

 

Under perfectly concentric mounting conditions the interference or 

penetration between the seal and its counterparts is of about 1.47mm. 

Due to the high mounting interference or preload values, seal mounting 

was simulated step by step. Firstly, a concentric mounting was 

simulated. Afterwards, boundary conditions allowed rod displacement 

just in the selected radial misalignment direction. The simulation 

procedure is shown in Figure 32. Rod radial displacement was applied 

step by step, from a rod ideal concentric position an initial position up to 

the maximum allowed displacement, determined by the gap between the 

rod and the cylinder inner diameter. The cylinder bore was considered 

perfectly static in radial direction. 
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(a)                                                             (b) 

 

(c)                                                               (d) 

Figure 32: Simulation procedure of the seal: (a), (b) and (c) mounting, 

and (d) rod misalignment (d). 

 

2.5.2 Numerical results 

Resultant contact forces between the rod and the seal, in the rod 

misalignment direction are shown in Figure 33, for both a frictionless and 

a frictional model. As can be seen, results showed that resultant forces 

on the seal strongly depend on rod position i.e. on contact conditions. 

Furthermore, contact forces resulting from the frictional model are higher 

regardless of the misalignment value. In both cases,     increases with 

the rod misalignment, and the tendency of both curves is quite similar. 
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Figure 33: Numerically obtained contact forces vs. rod misalignment. 

 

It can be observed that the tendencies of the numerical (Figure 33) and 

the experimental curves (Figure 22) are quite different. In particular, the 

main difference is that experimental results presented a high slope ramp 

for low rod misalignment values whereas in the case of numerical 

results, the slope increases with the misalignment. It is thought that the 

main reason for tendency difference could be the simulation procedure 

followed to simulate the seal mounting itself (Figure 32). 

2.6 Analytical model 

The contact force between a seal section and the rod depends on its 

compression level. Considering a frictional contact between the seal and 

the rod, it is possible to formulate a contact relation which integrates the 
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normal, tangential and frictional forces acting on a differential element of 

seal.  

 

In this way, the normal and tangential differential forces on the seal 

under study as a function of the interference value    can be expressed 

as, 

 

           ( 8 ) 

        ( 9 ) 

 

Assuming different contact conditions and force combinations acting on 

the seal, several contact models were formulated: 

 

 Frictionless contact model not including tangential forces (Theor. 

(  )). 

 Frictionless contact model including tangential forces (Theor. 

(    )). 

 Frictional contact model not including tangential forces (Theor. 

(     )). 

 Frictional contact model including tangential forces (Theor. 

(        )). 

 

In all the cases, the procedure for building a tri-dimensional contact 

model is similar; being the main difference between models the forces 

considered. Formulation for each model is presented below.  

 

The contact radius between the seal and the rod    depends on the 

angle  , and it is measured from the rod centre, O. Under concentric 
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conditions, the value of the average radius is the same for every section, 

  . When the rod is misaligned, the contact radius at each section can be 

calculated as: 

 

             ( 10 ) 
 

In this work, the maximum admissible rod misalignment  , determined 

according to manufacturer’s drawing, is 0.2mm and the interference    is 

1.47mm. Hence, the interference configuration corresponds to      . 

2.6.1 Frictionless contact model not including tangential forces, 

(Theor. (  )). 

In this case, an ideal situation is considered so that no friction is 

generated between the seal and its counterparts during compression. 

Thus, the contact between the seal and the rod is completely modelled 

by means of normal reaction forces between them. The forces acting on 

a compressed differential element of seal are illustrated in Figure 34 and 

it can be expressed as: 

 

                         ( 11 ) 
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Figure 34: Forces acting on a differential element of seal when friction 

and tangential effects are ignored. 

 

So the contact force between the dynamic lip of the seal and the rod in 

the radial direction is equal to the normal reaction force: 

 

                    ( 12 ) 

 

And differential contact forces in the misalignment direction can be 

expressed as follows: 

 

                            ( 13 ) 

 

Thus, integrating Equation (13) for the whole seal circumference, the 

resultant load acting on the seal in the misalignment direction could be 

calculated as: 
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 ( 14 ) 

 

This force     is the force measured through the experimental tests for 

different eccentricity values i.e. it is the force whose values 

experimentally and analytically calculated have to be compared. 

2.6.2 Frictionless contact model including tangential forces, 

(Theor. (      )) 

In this case, the contact between the seal and the rod for each 

interference value is modelled not only by means of the normal reaction 

forces between the seal and the rod but also by tangential forces 

generated on the seal as a function of the applied misalignment. The 

forces acting on a compressed differential of seal are illustrated in Figure 

35 and they can be expressed as: 

 

                        ( 15 ) 

       ( 16 ) 
  
And the contact force between the rod and the seal in radial direction is: 

 

               
  

 
  ( 17 ) 
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Figure 35: Forces acting on a differential of seal when friction is ignored 

and tangential forces are considered. 

 

Assuming that                , contact forces in radial direction as a 

function of section polar position can be expressed as: 

 

                        ( 18 ) 

 

Thus, resultant contact forces acting on a seal section can be expressed 

in the misalignment direction as: 

 

                                       ( 19 ) 

 

Resultant contact load on the whole sealing lip can be calculated by 

integrating Equation (19) as follows: 

 

                                 
 

 

 ( 20 ) 
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2.6.3 Frictional contact model non including tangential effects, 

(Theor. (     )). 

If the contact between the rod and the seal is considered frictional and 

tangential forces generated on the seal are not taken into consideration, 

the functional contact relation between the rod and a differential of seal 

may be defined by the following forces: 

 

                         ( 21 ) 

                 
  

 
  ( 22 ) 

 

where   is the friction coefficient between the rod and the seal. It is 

important to highlight that the friction equation in (22) is formulated 

adopting a simplified contact model which takes into account the 

Coulomb’s friction model. 

 

Figure 36 shows the forces acting on a differential element of seal for 

this specific case. 

 

Figure 36: Forces acting on a differential element of seal when 

tangential forces are ignored and friction between parts is considered. 
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Hence, the contact force between the rod and the seal could be 

expressed in radial direction as: 

 

                     ( 23 ) 

 

And differential contact forces can be expressed in the misalignment 

direction as follows: 

 

                     ( 24 ) 

                              ( 25 ) 

 

Finally, when a misalignment    is applied to the rod, the resultant 

contact load on the whole sealing lip can be calculated as follows: 

 

                                 
 

 

 ( 26 ) 

 

2.6.4 Frictional contact model including tangential forces, (Theor. 

(          )) 

This case represents the most complete model since it includes normal, 

tangential and friction effects acting on the seal. Figure 37 shows the 

forces acting on a differential of seal that can be expressed as: 

                                 
 

 

 ( 27 ) 

        ( 28 ) 

                
  

 
   ( 29 ) 
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Figure 37: Forces acting on a circumferential section of the seal. 

 

The contact force between the sealing lip and the rod in radial direction 

can be written as: 

 

               
  

 
  ( 30 ) 

 

And assuming that                ,  

 

                         ( 31 ) 

 

Considering a frictional contact between the rod and the seal, resultant 

contact forces acting on a seal section can be expressed in the 

misalignment direction as: 

 

                     ( 32 ) 

                                      ( 33 ) 
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Resultant contact load on the whole sealing lip can be calculated by 

integrating Equation (33). If   >   , the total load supported by the 

sealing lip can be expressed in the misalignment direction. 

 

                                       
 

 

 ( 34 ) 

 

Equation (35) expresses the total contact force in the misalignment 

direction when   <     

 

                                       
  

 

 ( 35 ) 

 

In the next section, results obtained applying each of these analytical 

models presented are presented. 

2.7 Results 

2.7.1 Model validation 

The analytical equations previously presented were implemented in 

Matlab, in order to calculate the contact forces for different rod 

misalignment values. Calculated radial contact forces along the seal vs. 

different eccentricity values are plotted in Figure 38. It can be concluded 

that different rod radial misalignment values result in very different 

contact force distributions. Contact force variations in the lip of the 

loaded half-seal side are consistently higher than variations in those 

sections in the opposite side. These results are in good agreement with 

results obtained from the plain simulations where it was found that the 
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stiffness of the seal increases considerably for interference values 

slightly higher than the nominal interference. 

 

Figure 38: Radial contact forces in the sealing lip as a function of 

circumferential position and rod eccentricity value. 

 

For a rod subjected to the maximum allowable interference, the 

maximum contact force value could even triple the minimum one. As can 

be seen, in this specific case all the sections in the seal are subjected to 

a contact force of about 0.75N, whereas for misalignments values of 

  =0.2 mm the maximum contact force in the seal is about 2N. This fact 

involves an irregular wear pattern and temperature distribution, and a 

subsequent seal life reduction that may be very significant. The effect of 

the irregular contact patterns on the tribological performance of seals, 

indeed, will be studied in the next chapters. 
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Substituting the geometrical interference model defined by Equation (7) 

and integrating results for the whole seal as described in the previous 

section, resultant contact forces along the whole seal can be calculated 

regardless of rod eccentricity. Figure 39 shows resultant contact forces 

in the misalignment direction, numerically and analytically calculated 

considering different contact models: both frictionless and frictional 

contacts, with and without introducing tangential effects in the analytical 

model (curves A-F). Results showed that tangential and frictional forces 

play an important role. The effect of friction forces is to overload the seal 

whereas tangential forces tend to decrease resultant contact forces. 

Good matching was found between numerical 3D results (E) and 

analytical results for an ideal frictionless sealing system (C). Thus, it can 

be concluded that tangential forces acting on the seal are mandatory 

inputs to complete the analytical model, so that they should not be 

ignored. By contrast, numerical 3D simulation results for a frictional 

contact model (F) and analytical results considering friction between 

counterparts (D) did not show a good correlation at low eccentricity 

values. Furthermore, as seen in Figure 39, numerical results 

underestimate contact forces for rod misalignments lower than 0.07mm. 

Tasora et al. [24] found that radial shaft seals show a high slope ramp at 

low radial displacements. Hence, it is though that the major sources of 

discrepancies between results at low misalignment values could be: the 

simulation procedure itself, followed to solve the initial preload of the 

seal (Figure 32), and/or the omission of stick-slip regions and materials 

properties such as viscoelasticity.  
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Figure 39: Analytically (Theor.) and numerically (FEM) obtained contact 

forces vs. misalignment. 

 

Experimental results were used in order to validate the analytical model 

proposed in this work. It was found a good correlation between 

experimental and the analytical results of the model that includes both 

tangential and frictional effects, i.e. frictional contacts should be 

assumed. Figure 40 shows a comparison between experimental, 

numerical and analytical results, (D), and it also presents the error 

between analytical and experimental results in absolute terms. The 

maximum difference between the analytical and experimental results in 

absolute terms is approximately 6.4N, which occurs for the highest 

misalignment. Hence, it may be concluded that the modelling method 

proposed in this chapter may be a useful tool for contact force 
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distribution prediction on seals that avoids the high computational costs 

and times associated to 3D FEM simulations. 

 

 

Figure 40: Comparison between experimental, numerical and analytical 

results. 

 

2.7.2 Contact pressure field 

The sealing force provided by every seal during operation can be 

expressed as the sum of two contributions: an initial preload or 

interference, and the fluid pressure. Every seal is designed to provide a 

specific interference or preload that enables sealing even at low 

pressures. Most of them, in general, are designed to provide an initial 

compression in the range between the 7 and the 30% [14]. When fluid 
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pressure is applied, this pressure is also transferred to the contact. 

Hence, the sealing contact pressure is always higher than the fluid 

pressure and that is why the fluid does not leak. 

 

The role of lip seals is to ensure an adequate sealing between two 

surfaces moving relative to each other providing an adequate sealing 

force. Furthermore, the special geometry of lip seals is essential in order 

to provide a specific contact pressure distribution when they are 

mounted in their grooves. In fact, the contact pressure distribution is the 

main responsible for the sealing and pumping mechanisms occurring 

when there is a relative movement between a lip seal and its 

counterparts [3]. Moreover, the advantage of U-type seals or lip seals is 

that due to their geometry, they provide interference under eccentric 

mounting and wider operations than other types of seals [14]. 

 

In the previous sections it has been studied how a mounting 

misalignment or a static eccentricity affects the contact force distribution 

of the seal under study. This section addresses how a static eccentricity 

affects the contact pressure distribution of the seal under study. To this 

end, results obtained from the tri-dimensional numerical simulations 

have been analyzed. Figure 41 shows the contact pressure distribution 

of a section of the lip seal under study under concentric mounting 

conditions. The shape of the contact pressure distribution is in good 

agreement with other curves found in literature for the case of lip seals 

[33]. 
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Figure 41: Contact pressure between the seal and the rod under 

concentric mounting conditions (      ). 

 

As can be observed, the contact width under ideal concentric conditions 

is about 1.2mm and the maximum contact pressure is about 2MPa. 

Furthermore, the maximum contact pressure occurs on the oil side of the 

seal. In particular, contact pressures increases along the oil side up to 

the peak contcat force, and then, it continuously decreases along the air 

side up to zero.  

 

Figure 42 presents the contact pressures of those seal sections 

subjected to the maximum and minimum interferences for a rod to bore 

radial misalignment of   =0.2mm. For the section subjected to the 

minimum interference, the maximum contact pressure value is 
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approximately 2.3MPa; a value slighty higher than the pressure obtained 

for the maximum interference section which presents a maximum 

pressure of 2.17MPa. Hence, results showed that eccentricities do not 

alter the maximum contact pressure provided by the seal, but it does 

affect the contact pressure distribution and the contact area. In 

particular, the seal section subjected to the minimum interference 

presents a low contact width of about 0.9mm. The maximum 

interference section, however, presented a much higher contact width of 

approximately 5.5mm. Furthermore, in the latter case, the contact area 

was divided in two areas. As can be observed in the graph, between 

these two contact areas there is a zone where there is no contact 

between the seal and the rod i.e. where contact pressure is zero. In both 

cases the maximum appears again in the oil side. 

 

Figure 42: Contact pressure between the seal and the rod for 

          . 
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Figure 43 presents the contact pressure curves of the seal under 

concentric and eccentric conditions. 

 

 

Figure 43: Comparison of the contact pressure under different contact 

conditions. 

 

Figure 44 presents the contact pressure field at the inner surface of the 

seal when the rod is perfectly concentric to the bore center. Under this 

condition, the contact pressure between the seal and the shaft is the 

same along the whole seal. The rod and the groove have not been 

represented on the figure in order to have a proper visualization of the 

pressure field. 
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Figure 44 : Contact pressure field under ideal concentric conditions 

(        ). 

 

Figure 45 and Figure 46 present the contact pressure field in the 

dynamic lip of the seal for rod radial misalignments of 0.1mm and 

0.2mm, respectively. It was found that under these conditions another 

contact area is formed in the most compressed sections of the seal. 

Moreover, comparing both graphs it can be concluded that when 

increasing the radial misalignments from 0.1 to 0.2 mm, the secondary 

contact area increases considerably both in width and in length 

(circumferential length) whereas the primary contact area remains 

almost the same.  

 

 

Figure 45: Contact pressure field for a rod misalignment of          . 
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Figure 46: Contact pressure field for a rod misalignment of           . 

 

2.8 Conclusions 

A procedure to develop an eccentricity tri-dimensional analytical contact 

model of seals was herein presented. Aim of this work was to study the 

effect of an incorrect mounting on seals in terms of contact forces and 

pressures. In this case, an eccentricity model of a rod lip seal built in 

TPU (Thermoplastic Polyurethane) was developed. Results showed that 

small rod mounting eccentricities lead to significant changes in the 

contact conditions between the rod and the seal. In this case, an 

eccentric mounting of just 0.2mm results in a very irregular contact force 

distribution where the maximum contact forces could even triple the 

minimum ones. Thus, although lip seal geometry itself facilitates its 

adaptation to low eccentricities, an increase in contact forces involves a 

reduction in the expected seal service life. Moreover, it has been also 

demonstrated that under eccentric conditions the contact pressure field 

in each seal section may change consistently from being composed of 

one area to be divided into two different areas. These facts highlight the 

importance of taking into account possible eccentricity effects when 

studying specific sealing systems. 
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The built model includes: a geometrical interference model, normal 

reaction forces, tangential forces and friction forces between the seal 

and the rod. A static case was considered in the absence of supply 

pressure. A satisfactory matching between experimental and analytical 

results was found. Results showed that tangential and frictional forces 

play an important role. The effect of friction forces is to overload the seal 

whereas tangential forces tend to decrease resultant contact forces. The 

methodology herein presented may be a viable tool for design purposes 

since it meets the challenge of measuring the contact force distribution 

between seals and their mating surfaces. Moreover, the model 

developed avoids the high computational costs and times associated to 

tri-dimensional numerical simulations. Moreover, the procedure herein 

presented can be applied to other seal sizes, geometries and materials. 

 

It is thought that the main causes of differences in results may be that 

the analytical model does not include properties such as viscoelasticity 

and does not consider other aspects such as stick-slip regions, very 

important when working with elastomeric materials. In the next chapter, 

actual working conditions of lip seals will be reproduced including 

reciprocating motion and misalignment. Hence, the effect of rod to bore 

misalignments on seals operating under dynamic conditions will be 

studied. Moreover, in the next chapters the utility of the procedure herein 

presented for tribological studies will be proven. 
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Chapter 3: Effect of mounting 

eccentricity on seal performances – 

Experimental tests 

3.1 Introduction 

In the previous chapter, a procedure to develop a tri-dimensional 

eccentricity model for seals which enables calculating the contact force 

distribution between seals and counterparts for different rod to bore 

misalignment values was proposed. In this chapter, the aim is to 

investigate the effect of rod to bore misalignments on the tribological 

performance of seals during operation in terms of friction and wear. 

Moreover, within this chapter the utility of the methodology proposed in 

the previous chapter is also demonstrated. To this aim, the wear rates 

and the friction force distribution of the tested seals have been 

calculated, using the results obtained from the eccentricity contact force 

models. 

 

As stated in the first chapter, the tribological behaviour of seals and 

other components is influenced by a big amount of parameters such as 

the mechanical, thermal and chemical properties of bodies in contact, 

surface roughness, sliding conditions, the environment and the 

characteristics of the lubricant film, among others. Moreover, in general, 

tribological conditions such as friction and wear vary in time, and in the 
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case of seals, also in position, since pumping conditions are different in 

the instroke and outstroke [1,2]. 

 

Most of the works related to seals have been devoted to gain knowledge 

about the main sealing parameters and mechanisms. Up to the 60s, 

most of the studies were related to the study of the main sealing 

parameters. In particular, contact pressure and contact width, film 

thickness, friction force and leakage rate were identified through 

experimental investigation as the main parameters affecting the sealing 

performance [3]. From that period on, and thanks to the development of 

technology and of new advanced numerical tools, the attempts for a 

better understanding of sealing mechanisms continued.  

 

Due to the lack of standardized methods, many test rigs for seal 

characterization were developed in the last years [4-10]. Johnson et al. 

[4] developed a test rig for measuring the temperature evolution and fluid 

leakage of hydraulic piston seals working under reciprocating working 

conditions. Belforte et al. [5] developed a test rig for accelerated life 

testing of pneumatic piston seals for reciprocating applications. Raparelli 

et al. [6] and Belforte et al. [7,8] also studied friction forces in pneumatic 

cylinders under different working conditions by means of many test rigs 

developed for this purpose. They individually studied the contribution of 

piston seals, rod seals and valve seals to the resultant friction forces 

generated within the cylinder. Juoksukangas et al. [9] built an advanced 

test rig to test reciprocating rod seals for hydraulic applications 

reproducing the drilling shaft sealing system under a wide range of 

conditions and dynamic side loading applied by means of an electric 

shaker. Pinedo et al. [10] developed a high performance modular test rig 
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for characterization of reciprocating and rotary seals for both pneumatic 

and hydraulic applications. Moreover, diverse techniques have been 

used to measure the main sealing parameters. For instance, 

technologies such as photoelastic techniques [12], pressure film sensors 

[13,14], radial force integration techniques [15] and manganin wires [16] 

have been usually used for static contact pressure measurement. For 

measuring seal wear and leakage, new techniques such as 

displacement laser sensors [17] and interferometry techniques [18] have 

been usually used, respectively. 

 

Apart from experimental tests, diverse lubrication models [19-23] and 

roughness models [24-27] of elastomeric seals have been developed 

during the last decades in an attempt to model the seal behaviour and to 

calculate the leakage rates under different operating conditions. 

Nevertheless, due to the non-linear behaviour of elastomers and their 

viscoelastic properties, obtaining analytical solutions and building 

feasible numerical models of seals is a difficult task. Furthermore, the 

strong dependence of elastomers with temperature and their high 

hysteresis, relaxation and creep hinder the evaluation of the seal 

performance.  

 

Thus, after decades of research on the sealing mechanisms, some 

authors underline that there is still a lack of studies related to the surface 

wear of seals and to their life expectancy [3]. One of the objectives of 

this chapter in this field is to study the wear of reciprocating rod seals 

with the travelled distance and with rod to bore eccentricities. Due to the 

big amount of factors involved in the wear process, a wide knowledge in 

mechanics, material science, tribology, physics and chemistry is needed 
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for a better understanding of such processes. In the case of polymers, 

their wear behaviour depends on its non-linear mechanical and thermal 

properties at a great extent. Hardness and compressive strength 

influence load-carrying capacity, penetration and abrasion resistance. 

Tensile modulus accounts for deformability and cold-flow properties, and 

melting point shows temperature limitations [31]. Furthermore, wear 

prediction involves an exact identification of the main wear mechanisms 

under specific contact and operating conditions in order to be able to 

model it. Hence, modelling wear is a difficult task since the wear 

behaviour is complex and specific for certain sliding conditions. 

Consequently, even if in the history many authors have tried to develop 

reliable models or equations in an attempt to model the wear of 

components and predict their lifetime, there is no a reliable equation to 

do it so far [31-37]. Even so, previous studies dealing with the wear of 

polymers have made a great contribution to the existing knowledge in 

this field: Martínez et al. [36] found from experimentation with a guide 

shoe insert made of TPU and a steel guide, that there is a linear 

relationship between the TPU worn volume and the travelled distance, 

while the relation between the worn volume and the applied force is non-

linear. Moreover, they found an analogy between the wear process and 

the crack formation process. The same authors, years later, developed a 

methodology to numerically model the wear phenomena in a TPU-steel 

contact [37]. Unal et al. [39] found that the wear rates of diverse PTFE 

compounds decrease with the applied load whereas it remains nearly 

constant for the pure PTFE. 

 

In this chapter, the effect of rod to bore misalignments on the tribological 

behaviour of seals is investigated. To this end, sliding tests were carried 



Chapter 3: Effect of mounting eccentricity on seal performance-Experimental tests 

 

95 

out on two commercial seals for reciprocating applications in a test rig 

specifically designed to test complete sealing components. Seals were 

tested under both concentric and eccentric controlled mounting 

conditions in order to compare the results. During the sliding tests, the 

friction generated was screened, and wear measurements were carried 

out after each test. Moreover, the wear rates of seals and the friction 

distribution along the whole seals were calculated under concentric and 

eccentric conditions using the outputs from the eccentricity models 

developed following the procedure described in Chapter 2. Thus, the 

applicability of the contact force eccentricity model is proven within this 

chapter. Therefore, the work herein presented contributes to the lack of 

research on two topics: wear of reciprocating seals, and the effect of 

eccentricities on sealing performance. 

3.2 Specimens & materials 

Experimental tests were performed on two rod lip seals commonly used 

in hydraulic applications, named as: seal A and seal B. The details of 

both seals are shown in Table 2. Thermoplastic Polyurethane (TPU) and 

Nitrile Butadiene Rubber (NBR) are two of the polymers most commonly 

used in the sealing industry to manufacture seals for applications 

involving operating velocities lower than 0.5 m/s under pressures of up 

to 400 bar, in the case of TPU, and up to 160 bar, in the case of NBR 

seals.  
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Seal Material 
Dimension

s(mm) 
Range of application Figure 

A 

 

TPU 

(Thermoplastic 
Polyurethane) 

45x55x6 

 Pressure: ≤400bar 
 T: -30 ÷ 100ºC 
 Speed: ≤0.5m/s 

 

B 

NBR 

(Nitrile 
Butadiene 
Rubber) 

45x55x7 

 Pressure: ≤160bar 
 T: -35 ÷ 100ºC 
 Speed: ≤0.5m/s 

 

 

Table 2: Main characteristics of seals under study. 

 

Both test seals have the same inner and outer diameters. In particular, 

seals for mounting rods of 45mm and for groove diameters of 55mm 

were selected in this work. Furthermore, seal A is exactly the same seal 

(same geometry, material and size) modelled in the previous chapter 

because the contact forces previously calculated will be used within this 

chapter for wear rate and friction calculations. 

 

Regarding materials, seal A is made of TPU which is a thermoplastic 

elastomer that combines the mechanical properties of the rubber with 

the processability of thermoplastics. It usually has a good wear 

resistance and good load carrying capacity, a moderate service 

temperature range (up to about 110ºC) and it is quite sensitive to 

humidity. TPU is widely used in the sealing industry because its low 

cost, high elasticity, flexibility, high load carrying capacity and resistance 

to oxidation, among others. It is also a good absorber of noise and 

vibrations, and it is resistant to most of the greases and mineral oils 
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used in hydraulic applications. Furthermore, it can be repeatedly melted 

and processed, due to the absence of chemical networks in its 

formulation.  

 

Seal B is made of NBR, a thermoset elastomer that is both elastic and 

viscous. Typical rubber compounds consist of several ingredients added 

in order to improve their physical properties, enable vulcanization, 

improve processability, and prevent long-term deterioration. Rubbers are 

subjected to vulcanization processes in order to form chemical bonds 

between elastomer chains so that their stability, strength and resilience 

are increased. NBR has a good resistance to oils, good adhesion to 

metals, and moderate friction coefficient and thermal resistance (up to 

about 110ºC). 

 

Mechanical characterization of seals 

 

Table 3 shows some mechanical properties of the seals under study. 

These properties were provided by the seal manufacturers. As can be 

seen, the TPU seal (A) is more rigid and has a considerably higher 

hardness than the rubber seal (B). 

Sample 
Young 

modulus, E 
(MPa) 

Tensile strength 
(MPa) 

Density 
(g/cm

3
) 

Hardness 

A (TPU) 12 51 1.140 92 Shore A 

B (NBR) 3.8 19.3 1.187 68 Shore A 

 

Table 3: Mechanical properties of seals under study. 
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Thermal characterization of seals 

Differential Scanning Calorimetry (DSC) and Thermogravimetric 

Analysis (TGA) were carried out for a better characterization of seal 

materials. In this way, in fact, it is possible to highlight the eventual 

transition phases leading to the wear mechanisms appearing during the 

sliding.  

 

TGA is a technique in which the mass of a substance is measured as it 

is heated, cooled or held at a constant temperature. Hence, this 

technique examines the mass change of samples as a function of 

temperature and it is used to characterize the decomposition and 

thermal stability of materials under different conditions since mass 

losses are usually related to chemical reactions or/and physical 

transitions. In particular, it is usually used to characterize materials with 

regard to their composition. The analysis was performed by means of a 

DSC/TGA thermo-balance (Mettler Toledo, Spain) under a N2 

atmosphere of 50ml/min. Samples were heated from +25ºC up to 

+800ºC, with a heating velocity of +10ºC/min. Figure 47 presents the 

TGA curves of both test seals. Analysis results showed that the TPU 

degrades in two steps: the first one corresponds to the degradation of 

hard segments inside the polyurethane, and the second one, to the 

degradation of soft segments. Results showed that in the range of 

+300ºC and +800ºC, the degradation of the material happens and that 

there is no almost any residual mass. In the case of NBR, it is stable up 

to a temperature of about +175ºC and a mass of the 40% remains at 

high temperatures.  
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Figure 47: Thermal stability curves of seal samples with temperature 

studied by means of TGA analysis. 

 

DSC was used to study the thermal transition of the seal materials. It is a 

technique in which the difference in the amount of heat required to 

increase the temperature of a specific sample and a reference sample 

are measured as a function of temperature. Differences in heat flow will 

arise when a sample absorbs or releases heat due to thermal effects 

such as chemical reactions, crystallization or melting, so that their 

corresponding enthalpy and entropy changes. Changes in heat capacity 

are tracked as changes in heat flow. The analyses were performed using 

a DSC 1-500 device (Mettler Toledo, Spain). During the analysis, the 

samples were heated from room temperature up to +300ºC and 

afterwards back to room temperature. Heating and cooling of the 

samples were carried out at a velocity of ±5°C/min and in a N2 

environment of 50ml/min. DSC analysis results of the test seals are 
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shown in Figure 48. Seal A is made of TPU which is a thermoplastic, so 

it can be reshaped by application of both heat and pressure. The peak 

presented by the TPU material at +178ºC is related to the disordering of 

hard segments crystallites, thus, it represents the melting temperature of 

the material. When cooling, it presents another peak due to material 

crystallization at +151ºC. In the case of seal B which is made of NBR the 

DSC curve does not present any transition point within the studied range 

since the NBR is a thermoset elastomer so that it does not melt at any 

temperature and it does not soften but decompose when heated. 

 

 

(a) 
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(b) 

Figure 48: DSC curves of the (a) TPU (seal A) and (b) NBR (seal B). 

 

3.3 Experimental setup 

In order to investigate the tribological performance of the test seals 

under both concentric and eccentric conditions, a tribological 

characterization of seals was carried out. To this aim, sliding tests were 

performed in the test rig TESSA, a test bench specially designed in IK4-

Tekniker to this aim [10]. In this section, the test rig as well as the 

specific test chamber designed for comparing the tribological behaviour 

of seals under different rod to bore positions are presented. 
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3.3.1 Test rig description 

The test rig TESSA is a high performance test bench designed and 

manufactured in IK4-Tekniker in order to characterize seals under a 

wide range of working conditions. In particular, it is a modular test bench 

thought to evaluate the effect of critical factors, such as pressure, 

velocity, misalignment and temperature, etc., on the performance of 

sealing systems, highlighting their failure mechanisms on wide ranges of 

test parameters, including accelerate life tests. A tri-dimensional view of 

the test rig is shown in Figure 49. 

 

 

Figure 49: Test rig TESSA for seal characterization. 

 

The test rig is composed of two main parts, a reciprocating part and a 

rotatory/oscillatory one, in order to test both reciprocating and rotatory 

seals. Both parts consist of an actuating system (electrical motor), a 
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friction measurement device and a modular test chamber tailor made for 

each application. The reciprocating and rotatory parts of the sealing test 

rig are shown in Figure 50 and Figure 51. The versatility of this 

advanced test rig allows reproducing many sealing applications 

commonly found in the industry. The modularity of the test chamber, in 

fact, allows testing a wide range of seal types, materials, geometries and 

configurations. Moreover, both rod and piston seals, both reciprocating 

and rotatory seals, and both hydraulic and pneumatic seals could be 

tested through this test rig. The system comprises a hydraulic and a 

pneumatic system in order to test seals working in oil environments and 

with gasses such as compressed air, nitrogen and helium could, among 

others.  

 

Figure 50: Rotatory part of the sealing test rig. 
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Figure 51: Reciprocating part of the sealing test rig. 

 

For tribological characterization of the sealing systems, three kinds of 

tests are usually carried out: friction tests, leakage tests and accelerated 

life tests. During the friction tests the friction between seals and 

counterparts is measured over time by means of a friction force 

measurement device. Since life tests of seals are too long to perform at 

laboratory, accelerated life tests are usually carried out. The aim of the 

accelerated tests is to accelerate the wear process of seals so that it can 

be studied in a short period of time. To this end, a working parameter is 

usually stressed. Typical stressed parameters are pressure, velocity and 

a lower amount of lubricant, for instance. During the accelerated life 

tests the leakage is measured by fluid collectors according to the ISO 

7986:1997 standard in the case of hydraulic applications, and by 

pressure drop inside the test chamber in the case of pneumatic 

applications. 
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3.3.2 Mounting configurations of seals under study 

In this work, the selected seals are reciprocating so that they have been 

tested in the linear module of the test bench. In order to study the effect 

of an eccentric mounting of seals on their performance, a tailored test 

chamber was designed and manufactured (see Figure 52). The sealing 

system of the test chamber consists of a seal (1) (the seal under study) 

and four guide rings (2), two at each side of the lip seal. A controlled 

eccentricity was introduced in the assembly by designing the groove of 

the seal with a known radial eccentricity with respect to the shaft centre. 

In particular, two different pieces named as (3) with different seal groove 

designs were manufactured: one of them with the seal housing 

concentric to the rod centre, and the other one with the seal housing 

misaligned 0.15mm with respect to the rod centre. The nominal radial 

gap between the rod surface and the bore is 0.2 mm (the maximum 

applicable misalignment); the same as in the test rig designed in 

Chapter 2. 

 



Chapter 3: Effect of mounting eccentricity on seal performance-Experimental tests 

 

106 

 

Figure 52: Experimental setup for tribological tests of seals. 

 

A photograph of the test rig assembly is shown in Figure 53. The test 

chamber is composed of the sealing system, its metallic housings and 

the reciprocating rod. Seals under study are mounted on the seal groove 

with two guide rings at each side. The seal rod (4) made from F1150 

(18CrMoS4) steel, with a diameter of 45mm and a roughness of Ra= 

0.4µm slides against the test seals. The rod is connected to a load cell 

(5) which measures the friction tension-compression forces generated 

during sliding with an accuracy of ± 0.2% (HBM, U9C model, 1KN, 

Germany). The other end of the force transducer is directly connected to 

the actuation system that consists of a crank mechanism that converts 

the rotation of the motor into a lineal movement. The entire system is 

mounted on a precision machine frame which maintains all the parts 

correctly aligned. 
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Figure 53: Test rig assembly. 
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3.4 Test conditions 

The test conditions are summarized in Table 4.  

 

INPUTS 

Test seals A (TPU) B (NBR) 

Motor velocity  114 rpm 

Stroke  84 mm 

Sliding velocity  0.5 m/s 

Lubrication Dry conditions 

Nominal rod to 

bore radial gap 
0.2 mm 

Rod to bore 

eccentricity 
0 mm 

(concentric) 
0.15 mm 

Test duration 1h 2h 5h 10h 

OUTPUTS 
Measured 

parameters 
Friction 

evolution 
Mass loss 

Table 4: Test conditions. 

 

Tests were performed at a stroke of 84mm and a sliding velocity of 

0.5m/s, which is the maximum velocity recommended for both seals. 

The nominal gap between the rod surface and the cylinder bore is 

0.2mm. As the aim of this chapter is to investigate the effect of radial 

mounting and manufacturing eccentricities on the tribological 

performance of elastomeric seals, two different test campaigns were 

carried out under two different mounting conditions: 

- Test campaign 1: δr=0mm, concentric test conditions. 

- Test campaign 2: δr=0.15mm. A radial misalignment of 0.15mm 

was introduced between the rod and the seal groove centres.  
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In order to measure the evolution of mass loss with time, tests with 

different duration were carried out. In particular, the following test 

durations were selected: 1h, 2h, 5h and 10h. Those test durations were 

selected as a result of a number of tests performed for determining the 

travelling distances that produce a significant mass loss on seals.  

 

Regarding lubrication, tests were performed under dry conditions in 

order to have a measurable mass loss of seals in a reasonable period of 

time. In real applications, test seals made of the selected materials are 

usually used with a low amount of lubrication in the case of pneumatic 

applications, and with full lubrication in hydraulic applications. 

Nevertheless, the tests herein carried out under dry conditions are 

acceptable since it is thought that they reproduce the wear of seals 

under extreme conditions, when the lubrication fails and the wear of 

seals is so severe that it leads to a rapid degradation of seals. Another 

reason for having selected dry conditions is that when the contact is 

lubricated, even if the amount of lubricant is low, seals absorb oil so that 

estimating the wear by mass loss is not possible anymore.  

 

During the tests, friction was measured with an acquisition frequency of 

104Hz. Seals were weighted before and after each test in order to 

measure their mass with travelled distance. 

3.5 Contact force calculation 

In this section seal/rod contact forces for both the seal tested are 

calculated since they are mandatory inputs for further friction coefficient 

and wear rate calculations. In the specific, the contact forces have been 
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calculated through the tri-dimensional eccentricity models developed 

applying the procedure presented in Chapter 2.  

 

Seal A 

The contact model of the TPU seal has been already developed and 

presented in the previous chapter. Introducing Equations (5) and (6) in 

Equation (31), the following contact force values were obtained for the 

considered rod to bore positions: 

-       , concentric condition →            (considering 

that the rod has a diameter of 45mm, the contact force in each 

section has a value of 0.75 N). 

-            eccentric condition →             

 

Hence, a misalignment of 0.15mm produces an increase of about 23N in 

the resultant contact force between the seal and the moving rod. 

 

Seal B 

As done in the previous chapter for the polyurethane seal (A), the plane 

model for building the tri-dimensional contact model of the rubber seal 

(B) was built in Ansys Workbench environment. The seal was modelled 

by means of quadrilateral elements with a size of 0.2mm, and of 0.1mm 

in the contact areas. The whole seal is composed of a total of 4291 

elements. Seal geometry was obtained by means of an optical 

microscope (Leitz, model Libra 200, Germany). The generated mesh is 

shown in Figure 54. 
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Figure 54: 2D FEM model of seal B. 

 

A surface to surface contact formulation was chosen to simulate both the 

seal/rod and the seal/groove contacts. Boundary conditions take into 

account friction at contact surfaces in order to constrain the free 

movement of the seal. The friction coefficients were set to 0.1 for the 

seal/rod contact and to 0.4 seal/groove contacts [40]. The NBR (Nitrile 

Rubber) material was defined as incompressible, isotropic and 

hyperelastic. A second-order Mooney-Rivlin formulation with two 

constants was employed considering the following coefficients:C10=-2.75 

and C01=4.6 [41]. In order to obtain the compression curve of the seal 

material, compression tests were carried out in the universal testing 

machine Instron 3369 (Massachusetts, USA). Compression curves of 

the both seal materials are shown in Figure 55. By comparison between 

the compression curves of both seal materials, it can be concluded that 

the compression curve tendency is similar in both cases but the 
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polyurethane response under compression is much stiffer than the 

response of the rubber material. 

 

 

Figure 55: Experimental compressive stress-strain curve of the seal 

materials. 

 

The rod and the bore were considered rigid elements since polymer 

stiffness is much lower than that of steel. 

 

The interference between the seal and the rod when their centres are 

totally aligned has a value of          . The nominal gap between 

the rod and the bore is 0.2mm as in the previous chapter; value that 

corresponds to the maximum applicable misalignment. In the graph 

shown in Figure 56, the normal forces and tangential forces acting on 

seal B as a function of interference or section compression are shown. 

These results were obtained through the plane numerical simulations. 

As in the case of the TPU seal (A), whose plane numerical results were 
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represented in Figure 28, results revealed that the stiffness of the NBR 

seal (B) varies considerably with compression.  

 

 

Figure 56: Reaction and tangential forces in seal B as a function of 

mounting interference or compression. 

 

In this case, the stiffness of a cross section of the seal B can be also 

divided in two regions where it remains nearly constant: a low stiffness 

region (K≈1N/mm) and a high stiffness region (K≈4.5-6N/mm). 

Furthermore, simulations showed a sudden change in stiffness that 

occurs for a seal compression of 1.27mm i.e. for a rod to bore 

misalignment of approximately            
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In the area of interest, bounded by      and     , the normal forces 

the rod and the seal could be expressed as,  

 

            
           

           
                   ( 36 ) 

 

In the same way, the tangential forces acting on a compressed seal 

section may be expressed as a function of the interference as, 

 

            
           

           
                   ( 37 ) 

 

These two equations were used in order to calculate the seal/rod contact 

forces for the two different rod to bore positions considered in this 

chapter: 

 

-           concentric condition →    = 74.64N (considering that 

the rod has a diameter of 45mm, the contact force in each 

section has a value of 0.53N). 

-             eccentric condition →    = 76.27N 

 

Comparing the contact force results of the seals under study and their 

behaviour to eccentricities it can be concluded the following: 

 

 The contact forces between the seal and the rod are 

considerably larger in the case of the TPU seal (A) than in the 

case of the NBR seal B (B). Causes for contact force differences 

are the geometry and the non-linear seal material. Nevertheless, 

in this case, the effect of the material is the main factor that leads 

to so different contact forces because, in fact, the stiffness and 
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hardness of the polyurethane are considerably higher than those 

of rubber. 

 Both lip seals showed a change in stiffness with compression. In 

particular, both seals presented two regions of different stiffness 

where it remains constant: a low stiffness region and a high 

stiffness region. In the case of seal A, the change in stiffness 

occurs for seal compression values nearby the nominal 

interference, in particular, for rod misalignments of approximately 

         . In the case of seal B, the change in stiffness 

occurs under larger compression values of approximately 

           

 From Figure 28 (seal A) and Figure 56 (seal B) it can be 

concluded that under the applied misalignment the response of 

the most compressed sections will be very stiff in the case of seal 

A whereas all the seal sections will still remain in the low stiffness 

region in the case of seal B. 

3.6 Experimental results 

In order to investigate the effect of rod to bore misalignments on sealing 

performance, the following parameters were measured during and after 

testing under concentric and eccentric conditions: 

 Evolution of the friction force generated during sliding, 

 Mass loss, 

 State of the sealing surface by visual inspection, 

In this section the results of the test campaign carried out are presented. 
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3.6.1 Effect of rod to bore misalignments on friction 

Figure 57 shows the friction force curves of the seals tested under 

concentric mounting conditions and Figure 58 shows the friction force 

curves obtained when the centre of the rod is misaligned 0.15mm with 

respect to the seal groove centre. Results showed that, in all the cases, 

the friction force generated by the TPU seal (A) is larger than that 

generated by the NBR seal (B). The form of the friction curves is similar 

in both cases but the friction curves of seal B tend to reach a steady 

value before those of seal A. Both seals present the highest friction at 

the beginning of the test i.e. during the running-in period, and afterwards 

friction continuously decreases until a nearly steady-state condition is 

reached.  

 

Figure 57: Friction of seals A (TPU) and B (NBR) under concentric 

conditions (      ). 
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Figure 58: Friction of seals A (TPU) and B (NBR) under eccentric 

conditions (         ). 

 

The behaviour shown by the seals tested is typical of polymeric 

components. The friction force is governed by the processes occurring 

at the mating surfaces, and it may be considered as the result of two 

components: adhesion and deformation. During the running-in, the 

roughness of the seal surface undergoes a large variation and this stage 

is characterized by a change in the friction curve shape which occurs 

due to topographical changes within the contact area [36,38]. In general, 

micro-asperities of the surfaces are eliminated during the running-in 

stage and a polymeric film is usually formed on the surface of the steel 

component. While the polymer film fills the valleys of the metallic 

counterface, the adhesive component of the friction increases since the 

adhesion in polymer/polymer contacts is higher than it is in steel/polymer 

contacts [38]. Then, a transient zone appears where the friction is 

maximum because an increasing force is required to continue the sliding 
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because of the cutting, forming and adhesive effects at the contact zone. 

At this friction peak in the transition zone re-adhesion process of the 

polymer film starts to provide a dynamic balance during further sliding, 

resulting in what is termed the steady-state of friction.  

 

Results showed that rod to bore eccentricities considerably affect the 

total friction force generated between seals and the sliding rod. Under 

concentric conditions (Figure 57), seal A presented a maximum friction 

force of about 32N at the transition zone and a friction force of about 

18N at the end of the test. In the case of seal B, it presented a friction 

peak of about 12N which remains nearly constant throughout the whole 

test. Under eccentric conditions (Figure 58), larger differences arise 

between the friction forces generated by each seal. In particular, the 

TPU seal (A) presented a maximum friction peak of about 40N at the 

transition zone whereas the friction peak originated by the NBR seal (B) 

was about four times lower. Under steady-state conditions, the friction 

presented by seal A is of 32N and the friction presented by seal B is of 

10N. 

 

Hence, results showed that the friction generated by the seal made of 

TPU (A) is considerably higher than that of the NBR seal (B) under the 

same mounting and operating conditions. In fact, both the seal geometry 

and the material influence the friction generated during sliding between 

the seal samples and the reciprocating rod. Moreover, factors such as 

the abrasive resistance and the work of adhesion of polymers depend to 

a great extent on their mechanical and chemical properties [38]. 
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In Figure 59 and Figure 60 it is possible to observe the effect of the 

applied misalignments on the friction generated by both seals. 

Figure 59: Comparison of the friction force generated by seal A (TPU) 

under concentric and eccentric conditions. 

 

Figure 60: Comparison of the friction force generated by seal B (NBR) 

under concentric and eccentric conditions. 
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Results revealed that rod to bore misalignments lead to an increase in 

the friction generated between the mating parts during sliding. 

Subsequently, it may be concluded that the power consumption during 

operation will be higher in those devices with an eccentric mounting of 

seals. Nevertheless, it is important to remark that the effect of 

eccentricities on friction is more significant in the case of the seal made 

of TPU (seal A) than in the case of the NBR seal (seal B). In other 

words, it was found that the effect of misalignments on seals depends to 

a great extent on the seal material. In particular, in the specific, results 

showed that the seal made of rubber is less sensitive to possible 

misalignments arising from mounting and/or manufacturing errors than 

seals made of harder materials such as polyurethanes. The main reason 

for the low influence of the applied misalignment on the friction force 

generated by seal B is that the applied misalignment barely affects the 

contact forces between the seal and the rod (see Figure 56). It is thought 

that another reason may be seal material itself, whose main 

characteristics are high elasticity and a low hardness in comparison with 

the polyurethane so that it facilitates its adaptation to both static and 

dynamic misalignments.  

3.6.2 Effect of rod to bore misalignments on seal wear 

Wear is not a specific property of a material but it is the result of the 

relative sliding motion between two bodies in contact. In tribology, wear 

is usually measured in terms of mass loss or worn volume. In fact, the 

amount of the mass lost during sliding depends on the contact and 

sliding conditions, motion duration and material properties. The main 

wear mechanisms of polymers were introduced in the first chapter, and 
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as previously commented, the resultant wear usually combines many 

different wear processes.  

 

In this section, wear results of the tested seal samples are presented 

with the aim of investigating the effect of rod to bore misalignments on 

the wear process of seals. For this purpose, weight measurements of 

samples were carried out and the contact surfaces were analysed 

through surface inspection in order to identify the main wear 

mechanisms. 

3.6.2.1 Wear results 

The weight of each seal sample was measured before and after each 

test using a high precision scale (XPE2004SC, Mettler Toledo, Spain) 

with a resolution of 0.1mg. In Table 5 the wear of the tested seals is 

presented in terms of both mass loss (in mg) and worn volume (in mm3). 

Wear volume calculations were done using the density values shown in 

Table 3. 

 

In Figure 61 column bar diagrams showing the volume loss of seals 

against the travelled distance are plotted. Results revealed that the 

volume loss of the seal A (TPU) is higher than the volume loss of the 

seal B (NBR) under the both tested mounting conditions. These results 

are in good agreement with those obtained by Belforte et al. in [49] 

where the authors tested the same seal made from NBR and TPU, and 

they found that the life of the formers was considerably longer. That is, 

the wear resistance of the rubber seals is considerably higher than that 

of the seals made of polyurethanes. 
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   CONCENTRIC ECCENTRIC 

Seal 
Test 
time 
(s) 

Travelled 
distance 

(km) 

Mass 
loss 
(mg) 

Volume 
loss 

(mm
3
) 

Mass 
loss (mg) 

Volume 
loss 

(mm
3
) 

A 
(TPU) 

3600 1.8 9.60 8.42 9.00 7.89 

7200 3.6 10.50 9.21 17.20 15.09 

18000 9 33.70 29.56 74.80 65.61 

36000 18 38.55 33.82 99.05 86.88 

B 
(NBR) 

3600 1.8 1.05 0.88 1.30 1.09 

7200 3.6 2.85 2.40 2.95 2.48 

18000 9 2.45 2.06 2.25 1.89 

36000 18 10.30 8.68 5.45 4.59 

 

Table 5: Wear results of the tested samples. 

 

As can be seen in Table 5, after a travelled distance of 18km, the 

volume loss of the TPU seal (A) is up to four times the volume lost by 

seal B (NBR). Under eccentric conditions, the volume loss of the TPU 

seal is considerably higher than its loss of volume under concentric 

conditions whereas the volume loss of the NBR remains similar. 
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(a) 

 

(b) 

Figure 61: Evolution of the wear process on seals with the travelled 

distance under: (a) concentric conditions,        and (b) eccentric 

conditions,          . 
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In Figure 62 the volume loss curves of the tested seals are plotted 

against the travelled distance. As can be seen from the graphs, the wear 

results of the NBR seal (B) tested under both concentric and eccentric 

mounting conditions are very similar. Therefore, results showed that 

mounting misalignments do not accelerate the wear of the samples 

made of rubber. For type A seals made of TPU, it was found that 

mounting misalignments lead to a considerably higher wear i.e. that rod 

to bore misalignments accelerate the wear process of the TPU seal. 

Regarding the volume loss curves tendencies, they are in good 

agreement with those observed in [38]. Under the running-in stage or the 

unsteady state wear stage, where the smoothing of the elastomer 

surface occurs, the volume loss of the seal due to abrasion is high. The 

transition to the steady-state wear regime is usually coincident with the 

balance between the material removed from the wear track and that 

transferred to the mating surface. 

 

(a) 
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(b)  

Figure 62: Volume loss (mm3) vs. travelled distance for tests carried out 

under: (a) concentric and (b) eccentric (         ) mounting 

conditions. 

 

3.6.2.2 Surface inspection 

In Table 6 some photographs of the worn seals are shown. In particular, 

both the cross sections and the worn surfaces are presented, in order to 

show the evolution of wear with the travelled distance and the severity of 

wear with rod to bore eccentricities. In the table, only the images 

corresponding to the TPU seals (A) are shown since it was not found 

any significant wear on the NBR seals (B). The micrographs were 

obtained using an Olympus SZX16 microscope. Micrographs evidenced 

that the material loss at the contact area or dynamic lip is much severe 

on those seals tested under eccentric conditions. Regarding the wear 
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mechanism, adhesion and abrasion marks that lead to the smoothing of 

the lips were observed on the worn surfaces. In fact, elastomers running 

under dry lubrication lead to large adhesion mechanisms. Under 

dynamic mounting conditions and a travelled distance of 18km, the wear 

on the most compressed section of the seal is so severe that the contact 

surface has a glossy aspect and the dynamic lip has been completely 

flattened.  

 

In Figure 63 SEM micrographs of the worn surfaces are shown. The 

micrograph presented in Figure 63a shows the surface of the seal after 

travelling a distance of 18km under concentric mounting conditions. As 

can be seen, this micrograph still presents marks of the initial stage i.e. 

marks formed during the manufacturing of the sealing lip. Figure 63b 

represents the sealing surface of the most compressed seal sections 

from the tests carried out under eccentric conditions. The image 

presents adhesive signs and a glossy aspect, usually observed in 

polyurethane when it fails [50].  
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 Seal A 

 
Before 
tests 

 

 
Travelled 
distance 

Seal Section Contact surfaces 
Wear 

mechanism 

C
O

N
C

E
N

T
R

IC
 

3.6 km 

  

 
 
Adhesion and 
abrasion 
wear. 

18 km 

  

 
 
Adhesion and 
abrasion of 
the contact 
lip. 

E
C

C
E

N
T

R
IC

 

3.6 km 

 
 

 
 
Adhesion and 
abrasion of 
the contact 
lip. 

18 km 

 
 

 
Severe wear. 
Smoothing of 
the contact 
lip. 

 

Table 6: Micrographs of the worn surfaces of seal samples A. 
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(a) 

 

(b) 

Figure 63: SEM micrographs of the A type seal samples after travelling 

18 km under: (a) concentric conditions,         and (b) eccentric 

conditions,           . 

 

3.7 Wear rate calculations 

The specific wear rate coefficient k is usually used in order to compare 

the wear of different materials under different combinations of contact 
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loads and sliding velocities. It is an indicator of the volume loss of a 

specific material per unit load and unit distance.  

 

During the running-in stage and the catastrophic wear stage, the wear 

rates vary continuously, and only during the stationary stage a constant 

wear rate is attained (see Figure 15). Hence, in order to characterize the 

long-term properties of systems, only the steady state conditions are 

useful [36]. 

 

In particular, during the running-in, the wear rate is in general quite high 

and it is considerably influenced by the initial roughness of the mating 

surfaces. The transition from an unsteady to a steady wear rate is 

usually in line with the transition from abrasive to adhesive wear [38]. 

 

Even if modelling wear processes is extremely complex due to the big 

amount of parameters involved, many authors have made attempts 

during the last decades to model the wear of specific materials under 

particular contact conditions [32-37]. Table 7 presents some of the most 

popular wear models. In fact, all these analytical wear models apply only 

to relate the wear volume with the test and contact conditions, and the 

inherent material properties throughout the steady stage of wear.  

 

In general, most of the analytical wear models assume that the wear rate 

is inversely proportional to the hardness of materials (the harder the 

material, the less the wear). While this is true for metals, in the case of 

polymers the effect may be the opposite [43]. Hill et al. [44] tested 

polyurethanes with different hardness and demonstrated that for 

polyurethanes with hardness in the range between 75A and 95A, the 
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wear rate is almost independent of hardness. In other words, that the 

thermal softening of these polyurethanes does not alter their wear 

performance. In fact, models differ in the main parameters they take into 

account to model the wear process. The model of Ratner and Lancaster 

[45], usually used to model the abrasive wear of polymers, relates the 

wear rate of polymers to their bulk mechanical properties. They found 

some correlation between the wear rate and the mechanical properties 

of polymers. Budinsky et al. [46] concluded that the abrasive wear of 

elastomers and polymers, in general, correlates better with a 

combination of friction coefficient and mechanical properties.  

 

 

Wear model Equation Nomenclature 

Archard’s wear law 
(1953) 

 

   
  

 
 

where   is the wear factor,   
is the normal load,   is the 

sliding distance and   is the 
hardness of the softer 
material. 

Lewis model (1964)        
where   is the sliding velocity 

and   is the duration of the 
sliding. 

Ratner and 
Lancaster 
correlation (1969) 

 

  
    

     
 

where   is the friction 
coefficient,   is the ultimate 

tensile strength and   is the 
elongation to break. 

Rhee’s model [35], 
(1970) 

           

where    is the weight loss,   
is the time and     and   are 
the exponents. 

 

Table 7: Some of the most popular abrasive wear models [42]. 
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Hence, based on the existing wear models, the following parameters are 

needed to calculate the specific wear rate   of the tested seals: 

 

- The evolution of the volume loss of seals with travelled distance, 

- The relation between the worn volume and the most significant 

parameters, which are: the sliding distance and the interference 

or contact force between the seal and the mounting rod. 

 

In this section, the specific wear rates of the seal samples tested under 

both concentric and eccentric conditions are calculated. 

 

Table 8 summarizes the resultant contact forces between both 

considered seal types and the mounting rod before the tests, and under 

both concentric and eccentric mounting conditions. This data was 

obtained applying the procedure presented in Chapter 2. Nevertheless, it 

is obvious that the contact forces between the seals and the mounting 

rod may change during sliding as the seals wear out. 

 

 Contact force,    (N) 

Rod to bore position 
Seal A 

(TPU) 

Seal B 

(NBR) 

       105.32 74.64 

          128.66 76.27 

 

Table 8: Contact forces between the seals and the rod before the tests. 

 

In the case of seal B, the volume loss of the tested samples was 

negligible for every test condition (see Figure 62). Therefore, it may be 
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assumed that the contact force remains constant throughout all the 

tests.  

 

In Figure 64 the relationships between the volume losses per unit 

contact force (calculated using the values in Table 8) vs. the travelled 

distance of the test seal B (NBR) are shown. As can be seen, a quite 

linear relationship was found between the volume loss and the sliding 

distance i.e. the wear rate is constant over the whole range of selected 

test durations. Hence, the wear of samples corresponds to the steady-

wear-stage so that the application of a wear equation law may be 

justified. Furthermore, friction results (Figure 60) showed a steady 

behaviour from the beginning of the tests. In this work, the law of 

Archard has been used for wear rate calculation since it establishes a 

relationship between the main measurable parameters: travelled 

distance, worn material volume and contact force. In fact, the specific 

wear rates in Archard´s equation comprehend many other variables 

such as geometric parameters, material properties and frictional 

performance, among others. 
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Figure 64: Relationship between the volume loss of the seal sample B 

(NBR) and the travelled distance. 

 

Archard wear equation could be expressed as follows [47]: 

 

   
 

 
       ( 38 ) 

 

where    is the volume removed from the surface per unit of sliding 

distance,    is the normal load applied (  in Table 8),   is the sliding 

distance and   is the indentation hardness of the softer material.   is a 

dimensionless quantity which is known as “wear coefficient” and it is 

extremely useful to compare the severity of different wear processes. In 

the case of materials whose hardness cannot be easily defined such as 

elastomers, the wear rate is usually defined as: 

 

  
 

 
 

 

     
 ( 39 ) 
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  is known as the “specific wear rate” of a material (mm3/Nm). In other 

words, in order to avoid uncertainties related to material hardness which 

in the case of polymers are usually measured in Shore A and Shore D 

according to the ASTM 2240 standard, the ratio      is usually 

expressed as    

 

The specific wear rate values of the test seal B under both eccentric and 

concentric conditions are presented in Table 9. Results showed a lower 

specific wear rate under eccentric mounting conditions than under 

concentric ones. Nevertheless, considering the low volume loss of the 

seals of type B and that some deviation in results always exists, it may 

be concluded that the specific wear rate is similar under concentric and 

eccentric conditions. In other words, rod to bore misalignments do not 

affect the wear rate of the seals made from rubber.  

 

Rod to bore position Specific wear rate, k 
(mm3/Nm) 

        7E-6 

           3.4E-6 

 

Table 9: Specific wear rates for seal B (NBR). 

 

In the case of seal A (TPU), results revealed that the wear of the 

samples increases with the sliding distance and that the wear resulted to 

be considerably more severe under eccentric test conditions than under 

concentric ones (see Figure 62). In order to calculate the effect of a 

differential of travelled distance (  ) on a differential of worn volume 

(  ), Archard equation could be applied differentially as: 
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           ( 40 ) 
 

Considering that the contact force between the seal and the rod may 

vary as the differential of seal wears out, the previous equation may be 

expressed as: 

 

 
  

     
          

 

 

  

 

 

 

( 41 ) 

where   is the travelled distance and    is the worn volume for a 

travelled distance    

 

Thus, the wear rate may be calculated as: 

 

  
 

 
 

  

     

  

 

 

 

( 42 ) 

Equation (42) may be also formulated expressing the contact force as a 

function of the travelled distance   instead of the worn volume   as: 

 

   
  

       
 

 

 ( 43 ) 

 

In this work, in order to calculate the seal/rod contact force variation with 

the travelled distance, the worn sections of the tested seals were 

modelled and plain strain simulations were carried out. 

 

First of all, the worn volumes of the differential seal sections tested 

under different mounting conditions and different tests durations were 
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calculated from the micrographs obtained through the microscope. The 

evolution of the measured worn volumes with the travelled distance   

are shown in Table 10. 

 

 

 Worn volume, V [mm3] 

                     

         0.21 0.37 

         0.28 0.53 

       0.34 0.82 

        0.43 1.2 

 

Table 10: Worn volume evolution of a differential of seal tested under 

different mounting conditions. 

 

In Figure 65 the evolution of wear along the sealing lips with the 

travelled distance are shown for the tests carried out under both 

concentric and eccentric mounting conditions. 
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(a) 

 

 

(b) 

Figure 65: Evolution of the wear along the sealing lip with the travelled 

distance   and under: (a) concentric conditions,        and (b) 

eccentric conditions,          . 
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The plain models of the worn section were built in Ansys Workbench 

using the same parameters and contact conditions described in section 

2.4.1.2. Plain strain simulation results under concentric conditions are 

shown in Figure 66. As can be seen, under concentric conditions (for a 

           ), results revealed that the contact force between the 

seal A and the rod remains nearly constant with the travelled distance 

and subsequently, with wear. 

 

Figure 66: Seal/rod contact force evolution with the travelled distance 

under concentric conditions         . 

 

Figure 67 presents the contact force between the seal A and the rod as 

a function of the interference, for a new seal and for the seal after 

travelling 18km under eccentric mounting conditions with a rod to bore 

misalignment of 0.15mm. It was found that the contact force provided by 
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the most compressed section of the eccentric seal (with an interference 

of                ) is similar before and after travelling a distance 

of 18km. In other words, the results obtained demonstrate that the lip 

seal geometry is able to provide a nearly constant contact force as the 

seal wears out.  

 

 

Figure 67: Contact force evolution of the most compressed seal section 

under eccentric conditions           ). 

 

Thus, considering that simulations predicted a constant contact force 

with travelled distance and regardless of the mounting conditions, the 

use of the contact force values shown in Table 8 for wear rate 

calculation is justified. Figure 68 presents the volume loss per unit 

contact force curves of the seal A (TPU) tested under both concentric 

and eccentric conditions vs. the travelled distance.  
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Figure 68: Relationship between the volume loss of the seal sample A 

(TPU) and the travelled distance. 

 

The specific wear rate values of the test seal A under both eccentric and 

concentric conditions are presented in Table 11. In Figure 59 it was 

shown that the friction curves of the seal A reach a steady-state after a 

test time of about 7000s (3.5km). Hence, for wear rate calculations only 

the wear results obtained from those tests with longer durations were 

considered. Results showed that the wear rate under eccentric 

conditions is twice the wear rate under concentric conditions. The results 

obtained are in good agreement with those presented in [36] by Martinez 

et al. Moreover, it was found that the wear rates of the test seal A are an 

order of magnitude higher than those obtained for the test seal B. 
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Rod to bore position Specific wear rate, k 
(mm3/N m) 

        2.08E-5 

           4.1E-5 

 

Table 11: Specific wear rates for seal A (TPU). 

 

3.8 Friction coefficient curves and friction force distribution 

along seals 

3.8.1 Approach 

Under ideal concentric conditions, the contact forces between the rod 

and the seal are the same along the whole seal. Hence, the friction 

distribution and the wear pattern on a seal whose centre matches the 

centre of the shaft when mounted, will be uniform. In this case, the 

friction coefficient along the whole seal may be calculated dividing the 

total friction force by the total contact force between the seal and the 

mating surfaces. Thus, in an ideal situation where the rod and the bore 

are completely aligned, the friction coefficient between the seal and the 

mating part at any instant may be calculated as: 

 

                    ( 44 ) 

 

And the friction force per unit of differential seal length (N/mm) is: 

 

                  

 
( 45 ) 
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where      is the friction coefficient between the seal and its mating part 

under concentric conditions,   is the rod diameter and        and 

       are the resultant friction and contact forces when the centre of the 

bore and the centre of the rod are perfectly aligned, respectively. 

 

In general, the resultant friction force may be expressed as the sum of 

the friction forces generated in each differential of seal as: 

 

                                   ( 46 ) 

 

where    is the resultant friction force generated on the seal, and    and 

     are the friction coefficients and the contact forces in the   section of 

the seal.  

 

When a specific misalignment exists between the rod and the seat of a 

seal, friction forces in each differential of seal will be variable and 

Equation (46) may have as many solutions as possible combinations of 

friction coefficients and contact forces. In this work, the following 

assumption has been made in order to calculate the friction coefficients 

on seals tested under eccentric conditions: it has been considered that 

the friction force distribution is similar to the contact force distribution. 

This hypothesis implies assuming a constant friction coefficient along the 

seal, which may be a valid simplification considering that the contact 

force range is quite small.  
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3.8.2 Friction coefficient curves 

In Figure 69 and Figure 70 the friction coefficient evolution curves of the 

seals throughout the tests are presented. These results were obtained 

through the load cell measurements during the tests and the resulting 

contact forces obtained from the analytical contact model (Table 8); it 

has been already demonstrated that contact forces remain nearly 

constant during the tests performed. Thus, the friction curves plotted 

correspond to the friction coefficients of a whole seal over time. 

 

For the TPU seal (A), results showed steady friction coefficients of about 

0.2 for the tests carried out under concentric mounting conditions, and 

friction coefficients of about 0.3 for those tests carried out under 

eccentric conditions. In the case of the NBR seal (B), the friction 

coefficients between the seal and the rod are lower. In particular, steady 

friction coefficients of about 0.12 and 0.14 were obtained during 

concentric and eccentric tests, respectively. 

Figure 69: Comparison of the friction coefficient curves of seal A (TPU) 

under concentric and eccentric conditions. 
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Figure 70: Comparison of the friction coefficient curves of seal B (NBR) 

under concentric and eccentric conditions. 

 

3.8.3 Case study: Friction force distribution along an eccentric 

seal 

The aim of this section is to calculate the friction force distribution along 

a seal subjected to an eccentric mounting. Thus, as a case study, the 

friction force distribution along the seal sample A (TPU) under stable 

conditions has been investigated.  

 

Figure 71 presents the contact force distribution between the seal and 

the rod for the both considered mounting conditions. The forces were 

calculated using the same custom Matlab script developed in Chapter 2 

for calculating the contact forces as a function of rod eccentricity. As can 

be seen, in the eccentric case, the maximum contact force between the 

seal and the rod, which takes place in the most compressed section, is 
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of 1.45N. This value is about the double of the contact force predicted 

for the concentric case. 

 

Figure 71: Radial contact forces in the sealing lip along the whole seal A 

as a function of rod to bore eccentricity value. 

 

Table 12 summarizes the resulting contact forces (calculated) and 

friction forces (measured) acting on the seal during steady-state 

conditions.  

Eccentricity 

Resulting 
contact force 

   

Steady friction 
force 
   

(mm) (N) (N) 

                  105.32 20 

        128.66 32 

 

Table 12: Resultant contact and friction forces on the seal. 
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Concentric conditions 

Under ideal concentric conditions, because the contact forces between 

the rod and the seal are similar along the whole seal, the friction 

coefficients and friction forces at any instant can be easily calculated 

applying Equations (44) and (45). In this case study, being the rod 

45mm in diameter, a steady friction force and friction coefficient of about 

0.75N and 0.2 were obtained, respectively.  

 

Eccentric conditions,           

Though in the previous section the resulting friction forces of seal A were 

calculated, the non-uniform friction force distribution along a seal due to 

its misaligned condition has not been studied yet. 

 

The relation between the resulting friction force and contact force on the 

seal under eccentric conditions is          
          

     .  

 

The contact force distribution of the seal under study when           

(see Figure 71) may be expressed as a function of the circumferential 

angle or position (in radians) as: 

 

                                  [N] ( 47 ) 

 

In order to estimate the friction force distribution along the seal, the 

simplifications previously introduced were assumed. The friction 

coefficient in each section was considered to be equal to the resulting 

friction coefficient i.e. 0.25. Hence, applying the assumptions 
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aforementioned the friction force curve of the seal under study may be 

expressed as: 

 

                                  [N] ( 48 ) 

 

In Figure 72 the contact force and friction force distributions of the seal 

sample A under steady-state conditions and for a rod to bore 

misalignment of           are plotted. Results revealed that rod to 

bore misalignments affect considerably the friction force distribution on 

seals and subsequently the temperature distribution which directly 

depends on friction. The relation between friction and temperature will 

be studied in detail in the next chapter. 

 

Figure 72: Steady contact and friction force distribution of seal A (TPU) 

for a rod to bore misalignment of          . 
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3.9 Conclusions 

In this chapter the effect of rod to bore misalignments on the tribological 

performance and service life of elastomeric seals has been 

experimentally investigated. To this aim, sliding tests were carried out on 

commercial seals at different test durations and under both concentric 

and controlled eccentric mounting conditions. During the tests, the 

friction generated was measured, and also the wear of the seal samples 

through weight measurements before and after the tests. Results 

demonstrated the great relevance of mounting misalignments on the 

friction generated and wear of seals during operation, and subsequently, 

on their service life. Furthermore, it was found that the effect of 

misalignments on the tribological performance of seals depends to a 

great extent on the seal material. In this specific case results showed 

that misalignments increase considerably the friction force of TPU seals 

and that accelerate their wear process whereas their effect on NBR 

seals is negligible. It is thought that the high elasticity and low hardness 

of rubber seals in comparison with those made of polyurethane facilitate 

its adaptation to both static and dynamic misalignments.  

 

Moreover, experimental results have enabled validating the methodology 

presented in the previous chapter for the development of tri-dimensional 

analytical contact model of seals. Furthermore, the analytical contact 

model results have been herein used for friction coefficient and wear 

rate calculations of the seals tested under concentric and eccentric 

mounting conditions. In other words, within this chapter, the utility of the 

contact force eccentricity model for tribological calculations as well as for 

design purposes has been demonstrated through specific case studies. 
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Results revealed that mounting misalignments lead to an irregular 

friction distribution and wear pattern on seals, and therefore to a non-

uniform temperature distribution along seals. The effect of rod to bore 

misalignments on the temperature rise of seals due to frictional heating 

will be studied in detail in the next chapter. 
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Chapter 4: Frictional heating on 
elastomeric seals during operation: An 
approach  

 

4.1 Introduction 

It has been already introduced in the previous chapters that thermal 

degradation of elastomeric seals is one of the most common seal failure 

mechanisms. Thus, given that temperature is one of the most limiting 

factors of polymers, it is of great interest for the industry to know the 

temperature of seals during operation. The temperature of a specific 

seal under operation may be expressed as the sum of the room 

temperature and a temperature rise due to frictional heating effects 

arising at the interface between contact bodies during sliding. Hence, 

special care should be taken with the surface temperature rise of seals 

during operation in order to avoid possible seal failures due to 

overheating, considering that most of the frictional energy generated 

during sliding is dissipated as heat. Although the exact energy 

transformation mechanism is not clear, most of the tribologists agree 

that almost all the energy is transformed into heat [1]. As a result, a local 

and usually consistent temperature rise occurs. This phenomenon is 

known as “frictional heating”.  

 

Experimental work showed that about the 95% of the energy occurs 

within the top 5 microns of the surfaces in contact [2]. Maximum contact 
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temperatures are reached at spot to spot asperity contact and they are 

usually temperatures of a very high magnitude, even at low velocity, and 

short duration because of the small size of each asperity. The 

temperature rise due to the dissipation of frictional heat at asperity 

contact spots is known as “flash temperature”. The heat is generated at 

the real contact area and it is transferred by conduction to the bulk of the 

material through the asperities [3]. Hence, surface asperities act as heat 

flow regulators from the contact to the bulk.  

 

In the last decades, a wide range of techniques have been used in order 

to experimentally measure on contact surfaces the temperature rise due 

to frictional heating, however, none of them have been widely accepted. 

The main problem for measuring temperatures between the contact 

surfaces is that thermal processes occur in a closed area. Hence, any 

technique based on placing a measuring device at the contact, will alter 

the contact. For example, this is the case of thermocouples. Several 

types of thermocouples such as embedded subsurface thermocouples, 

dynamic thermocouples and contact thermocouples have been used to 

measure contact temperature evolution [2-4]. Nevertheless, 

thermocouples are more suitable to measure subsurface bulk 

temperatures rather than interface temperatures. So far, one of the best 

options to measure the temperatures reached at the contact spots are 

the thin film thermocouples [5-7]. These type of devices are able to 

measure the temperatures at the real contact area due to their small 

dimensions (thickness of about 0.5-1 microns) and rapid response 

(<1µs); however, more investigation is needed in this area to get a 

lateral resolution of microns so that flash temperatures can be measured 

[4]. Other techniques that avoid altering the contact, such as analysing 
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phase transformations and micro-structural changes in materials 

(indirect techniques), and optical techniques have been also widely 

used. Indirect techniques consist in analysing the phase changes and 

structural changes in materials after operation, and relating them to 

specific temperatures [4]. However, these methods are diagnostic tools 

i.e. they are not useful to measure the contact temperature evolution 

during sliding. Thus, they may be used to estimate an operating 

temperature range rather than an approximated temperature value. 

These indirect methods are not accepted nowadays even if they were in 

the past. Regarding optical techniques, infrared imaging [8-11] and 

pyrometry [3] techniques have been also widely used for measuring the 

evolution of temperature at the interface during sliding. Nevertheless, the 

use of these techniques is limited since one of the bodies needs to be 

transparent in order to be able to focus the contact. Hence, even if these 

techniques may be useful to measure the temperatures at the interface 

between bodies at laboratory tests, their use is very limited for real 

industrial applications where the contact area is hardly ever visible and 

accessible. Moreover, their use is extended to the measurement of 

surface temperatures very close to the contact rather than at the contact 

spots. 

 

Thus, due to all these difficulties to measure contact temperatures, many 

authors have made attempts in the last decades in order to build 

analytical models able to predict the temperature rise on surfaces during 

sliding for design purposes. These attempts resulted in a wide range of 

analytical equations for estimating the temperature rise at the interface. 

Some of the most popular models are: Archard’s average and maximum 

flash-temperature model (1959), Holm’s average and flash temperature 



Chapter 4: Frictional heating on elastomeric seals during operation: An approach 

 

158 

model, Tian-Kennedy’s average and maximum temperature model 

(1993), Greenwood-Greiner’s average flash temperature model (1991), 

Ashby flash temperature model (1991), Jaeger (1942) and Blok (1937) 

models, among others. Nevertheless, none of these models are able to 

estimate accurately enough the contact temperatures at the surface. 

Furthermore, calculations using different models lead to very different 

results. Kalin et al. [13] carried out ball on flat tests with a silicon nitride 

ceramic sliding against steel under both dry and lubricated conditions, 

and they used the results to calculate the temperature rise by means of 

different analytical models. Results showed that different models lead to 

very different flash temperature values of up to 700°C. 

 

The main difficulty for building reliable temperature models is that the 

surface temperature rise during sliding depends on several factors such 

as the contact and operating conditions, as well as the properties of the 

materials and surfaces of the components involved. Moreover, contact 

conditions may vary considerably in time and location during sliding, and 

furthermore, several interfacial properties and phenomena are very 

difficult to model [13]. Therefore, most of these models are based on 

different physical, dynamic and geometrical assumptions. For example, 

a special care should be taken when selecting the contact area to be 

used for calculations since even if it deeply affects the results obtained, 

there is no a standard criterion. Furthermore, Kalin et al. [13] found that 

the effect of the apparent contact area determination is even larger than 

the effect of friction and that depending on the method used for real 

contact area determination, predicted temperatures may be very 

different. Existing analytical models use different methods for estimating 

the contact areas. Ashby´s and Archard´s flash temperature models, for 
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instance, use their own criteria to determine the contact areas whereas 

the rest of models estimate them by dividing the normal force by the 

hardness of the softer material. The latter is a broadly accepted criterion 

for contact area determination [14]. Surface roughness is another very 

important parameter that deeply affects the contact temperatures 

reached during sliding because flash temperatures take place in the 

contact between asperities [13]. Hence, many analytical flash 

temperature models integrate the effect of interacting asperities [23,24]. 

The importance of considering thermal changes in polymers with 

temperature, as well as the evolution of the friction coefficient with time 

has also already been demonstrated by many authors [18,19]. Thus, due 

to the big amount of unknown parameters or uncertainties involved in 

analytical models, as many techniques as possible should be used when 

trying to determine the maximum contact temperatures. Furthermore, 

experimental and analytical results hardly ever show a good matching, 

and existing models just give us approximate maximum contact 

temperature rise values due to frictional heat. In fact, a better 

optimization of the models is needed for more reliable and accurate 

results. 

 

In the case of polymers, contact temperature estimations are even more 

complex by the fact that their thermo-mechanical properties are strongly 

influenced by temperature. Hence, so far, few studies analyse the 

frictional heating phenomena when polymers are involved 

[5,10,12,16,18,19,20]. Moreover, due to the complex nature of 

elastomers and because the properties of each elastomer may be 

completely different, it is not possible to come to any general conclusion. 

Tzanakis et al. [16] studied the effect of roughness, friction coefficient, 
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contact pressure and velocity on the flash temperatures reached on a 

PTFE composite elastomer tip seal in contact with a high carbon steel 

plate under dry sliding conditions. The authors found that there is a 

specific value of roughness which leads to a higher temperature rise, 

and that the effect of roughness and sliding velocity was larger than the 

effect of load in that specific case. They experimentally measured 

surface temperatures by means of a high precision thermal camera and 

they compared these results with those calculated analytically applying 

Bowden and Tabor model. They found a good matching except at low 

contact pressures (<0.4MPa). Conte et al. [18,19] highlighted the 

importance of estimating flash temperature at the contact surface of a 

PTFE rubbing against steel. Therefore, they calculated analytically the 

contact temperatures at the surfaces of different polymers considering 

both constant and variable thermal properties, and the evolution of 

friction over the test time. Results demonstrated the importance of 

considering the evolution of material properties, at least in the case of 

PTFE. 

 

The main goal of this chapter is to investigate about the effect of rod to 

bore misalignments on the temperature rise of seals due to frictional 

heating. To meet the challenge of measuring the surface temperature on 

seals during operation, a specific methodology for contact temperature 

estimation has been developed. The proposed methodology combines 

analytical models, thermo-mechanical properties of materials and 

experimental inputs, and it was developed in two stages. In a first stage, 

an experimental investigation on the frictional heating phenomenon on 

elastomeric seals was carried out at laboratory scale. In a second stage, 

a methodology to estimate the contact temperature on seals during 
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operation has been developed. The methodology was applied to a 

specific case study in order to estimate the contact temperature 

distribution on eccentric seals, and afterwards the results were 

compared with those obtained for the concentric case. In particular, the 

temperatures reached at the contact surfaces of seals during the tests 

carried out in Chapter 3 have been calculated. Given that the 

measurement of the contact temperature on seals is a complex task, the 

validation of the proposed methodology has been carried out through 

surface analysis of the samples. 

4.2 Contact temperature concept 

The energy dissipation in the form of heat is known as frictional heating, 

and it is the responsible of the temperature rise on surfaces sliding 

against each other. The maximum temperature rise takes place at the 

contact between asperities. For this reason, it is important to control the 

temperature evolution at the mating surfaces in order to avoid their 

thermal degradation. Nevertheless, as introduced at the beginning of this 

chapter, measuring the temperatures at the contact is not always 

possible, and that is why several attempts have been made in the last 

decades with the aim of building reliable analytical models. Hence, even 

if modelling the frictional heating phenomenon is a challenge due to the 

big amount of parameters involved and their variability, analytical models 

may be considered as useful tools, at least for an approximate 

estimation of the contact temperatures.  
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Some authors express temperature at the contact as the sum of two 

components [28]: 

 

               ( 49 ) 

 

where       is the maximum contact temperature [ºC],    is the bulk 

temperature of the mating bodies before entering the contact [ºC] and 

      is the maximum flash temperature [ºC] which is a local 

temperature rise that occurs between asperities. 

 

However, Equation (49) is only applicable to a body with a semi-infinite 

size, and when the heat source does not repeat the same path over the 

surface. Tian, Kennedy et al. [5,33,34] found that under certain 

circumstances an extra temperature rise over the localized flash surface 

temperature rise at the contacting asperities must be taken into account. 

This temperature rise will affect the entire contact area and it is known 

as “nominal contact temperature”. Some examples in which this nominal 

temperature rise should be considered include cases such as the 

following: when the heat source moves continuously over the same path 

of a finite body, when there is insufficient convective cooling, or/and 

under dry sliding conditions. Thus, the local surface temperature rise is 

only affected by a small area while the nominal temperature rise affects 

the entire finite body. Taking into account these aspects, the total 

contact temperature may be expressed as:  

 

                ( 50 ) 
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defining       as the average temperature of all the points at the 

contact,     as the flash temperature rise that takes place at the contact 

spots and    as the environment temperature. 

 

Regarding flash temperature calculations, Blok (1937), Jaeger (1942) 

and Archard (1959) were the first authors formulating flash temperature 

theories. According to their theories, flash temperature is the 

temperature rise above the temperature of the solids. Years later, 

Greenwood (1991), Tian and Kennedy (1993) and Bos and Moes (1994) 

also formulated equations for maximum flash temperature determination. 

They integrated expressions for temperature rise estimation considering 

a single heat source of a specific shape, on both static and moving 

bodies. Moreover, steady and quasi-steady conditions are assumed by 

most of researchers since they consider that the maximum flash 

temperatures are reached in a very short time after sliding starts. All 

these models were formulated on the basis that the heat generated at 

the contact is modelled as a heat source moving over a surface. 

 

Some of the simplifications assumed by most of the authors in order to 

model the temperature rise phenomenon on surfaces in relative motion 

are the following [28]: 

 

1. Thermal properties of the contacting bodies are independent of 

temperature, 

2. There exists a unique area of contact and it is regarded as a 

plane source of heat,  

3. Frictional heat is uniformly generated along the area of contact, 
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4. All the heat generated is conducted into the solids in contact (this 

means that others forms of energy partition such as noise, 

vibrations, material deformation and creation of new surfaces by 

adhesion are not considered), 

5.  The coefficient of friction between the contacting solids is known 

and attains some steady value,  

6. A steady state condition is attained (
  

  
  ).  

 

Hence, even if most of the existing theoretical contact temperature 

models are based on the same abovementioned assumptions, 

temperature values estimated using one model or another may be very 

different. The main reasons are mainly that each author uses different 

physical, dynamic and geometrical assumptions, as well as that the 

interfacial properties that affect the behaviour (for example, the real 

contact area) are usually unknown. In other words, the main source of 

discrepancy between the results obtained through different analytical 

models is the uncertainty of the physical phenomenon itself since both 

mechanical and thermal properties of the contact are continuously 

varying during sliding in time and position [4]. 

 

The heat rate originated during sliding can be estimated as follows: 

 

      ( 51 ) 
 

where   is the heat generated [W] and   is the contact area [m2]. 

 

Considering that the origin of this heat flux is the relative motion between 

the bodies   and  , the frictional heat generated may be expressed as: 
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              ( 52 ) 
 

where µ is the friction coefficient between surfaces,    is the normal 

load, and    and    are the sliding velocities of the bodies    and   

[m/s], respectively. 

 

Moreover, most of the analytical models use different formulations 

depending on the speed regime. For determination of the speed regime, 

the dimensionless “Peclet number, Pe” is usually used: 

 

   
   

    
 ( 53 ) 

 

where   is the velocity of the solid [m/s],   is the main contact dimension 

[m], and   is the thermal diffusivity of the body [m2/s]. Pe is an indicator 

of the heat penetration into the bulk of the solid and three different 

regimes are usually defined based on its value [28]: 

 

- If Pe < 0.1 → one surface is static or moves very slowly with 

respect to the other. Thus, there is enough time for the 

temperature distribution at the contact to be established in the 

stationary body. 

- If 0.1 < Pe < 5 → one surface moves faster with respect to the 

other and it may be modelled by a slow moving heat source. 

- If Pe > 5 → one surface moves much faster with respect to the 

other and it may be modelled by a fast moving heat source. In 

this case, there is no much time for the heat to penetrate into the 

stationary body. 
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4.3 Experimental study of the frictional heating phenomenon 

on TPU and NBR elastomers 

In this section an experimental study of the frictional heating 

phenomenon on TPU (Thermoplastic Polyurethane) and NBR (Nitrile 

Butadiene Rubber) elastomers is presented. The objective is to 

investigate the temperature rise on elastomeric seals under actual 

operating conditions. To this end, friction tests were carried out at 

laboratory scale on elastomers sliding against steel counterparts, and 

the temperature evolution of the tribo-system was acquired during the 

tests through an infrared camera. The friction and temperature curves 

resulting from the experimentation were analyzed, and the effect of 

parameters such as the seal material, sliding velocity, and steel surface 

conditions on the temperature rise of elastomers has been herein 

studied. Moreover, these experimental results are mandatory inputs for 

the analytical calculations presented in section 4.4 as well as for their 

validation. 

4.3.1 Specimens and characterization 

In order to reproduce the contact between an elastomeric seal and the 

moving rod at laboratory scale, the cylinder on flat configuration was 

chosen. This configuration is an approximation of the line contact 

between a differential of seal and the moving rod, in the case of rod 

seals, or between a seal and the piston, in the case of piston seals. 

Figure 73 presents an image of the cylinder (steel part) and the flat 

(polymer) samples. The cylinder samples were made from a 42CrMo4V 

(F1252) steel, with a diameter of 10mm and a hardness of 1004HV. Flat 

samples with a length of 15mm and a thickness of 5mm were 
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manufactured from the same elastomers studied in the previous 

chapters: TPU and NBR. Regarding the temperature limit of polymers, 

both of them are stable up to temperatures in the range between +100ºC 

and +110ºC. 

 

 

Figure 73: Tribo-pair selected for the study of the frictional heating 

phenomenon at laboratory scale. 

 

Even if the elastomer samples were selected as to have very similar 

properties to those seal materials tested in Chapter 3, prior to the friction 

tests, a complete characterization of the elastomeric samples was 

carried out by means of several thermal and microscopic analysis 

techniques. In particular, TGA (Thermogravimetric analysis) and DSC 

(Differential Scanning Calorimetry) analyses were carried out, and the 

thermal diffusivity, heat capacity, density, hardness, roughness and the 

emissivity of the samples were measured. TGA and DSC analyses are 

mainly useful to study the stability of polymers with temperature, and to 

figure out their transition points so that the main wear mechanisms can 

be related to them. Other property results such as heat capacity, 

diffusivity and density are mandatory outputs for understanding the 

frictional heating phenomenon itself and for contact temperature 

calculations. Roughness measurements and surface inspection 



Chapter 4: Frictional heating on elastomeric seals during operation: An approach 

 

168 

techniques were also used in order to investigate physical changes on 

surfaces after the friction tests. Finally, the emissivity of the polymers 

was also measured and used for calibration of the thermal camera.  

 

Thermogravimetric analysis (TGA) and Differential Scanning 

Calorimetry (DSC) 

TGA and DSC analyses were performed under the same conditions 

presented in section 3.2. Results showed that the TGA and DSC curves 

of the materials selected for the tests at laboratory scale are very similar 

to those curves obtained in the previous chapter in the characterization 

of seals (see Figure 47 and Figure 48). Thus the conclusions and the 

main results obtained from the laboratory tests may be extrapolated to 

the seals tested in the previous chapters. 

 

Heat capacity (Cp), Thermal diffusivity () and Thermal conductivity 

() 

The heat capacity (Cp) of a material is the amount of heat needed to 

raise its temperature by one degree. The higher the specific heat, the 

higher the heat needed to raise its temperature. In this work, heat 

capacity evolution of samples with temperature was measured by means 

of the DSC 1-500 device (Mettler Toledo, Spain). Dry nitrogen was used 

for venting at a rate of 50ml/min. Measurements were carried out in the 

range between 0ºC and +250 ºC.  

 

Thermal diffusivity () of a material expresses its ability to conduct 

thermal energy relative to its ability to store it. Thermal diffusivity of 

samples was measured by means of a high resolution ac 

photopyroelectric calorimeter available at the UPV/EHU (Euskal Herriko 
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Unibertsitatea/ University of the Basque Country). A test velocity of 

±0.5ºC/min was used. 

 

Thermal conductivity () of the samples was calculated using the 

following equation: 

 

         
 

( 54 ) 



Density   ) of samples was measured by means of a XP205 precision 

micro-scale (Mettler Toledo, Spain).

 

Figure 74 presents the thermal characteristics of the NBR and TPU 

samples. Results showed that in both cases, heat capacity and thermal 

conductivity increase with temperature whereas thermal diffusivity 

decreases. An increase in conductivity means that as temperature 

increases both materials conduct temperature faster, leading to lower 

temperatures of polymers. However, in this case, conductivity increase 

goes hand in hand with a heat capacity rise; this means that less amount 

of heat is needed to raise their temperature by one degree (room 

temperature).  

 

Comparing both graphics, it can be seen that the heat capacity, 

diffusivity and thermal conductivity of the TPU are lower than those of 

the NBR. This means that the NBR needs more amount of heat to raise 

its temperature by one degree and that the heat moves more rapidly 

through the NBR than through the TPU i.e. thermal equilibrium will be 

reached in the NBR in a shorter period of time. Values in Table 13 

correspond to the thermal property values at 25ºC. 
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

(a) 



(b) 

Figure 74: Thermal properties of the test samples: (a) NBR and (b) TPU. 
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Shore A hardness 

Hardness of samples was measured using a Shore A durometer. The 

results are shown in Table 13. The hardness of the TPU sample is 

considerably higher than the hardness of the rubber. Some authors 

reported that the wear of materials and their hardness are related, 

however, this dependence varies from one material to another. Most of 

the analytical models for wear estimation predict that the harder the 

material, the lower is the wear, but in the case of polymers this is not 

necessarily true [25,30]. In fact, results in Chapter 3 revealed that the 

mass loss of the harder seal was higher under the same conditions.  

 

Some other thermal and mechanical properties of the samples are 

summarized in Table 13: 

 

Property NBR TPU 

Density, ρ (kg/m3) 1166 1102 

Specific heat, Cp (J/g ºC) 1.49 1.21 

Diffusivity, ᵡ (m2/s) 1.5869e-7 1.1005e-7 

Conductivity, K (W/m K) 0.32 0.15 

Hardness, H (Shore A) 70 93 

 

Table 13: Main properties of the polymer samples at room temperature 

(+25ºC). 

 

Surface roughness 

The friction generated during the sliding of bodies in close contact 

depends to a great extent on their surface roughness. In fact, it is widely 
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accepted that the friction resistance and wear mechanisms of polymers 

are governed by the roughness of the mating surfaces [39]. In particular, 

roughness is especially relevant during the running-in period where the 

asperities are worn out. In this work, surface inspections were carried 

out using optical microscopy and confocal scanning interferometer 

microscopy techniques in order to measure the roughness and to 

evaluate the wear of the test samples. In particular, the following 

roughness values were measured using the Confocal Eclipse ME600 

(Nikon): 

- Thermoplastic polyurethane (TPU) samples: Ra ~ 0.93 µm 

- Nitrile rubber (NBR) samples: Ra ~ 0.45 µm 

 

Figure 75 presents the surface profiles of the polymeric samples. 

 

Figure 75: 3D roughness of the (a) TPU and (b) NBR samples. 
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In Figure 76 some graphs of the samples before the tests, obtained 

through optical microscopy, are shown. 

 

 

(a)                                          (b) 

 

Figure 76: Optical examination of polymer surfaces before the tests: (a) 

TPU and (b) NBR. 

 

Regarding the roughness of the steel parts, cylinders with three different 

   roughness were manufactured: 0.1, 0.2 and 0.5µm. 

4.3.2 Experimental setup 

Polymer samples were tested at laboratory scale sliding against steel 

parts of different roughness and surface conditions. Sliding tests were 

carried out by means of a high frequency friction machine reproducing 

as close as possible the actual working conditions of the seals made 

from these materials. Temperature field of the system was recorded by 

means of an infrared thermo-camera in order to study its evolution 

throughout the sliding tests. The effect of seal material and mating 

surface conditions, as well as the effect of sliding velocity on the surface 

temperatures reached during the friction tests, has been also studied 

within this chapter. 
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Even if seals made of polyurethanes and rubbers are mainly used in 

hydraulic applications i.e. under lubricated conditions, in this work, tests 

were carried out under dry conditions for several reasons: 

- Measurements with the infrared thermo-camera in presence 

of lubricants are complicated. 

- Avoiding the use of lubricant will enable to stabilise a direct 

relation between frictional heating and the test parameters, 

avoiding extra uncertainties added by the use of lubricants. 

- Tests under dry conditions represent the most critical 

situation, when the lubricant film has failed or an excessive 

leak has taken place so that the seal is subjected to dry 

running that may lead to its thermal degradation. 

4.3.2.1 Friction tests 

Friction and wear tests were carried out in the TE77 high-frequency 

sliding machine (Plint tribology products, England). This rig is a versatile 

test bench thought to evaluate the tribological behaviour of materials 

under reciprocating sliding conditions in controlled atmospheres or 

pressures above atmospheric. The lower sample is connected to an 

electric motor and linearly actuated by it. The upper body is connected to 

a load cell that enables acquiring the evolution of the friction force 

generated during motion. Figure 77 shows a view of the cylinder on flat 

assembly. A more extended view of the assembly is shown in Figure 78. 

The elastomeric sample is loaded by the steel cylinder which is 

supported by a holder. In this case, the elastomeric sample moves in 

reciprocating motion perpendicularly to the sliding direction. 
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Figure 77: Cylinder on flat assembly. 

 

 

Figure 78: Test assembly for sliding tests in the TE77 friction machine. 

 

Friction tests were carried out at room temperature and under dry sliding 

conditions. A stroke of 5mm was set, a normal load of 15N and two 

different sliding velocities, 0.1 and 0.25 m/s. These velocities were 
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chosen because they are in the range of the actual working conditions of 

seals made of these materials. Seal manufacturers recommend using 

seals made of these materials up a maximum sliding velocity of 0.5m/s 

under high pressure conditions. The main reason for this velocity 

constraint is the low temperature resistance of these materials 

(approximately about +100ºC). Coefficient of friction and surface 

temperatures were recorded for 10 minutes and each test was repeated 

a minimum of 2 times. 

 

Seal manufacturers usually recommend the use of chromed steel shafts 

made from 42CrMo4V, with a minimum hardness of 45HRC, a Ra 

roughness in the range between 0.1 and 0.3 µm, and a coating 

thickness of about 20-30µm [29]. Thus, in order to study the effect of the 

mating surface conditions on the generated friction and the surface 

temperatures reached, chromed and non-chromed steel cylinders with 

Ra roughness values of 0.1, 0.2 and 0.5µm were tested. Test conditions 

are summarized in Table 14. 

 

Upper specimen Material 42CrMo4V 
Cylinder length  15mm 
Cylinder diameter  10mm 
Cylinder roughness 
(  ) 

0.1µm, 0.2µm, 0.5µm 

Lower specimen Materials TPU, NBR 
Polymer sample 
thickness  

5.8mm 

Test parameters Normal Load  15N 

Stroke length  5mm 

Oscillation frequency  10Hz, 25Hz 

Sliding velocities 0.1m/s, 0.25m/s 

Test duration 10 min 

Table 14: Test parameters. 
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4.3.2.2 Temperature measurement by means of thermography 

Theory of thermography 

Every object emits a specific energy that depends on its temperature 

and radiation wavelength. The amount of radiation increases with 

temperature. If the temperature of the object is lower than +500ºC, 

emitted radiation lies completely within IR wavelengths [26]. An infrared 

radiation (IR) camera is a device that converts the radiation into a visual 

image that represents the temperature field of objects captured by it. 

The main components of an IR camera are: a lens that focuses the 

radiation onto a detector, electronics and a software to process the 

signal and images (see Figure 79). The radiation captured by the 

camera comes from different sources: the camera receives radiation 

from the target objects, from the surroundings (reflected radiation) and 

from the atmosphere. 

 

 

Figure 79: Scheme of the components of an IR camera [26]. 

 

Thermal setup for temperature measurements & IR camera 

calibration 

 

The temperature field on the tribo-pair was measured and acquired 

during the sliding tests by means of a Flir SC300 high precision thermo-
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camera (FLIR systems, Inc.). In Figure 80 a complete image of the TE77 

test rig and the infrared camera assembly are shown. An infrared 

camera measures and images the infrared radiation emitted from an 

object which varies with temperature and radiation wavelength. Thus, 

being the radiation a function of the surface temperature of objects, it is 

possible for the camera to calculate and display this temperature. The 

radiation measured by the camera also depends on the object 

emissivity. The Flir SC 3000 camera works in the spectral range of 8-

9µm. 

 

The camera was installed at a distance of 100mm from the contact of 

the tribo-pair in order to obtain an adequate focus. The thermal camera 

has a working range from -20ºC to +2000ºC with an accuracy of ±1% or 

±1ºC, for measurement ranges up to +150ºC. The system has a 

sensitivity of 20mK at 30ºC and a resolution of 320x240 pixels. In order 

to get temperatures as close as possible to the reality, calibration of the 

camera was carried out following the procedure described by 

manufacturers. In particular, the system was calibrated by means of the 

determination of the emissivity (ε) of the target objects which are 

mandatory inputs for the infrared camera SC 3000 software. The 

emissivity of a surface is a measure of its ability to emit infrared energy, 

and it is a function of the temperature and radiation wavelength. 

Radiative properties of a body are usually given in relation to a perfect 

blackbody. Thus, the emissivity of a body can be calculated as: 

 

  
    

   
 ( 55 ) 
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where Wbb is the radiation of a blackbody and Wobj the radiation of the 

object under study. Thus, emissivity is a number between 0 and 1.The 

higher the emissivity of an object, the better its radiative properties. 

 

In this work, the emissivities of the samples were measured using the 

Fourier transform infrared spectroscopy (FTIR) by means of the FT/IR-

4700 Spectrometer (Jasco). At 25ºC (room temperature), the following 

emissivities were measured: 

 

- Thermoplastic polyurethane (TPU): ε ~ 0.89 

- Nitrile rubber (NBR): ε ~ 0.85 

 

Beside, emissivities were also measured at +125ºC in order to see its 

evolution with temperature. It was found that the emissivity values of 

both polymers at +125ºC are the same as at room temperature i.e. the 

emissivity of the elastomers under study remain nearly constant in the 

range between +25ºC and +125ºC. 

 

In order to avoid possible errors arising from reflections, all the metallic 

parts of the system were properly insulated. Room temperature was 

measured before each test by means of a high precision thermometer. 

These values were introduced in the camera software in order to 

calibrate the image. 
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Figure 80: TE77 high frequency sliding test rig (Plint tribology). 

 

A thermal image of the assembly is shown in Figure 81. 

 

 

Figure 81: Thermal image example from the tribo-system. 
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4.3.3 Experimental results 

In this section the results of friction and surface temperature 

measurements are presented for the different considered test conditions. 

4.3.3.1 Friction test results 

Figure 82 and Figure 83 show the friction coefficient curves obtained 

from the tribological tests carried out on the TPU and NBR samples, 

respectively, while sliding against steel cylinders with different    

roughness at two different velocities, 0.1 and 0.25 m/s.  

 

 

 

Figure 82: Friction of Non-Chromed plated (NC) cylinders sliding against 

TPU. 
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Figure 83: Friction of Non-Chromed plated (NC) cylinders sliding against 

NBR. 

 

Effect of sliding velocity on friction 

Results showed that the friction generated increases with velocity. 

During each test, the friction coefficient raises very fast during the 

running-in period until a nearly steady-state is reached. In the case of 

tests carried out at 0.1m/s, the friction coefficient raises gradually 

whereas at 0.25m/s friction rise occurs within the first minute. TPU 

samples presented a steady friction coefficient in the range of about 1 

and 1.2, at 0.1m/s, and a coefficient between 1.4 and 1.6, at 0.25m/s. 

NBR samples presented a bit lower friction coefficients; between 0.8 and 
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1 at 0.1m/s, and a coefficient of about 1.2 at 0.25m/s. In general, results 

showed that the higher the velocity, the faster the friction coefficient 

increases during the first cycles.  

 

Effect of steel roughness on friction 

The friction resistance of polymers depends to a great extent on the 

counterface roughness [39]. When a polymer is sliding against a metallic 

counterface, the friction force generated decreases during the running-in 

until a minimum roughness value is reached. From then on, the friction 

generated will increase as the roughness decreases. The transition point 

is usually coincident with the transition from abrasive wear to adhesive 

wear. 

 

Regarding the effect of cylinder roughness on the steady friction, results 

revealed that it is negligible in the case of the NBR. Nevertheless, it was 

found that the cylinder roughness does affect the friction force generated 

during the running-in period, as well as the form of the friction curve 

during the first sliding cycles. In particular, results revealed that higher 

cylinder roughness lead to larger friction peaks during the running-in. For 

the TPU, the effect of roughness is negligible at 0.25m/s whereas at 

0.1m/s the friction coefficient raises from 1 to 1.2 when the roughness 

raises from 0.1 to 0.5µm.  

 

The main reason for being almost independent roughness and friction 

after some sliding cycles may be the severe operating conditions of the 

tests due to the absence of lubrication. In other words, the severe test 

conditions do not allow appreciating the effect of steel cylinder 

roughness on the friction generated. 
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Effect of the chromium plating process on friction 

Figure 84 shows the friction coefficient curves of the TPU samples in 

relative motion with both chromed (C) and non-chromed (NC) steel 

cylinders with different roughness and under different sliding velocities. 

Results revealed that, in general, C cylinders lead to higher friction 

coefficients than NC ones. This effect, however, is more appreciable 

within the tests carried out at low velocities and with low roughness 

cylinders. At 0.1m/s, and with NC cylinders with a roughness of 0.1 and 

0.2µm, steady friction coefficients of about 1 were reached. Under the 

same conditions but with C cylinders, friction coefficients in the range 

between 1.3 and 1.4 were obtained. During high velocity tests or/and 

tests carried out with cylinders with a    roughness of 0.5µm, test 

conditions were again so aggressive for the elastomeric samples that 

the chromium plating process had no significant influence on friction. 

 

Figure 85 presents the friction results obtained from the tribological tests 

with NBR samples. As can be seen, the effect of the chromium coating 

on friction is almost negligible in all the cases. 
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Figure 84: Effect of the chromium-plating process on the friction of the 

TPU samples. 
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Figure 85: Effect of the chromium-plating process on the friction of the 

NBR samples. 
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4.3.3.2 Surface temperature measurements 

In this section, friction and temperature evolution curves of the tested 

tribo-pairs throughout the tests are presented. The temperatures plotted 

correspond to the average temperature values and they were measured 

at the surface of the elastomers.  

 

Sliding velocity of 0.1m/s 

Figure 86 shows the temperature curves of the TPU samples at a 

velocity of 0.1m/s (10 Hz) vs. the travelled distance. In the same figure, 

the friction coefficient evolution is shown in order to investigate 

similarities in the progression or tendency of friction and temperature 

curves. 
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Figure 86: Friction and temperature curves of the TPU samples sliding 

against steel mating surfaces with different roughness and surface 

conditions at 0.1m/s. 

 

Results showed that the tendencies of the friction and surface 

temperature curves are similar in all the cases. In particular, both friction 

and temperature tend to increase monotonically until a steady value is 

reached. The reason for such a similar behaviour is that there is a direct 

correlation between both parameters as stated in the existing analytical 

models (see section 4.4). During the running-in, the friction force 

generated between the elastomer and the steel part increases 

progressively. Some of the main reasons for the friction rise during this 

stage are associated to the smoothing of the surfaces and to an 

increase in the adhesive component of the friction generated in the case 

of elastic materials. A temperature rise is mainly associated to a heat 

flux rise which directly depends on friction considering that most of the 

frictional energy generated is dissipated as heat and wear. Moreover, 

the heat flux is also influenced by the contact area which increases 

during the running-in. In other words, during motion there exists a 

continuous energy balance between friction, wear and temperature. 
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Results revealed that at 0.1m/s, C cylinders leaded to considerably 

higher temperatures at the surface of the TPU samples than NC 

cylinders. In particular, with C cylinders steady temperatures between 

+55 and +60ºC were registered, whereas under the same conditions but 

with NC cylinders these temperatures were in the range of about +45ºC 

and +50ºC. Regarding the effect of roughness on temperature, it was 

found that it is almost negligible. In the case of tests carried out with C 

cylinders, slightly higher temperatures were obtained during the tests 

with cylinders of low roughness (0.1µm).  

 

Figure 87 presents the average temperature and the friction curves of 

the NBR samples vs. the travelled distance for the different test 

conditions. Temperature curves on the NBR samples showed the same 

tendency as in the case of the TPU. Nevertheless, in this case it was 

found that the surface conditions of the steel cylinders (surface 

treatment and roughness) barely affect the temperatures reached at the 

surface of the NBR samples. At 0.1m/s, the NBR presented a steady 

friction coefficient between 0.7 and 0.9, and average surface 

temperatures between +40ºC and +45ºC, for the different cylinder 

surface conditions.  
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Figure 87: Friction and temperature curves of NBR samples sliding 

against steel mating surfaces with different roughness and surface 

conditions at 0.1m/s. 
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Sliding velocity of 0.25m/s 

Friction coefficient and surface temperature curves of the TPU samples 

at a reciprocating velocity of 0.25m/s (25Hz) vs. the travelled distance 

are shown in Figure 88. At 0.25m/s, again a good matching was found 

between friction and thermal results in all the cases. In particular, both 

increase monotonically with the sliding distance until a nearly steady 

value is reached. Moreover, results showed that more time is needed to 

reach steady temperatures in this case than at lower temperatures, 

mainly due to the instabilities presented by the friction curves. Stable 

temperatures in the range of +66ºC and +77ºC were registered in all the 

cases, and it was found that the effect of the surface conditions of the 

steel parts on the temperatures reached on the TPU samples is almost 

negligible.  
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Figure 88: Friction and temperature curves of the TPU samples sliding 

against steel mating surfaces with different roughness and surface 

conditions at 0.25m/s. 

 

In Figure 89 the temperatures measured at the surfaces of the NBR 

samples during the tests are shown. As happened with the TPU, 

temperature curves also increase monotonically with the running 

distance in this case, but more time is needed at 0.25m/s to reach a 

steady temperature, compared to the time needed at 0.1m/s. Regarding 

the effect of the surface conditions of the steel parts on temperature, 

results showed that the effect of both surface treatments and surface 

roughness is negligible at 0.25m/s. Under steady-state conditions, all the 

tribo-pairs showed similar temperature values of about +60ºC.  
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Figure 89: Friction and temperature curves of the NBR samples sliding 

against steel mating surfaces with different roughness and surface 

conditions at 0.25m/s. 
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Temperature rise on finite thickness bodies 

In section 4.2 it was reported that Tian et al. [33,34] found that in the 

case of bodies with a finite thickness subjected to heat sources moving 

over the same path continuously, there is a temperature rise known as 

nominal temperature rise that affects the entire contact area. In this 

work, the thickness of the tested elastomeric samples was about 5mm, 

hence, the heat generated at the surface will be transmitted to the bulk 

affecting the entire sample.  

 

Figure 90 presents the temperature of the test samples, measured at the 

centre of the contact area, at a distance of 4mm from the surface. 

Results showed that the temperatures in the bulk of the polymer 

increase gradually during motion until reaching steady temperature 

conditions. Moreover, it was found that the temperature inside the 

samples becomes stable faster during the tests carried out at low 

velocity (0.1m/s) rather than at those performed at the higher velocity 

(0.25m/s). This effect was also observed for the temperatures at the 

surface of the elastomers. Moreover, the temperatures reached in the 

bulk of the NBR samples are higher than those measured in the TPU 

samples while the surface temperatures were higher on the latters. The 

main reason for this is that the thermal diffusivity of the NBR is higher so 

that the heat moves more rapidly through it.  
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(a) 
SD 

(b) 

Figure 90: Temperature measurement in the bulk of the elastomeric 

samples throughout the tests: (a) at 0.1m/s and (b) at 0.25m/s. 
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4.3.3.3 Wear measurements 

In order to evaluate the wear mechanisms of the samples, SEM 

micrographs were taken on the test samples. Figure 91 and Figure 92 

show the SEM micrographs of the surfaces of some of the TPU and 

NBR samples, before and after the tests. As can be seen, Schallamach 

waves are present in all the wear scars. These waves are characteristic 

of rubber-like materials and its stick-slip motion, and they are oriented 

perpendicularly to the sliding direction. Furthermore, they are the result 

of periodic fluctuations between compression and tension along the 

contact surface. In other words, Schallamach waves are the result of 

consecutive contact adhesions occurring at the surface during sliding 

due to the visco-elasticity of elastomers and their ability to extend giving 

local recoverable strains [25]. 

 

 

(a)                                                     (b) 

Figure 91: TPU surface (a) before and (b) after the tests. 
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(a)                                                     (b) 

Figure 92: NBR surface (a) before and (b) after the tests. 

 

In order to evaluate the wear of the samples, their weight was measured 

before and after each test. Moreover, confocal microscopy was used to 

measure the profile of the wear scar and for a better visualization of the 

mass loss (Figure 93). As can be observed, the depths of the wear scars 

of the NBR samples are considerably greater than those of the TPU 

samples (more than 3 times greater). Furthermore, it was found that 

TPU samples in contact with steel cylinders tend to wear out more in the 

extremes of the wear scar rather than at the centre. 
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Figure 93: Micrographs of the wear scars under different conditions. 

 

In order to compare tribologically the samples, both friction coefficients 

and wear rates are needed because samples exhibiting the same friction 

may present different wear rates depending on how the energy is 
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partitioned within and between the materials. Figure 94 presents the 

frictional energy of the samples under different test conditions vs. the 

mass loss. In particular, three values have been plotted per test 

condition, one for each cylinder roughness. In the graph, specific wear 

rate intervals (    for each test condition are shown. The specific wear 

energy can be calculated as the ratio of the friction work to the mass 

loss due to wear: 

 

   
 

  
 

           
  
  

  
 

 
 

( 56 ) 

where    is the specific wear energy,   is the energy dissipated by 

friction,   is the mean relative sliding velocity,   is the normal load,   is 

the coefficient of friction,    the initial time, tf  is the time at the end of the 

test, and    is the total mass loss. As can be observed, both materials 

present similar frictional energy at every velocity, however, the specific 

wear energy of the TPU is considerably higher i.e. more energy is 

required to wear out the TPU polymer. 
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Figure 94: Frictional energy vs mass loss. 

4.3.3.4 Main conclusions 

In Figure 95 and Figure 96 a summary of all the friction and thermal 

results is presented. It can be observed at a glance that the frictional 

behaviours of the TPU and NBR are completely different. Friction 

coefficient curves of the TPU samples continuously increase with the 

travelled distance until reaching steady-state values. In the case of NBR 

samples, by contrast, friction curves present a peak during the running-

in, and afterwards decrease until becoming stable. These friction peaks 

are characteristic of rubber materials and appear when the relative 

motion between mating surfaces starts [27]. 

 

In general, it may be concluded that the NBR samples presented lower 

friction and lower surface temperatures than the TPU samples under the 

different test conditions. Moreover, it is important to remark that the 
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friction curves of the rubber samples were more stable in all the cases 

than the curves obtained with the polyurethane ones. It is thought that 

the main reason for those instabilities in the friction curves of the TPU 

samples may be the high hardness of the material (93 Shore A). 

 

 

 

(a) 

 

(b) 

Figure 95: Comparison between test results at 0.1m/s for the (a) TPU 

and (b) NBR samples. 
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(a) 

 

(b) 

Figure 96: Comparison between test results at 0.25 m/s for the (a) TPU 

and (b) NBR samples. 

 

From the experimental study on the frictional heating phenomenon of 

elastomers, it may be concluded that the effect of sliding velocity on 

temperature is considerably larger than the effect of the steel part 

surface conditions. In particular, results revealed that at 0.1m/s the TPU 

samples are sensitive to the surface conditions of the steel parts while 

their effect on the performance of the NBR samples is almost negligible. 

At 0.25 m/s, it is difficult to establish any relation between the surface 

conditions of the steel cylinders, and friction and temperature. As Blau et 

al. reported in [36], in some cases wear quickly alters the contact 
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surfaces so that any attempt to correlate the frictional performance with 

the initial surface conditions may be inappropriate. Regarding the effect 

of velocity on temperature, the TPU samples presented surface 

temperatures in the range of +40ºC and +60ºC at 0.1m/s, and 

temperatures in the range of +60ºC and +77ºC at 0.25m/s. In the case of 

the NBR samples, they presented surface temperatures between +40ºC 

and +45ºC at 0.1m/s, and between +56ºC and +62ºC at 0.25m/s.  

 

Moreover, it was found a good correlation between the friction generated 

and the temperatures reached at the surface of the elastomers. Thus, 

the results obtained validate somehow the temperature measurements 

carried out by means of IR thermography. Furthermore, the curve trends 

are in close agreement with those presented by Tzanakis et al. in [16]. 

 

Temperature measurements through infrared thermography revealed 

that the temperatures in the bulk of the tested elastomers are also 

affected by the frictional heating. In particular, due to the low thickness 

of the samples and the severe sliding conditions (dry lubrication, high 

velocity and short stroke) the bulk temperature of the elastomeric 

samples increase gradually during motion until reaching steady 

temperature conditions. Moreover, the temperatures reached in the bulk 

of the NBR samples are higher than those measured in the TPU 

samples while the surface temperatures were higher on the latters. The 

main reason for this is that the thermal diffusivity of the NBR is higher so 

that the heat moves more rapidly through it.  
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Regarding the wear mechanisms of elastomeric samples, all the tested 

samples presented Schallamach waves which result from consecutive 

contact adhesions occurring at the surface during sliding due to the 

visco-elasticity of elastomers and their ability to extend giving local 

recoverable strains. Results showed that under the same test conditions 

the mass loss of the NBR samples was larger in all the cases than that 

of the TPU samples. Moreover, specific wear energy calculations 

revealed that both materials present similar frictional energies under the 

same conditions whereas the specific wear energy of the TPU is 

considerably higher i.e. more energy is required to wear out the TPU 

polymer. 

4.4 Analytical calculations and comparison with 

experimental results 

The aim of this section is to investigate if any of the existing analytical 

contact temperature models is useful to predict the temperatures 

reached on the tested elastomers, and under the considered test 

conditions. In [13] it was demonstrated that temperature rise calculations 

depend up to a great extent on the considered real contact area, friction 

coefficients and thermal properties.  

 

Even if a broadly accepted criterion consists in calculating the real 

contact area by dividing the load by the hardness of the softer material, 

in this case it is not possible to apply this criterion since the hardness of 

elastomers must be measured by means of Shore A and Shore D 

durometers. Hence, in this work, the contact area was measured after 

each test and those values were considered for calculations. In other 
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words, it has been assumed that the real contact area is similar to the 

apparent contact area. This assumption may be valid since the materials 

under study are elastomers. The average contact widths measured 

under each test condition are shown in Table 15. Regarding friction, in 

this work the friction coefficient evolution captured during the tests was 

used for calculations (assumption 5 in section 4.2 is not considered). 

The thermal properties from Figure 74 were considered for calculations. 

In [18] it was demonstrated that taking into account the variation of 

material thermal properties with temperature. In this case, however, 

thermal properties variation is so slight within the operating temperature 

range that it does not almost influence the results obtained. 

 

 Contact width, 2b (mm) 

 0.1m/s 0.25m/s 

TPU 4.1 6.3 

NBR 4.5 7.2 

 

Table 15: Measured contact widths. 

 

For flash temperature calculations, two of the most popular analytical 

models were used: Jaeger model and Tian-Kennedy model for 

maximum flash temperature calculation. The equations of these models 

are shown in Table 16. It is important to remark that the Jaeger 

equations presented in Table 16 estimate the average flash temperature 

along the contact area whereas Tian & Kennedy’s equations calculate 

the maximum one. In this first stage, both models were applied in order 

to find out which model works better for these particular test conditions 

and materials. The heat generated during sliding was calculated 

applying Equations (51) and (52). 
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Model Equation 

 
Jaeger 

(1942) 

Stationary or low speed 
Pe<0.1 

            
   

 
 

Moving Pe>10 
 

      
       

 
  

   

 
 
   

 

Tian & 
kennedy 

(1994) 

Stationary or low speed 
Pe<0.1 
 

      
     

    
 

Moving Pe>10       
     

       
  

 

Table 16: Analytical models for flash temperature calculations. 

 

Figure 97 presents a comparison between the flash temperatures on the 

samples obtained experimentally and analytically applying equations in 

Table 16. The experimental flash temperature curves have been 

calculated as the difference between the surface temperatures and 

those temperatures measured in the bulk: 

 

                       

 
( 57 ) 

 

where       is the temperature at the surface of the elastomers 

experimentally measured,           is the bulk temperature of the 

elastomer experimentally measured and        is the experimental flash 

temperature. 
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(a) 

 

(b) 

Figure 97: Comparison between experimental and analytical flash 

temperature curves at (a) 0.1m/s and (b) 0.25m/s. 

 

In general, a good matching was found between the experimental flash 

temperature curves and the analytical curves calculated using the model 

of Tian&Kennedy for maximum flash temperature calculation. Hence, it 
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was found that this model predicts better than Jaeger the flash 

temperatures reached at the surface of the elastomers studied in this 

work, and under the specific conditions considered. Furthermore, it can 

be noted that a better matching was achieved at the low velocity case 

study.  

4.5 Effect of misalignments on the temperature rise of 

dynamic seals due to frictional heating 

It has already been discussed about the existing difficulties to measure 

the temperatures originated at the contact between mechanical 

components in relative motion during operation. Hence it is of great 

interest for the industry to find techniques able to predict as accurately 

as possible the temperatures reached at the contact between mating 

surfaces.  

 

In this section a methodology to estimate the contact temperature 

distribution on seals during sliding has been developed based on the 

knowledge gained from the experimental study. In line with the topic of 

this thesis, the methodology developed has been used to research on 

the effect of misalignments on the temperature rise of seals due to 

frictional heating. In particular, the methodology has been applied to a 

specific case study in order to estimate the contact temperature 

distribution on eccentric seals. Afterwards, these results were compared 

with the results obtained for the concentric case under the same 

conditions. As a case study, the contact temperature distribution along 

the seal sample A (TPU) during the sliding tests carried out in Chapter 3 

has been calculated. In particular, the contact temperatures reached 
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during steady-state conditions (at the end of the tests) have been 

calculated. 

 

The methodology herein proposed combines temperature models, 

thermo-mechanical properties of materials, experimental data and the 

contact model presented in Chapter 2. For flash temperature 

calculations, the model Tian-Kennedy was used because it was 

identified in the previous section as the most appropriate model to 

estimate the flash temperatures on the materials under study. Apart from 

this, experimental friction results, numerical contact areas and contact 

forces from the applied models are necessary inputs for the calculations. 

4.5.1 Procedure to estimate contact temperatures on dynamic 

seals during operation. General approach. 

The total heat flux generated during the sliding of the rod lip seal against 

its steel mating surface may be calculated as: 

 

            ( 58 ) 
 

where   is the friction coefficient,    is the contact force,   is the sliding 

velocity and   is the contact area. 

 

In fact, the heat generated in frictional contacts is divided between the 

mating bodies [28]. Thus, a part of the heat generated due to frictional 

heating will enter the seal,   , and the rest will enter the counterface,   . 

Of course, this affirmation involves assuming that all the energy is 

converted into heat and that there are no heat losses [21]. Hence, at any 
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point of the contact, the sum of both heat fluxes must be equal to the 

total heat rate generated at that point: 

 

           ( 59 ) 
 

In this specific case, the seal under study is a rod type seal so that 

during operation the seal remains stationary (v=0) while its mounting rod 

moves at a sliding velocity of   
 

 
 . A schematic image of the heat 

partitioning within the sealing system is shown in Figure 98. As 

introduced in the previous sections, the temperature reached at the 

contact,   , may be expressed as the sum of the ambient or room 

temperature,     , a local temperature rise,    , and a nominal 

temperature rise,        

 

                  ( 60 ) 

 

The quasi-steady flash temperature rises on the seal,     , and on the 

moving rod        may be calculated applying the Tian-Kennedy model 

as [34]: 

 

     
    

    
 ( 61 ) 

  

     
    

               
 ( 62 ) 

 



Chapter 4: Frictional heating on elastomeric seals during operation: An approach 

 

212 

 

Figure 98: Heat flux partitioning. 

 

Regarding the nominal temperature rise on the seal, it may be calculated 

assuming that all the heat entering the seal is dissipated by conduction 

along its cross section or thickness,   , as in [35]: 

 

        
         

  
 ( 63 ) 

  

where         
 

 
   , being   the width of the seal cross section and   

the contact width. 

 

The nominal temperature rise at the rod may be calculated applying a 

thermal balance between the heat generated and the heat evacuated by 

convection [35,37].  

 

                     ( 64 ) 
 



Chapter 4: Frictional heating on elastomeric seals during operation: An approach 

 

213 

where    is the swept contact area,   is the average convective heat 

transfer coefficient and               . 

 

Defining   as the heat partitioning coefficient, the heat entering each 

body in contact may be expressed as: 

 

             ( 65 ) 
 

               ( 66 ) 
 

The heat partitioning coefficient depends obviously on time and position, 

so the calculation of this function is quite complex. In order to solve the 

problem, and as an approximation, many authors have estimated this 

factor by equating the surface temperatures of the bodies within the 

contact. This approximation was proposed many years ago by Blok [38], 

who assumed that the heat partitioning factor is a constant factor and 

that the contact is so perfect that the contact temperatures in both 

bodies are equal. This approximation may be expressed as: 

 

                        ( 67 ) 
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4.5.2 Comparison of the contact temperature distribution on 

concentric and eccentric seals. Case study. 

In this section, the methodology presented above has been used to 

research on the effect of radial misalignments on the contact 

temperature distribution of elastomeric seals, in line with the topic of this 

thesis. To this aim, the methodology has been applied to a specific case 

study. In particular, the contact temperatures reached at the interface 

between the seal A (TPU) and the rod during the concentric and 

eccentric tests carried out in Chapter 3 are herein calculated.  

 

For contact temperature calculations, the resulting friction forces 

measured during the sliding tests were used. In the case of the seals 

tested under concentric conditions, the contact temperature distribution 

will be uniform along seals; in the case of eccentric seals, by contrast, 

the temperature distribution will be non-uniform. Thus, for the eccentric 

mounting case, temperatures in opposite sections of the seal have been 

estimated. In particular, temperatures in the most compressed (section 

where the interference between the rod and the seal is maximum) and in 

the less compressed sections were calculated. The friction force 

distribution along the considered seal during the tests carried out under 

eccentric mounting conditions was estimated in section 3.8.3. In all the 

cases, steady–state friction force values were used for calculations. 

Regarding the contact widths, those values obtained from the numerical 

models of the seals under study were considered (Chapter 2). 

 

 

 

In  
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In Table 17 a summary of the main data used for temperature rise 

calculations is shown: 

 

Resulting friction force,    
           = 20N 

   (           = 32N 

Differential Friction force 
  (      )= 0.36N 

  (      )= 0.17N 

Contact width,    

       → 1.25mm 
          → for        = 

3.8mm/ for        = 1mm 

Heat convection coefficient,   10 W/m ºC (air-free convection) 

Sliding velocity,   0.5m/s 

Length of the seal cross section, 

   
5mm 

 

Table 17: Main data used for temperature calculations. 

 

4.5.2.1 Concentric conditions 

The total heat flux generated as a result of the sliding between the seal 

and the rod under concentric conditions and at a velocity of 0.5m/s, has 

a value of 56589.9 W/m2. Considering a static heat source relative to the 

seal, the following expression of the contact temperature was obtained 

applying the equations introduced in the previous section: 

 

                   ( 68 ) 
 

In the case of the rod, the heat source is in motion relative to it. Hence, 

in this case the following expression was obtained: 

 

                    ( 69 ) 
 



Chapter 4: Frictional heating on elastomeric seals during operation: An approach 

 

216 

Equating the contact temperatures of both surfaces, it was calculated 

that in the concentric case the heat flux entering the seal has a value of 

3225.4 W/m2, and the heat flux entering the steel rod a value of 53364.5 

W/m2. Hence, it was found that the 94.3% of the heat generated due to 

frictional heating penetrates the steel part sliding against the seal. 

 

Hence, when the seal and the rod are totally concentric, the maximum 

temperature reached at the contact of the seal under the considered 

operating conditions may be expressed as: 

 

                   ( 70 ) 
  
 

4.5.2.2 Eccentric conditions,           

      , maximum interference section 

The total heat flux generated in the maximum interference section as a 

result of the sliding between the seal and the rod under eccentric 

conditions, and at a velocity of 0.5m/s, has a value of 47723.7 W/m2. 

This value was calculated considering a friction force value of 0.36N 

between this seal section and the rod, and a contact width of about 

3.8mm, obtained from numerical simulations. For the seal, the following 

contact temperature expression was estimated considering that the heat 

source is stationary with respect to the seal section: 

 

                   ( 71 ) 
 

And the contact temperature at the surface of the moving rod may be 

expressed as: 
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                   ( 72 ) 
 

Equating the contact temperatures of both surfaces, it was calculated 

that under eccentric conditions, when the rod to bore misalignment is of 

0.15mm, the heat flux entering the maximum interference seal section 

has a value of 2658.7 W/m2, and the heat flux entering the steel rod, a 

value of 45065 W/m2. Hence, it was found that the 94.4% of the heat 

generated due to frictional heating enters the steel part in motion relative 

to the seal. This result is similar to that obtain for the concentric case 

since the calculations have been carried out on the basis that the heat 

partitioning factor is constant as assumed by Blok [38]. 

 

Thus, the maximum temperature reached at the contact between the 

most compressed section of the seal and the moving rod is: 

 

                   ( 73 ) 
 

Comparing Equations (70) and (73), it may be concluded that mounting 

eccentricities influence considerably the temperature rise on seals due 

to frictional heating. In particular, in this case, the temperature rise on 

the most compressed section of the eccentric seal was found to be up to 

58ºC higher than the temperature estimated for the concentric case.  

 

Moreover, considering an ambient temperature of +25ºC, the resultant 

contact temperature has a value of +121ºC. This temperature is slightly 

above the stable temperature limit of the seal A which is made in 

Thermoplastic Polyurethane (TPU). In particular, the stable temperature 

limit of the seal under study is +105ºC. From the TGA and DSC curves 
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of the seal A (plotted in Figure 47 and Figure 48), it may be concluded 

that at +121ºC the elastomer does not decompose, however, its 

chemical bonds may be altered. 

 

      , minimum interference section 

In the minimum interference section, the total heat flux generated as a 

result of the sliding between the seal and the rod under eccentric 

conditions, and at a velocity of 0.5m/s, has a value of about 86800 

W/m2. For this calculation, it was considered a friction force value 

between the seal section and the rod of 0.17N, and a contact width of 

about 1mm, obtained from numerical simulations. The contact 

temperature at the surface of the minimum interference seal section is: 

 

                  ( 74 ) 
 

And the contact temperature at the surface of the moving rod may be 

expressed as: 

 

                   ( 75 ) 
 

Equating the contact temperatures of both surfaces, results showed that 

under eccentric conditions and for a rod to bore misalignment of 

0.15mm, the heat flux entering the minimum interference seal section 

has a value of 4848.1 W/m2, and the heat flux entering the steel rod a 

value of 81951.9W/m2. Hence, in this case also the 94.4% of the heat 

generated enters the steel part in motion relative to the seal. 

 

Thus, the maximum temperature at the contact between the less 

compressed section of the rod lip seal and the moving rod is: 
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                   ( 76 ) 
 

Hence, results showed differences of up to +50ºC in the same seal 

under eccentric conditions. 

4.5.3 Methodology validation 

Due to the difficulties found to measure experimentally the contact 

temperature evolution during the friction tests carried out in Chapter 3, 

the validation of the methodology developed in this chapter is not an 

easy task. Nevertheless, in an attempt to validate somehow the results 

obtained in section 4.5.2, the surface of the tested seals has been 

characterized. In particular, the aim is to characterize the surface of the 

seal section subjected to the maximum interference where that 

according to calculations in the previous section, a steady contact 

temperature of approximately +121ºC has been reached. For this 

purpose, TGA, DSC and FTIR spectroscopy analyses of a non-tested 

seal and of the worn seal surfaces were carried out. The TGA and DSC 

analyses were carried out through the same equipments and conditions 

described in section 3.2. The FTIR spectroscopy is a technique used to 

obtain the infrared spectrum of absorption or emission of a material. The 

analysis was carried out by means of a FT/IR-4700 Spectrometer 

(Jasco).  

 

Thermal degradation of polymers occurs due to their molecular 

deterioration resulting from excessive temperatures and it usually 

involves changes in their molecular weight. Figure 99 presents a 

comparison between the characterization results of a non-tested seal 
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section and the worn surface of the most compressed seal section. As 

can be seen, the results of the non-tested samples and of the worn 

samples are similar in all the cases. This means that the surface of the 

tested samples did not suffered any chemical degradation. In fact, in this 

case study, the maximum temperature predicted analytically (+121ºC) is 

very close to the steady thermal limit of the TPU seal material and below 

the melting point (~178 ºC), and therefore chemical degradation of the 

sample was not expected. 

 

In section 5.2 some possible future lines for a better and more accurate 

validation of the methodology herein developed have been proposed. 

 

 

(a) 
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(b) 

 

(c) 

Figure 99: (a) TGA, (b) DSC and (c) FTIR characterization results on the 

surface of the most compressed seal section. 
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4.6 Conclusions 

In this chapter the study of the effect of rod to bore misalignments on the 

temperature rise of seals due to frictional heating has been addressed 

through the development of a specific methodology for contact 

temperature estimation on seals. The proposed methodology combines 

analytical models, thermo-mechanical properties of materials and 

experimental inputs, and it was developed in two stages.  

 

In a first stage, an experimental investigation on the frictional heating 

phenomenon on elastomeric seals was carried out at laboratory scale. In 

particular, sliding tests were carried out on steel parts against TPU 

(Thermoplastic Polyurethane) and NBR (Nitrile Butadiene Rubber) 

elastomers, and the friction coefficient as well as the surface 

temperature evolution of the samples were measured through infrared 

thermography during the tests. Tests were carried at different sliding 

velocities, and using steel parts with different surface treatments and 

roughness, in order to study the effect of velocity and surface conditions 

(roughness and chromium-plating) on the temperature rise of 

elastomers. Moreover, experimental results were used to identify which 

of the existing analytical contact temperature models matches better the 

experimental measurements. Results demonstrated that there is a direct 

correlation between the evolution of friction and temperatures at the 

surface of elastomers as a result of an energy balance between the 

energy generated and dissipated as wear and heat. In all the cases 

results showed that under the same operating conditions the friction and 

temperature rise on the TPU samples was higher than that observed in 

NBR samples, whereas the latters’ wear is considerably higher. Results 
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revealed that the sliding velocity considerably affects the temperature 

reached at the surface of the elastomers during sliding while the effect of 

steel-part roughness and treatment may be considered negligible under 

dry conditions. It was only found a clear dependency of temperature with 

surface conditions during the tests carried out on TPU samples at low 

sliding velocity. In this case, results showed that chromed plated 

cylinders leaded to higher temperature rises than the non-chromed 

ones. A good matching was found between the experimental and 

analytical results. In particular, it was identified the Tian-Kennedy 

analytical model for flash temperature calculations as the most 

appropriate model for calculations with the considered elastomers. 

 

In a second stage, the knowledge gained from the experimental work 

was used to develop a procedure to estimate the contact temperatures 

on seals during operation. The methodology herein proposed may be of 

great interest for the industry considering the lack of applicable 

experimental techniques. In fact, given the low thermal resistance of 

elastomers, knowing the contact temperatures reached on seals during 

operation is of great interest for the industry. Nevertheless, contact 

temperature measurements on seals are still a challenge due to the fact 

that they are mounted in closed grooves difficult to access while moving 

relative to their mating faces. The methodology was applied to a specific 

case study in order to estimate the contact temperature distribution on 

eccentric seals, and afterwards the results were compared with those 

obtained for the concentric case. For calculations, the contact 

distributions obtained from the tri-dimensional eccentricity model 

developed in this thesis are mandatory inputs. Contact temperature 

calculations of eccentric seals revealed that mounting misalignments 
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lead to very irregular contact temperature distributions along seals. 

Moreover, it was found that small misalignments may result in relevant 

temperature rises on the most compressed sections of the seals that 

may lead to a premature failure of seals due to an accelerated wear or 

even to their thermal damage. In this specific case study, contact 

temperature differences of up to 50ºC were predicted along the same 

seal. 
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Chapter 5: General conclusions & Future 

work 

5.1 General conclusions 

Understanding the wear mechanisms of rubber seals as well as 

predicting their life is a complex task. The main difficulty for building 

reliable life expectancy models lies in the wide variety of factors that 

influence the performance of seals (see Figure 100) as well as in the 

complexity of the physical phenomena occurring on the mating surfaces. 

Due to the lack of studies related to this issue, in this thesis the effect of 

misalignments on the performance of elastomeric seals has been 

studied in order to establish the cause-effect relationships between rod 

to bore misalignments and seal failure. In fact, even if misalignments are 

unavoidable, this topic has not been addressed so far. The material non-

linearity as well as the need for estimating factors presenting high 

difficulty in being measured leaded to build a complex tri-dimensional 

eccentricity model for seals that enables calculating the contact force 

distribution on eccentric seals. Moreover, in this thesis it has been 

established a methodology based on this contact model in order to carry 

out a complete tribological characterization of seals, predicting the 

friction, wear and temperature distributions along eccentric seals. The 

model has been validated at each step through case studies of general 

industrial applications and through different test rigs, some of them 

specifically designed for this purpose. At the same time, the utility of the 

model for life expectancy considerations has been demonstrated 
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through those case studies considered. The research carried out within 

this thesis has demonstrated the large influence that rod to bore 

misalignments have on the tribological performance of seals. 

Figure 100: Factors affecting the service life of seals. 

The model developed consists of a tri-dimensional analytical eccentricity 

model for seals that enables calculating the contact force distribution 

along seals as a function of rod eccentricity value. To the best 

knowledge of the author, it had not been published any analytical model 

for calculating the tri-dimensional contact force distribution on seals in 

bibliography before. Thus the methodology herein proposed is 

innovative and may be useful for design purposes, among others. The 

model developed includes normal reaction, tangential and friction forces, 

and it was formulated on the basis of a functional contact relation 

between the rod and the seal, and a geometrical interference model. 

Moreover, it was completed and adjusted by means of numerical results. 

In order to validate the tri-dimensional contact eccentricity model, a 

specific test rig was designed. For the specific case study considered, 

validation tests revealed that the contact model may predict the contact 

force distribution on seals with a mean approximate accuracy of 85%. 

Furthermore, through the experimental validation of the model, it was 
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demonstrated that the modelling procedure may be a ready-to-use and a 

useful tool for designers that avoids high computational costs and times 

associated to numerical 3D simulations. Furthermore, this methodology 

may be extrapolated to any seal geometry and size. It is thought that 

small discrepancies between analytical and experimental results may be 

due to the fact that the analytical model does not consider viscoelasticity 

or stick-slip regions, among others. Validation test results revealed that 

mounting misalignments lead to very irregular contact force distributions 

and contact areas along the seals. In fact, differences in contact forces 

between the most and less compressed sections of the eccentric seal 

depend on diverse factors such as the nominal gap or clearance 

between the bore and the rod, seal geometry and material.  

In an attempt to determine the effect of rod to bore misalignments on 

seals operating under actual sliding conditions, experimental tests were 

carried out on complete seals under both concentric and eccentric 

controlled conditions. It was demonstrated through experimentation that 

rod to bore misalignments affect considerably the friction and wear 

generated during operation. Results revealed larger friction forces and 

worn volumes under eccentric conditions than under concentric ones, 

and very irregular wear patterns on eccentric seals. Furthermore, it was 

found that the seal material also plays an important role in this regard. 

Results showed that misalignments lead to larger wear rates of seals, 

and subsequently to a reduction in their service life. The calculations of 

the wear rates and friction force distributions were addressed applying 

the contact model. Thus, the model was validated and its utility 

demonstrated through the experimentation carried out under dynamic 

conditions.  
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The study of the effect of rod to bore misalignments on the temperature 

rise of seals due to frictional heating was addressed by the development 

of a specific methodology for contact temperature estimation on seals. 

The methodology herein proposed has been validated at laboratory 

scale at an early stage and subsequently applied for estimating the 

contact temperature field on eccentric seals. Given the low thermal 

resistance of elastomers, knowing the contact temperatures reached on 

seals during operation is of great interest for the industry. Nevertheless, 

contact temperature measurements on seals are still a challenge due to 

the fact that they are mounted in closed grooves and moving relative to 

their mating faces. Thus, the methodology developed in this work for 

contact temperature estimations which combines analytical models, 

thermo-mechanical properties of materials and some experimental data 

may be useful for the industry considering the lack of applicable 

experimental techniques. On the one hand, results revealed that the 

analytical equations to be applied for contact temperature calculations 

should be selected at random since the selection may depend on each 

specific application. Moreover, contact temperature calculations of 

eccentric seals revealed that mounting misalignments lead to very 

irregular contact temperature distributions along seals. Moreover, it was 

found that small misalignments may result in relevant temperature rises 

on the most compressed sections of seals that may lead to a premature 

failure of seals due to an accelerated wear or even to their thermal 

damage. 

In general, this thesis has contributed to the research on the wear 

process of elastomeric seals by the development of a tri-dimensional 

contact model that has been applied to determine the effect of rod 

misalignments on the tribological behaviour of elastomeric seals. 
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Moreover, a methodology for a complete tribological characterization of 

seals has been developed, which may be extrapolated to other 

mechanical components. 
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5.2 Future work 

In this work a contact tri-dimensional model has been developed, and 

used for wear rate calculations of seals as well as for prediction friction 

and temperature distributions of seals subjected to misalignments. 

Future research might be directed towards the development of an 

algorithm that enables predicting the tri-dimensional wear, friction and 

temperature distributions along elastomeric seals through the 

implementation of the contact model herein developed. Furthermore, a 

challenge for the future may be the application of the methodology 

herein developed to other seal types as well as to seals operating under 

fluid pressure.  

 

Moreover, it is thought that there may be two possible lines in order to 

validate the methodology to estimate the contact temperature on 

complete seals. On the one hand, in an attempt to validate the 

methodology for contact temperature predictions the same tests herein 

developed on complete seals (Chapter 3) may be carried out but under 

more severe conditions i.e. at a higher sliding velocity so that contact 

temperatures above the stable thermal limit are reached. Another 

possibility may be to design a transparent tooling to contain the seals so 

that the temperatures at the contact or close to it may be captured 

through an infrared camera. In this second case, a direct validation of 

the methodology may be achieved. 

 

Another challenge for the future may be the application of the 

methodology herein proposed for tribological characterization of seals to 
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other mechanical components (even those that entail metal-to-metal 

contact) in order to determine its applicability to other components. 
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1. Introduction

Lip seals are commonly used in many mechanical devices, such
as pneumatic and hydraulic actuators, engines, machine tools and
gas springs, among others. They are characterized by a sealing lip,
also known as dynamic lip, properly designed to ensure the
sealing and pumping mechanisms of a specific fluid under a wide
range of working conditions. Moreover, the design of lip seals
must reach a compromise between dynamic sealing and good
lubrication [1].

The performance of a specific lip seal is affected by its
geometry, the material and roughness of the seal and its counter-
parts, and its operating conditions. Lip seals provide a unidirec-
tional sealing and their contact pressure profile under particular
sealing conditions strongly depends on the lip angles at the air and
fluid sides. Some designs may include two lips in the sealing area
in order to enhance the sealing capability at low pressures and to
avoid the entry of dirt from the side opened to the atmosphere.

In general, most of the lip seals available for reciprocating
applications are made of polyurethanes (PU) and nitrile rubbers
(NBR) due to the low cost and good performance of these
materials. Both materials, however, have a limitation in tempera-
ture since their maximum operating temperature is about 100 1C.
Furthermore, this temperature constraint involves a working
velocity limitation of seals due to frictional heating phenomena

[2,3]. Thus, the main alternative in applications with high sliding
velocity requirements is seals made of PTFE composites because of
their thermal resistance and low friction properties. Regarding the
roughness, both the asperities of the lip and the roughness of the
counterparts play an important role in sealing operation [4–6].

Seals are mounted in grooves with a degree of interference in
order to ensure an appropriate sealing at the interface. Hence,
contact pressure distribution is one of the most important para-
meters to take into account when a specific seal is being designed.
Unfortunately, measuring the contact pressure between a seal and
its counterparts could be a difficult task. In order to measure static
contact pressures, technologies such as photoelastic techniques
[7], pressure film sensors [8,9], radial force integration techniques
[10] and manganin wires [11], among others, have been widely
used. In any case, however, there is not a standard technique or
device useful to measure contact forces in a rod or piston seal
regardless the seal size.

Seal failure is often the result of certain problems in a system.
Radial overload due to rod misalignment, improper shaft prepara-
tion, overheating, lubricant failure and extrusion are some of the
most common causes for seal failure. In most of the cases, a seal
fails as a result of a combination of factors [12,13]. This work is
focused on the study of the effects of an eccentric mounting on the
contact force distribution of a seal. In fact, an eccentric mounting
leads to an irregular distribution of contact pressure, which affects
seal performance. Moreover, the interference stress field origi-
nated under eccentric mounting conditions of the rod tends to
twist the seal in the groove. Lip seals, however, are quite resistant
to spiralization due to their design itself. Furthermore, the capacity
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of a specific seal subjected to an eccentric mounting to follow the
rod depends on: the lip seal design, the material and any
temperature effects on the resilience of elastomers [12].

Tasora et al. [14] presented a method for characterizing the
deformation of an elastomeric seal under static conditions. They
carried out experimental tests on a nitrile based rotating lip seal
subjected to different radial loads. These results were used to
calibrate a tri-dimensional finite element model by means of
Mooney–Rivlin parameters and to introduce the most adequate
contact conditions at different temperatures. Consequently,
numerical models were use to study the effect of static inter-
ference, temperature and radial displacements on the contact
force between the seal and the rod. In a previous work [15], our
research group presented an initial idea of a modelling procedure
for estimating the effects of an eccentric mounting of seals, based
on contact forces. A TPU lip seal was analytically modelled by
means of the linear elastic approach. Contact equations were
formulated based on geometrical models designed for rolling
bearings [16,17] and considering the effect of normal forces only.

In this work, an improved tri-dimensional eccentricity model of
rod seals is presented. In fact, the enhanced model includes not
only normal forces between the seal and the rod, but also
tangential and friction forces generated due to rod misalignment.
Hence, contact forces along a whole seal are analytically and
numerically studied as a function of rod radial position. The main
objective of this paper is to obtain a reliable analytical 3D rod
radial misalignment model of a thermoplastic polyurethane (TPU)
reciprocating lip seal. The main advantage of the modelling
procedure is that it allows estimating the contact force distribution
in the whole seal regardless of rod eccentricity. As a starting point,
a quasi-static case has been analysed in the absence of any supply
pressure, in order to separate the contribution of the preload and
the fluid pressure to the resultant contact pressure. The hyper-
elastic material was defined by means of a Mooney–Rivlin for-
mulation. The model is based on the characterization of the seal as
an ensemble of springs subjected to traction/compression.

The analytical model is completed and adjusted by combining a
geometrical interference model with the results obtained from
numerical simulations. Moreover, the model was validated by
means of experimental tests carried out on a test rig designed
for this purpose.

2. Experimental measurements

2.1. Experimental setup and specimens

A suitable test rig was designed and assembled to measure the
resultant contact forces on seals when the rod is radially displaced
(Fig. 1). Seals under test (1) are mounted in the test chamber (2),
one on each cylinder end. The rod rests on a low friction and high

stiffness polymeric base (3). The cylinder rod (4) is vertically
positioned in order to minimize the weight effects and it is fixed
to the frame (5) through a couple of tension/compression load
cells with an accuracy of 70.01 N (6). Misalignments are applied
by means of two micrometric positioners (7) fixed to the frame.
Cylinder position is controlled by means of a vertically guided
probe located in a Tesa micro Hite manual measuring device (8),
which has a resolution of 1 μm.

Measurements were carried out on commercial rod lip seals,
made of TPU (thermoplastic polyurethane), suitable for a 45 mm
diameter rod (Fig. 2). Misalignment tests were performed at room
temperature and in the absence of supply pressure. Before seal
installation, a small amount of oil (0.1 ml) was applied on the
contact surfaces. The cylinder bore was displaced in radial direction

Nomenclature

δi rod/seal interference at concentric position
δr rod radial misalignment value
δφ mounting interference of a differential seal section

which forms an angle φ with the misalignment
direction

φ polar coordinate
e nominal gap between the seal and the bore
rm average radius
ri average radius at concentric position

FN normal force between the seal and the rod
T tangential force generated in the seal
Ff friction force between the seal and the rod
μ friction coefficient
Fr contact force between the seal and the rod in radial

direction
Fmd contact force between the seal and the rod in the

misalignment direction
λ value of φ at which the contact between the seal and

the rod is lost

Fig. 1. Experimental setup for misalignment tests: (a) schematic view and (b) test
rig assembly.
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only. Measurements were carried out under the controlled envir-
onment, 2071 1C.

At the beginning of the process, the cylinder rod was vertically
placed adjusting the micro-positioners. Subsequently, consecutive
known radial misalignment values were applied. The maximum
applicable misalignment is limited by the nominal gap, e; with a
value of 0.2 mm (Fig. 2). Misalignments were applied in steps of
5 μm up to the maximum allowed one. Reaction forces at each
step are measured by means of the load cells after verifying and
adjusting the vertical alignment of the cylinder. Measurements
were repeated 3 times.

2.2. Experimental results

Fig. 3 shows the reaction force curves of a set of consecutive
tests relative to the misalignment applied to the bore.

Results showed a good repeatability. As can be observed, the
stiffness of the whole seal in the misalignment direction is not
constant. In particular, the seal presents the stiffest response when
the rod misalignment is about 5 μm (KE0.76 N/μm). Above that
eccentricity value, the stiffness decreases exponentially until
reaching a nearly constant value for rod misalignments Z5 mm
(KE0.25 N/μm). Curve tendency is in close agreement with the
work of Tasora et al. [14].

3. Method

This section presents a procedure to build a tri-dimensional
eccentricity model of seals. The model expresses the contact forces

between a seal and the mounting rod, as a function of rod
misalignment.

The proposed analytical model has been completed and
adjusted by means of numerical results. To this end, first of all, a
plane model and a tri-dimensional model of the selected seal
(Fig. 2) were developed and numerical simulations were carried
out. Then, a geometrical interference model and contact equations
were formulated.

It is particularly relevant to highlight that even if a quasi-static
case is being studied, contact equations are based on the kinematic
Coulomb model. Hence, this assumption involves a simplification
of the problem that could be valid due to the nature of the tests,
where an increasing load is monotonically applied to the rod.
Moreover, the simplified model may be acceptable since the main
goal of this work is to avoid time and expensive computational
costs of a 3D numerical simulation.

The analytical model was validated by means of the experi-
mental results presented in the previous section. Fig. 4 shows the
flow chart of the modelling procedure.

3.1. Numerical model

A numerical study was performed to complete the analytical
model described in detail in the next section. Both, a plane model
and a tri-dimensional model of the rod lip seal were developed in
an Ansys Workbench environment. Seal geometry was obtained by
means of an optical microscope (Leitz, model Libra 200).

The plane strain model was built in order to obtain the
functional contact relation between the rod and the seal, as a
function of the seal section compression. Normal and tangential
forces taken from simulations on the plane model are mandatory
inputs to build the analytical model.

Two tri-dimensional models were developed in order to validate
the analytical model results step by step: an ideal frictionless one,
and another one which considers frictional contacts.

Both numerical models were built by means of quadrilateral
and triangular elements. Due to the symmetry of the geometry
and boundary conditions, only a half of the seal was modelled in
the case of the tri-dimensional model. Moreover, this simplifica-
tion allows reducing the computational cost of each simulation.
The bi-dimensional model was composed of 1609 elements and
the tri-dimensional one of 33,586 elements. The mesh used is the
result of a number of analyses performed in order to determine

Fig. 2. Principal dimensions of the seal groove (in mm).

Fig. 3. Reaction force as a function of the applied misalignment.

Fig. 4. Proposed process scheme.
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the element sizes that do not produce significant variation in
calculation precision. Fig. 6 shows the mesh generated in
each case.

In both models, a surface to surface contact formulation was
chosen to simulate both the seal/rod and the seal/groove contacts.
Boundary conditions take into account friction at contact surfaces in
order to constrain the free movement of the seal. During the
experimental tests, contact surfaces of seals were lubricated before
seal installation. Hence, these conditions were assumed for numer-
ical simulations. The friction coefficients were set to 0.1 for both, the
seal/rod and the seal/groove contacts [18].

The seal material, TPU, was considered incompressible, isotro-
pic and hyperelastic. It was assumed that the compressive stress–
strain curve is shown in Fig. 5. These data were obtained as a result
of compression tests carried out in the universal testing machine
Instron 3369. The hyperelastic material was defined by means of a
second-order Mooney–Rivlin formulation employing the following
coefficients: C10¼1.98 and C01¼0.16; these coefficients were
obtained from the data provided by the manufacturers. The rod
and the bore were considered rigid elements since polymer
stiffness is much lower than that of steel.

The interference or penetration between the seal and its counter-
parts is about 1.47 mm under concentric mounting conditions. Due
to the high mounting interference or preload values, seal mounting
was simulated in some steps. First, a concentric mounting was
simulated. Afterwards, boundary conditions allowed rod displace-
ment just in the selected radial misalignment direction. Simulation
procedure is shown in Fig. 7. Radial displacements were applied to
the rod step by step, starting from a concentric position of the rod up
to the maximum allowed displacement, e. The cylinder bore was
considered totally static in radial direction.

3.2. Analytical model

The analytical model consists of a geometrical interference
model and contact equations based on numerical results. In a
specific situation, where the rod and the bore are concentric, the
interference is the same along the whole seal, δi. Nevertheless,
when there is a radial eccentricity, contact conditions will be
different on each section of the seal. Fig. 8 shows the geometrical
interference between the rod and the seal for a specific misalign-
ment δr . The polar coordinate φ defines the position of each seal
section, relative to the rod misalignment direction.

In order to express the geometrical-interference field as a
function of misalignment, the following geometrical-interference
model is formulated:

δφ ¼ δiþδr cos φ ð1Þ
As already mentioned, the applicable maximum misalignment, e,
and the nominal interference values are determined by manufac-
turing tolerances. Depending on the relation between δi and δr , it
is possible to distinguish two different cases. Fig. 9 shows the two
possible interference configurations. If the radial misalignment
value, δr , is lower than the interference between the seal and its
counterparts at a concentric position, δi, all the seal sections will
keep contact with the rod. Otherwise, contact between parts will
be lost in a particular seal region.

Contact force between a specific seal section and the rod
depends on its compression grade. Considering frictional contacts,
it is possible to formulate a contact relation that integrates normal,
tangential and frictional forces acting on a circumferential seal
section. Fig. 10 illustrates the forces acting on a seal section when
it is subjected to compression.

In this way, differential normal and tangential forces can be
expressed as a function of the interference δφ as

FN ¼ f ð δφÞ ð2Þ

T ¼ f ðδφÞ ð3Þ
So the forces acting on a seal section are

dFN ¼ FNðδφÞds¼ FNðδφÞrm dφ ð4Þ

dT ¼ TðδφÞ ð5Þ

dFf ¼ μ dFN�2dT sin
dφ
2

� �� �
ð6Þ

where μ is the friction coefficient between the rod and the seal. As
previously mentioned, Eq. (6) is formulated adopting a simplified
contact model which takes into account Coulomb's friction model.

The contact force between the sealing lip and the rod in radial
direction can be written as

dFr ¼ dFN�2dT sin
dφ
2

� �
ð7Þ

Fig. 5. Experimental compressive stress–strain curve of TPU.

Fig. 6. Bi-dimensional (a) and tri-dimensional (b) models of the sealing system.
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And assuming that sin ðdφ=2Þ � dφ=2,

dFr ¼ ðFN ðδφÞrm�TðδφÞÞdφ ð8Þ

Considering a frictional contact between the rod and the seal,
resultant contact forces acting on a seal section can be expressed
in the misalignment direction as

dFmd ¼ dFr cos φþdFf sin φ ð9Þ

dFmd ¼ ðFNðδφÞ rm �TðδφÞÞð cos φþμ sin φÞdφ ð10Þ

Resultant contact load on the whole sealing lip can be calcu-
lated by integrating Eq. (9). If δi4δr , the total load supported by
the sealing lip can be expressed in the misalignment direction as

Fmd ¼ 2
Z π

0
ðFNðδφÞ rm �TðδφÞÞð cos φþμ sin φÞdφ ð11Þ

Eq. (12) expresses the total contact force in the misalignment
direction when δioδr

Fmd ¼ 2
Z λ

0
ðFNðδφÞ rm �TðδφÞÞð cos φþμ sin φÞdφ ð12Þ

The contact radius between the seal and the rod rm depends on
φ and it is measured from the rod centre, O. Under concentric
conditions, the value of the average radius is the same for every
section, ri. When the rod is misaligned, the contact radius at each
section can be calculated as

rm ¼ riþδr cos φ ð13Þ

In this work, the maximum admissible rod misalignment e,
determined according to manufacturer's drawing, is 0.2 mm and

Fig. 7. Simulation procedure of the seal: (a)–(c) mounting and (d) rod misalignment.

Fig. 8. Geometrical interference model.

Fig. 9. Possible interference configurations.

Fig. 10. Forces acting on a circumferential section of the seal.

B. Pinedo et al. / Tribology International 78 (2014) 68–7472



the interference δi is 1.47 mm. Hence, the interference configura-
tion corresponds to δi4δr .

4. Results and discussion

At first, plain strain simulations were carried out in order to
develop an analytical model able to reproduce the lip seal
behaviour. Simulation results are shown in Fig. 11. A relevant
aspect of the results is that seal stiffness of the lip seal varies
considerably with compression. Furthermore, the stiffness of a
cross section of the studied seal can be divided in two regions
where it remains nearly constant: a low stiffness region
(KE0.58 N/mm) and a high stiffness region (KE6–11 N/mm). It
is important to highlight that a sudden change in seal stiffness
occurs for seal compression values nearby the nominal interfer-
ence δi.

In this study, the area of interest is bounded by the maximum
and minimum possible interference values i.e. by δiþe and δi�e,
respectively (Fig. 11). The objective is to express analytically
normal forces and tangential forces in this area, and to introduce
these expressions in Eq. (10). In order to fit the data points of the
forces by the most appropriate function, R-squared correlation was
used. The closer the R2 coefficient to 1, the more accurate the
fitting. In this case, both force curves were fitted by a four degree
polynomial. These fittings were considered acceptable since they
led to R2 values of 0.997 in both cases.

Fig. 12 shows radial contact forces along the seal vs. different
eccentricity values. It can be concluded that different rod radial
misalignment values result in very different contact force distribu-
tions. Contact force variations in the lip of the loaded half-seal side
are considerably bigger than variations in those sections in the
opposite side. For a rod subjected to the maximum allowable
interference, the maximum contact force value could even triple
the minimum one. This fact involves an irregular wear pattern and
temperature distribution, and a subsequent seal life reduction that
may be very significant.

Substituting the geometrical interference model defined by Eq.
(1) and integrating results for the whole seal as described in
Section 3, resultant contact forces along the whole seal can be
calculated regardless of rod eccentricity. Fig. 13 shows resultant
contact forces in the misalignment direction, numerically and
analytically calculated considering different contact models: both
frictionless and frictional contacts, with and without introducing
tangential effects in the analytical model (curves A–F). Results
showed that tangential and frictional forces play an important
role. The effect of friction forces is to overload the seal whereas

tangential forces tend to decrease resultant contact forces. Good
matching was found between numerical results (E) and analytical
results for an ideal frictionless sealing system (C). Thus, it can be
concluded that tangential forces acting on the seal are mandatory
inputs to complete the analytical model; they should not be
ignored. By contrast, numerical simulation results for a frictional
contact model (F) and analytical results considering friction
between counterparts (D) did not show a good correlation at
low eccentricity values. Furthermore, as seen in Fig. 13, numerical
results underestimate contact forces for rod misalignments lower
than 0.07 mm. Tasora et al. [14] found that radial shaft seals show
a high slope ramp at low radial displacements. Hence, it is thought
that the major sources of discrepancies between results at low
misalignment values could be: the simulation procedure itself,
followed to solve the initial preload of the seal (Fig. 7), and/or the
omission of stick-slip effects.

Experimental results were used in order to validate the
analytical model proposed in this work. It was found a good
correlation between experimental and the analytical results of the
model that includes tangential and frictional effects, i.e. frictional
contacts, should be assumed. Fig. 14 shows a comparison between
experimental, numerical and analytical results, (D), and it also
presents the error between analytical and experimental results in
absolute terms. The maximum difference between the analytical

Fig. 11. Reaction and tangential forces in a seal section as a function of mounting
interference or compression.

Fig. 12. Radial contact forces in the sealing lip as a function of circumferential
position and rod eccentricity value.

Fig. 13. Analytically (Theor.) and numerically (FEM) obtained contact forces vs.
misalignment.

B. Pinedo et al. / Tribology International 78 (2014) 68–74 73



and experimental results in absolute terms is approximately 6.4 N,
which occurs for the highest misalignment.

5. Conclusions

A procedure to develop an eccentricity tri-dimensional analy-
tical model of seals was herein presented. Aim of this work was to
study the effect of an incorrect mounting on seals. In this case, an
eccentricity model of a rod lip seal built in TPU was developed.
Results showed that small rod mounting eccentricities lead to
significant changes under contact conditions between the rod and
the seal. Moreover, an eccentric mounting of just 0.2 mm results in
a very irregular contact force distribution, where the maximum
contact forces could even triple the minimum ones. Thus, although
lip seal geometry itself facilitates its adaptation to low eccentri-
cities, an increment of contact forces involves a reduction of the
expected seal life. This fact evidences the importance of taking into
account possible eccentricity effects when studying specific seal-
ing systems.

The built model includes: a geometrical interference model,
and tangential, friction and normal reaction forces between the
seal and the rod. A static case was considered in the absence of
supply pressure. A satisfactory matching was found between
experimental and analytical results. Hence, this method could be
a viable tool to calculate the contact force distribution on seals in
order to avoid high computational costs and long times of
numerical simulations. Moreover, the procedure herein presented
can be applied to other seal geometries and materials, and it could
be useful for design purposes.

It is thought that the main cause of differences in results could
be that the analytical model does not include properties such as
viscoelasticity and stick-slip effects, very important when working
with elastomeric materials. Future developments will address

friction and accelerated life tests carried out on a suitable test
rig [19]. Actual working conditions of lip seals will be reproduced
including reciprocating motion, supply pressure and a specific
mounting misalignment. Possible effects of temperature due to
frictional heating will be also studied.
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a b s t r a c t

Tribological behavior of PTFE composites is well known to be affected by factors depending mainly by
matrix and filler properties. However, the mechanism taking place has not still been fully explained.
In this work, the attentionwas focused on the variation of crystallinity due to the presence of fillers and it
was connected with the transition phases to which the PTFE is subjected. In particular, a simplified
frictional heating calculation method was used for estimating the maximum contact temperature and
results were connected with differential scanning calorimetry analyses (DSCs).

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Reduction of lubricants is a goal of great importance in many
tribological applications nowadays. One of the materials most used
to this purpose is Polytetrafluoroethylene (PTFE), well known for
its tribological characteristics, in particular its low friction, the
quasi-absence of sticking effect, its resistance to high temperatures
and good compatibility with several chemical products.

These semicrystalline polymers have a microstructure with a
specific orientation of the chains which is formed during the final
steps of the production process and affects their ultimate tribolo-
gical properties.

In the market of polymers for tribological applications compo-
sites and nano-composites are continuously added for satisfying
requests coming from industry regarding enhanced mechanical
properties.

New (nano)-composites are continuously introduced on the
market to meet industry demands.

One of the main bottle necks of these materials is their thermal
resistance. Most of them only have a limited resistance to heat,
causing a reduction in life time.

Starting from a previous study carried out by the authors [1]
and considering the results of Tzanakis et al. [2] this paper deals
with the correlation between crystallinity and tribological beha-
vior of PTFE composites. PTFE exhibits complex crystalline phase
behavior: at atmospheric pressure three crystalline structures

(phase II, IV and I) are observed with transition between them
occurring at 19 and 30 1C (Fig. 1), the first few working cycles in
practical situations.

Brown, Dattelbaum [3] found that crack propagation in PTFE is
strongly phase dependent with a brittle-to-ductile transition in
the crack propagation behavior associated with the two room
temperature phase transitions.

According to Persson's investigation [4], due to the strong
temperature dependence of viscoelastic properties of rubber-like
materials, local temperature calculation should be considered
in order to explain the frictional behavior of the tribo-pair, so an
estimation of flash temperature at the polymer to metal contact
surface is herein proposed for a better understanding of the
tribochemical and tribophysical phenomena occurring at the
contact.

Aim of this study is to explain the link between structural
information and wear mechanism using considerations on fric-
tional heating at the contact surface formulated earlier by the
authors [5]. The structural state of the polymer (its crystallinity)
not only affects its physical properties such as density, perme-
ability and thermal characteristics [6], but also its tribological
properties, and adds information to the transfer film material
concept, investigated thoroughly by Bahadur [7].

The introduction of fillers into a crystalline polymer matrix,
changes many factors simultaneously, which have dissimilar
dependence on composition and filler characteristics. This makes
it very difficult to determine the dominating factor affecting the
polymers tribological characteristics. In this work Differential
Scanning Calorimetry is used which was demonstrated earlier by
Wang et al. [8] to be useful for studying crystallization kinetics of
polymers.
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A better understanding of the material behavior could provide
important input to experimental testing of components and
integrating knowledge coming from laboratory tests [9–11].

2. DSC analysis and tribological tests

Four PTFE samples were considered (Table 1). In particular,
carbon and bronze fillers enhance the load carrying capacity of the
virgin PTFE but crystallinity is much different. Crystallinity of glass
fibers composite is similar to crystallinity of carbon filled PTFE but
the former has lower load carrying capacity and the latter higher
thermal conductivity. The PTFE samples were prepared by com-
pression molding of powder mixtures of PTFE and filler, followed
sinterization and cooling. The PTFE dispersion has a median
particle size of 0.25 μm; the average carbon particle diameter is
about 10–25 μm; the average bronze particle size is about 25 μm;
the glass fibers have a diameter of about 5 μm and a length of
about 90–120 μm. The density of the PTFE composites is in the
range 2.15–2.20 g/cm3, the density of PTFE with bronze is about
3.8–4.0 g/cm3. PTFE composites with carbon, bronze and glass
fibers fillers were chosen in order to evaluate the effect of their
presence and their different ways of acting. Optical microscopy
was used for investigating the worn surface.

2.1. DSC analysis

Differential Scanning Calorimetry (DSC) was used to study the
thermal transition of the polymers and to evaluate the crystallinity
of the semi-crystalline materials. The dimension of the crystals
depends on the mobility of the polymeric chains. This mobility is
higher at higher temperatures, and is influenced by the content of

fillers and their nature. The test samples were warmed up and
cooled down again from 30–350 1C with a cooling/heating rate of
10 1C/min in inert environment of N2.

2.2. Tribological tests

The PTFE composites (sample dimensions: longitude 18 mm,
length 14 mm, width 5 mm) were tested in sliding contact against
a quenched tempered CrVNiMo rod (15 mm diameter, 22 mm
length) of HRC 46071 and surface texture according to the
standard D6425-02 as represented in Fig. 2. A PTFE sample (1) is
mounted on a frame (2) and loaded by an axially sliding rod
(3) supported and fixed by two holders (4) on which normal
constant load W is applied and transmitted to the axis of the rod.
The holders and a couple of screws avoid rotation of the rod
around its axis. The system is located in a climate chamber in
order to set temperature and humidity percentage. Normal load
was set on 50 N for the first 30 s and then at 100 N, 60 Hz
frequency and 2 mm stroke for each sample. Coefficient of friction
(CoF) was recorded at regime condition for 30 min; each test was
repeated 2–3 times. Corresponding frictional energy was esti-
mated analytically and reported vs mass loss.

3. Results and discussion

Fig. 3 represents the trends of the friction coefficients along the
time. At regime, formation of a transfer film on the rod causes a
relatively steady friction coefficient for all the tested grades,
indifferent to the presence of fillers.

As previously explained by the authors in [5] the transfer film,
and consequently the friction properties, are greatly influenced by
the prevailing interfacial temperature and also by the kinematics
of the relative motion between the two bodies.

The temperature at the interface between rubbing bodies
is known as “surface conjunction temperature”; the calculation
of this temperature is possible by applying the laws of energy
conservation and heat transfer. In fact, most of the energy
dissipated during the process of friction is converted into heat
[12] resulting in local temperature rise called “flash temperature”
that could be divided into transient and steady state flash
temperature rise. As reported by Bowden and Tabor [13] in dry
contacts the transient flash temperature may become larger than
the steady state component. The flash temperature calculation
method was formulated firstly by Block [14] and then improved by
Jaeger [15] and Archard [16]. It provides a set of formulae for
various velocity ranges and contact geometries and it is based on
the following assumptions: (1) a planar source of heat is con-
sidered; (2) a steady state condition is attained; (3) the thermal
properties of the bodies do not change with temperature; (4) the
coefficient of friction is known and reaches a steady value.

A well-defined friction dependent heat source at the contact
between the two bodies in stationary condition is herein consid-
ered suitable. The component of energy lost in deformation of the
bodies can be considered negligible due to the high mobility of the
polymeric chains, and an appropriate test configuration (like high
velocity reciprocating movement on a short stroke) could avoid
the calculation of the Peclet number [14]. Furthermore, the
experimental curve of the coefficient of friction can be used in
the calculation allowing involving a direct correlation with the
work done by the friction force, expressed as:

E¼WvμðtÞ ð1Þ

where μ is the coefficient of friction, W the normal load and v the
sliding velocity. The contact temperature can be then described as

Fig. 1. PTFE phase diagram at low pressure.

Table 1
PTFE samples relative crystallinity.

Sample ΔHf (J/g) Relative
crystallinity (%)

Mass loss
(mg)

Wear specific
energy (MJ/g)

(1) PTFE 27.80 68 5.3 1.8
(2) PTFEþ25 wt%

carbon
19.09 47 0.4 26.5

(3) PTFEþ60 wt%
bronze

11.73 29 13.0 1.1

(4) PTFEþ25 wt%
glass fibers

18.91 46 0.7 14.2
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function of the time by:

Tf maxðtÞ ¼
2EðtÞ
KA

ffiffiffiffiffiffiffiffiffi
2χb
πA

r
ð2Þ

where E is the frictional energy (work done by the friction force),
K is the thermal conductivity, χ the thermal diffusivity, A the
contact surface (the cylindrical sector of the contact zone at the
end of the test, being not reliable to measure or to hypothesize its
evolution over the time) and 2b the contact width. The following
assumptions are made: (a) a well-defined friction dependent heat
source at the contact between the two bodies in stationary
condition is considered as suitable approximation of the real
situation; (b) the component of energy lost in deformation of
the bodies can be considered negligible due to the high mobility of
the polymeric chains, and an appropriate test configuration (like
high velocity reciprocating movement on a short stroke) could
avoid the calculation of the Peclet number; (c) the experimental
curve of the coefficient of friction can be used in the calculation,
having as result a direct correlation with the work done by the
friction force; (d) thermal properties are considered constant
(it was shown by the authors in [17] that non-constant thermal
properties only lower the running in the temperature calculation).
This matter will be investigated in more depth elsewhere.

Maximum surface temperature is then calculated with the
following equation:

Tcontact ¼ TbulkþTf max ð3Þ

In the first few seconds of the experimental tests, temperature
increases rapidly, reaching and passing the transition point where
the material converts into a pseudo-hexagonal disordered phase
from a partially ordered hexagonal phase. After this initial rise,
temperature drops again and settles somewhere around 50–100 1C
as can be seen in Fig. 4.

PTFE fails along weak intermolecular bonds due to the minor
temperature rise which involves slippage of crystalline formations
of the bond structure.

In other words, temperature is quite stable as equilibrium is
reached between the heat dissipated and the heat generated. As a
consequence, the carbon-to-fluorine bonds, which have high bond
dissociation energy, are broken.

The energy that is generated as a consequence of the frictional
contact can be dissipated (conversion to heat, vibration, material
deformation, and new surface creation) or stored into the tribosys-
tem. Therefore, materials exhibiting the same friction coefficient can
have different wear rates if the energy is partitioned differently
between and within the materials. Both friction coefficient and wear

Fig. 2. Test rig configuration.

Fig. 3. Coefficient of friction along the tests. Fig. 4. Calculated contact temperature.
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rates are needed for a good understanding of the test. Specific wear
energy Ew is a criterion that takes into account both: it is the ratio of
frictionwork dissipated at the interface (between the initial time ti and
the time at the end of the test tf) and the mass loss Δm due to wear:

Ew ¼ E
Δm

¼ vW
R tf
ti μðtÞdt
Δm

ð4Þ

where μ is the coefficient of friction, W the normal load and v the
sliding velocity.

The values are shown in Fig. 5.
In Fig. 6 the surface of the four PTFE samples after testing can

be seen. In particular, as expected, in the lower part of the figure,
virgin PTFE (1) shows plucked marks due to the transfer film
formation and subsequent adhesion. The upper part represents the
original (not tested) surface.

The black carbon PTFE composite (2) surface appears smooth and
flat. The self-lubricating properties of the dispersed carbon particles
have prevented abrasion. Faint scares are visible and attributed to the
deformation occurring due to the high dynamics of the test.

Bronze filled PTFE (3) is characterized by a severe wear due to
the displacement of the bronze particles in the bulk matrix. The
bronze particle appears flattened and not very well sunk into the
matrix. The regeneration of the transfer layer is more difficult as
the countersurface is abraded during the sliding friction.

Glass fiber filled PTFE (4) presents a uniform contact surface
where the fibers are well sunk in the bulk matrix and oriented in
the sliding direction after few cycles. The damage created by the
glass fibers during the test can be seen in Fig. 7.

In general, PTFE is transferred in the form of flakes of very small
size during the initial period of friction, due to its change of phase.
Other mechanisms are also involved in the transfer layer forma-
tion; therefore, a better understanding of this behavior needs
further information coming from DSC analysis. The thermal traces
in Fig. 8 can be interpreted beginning with the concept of the heat
of fusion: the ratio between the total heat input (the area between
the melting peak and the linear extrapolation of the curve after the
glass transition) and the mass of the sample. It represents the
amount of heat absorbed per unit mass of the material during
melting. The thermal traces in Fig. 8 show no additional reaction
between the filler materials and the matrix and no variation in the
position of the transition-melting peak. On the other hand, the
heat of fusion of the bulk PTFE polymer is significantly greater
than that of the bulk composites. This indicates a higher thermal
stability for the pure polymer even if great importance has to be
given to the slope of the samples (1), (2) and (3) between the glass
transition phase and the starting of the melting transition phase
(approximately between 30 and 290 1C) and related reduction of
the supplied heat flow. After glass transition, in fact, polymers

have high mobility increasing their temperature up to creating
ordered dispositions called crystals and subsequently they release
heat. Observing the behavior of the PTFE composite (4), it seems
that glass fibers constrain the polymer chains more than carbon
and bronze particles probably due to their larger size and content
in wt%, introducing a higher level of stability.

The first important information is that the melting temperature
is not dependent on the filler content and type of filler while
PTFE crystallinity changes as reported in Table 1. The crystallinity
fraction χc was calculated as:

χc ¼ΔHm=ΔHm0 ð5Þ
where ΔHm0 is the enthalpy of fusion of a sample of the same
polymer fully crystalline. However, this value cannot be experi-
mentally determined due to the difficulties in obtaining fully
crystalline samples. Its value was assumed to be 80 J/g in accor-
dance with literature [18,19].

In the working range temperature the slope of the DSC curve
indicates the formation of small crystals during the cooling phase.
The direct consequence is that a reduced amount of energy is needed
in order to break such crystals: the work done by the friction force is
mainly dissipated in heat and deformation which concur to the
regeneration of the transfer film and the wear of the polymer.

As can be seen from Table 1, the relative crystallinity of bronze
filled PTFE is low as the matrix is mainly occupied by bronze particles
avoiding the formation of large crystals. As a consequence, wear rate
is extremely high. Furthermore, the coefficient of friction reaches high
values due to the sliding of the hard phase against the counterpart.

Black carbon particles, in addition to their lubricating proper-
ties, allow the formation of large crystals and gives better heat
dissipation, that is, more energy is needed to break them.

Glass fibers play the same role of black carbon fillers but a
slight difference is given by the transversal position of such fibers
into the polymer matrix.

Crystallinity of virgin PTFE is the highest, but well known
conformation of alternated amorphous and crystalline parts
results in their relative sliding facilitating wear.

4. Conclusions

Wear of PTFE composites is regulated by different factors
depending on:

� Matrix properties;
� Fillers properties.

Fig. 5. Tribological behavior of PTFE composites.

Fig. 6. SEM images of the worn PTFE surfaces: following the same numbering of Table 1.
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The presence of fillers does not affect the polymer melting
point and the transition phase points but plays an important role
in strengthening of the bulk PTFE and on its tribological behavior.
In particular, if the fillers are more thermally conductive, the
frictional heating is less as heat is conducted away more effec-
tively. As a consequence less heat is available to break crystals.
Glass fibers and black carbon particles reduce frictional heating by
about 10% with respect to the virgin PTFE as they dissipate faster
the heat through the polymer. Modeling of the heat flow gener-
ated by friction force permits the following considerations:

1. The presence of fillers increases the stability of the structure
improving the wear resistance;

2. The increment in thermal conductivity and diffusivity improves
wear resistance of the material to adhesion;

3. Bronze and glass fibers fillers can reduce the wear mass loss of
PTFE under dry conditions significantly but their large size can
affect the countersurface and the transfer film;

4. Carbon filled PTFE has good a combination of thermal char-
acteristics and structure due to the small size of carbon
particles.

Transition phase at low temperature (from hexagonal to
pseudo-hexagonal crystals) allows the formation of the transfer
layer, while the crystallinity of the polymer participates in its
regeneration.

When polymer composites are considered, thermal character-
istics should be checked with respect to temperature and,

furthermore, frictional heating calculations should be carried out
when a hard filler is present in the bulk material.
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a b s t r a c t

New composites and nano-composites polymers are continuously developed satisfying more and more
exigent demands in terms of mechanical and tribological properties. Nevertheless a wide working
velocity range has been achieved; one of the main bottlenecks of these materials is related to their
thermal resistance. Semi-crystalline materials have a wide range of temperature; however, their operative
life decreases exponentially with increasing temperature. For several applications, knowing the contact
temperature can give a considerable help in choosing the right polymer to be used. An adequate frictional
heating calculation based on Block and Jaeger equations is herein proposed matching experimental tests
configuration at laboratory scale and theory to overtake restrictive assumptions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Frictional heating calculation in metal to metal contact has
been deeply investigated and accordingly many reviews have
shown it is still not well defined and the contact conditions vary
in time and location [1,2]. In [3] a comparison of some calculation
model was presented showing high disagreement between the
results, due to two important concepts: the right way to calculate
the contact area and the variation of the materials properties with
temperature, both to be included in the equations. In polymer to
metal contact, the first assumption does not affect calculations
otherwise temperature reached at the asperities contact would
overtake the melting point of the materials. Nevertheless the
coefficient of friction, which enters calculation to the first power,
is still of great importance. In metal to metal contact, flash
temperature was estimated determining the phase transforma-
tions and microstructural changes in materials and relating them
with the temperature needed for these transformations [4,5]. In
polymer to metal contact, the authors [6] have used a Differential
Scanning Calorimetry (DSC) technique [7–10] to evaluate the
effects of fillers on the crystallinity ratio of some PTFE (Polytetra-
fluoroethylene) composites, and observed relevant structural
changes at the polymers contact surfaces. It was also observed
in [11] how the crystallinity of transfer film was higher than the
bulk material. According to Persson’s investigation [12], due to

the strong temperature dependence of viscoelastic properties of
rubber-like material, local temperature calculation should be
considered in order to explain the frictional behavior of the
tribo-pair, so an estimation of flash temperature at the polymer
to metal contact surface is herein proposed for a better under-
standing of the tribochemical and tribophysical phenomena
occurring at the contact. Direct experimental measurement of
contact temperature is not viable due to different reasons [13,14].
Taking into account the low diffusivity of this kind of materials, a
high velocity thermo camera has been seen to be a good but
expensive tool [15]. A frictional heating calculation method for
polymers based on tailored experimental tests is herein presented.
Aim of this work is to propose a reliable and cheap method for
estimating at laboratory scale the frictional heating of polymer to
metal contact. First of all, the assumptions limiting one of the most
suitable methods have been overtaken by means of an opportune
experimental configuration. Particular attention has been then
given to the variation of the thermal characteristics of the polymer
and to the evolution of the friction force.

A first validation of the method is proposed for PTFE material. In
particular, it was chosen due to four reasons: 1) because of its high
resistance to high temperature with a melting point of about
330 1C; 2) because of its particular case to have two phase transi-
tions in the range 19–31 1C; 3) because the fluorine chains are not
cross linked like in the elastomers, so the mechanical work done for
overtaking the friction force can be considered quasi-entirely
transformed in frictional heating [16]; and 4) to have a correspon-
dence with experimental tests found in the literature [15].

This method can have not only a practical use in the selection of
the most appropriate materials for industrial applications like
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seals, bearings and slides, but it can also play an important role in
choosing the most opportune operative parameters (velocity,
break time, maintenance, etc.).

2. Contact temperature calculation method

The temperature at the interface between rubbing bodies is
known as “surface conjunction temperature” [17]; the calculation
of this temperature is possible by applying the laws of energy
conservation and heat transfer. In fact, most of the energy
dissipated during the process of friction is converted into heat
[17] resulting in local temperature increment called “flash tem-
perature” that could be divided into transient and steady state
flash temperature rise. As reported by Bowden and Tabor [18] in
dry contacts the transient flash temperature may become larger
than the steady state component. The flash temperature calcula-
tion method was formulated firstly by Block [19] and then
improved by Jaeger [20] and Archard [5]. It provides a set of
formulas for various velocity ranges and contact geometries and it
is based on the following assumptions: 1) a planar source of heat is
considered; 2) a steady state condition is attained; 3) the thermal
properties of the bodies do not change with temperature; and 4)
the coefficient of friction is known and reaches a steady value.

The following hypotheses are considered for the calculations:

a) the heat source considered corresponds to the final contact
area and it is friction dependent;

b) the component of energy lost in deformation of the bodies can
be considered negligible due to the high mobility of the
polymeric chains, and an appropriate test configuration (like
high velocity reciprocating movement on a short stroke) avoids
the calculation of the Peclet number [17];

c) the thermal properties of the bodies change with temperature;
d) the experimental curve of the coefficient of friction can be used

in the calculation, having as result a direct correlation with the
work done by the friction force as shown in the following
equation:

Q ðtÞ ¼ μðtÞWv ð1Þ
where μ is the coefficient of friction, W is the normal load and v is
the sliding velocity. The contact temperature can be then
described also as a function of time as follows:

Tf maxðtÞ ¼
2Q ðtÞ
KA

ffiffiffiffiffiffiffiffiffi
2χb
πv

r
ð2Þ

where K is the thermal conductivity, χ is the thermal diffusivity, A
is the contact surface and 2b is the contact width. Both K and χ are
temperature dependent, so the maximum flash temperature is
also a function of temperature itself, Tfmax¼Tfmax(t, T), and they
should be evaluated experimentally. The contact area considered
for calculations in Eq. (2) is the cylindrical sector of the contact
zone at the end of the test, being not reliable to measure or to
hypothesize its evolution over time: it means that the calculated
temperature was under-estimated.

Eqs. (1) and (2), thus, describe the progressive evolution of the
work done by the friction force and the temperature evolution at
the contact. Maximum surface contact temperature Tcontact is
calculated considering the following equation:

Tcontact ¼ TbulkþTf max ð3Þ

where Tbulk is the bulk temperature of the sample before entering
the contact.

The energy that is transformed as a consequence of frictional
contact can be dissipated (conversion to heat, vibration, material
deformation, new surface creation) or stored into the tribosystem.

Specific wear energy (Ew) is a criterion which takes coefficient of
friction and wear rate into account: it is the ratio of the friction
work spent in the interface along the test (between the initial time
ti and the time at the end of the test tf) divided by the mass loss
(Δm) due to the wear as shown in the following equation:

EW ¼ Q
Δm

¼ vW
R tf
ti
μðtÞ dt

Δm
ð4Þ

The amount of material removed from the surface is a function of
the energy expended on it by the friction force.

3. Experimental setup and specimens

3.1. Specimens

Polytetrafluoroethylene (PTFE) is a well known semicrystalline
polymer having relevant tribological characteristics, in particular
low friction and quasi-absence of sticking effect, high resistance to
temperature and good compatibility. Compared to other polymers,
PTFE has high density and high melting point (around 330 1C).

According to the information obtained from the producer
(Polifluor, 20159 Asteasu, Spain), the PTFE sample comes from a
process of compression molding of the PTFE powder with sub-
sequent sinterization and cooling. The PTFE dispersion has a
median particle size of 0.25 μm. The thermal properties of the
samples are reported in Table 1.

The PTFE undergoes several phase changes at atmospheric
pressure from sub-ambient temperature to the melting point. DSC
analysis was carried out by heating the sample in the temperature
range of 30–350 1C with a heating rate of 10 1C/min (Fig. 1) using
nitrogen as inert gas.

Above 30 1C the material converts into a pseudo-hexagonal
disordered phase from a partially ordered hexagonal phase, so
thermal diffusivity temperature dependence above 25 1C is low
[9]. Therefore the thermal properties of virgin PTFE cannot be
considered to be independent of temperature; measurement of its
diffusivity, specific heat and density is needed.

Table 1
Thermal properties of virgin PTFE.

Property Value

Thermal conductivity K at 30 1C (W/m K) 0.14
Thermal diffusivity χ (m2/s) 1.11e�7

Melting temperature Tm (1C) 330
Heat of fusion H (J/g) 24.80

Fig. 1. DSC analysis of virgin PTFE.
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Thermal diffusivity (χ) of PTFE was measured by means of a high
resolution ac photopyroelectric calorimeter in the standard back
detection configuration. A mechanically modulated He–Ne laser beam
of 5 mW illuminates the upper surface of the sample under study. Its
rear surface is in thermal contact with a 350 μm thick LiTaO3 pyro-
electric detector with Ni–Cr electrodes on both faces, by using an
extremely thin layer of high heat-conductive silicone grease (Dow
Corning, 340 Heat Sink Compound). The photopyroelectric signal is
processed by a lock-in amplifier in the current mode.

Heat capacity (Cp) of PTFE was measured in a modulated
differential scanning calorimeter MDSC, TA Instruments, series
Q200. Dry nitrogen was used for venting at a rate of 50 ml/min.
The measurement was conducted within a range comprised
between 0 1C and 100 1C, when a constant value is reached.

Density (ρ) of the PTFE was measured by means of a METTLER
Toledo XP205 precision micro-scale using the Archimedes’ princi-
ple and it was found to be of about 2.104 g/cm3.

Measuring the heat capacity, the thermal diffusivity and the
density of the material, thermal conductivity (κ) along tempera-
ture was estimated by means of the following equation:

κ ¼ χρCp ð5Þ

Fig. 2 shows the changes of the PTFE thermal characteristics
due to the temperature increment, especially around the ambient
temperature. Such behavior can be easily linked to the phase
changes experienced by the material [22].

It can be appreciated as the values reported in Table 1 do not
completely agree with the measured data.

3.2. Test configuration

The PTFE samples have dimension as follows: 15 mm length,
12 mmwidth, 5 mm depth. The virgin PTFE was tested in the High
Frequency Oscillating Tribometer “SRV” against a quenching tem-
pered CrNiMo rod (15 mm diameter, 22 mm length) of HRC4
6071 and surface texture following the standard D6425-02.

Friction and wear tests are carried out in the test rig represented
in Fig. 3: a PTFE sample (1) is mounted on a frame (2) and blocked for
2/3 of its depth. It is loaded by an axially sliding rod (3) supported
and fixed by two holders (4) on which normal constant load is
applied and transmitted to the axle of the rod. The so formed tribo-
pair is placed in a climatic chamber 2 h before the test where
temperature is maintained at 25 1C and relative humidity at 25%.

The holders and a couple of screws avoid rotation of the rod
around its axle. Normal load was set on 50 N for the first 30 s and
then at 100 N, 2 mm stroke and maximum sliding velocities v of
about 0.1, 0.16 and 0.24 m/s. The velocities were chosen consider-
ing the working conditions of the application. Coefficient of
friction (CoF) was recorded at regime condition for 30 min. Three
repetitions have been conducted.

4. Results and discussion

In the first step the influence of sliding velocity on the frictional
behavior of virgin PTFE was studied. As can be appreciated in
Fig. 4, the influence of velocity on frictional behavior of virgin PTFE
is negligible. The mass loss measured at the end of the experi-
mental measurements is of the same order of magnitude. The
work done by the friction force at the three velocities is almost the
same. It can be explained by considering that the major part of
such work is done in the running in cycles [21,22].

Considering the thermal transition curves of PTFE composites
in Fig. 1 it is possible to see how the PTFE material can be affected
by the heat flux generated at the contact. In particular the small
crystals formed in that range of temperature start wear processes.
In fact, the small crystals formed at lower temperature are
destroyed resulting in flakes separation being less stable: PTFE
fails along weak intermolecular bonds due to the minor tempera-
ture rise which involve slippage of crystalline formations of theFig. 2. Virgin PTFE thermal characteristics.

Fig. 3. Test rig configuration.
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bond structure. In other words, the increment of temperature at
the contact, due to the low thermal conductivity of the polymer,
plays an important role in the wear process of the surface.

Bulk temperature was considered to be of about 25 1C as the
sample has been placed in the climatic chamber for 2 h before the test.
The calculation of the contact temperature, considering thermal
diffusivity and consequently thermal conductivity constants, results
in a regime contact temperature values slightly below 60 1C (Fig. 5,
green color axes). On the other hand, recalculation of the flash
temperature considering the variation of the PTFE’s thermal properties
implies finding higher regime contact temperature (Fig. 5, red color
axes) [15]. It remarks a 40% difference in calculations. The actual
working temperature is then much higher than expected, reducing
consistently the working hours expectation of the polymeric mate-
rial. The authors do not exclude that when the polymer becomes
softer, the energy dissipated in deformation is higher.

The work done by the friction force and the mass loss is
reported in Table 2. Wear specific energy was calculated according
to Eq. (4).

In the initial stage of the test the high degree of lateral mobility
of PTFE chains quickly induces molecular orientation in the sliding
direction. This phenomenon is also aided by a PTFE smooth linear
molecular profile and ability of the electron clouds of the large

fluorine ions to screen bonding forces between neighboring
molecules. The measured dynamic friction coefficient is directly
related to the molecular structure of the polymer. PTFE, which is
composed of rigid rod-like molecules with a smooth molecular
profile, shows a low coefficient of friction because of an easy slip
between the aligned molecule chains at the interface [16].

Before the test, the polymer surface is bevelled and irregular
(Fig. 6a) while the steel surface has the surface finishing due to its
machining (Fig. 7a). During the sliding, adhesive wear is generated
as a consequence of PTFE molecular reorientation in the direction
of sliding. Such reorientation occurs for the surface of PTFE in
contact with the countersurface (Fig. 6b) as well as for the transfer
film that is deposited on the countersurface (Fig. 7b). The plucked
marks shown in Fig. 6b are due to the transfer film formation and
subsequent adhesion . The reorientation of the polymer chains can

Fig. 4. Friction test results at different sliding velocities, work done by the
respective friction forces Q (gray bars) and wear specific energy Ew (black bars).

Fig. 5. Coefficient of friction and calculated contact temperature evolution of the
PTFE sample. The small figure represents the “zoom in” of the first 70 s. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 2
Work done by the friction force, mass loss and
relative wear specific energy during the tests.

Calculated and measured factors Values

Frictional energy Q (MJ) 9.0
Mass loss Δm (mg) 5.3
Wear specific energy Ew (MJ/g) 1.70

Fig. 6. SEM captions of PTFE contact surface before (a) and after (b) the
tribological test.
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be clearly appreciated at the interface between the wear scar and
the non-contact surface in the same figure. A stable transfer layer
promotes stable low friction and low wear.

In Fig. 7 SEM captions show a relevant change in the counter-
surface due to the presence of the transfer layer: in Fig. 7d, that is,
the caption of the steel surface after the test, the Fluorine peak
appears in the EDS spectrum as a proof of the transfer layer
formation. All the other elements of the steel maintain the same
proportions found in the spectrum taken in the non-contact area
of the steel sample (Fig. 7a).

5. Conclusions

The method presented in this paper allows estimating the
actual contact temperature range during actual working condi-
tions of a polymeric component sliding on a steel surface starting
from laboratory scale tests. Said tests are tailored to the calculation
model of Block and Jaeger in order to overtake its limitations.

This tailored experimental configuration allows considering:

� a planar stationary heat source at the contact;
� the evolution of the coefficient of friction along the time;
� the variation of the thermal properties of the materials with

temperature.

The calculation method needs as inputs: the test parameters
(velocity, ambient temperature, stroke opportunely chosen,

normal load), the final area of the wear scar, the coefficient of
friction evolution vs time and the thermal characteristics of the
polymer vs temperature. Surface finishing, material hardness and
other parameters are indirectly included as per their effect on the
coefficient of friction. The analytical calculation method was
applied to a virgin PTFE polymer knowing all its thermal char-
acteristics. It was demonstrated how the use of constant thermal
characteristics could result in an under estimation of the frictional
heating resulting, in some cases, in an unexpected failure of the
component.

The calculation methods can be considered to be a useful tool
to understand the real behavior of rubbing polymers in several
applications like, for example, seals. When polymer composites are
considered, frictional heating calculations should also be carried
out when a hard phase present in the bulk material is rubbing
against the countersurface as shown in [23].
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