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The asymptotic stability with a prescribed degree of time delayed systems subject to mul-
tiple bounded discrete delays has received important attention in the last years. It is basi-
cally proved that the α-stability locally in the delays (i.e., all the eigenvalues have prefixed
strictly negative real parts located in Re s≤−α < 0) may be tested for a set of admissible
delays including possible zero delays either through a set of Lyapunov’s matrix inequali-
ties or, equivalently, by checking that an identical number of matrices related to the de-
layed dynamics are all stability matrices. The result may be easily extended to check the
ε-asymptotic stability independent of the delays, that is, for all the delays having any val-
ues, the eigenvalues are stable and located in Res≤ ε→ 0−. The above referred number of
stable matrices to be tested is 2r for a set of distinct r point delays and includes all possi-
ble cases of alternate signs for summations for all the matrices of delayed dynamics. The
manuscript is completed with a study for prescribed closed-loop spectrum assignment
(or “pole placement”) under output feedback.

Copyright © 2006 M. De la Sen. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Stability results

Consider the time-invariant time-delay system

ẋ(t)= A0x(t) +
r∑

k=1

Akx
(
t−hk

)
, (1.1)

where x ∈ Rn is the state vector, hk ≥ 0 (k = 1,2, . . . ,r) are r point constant delays. The
initial conditions of (1.1) are given by any absolutely continuous function ϕ : [−h,0]→
Rn, with possibly finite discontinuities on a subset of zero measure of [−h,0], where h=
max1≤k≤r(hk). The system (1.1) is said to be α-symptotically stable locally in the delays
(α-ASLD) for all hk ∈ [0,hk] for some α∈R+, hk > 0 (k = 1,2, . . . ,r) (i.e., all the roots of
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Det(sI −A0−
∑r

k=1Ake−hks )= 0 lie in Res≤−α < 0), see [1–5]. The following result was
proved in [5].

Result 1.1. The system (1.1) is α-ASLD if there is a real n-matrix P = PT > 0 such that the
following Lyapunov’s matrix inequality holds

PA0 +AT
0 P +

[ r∑

k=1

±ehkα (PAk +AT
k P

)
]

m

≤−2αP (1.2)

for m = 1,2, . . . ,2rρ ∈ [−|ρ0|,0), where [±]m denotes all possible 2r cases of alternating
sign. The system (1.1) is asymptotically stable independent of the delays if

PA0 +AT
0 P +

[ r∑

k=1

±(PAk +AT
k P

)
]

m

< 0. (1.3)

Result 1.1 was proved based on the subsequent technical fact also proved in [5].

Fact 1.2. For any set of symmetric constant n-matrices {Tk; k = 0,1, . . . ,r}, the inequality

T0

r∑

k=1

ηkTk ≤−2αP (1.4)

holds for some α ∈ R+, a real n-matrix P = PT > 0, and all real ηk ∈ [−ηkM ,ηkM] (k =
1,2, . . . ,r) if and only if it holds at the 2r vertices of the hyper-rectangle:

H :=
{
η = (

η1,η2, . . . ,ηr
)T ∈Rr | ηk ∈

[−ηkM ,ηkM
]
; k = 1,2, . . . ,r

}
. (1.5)

The following technical lemma will be then used to prove the main results.

Lemma 1.3. A set of r real matrices Ai (i = 1,2, . . . ,r) consists of stability matrices with
stability abscissas (−αi) < 0 if and only if the set of r Lyapunov’s matrix inequalities

AT
i P +PAi ≤−2αP; i= 1,2, . . . ,r, (1.6)

hold for any real constant α ∈ (0,Min1≤i≤r(αi)] provided that Min(αi)1≤i≤r is sufficiently
large.

Proof. Assume that all the Ai are stability matrices with stability abscissas (−αi) < 0 then
(Ai +αiI) are stable matrices and

(
AT
i +αiI

)
P +P

(
Ai +αiI

)
< 0 (1.7)

for i= 1,2, . . . ,r, all real n-matrix P = PT > 0 then

AT
i P +PAi ≤−2αiP ≤−2αP < 0 (1.8)

for i= 1,2, . . . ,r and all α > 0 as specified. To prove the converse, consider three cases for
(1.7) to fail and then proceed by contradiction.
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Case 1. Assume (AT
i +αiI)P +P(Ai +αiI) > 0 for at least one i∈ {1,2, . . . ,r}. Thus, (Ai +

αiI) is unstable from Lyapunov’s instability theorem and one of its eigenvalues has posi-
tive real part. Thus, the stability abscissa of Ai exceeds (−αi) which leads to a contradic-
tion.
Case 2. Assume (AT

i +αiI)P +P(Ai +αiI)= 0 for at least one i∈ {1,2, . . . ,r}. Consider the
linear and time-invariant system ẋ(t) = (Ai + αiI)x(t) for any bounded x(0) = x0 ∈ Rn

with a Lyapunov-Razumikhin function candidate V(x) = xT(t)Px(t), some real matrix
P = PT > 0. It turns out that

V̇(x)≡ 0=⇒V(x)=V(0) <∞=⇒ ∥∥x(t)
∥∥2

2 ≥ λmin
(
P−1)V(0) > 0 (1.9)

for any x0 	= 0. Thus, it turns out that x(t) cannot tend to zero as t→∞ if x0 	= 0 and then
(Ai + αiI) is not a stability matrix and thus the stability abscissa of Ai is less than (−αi)
what again leads to a contradiction.
Case 3. Assume that (AT

i +αiI)P + P(Ai +αiI) is indefinite. Decompose Ak = Ai +ΔAki

for some 1≤ k ≤ r and all 1≤ i 	= k ≤ r. Thus for any positive definite symmetric square
n-matrix Q, there exists a positive definite matrix P such that

(
AT
k P +αkI

)
P +P

(
Ak +αkI

)

=
(
AT
i P +αiI

)
P +P

(
Ai +αiI

)
+
(
ΔAT

kiP +PΔAki

)
+ 2

(
αk −αi

)
P

=−Q+
(
ΔAT

kiP +PΔAki

)
+ 2

(
αk −αi

)
P

(1.10)

with P = ∫∞
0 e(AT

i +αiI)τQe(AT
i +αiI)τdτ satisfying Q =−(AT

i P +αiI)P−P(Ai +αiI).
Note that λmax(P) ≤ K2/2(ρi +αi) for some real constant K ≥ 1 with (−ρi) < 0 being

the stability abscissa of Ai. Thus,

(
AT
k P +αkI

)
P +P

(
Ak +αkI

)
< 0 if λmin(Q) > 2

(∥∥ΔAki

∥∥
2 +

(
αk −αi

))
λmax(P) (1.11)

what is guaranteed if

1≥ λmin(Q)
λmax(Q)

≥ K2

ρi +αi

[∣∣αi−αk
∣∣+ Max

1≤i≤r
(∥∥ΔAki

∥∥
2

)]
(1.12)

which always holds for sufficiently large ρi (i.e., for sufficiently stable Ai) for given
‖ΔAki‖2, i= 1,2, . . . ,r, and, thus, for sufficiently large Min(αi)1≤i≤r . �

The main result of this section is now stated.

Theorem 1.4. The subsequent items hold as follows.
(i) The system (1.1) is α′-SLD for all hk ∈ [0,hk] if the 2r-matrices Am = A0 + [

∑r
k=1±

ehkα Ak]m +αI are all stability matrices for m= 1,2, . . . ,2r and some real α > 0.
(ii) Assume that Amρ = A0 + [

∑r
k=1±ρkAk]m + αI are all stability matrices for ρT =

(ρ1,ρ2, . . . ,ρr) with ρk ≥ 1, k = 1,2, . . . ,r, and some real α > 0. Then, the system (1.1) is
α-ASLD for all delays hk ∈ [0,hk] with hk = (1/α) lnρk for all k = 1,2, . . . ,r.
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(iii) Assume that

Amρ = A0 +

[ r∑

k=1

±ρkAk

]

m

+αI (1.13)

are all stability matrices for any real constants ρk > 0, k = 1,2, . . . ,r, and some real α > 0.
Thus, all the systems of the form

ẋ(t)= A0x(t) +
r∑

k=1

±ρk
βk

Akx
(
t−hk

)
(1.14)

are α-SLD for any prefixed set of real scalars βk > 1 (k = 1,2, . . . ,r) and all delays hk ∈
[0,(1/α) lnβk]. If βk = ρk > 1 for all k = 1,2, . . . ,r, then (1.1) is α-ASLD.

(iv) If A′m=A0 +[
∑r

k=1±ρkAk]m are all stability matrices with ρk=1 for allm=1,2, . . . ,2r ,
k = 1,2, . . . ,r, then all the delay systems (1.14) are asymptotically stable independent of the
delays for any set βk > 1 (k = 1,2, . . . ,r). If βk = ρk = 1 (k = 1,2, . . . ,r), then (1.1) is asymp-
totically stable independent of delays.

Proof. (i) Consider 2r Lyapunov’s matrix equations

AT
mPm +PmAm =−Qm =−QT

m < 0 (1.15)

for m = 1,2, . . . ,2r . Since Am are stability matrices, then the unique solutions Pm to the
Lyapunov’s equation are Pm=PT

m=
∫∞

0 eAT
mτQmeAmτ dτ, m=1,2, . . . ,2r . On the other hand,

(−Qm)≤−2αPm (or, equivalently, Qm ≥ 2αPm) for all m= 1,2, . . . ,2r if

0 < α≤ 1
2

Min1≤i≤2r
[
λmin

(
Qm

)]

Max1≤i≤2r
[
λmax

(
Pm

)] . (1.16)

Note also that for any symmetric positive definite matrices Pm and all P ≥ Pm,

AT
mP +PAm = AT

mPm +PmAm + AT
mΔPm +ΔPmAm

≤−QT
m +

(
AT

mΔPm +ΔPmAm
)
< 0

(1.17)

with ΔPm = P−Pm; m= 1,2, . . . ,2r satisfying

(
AT

mΔPm +ΔPmAm

)
=−Qm < 0 (1.18)

since Am is a stability matrix (see the proof of Lemma 1.3). Thus, for any P ≥ Pm (m =
1,2, . . . ,2r),

AT
mP +PAm ≤−2αP (1.19)

holds so that P is nonunique and thus the system (1.1) is α-SLD from Result 1.1 and all
the set of delays hk (k = 1,2, . . . ,r) satisfy ρk = ehkα ≥ ehkα ≥ 1, since hk ≥ 0, k = 1,2, . . . ,2r ,



M. De la Sen 5

equivalently is guaranteed if

0≤ τk ≤ τkM ≤ 2
Max1≤m≤2r

[
λmax

(
Pm

)]

Min1≤m≤2r
[
λmax

(
Qm

)] lnρk (1.20)

and the proof of (i) has been completed.
(ii) It follows directly from (i) with ρk = hkα for k = 1,2, . . . ,r and α > 0.
(iii) Consider the nonunique factorizations ρk = γkβk, for any sequences {γk; k =

1,2, . . . ,r}, {βk; k = 1,2, . . . ,r}, being only subject to the constraints βk > 1 for all k =
1,2, . . . ,r. Thus, it follows from (ii) for ρk = γkβk ≡ hkα (k = 1,2, . . . ,r) that if the matrices

Amβ = A0 +

[ r∑

k=1

±βk
(
± ρk
βk

Ak

)]

m

+αI (1.21)

are all stability matrices for m= 1,2, . . . ,2r , then all the systems (1.14) are α-ASLD.
(iv) It follows from (iii) since the asymptotic stability of the systems (1.14) for all

possible values of the delays from zero to infinity, with ρk = γkβk ≡ hkα= 1, α→ 0+ and
hk = o(α−1)→∞ for all k = 1,2, . . . ,r, is guaranteed by testing the 2r given n-matrices for
all m= 1,2, . . . ,2r . �

Remarks 1.5. (1) Note that the property of α-asymptotic stability locally in the delays
of the system (1.1), which specifies admissibility domains �0,hk for the delays for k =
1,2, . . . ,r, may be tested by checking if 2r matrices

Am = A0 +

[ r∑

k=1

±ehkα Ak

]

m

+αI (1.22)

are all stability matrices for m= 1,2, . . . ,2r . This property is equivalent to all the matrices

A′m = A0 +

[ r∑

k=1

±ehkα Ak

]

m

(1.23)

to be stability matrices with stability abscissas of at least (−α) < 0.
(2) Note that Am being a stability matrix implies that

Âm0 = A0 +

[ r∑

k=1

±ehkα Ak

]

m

+α0I (1.24)

are all stable for α0 ∈ (0,α] and h
′
k = hkα/α0 for k = 1,2, . . . ,r. Thus, the system (1.1) is

also α0-ASLD for all delays hk ∈ [0,hkα/α0] or k = 1,2, . . . ,r. As a result, if the system
(1.1) is α-ASLD for hk ∈ [0,hk], then it is also α0-ASLD for all α0 ∈ (0,α] and delays
hk ∈ [0,hkα/α0] for k = 1,2, . . . ,r.

(3) Note that all Am being stability matrices for any α≥ 0 implies thatA0 and (
∑r

k=0Ak)
are both stability matrices. In other words, the delayed dynamics-free auxiliary system
ż(t) = A0z(t) and the delay-free system ż(t)= (

∑r
k=0Ak)z(t) are both globally exponen-

tially stable. Both conditions are known to be necessary for stability independent of
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the delays (see [3, 5]) and they are obtained in this context as a direct consequence of
Theorem 1.4.

2. Output-feedback stabilization with prescribed pole placement

Now system (1.1) is considered as forced and with a measurable output

ẋ(t)= A0x(t) +
r∑

i=1

Aix(t− ih) + bu(t),

y(t)= cTx(t) +du(t),

(2.1)

where h ≥ 0 is now the base delay and hi = ih (i = 1,r). The change of notation and
specification of delays related to a base one h is made by description simplicity reasons.
The transfer function of (2.1) is defined in a standard way by using the Laplace transforms
of the output and input as P(s)= [Y(s)/U(s)]ϕ≡0 leading to

P(s)= B(s)
A(s)

= cT
(
sI −

r∑

i=0

Aie
−ihs

)−1

b+d, (2.2)

where A(s) and B(s) are quasipolynomials defined by

A(s)= det

(
sI −

r∑

i=0

Aie
−ihs

)

=
q∑

i=0

Ai(s)e−ihs =
n∑

i=0

A∗i
(
e−hs

)
si =

q∑

i=0

n∑

k=0

aiks
ke−ihs

(2.3a)

B(s)= cTAdj

(
sI −

r∑

i=0

Aie
−ihs

)
b+dA(s)

=
q′∑

i=0

Bi(s)e−ihs =
m∑

i=0

B∗i
(
e−hs

)
si =

q′∑

i=0

m∑

k=0

biks
ke−ihs

(2.3b)

with q and q′ being integers satisfying q′ ≤ q ≤ rn. For exposition simplicity, it is as-
sumed without loss of generality that q′ = q. Otherwise, (2.3b) still applies by zeroing the
necessary polynomials B(·):

Bi(s)=
mi∑

i=0

biks
k; Ai(s)=

ni∑

i=0

aiks
k (2.4)

are polynomials of respective degrees mi and ni (i= 0,q) with mi ≤m0 =m≤ n and ni ≤
n0 = n for i= 0,q with m= n if and only if d 	= 0 in (2.1), that is, the plant is not strictly
proper plant and m ≤ n− 1, otherwise. Note that n = n0 ≥ Max(m,Max1≤i≤q(ni,mi))
since the transfer function (2.2)-(2.3) obtained from (2.1) is realizable. Alternative poly-
nomials B∗i (e−hs) and A∗i (e−hs) are defined in the same way leading to an equivalent de-
scription of (2.1). The following result is the main one of this section.
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Theorem 2.1 (Spectrum assignment and closed-loop stability). Assume that the transfer
function (2.2)-(2.3) has no pole-zero cancellation and that the property is not lost under zero
delayed dynamics. Thus, the following items hold.

(i) There exist infinitely many polynomial pairs (Ri(s),Si(s)) which satisfy the υ nested
Diophantine equations of polynomials:

A0(s)Ri(s) +B0(s)Si(s)= Âmi(s)−
i∑

l=1

(
Al(s)Ri−l(s) +Bl(s)Si−l(s)

)
for i= 0,υ− 1

(2.5)

for any integer υ ≥ 1. Furthermore, if nm0 ≥ 2n− 1, then there is at least a solution (Ri(s),
Si(s)), i= 0,υ− 1, which satisfies the following degree constraints:

n′0 = nm0−n, m′
i (s)= n− 1 for i= 0,υ− 1,

Max
(
n′i ,m− 1

)=Max
(
nmi, Max

1≤k≤i
(
nk +n′i−k

))−n.
(2.6)

(ii) If Assumptions (1)-(2) hold and nm0 ≥ 2n, then it is possible to build infinitely many
proper rational functions of the form

Q(s)=
∑υ−1

l=0

[
Sl(s)−Λ0(s)A0(s)

]
e−lhs

∑υ−1
l=k

[
Rl(s) +Λ0(s)B0(s)

]
e−lhs

(2.7)

with existing polynomial solution pairs (Ri(s)− Λ0(s)A0(s),Si(s) + Λ0(s)B0(s)) verifying
(2.5) provided that (Ri(s),Si(s)) are also solutions to (2.5) where Λ0(s)= λ0 is any real scalar
(i.e., any polynomial of zero degree) if n > m and Λ0(s) is any arbitrary polynomial of ar-
bitrary degree otherwise. If nm0 = 2n− 1, then (2.5) is realizable for Λ0(s)= 0 if n > m and
with arbitrary Λ0(s) if n=m.

(iii) Assume that the controller transfer function Kυ(s) = S(s)/R(s) takes the subsequent
specific form

∑υ−1
l=0

[
Sl(s)−Λ0(s)A0(s)

]
e−lhs

∑υ−1
l=k

[
Rl(s) +Λ0(s)B0(s)

]
e−lhs +Rυ(s)

, (2.8)

where (Ri(s),Si(s)) are pairs of polynomials being any solutions to (2.5), i = 0,υ− 1, Λ0(s)
is chosen according to item (ii), Sυ(s) is an arbitrary polynomial of degree not exceeding
(n− 1), and

Rυ(s)= Nυ(s)
Dυ(s)

= 1
A(s)

e−(l−υ)hs
υ+q∑

l=υ

⎡
⎣Âml(s)−

⎛
⎝

Min(l,q)∑

i=Max(υ·l−υ+1)

Ai(s)Rl−i(s) +
Min(l,q)∑

i=Max(ν·l−υ)

Bi(s)Sl−i(s)

⎞
⎠
⎤
⎦ .

(2.9)
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Then, the closed-loop spectrum satisfies

A(s)R(s) +B(s)S(s)= Â∗m(s)=
υ−1∑

i=0

Âmi(s)e−ihs (2.10)

with the closed-loop being stable with poles in Â∗m(s) = 0 and a closed-loop stable cancel-
lation of the plant poles provided that Â∗m(s) =∑υ−1

l=0 Aml(s)e−lhs is a strictly Hurwitzian
quasipolynomial satisfying nm0 ≥ 2n− 1.

(iv) If the suited spectrum satisfies nm0 ≥ 2n− 1 and the controller is simplified to have a
transfer function K∗υ (s)=Q(s) (i.e., Rυ(s) and Sυ(s) are zeroed), then the closed-loop spec-
trum is set to the zeros of

{
Â∗m(s)

}
+

⎧
⎨
⎩

υ+q∑

�=υ

Min(l,q)∑

i=Max(0,l−υ)

[
Ai(s)Rl−i(s) +Bi(s)Sl−i(s)

]
e−lhs

⎫
⎬
⎭ (2.11)

without cancellations of the plant poles.
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