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1. Introduction

The problem of commuting operators and matrices, in particular, is very relevant in a
significant number of problems of several branches of science, which are very often mutually
linked, cited herein after.

(1) In several fields of interest in Applied Mathematics or Linear Algebra [1–22]
including Fourier transform theory, graph theory where, for instance, the commutativity
of the adjacency matrices is relevant [1, 17–19, 21–35], Lyapunov stability theory with
conditional and unconditional stability of switched dynamic systems involving discrete
systems, delayed systems, and hybrid systems where there is a wide class of topics covered
including their corresponding adaptive versions including estimation schemes (see, e.g., [23–
41]). Generally speaking, linear operators, and in particular matrices, which commute share
some common eigenspaces. On the other hand, a known mathematical result is that two graphs
with the same vertex set commute if their adjacency matrices commute [16]. Graphs are abstract
representations of sets of objects (vertices) where some pairs of them are connected by links
(arcs/edges). Graphs are often used to describe behaviors of multiconfiguration switched
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systems where nodes represent each parameterized dynamics and arcs describe allowed
switching transitions [35]. They are also used to describe automatons in Computer Science.
Also, it has been proven that equalities of products involving two linear combinations of two
any length products having orthogonal projectors (i.e., Hermitian idempotent matrices) as
factors are equivalent to a commutation property [21].

(2) In some fields in Engineering, such as multimodel regulation and Parallel
multiestimation [36–41]. Generally speaking switching among configurations can improve
the transient behavior. Switching can be performed arbitrarily (i.e., at any time instant) through
time while guaranteeing closed-loop stability if a subset of the set of configurations is stable provided
that a common Lyapunov function exists for them.This property is directly related to certain pair
wise commutators of matrices describing configuration dynamics being zero [7, 10, 11, 14, 15].
Thus, the problem of commuting matrices is in fact of relevant interest in dynamic switched
systems, namely, those which possess several parameterized configurations, one of them,
is becoming active at each current time interval. If the matrices of dynamics of all the
parameterizations commute then there exists a common Lyapunov function for all those
parameterizations and any arbitrary switching rule operating at any time instant maintains
the global stability of the switched rule provided that all the parameterizations are stable
[7]. This property has been described also in [23–25, 28–30] and many other references
therein. In particular, there are recent studies which prove that, in these circumstances,
arbitrary switching is possible if the matrices of dynamics of the various configurations
commute while guaranteeing closed-loop stability. This principle holds not only in both
the continuous-time delay-free case and in the discrete-time one but even in configurations
involving time-delay and hybrid systems as well. See, for instance, [10–15, 27–30, 34–41]
and references therein. The set of involved problems is wide enough like, for instance,
switched multimodel techniques [27–30, 35, 36, 40, 41], switched multiestimation techniques
with incorporated parallel multiestimation schemes involving adaptive control [34, 38–
40], time delay and hybrid systems with several configurations under mutual switching,
and so forth [10, 11, 14, 15] and references therein. Multimodel tools and their adaptive
versions incorporating parallel multiestimation are useful to improve the regulation and
tracking transients including those related to triggering circuits with regulated transient
via multiestimation [36], master-slave tandems [39], and so forth. However, it often happens
that there is no common Lyapunov function for all the parameterizations becoming active at certain
time intervals. Then, a minimum residence (or dwelling) time at each active parameterization has
to be respected before performing the next switching in order to guarantee the global stability of the
whole switched system so that the switching rule among distinct parameterizations is not arbitrary
[7, 12, 13, 27–30, 34–41].

(3) In some problems of Signal Processing. See, for instance, [1, 17, 18] concerning
the construction of DFT (Discrete Fourier transform)-commuting matrices. In particular, a
complete orthogonal set of eigenvectors can be obtained for several types of offset DFT’s and DCT’s
under commutation properties.

(4) In certain areas of Physics, and in particular, in problems related to Quantum
Mechanics. See, for instance, [22, 42, 43]. Basically, a complete set of commuting observables is
a set of commuting operators whose eigenvalues completely specify the state of a system since they
share eigenvectors and can be simultaneously measured [22, 42, 43]. These Quantum Mechanics
tools have also inspired other Science branches. For instance, it is investigated in the above
mentioned reference [18] a commuting matrix whose eigenvalue spectrum is very close to
that of the Gauss-Hermite differential operator. It is proven that it furnishes two generators
of the group of matrices which commute with the discrete Fourier transform. It is also pointed out
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that the associate research inspired in Quantum Mechanics principles. There is also other relevant
basic scientific applications of commuting operators. For instance, the symmetry operators
in the point group of a molecule always commute with its Hamiltonian operator [20]. The
problem of commuting matrices is also relevant to analyze the normal modes in dynamic
systems or the discussion of commuting matrices dependent on a parameter (see, e.g., [2, 3]).

It is well known that commuting matrices have at least a common eigenvector and
also, a common generalized eigenspace [4, 5]. A less restrictive problem of interest in the
above context is that of almost commuting matrices, roughly speaking, the norm of the
commutator is sufficiently small [5, 6]. A very relevant related result is that the sum of
matrices which commute is an infinitesimal generator of aC0-semigroup. This leads to a well-
known result in Systems Theory establishing that the matrix function eA1t1+A2t2 = eA1t1eA2t2 is
a fundamental (or state transition) matrix for the cascade of the time invariant differential
systems ẋ1(t) = A1x1(t), operating on a time t1, and ẋ2(t) = A2x2(t), operating on a time t2,
provided that A1 and A2 commute (see, e.g., [7–11]).

Most of the abundant existing researches concerning sets of commuting operators, in general,
and matrices, in particular, are based on the assumption of the existence of such sets implying that
each pair of mutual commutators is zero. There is a gap in giving complete conditions guaranteeing
that such commutators within the target set are zero. This paper formulates the necessary and
sufficient condition for any countable set of (real or complex) matrices to commute. The sequence
of obtained results is as follows. Firstly, the commutation of two real matrices is investigated
in Section 2. The necessary and sufficient condition for two matrices to commute is that a
vector defined uniquely from the entries of any of the two given matrices belongs to the
null space of the Kronecker sum of the other matrix and its minus transpose. The above
result allows a simple algebraic characterization and computation of the set of commuting
matrices with a given one. It also exhibits counterparts for the necessary and sufficient
condition for two matrices not to commute. The results are then extended to the necessary
and sufficient condition for commutation of any set of real matrices in Section 3. In Section 4,
the previous results are directly extended to the case of complex matrices in two very
simple ways, namely, either by decomposing the associated algebraic system of complex
matrices into two real ones or by manipulating it directly as a complex algebraic system
of equations. Basically, the results for the real case are directly extendable by replacing
transposes by conjugate transposes. Finally, further results concerning the commutators
of matrices with matrix functions are also discussed in Section 4. The proofs of the main
results in Sections 2, 3, and 4 are given in corresponding Appendices A, B, and C. It may
be pointed out that there is implicit following duality of the main result. Since a necessary and
sufficient condition for a set of matrices to commute is formulated and proven, the necessary and
sufficient condition for a set of matrices not to commute is just the failure in the above one to
hold.

1.1. Notation

[A,B] is the commutator of the square matrices A and B.
A ⊗ B := (aijB) is the Kronecker (or direct) product of A := (aij) and B.
A⊕B := A⊗ In + In ⊗B is the Kronecker sum of the square matricesA := (aij) and both

of order n, where In is the nth identity matrix.
AT is the transpose of the matrix A and A∗ is the conjugate transpose of the complex

matrix A. For any matrix A, ImA and Ker A are its associate range (or image) subspace and
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null space, respectively. Also, rank(A) is the rank of A which is the dimension of Im(A) and
det(A) is the determinant of the square matrix A.

v(A) = (aT
1 , a

T
2 , . . . , a

T
n)

T ∈ Cn2
if aT

i := (ai1, ai2, . . . , ain) is the ith row of the square
matrix A.

σ(A) is the spectrum of A; n := {1, 2, . . . , n}. If λi ∈ σ(A) then there exist positive
integers μi and νi ≤ μi which are, respectively, its algebraic and geometric multiplicity; that
is, the times it is repeated in the characteristic polynomial ofA and the number of its associate
Jordan blocks, respectively. The integer μ ≤ n is the number of distinct eigenvalues and the
integer mi, subject to 1 ≤ mi ≤ μi, is the index of λi ∈ σ(A); ∀i ∈ μ, that is, its multiplicity in
the minimal polynomial of A.

A ∼ B denotes a similarity transformation from A to B = T−1AT for given A,B ∈
Rn×n for some nonsingular T ∈ Rn×n. A ≈ B = EAF means that there is an equivalence
transformation for given A,B ∈ Rn×n for some nonsingular E, F ∈ Rn×n.

A linear transformation from Rn to Rn, represented by the matrix T ∈ Rn×n, is denoted
identically to such a matrix in order to simplify the notation. If V /= Dom T ≡ Rn is a subspace
of Rn then Im T(V ) := {Tz : z ∈ V } and Ker T(V ) := {z ∈ V : Tz = 0 ∈ Rn}. If V ≡ Rn, the
notation is simplified to Im T := {Tz : z ∈ Rn} and Ker T := {z ∈ Rn : Tz = 0 ∈ Rn}.

The symbols “∧” and “∨” stand for logic conjunction and disjunction, respectively. The
abbreviation “iff” stands for “if and only if.” The notation card U stands for the cardinal of
the set U. CA (resp., CA) is the set of matrices which commute (resp., do not commute) with
a matrixA. CA (resp., CA) is the set of matrices which commute (resp., do not commute)with
all square matrix Ai belonging to a given set A.

2. Results Concerning the Sets of Commuting and
No Commuting Matrices with a Given One

Consider the sets CA := {X ∈ Rn×n : [A,X] = 0}/= ∅, of matrices which commute with A, and
CA := {X ∈ Rn×n : [A,X]/= 0}, of matrices which do not commute with A; ∀A ∈ Rn×n. Note
that 0 ∈ Rn×n∩CA; that is, the zero n-matrix commutes with any n-matrix so that, equivalently,
0/∈Rn×n ∩ CA and then CA ∩ CA = ∅; ∀A ∈ Rn×n. The subsequent two basic results which
follow are concerned with commutation and noncommutation of two real matrices A and X.
The used tool relies on the calculation of the null space and the range space of the Kronecker
sum of the matrixA, one of the matrices, with its minus transpose. A vector built with all the
entries of the other matrixX has to belong to one of the above spaces forA andX to commute
and to the other one in order that A and X not to be two commuting matrices.

Proposition 2.1. (i) CA = {X ∈ Rn×n : v(X) ∈ Ker(A ⊕ (−AT ))}.
(ii) CA = Rn×n \ CA = {X ∈ Rn×n : v(X)/∈ Ker(A ⊕ (−AT ))} ≡ {X ∈ Rn×n : v(X) ∈

Im(A ⊕ (−AT ))}.
(iii) B ∈ CA := {X ∈ Rn×n : v(X) ∈ Ker(A ⊕ (−AT ))}.

Note that according to Proposition 2.1 the set of matrices CA which commute with the
square matrix A and its complementary CA (i.e., the set of matrices which do not commute
with A) can be redefined in an equivalent way by using their given expanded vector forms.
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Proposition 2.2. One has

rank
(
A ⊕
(
−AT
))

< n2 ⇐⇒ Ker
(
A ⊕
(
−AT
))

/= 0

⇐⇒ 0 ∈ σ
(
A ⊕
(
−AT
))

⇐⇒ ∃X(/= 0) ∈ CA, ∀A ∈ Rn×n.

(2.1)

Proof. One has [A,A] = 0; ∀A ∈ Rn×n ⇒ ∃Rn2 � 0/=v(A) ∈ Ker(A ⊕ (−AT )); ∀A ∈ Rn×n. As a
result,

Ker
(
A ⊕
(
−AT
))

/= 0 ∈ Rn2
; ∀A ∈ Rn×n ⇐⇒ rank

(
A ⊕
(
−AT
))

< n2; ∀A ∈ Rn×n (2.2)

so that 0 ∈ σ(A ⊕ (−AT )).
Also, ∃X(/= 0) ∈ Rn×n : [A,X] = 0 ⇔ X ∈ CA since Ker(A ⊕ (−AT ))/= 0 ∈ Rn2

.
Then, Proposition 2.2 has been proved.

The subsequent mathematical result is stronger than Proposition 2.2 and is based on
characterization of the spectrum and eigenspaces of A ⊕ (−AT ).

Theorem 2.3. The following properties hold.
(i) The spectrum of A ⊕ (−AT ) is σ(A ⊕ (−AT )) = {λij = λi − λj : λi, λj ∈ σ(A); ∀i, j ∈ n}

and possesses ν Jordan blocks in its Jordan canonical form of, subject to the constraints n2 ≥ ν =
dimS = (

∑μ

i=1 νi)
2 ≥ ν(0), and 0 ∈ σ(A ⊕ (−AT )) with an algebraic multiplicity μ(0) and with a

geometric multiplicity ν(0) subject to the constraints:

n2 =

(
μ∑
i=1

μi

)2

≥ μ(0) ≥
μ∑
i=1

μ2
i ≥ ν(0) =

μ∑
i=1

ν2i ≥ n, (2.3)

where

(a) S := span{zi ⊗ xj , ∀i, j ∈ n}, μi = μ(λi) and νi = ν(λi) are, respectively, the algebraic
and the geometric multiplicities of λi ∈ σ(A), ∀i ∈ n; μ ≤ n is the number of distinct
λi ∈ σ(A) (i ∈ μ), μi = μ(λij) and νij = ν(λij), are, respectively, the algebraic and the
geometric multiplicity of λij = (λi − λj) ∈ σ(A ⊕ (−AT )), ∀i, j ∈ n; μ ≤ n,

(b) xj and zi are, respectively, the right eigenvectors of A and AT with respective associated
eigenvalues λj and λi; ∀i, j ∈ n.

(ii) One has

dim Im
(
A ⊕
(
−AT
))

= rank
(
A ⊕
(
−AT
))

= n2 − ν(0) ⇐⇒ dim Ker
(
A ⊕
(
−AT
))

= ν(0); ∀A ∈ Rn×n.
(2.4)
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Expressions which calculate the sets of matrices which commute and which do not
commute with a given one are obtained in the subsequent result.

Theorem 2.4. The following properties hold.
(i) One has

X ∈ CA iff
(
A ⊕
(
−AT
))

v(X) = 0

⇐⇒ X ∈ CA iff v(X) = −F
(
vT
(
X2

)
A

T

12A
−T
11 , v

T
(
X2

))T (2.5)

for any v(X2) ∈ Ker(A22−A21A
−1
11A12), where E, F ∈ Rn2×n2

are permutation matrices andX ∈ Rn×n

and v(X) ∈ Rn2
are defined as follows.

(a) One has

v
(
X
)
:= F−1v(X), A ⊕

(
−AT
)
≈ A := E

(
A ⊕
(
−AT
))

F, ∀X ∈ CA, (2.6)

where v(X) = (vT (X1), vT (X2))
T ∈ Rn2

with v(X1) ∈ Rν(0) and v(X2) ∈ Rn2−ν(0).

(b) The matrix A11 ∈ Rν(0)×ν(0) is nonsingular in the block matrix partition A :=
Block matrix(Aij ; i, j ∈ 2) with A12 ∈ Rν(0)×n2

, A21 ∈ R(n2−ν(0))×ν(0) and A22 ∈
R(n2−ν(0))×(n2−ν(0)).

(ii) X ∈ CA, for any given A(/= 0) ∈ Rn×n, if and only if

(
A ⊕
(
−AT
))

v(X) = v(M) (2.7)

for some M(/= 0) ∈ Rn×n such that

rank
(
A ⊕
(
−AT
))

= rank
(
A ⊕
(
−AT
)
, v(M)

)
= n2 − ν(0). (2.8)

Also,

CA :=
{
X ∈ Rn×n :

(
A ⊕
(
−AT
))

v(X) = v(M) for any M(/= 0) ∈ Rn×n satisfying

rank
(
A ⊕
(
−AT
))

= rank
(
A ⊕
(
−AT
)
, v(M)

)
= n2 − ν(0)

}
.

(2.9)

Also, with the same definitions of E, F, and X in (i), X ∈ CA if and only if

v(X) = F
(
vT
(
M1

)
A

−T
11 − vT

(
X2

)
A

T

12A
−T
11 , v

T
(
X2

))T
, (2.10)
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where v(X2) is any solution of the compatible algebraic system

(
A22 −A21A

−1
11A12

)
v
(
X2

)
= v
(
M2

)
−A21A

−1
11v
(
M1

)
(2.11)

for some M(/= 0) ∈ Rn×n such that X,M ∈ Rn×n which are defined according to v(X) = Fv(X) and
M = EMF ≈ M(/= 0) ∈ Rn×n with v(M) = Ev(M) = E(vT

1 (M), vT
2 (M))T .

3. Results Concerning Sets of Pair Wise Commuting Matrices

Consider the following sets.

(1) A set of nonzero p ≥ 2 distinct pair wise commuting matrices AC := {Ai ∈ Rn×n :
[Ai,Aj] = 0; ∀i, j ∈ p}.

(2) The set of matrices MCAC := {X ∈ Rn×n : [X,Ai] = 0; ∀Ai ∈ AC} which commute
with the set AC of pair wise commuting matrices.

(3) A set of matrices CA := {X ∈ Rn×n : [X,Ai] = 0; ∀Ai ∈ A} which commute with a
given set of nonzero p matrices A := {Ai ∈ Rn×n; ∀i ∈ p} which are not necessarily
pair wise commuting.

The complementary sets of MCAC and CA are MCAC and CA, respectively, so that Rn×n � B ∈
MCAC if B /∈MCAC and Rn×n � B ∈ CA if B /∈CA. Note that CAC = MCAC for a set of pair wise
commuting matrices AC so that the notation MCAC is directly referred to a set of matrices
which commute with all those in a set of pair wise commuting matrices. The following two
basic results are concerned with the commutation and noncommutation properties of two
matrices.

Proposition 3.1. The following properties hold.

(i) One has

Ai ∈ AC; ∀i ∈ p ⇐⇒ v(Ai) ∈
⋂

j(/= i)∈p
Ker
(
Aj ⊕

(
−AT

j

))
; ∀i ∈ p

⇐⇒ v(Ai) ∈
⋂

i+1≤j≤p
Ker
(
Aj ⊕

(
−AT

j

))
; ∀i ∈ p.

(3.1)

(ii) Define

Ni(AC)

:=
⌊
AT

1 ⊕ (−A1) AT
2 ⊕ (−A2) · · · AT

i−1 ⊕ (−Ai−1) AT
i+1 ⊕ (−Ai+1) · · · AT

p ⊕ (−Ap

) ⌋T

∈ R(p−1)n2×n2
.

(3.2)

Then Ai ∈ AC; ∀i ∈ p if and only if v(Ai) ∈ Ker Ni(AC); ∀i ∈ p.
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(iii) One has

MCAC :=

⎧
⎨
⎩X ∈ Rn×n : v(X) ∈

⋂
i∈p

Ker
(
Ai ⊕
(
−AT

i

))
; Ai ∈ AC

⎫
⎬
⎭

=
{
X ∈ Rn×n : v(X) ∈ Ker N(AC)

} ⊃ CAC ⊃ AC ⊃ {0} ∈ Rn×n,

(3.3)

whereN(AC) := [AT
1 ⊕ (−A1) AT

2 ⊕ (−A2) · · · AT
p ⊕ (−Ap)]

T ∈ Rpn2×n2
, Ai ∈ AC.

(iv) One has

MCAC :=

⎧
⎨
⎩X ∈ Rn×n : v(X) ∈

⋃
i∈p

Im
(
Ai ⊕
(
−AT

i

))
; Ai ∈ AC

⎫
⎬
⎭

=
{
X ∈ Rn×n : v(X) ∈ ImN(AC)

}
.

(3.4)

(v) One has

CA :=

⎧
⎨
⎩X ∈ Rn×n : v(X) ∈

⋂
i∈p

Ker
(
Ai ⊕
(
−AT

i

))
; Ai ∈ A

⎫
⎬
⎭

=
{
X ∈ Rn×n : v(X) ∈ Ker N(A)

}
,

(3.5)

whereN(A) := [AT
1 ⊕ (−A1) AT

2 ⊕ (−A2) · · · AT
p ⊕ (−Ap)]

T ∈ Rpn2×n2
, Ai ∈ A.

(vi) One has

CA :=

⎧
⎨
⎩X ∈ Rn×n : v(X) ∈

⋃
i∈p

Im
(
Ai ⊕
(
−AT

i

))
; Ai ∈ A

⎫
⎬
⎭

=
{
X ∈ Rn×n : v(X) ∈ ImN(A)

}
.

(3.6)

Concerning Proposition 3.1(v)-(vi), note that ifX ∈ CA, thenX /= 0 sinceRn×n � 0 ∈ CA.
The following result is related to the rank defectiveness of the matrixN(AC) and any of their
submatrices since AC is a set of pair wise commuting matrices.

Proposition 3.2. The following properties hold:

n2 > rankN(AC) ≥ rankNi(AC) ≥ rank
(
Aj ⊕

(
−AT

j

))
; ∀Aj ∈ AC; ∀i, j ∈ p (3.7)
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and, equivalently,

det
(
NT (AC)N(AC)

)
= det

(
NT

i (AC)Ni(AC)
)
= det

(
Aj ⊕

(
−AT

j

))

= 0; ∀Aj ∈ AC; ∀i, j ∈ n.

(3.8)

Results related to sufficient conditions for a set of matrices to pair wise commute are
abundant in literature. For instance, diagonal matrices are always pair wise commuting. Any
sets of matrices obtained via multiplication by real scalars with any given arbitrary matrix are
sets of pair wise commuting matrices. Any set of matrices obtained by linear combinations of
one of the above sets consists also of pair wise commuting matrices. Any matrix commutes
with any of its matrix functions, and so forth. In the following, a simple, although restrictive,
sufficient condition for rank defectiveness of N(A) of some set A of p square real n-matrices
is discussed. Such a condition may be useful as a practical test to elucidate the existence of
a nonzero n-square matrix which commutes with all matrices in this set. Another useful test
obtained from the following result relies on a necessary condition to elucidate if the given set
consists of pair wise commuting matrices.

Theorem 3.3. Consider any arbitrary set of nonzero n-square real matrices A := {A1, A2, . . . , Ap}
for any integer p ≥ 1 and define matrices:

Ni(A) :=
[
AT

1 ⊕ (−A1) AT
2 ⊕ (−A2) · · · AT

i−1 ⊕ (−Ai−1) AT
i+1 ⊕ (−Ai+1) · · · AT

p ⊕ (−Ap

) ]T
,

N(A) :=
⌊
AT

1 ⊕ (−A1) AT
2 ⊕ (−A2) · · · AT

p ⊕ (−Ap

) ⌋T
.

(3.9)

Then, the following properties hold:

(i) rank(Ai ⊕ (−Ai)) ≤ rankNi(A) ≤ rankN(A) < n2; ∀i ∈ p.

(ii)
⋂

i∈p Ker(Ai ⊕ (−AT
i ))/= {0} so that

∃X(/= 0) ∈ CA, X ∈ CA ⇐⇒ v(X) ∈
⋂
i∈p

Ker
(
Ai ⊕
(
−AT

i

))
,

X ∈ CA ⇐⇒ v(X) ∈
⋃
i∈p

Im
(
Ai ⊕
(
−AT

i

))
.

(3.10)
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(iii) If A = AC is a set of pair wise commuting matrices then

v(Ai) ∈
⋂

j∈p\i
Ker
(
Aj ⊕

(
−AT

j

))
; ∀i ∈ p

⇐⇒ v(Ai) ∈
⋂
i∈p

Ker
(
Ai ⊕
(
−AT

i

))
; ∀i ∈ p

⇐⇒ v(Ai) ∈
⋂

i∈p\{i}
Ker
(
Ai ⊕
(
−AT

i

))
; ∀i ∈ p.

(3.11)

(iv) One has

MAC :=

⎧
⎨
⎩X ∈ Rn×n : v(X)

⋂
i∈p

Ker
(
Ai ⊕
(
−AT

i

))
, ∀Ai ∈ AC

⎫
⎬
⎭ ⊃ AC ∪ {0} ∈ Rn×n (3.12)

with the above set inclusion being proper.

Note that Theorem 3.3(ii) extends Proposition 3.1(v) since it is proved that CA \{0}/= ∅
because all nonzero Rn×n � Λ = diag(λ λ · · ·λ) ∈ CA for any R � λ/= 0 and any set of matrices
A. Note that Theorem 3.3(iii) establishes that v(Ai) ∈ ⋂i∈p\{i} Ker(Aj ⊕ (−AT

j )); ∀i ∈ p is
a necessary and sufficient condition for the set to be a set of commuting matrices A being
simpler to test (by taking advantage of the symmetry property of the commutators) than the
equivalent condition v(Ai) ∈ ⋂i∈p Ker(Aj ⊕ (−AT

j )); ∀i ∈ p. Further results about pair wise
commuting matrices or the existence of nonzero commuting matrices with a given set are
obtained in the subsequent result based on the Kronecker sum of relevant Jordan canonical
forms.

Theorem 3.4. The following properties hold for any given set of n-square real matrices A =
{A1, A2, . . . , Ap}.

(i) The set CA of matrices X ∈ Rn×n which commute with all matrices in A is defined by:

CA :=

{
X ∈ Rn×n : v(X) ∈

p⋂
i=1

(
Ker
[(

JAi ⊕
(
−JTAi

))(
P−1
i ⊗ P−T

i

)])}

=

{
X ∈ Rn×n : v(X) ∈

p⋂
i=1

(
Im
((

Pi ⊗ P−1
i

)
(Yi)
))

∧ Yi ∈ Ker
(
JAi ⊕

(
−JTAi

))
; ∀i ∈ p

}

=

{
X ∈ Rn×n : v(X) ∈

p⋂
i=1

(
Im
((

Pi ⊗ P−1
i

)
(Y )
))

, Y ∈
p⋂
i=1

(
Ker
(
JAi ⊕

(
−JTAi

)))}
,

(3.13)

where Pi ∈ Rn×n is a nonsingular transformation matrix such that Ai ∼ JAi = P−1
i AiPi, JAi being the

Jordan canonical form of Ai.
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(ii) One has

dim span{v(X) : X ∈ CA} ≤ min
i∈p

dim
(
Ker
(
JAi ⊕

(
−JTAi

)))

= min
i∈p

νi(0) = min
i∈p

⎛
⎝

ρi∑
j=1

ν2ij

⎞
⎠ ≤ min

i∈p

(
ρi∑
i=1

μ2
ij

)
≤ min

i∈p
(
μi(0)

)
,

(3.14)

where νi(0) and νij are, respectively, the geometric multiplicities of 0 ∈ σ(Ai⊕(−AT
i )) and λij ∈ σ(Ai)

and μi(0) and μij are, respectively, the algebraic multiplicities of 0 ∈ σ(Ai ⊕ (−AT
i )) and λij ∈ σ(Ai);

∀j ∈ ρi (the number of distinct eigenvalues of Ai), ∀i ∈ p.
(iii) The set A consists of pair wise commuting matrices, namely CA = MCA, if and only if

v(Aj) ∈ ⋂p

i(/= j)=1(Ker[(JAi ⊕ (−JTAi
))(P−1

i ⊗ P−T
i )]); ∀j ∈ p. Equivalent conditions follow from the

second and third equivalent definitions of CA in Property (i).

Theorems 3.3 and 3.4 are concerned with MCA /= {0} ∈ Rn×n for an arbitrary set of real
square matrices A and for a pair wise-commuting set, respectively.

4. Further Results and Extensions

The extensions of the results for commutation of complex matrices are direct in several ways.
It is first possible to decompose the commutator in its real and imaginary part and then apply
the results of Sections 2 and 3 for real matrices to both parts as follows. LetA = Are+ iAim and
B = Bre + iBim be complex matrices in Cn×n with Are and Bre being their respective real parts,
and Aim and Bim, all in Rn×n, their respective imaginary parts, and i =

√−1 is the imaginary
complex unity. Direct computations with the commutator of A and B yield

[A,B] = ([Are, Bre] − [Aim, Bim]) + i([Aim, Bre] + [Are, Bim]). (4.1)

The following three results are direct and allow to reduce the problem of commutation of a
pair of complex matrices to the discussion of four real commutators.

Proposition 4.1. One has B ∈ CA ⇔ (([Are, Bre] = [Aim, Bim]) ∧ ([Aim, Bre] = [Bim, Are])).

Proposition 4.2. One has (Bre ∈ (CAre ∩ CAim) ∧ Bim ∈ (CAim ∩ CAre)) ⇒ B ∈ CA.

Proposition 4.3. One has (Are ∈ (CBre ∩ CBim) ∧Aim ∈ (CBim ∩ CBre)) ⇒ B ∈ CA.

Proposition 4.1 yields to the subsequent result.

Theorem 4.4. The following properties hold.
(i) Assume that the matricesA and Bre are given. Then, B ∈ CA if and only if Bim satisfies the

following linear algebraic equation:

[
Are ⊕

(−AT
re
)

Aim ⊕ (−AT
im

)
]
v(Bre) =

[
Aim ⊕ (−AT

im

)

Are ⊕
(−AT

re
)
]
v(Bim) (4.2)
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for which a necessary condition is

rank

[
Aim ⊕ (−AT

im

)

Are ⊕
(−AT

re
)
]
= rank

[
Aim ⊕ (−AT

im

)

Are ⊕
(−AT

re
)
(

Are ⊕
(−AT

re
)

Aim ⊕ (−AT
im

)
)
v(Bre)

]
. (4.3)

(ii) Assume that the matrices A and Bime are given. Then, B ∈ CA if and only if Bre satisfies
(4.2) for which a necessary condition is

rank

[
Are ⊕

(−AT
re
)

Aim ⊕ (−AT
im

)
]
= rank

[
Are ⊕

(−AT
re
)

Aim ⊕ (−AT
im

)
(
Aim ⊕ (−AT

im

)

Are ⊕
(−AT

re
)
)
v(Bim)

]
. (4.4)

(iii) Also, ∃B /= 0 such that B ∈ CA with Bre = 0 and ∃B /= 0 such that B ∈ CA with Bim = 0.

A more general result than Theorem 4.4 is the following.

Theorem 4.5. The following properties hold.
(i) B ∈ CA ∩ Cn×n if and only if v(B) is a solution to the following linear algebraic system:

[
Are ⊕

(−AT
re
)

(−Aim) ⊕
(
AT

im

)

Aim ⊕ (−AT
im

)
(−Are) ⊕

(
AT

re
)
][

v(Bre)

v(Bim)

]
= 0. (4.5)

Nonzero solutions B ∈ CA, satisfying

[
v(Bre)

v(Bim)

]
∈ Ker

[
Are ⊕

(−AT
re
)

(−Aim) ⊕
(
AT

im

)

Aim ⊕ (−AT
im

)
(−Are) ⊕

(
AT

re
)
]
, (4.6)

always exist since

Ker

[
Are ⊕

(−AT
re
)

(−Aim) ⊕
(
AT

im

)

Aim ⊕ (−AT
im

)
(−Are) ⊕

(
AT

re
)
]
/= {0} ∈ R2n2

, (4.7)

and equivalently, since

rank

[
Are ⊕

(−AT
re
)

(−Aim) ⊕
(
AT

im

)

Aim ⊕ (−AT
im

)
(−Are) ⊕

(
AT

re
)
]
< 2n2. (4.8)

(ii) Property (ii) is equivalent to

B ∈ CA ⇐⇒ (A ⊕ (−A∗))v(B) = 0 (4.9)

which has always nonzero solutions since rank(A ⊕ (−A∗)) < n2.
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The various results of Section 3 for a set of distinct complex matrices to pair wise
commute and for characterizing the set of complex matrices which commute with those in a
given set may be discussed by more general algebraic systems like the above one with four
block matrices

⎡
⎣Ajre ⊕

(−AT
2re

) (−Ajim
) ⊕
(
AT

jim

)

Ajim ⊕ (−AT
2im

) (−Aj2re
) ⊕
(
AT

jre

)
⎤
⎦ (4.10)

for each j ∈ p in the whole algebraic system. Theorem 4.5 extends directly for sets of
complex matrices commuting with a given one and complex matrices commuting with a
set of commuting complex matrices as follows.

Theorem 4.6. The following properties hold.
(i) Consider the sets of nonzero distinct complex matrices A := {Ai ∈ Cn×n : i ∈ p} and

CA := {X ∈ Cn×n : [X,Ai] = 0; Ai ∈ A, ∀i ∈ p} for p ≥ 2. Thus, CA � X = Xre + iXre if and only if

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1re ⊕
(−AT

1re

)
(−A1im) ⊕

(
AT

1im

)

A1im ⊕ (−AT
1im

)
(−A1re) ⊕

(
AT

1re

)

A2re ⊕
(−AT

2re

)
(−A2im) ⊕

(
AT

2im

)

A2im ⊕ (−AT
2im

)
(−A2re) ⊕

(
AT

2re

)

...

Apre ⊕
(
−AT

pre

) (−Apim
) ⊕
(
AT

pim

)

Apim ⊕
(
−AT

pim

) (−Apre
) ⊕
(
AT

pre

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
v(Xre)

v(Xim)

]
= 0, (4.11)

and a nonzero solution X ∈ CA exists since the rank of the coefficient matrix of (4.11) is less than
2n2.

(ii) Consider the sets of nonzero distinct commuting complex matricesAC := {Ai ∈ Cn×n : i ∈
p} and MCA := {X ∈ Cn×n : [X,Ai] = 0; Ai ∈ A, ∀i ∈ p} for p ≥ 2. Thus, MCA � X = Xre + iXre

if and only if v(Xre) and v(Xim) are solutions to (4.11).
(iii) Properties (i) and (ii) are equivalently formulated by from the algebraic set of complex

equations:

[
A∗

1 ⊕ (−A1) A∗
2 ⊕ (−A2) · · · A∗

p ⊕
(−Ap

)]∗
v(X) = 0. (4.12)

Remark 4.7. Note that all the proved results of Sections 2 and 3 are directly extendable for
complex commutingmatrices, by simple replacements of transposes by conjugate transposes,
without requiring a separate decomposition in real and imaginary parts as discussed in
Theorems 4.5(ii) and 4.6(iii).

Let f : C → C be an analytic function in an open set D ⊃ σ(A) for some matrix
A ∈ Cn×n and let p(λ) be a polynomial fulfilling p(i)(λk) = f (i)(λk); ∀k ∈ σ(A), ∀i ∈ mk − 1 ∪
{0}; ∀k ∈ μ (the number of distinct elements in σ(A)), where mk is the index of λk, that is,
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its multiplicity in the minimal polynomial of A. Then, f(A) is a function of a matrix A if
f(A) = p(A), [8]. Some results follow concerning the commutators of functions of matrices.

Theorem 4.8. Consider a nonzero matrix B ∈ CA ∩ Cn×n for any given nonzero A ∈ Cn×n. Then,
f(B) ∈ CA ∩Cn×n, and equivalently v(f(B)) ∈ Ker(A⊕ (−A∗)), for any function f : Cn×n → Cn×n

of the matrix B.

The following corollaries are direct from Theorem 4.8 from the subsequent facts:

(1) A ∈ CA; ∀A ∈ Cn×n,

(2) One has

[A,B] = 0 =⇒ [A, g(B)
]
= 0 =⇒ [f(A), g(B)

]
=
[
p(A), g(B)

]
=

μ∑
i=0

αi

[
Ai, g(B)

]

=
μ∑
i=0

αiA
i−1[A, g(B)

]
= 0 ⇐⇒ g(B) ∈ Cf(A) ∩ Cn×n,

(4.13)

where f(A) = p(A), from the definition of f being a function of the matrix A, with
p(λ) being a polynomial fulfilling p(i)(λk) = f (i)(λk); ∀k ∈ σ(A), ∀i ∈ mk − 1 ∪ {0};
∀k ∈ μ (the number of distinct elements in σ(A)), where mk is the index of λk, that
is, its multiplicity in the minimal polynomial of A.

(3) Theorem 4.8 is extendable for any countable set {fi(B)} of matrix functions of B.

Corollary 4.9. Consider a nonzero matrix B ∈ CA ∩ Cn×n for any given nonzero A ∈ Cn×n. Then,
g(B) ∈ Cf(A)∩Cn×n for any function f : Cn×n → Cn×n of the matrixA and any function g : Cn×n →
Cn×n of the matrix B.

Corollary 4.10. f(A) ∈ CA ∩Cn×n, and equivalently v(f(A)) ∈ Ker(A ⊕ (−A∗)), for any function
f : Cn×n → Cn×n of the matrix A.

Corollary 4.11. If B ∈ CA ∩ Cn×n then any countable set of function matrices {fi(B)} is CA and in
MCA.

Corollary 4.12. Consider any countable set of function matrices CF := {fi(A); ∀i ∈ p} ⊂ CA for
any given nonzero A ∈ Cn×n. Then,

⋂
fi∈CF

(Ker(fi(A) ⊕ (−fi(A∗)))) ⊃ Ker(A ⊕ (−A∗)).

Note that matrices which commute and are simultaneously triangularizable through
the same similarity transformation maintain a zero commutator after such a transformation
is performed.

Theorem 4.13. Assume that B ∈ CA ∩ Cn×n. Thus, ΛB ∈ CΛA ∩ Cn×n provided that there exists a
nonsingular matrix T ∈ Cn×n such that ΛA = T−1AT and ΛB = T−1BT .

A direct consequence of Theorem 4.13 is that if a set of matrices are simultaneously
triangularizable to their real canonical forms by a common transformation matrix then the
pair wise commuting properties are identical to those of their respective Jordan forms.
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Appendices

A. Proofs of the Results of Section 2

Proof of Proposition 2.1. (i)-(ii) First note by inspection that ∅/=CA ⊃ {0, A}; ∀A ∈ Rn×n. Also,

[A,X] = AX −XA =
(
A ⊗ In − In ⊗AT

)
v(X)

=
(
A ⊕
(
−AT
))

v(X) = 0 =⇒ v(X) ∈ Ker
(
A ⊕
(
−AT
)) (A.1)

and Proposition 2.1(i)-(ii) has been proved since there is an isomorphism f : Rn2 ↔ Rn×n

defined by f(v(X)) = X; ∀X ∈ Rn×n for v(X) = (xT
1 , x

T
2 , . . . , x

T
n)

T ∈ Rn2
if xT

i := (xi1, xi2, . . . , xin)
is the ith row of the square matrix X.

(iii) It is a direct consequence of Proposition 2.1(iii) and the symmetry property of the
commutator of two commuting matrices B ∈ CA ⇔ [A,B] = [B,A] = 0 ⇔ A ∈ CB.

Proof of Proposition 2.2. [A,A] = 0; ∀A ∈ Rn×n ⇒ ∃Rn2 � 0/=v(A) ∈ Ker(A ⊕ (−AT )); ∀A ∈
Rn×n. As a result,

Ker
(
A ⊕
(
−AT
))

/= 0 ∈ Rn2
; ∀A ∈ Rn×n ⇐⇒ rank

(
A ⊕
(
−AT
))

< n2; ∀A ∈ Rn×n (A.2)

so that 0 ∈ σ(A ⊕ (−AT )).
Also, ∃X(/= 0) ∈ Rn×n : [A,X] = 0 ⇔ X ∈ CA since Ker(A ⊕ (−AT ))/= 0 ∈ Rn2

.
Proposition 2.2 has been proved.

Proof of Theorem 2.3. (i) Note that

σ(A) = σ
(
AT
)
=⇒ σ

(
A ⊕
(
−AT
))

:=
{
C � η = λk − λ� ; ∀λk, λ� ∈ σ(A); ∀k, � ∈ n

}

= σ0

(
A ⊕
(
−AT
))

∪ σ0
(
A ⊕ (−AT

))
,

(A.3)

where

σ0

(
A ⊕
(
−AT
))

=
{
λ ∈ σ

(
A ⊕
(
−AT
))

: λ = 0
}
,

σ0
(
A ⊕ (−AT

))
=
{
λ ∈ σ

(
A ⊕
(
−AT
))

: λ/= 0
}
= σ
(
A ⊕
(
−AT
))

\ σ0

(
A ⊕
(
−AT
))

.

(A.4)

Furthermore, σ(A ⊕ (−AT )) := {C � λ = λj − λi : λi, λj ∈ σ(A); ∀i, j ∈ n} and zi ⊗ xj is a right
eigenvector ofA⊕(−AT ) associated with its eigenvalue λji = λj −λi. λ = λj −λi ∈ σ(A⊕(−AT ))
has algebraic and geometric multiplicities μji and νji, respectively; ∀i, j ∈ n, since xj and
zi are, respectively, the right eigenvectors of A and AT with associated eigenvalues λj and
λi; ∀i, j ∈ n.

Let JA be the Jordan canonical form of A. It is first proved that there exists a
nonsingular T ∈ Rn2×n2

such that JA ⊕ (−JAT ) = T−1(A ⊕ (−AT ))T . The proof is made by
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direct verification by using the properties of the Kronecker product, with T = P ⊗ PT for a
nonsingular P ∈ Rn×n such that A ∼ JA = P−1AP , as follows:

T−1
(
A ⊕
(
−AT
))

T =
(
P ⊗ PT

)−1
(A ⊗ In)

(
P ⊗ PT

)
−
(
P ⊗ PT

)−1(
In ⊗AT

)(
P ⊗ PT

)

=
(
P−1AP

)
⊗
(
P−T InPT

)
−
(
P−1InP

)
⊗
(
P−TATPT

)

=
(
P−1AP

)
⊗ In − In ⊗

(
P−TATPT

)

= JA ⊗ In − In ⊗ JAT = JA ⊗ In + In ⊗ (−JAT ) = JA ⊕ (−JAT )

(A.5)

and the result has been proved. Thus, rank(A ⊕ (−AT )) = rank(JA ⊕ (−JAT )). It turns out that
P is, furthermore, unique except for multiplication by any nonzero real constant. Otherwise,
if T /=P ⊗ PT , then there would exist a nonsingular Q ∈ Rn×n with Q/=αIn; ∀α ∈ R such that
T = Q(P ⊗ PT )−1Q so that T−1(A ⊕ (−AT ))T /= JA ⊕ (−JAT ) provided that

(
P ⊗ PT

)−1(
A ⊕
(
−AT
))(

P ⊗ PT
)
= JA ⊕ (−JAT ). (A.6)

Thus, note that

cardσ
(
A ⊕
(
−AT
))

= n2 =
μ∑
i=1

μii =

(
μ∑
i=1

μi

)2

≥ μ(0) =
μ∑
i=1

μii =
μ∑
i=1

μ2
i ≥ ν

≥ ν(0) =
μ∑
i=1

νii =
μ∑
i=1

ν2i =

⎛
⎝

μ∑
i=1

μ∑
j=1

νij

⎞
⎠

2

− 2
μ∑
i=1

μ∑
j(/= i)=1

νij

= ν − 2
μ∑
i=1

μ∑
j(/= i)=1

νij ≥ n.

(A.7)

Those results follow directly from the properties of the Kronecker sum A ⊕B of n-square real
matrices A and B = −AT since direct inspection leads to the following.

(1) 0 ∈ σ(A ⊕ (−AT ))with algebraic multiplicity μ(0) ≥∑μ

i=1 μii =
∑μ

i=1 μ
2
i ≥
∑μ

i=1 ν
2
i ≥ n

since there are at least
∑n

i=1 μ
2
i zeros in σ(A ⊕ (−AT )) (i.e., the algebraic multiplicity

of 0 ∈ σ(A ⊕ (−AT )) is at least
∑n

i=1 μ
2
i ) and since νi ≥ 1; ∀i ∈ n. Also, a simple

computation of the number of eigenvalues ofA⊕ (−AT) yields cardσ(A⊕ (−AT)) =
n2 =

∑μ

i=1 μii = (
∑μ

i=1 μi)
2
.

(2) The number of linearly independent vectors in S is ν =
∑μ

i=1

∑μ

j=1 νij = (
∑μ

i=1 νi)
2 ≥∑μ

i=1 νii =
∑μ

i=1 ν
2
i since the total number of Jordan blocks in the Jordan canonical

form of A is
∑μ

i=1 νi.
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(3) The number of Jordan blocks associated with 0 ∈ σ(A ⊕ (−AT )) in the Jordan
canonical form of (A ⊕ (−AT )) is ν(0) =

∑μ

i=1 v
2
i ≤ ν, with νii = ν2ii; ∀i ∈ n. Thus,

cardσ0

(
A ⊕
(
−AT
))

=
μ∑
i=1

μii =
μ∑
i=1

μ2
i , cardσ0

(
A ⊕
(
−AT
))

= n2 −
μ∑
i=1

μ2
i ,

rank
(
A ⊕
(
−AT
))

= n2 − ν(0) = n2 −
μ∑
i=1

v2
i , dim Ker

(
A ⊕
(
−AT
))

= ν(0) =
μ∑
i=1

v2
i .

(A.8)

(4) There are at least ν(0) linearly independent vectors in S := span{zi ⊗ xj , ∀i, j ∈ n}.
Also, the total number of Jordan blocks in the Jordan canonical form of (A⊕ (−AT))
is ν = dimS = (

∑μ

i=1

∑μ

j=1 νij) = (
∑μ

i=1 νi)
2
= ν(0) + 2

∑μ

i=1

∑μ

j(/= i)=1 νij ≥ ν(0).

Property (i) has been proved. Property (ii) follows directly from the orthogonality in
Rn2

of its range and null subspaces.

Proof of Theorem 2.4. First note from Proposition 2.1 that X ∈ CA if and only if (A ⊕
(−AT ))v(X) = 0 since v(X) ∈ Ker(A ⊕ (−AT )). Note also from Proposition 2.1 that X ∈ CA

if and only if v(X) ∈ Im(A ⊕ (−AT )). Thus, X ∈ CA if and only if v(X) is a solution to the
algebraic compatible linear system:

(
A ⊕
(
−AT
))

v(X) = v(M) (A.9)

for any M(/= 0) ∈ Rn×n such that

rank
(
A ⊕
(
−AT
))

= rank
(
A ⊕
(
−AT
)
, v(M)

)
= n2 − ν(0). (A.10)

From Theorem 2.3, the nullity and the rank of A ⊕ (−AT ) are, respectively, dim Ker(A ⊕
(−AT )) = ν(0) rank(A ⊕ (−AT )) = n2 − ν(0). Therefore, there exist permutation matrices
E, F ∈ Rn2×n2

such that there exists an equivalence transformation:

A ⊕
(
−AT
)
≈ A := E

(
A ⊕
(
−AT
))

F = Block matrix
(
Aij ; i, j ∈ 2

)
(A.11)

such that A11 is square nonsingular and of order ν0. Define M = EMF ≈ M(/= 0) ∈ Rn×n.
Then, the linear algebraic systems (A ⊕ (−AT ))v(X) = v(M), and

E
(
A ⊕
(
−AT
))

Fv
(
X
)
=

⎡
⎣A11 A12

A21 A22

⎤
⎦
⎡
⎣v
(
X1

)

v
(
X2

)
⎤
⎦ =

⎡
⎣v
(
M1

)

v
(
M2

)
⎤
⎦,

V
(
X1

)
= A

−1
11

(
v
(
M1

)
−A12v

(
X2

))

⇐⇒
(
A22 −A21A

−1
11A12

)
V
(
X2

)
= v
(
M2

)
−A21A

−1
11v
(
M1

)

(A.12)
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are identical if X and M are defined according to v(X) = Fv(X) and v(M) = Ev(M).
As a result, Properties (i) and (ii) follow directly from (A.12) for M = M = 0
and for any M satisfying rank(A ⊕ (−AT )) = rank(A ⊕ (−AT ), v(M)) = n2 − ν(0),
respectively.

B. Proofs of the Results of Section 3

Proof of Proposition 3.1. (i) The first part of Property (i) follows directly from Proposition 2.1
since all the matrices of AC pair wise commute and any arbitrary matrix commutes with
itself (thus j = i may be removed from the intersections of kernels of the first double sense
implication). The last part of Property (i) follows from the antisymmetric property of the
commutator [Ai,Aj] = [Aj,Ai] = 0; ∀Ai,Aj ∈ AC what implies Ai ∈ AC; ∀i ∈ p ⇔ v(Ai) ∈⋂

i+1≤j≤p Ker(Aj ⊕ (−AT
j )); ∀Ai,Aj ∈ AC.

(ii) It follows from its equivalence with Property (i) since Ker Ni(AC) ≡⋂
j(/= i)∈p Ker(Aj ⊕ (−AT

j )).

(iii) Property (iii) is similar to Property (i) for the whose set MAC of matrices which
commute with the setAC so that it containsAC and, furthermore, Ker N(AC) ≡

⋂
i∈p Ker(Ai⊕

(−AT
i )).

(iv) It follows from
⋃

j∈p Im(Aj ⊕ (−AT
j )) =

⋂
j∈p Ker (Aj ⊕ (−AT

j )); Aj ∈ AC and Rn2 �
0 ∈ Ker(Aj ⊕ (−AT

j )) ∩ Im(Aj ⊕ (−AT
j )) but R

n×n � X = 0 commutes with any matrix in Rn×n

so that Rn×n � 0 ∈ MCAC ⇔ Rn×n � 0/∈MCAC for any given AC.

(v) and (vi) are similar to (ii)–(iv) except that the members of A do not necessarily
commute.

Proof of Proposition 3.2. It is a direct consequence from Proposition 3.1(i)-(ii) since the
existence of nonzero pair wise commuting matrices (all the members of AC) implies
that the above matrices N(AC), Ni(AC), Aj ⊕ (−AT

j ) are all rank defective and have
at least identical number of rows than that of columns. Therefore, the square matrices
NT (AC)N(AC), NT

i (AC)Ni(AC), and Aj ⊕ (−AT
j ) are all singular.

Proof of Theorem 3.3. (i) Any nonzero matrix Λ = diag(λ λ · · ·λ), λ(/= 0) ∈ R is such that
Λ(/= 0) ∈ CAi (∀i ∈ p) so that Λ ∈ CA. Thus, 0/=v(Λ) ∈ Ker N(A) ⇔ n2 > rankN(A) ≥
rankNi(A) ≥ rank(Ai ⊕ (−Ai)); ∀i ∈ p and any given set A. Property (i) has been proved.

(ii) The first part follows by contradiction. Assume
⋂

i∈p Ker(Ai ⊕ (−AT
i )) = {0} then

0/=v(Λ)/∈ Ker N(A) so thatΛ = diag(λ λ · · ·λ)/∈CA, for any λ(/= 0) ∈ Rwhat contradicts (i).
Also,X ∈ CAi ⇔ v(X) ∈ Ker(Ai⊕(−AT

i )); ∀i ∈ p so thatX ∈ CA ⇔ v(X) ∈ ⋂i∈p Ker(Ai⊕(−AT
i ))

what is equivalent to its contrapositive logic proposition X ∈ CA ⇔ v(X) ∈ ⋃i∈p Im(Ai ⊕
(−AT

i )).
(iii) Let A = AC ⇔ Ai ∈ CAj ; ∀j(/= i) ∈ p, ∀i ∈ p ⇔ Ai ∈ CAj ; ∀j, i ∈ p since Ai ∈

CAi ; ∀i ∈ p

v(Ai) ∈
⋂
i∈p

Ker
(
Aj ⊕

(
−AT

j

))
; ∀i ∈ p ⇐⇒ v(Ai) ∈

⋂
i∈p\{i}

Ker
(
Aj ⊕

(
−AT

j

))
; ∀i ∈ p. (B.1)
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On the other hand,

⎛
⎝v(Ai) ∈

⋂

j∈p\i
Ker
(
Aj ⊕

(
−AT

j

))
⇐⇒ v(Ai) ∈ CAj ; ∀j ∈ p

⎞
⎠ for any i

(
< p
) ∈ p. (B.2)

This assumption implies directly that

v(Ai) ∈ CAj ; ∀j ∈ p ∧ v(Ai+1) ∈
⋂

j∈i+1
CAj for any i

(
< p
) ∈ p (B.3)

which together with v(Ai+1) ∈
⋂

j∈p\i+1 Ker(Aj ⊕ (−AT
j )) implies that

v(Ai+1) ∈ CAj ; ∀j ∈ p =⇒
⎛
⎝v(Ai+1) ∈

⋂

j∈p\i+1
Ker
(
Aj ⊕

(
−AT

j

))
⎞
⎠ for (i + 1) ∈ p. (B.4)

Thus, it follows by complete induction thatA = AC ⇔ v(Ai) ∈
⋂

i∈p\{i} Ker(Aj⊕(−AT
j )); ∀i ∈ p

and Property (iii) has been proved.
(iv) The definition of MAC follows from Property (iii) in order to guarantee that

[X,Ai] = 0; ∀Ai ∈ A. The fact that such a set contains properly AC ∪ {0} follows directly
from Rn×n � Λ = diag(λ λ · · ·λ)(∈ MCAC)/=AC ∪ {0} for any R � λ/= 0.

Proof of Theorem 3.4. If Ai ∼ JAi = P−1
i AiPi, with JAi being the Jordan canonical form of Ai

then Ai ⊕ (−AT
i ) ∼ JAi ⊕ (−JTAi

) = T−1
i (Ai ⊕ (−AT

i ))Ti with Ti = Pi ⊗ PT
i ∈ Rn2 ×Rn2

(see proof of
Theorem 2.3) being nonsingular; ∀i ∈ p. Thus, (Ai ⊕ (−AT

i )) = Ti(JAi ⊕ (−JTAi
))T−1

i so that:

N(A) =
[
AT

1 ⊕ (−A1) AT
2 ⊕ (−A2) · · · AT

p ⊕ (−Ap

)]T

=
[
Ipn2 −U][WT

1 WT
2

]T
= TJTa,

(B.5)

where

T := Block Diag
[
T1 T2 · · · Tp

] ∈ Rpn2×pn2
,

Ta :=
[
T−T
1 T−T

2 · · · T−T
p

]T ∈ Rpn2×n2
,

J := Block Diag
[
JA1 ⊕

(
−JTA1

)
JA2 ⊕

(
−JTA2

)
· · · JAp ⊕

(
−JTAp

)]
∈ Rpn2×pn2

.

(B.6)
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Then,

Ker N(A) =
p⋂
i=1

Ker
[(

Ai ⊕
(
−AT

i

))]
= Ker(JTa)

≡
p⋂
i=1

(
Ker
[(

JAi ⊕
(
−JTAi

))(
P−1
i ⊗ P−T

i

)]) (B.7)

since T is nonsingular. Thus, ∀X ∈ Dom(A) ⊂ Rn2
:

X ∈ CA ⇐⇒ v(X) ∈ Ker N(A)

⇐⇒ v(X) ∈
(

p⋂
i=1

Ker
[(

Ai ⊕
(
−AT

i

))])

⇐⇒ v(X) ∈
(

p⋂
i=1

Ker
[(

JAi ⊕
(
−JTAi

))(
P−1
i ⊗ P−T

i

)])

⇐⇒ v(X) ∈ Im
((

Pi ⊗ P−1
i

)(
Ker
(
JAi ⊕

(
−JTAi

))))
; ∀i ∈ p

⇐⇒ v(X) ∈
p⋂
i=1

(
Im
((

Pi ⊗ P−1
i

)
(Y )
))

⇐⇒ v(X) ∈
p⋂
i=1

(
Im
((

Pi ⊗ P−1
i

)
(Yi)
))

,

(B.8)

where Yi ∈ Ker(JAi ⊕ (−JTAi
)); ∀i ∈ p and Y ∈ (

⋂p

i=1(Ker(JAi ⊕ (−JTAi
)))). Property (i) has been

proved. The first inequality of Property (ii) follows directly from Property (i). The results of
equalities and inequalities in the second line of Property (ii) follow by the first inequality by
taking into account Theorem 2.3. Property (iii) follows from the proved equivalent definitions
of CA in Property (i) by taking into account that [Aj,Aj] = 0; ∀j ∈ p so that

v
(
Aj

) ∈
p⋂
i=1

(
Ker
[(

JAi ⊕
(
−JTAi

))(
P−1
i ⊗ P−T

i

)])

⇐⇒ v
(
Aj

) ∈
p⋂

i(/= j)=1

(
Ker
[(

JAi ⊕
(
−JTAi

))(
P−1
i ⊗ P−T

i

)])
; ∀j ∈ p.

(B.9)
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C. Proofs of the Results of Section 4

Proofs of Propositions 4.1–4.3

Proposition 4.1 follows by inspection of (4.1). Proposition 4.2 implies that Proposition 4.1
holds with the four involved commutators being zero. Then the left condition of
Proposition 4.2 implies that B ∈ CA, from Proposition 4.1, so that Proposition 4.2 holds.
Proposition 4.3 is equivalent to Proposition 4.2.

Proof of Theorem 4.4. (i) Equation (4.2) is a rearrangement in an equivalent algebraic system
of Proposition 4.1 in the unknown v(Bim) for given A and Bre. The system is compatible if
(4.2) holds from the Kronecker-Capelli theorem. The proof of Property (ii) is similar to that
of (i) with the appropriate interchange of roles of Bre and Bim.

(iii) Since

rank

[
Aim ⊕ (−AT

im

)

Are ⊕
(−AT

re
)
]
< n2 (C.1)

from Theorem 3.3(i) then 0/=B = Bre ∈ CA if and only if Bre ∈ CAre ∩CAim(/= ∅) ⊂ CA. The same
proof follows for 0/=B = Bim ∈ CA since

rank

[
Are ⊕

(−AT
re
)

Aim ⊕ (−AT
im

)
]
= rank

[
Aim ⊕ (−AT

im

)

Are ⊕
(−AT

re
)
]
< n2. (C.2)

Proof of Theorem 4.5. (i) It follows in the same way as that of Theorem 4.4 by rewriting the
algebraic system (4.3) in the form (4.5) which has nonzero solutions if (4.8) holds. But (4.8)
always holds since B = A ∈ CA ∩ Cn×n is nonzero if A is nonzero and if A = 0 ∈ Cn×n then
CA = Cn×n.

(ii) Direct calculations yield the equivalence of (4.5) with the separation into real and
imaginary parts of the subsequent algebraic system:

(A ⊗ In − In ⊗A∗)v(B) =
[
(Are + iAim) ⊗ In − In ⊗

(
AT

re − iAT
im

)]
(v(Bre) + iv(Bim)) = 0 (C.3)

which is always solvable with a nonzero solution (i.e., compatible) since rank(A⊗In−In⊗A∗) <
n2 (otherwise, A(/= 0) ∈ CA).

Outline of Proof of Theorem 4.6

(i) It is a direct extension of Theorem 4.5 by decomposing the involved complex matrices
in their real and imaginary parts since from Theorem 3.3(i) both left block matrices in the
coefficient matrix of (4.11) have rank less than n2. As a result, such a coefficient matrix has
rank less than 2n2 so that nonzero solutions exists to the algebraically compatible system of
linear equations (4.11). As a result, a nonzero n-square complex commuting matrix exists.
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(ii) It is close to that of (i) but the rank condition for compatibility of the algebraic
system is not needed since the coefficient matrix of (4.11) is rank defective since Aj ∈ AC ⇔
(vT (Ajre), vT (Ajim))

T is in the null space of the coefficient matrix; ∀j ∈ p.
(iii) Its proof is close to that of Theorem 4.5(ii) and it is then omitted.

Proof of Theorem 4.8. For any B ∈ CA ∩ Cn×n:

[A,B] = 0 =⇒ (λIn − B)A = A(λIn − B); ∀λ ∈ C

=⇒ (λIn − B)−1A = A(λIn − B)−1; ∀λ ∈ C ∩ σ(B)

=⇒ [A, f(B)
]
= A

[
1

2πi

∮

C

f(λ)(λIn − B)−1dλ
]
=

1
2πi

∮

C

f(λ)(λIn − B)−1Adλ

=
[

1
2πi

∮

C

f(λ)(λIn − B)−1dλ
]
A =
[
f(B), A

]
= 0,

(C.4)

where C is the boundary of D and consists in a set of closed rectifiable Jordan curves which
contains no point of σ(A) since λ ∈ C ∩ σ(A) so that the identity (λIn − B)−1A = A(λIn − B)−1

is true. Then, f(B) ∈ CA ∩ Cn×n has been proved. From Theorem 4.5, this is equivalent to
v(f(B)) ∈ Ker(A ⊕ (−A∗)).

Proof of Theorem 4.13. B ∈ CA ⇔ F[A,B]G = 0; ∀F,G ∈ Cn×n being nonsingular. By choosing
F−1 = G = T , it follows that

T−1[A,B]T = T−1A
(
TT−1
)
BT − T−1B

(
TT−1
)
AT = [ΛA,ΛB] = 0. (C.5)
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Birkhäuser, Boston, Mass, USA, 2003.

[24] Z. Li, Y. Soh, and C. Wen, Switched and Impulsive Systems: Analysis, Design and Applications, vol. 313 of
Lecture Notes in Control and Information Sciences, Springer, Berlin, Germany, 2005.

[25] Z. Sun and S. S. Ge, Switched Linear Systems: Control and Design, Springer, London, UK, 2005.
[26] M. De la Sen, “Adaptive stabilization of continuous-time systems through a controllable modified

estimation model,” Mathematical Problems in Engineering, no. 2, pp. 109–131, 2004.
[27] J. Zhao and D. J. Hill, “On stability, L2-gain and H∞ control for switched systems,” Automatica, vol.

44, no. 5, pp. 1220–1232, 2008.
[28] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched linear systems: a survey of recent

results,” IEEE Transactions on Automatic Control, vol. 54, no. 2, pp. 308–322, 2009.
[29] H. Yang, G. Xie, T. Chu, and L. Wang, “Commuting and stable feedback design for switched linear

systems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 64, no. 2, pp. 197–216, 2006.
[30] H. Ishii and B. A. Francis, “Stabilizing a linear system by switching control with dwell time,” in

Proceedings of the American Control Conference (ACC ’01), pp. 1876–1881, Arlington, Va, USA, 2001.
[31] Z. Wu and F. Ben Amara, “Parameterized regulator synthesis for bimodal linear systems based on

bilinear matrix inequalities,” Mathematical Problems in Engineering, vol. 2008, Article ID 341720, 22
pages, 2008.



24 Mathematical Problems in Engineering

[32] A. Leonessa, W. M. Haddad, and V. Chellaboina, “Nonlinear robust hierarchical control for nonlinear
uncertain systems,”Mathematical Problems in Engineering, vol. 5, no. 6, pp. 499–542, 2000.

[33] M.Margaliot and D. Liberzon, “Lie-algebraic stability conditions for nonlinear switched systems and
differential inclusions,” Systems & Control Letters, vol. 55, no. 1, pp. 8–16, 2006.

[34] M. De la Sen, “Robust adaptive control of linear time-delay systems with point time-varying delays
via multiestimation,” Applied Mathematical Modelling, vol. 33, no. 2, pp. 959–977, 2009.

[35] M. De la Sen and A. Ibeas, “On the stability properties of linear dynamic time-varying unforced
systems involving switches between parameterizations from topologic considerations via graph
theory,” Discrete Applied Mathematics, vol. 155, no. 1, pp. 7–25, 2007.

[36] A. Bilbao-Guillerna, M. De la Sen, S. Alonso-Quesada, and A. Ibeas, “A stable multimodel scheme
control for the regulation of the transient behavior of a tunnel-diode trigger circuit,” ISA Transactions,
vol. 46, no. 3, pp. 313–326, 2007.

[37] K. S. Narendra and J. Balakrishnan, “Adaptive control using multiple models,” IEEE Transactions on
Automatic Control, vol. 42, no. 2, pp. 171–187, 1997.

[38] K. S. Narendra and J. Balakrishnan, “Improving transient response of adaptive control systems using
multiple models and switching,” IEEE Transactions on Automatic Control, vol. 39, no. 9, pp. 1861–1866,
1994.

[39] A. Ibeas and M. De la Sen, “Robustly stable adaptive control of a tandem of master-slave robotic
manipulators with force reflection by using a multiestimation scheme,” IEEE Transactions on Systems,
Man, and Cybernetics Part B, vol. 36, no. 5, pp. 1162–1179, 2006.

[40] Z. Sun and S. S. Ge, “Analysis and synthesis of switched linear control systems,” Automatica, vol. 41,
no. 2, pp. 181–195, 2005.

[41] Z. Sun, “A robust stabilizing law for switched linear systems,” International Journal of Control, vol. 77,
no. 4, pp. 389–398, 2004.

[42] S. Gasiorowicz, Quantum Physics, John Wiley & Sons, New York, NY, USA, 1974.
[43] J.-L. Basdevant, Lectures on Quantum Mechanics, Springer, New York, NY, USA, 2007.


