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Abstract 

What determines individuals’ efficacy in detecting regularities in visual statistical learning? Our 

theoretical starting point assumes that the variance in performance in statistical learning can be 

split into variance related to efficiency in encoding representations within modality, and variance 

related to the relative computational efficiency of detecting distributional properties of the 

encoded representations. Using a novel methodology we dissociated encoding from higher-order 

learning factors, by independently manipulating exposure duration and transitional probabilities 

in a stream of visual shapes. Our results show that the encoding of shapes and retrieving their 

transitional probabilities are not independent and additive processes, but interact to jointly 

determine SL performance. The theoretical implications of these findings for a mechanistic 

explanation of SL are discussed.  
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Introduction 

Statistical learning (SL), the learning of distributional properties of sensory input across time 

and space, is the mechanism by which cognitive systems discover the underlying regularities in 

the environment. As such, SL plays a key role in segmentation, discrimination, and 

categorization of the input, shaping the basic representations for a wide range of sensory, motor, 

and cognitive abilities (see Frost, Armstrong, Siegelman, & Christiansen, 2015, for a discussion). 

The term “SL” thus refers to the ability to learn and assimilate an array of possible statistical 

properties of sensory events. These include their aggregated relative frequency, their variance, 

and mostly, the extent of their co-occurrence (see Erickson & Thiessen, 2013, for a review). The 

present paper is concerned with the latter form of computation. 

Starting from Saffran’s original work (Saffran, Aslin, & Newport, 1996), which revealed that 

infants are able to segment speech on the basis transitional probabilities (TPs), a large number of 

studies have demonstrated that people often display remarkable sensitivity to the co-occurrence 

of items embedded in a continuous stream. This was shown across ages from adults to newborns, 

(e.g., Bulf, Johnson, & Valenza, 2011), across sensory modalities (Visual: e.g., Fiser & Aslin, 

2001; Kirkham, Slemmer, & Johnson, 2002; Turk-Browne, Jungé, & Scholl, 2005; Auditory: 

e.g., Saffran, Newport, Aslin, Tunick & Barrueco, 1997; Gebhart, Newport & Aslin, 2009; 

Tactile: e.g., Conway & Christiansen, 2005), with both adjacent (e.g., Endress & Mehler, 2009) 

and non-adjacent contingencies (e.g., Newport & Aslin, 2004; Gómez, 2002). Interestingly, 

although in all these studies the tested sample as a group showed clear evidence of learning, not 

all individuals were shown to perform better than chance (see Siegelman & Frost, 2015, for a 

discussion). What determines the efficacy of detecting co-occurrence of events in a stream? Why 

do some individuals show clear evidence of learning in typical SL tasks, whereas others seem to 
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perform at chance? What are the cognitive operations underlying this capacity? These complex 

questions hold the promise of revealing critical insights regarding the mechanisms driving SL, 

leading to deeper comprehension of what SL abilities could predict and why.  

In a recent theoretical discussion of the factors influencing the variance of SL performance, 

Frost and his colleagues (2015) have suggested that this variance should be split into two main 

sources: 1. Variance related to efficiency in encoding the individual elements in the stream within 

the modality of their presentation, that is, the ability to create internal representations of each 

element of the continuous perceptual input. 2. Variance related to the relative computational 

efficiency of detecting the distributional properties of the encoded representations registering 

their TPs. Whereas the efficacy of creating detailed and reliable internal representations of 

individual elements appearing in a fast sequential input could be traced to the neuronal 

mechanisms that determine the effective resolution of one’s sensory system, computational 

efficiency of detecting the TPs of these elements could be traced to capacities in binding 

temporal and spatial contingencies by the medial-temporal lobe memory system (Schapiro, 

Gregory, Landau, McCloskey, & Turk-Browne, 2014; Karuza et al., 2013; Kim, Lewis-Peacock, 

Norman, & Turk-Browne, 2014). This view suggests that both encoding and binding abilities 

constrain learning of regularities, and they jointly determine the actual performance of an 

individual in a given SL task. Moreover, it presupposes some form of temporal processing 

modularity, where the internal representations computed from the inputs are subject to higher-

level computations that bind them to register their distributional properties. Here we explore for 

the first time the possible predictions of this theoretical framework. We orthogonally 

manipulated factors related to encoding and binding constraints, and measured their relative 

contribution to SL performance on the group and individual level.  
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In the study we report here, we focused on performance in the extensively used, visual-

statistical-learning (VSL) task (Arciuli & Simpson, 2011, 2012; Frost, Siegelman, Narkiss, & 

Afek, 2013; Siegelman & Frost, 2015; Turk-Browne et al., 2005). In the VSL task, participants 

are presented with a stream of complex visual shapes organized in pairs or triplets, when their 

constituent shapes follow each other in a predictable sequence (typically, TPs=1). Following a 

familiarization phase, participants are tested to assess their ability to report which shapes 

appeared in the stream in the original order. The VSL task allows a unique opportunity to 

experimentally address our theoretical question by disentangling 1) the encoding and 2) the 

learning of statistical dependencies components in SL. In any continuous stream of shapes 

experimenters can independently manipulate 1) shape exposure duration (ED), that is, the 

amount of time that the stimulus is physically available for processing and 2) the transitional 

probabilities (TPs) within the shapes. Whereas ED is a parameter affecting the efficacy of 

processing the visual stimuli for encoding them into internal representations (e.g., Potter & Levy, 

1969, Loftus & Kallman, 1979), TPs is a parameter related to efficiency in registering their 

distributional properties. Jointly manipulating these parameters within-subjects could thus 

provide important information regarding individual susceptibility to encoding constraints vs. 

individual sensitivity to correlational transparency (see Frost et al., 2015, for discussion). 

In the present study we did exactly this. Our participants, university students, participated in a 

series of VSL tasks, in all of which they watched evenly-paced streams of complex visual 

shapes. However, rather than using a fixed ED or a fixed TPs, as in most current SL studies (but 

see, Hunt & Aslin, 2001), in each session we manipulated the ED and TPs of shapes in the 

stream in a within-subject factorial design. EDs were set to 200, 600 or 1000ms per shape. TPs 

between shapes could be quasi-regular (0.6, 0.8), or fully regular (1.0). Following the 
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familiarization phase, participants were tested to assess how well they learned the statistical 

contingencies of the shapes in each of the streams given the different presentation constraints. 

Thus, by looking at the change in performance across the tasks we could examine the 

independent influence of ED and TPs within the stream on SL performance, as well as their 

possible interaction. 

This design allowed us to address, in parallel, critical theoretical questions that have not been 

addressed so far: What is the impact of incremental ED and TPs on SL?  Do they impact SL 

independently (and additively) of each other, as predicted by a temporal processing modularity 

assumption, or do they show substantial interaction? If they do interact, what is the nature of this 

interaction? Finally, what does the distribution of individual sensitivity to both factors look like 

in the population? More generally, we ask how is human performance in extracting regularities 

from the input affected by different constraints (Linearly? Logarithmically? Inversed-U 

shaped?), when constraints are imposed on the time allocated for encoding events, and on 

varying the extent of event predictability.   

 

Method 

Participants 

Fifty adults (12 males), all students at the Hebrew University, participated in the study for 

course credit or payment. Their age ranged from 21 to 27 (mean=23.4). Subjects were all native 

Hebrew speakers. 

Design and Materials 

The experiment required each participant to perform nine VSL tasks. The VSL tasks included 

22 complex visual shapes (Turk-Browne et al., 2005). In each condition and for each subject, 16 
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of the 22 shapes were randomly chosen and randomly organized to create eight ordered pairs (the 

remaining six shapes were used for the screening items, see below). The eight pairs were 

presented continuously, one after the other, in a random order, to create a familiarization stream 

in which each pair appeared 24 times, with the constraint that the same pair could not be repeated 

twice in a row.  

ED (the time that the shape appeared on the screen) and TP (the conditional probability of 

the second shape of each pair appearing after the first) were manipulated so that each factor 

included three levels: ED of 200, 600, and 1000ms, and TPs of 0.6, 0.8, and 1. Combining the 

three levels of each factor created nine tasks overall (see Figure 1). The interval between shapes 

was always fixed to 100ms to avoid introducing any chunking bias. Manipulation of TPs was 

done by including random noise in the 0.6 and 0.8 conditions: for example, for each pair AB 

during familiarization in the TPs=0.8 subtest, shape B appeared after shape A 80% of the time, 

while in 20% of the time shape B was randomly replaced by another shape X, while avoiding 

immediate repetition of shapes. Shape X was never the start of a new pair (i.e., only after its 

presentation, a new pair was presented). 

Depending on the ED used, keeping the number of repetitions and shape interval constant, 

the familiarization phase of each of the tasks lasted from 2 to 7 minutes. Participants were asked 

to attend to the stream, and were not told that the stream was constructed of pairs. Following the 

familiarization stream, participants were instructed that they would now see two pairs of shapes 

on the screen (see Figure 1), and that their task would be to report which pair was more familiar 

to them. They were then tested with 38 2AFC trials. Thirty-two of the test-trials contrasted 1) 

"true pairs"—two shapes that appeared as a pair during the familiarization phase (TPs between 

shapes being 0.6, 0.8 or 1.0 depending on the condition)—and 2) "foils"—two shapes that did 
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not appear as a pair during familiarization. Foils were constructed without violating the position 

of the shapes within the original pairs (e.g., for two true pairs AB and CD, possible foils could be 

AD or CB, but not AC or DB). Scores in the SL task ranged then from 0 to 32, calculated as the 

number of correct identifications of pairs during the test phase. The remaining 6 test-trials were 

aimed to identify and screen participants who did not attend the familiarization stream. These 

trials contrasted “true pairs” with a pair containing a novel shape that did not appear at all during 

familiarization (see Romberg & Saffran, 2013, for a similar procedure). Participants who missed 

18 or more of the total of 54 screening items (six in each of the nine tasks) were excluded from 

the analyses. Following this screening, eight participants were excluded from the analysis. Due 

to a technical problem the data of two subjects in the ED=200, TP=1 condition were not saved. 

All subsequent analyses are based on the remaining 42 participants. 

 

Figure 1. The nine VSL tasks: combining three TP levels (0.6, 0.8, 1) and three ED levels 
(200, 600, and 1000 ms). 
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General Procedure 

The nine SL subtests were initiated by the participants from home, through an on-line 

platform. All nine subtests had to be completed in a period of 30 days, with no less than 24 hours 

between sessions. The mean time interval between sessions was 2.3 days (SD=1.2). Participants 

were instructed to do the task alone in a quite room and to avoid external distractions (turn-off 

their cell phone, and turn off music) and were asked to have only the experiment window open. 

The order of the tasks was random. 

  

Results 

Group level 

Table 1 summarizes performance in the nine tasks. Performance in all nine conditions was 

significantly better than chance (one-sample t-test comparing mean performance to 50% chance, 

all p’s<0.01). This suggests that successful learning was present even with the very fast 

presentation rates and lower TPs. A one-way repeated measures ANOVA with session number 

(1-9) as a predictor, revealed that level of performance did not significantly change across the 

nine sessions (F(8,312)=1.49, p=0.16, see also Siegelman and Frost, 2015, for similar findings). 

 TP=0.6 TP=0.8 TP=1 

ED=200ms 54.8% (11%) 56.3% (14%) 58.4% (14%) 

ED=600ms 59.5% (13%) 59.7% (15%) 67.6% (17%) 

ED=1000ms 61.8% (12%) 65.6% (17%) 72.8% (18%) 

 
Table 1. Mean performance rate in each of the nine tasks (in parenthesis – standard 

deviations) 
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In order to examine the influence of TPs, ED, and their interaction on SL performance we 

conducted a logistic mixed-effect analysis, using the lme4 package in R (Bates, Maechler, 

Bolker, & Walker, 2015). The dependent variable was accuracy in the forced-choice test 

(excluding the screening items). The model included fixed effects of TPs, ED, their interaction, 

the position of the target-pair within the forced choice question (whether the target was first or 

second), and trial number in the test1. The random effect structure included a by-subject random 

intercept and random slopes for TPs, ED, and their interaction. The predictors TPs and ED were 

both centered and standardized, trial number was centered, and the variable of target position 

was dummy coded (target in first position – 0; second position – 1). The model included 

N=12032 observations, and had a log-likelihood of -7664.7. 

We found a significant main effect of TPs (β=0.18, SE=0.04, p<0.001) and of ED (β=0.23, 

SE=0.04, p<0.001). These effects are presented in Figure 2: as can be seen, the effect of ED was 

found to be linear (with an improvement of 6.0% from 200 to 600 and a similar improvement of 

4.5% from 600 to 1000). A paired t-test on the individual differences scores between the adjacent 

levels of ED confirmed that the extent of improvement between the lower two and top two ED 

levels did not differ significantly (t(41)=0.61, p=0.54).2  

In contrast, the effect of TPs seems to deviate from linearity (with a small difference of 1.9% 

between the lower TPs of 0.6 and 0.8, which both implicated quasi-regularities, and a larger 

difference of 5.9% between 0.8 and full regularity TP=1). Indeed, a paired t-test revealed a 

                                                
1 Trial number was not a significant predictor of performance, β=-0.002, SE= 0.002, p=0.18 
suggesting that the repeating the same target pairs and foils in the test phase did not alter 
performance. 
2 As in our procedure the ISI between shapes remained constant (see p. 7), the possibility that our 
results reflect rate (or length) of presentation rather than ED per se, cannot be overruled, and 
should be acknowledged. 
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marginally significant difference between TP=0.6 to TP=0.8 and TP=0.8 to TP=1 (t(41)=1.78, 

p=0.08), suggesting a possible non-linearity in the influence of TPs on SL performance. This 

suggests that there is a possibly qualitative difference between full regularity and quasi-regularity 

of shapes in the stream. 

 

Figure 2. Mean scores in function of the TPs (left) and ED (right) manipulation. Error bars 
denote standard errors. The thin grey lines represent the best linear fit. 

 
 

In addition to the two significant main effects of TPs and EDs, we found a significant 

interaction between TPs and ED (β=0.09, SE=0.03, p<0.01), which is depicted in Figure 3. In the 

fast ED of 200ms, performance was low even with high TPs (although above chance in all three 

conditions), suggesting that the fast presentation rate impaired detection of co-occurrence of 

shapes. For the intermediate and slow ED levels (600ms and 1000ms), the lines reflecting the 

three levels of TPs diverge – whereas performance was found to be similar in the two conditions 

that implicated quasi-regularities (TP=0.6 and TP=0.8), a different trend was revealed with full 

regularity (TP=1) with high performance already with ED=600ms. These data suggest an 

interesting interplay between encoding constraints and extent of regularity in determining SL 

performance. We further discuss this in the general discussion.  
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Figure 3. Interaction between TPs and ED. Error bars denote standard errors. 
 
 
Individual level 

We now turn to the insights revealed by considering patterns of individual performance. For 

each individual we extracted his/her slope for the effect of ED and TPs from the mixed logit 

model by looking at the by-subject random slopes. Note, that given the small number of 

manipulated levels of ED and TP per individual (three levels in each factor only), these slopes 

inevitably incur substantial noise. Nevertheless, in spite of this noise, some patterns stand out, 

pointing to interesting directions for future research. Figure 4A presents the scatterplot of slopes 

for ED and TPs of all participants in our study. The striking result is the high correlation between 

slopes within participants (r=0.55; p<0.001). Two outlier observations stand out, and if removed 

the correlation between slopes increases to r=0.75 (p<0.001). Thus, it seems that participants 

who showed greater sensitivity to changes of ED, tended to show greater sensitivity to changes 

of TPs, and vice versa. Note that some of this observed correlation could be driven by 

participants who did not show any evidence of learning: because these participants failed to 

exhibit any learning, they produced similar flat slopes for ED and TPs affecting the size of the 
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correlation. However, even if individuals who did not exhibit significant learning at the 

individual level across the tasks (n=9 excluded participants) are removed from the analysis3, a 

substantial correlation between susceptibility to ED and TPs still remains (r=0.48; p<0.01, see 

Figure 4B). These intriguing findings suggest that from an individual differences perspective, the 

ability to benefit from extended event duration, and greater event regularity, seems to be a 

unified individual capacity.  

 

Figure 4. Correlation between slopes for ED and TP, over the whole sample (4A, left) and only 
for participants exhibiting learning at the individual level (4B, right). 

 
 

Discussion 

In the current study we independently manipulated TPs and ED in a visual SL task to 

dissociate factors related to encoding of visual shapes from the higher-order process of learning 

their distributional properties. We asked how each type of constraint affects SL, and how their 

joint interaction determines performance in the task. Our results provide a set of critical findings. 

First, we found that, at least within the range of 200 to 1000ms, ED impacts SL performance in a 

linear way, so that longer exposure of shapes results in better learning of their conditional 
                                                
3 The exclusion criterion for this analysis was set to success in 159 trials out of 288, across the nine tasks 
(i.e., a mean success rate of 55.2%). According the binomial distribution, this is the minimal number of 
success trials needed to present significantly above chance learning at the individual level.  
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probabilities. This converges with the earlier evidence provided by Turk-Browne et al. (2005) 

and Arciuli and Simpson (2011) who manipulated ED between subjects and reported improved 

SL performance at slower presentation rates (see also Emberson, Conway, & Christiansen, 

2011). Second, we found that introducing quasi regularity in the stream impacts learning in a 

trajectory that seems to deviate from linearity. Although this deviation was marginally 

significant, our results show relatively small changes in SL performance when TPs increase from 

0.6 to 0.8, but a substantially large improvement in performance when TPs implicate full 

regularity. This pattern of performance suggests that, at least on the group level, full regularity of 

shapes in the streams may be qualitatively different from any quasi-regularity, in terms of 

improving SL performance.  

However, importantly, our experimental design allowed us to go beyond the independent 

influence of ED and TPs within the stream on SL performance, and examine their interaction. 

The striking finding of our study is the interplay between encoding constraints and extent of 

regularity in determining learning outcomes. Overall, our results suggest that the sensitivity to 

extent of TPs in the stream was modulated by exposure duration and vice-versa. Although our 

findings show that even very short exposure durations (ED of 200ms) were sufficient to encode 

the visual shapes resulting in above-chance learning, the extent of regularity of shapes in the 

stream had a relatively smaller impact on learning, so that SL performance was relatively low 

even with full regularity. With additional exposure (ED of 600ms), a large difference in 

performance between full regularity (TPs=1) and quasi-regularity (TPs=0.6, 0.8) emerged, but no 

difference between the two levels of quasi regularity. Full sensitivity to the full range of TPs was 

found only with the longer exposures of shapes. This pattern of findings suggests that encoding 

of shapes and retrieving their transitional probabilities are not independent and additive 
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processes. Rather, the distributional properties of shapes in the stream and their predictability 

may serve to facilitate their encoding in case of suboptimal shorter exposure durations, and 

conversely, increase of exposure time enhances sensitivity to fine differences in TPs. These 

findings have implications to a mechanistic description of the cognitive events occurring in the 

typical VSL task. Rather than considering temporal processing modularity where encoding of 

shapes into internal representations feeds into the subsequent phase of extracting their 

distributional properties, encoding and extraction of TPs seem to be a two-way street, one 

affecting the other. Whether this bidirectional dependency is causal in one direction or another 

requires further investigation.  

The present findings are relevant to current debates regarding the extent of modality 

specificity in SL (see Frost et al., 2015, for review and discussion), and the relations between the 

sub-processes involved in SL (e.g., Thiessen, Kronstein, & Hufnagle, 2013). In the context of 

visual shapes, recent imaging studies implicate, on the one hand, higher-level visual networks 

(Nastase, Iacovella, & Hasson, 2014), and on the other hand, the domain-general hippocampus 

and the medial temporal lobe (MTL) memory system (Schapiro et al., 2014; Turk-Browne, 

Scholl, Chun, & Johnson, 2009). Our findings thus offer possible constraints for understanding 

how both modality specific (encoding of visual shapes) and modality general (extracting 

distributional properties) computations result in extent of learning regularities in the visual 

modality. These processes do not seem to be independent and sequential, where the completion 

of one initiates the launching of the other.  

Our discussion so far has focused on the group level performance, yet from an individual 

differences perspective, another striking result is the high correlation between ED and TPs 

trajectories within participants. This high correlation suggests that individuals who showed 
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greater sensitivity to changes of ED tended to show also greater sensitivity to changes of TPs, 

and vice versa (note that this correlation is based on a relatively large number of participants, and 

was held even after removing individuals who did not exhibit significant learning). This is an 

intriguing finding as it suggests that the individual ability to overcome encoding constrains (here 

operationalized as limitations of event duration), and to overcome learning constraints (here 

operationalized as noise related to event regularity), are interrelated. A possible interpretation of 

this finding is that, perhaps, the high correlation between sensitivity to ED and TPs was driven 

by peripheral factors such as a general state of attentiveness to the task. To investigate this 

hypothesis we calculated the partial correlation between individual ED and TP slopes, 

controlling for average performance on screening items, a proxy of attentiveness. The partial 

correlation between slopes within participants are still large and significant (full sample: 

rpartial=0.43, p<0.01; after removing outliers: rpartial=0.68, p<0.001; only above chance 

participants: rpartial=0.40, p<0.05 ). 

A point that deserves some attention is the presence of a number of negative individual 

slopes (see Figure 4). Whereas a negative slope associated with the ED manipulation intuitively 

makes sense (some individuals who are fast encoders might fail to allocate attention when shapes 

in the stream are presented at a slow rate), the negative slopes for TPs is harder to explain. 

Although it is possible that the negative slopes for TPs represent simple noise, which is 

inevitable in such experimental design, a possible insight for this phenomenon can be drawn 

from recent studies suggesting that different populations of neurons encode full regularity and 

quasi regularity (Nastase et al., 2014). From the perspective of information theory, quasi-

regularity is more informative than full regularity.  Indeed, Kidd, Piantadosi, and Aslin, (2012) 

have recently shown that infants maximally attend to stimuli that are neither too predictable nor 
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too unpredictable. The negative slopes of some of the participants in our sample may possibly 

hint towards individual differences in the point of optimal degree of extent of regularity for 

learning. This, however, requires further investigation, aiming to establish whether individual 

slopes for ED and TP are indeed stable characteristics of an individual (see Siegelman & Frost, 

2015, for measures of reliability in SL tasks). 

In conclusion, the present study suggests that manipulating task parameters in a within-

subject parametric design provides considerable insight regarding the cognitive operations 

underlying visual SL. Research using similar methodology has the promise of establishing how 

encoding and higher-order learning factors account for the variance in performance in other 

modalities, leading to a better understanding of the mechanisms of SL.  
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