MODELOS PREDICTIVOS DE LA INFECCIÓN NOSOCOMIAL en pacientes sometidos a intervenciones quirúrgicas

Mercedes M Sáenz Ruiz
Donostia – San Sebastián, 2017

Directores:
Juan José Aurrekoetxea Agirre
José Ramón Sáenz Domínguez (codirector)
AGRADECIMIENTOS

Mi agradecimiento, en primer lugar, a los Directores de este proyecto de Tesis Doctoral profesores Juan José Aurrekoetxea Agirre y José Ramón Sáenz Domínguez sin cuyas orientaciones y ánimos en momentos difíciles no hubiera sido posible que este reto hubiese llegado a buen puerto.

A mi familia por su ayuda y paciencia. A mi hijo, esposo, padres y hermano por su apoyo, paciencia y ayuda.

A la Comisión INOZ por facilitarme los datos que han constituido la base de esta investigación.

Al Departamento de Medicina Preventiva y Salud Pública de la Universidad del País vasco/Euskal Herriko Unibertsitatea por la formación recibida al cursar el programa de doctorado y diversos Másteres.

A los numerosos autores citados en la bibliografía, que han orientado mis pasos en el difícil mundo de las técnicas multivariantes o multivariables del análisis estadístico.
ÍNDICE

1.- INTRODUCCIÓN ...11
1.1. Definición ... 11
1.2. Breve recorrido histórico ...16
1.3. Importancia: Dimensiones y Repercusiones ..28
1.4. Cadena epidemiológica ..40
1.5. Tipos de IN (localización) ...42
1.6. Factores de riesgo ..45
1.7. Microorganismos implicados en la IN ..48
1.8. Multirresistencias ...60
1.9. Vigilancia, prevención y control de la IN:
 1.9.1. Vigilancia ... 66
 1.9.1.1. Bases de la vigilancia: ...67
 A. Definición precisa de los sujetos objeto de vigilancia ...67
 B. Tipos de vigilancia y objetivos ...68
 C. Recopilación de datos ...69
 a. Fuentes ..70
 b. Tipos de estudios de vigilancia ...71
 D. Comprobación-depuración e informatización de los datos72
 E. Cálculo de tasas ..73
 F. Análisis ...73
 G. Interpretación y comunicación de los datos ...74
 1.9.1.2. Realización práctica:
 H. Programas de vigilancia actuales en nuestros hospitales74
 I. Sistema de vigilancia continua ...75
 J. Brotes ...75
 K. Alertas ...76

1.9.2. Prevención ..77
 Precauciones estándar ..77
1.9.3. Control ..83
Medidas de control

Precauciones basadas en la trasmisión

Medidas de eficacia probada (demostrada)

1. - Higiene de manos

2. - Esterilización y desinfección del material

5. - Profilaxis antibiótica preoperatoria

1.9.4. PVPCIN

1.9.5. Eficacia y efectividad de los sistemas de vigilancia y control

1.10. Método científico: Tipos de estudios

1.10.1.- Estudios experimentales

1.10.2.- Estudios observacionales

1.11. Métodos de análisis estadístico

1.11.1. Análisis bivariante

1.11.2. Análisis multivariante

1.11.2.1. Definición

1.11.2.2. Clasificación

1.11.2.3. Descripción de algunas técnicas multivariantes

1.11.2.4. Etapas de un análisis multivariante

1.11.3. Medidas de frecuencia

1.11.4. Medidas de asociación e impacto

2.- HIPÓTESIS (TESIS): Objetivos principal y secundarios

3.- MATERIAL, SUJETOS Y MÉTODOS

3.1.- Medidas de frecuencia

3.2.- Medidas de asociación e impacto

3.3.- Variables

3.4.- Métodos estadísticos

3.4.1.- Técnicas bivariantes

3.4.2.- Regresión Logística

3.4.3.- Regresión de Cox

4.- RESULTADOS
4.1. Descriptivos .. 194
4.1.1.- Cirugía electiva de colon ... 194
4.1.2.- Primer implante de prótesis de cadera ... 198
4.1.3.- Primer implante de prótesis de rodilla ... 201
4.2. Regresión Logística Binaria (RLB) .. 204
4.2.1.- Cirugía electiva de colon ... 204
 4.2.1.1.- Comparación estadística bivariante y RLB individual ... 204
 4.2.1.2.- Interacción y confusión .. 209
 4.2.1.3.- Colinealidad ... 212
 4.2.1.4.- Modelo ... 214
4.2.2.- Primer implante de prótesis de cadera ... 222
 4.2.2.1.- RLB individual .. 222
 4.2.2.2.- Interacción y confusión .. 223
 4.2.2.3.- Variables en el modelo ... 224
 4.2.2.4.- Resultados .. 224
4.2.3.- Primer implante de prótesis de rodilla ... 227
 4.2.3.1.- RLB individual .. 227
 4.2.3.2.- Interacción y confusión .. 227
 4.2.3.3.- Variables en el modelo ... 228
 4.2.3.4.- Resultados .. 229
 4.2.3.5.- Variables en la ecuación final y modelo ... 229
4.3. Regresión de Cox .. 230
4.3.1.- Cirugía electiva de colon ... 230
 4.3.1.1.- Asunciones del modelo .. 230
 4.3.1.2.- Regresión de Cox individual ... 235
 4.3.1.3.- Interacción .. 237
 4.3.1.4.- Colinealidad .. 239
 4.3.1.5.- Confusión .. 240
 4.3.1.6.- Variables dependientes del tiempo .. 242
 4.3.1.7.- Variables en el modelo ... 242
 4.3.1.8.- Análisis con SPSS ... 243
 4.3.1.8.- Modelo ... 246
 4.3.1.6.- Bondad de ajuste ... 247

~ 6 ~
<table>
<thead>
<tr>
<th>4.3.2.- Primer implante de prótesis de cadera</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2.1.- Asunciones del modelo</td>
<td>250</td>
</tr>
<tr>
<td>4.3.2.2.- Regresión de Cox individual</td>
<td>252</td>
</tr>
<tr>
<td>4.3.2.3.- Interacción</td>
<td>253</td>
</tr>
<tr>
<td>4.3.2.4.- Colinealidad</td>
<td>253</td>
</tr>
<tr>
<td>4.3.2.5.- Confusión</td>
<td>255</td>
</tr>
<tr>
<td>4.3.2.6.- Variables dependientes del tiempo</td>
<td>256</td>
</tr>
<tr>
<td>4.3.2.7.- Realización del análisis con SPSS</td>
<td>256</td>
</tr>
<tr>
<td>4.3.2.8.- Modelos</td>
<td>263</td>
</tr>
<tr>
<td>4.3.2.9.- Bondad de ajuste</td>
<td>266</td>
</tr>
<tr>
<td>4.3.3.- Primer implante de prótesis de rodilla</td>
<td>267</td>
</tr>
<tr>
<td>4.3.3.1.- Asunciones del modelo</td>
<td>267</td>
</tr>
<tr>
<td>4.3.3.2.- Regresión de Cox individual</td>
<td>269</td>
</tr>
<tr>
<td>4.3.3.3.- Interacción</td>
<td>271</td>
</tr>
<tr>
<td>4.3.3.4.- Colinealidad</td>
<td>271</td>
</tr>
<tr>
<td>4.3.3.5.- Confusión</td>
<td>271</td>
</tr>
<tr>
<td>4.3.3.6.- Variables dependientes del tiempo</td>
<td>273</td>
</tr>
<tr>
<td>4.3.3.7.- Realización del análisis con SPSS</td>
<td>273</td>
</tr>
<tr>
<td>4.3.3.8.- Modelos</td>
<td>278</td>
</tr>
<tr>
<td>4.3.3.9.- Bondad de ajuste</td>
<td>279</td>
</tr>
</tbody>
</table>

5.- DISCUSIÓN.. 281
5.1.- Métodos descriptivos	282
5.1.1.- Cirugía electiva de colon	282
5.1.2.- Prótesis de cadera, primer implante	285
5.1.3.- Prótesis de rodilla, primer implante	287
5.2.- RLB (Regresión Logística Binaria)	290
5.1.1.- Cirugía electiva de colon	290
5.1.2.- Prótesis de cadera, primer implante	293
5.1.3.- Prótesis de rodilla, primer implante	294
5.3.- Regresión de Cox	296
5.1.1.- Cirugía electiva de colon	298
5.1.2.- Prótesis de cadera, primer implante	302
5.1.3.- Prótesis de rodilla, primer implante 303

6.-CONCLUSIONES ... 307

7.- BIBLIOGRAFÍA (referencias) ... 311

8.- ANEXOS ... 335
 8.1. Definiciones CDC de las IN según localización 336
 8.2. Microorganismos implicados en la IN 373
 8.3. Resistencia antimicrobiana. ECDC: información para expertos 374
 8.4. Realización de RLB utilizando el programa SPSS 381
 8.5. Regresión de Cox con Catéter arterial y Ventilación mecánica 388

9.- GLOSARIO ... 411
La infección nosocomial (IN) o infección hospitalaria, en su definición más sencilla, es aquella infección adquirida en el hospital. Constituye, por tanto, un riesgo asociado a la hospitalización y ocasiona graves trastornos tanto al enfermo como a la sociedad. Supone un grave problema sanitario en todos los países del mundo. Según la OMS/WHO\(^{341}\) afecta a un 5 - 10% de los pacientes ingresados en el hospital y más de 1,4 millones de pacientes en el mundo contraen infecciones en el hospital continuamente.

En el enfermo conlleva un incremento de sufrimiento, de estancia hospitalaria, de tiempo de incapacidad y pueden ocasionarle la muerte. Su repercusión en la sociedad, debido al requerimiento de asistencia, ocasiona un importante gasto, en parte evitable. Además, acarrea una pérdida de confianza en el sistema sanitario ya que resulta paradójico que un paciente acuda al hospital para ser curado de una afección y contraiga, por ese hecho, una infección que va a complicar de forma importante su estancia y que puede incluso ocasionarle la muerte.

En la actualidad se están aplicando a la prevención de esta infección recursos económicos y humanos importantes en todos los países del mundo, especialmente en los desarrollados. Medidas tan sencillas como la higiene correcta de manos acarrean un descenso considerable de su frecuencia.

El futuro es incierto: cada vez se somete a los pacientes a procedimientos más agresivos, el problema de la inmunodepresión va \textit{in crescendo} y la aparición y difusión de microorganismos multirresistentes constituye una amenaza real que ha necesitado la adopción de medidas excepcionales.

Identificar los factores de riesgo (FR), formar adecuadamente al personal sanitario, determinar la magnitud del problema en cada Centro Sanitario, vigilar el cumplimiento de las medidas de prevención necesarias, dotar a los centros de los medios humanos y materiales necesarios... resulta imprescindible.

Todos los Organismos, tanto nacionales como internacionales, se han puesto en marcha para luchar contra esta lacra. Todas las IN no son evitables, pero sí porcentajes que oscilan entre un 35 y un 55%, según se trate de países desarrollados o países en vías de desarrollo.\(^{(93)}\)

En este contexto, disponer de instrumentos de medida precisos que permitan conocer la magnitud del problema y su evolución en el tiempo es altamente recomendable. Además, poder identificar a los pacientes más susceptibles de contraer una IN para adoptar las medidas preventivas necesarias, constituye un gran avance.
Por tanto, el objetivo fundamental de este trabajo es obtener modelos que nos indiquen el riesgo concreto de contraer una IN de un determinado paciente y, además, poder comparar el riesgo de adquirir una IN entre distintos pacientes, servicios, centros etc. Y, por supuesto, determinar el peso específico de cada variable o factor de riesgo en la génesis de la IN.
1.- INTRODUCCIÓN.

La infección nosocomial puede definirse como aquella producida por microorganismos adquiridos por el enfermo durante su estancia en el hospital. Constituye un capítulo esencial en la no seguridad del paciente(49,482).

Afectan a todos los países, tanto a los desarrollados como a los más pobres. Y, pese a los esfuerzos y avances realizados en los últimos años, siguen siendo una pesada carga para el paciente y para los distintos sistemas de salud, tanto públicos como privados.

1.1.- **Definición de Infección Nosocomial.**

Consideramos infección nosocomial (en adelante IN) a aquella infección que se adquiere en el centro hospitalario por el hecho de ingresar en él, que afecta a pacientes ingresados por un proceso distinto al de esa infección, y que en el momento de admisión no estaba presente ni siquiera en periodo de incubación.

Esta definición fue la primera que utilizaron los hospitales participantes en el NNIS (National Nosocomial Infections Surveillance System) del CDC en 1987(163). Concretamente la definían como *aquella infección que se adquiere durante la hospitalización y que no estaba presente ni en periodo de incubación en el momento del ingreso; aquella que se adquiere en el hospital y persiste en el momento del alta del paciente; aquella que aparece en el recién nacido como consecuencia de su paso por el canal del parto.* La definición fue ampliada con los comentarios y aportaciones del personal que realizaba las tareas de vigilancia, prevención y control de la infección nosocomial, como iremos señalando.

También Garner y cols, en 1996(164), insistieron en la anterior definición y destacaron que es preciso que, en la práctica, se trate de una infección y no una simple colonización; que no estuviese presente en el momento de la admisión y que hubiera transcurrido suficiente tiempo para desarrollarse dicha infección después del ingreso.

Insistían en que es necesario determinar que se trate de una infección y no de una colonización y describieron las diferencias. La infección va acompañada de signos y síntomas:

- Fiebre, malestar.
• En las localizadas: inflamación, dolor, calor, eritema (los clásicos tumor, dolor, calor, rubor).

• Utilización de las definiciones que establecen los mínimos para el diagnóstico de las mismas.

• Especial atención a los inmunodeprimidos: pueden no presentar los síntomas de la infección de la misma forma que los pacientes normales. Por ejemplo: los neutropénicos (≤ 500 neutrófilos /mm3) no suelen presentar piuria o esputo purulento.

En cuanto a que esa infección no estuviese presente en el momento del ingreso, destacan que es preciso:

• Establecer claramente la negatividad previa.

• Revisar la Historia Clínica buscando signos y síntomas de infección.

• Realizar pruebas de laboratorio y/o Rx.

• En definitiva, asegurarse, en el momento del ingreso del paciente, de que:
 - Haya ausencia de signos y síntomas.
 - La exploración sea normal, en cuanto a infección.
 - La Rx sea normal
 - Los cultivos sean negativos o haya ausencia de los mismos.

Respecto al tiempo imprescindible necesario para que se desarrolle la IN, comentan:

• En enfermedades con periodo de incubación específico la estancia del paciente en el hospital debe ser superior en tiempo al límite inferior del periodo de incubación.

• Varias infecciones no tienen un periodo de incubación bien definido (por ej, ciertas estafilococias, las producidas por Escherichia coli). Estas infecciones raramente se desarrollan antes de 2 días después del ingreso.

Este aspecto del tiempo necesario que debe transcurrir desde el ingreso hasta la aparición de los primeros síntomas de infección para que sea considerada como IN lo trataremos más adelante.

Horan y cols., en 2004(202), representando al CDC de Atlanta, también señalaban que una infección se considera nosocomial si no hay indicios de que el paciente la tuviera ni en fase clínica ni en periodo de incubación al ingresar en el centro hospitalario.

Estos mismos autores, en 2008(200), añadían que a efectos de vigilancia en los hospitales de agudos del NHSN, el CDC define como infección nosocomial localizada o sistémica la condición que resulta de una reacción adversa a la presencia de algún

~ 13 ~
agente infeccioso o de sus toxinas. Redundan en la idea de que no debe existir evidencia de que la infección estuviese presente o en periodo de incubación en el momento de la admisión del paciente en el centro hospitalario.

Indican que la infección puede ser causada por agentes infecciosos endógenos o exógenos:

Los de origen endógeno pueden provenir de lugares del organismo como la piel, la nariz, la boca, el tracto gastrointestinal o la vagina que están permanentemente colonizados por microorganismos.

Los de origen exógeno son externos al paciente como los que provienen del personal sanitario, visitantes, equipos de atención, instrumentos y aparatos médicos y entorno sanitario.

También se consideró infección nosocomial aquella contraída por el personal sanitario en el desempeño de sus funciones y/o por los visitantes y acompañantes en relación con su paso por el hospital (428, 496).

Posteriormente, con el desarrollo del concepto de Seguridad del Paciente (16), se amplió el concepto denominándolo Infecciones Relacionadas con la Asistencia Sanitaria (IRAS (7)). En el momento actual, se consideran IRAS a todas las infecciones que puede desarrollar el paciente como consecuencia de la asistencia o atención recibida en el hospital, en centros de especialidades, centros de diálisis, centros de media o larga estancia, rehabilitación, hospital de día o en asistencia domiciliaria (132). El concepto incluye aquellas infecciones adquiridas por el hecho de utilizar los servicios sanitarios sea a nivel de servicios especializados como el hospital o a nivel de Atención Primaria o cualquier otro establecimiento sanitario donde se suministre atención médica al paciente (170). Las IRAS se definieron como “el cuadro clínico localizado o sistémico causado por la presencia de un agente infeccioso o su toxina, sin que exista evidencia de infección presente o en fase de incubación en el momento del ingreso hospitalario. La infección se considerará relacionada con la asistencia sanitaria cuando aparezca al 3º día o después, del día del ingreso, considerado éste como día 1. Se excluyen las complicaciones o la diseminación de las infecciones ya presentes en el momento del ingreso, excepto cuando un cambio de patógeno o sintomatología sugiera la adquisición de una nueva infección” (60, 322).

El ámbito de la vigilancia que se propone en este documento es hospitalario. En un futuro desarrollo del sistema se valorará la incorporación de otros ámbitos a la vigilancia.

Un aspecto ampliamente discutido ha sido el tiempo trascurrido desde el ingreso en el hospital o utilización de los servicios sanitarios hasta el diagnóstico de la
infección para que sea considerada una IRAS. En un principio se consideraba que
debían transcurrir al menos 72 horas. Este concepto chocaba en la práctica con
determinadas infecciones como por ejemplo bacteriemias asociadas a catéteres.
Horan y cols, en 2004(202), representando al CDC contribuyen a aclarar definitivamente
el concepto: "en la mayoría de localizaciones no se exige un mínimo de días de
estancia hospitalaria para considerar que una infección es nosocomial. Para
establecer su tipo debe estudiarse cada caso en particular".

Sin embargo, en la propuesta de creación de un sistema de vigilancia de la
Comisión de Salud Pública(170) se indica que se incluirán como IN las que cumplan los
criterios establecidos trascurridos al menos 3 días desde el ingreso hospitalario.

Desde el punto de vista conceptual consideramos muy adecuada la propuesta
de Horan y Gaines(200,201). Sin embargo, en la práctica diaria, a la hora de crear un
protocolo de recogida de datos en un programa de vigilancia, es preciso concretar,
es decir, dejar a la interpretación subjetiva la menor posibilidad. En este sentido
apoyamos la iniciativa del naciente Grupo de Trabajo de la Ponencia de Vigilancia
Epidemiológica.

También es necesario determinar hasta cuándo va a prolongarse la vigilancia.
Este período se extiende hasta los 30 días después de la intervención quirúrgica si la
infección aparece en un paciente sometido a cirugía y hasta 1 año en caso de que se
hayan colocado materiales extraños durante la intervención como prótesis, válvulas
cardíacas, marcapasos... Es decir, a una infección se le considera también
hospitalaria cuando se contrae después del alta, siempre que pueda relacionarse con
la hospitalización o los procedimientos hospitalarios(132).

Un aspecto no menos importante en la práctica es definir con claridad qué
infecciones no deben considerarse IRAS. En este sentido NO se consideran IRAS(200):

- La infección asociada a una complicación o diseminación de otra infección
 que ya estaba presente en el momento del ingreso, si no ha habido ningún
 cambio de microorganismo ni han aparecido síntomas muy sugestivos de
 que el paciente ha adquirido una nueva infección.

- La infección adquirida por vía transplacentaria (herpes simplex,
toxoplasmosis, rubeola, citomegalovirus, sifilis, p. e.) diagnosticada poco
después del nacimiento.

- En Neonatología aquella que se desarrolle durante las primeras 72 horas
de vida (aunque el niño hubiera estado previamente ingresado en un área
de hospitalización neonatal) por un microorganismo que sea flora habitual
del canal del parto (Streptococcus pyogenes, Escherichia coli, Listeria

～ 15 ～
monocytogenes, Estreptococos beta hemolíticos del grupo D -enterococos o no-), y/o en los que se demuestre que están presentes en el canal genital de la madre aunque no sean flora habitual de la misma, y son el agente etiológico de la infección neonatal (Haemophilus influenzae, Streptococcus pneumoniae, etc.).

- La colonización, que consiste en la presencia de microorganismos (en piel, membranas mucosas, heridas abiertas, excreciones o secreciones) que no causan signos ni síntomas clínicos adversos.

- La inflamación, situación que resulta de la respuesta tisular a una agresión o estimulación por agentes no infecciosos, como sustancias químicas.

Para el ECDC (2015)\(^{100}\) “las infecciones nosocomiales son las infecciones que se contraen en los hospitales. Actualmente se prefiere el término «infecciones asociadas a la asistencia sanitaria» porque abarca, además de las infecciones contraídas en el hospital, las que se adquieren en otros entornos en los que se presta asistencia sanitaria, p. ej., centros de asistencia prolongada, residencias de ancianos, hospitalización domiciliaria, etc."

El CDC ha publicado recientemente (2016\(^{59,60}\)) definiciones para tipos de IN específicos. Recomendamos consultar dicho documento para lo que facilitamos la dirección web correspondiente (http://www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf)

En resumen, los criterios de infección nosocomial (IN) o, en un concepto más amplio, infección relacionada con la atención sanitaria (IRAS) son:

- Infección que se adquiere en el hospital o en el medio sanitario.
- Que no se padecía clínicamente, ni se tenía en periodo de incubación al recibir la atención sanitaria.
- Que no se trata de una colonización sino de una infección.
- Que cumple los criterios de infección admitidos internacionalmente.
- Que ocurre trascurrido un periodo de tiempo desde esa atención por lo menos superior al periodo de incubación más corto de la enfermedad.
- La que se da en trabajadores sanitarios con motivo de su trabajo.
- La aparecida en visitantes, acompañantes, proveedores en el ejercicio de su trabajo o relación con el hospital etc.
- La que se manifiesta después del alta hospitalaria, hasta un año después de la atención sanitaria cuando se han colocado implantes (prótesis de rodilla o cadera, marcapasos, válvulas cardíacas) y siempre
que pueda relacionarse con la hospitalización o los procedimientos hospitalarios.

✔ Cuando en el mismo lugar donde se diagnosticó una infección se aísla un germen diferente, seguido del agravamiento de las condiciones clínicas del paciente.

✔ Cuando se desconoce el período de incubación del microorganismo y no hay datos clínicos ni de laboratorio de infección en el momento de la admisión, se considera infección nosocomial toda manifestación clínica de infección que se presenta al cabo de 72 horas después de la admisión.

✔ Se consideran nosocomiales todas las infecciones que se manifiestan antes de que transcurran 72 horas desde el momento de la hospitalización, cuando se relacionan con procedimientos diagnósticos o terapéuticos realizados después de dicha hospitalización o en un centro sanitario.

✔ Las infecciones en los recién nacidos son infecciones nosocomiales, salvo las transmitidas a través de la placenta.

1.2.- Breve recorrido histórico

Numerosos autores fijan la primera referencia escrita a normas sobre higiene en los hospitales en un libro con texto en sánscrito, datado en el siglo IV antes de Cristo, denominado Charaka-Samhita. En realidad el Charaka-Samhita o Carakasamhita fue escrito por el médico Cháraka en el siglo II de nuestra era basándose en los conocimientos trasmitidos por el mítico médico Punar Vasu Atreia que vivió, posiblemente, en el siglo VIII A.C. Cada uno de sus 6 discípulos escribió un texto sobre medicina. Al que se atribuye mayor importancia es al Agnivesha-samhita (escrito por Agnivesha) por desgracia desaparecido. En este texto se habría basado Cháraka (422).

También en el libro judío Levítico, tercer libro del Pentateuco se señalan normas precisas de higiene orientadas a evitar la propagación de enfermedades. Parece que fue escrito entre los años 500 a 400 A.C. (207)

Tanto griegos como romanos se esmeraron en las medidas de limpieza, especialmente estos últimos que ya alojaban a los pacientes en habitaciones
individuales. En occidente, en el siglo III después de Cristo los cristianos crearon hospitales aunque predominaba el concepto de caridad para con los enfermos sobre el de higiene. Con la caída del Imperio Romano de Occidente (año 476 de nuestra era) hubo un retroceso en todo lo relacionado con la limpieza y la higiene y, por supuesto, en el funcionamiento de los hospitales. Durante más de 1000 años se mezclaron toda clase de pacientes en sus salas, introduciendo y propagando las epidemias existentes entre los enfermos.

A finales del siglo XVIII, Madame Necker propuso separar a los pacientes y alojarlos a cada uno en una cama, ya que en dicha época era frecuente la estancia conjunta de varios pacientes en la misma. A título de anécdota diremos que en el Hotel Dieu de aquellos momentos una cama podía estar ocupada por varios enfermos.

Durante los siglos XVIII y XIX la lucha contra la masificación adquirió especial relevancia en Inglaterra donde destacaron dos investigadores pioneros:

- John Pringle (1707-1782), con dos aportaciones destacadas: la teoría del contagio animado achacándole la transmisión y la difusión de los primeros y primitivos conceptos de empleo de los antisépticos.

- James Simpson (1811-1870) que relacionó las cifras de mortalidad por gangrena tras amputación con el tamaño y masificación del hospital.

Años más tarde, James Lind (1716-1794), fiel seguidor y defensor de las teorías de Pringle, defendió la idea de la filtración del agua antes de su consumo y difundió los principios de desinfección de vestidos y fómites. Aunque lo que hizo famoso a este autor no fue esto sino sus ensayos sobre la prevención del escorbuto y porque se le reconoce haber realizado el primer ensayo clínico documentado de la historia.

Entre 1790 y 1798 Menzies y Peterson implantaron la fumigación con ácido nitroso para detener las epidemias de infecciones respiratorias en los barcos de la armada inglesa.

Años más tarde, Lord Joseph Lister difundió su uso en quirófanos, e introdujo los principios de la antisepsia en cirugía. Probó el cloruro de cinc y los sulfitos, pero pensó que podía emplear el ácido fénico, sustancia que se obtenía fácilmente del alquitrán de hulla y que, desde 1859, se venía empleando para evitar putrefacciones. Un farmacéutico parisino apellidado Lemaire, que estudió detenidamente esta sustancia entre 1860 y 1863, partiendo de las bases implantadas por Menzies y Peterson casi un siglo antes, en 1863 aplicó el uso como desinfectante del ácido fénico-carbónico al observar que los microorganismos (ya insinuada su existencia por Pasteur) no se desarrollaban en su presencia.
Semmelweis (1818-1865)(259,320), médico húngaro, consiguió disminuir la sepsis puerperal un 70% entre las mujeres que acudían a dar a luz a un hospital de Viena. Lo consiguió recomendando a los obstetras que se lavaran las manos con una solución de cloruro cálcico antes de atender los partos. La comunidad científica le rechazó de plano y falleció de septicemia a los 47 años de edad, en un asilo, en la más absoluta soledad. En la actualidad se ha rehabilitado su nombre considerándole la figura médica pionera del antisepsia y de la prevención de la infección nosocomial. Pocos años después Luis Pasteur publicaría su hipótesis microbiana como detallaremos más adelante.

Florence Nightingale(319) (1820-1910), conocida popularmente como «la dama de la lámpara», contemporánea de Semmelweis, proporcionó cuidados de enfermería a los heridos en la guerra de Crimea y logró reducir la mortalidad de los mismos vigilando de forma continuada al paciente y su entorno como la luz, ventilación, higiene personal y del medio y la alimentación adecuada. Semmelweis y Nightingale fueron precursores de los programas de vigilancia epidemiológica y, con la publicación de sus observaciones, contribuyeron de forma significativa a la prevención de las infecciones relacionadas con la asistencia sanitaria.

Los descubrimientos de Louis Pasteur (1892 - 1895)(279,308) tuvieron gran importancia en diversos campos de las ciencias naturales especialmente en la química y en la microbiología. Descubrió la técnica denominada pasteurización, refutó definitivamente la teoría de la generación espontánea y desarrolló la teoría germinal de las enfermedades infecciosas. Por sus aportaciones se le considera el padre de la microbiología y el iniciador de Edad de Oro de la Microbiología. Según su teoría toda enfermedad infecciosa tiene su causa en un ente vivo microscópico con capacidad para propagarse entre las personas y esa causa no provenía de adentro del cuerpo debido a desequilibrio de los humores como se creía hasta entonces. Su teoría fue controvertida e impopular: resultaba ridículo pensar que algo insignificante y pequeño hasta lo invisible pudiese ocasionar la muerte de seres mucho más «fuertes».

Esta teoría microbiana tan controvertida en sus comienzos, hoy es fundamental en la microbiología clínica y, por tanto, en la medicina actual. Ha sido fundamental su aportación al campo de las vacunas, la esterilización, los antibióticos, la higiene etc. todos ellos imprescindibles en la prevención de las enfermedades infecciosas en general y de las IN en particular.

Ya en la década de 1950(143), se produjo un importante avance en el estudio microbiológico de las infecciones. Con la finalidad de controlar los episodios diarreicos en personas hospitalizadas se detectaron cepas epidémicas de \textit{S. aureus}243,480.
En Filadelfia se instauraron los primeros sistemas de vigilancia de la infección, y se destacó la labor de la enfermera en el control de las infecciones.

Alexander Langmuir, en la década de 1960, introdujo el concepto de "Vigilancia epidemiológica". Las autoridades del CDC, bajo su dirección, organizaron los primeros cursos para la capacitación del personal en la tarea de control de las infecciones\(^{(261)}\).

La influencia de los antibióticos en la historia de las IN fue trascendental. Por ejemplo, el empleo de la penicilina redujo la tasa de mortalidad por sepsis estafilocócica\(^{(31,84)}\). No obstante, enseguida aparecieron las primeras cepas resistentes. Sin embargo, a partir de la década de 1960 los cocos gram-positivos fueron cediendo terreno a los bacilos gram-negativos, especialmente a las enterobacterias.

En 1970 se lleva a cabo la primera conferencia internacional sobre infección hospitalaria donde se valoró el papel de la vigilancia y la eficacia de los procedimientos de control de la misma. Dicha conferencia se celebra cada diez años\(^{(126)}\).

La importancia de las IN fue advertida por varios médicos y cirujanos ilustres. Durante los primeros años de la era antibiótica, con la euforia del descubrimiento, se llegó a pensar que todas las enfermedades infecciosas podrían ser totalmente erradicadas. Sin embargo, esto no fue así, sino que, cuantitativamente, fueron en aumento y experimentaron cambios etiológicos sustanciales (mutaciones), de forma gradual pero ininterrumpida hasta la actualidad\(^{(379)}\).

El National Nosocomial Infection Surveillance (NNIS) System se constituyó, patrocinado por el CDC\(^{(116)}\), para obtener datos nacionales sobre infección nosocomial en Estados Unidos. Fue el primer programa de vigilancia epidemiológica que utilizó una metodología estandarizada, de participación voluntaria y con confidencialidad de los datos. Este sistema se estableció en Estados Unidos en 1970 con 62 hospitales, fue el programa impulsor del estudio SENIC y en la actualidad cuenta con centenares de hospitales que aportan datos regularmente al programa. Los objetivos del programa NNIS fueron:

- Describir la epidemiología de las infecciones hospitalarias.
- Promover la vigilancia epidemiológica en los hospitales de Estados Unidos.
- Facilitar la comparación de las tasas de infección entre hospitales como herramienta para mejorar la calidad asistencial.

La experiencia del programa NNIS ha sido muy positiva. Ha inspirado el modelo de los sistemas de vigilancia que se aplican actualmente en diversos países. Su mayor
logro fue utilizar los datos de vigilancia para desarrollar y evaluar estrategias de prevención y control de la IN. Los datos recopilados permitieron el establecimiento de tasas específicas de riesgo de infección utilizables a nivel de cada hospital o a nivel de Comunidad o Estado. Y, además, también permitieron establecer prioridades en sus programas de control de las IN y evaluar la efectividad y eficacia de los esfuerzos realizados. Por otra parte, han permitido determinar que estamos ante un fenómeno endémico que puede evolucionar ocasionalmente a brotes epidémicos, limitados en el tiempo y en el espacio. También han permitido deducir que la incidencia de IN es un fenómeno relativamente estable, que la flora causante es muy variada y que tiende a más variabilidad en el tiempo (especialmente por las multirresistencias) y que existe, en la mayoría de los casos, una relación directa con el cumplimiento correcto o incorrecto de las normas de bioseguridad.

El estudio SENIC (Study of the Efficacy of Nosocomial Infection Control)\(^{214}\) se creó en los años 70 en EEUU con el propósito de evaluar los programas de prevención y control de la IN en aquel país haciendo dos cortes uno en 1970 y otro en 1976 y analizar su evolución. Demostró bajo una base científica fundamentada, que en los centros donde se realizaban labores de vigilancia y control de la infección nosocomial no sólo descendían las tasas de ésta sino que lo hacían en mayor magnitud cuanto más estrictas fuesen estas medidas.

Con el conocimiento de que la infección nosocomial constituía un importante problema en los hospitales de Estados Unidos en el CDC se instituyó en 1974\(^{180}\) un estudio nacional para evaluar las características del control de la infección. Las tres fases del proyecto, ahora conocido como estudio SENIC\(^{214}\), fueron designadas de acuerdo con las tres objetivos primarios:

1.- Determinar si la implementación de programas de vigilancia y control de la IN ha disminuido la tasa de IN, y, si es así, en qué grado.

2.- Describir la situación real y las tasas de infección.

3.- Demostrar la relación entre las características de los hospitales y los pacientes, los componentes de los programas de vigilancia y control, y comprobar si estos programas tenían como resultado la reducción de las tasas de infección (quirúrgica, urinaria, neumonía asociada a ventilación mecánica y bacteriemia.

El estudio SENIC\(^{214}\) demostró que los hospitales con buena implantación de programas activos de control de la infección observaban hasta un 30% menos de este tipo de infecciones que los hospitales que no disponían de estas estructuras\(^{178}\). Esta reducción se conseguía cumpliendo las siguientes condiciones:

\(\sim 21 \sim \)
Utilización de un programa estructurado de vigilancia epidemiológica con actuaciones orientadas al control de la infección hospitalaria,

Dotación mínima de personal:
- una enfermera asignada al programa por cada 250 camas hospitalarias,
- un epidemiólogo hospitalario con entrenamiento en vigilancia y control de infección,
- En infecciones quirúrgicas, comunicación de las tasas de infección quirúrgica a los cirujanos.

La conclusión fue bastante sorprendente: los cuatro componentes citados necesarios para la prevención de las principales infecciones hospitalarias (quirúrgica, urinaria, bacteriemia e infección del tracto respiratorio), variaban significativamente de una infección a otra. El único componente que contribuyó a reducir todos los tipos de infecciones fue la vigilancia epidemiológica. Significativamente, el estudio SENIC(214) demostró la efectividad de los programas de control de la infección establecidos en los hospitales americanos y describió los componentes esenciales para el correcto funcionamiento de dichos programas(67,165,181,446).

Situación actual de los programas de vigilancia epidemiológica

Inicialmente los programas de vigilancia intentaban detectar las infecciones hospitalarias de todos los pacientes ingresados en el centro hospitalario correspondiente. Pronto quedó claro que la cantidad de recursos que este sistema consumía no quedaba justificada por los resultados. Se pensó en instaurar nuevos sistemas más eficientes, a la vez que eficaces. En la década de 1990, especialmente en su segunda mitad, se cambió de táctica de vigilancia total por la vigilancia por objetivos, mucho más eficaz y eficiente y dirigida a la consecución de indicadores tanto de proceso como de resultado. Estos indicadores permitirían conocer al detalle la situación de la infección nosocomial en cada centro. Los recursos utilizados serían proporcionales a los resultados pretendidos por cada institución. Los indicadores de proceso y de resultado son comunes en los diferentes programas y permiten
determinar tendencias en un mismo hospital y establecer comparaciones con hospitales de similares características\(^\text{(228)}\).

Ejemplos de indicadores de proceso\(^\text{(171,399)}\) utilizados más habitualmente son:

a) consumo anual de antibióticos por antibiótico y por área de hospitalización.

b) profilaxis antibiótica preoperatoria adecuada.

c) consumo anual de gel alcohólico por unidades de hospitalización (indicador indirecto de cumplimiento de las normas de higiene de manos).

d) porcentaje de apósitos en buen estado que protegen el catéter vascular.

e) uso de catéter urinario con circuito cerrado.

Los indicadores de resultado utilizados con mayor frecuencia en la infección nosocomial son los siguientes:

a) tasa anual de prevalencia de infección nosocomial.

b) tasa de bacteriemia asociada a catéter vascular.

c) tasa de la infección quirúrgica en procedimientos de elevado impacto por su morbilidad o coste, por ejemplo la cirugía colorrectal y la protésica.

d) tasa de bacteriemia asociada a catéter y tasa de neumonía asociada a ventilación mecánica en las UCI.

e) tasas de incidencia de microorganismos de especial relevancia epidemiológica, como \(S\) aureus resistente a la meticilina o \(Clostridium\) difficile.

Cada centro suele establecer los indicadores tanto de proceso como de resultados que considere oportuno. En la Tabla 1, basada en las publicaciones de M\(\text{Pujol y colaboradores}\)\(^\text{(383)}\) y Wijers\(^\text{(487)}\) se recopilan algunos.
Tabla 1. Algunos programas de vigilancia de las IRAS

- NHSN (National Healthcare Safety Network), Estados Unidos
- VICNISS (Victorian Infection Control Surveillance System), Australia
- KISS (Krankenhaus Infections Surveillance System), Alemania
- NHS (National Health System), Reino Unido
- RAISIN (Réseau d’Alerte d’Investigation et de Surveillance des Infections Nosocomiales), Francia
- EPINE (Estudio de Prevalencia de Infección Nosocomial), España
- ENVIN HELICS (Estudio de Vigilancia de Infección Nosocomial UCI), España
- VINCat (Vigilancia de la Infección Nosocomial en Cataluña), Cataluña
- Plan de vigilancia y control de las infecciones nosocomiales en los hospitales del Servicio Andaluz de Salud, Andalucía
- Plan INOZ Plan de vigilancia, prevención y control de las infecciones nosocomiales en los hospitales de Osakidetza (Servicio Vasco de Salud)
- EPINE-EPPS. Estudio de Prevalencia de la IN en España.

El ECDC(515), en 2008, publicó las características de los programas de vigilancia de la IN de muchos de los países europeos. Puede apreciarse en la tabla 2.

Tabla 2. Programas de vigilancia de la IN en países europeos.

<table>
<thead>
<tr>
<th>Country</th>
<th>Coordinated network</th>
<th>Network acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Austrian Nosocomial Infection Surveillance System, Medical University of Vienna</td>
<td>ANISS</td>
</tr>
<tr>
<td>Belgium</td>
<td>National Surveillance of Healthcare associated infections and antimicrobial resistance, Scientific Institute of Public Health (IPH), Brussels</td>
<td>NSIH</td>
</tr>
<tr>
<td>Croatia</td>
<td>Reference Centre for Hospital Infections, Zagreb</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>Finnish Hospital Infection Programme (SIRO), National Public Health Institute (KTL), Helsinki</td>
<td>SIRO</td>
</tr>
<tr>
<td>Country</td>
<td>Organization</td>
<td>Acronym</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>France</td>
<td>Réseau d’Alerte, d’Investigation et de Surveillance des Infections Nosocomiales (RAISIN), under the auspices of the Institut de Veille Sanitaire (InVS)</td>
<td>RAISIN</td>
</tr>
<tr>
<td>FR-East</td>
<td>Centre de coordination de la lutte contre les infections nosocomiales, Est</td>
<td>C.CLIN Est</td>
</tr>
<tr>
<td>FR-Paris-Nord</td>
<td>Centre de coordination de la lutte contre les infections nosocomiales, Paris-Nord</td>
<td>C.CLIN Paris-Nord</td>
</tr>
<tr>
<td>FR-South-east</td>
<td>Centre de coordination de la lutte contre les infections nosocomiales, Sud-Est</td>
<td>C.CLIN Sud-Est</td>
</tr>
<tr>
<td>FR-South-west</td>
<td>Centre de coordination de la lutte contre les infections nosocomiales, Sud-Ouest</td>
<td>C.CLIN Sud-Ouest</td>
</tr>
<tr>
<td>FR-West</td>
<td>Centre de coordination de la lutte contre les infections nosocomiales, Ouest</td>
<td>C.CLIN Ouest</td>
</tr>
<tr>
<td>Germany</td>
<td>German Nosocomial Infection Surveillance System (KISS), National Reference Centre for Nosocomial Infection Surveillance, Charité Medical University, Berlin</td>
<td>KISS</td>
</tr>
<tr>
<td>Hungary</td>
<td>National Nosocomial Surveillance System (NNSR), National Center for Epidemiology (OEK), Budapest</td>
<td>NNSR</td>
</tr>
<tr>
<td>Italy</td>
<td>National network: Gruppo Italiano Studio Igiene Ospedaliera (GISIO)</td>
<td>SPIN-UTI</td>
</tr>
<tr>
<td>Lithuania</td>
<td>Institute of Hygiene, Vilnius</td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>Centre de Recherche Public de la Santé, Luxembourg</td>
<td>NOSIX</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Prevention of Nosocomial Infection through Surveillance (PREZIES), National Institute for Public Health and Environment (RIVM) and the Dutch Institute for Healthcare Improvement (CBO)</td>
<td>PREZIES</td>
</tr>
<tr>
<td>Norway</td>
<td>Norwegian Institute of Public Health (FHI), Oslo</td>
<td>NOIS</td>
</tr>
<tr>
<td>Poland</td>
<td>Polish Society of Hospital Infections; National Institute of Public Health, Warsaw</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>Envín: Hospital Val d’Hebron, Barcelona; SSI surveillance by Carlos III Institute of Health, Madrid</td>
<td>ENVIN (ICU), EPINE (prevalence)</td>
</tr>
<tr>
<td>UK-England</td>
<td>Health Protection Agency (HPA), London</td>
<td>SSIISS (SSI)</td>
</tr>
</tbody>
</table>

~ 25 ~
En nuestro país, siguiendo los resultados del SENIC\(^{(214)}\), desde hace varios años se llevan a cabo labores de colaboración interprofesional e institucional con la finalidad de minimizar las IN. Se desarrollan programas de vigilancia de las infecciones nosocomiales, para obtener una información pertinente y actualizada sobre las mismas.

También se están realizando, desde 1990, anualmente, estudios de prevalencia de la IN. El más importante es el EPINE\(^{(117)}\). Se lleva a cabo en la mayor parte de los hospitales españoles, siguiendo un protocolo común, bajo la supervisión de personal especializado. Permite la comparación de centros y la evolución en el tiempo, siendo sus resultados de gran interés para evaluar la calidad asistencial.

En 1989, en Euskadi, se realizó un estudio (proyecto de investigación) que pretendía dimensionar el problema de la IN en los hospitales de la RED de Osakidetza\(^{(169)}\). Médicos formados al respecto recopilaron, durante dos meses, los datos de hospitales de agudos de Osakidetza de cuatro Servicios diferentes que fuesen significativos del quehacer diario hospitalario: Medicina Interna, Cirugía General, Traumatología y Cuidados Médicos Intensivos. Finalizado el estudio, dada la magnitud del problema, en 1991 se decidió constituir una Comisión en Servicios Centrales de Osakidetza que aglutinase, promoviese y desarrollase las medidas y esfuerzos orientados a disminuir la IN. Se la denominó Comisión INÖZ\(^{(68)}\) (Infekzio Nosokomialak Zaintzeko eta Kontrolatzeko Plana - Plan de Vigilancia y Control de las Infecciones Nosocomiales) y funciona plenamente desde entonces. Está constituida por representantes de todos los hospitales de la Red de Osakidetza, de los Servicios de Medicina Preventiva de los hospitales dotados con los mismos, cuando los hay. Los datos base para la realización de este proyecto se han recopilado con la metodología y tutela de dicha Comisión\(^{(350)}\).

En 1999, el IOM (Institute of Medicine) de los EEUU publicó su célebre trabajo “Errar es humano: construyendo un sistema de salud más seguro”\(^{(70)}\). Entre 44.000 y 98.000 personas mueren al año en los hospitales de EEUU por errores médicos.
(nombre genérico que incluye los errores propiamente médicos y otros, como por ejemplo caídas, electrocuciones, errores en la administración de la medicación etc.) que se podían haber prevenido. Aunque consideremos la cifra inferior se superarían las muertes provocadas por accidentes de tráfico, cáncer de pulmón y VIH juntos. Un buen porcentaje lo constituyen las infecciones nosocomiales.

Osakidetza y el Departamento de Sanidad del Gobierno Vasco han incluido en el Plan de Salud 2013-2020\(^{354}\), materializado en este caso en el ámbito de la Seguridad del Paciente, líneas de actuación prioritarias en sintonía con las pautas de la OMS/WHO. De las 4 nuevas líneas de acción, la nº 4 *Reducción de las infecciones del tracto urinario asociadas a catéter urinario* va orientada a la lucha contra la IN y concretamente “mediante acciones corporativas encaminadas a consensuar las indicaciones de la cateterización urinaria, reducir en lo posible el tiempo que permanece cateterizado un paciente y mejorar la técnica de inserción del catéter y los cuidados que se prestan mientras este permanece insertado”. Así mismo, de las *líneas pre-existentes incorporadas a la estrategia*, la nº 1 es *Prevención y control de las Infecciones Relacionadas con la Asistencia Sanitaria (IRAS)*. “La prevención y el control de las IRAS constituyen objetivos prioritarios para el conjunto del sistema sanitario de Euskadi desde hace más de dos décadas. Durante estos años se han desarrollado diferentes programas y proyectos entre los que cabe señalar: el Plan INOZ que incluye todas las actividades de vigilancia, prevención y control de las IRAS en los hospitales de Osakidetza, y los proyectos *Bacteriemia Zero y Neumonía Zero*, estos últimos desarrollados a nivel del Sistema Nacional de Salud en coordinación con las Comunidades Autónomas para la prevención de las infecciones en las Unidades de Cuidados Intensivos\(^{69,322,352}\).”

En abril de 2015 se propuso la creación de un sistema nacional de vigilancia de las IRAS con participación de las Comunidades Autónomas y diversas instituciones entre las que destacan las dos Sociedades estatales que en estos momentos desarrollan programas de vigilancia: SEMPSPH (EPINE-EPPS) y SEMICYUC (ENVIN)\(^{170}\). En ese documento se propone que el sistema de vigilancia de las IRAS cumpla el siguiente objetivo general: Desarrollar un sistema de vigilancia nacional con información homogénea y sistemática, recogida mediante una metodología estandarizada que permita conocer y comparar la incidencia y la prevalencia de las IRAS y, así, promover la prevención y control de estas infecciones\(^{132,322}\).
Entre los objetivos específicos del sistema se encuentran:

1. Conocer la prevalencia e incidencia de las IRAS, sus factores de riesgo y los patógenos causantes de las infecciones.

2. Recoger información que permita obtener unos indicadores homogéneos de IRAS entre los centros que participen en el sistema de vigilancia, para facilitar la comparabilidad entre ellos.

3. Reforzar la detección, notificación, investigación y control de los brotes de IRAS.

4. Facilitar estudios de intervención y la evaluación del impacto de las medidas preventivas.

5. Participar en el sistema de vigilancia europeo coordinado por el ECDC con los resultados de la vigilancia nacional.

El sistema de vigilancia de las IRAS tendría carácter obligatorio y estaría integrado en la Red Nacional de Vigilancia Epidemiológica.

Tabla 3.- Módulos de vigilancia y procedimientos en fase inicial de implementación del sistema nacional de vigilancia de las IRAS. (170)

<table>
<thead>
<tr>
<th>Módulos de vigilancia</th>
<th>Actividades /Procedimientos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalencia de la infección nosocomial</td>
<td>Vigilancia de la prevalencia global de IRAS</td>
</tr>
<tr>
<td>Infección de localización quirúrgica (ILQ)</td>
<td>Prótesis cadera (HPRO)</td>
</tr>
<tr>
<td></td>
<td>Cirugía colon (COLO)</td>
</tr>
<tr>
<td></td>
<td>Bypass coronario con doble incisión (CBGB) y Bypass coronario con incisión simple (CBGC)</td>
</tr>
<tr>
<td>Infecciones asociadas a dispositivos (UCIs)</td>
<td>Infecciones urinarias (ITU) asociadas a sondaje uretral (SU)</td>
</tr>
<tr>
<td></td>
<td>Neumonías asociadas a ventilación mecánica (VM)</td>
</tr>
<tr>
<td></td>
<td>Bacteriemias asociadas a catéter (BAC)</td>
</tr>
<tr>
<td>Infecciones por microorganismos multirresistentes o de especial relevancia clínica</td>
<td>Enterobacterias multirresistentes productoras de carbapenemamas, Staphylococcus aureus resistente a Meticilina</td>
</tr>
</tbody>
</table>
1.3.- **Importancia de la IN: Dimensiones y repercusiones.**

Las infecciones nosocomiales u hospitalarias se presentan en un 5 a 10% de los pacientes ingresados en el hospital (OMS/WHO\(^{341}\)). Constituyen un riesgo asociado a la hospitalización y ocasionan graves trastornos tanto al enfermo como a la sociedad. En el enfermo incrementen su sufrimiento, estancia hospitalaria y período de incapacidad e incluso pueden ocasionarle la muerte, y a la sociedad debido al requerimiento de asistencia y con ello ocasionando un gasto a la Seguridad Social. Además, conlleva una pérdida de confianza en el sistema sanitario ya que resulta paradójico que un paciente acuda al hospital para ser curado de una afección y contraiga, por ese hecho, una infección que va a complicar de forma importante su estancia y que puede incluso ocasionarle la muerte.

En la aparición de la infección nosocomial existen factores no modificables (edad, sexo, tipo de intervención) que contribuyen a que persista un mínimo irreducible de infección. Esta cifra está condicionada por el estado del conocimiento de la patogenia de la IN y del sistema inmunitario de los pacientes\(^{93}\).

Por lo tanto es de vital importancia el control de los factores modificables verificables por el personal sanitario, incluidos los ambientales\(^{51}\). De ahí la trascendencia de la formación del personal dedicado a su control. Es decir, del conocimiento de la epidemiología de accidentes, prevención de enfermedades transmisibles, toma de decisiones en ausencia de certeza, metaanálisis (análisis cualitativo y combinación cuantitativa de las evidencias proporcionadas por diferentes estudios sobre el mismo tema), cumplimiento de normas y recomendaciones difundidas y de las habilidades en la comunicación eficaz, con el objetivo de minimizar el riesgo de infección\(^{383}\).
Además, la tasa de IN (global o específica) en un centro asistencial se considera un indicador válido de la calidad de la atención sanitaria siempre que se desarrolle con la metodología adecuada.

Las IN constituyen un objetivo prioritario en los hospitales, y admitiendo que parte de las IN son inevitables, se realizan estudios, y se llevan a cabo labores de vigilancia y control con la finalidad de minimizar el riesgo de infección (383).

Asumimos que la IN es un problema prioritario de salud pública, prevenible y tratable, sin olvidarnos de que, además, suma su propia morbimortalidad a la de la enfermedad por la que los pacientes ingresaron en el hospital (110).

Mención aparte merece, dentro de este capítulo las repercusiones de la IN para quien la padece, que pueden resumirse en las siguientes:

Sanitaria: Las IN agravan el pronóstico del paciente pudiendo incluso provocarle la muerte. La morbilidad debida a este tipo de infecciones puede cuantificarse de manera indirecta en función del incremento en el tiempo de estancia hospitalaria. Su cálculo es muy difícil ya que influyen otros factores (143) como que los pacientes que fallecen suelen ser los de peor pronóstico, que los procedimientos empleados en estos pacientes son más agresivos y por tanto más favorecedores de la aparición de infección, o que en pacientes con enfermedades próximamente fatales las infecciones nosocomiales son más frecuentes y más difíciles de evitar. La realidad es que constituye un grave problema sanitario mal aceptado por los pacientes ya que resulta paradójico que acudan al hospital a curarse y que, por el hecho de su estancia en el mismo, puedan contraer una infección que va a complicar mucho su estancia, que puede originar secuelas e, incluso, que puede ocasionarle la muerte.

Por otra parte, la problemática inherente a la IN puede comprenderse mejor si utilizamos dos indicadores: prevalencia e incidencia.

Prevalencia: constituye un indicador estático o semiestático en el sentido de que se refiere al número de pacientes infectados o IN en un momento (puntual) dado. Es decir, estaría conformado por un cociente que tendría en el numerador el número de pacientes infectados o IN en un momento dado y en el denominador el número total de pacientes estudiados presentes en ese momento:

| nº pacientes con IN o nº de INs | Prevalencia = | total de pacientes en ese momento |

Prevalencia
Suele multiplicarse por 100 para que la cifra resultante nos sea más fácil de entender ya que para nuestra mentalidad el porcentaje es una forma habitual de expresión.

En nuestro entorno, desde el año 1990, la SEMPSPH (Sociedad Española de Higiene y Medicina Preventiva Hospitalaria) está realizando el estudio EPINE en la mayor parte de hospitales de agudos del Estado. El número de hospitales participantes ha ido aumentando siendo de 123 en 1990, dándose un máximo de participación en 2010 y 2011 (ambos con 287 hospitales participantes) y 278 en 2015, último año del que tenemos constancia.

Hay que hacer constar que el año 2012 hubo una fusión con el ECDC, utilizándose un nuevo protocolo y una nueva base de datos que, en general, era bastante parecido al clásico pero con algunas diferencias significativas como, por ejemplo, el criterio de inclusión de los pacientes. Posiblemente tuvo influencia en el cambio de resultados, fundamentalmente modificando el denominador (Figura 1).

La edad media de los pacientes estudiados ha ido aumentando constantemente. El año 1990 fue de 42,9 años y en 2014 de 60,4. Casi un incremento de un año cada año que ha trascurrido.

Figura 1.- Evolución EPINE 1995-2015
En la tabla anterior puede observarse la prevalencia de pacientes infectados considerando el total de pacientes estudiados. Sin embargo, sabemos que pueden existir diferencias importantes según el tamaño de los hospitales. Por ejemplo, en el año 2015 se presentaron las siguientes diferencias:

EPINE-EPPS, España 2015. Prevalencia de pacientes infectados (%PPI):
- Hospitales grandes (>500 camas): %PPI: 9,52%
- Total de hospitales. España 2015: %PPI: 8,06%
- Hospitales de 201 a 500 camas: %PPI: 7,09%
- Hospitales ≤ 200 camas: %PPI: 6,32%

<table>
<thead>
<tr>
<th>Tamaño del hospital</th>
<th>Hospitales</th>
<th>Pacientes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>≤200 camas</td>
<td>126</td>
<td>45,49</td>
</tr>
<tr>
<td>De 201 a 500 camas</td>
<td>81</td>
<td>29,24</td>
</tr>
<tr>
<td>>500 camas</td>
<td>49</td>
<td>17,69</td>
</tr>
<tr>
<td>Total</td>
<td>277</td>
<td>100,00</td>
</tr>
</tbody>
</table>

N : Número de pacientes
% : Porcentaje sobre el total

La diferencia es importante ya que los hospitales grandes)\(^{437}\) tuvieron 25,5% más de pacientes infectados que los medianos y 33,6% más que los pequeños. Como puede verse en la tabla 3 en los hospitales grandes ingresaron el 45,36% de los pacientes estudiados.

También puede observarse en esa misma tabla que la división de los hospitales por tamaños se concreta en tres cortes (≤200 camas; de 201 a 500 camas; >500 camas). Dado que casi la mitad de los pacientes estudiados están en la categoría > 500 camas y que en estos hospitales llamados “grandes” existen diferencias importantes de tamaños, sugerimos que pueda realizarse un nuevo corte, en hospitales de entre 500 y 900 camas y superiores a 900, que refleje mejor la realidad.
La OMS comunicó en 2015 datos muy significativos:\(^{(341)}\):

- Más de 1,4 millones de pacientes en el mundo contraen infecciones en el hospital continuamente.
- En los hospitales modernos del mundo desarrollado entre el 5% y el 10% de los pacientes ingresados contraerán una o más infecciones nosocomiales.
- En los países en desarrollo, el riesgo de infección relacionada con la atención sanitaria es de 2 a 20 veces mayor que en los países desarrollados. En algunos países en desarrollo, la proporción de pacientes afectados puede superar el 25%.
- En los EE.UU., uno de cada 136 pacientes hospitalarios se enferman gravemente a causa de una infección contraída en el hospital; esto equivale a 2 millones de casos y aproximadamente 80.000 muertes al año.
- En Inglaterra, más de 100.000 casos de infección relacionada con la atención sanitaria provocan cada año más de 5.000 muertes directamente relacionadas con la infección.
- En México, se calcula que 450.000 casos de infección relacionada con la atención sanitaria causan 32 muertes por cada 100.000 habitantes por año.

Incidencia: Es un indicador dinámico ya que se coloca en el numerador el número de casos nuevos que aparecen en un período de tiempo determinado

ENVIN - HELICS\(^{(436)}\), es un estudio de incidencia en las UCIIs del Estado. Se realiza todos los años, desde hace 20, durante tres meses (1 de abril a 30 de junio), Se estudian los siguientes procesos:

- neumonías relacionadas con ventilación mecánica (N-VM),
- infecciones urinarias relacionadas con sonda uretral (IU-SU),
- bacteriemias de origen desconocido (BOD) y aquellas relacionadas con catéteres vasculares (BCV),
- y bacteriemias secundarias (BS).

Sus proyectos más emblemáticos: **TOLERANCIA ZERO.** De ahí han derivado, hasta el momento, los proyectos **Bacteriemia zero, Neumonía zero** y, en estos momentos, **Resistencia zero.**
La última publicación que hemos podido consultar muestra los datos para 2014. Pueden verse en la tabla 4.

<table>
<thead>
<tr>
<th>Tabla 4.- Tasas generales de Incidencia. ENVIN-HELICS 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incluyendo las bacteriemias secundarias a infección de otros focos</td>
</tr>
<tr>
<td>Nº de infecciones/total pacientes</td>
</tr>
<tr>
<td>Nº de infecciones/total estancias (individuales)</td>
</tr>
<tr>
<td>Sin incluir las bacteriemias secundarias a infección de otros focos</td>
</tr>
<tr>
<td>Nº de infecciones/total pacientes</td>
</tr>
<tr>
<td>Nº de infecciones/total estancias (individuales)</td>
</tr>
</tbody>
</table>

En Euskadi se realiza anualmente el estudio de incidencia INOZ. Sus características pueden verse en el apartado 1.10.4.- PVPCIIN y sus resultados de 2010 a 2015 en el apartado Resultados (página 192).

El ECDC comunicó el año 2013 que, en la UE, al menos 80.000 pacientes sufren cada día una infección relacionada con su estancia en un centro de atención sanitaria\(^{(105)}\). Este mismo Organismo estimó en 2015 que unos 4.100.000 pacientes adquieren una IRAS cada año en la UE\(^{(111)}\).

Mortalidad y Letalidad: Número de fallecidos entre los que adquieren una IN expresado, habitualmente, en tanto por ciento.

El ECDC comunicó en 2015 y 2016\(^{(111)}\) que los fallecimientos como consecuencia directa de estas infecciones ascienden, por lo menos, a 37.000. Además, estas infecciones contribuyen a otras 110.000 muertes más cada año\(^{(96)}\).

Romo-Martínez y colaboradores\(^{(394)}\) afirmaron en 2015 para México: "la letalidad por IN anual 2013 fue de 10.4\%". Del texto se deduce que se refieren a letalidad en pacientes con IN y no pacientes por IN.
En EEUU fallece 1/25 pacientes con IN
En UK fallece 1/20 pacientes con IN\(^{(341,94)}\)
En Europa\(^{(94,341)}\) 1/110 pacientes con IN fallece directamente
1/37 pacientes con IN, la IN contribuye al fallecimiento.
Global: 1 de cada 28 pacientes con IN fallece por o con esta infección.

El conjunto de datos disponibles sobre letalidad, comentados más arriba, podrían resumirse para su más fácil comprensión, y redondeando cifras, en:

- De cada 100 pacientes que adquieren una IN, fallecen 10 (10% de los infectados con IN)
- 1 lo hace directamente por la IN (1% de los infectados con IN)
- Entre 1 y 3 más, la IN contribuye de forma importante en su fallecimiento (1% - 3% de los infectados con IN)
- Los otros 6 (6%) fallecen por causas ajenas a la IN.

En la \textit{tabla 5} Presentamos un cálculo práctico impactante realizado por nosotros con los datos existentes. Son datos por aproximación dado que se realizan varias extrapolaciones. Puede haber un ± 10% de error.

\begin{table}[h]
\centering
\begin{tabular}{|l|}
\hline
\textbf{Tabla 5. Cálculo de fallecimientos/año en un hospital > 500 camas} \\
\hline
Hospital con 55.000 ingresos/año (1000-1100 camas) \\
EPINE 2015 Estado: 9,52\% pacientes infectados \implies 5.236 infectados \\
Letalidad: 523 fallecidos \\
52 fallecidos directamente por la IN \\
Además: otros \textbf{52} a \textbf{156} fallecidos en los que la IN ha contribuido de forma importante \\
\hline
\end{tabular}
\end{table}

Hemos utilizado el porcentaje de infección nosocomial para un hospital español grande (> 500 camas), utilizando el \% de pacientes con IN correspondiente a este tamaño de hospital publicado en EPINE-EPPS 2015\(^{417}\).
Trascendencia Social-Humana: Se trata de alteraciones que afectan al enfermo y generalmente no son medibles ni valorables económicamente. Son, entre otros: preocupación, molestias, dolor, mortalidad prematura, absentismo laboral y posibles contagios a sus allegados.

Trascendencia Económica\(^{(192,238,341,406)}\).

Se calcula que las infecciones relacionadas con la atención sanitaria en Inglaterra generan un costo de 1.000 millones de libras por año. En los Estados Unidos, la cifra es de entre 4.500 millones y 5.700 millones de US$. En México, el costo anual se approxima a los 1.500 millones.

Nuestro cálculo, siguiendo con los datos aportados en la tabla 6

<table>
<thead>
<tr>
<th>Tabla 6.- Cálculo del coste de la IN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital con 55.000 ingresos/año (1000-1100 camas)</td>
</tr>
<tr>
<td>EPINE 2015 Estado: 9,52% pacientes infectados (\Rightarrow) 5.236 infectados</td>
</tr>
<tr>
<td>Gasto: EM: 5.236 x 9,89 x 831,44€ = 39.112.769 €</td>
</tr>
<tr>
<td>Otros costes* (no valorados)</td>
</tr>
<tr>
<td>Ahorro: 5.236 x 1.660 = 8.691.760 €</td>
</tr>
</tbody>
</table>

*Otros costes\(^{(417)}\): pruebas de laboratorio, exploraciones complementarías, medicamentos, seguros, pérdida de mercado, incapacidad laboral transitoria, pérdida de productividad, pérdida de ingresos fiscales, todos los gastos de prevención, todos los gastos de cuidados de salud etc.

En las tablas precedentes tratamos de plasmar el gran impacto de la IN tanto desde el punto de vista de la pérdida de vidas como del coste económico:

- Ponemos como ejemplo un hospital con 55.000 ingresos al año (hospital terciario de alrededor de 1000-1100 camas)

- Aplicamos la tasa de Prevalencia de IN en EPINE-EPPS 2015 en España en ese año para hospitales grandes (> 500 camas): 9,52 %. Si extrapolamos esta cifra al teórico hospital de 55.000 ingresos/año podrían haberse infectado en 2015 en dicho hospital: 5.236 pacientes aproximadamente.
- Se estima que fallecen alrededor del 10% de los pacientes que adquieren una IN\(^{(96,341,394)}\). De estos un 10% (1% del total de infectados con IN) mueren como consecuencia directa de esa IN. Y entre un 10% y un 30% (1-3% del total de infectados con IN), aunque la IN no es la única causa, contribuye de manera importante al fallecimiento. Esta estimación supondría en nuestro ejemplo:

52 fallecidos directamente por la IN y entre 52 a 156 fallecidos más con fuerte contribución de las IN.

- Gasto calculado únicamente con el incremento de la \textit{estancia media} de los pacientes afectados por IN:

\begin{itemize}
\item 9,89 días media de exceso de estancia en pacientes infectados con IN. La hemos obtenido del estudio de seguimiento (INOZ) realizado en Euskadi, en los hospitales de agudos de Osakidetza, de 2010 a 2015 estudiando los procesos: prótesis de cadera y de rodilla primer implante (cirugía limpia) y cirugía electiva de colon. El total de pacientes estudiados, desde que ingresan en el hospital hasta su alta, fue de 20.806.

\item 831,44 € que costó, de media, cada estancia hospitalaria en el HUD en 2015, dato facilitado amablemente por el Centro de Cálculo del HUD.
\end{itemize}

- Otros: pruebas de laboratorio, exploraciones complementarias, medicamentos, seguros, pérdida de mercado, incapacidad laboral transitoria, pérdida de productividad, pérdida de ingresos fiscales, todos los gastos de prevención, todos los gastos de cuidados de salud, ausencias del trabajo, desplazamientos de familiares etc.

<table>
<thead>
<tr>
<th>Tabla 7. Costes en euros asociados a las infecciones nosocomiales.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de infección nosocomial</td>
</tr>
<tr>
<td>Neumonía asociada a ventilación mecánica</td>
</tr>
<tr>
<td>Neumonía nosocomial</td>
</tr>
<tr>
<td>Bacteriemia asociada a catéter urinario</td>
</tr>
<tr>
<td>Infección nosocomial del tracto urinario</td>
</tr>
<tr>
<td>Bacteriemia</td>
</tr>
<tr>
<td>Bacteriemia asociada a catéter venoso</td>
</tr>
<tr>
<td>Tipo de infección nosocomial</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Neumonía asociada a ventilación mecánica</td>
</tr>
<tr>
<td>Neumonía nosocomial</td>
</tr>
<tr>
<td>Bacteriemia asociada a catéter urinario</td>
</tr>
<tr>
<td>Infección nosocomial del tracto urinario</td>
</tr>
<tr>
<td>Bacteriemia</td>
</tr>
<tr>
<td>Bacteriemia asociada a catéter venoso</td>
</tr>
<tr>
<td>Infección local relacionada con catéter venoso</td>
</tr>
<tr>
<td>Infección por SARM</td>
</tr>
<tr>
<td>Infección nosocomial del sitio quirúrgico</td>
</tr>
<tr>
<td>Respiratoria inferior</td>
</tr>
<tr>
<td>Otros</td>
</tr>
<tr>
<td>TOTALES</td>
</tr>
</tbody>
</table>

nc = no consta. SARM= *Staphylococcus aureus* resistente a meticilina.

En los 5 años estudiados, en un proceso quirúrgico complicado como es la cirugía electiva de colon, el gasto global en euros (valor de 2008) fue:

En la los totales de la 2ª columna que se refiere al nº de INs constan 2 cifras. La 1ª (1872) es el total de INs computadas, es decir, de las que tenemos precio. La 2ª (1986) es el total de INs detectadas en los pacientes con cirugía electiva de colon en nuestro estudio. Por tanto, quedan sin valorar económicamente 114 INs.

Ahorro posible:

La OMS comunicó en 2011 que las IRAS pueden reducirse en más de 50% si

Si admitimos que puede prevenirse hasta un 30% de estas IN\(^{(517)}\), realizando las prácticas de asepsia correctas se podría ahorrar:

- 11.252.181 € cada 5 años
- 2.250.000 € al año, solo en cirugía electiva de colon, en Euskadi.

En cuanto a la IN en pacientes con intervención quirúrgica tanto global como de la herida quirúrgica específicamente, podemos valorarla, utilizando el mismo sistema y las mismas fuentes y referencias anteriores\(^{(415)}\).

<table>
<thead>
<tr>
<th>Tabla 9. Cálculo del coste de la infección de la IHQ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital con 55.000 ingresos/año</td>
</tr>
<tr>
<td>EPINE 2015 Estado: 28,82% pacientes intervenidos = 15.851</td>
</tr>
<tr>
<td>IN: 14,89%</td>
</tr>
<tr>
<td>Infectados IN ⇒ 2364 infectados</td>
</tr>
<tr>
<td>Letalidad: 236 (23 IN + 23 a 69)</td>
</tr>
<tr>
<td>Gasto: - EM: 2.364 x 5,6 x 816€ = 10.802.534 €</td>
</tr>
<tr>
<td>Ahorro: 2.364 x 1.660 = 3.924.240 €</td>
</tr>
</tbody>
</table>

Trascendencia Legal: Cada vez se interponen más demandas contra las instituciones sanitarias por la adquisición de una IN\(^{(114)}\).

En diciembre de 2008 un periódico vasco\(^{(208)}\) publicaba: “Sanidad se enfrenta a un proceso judicial cada dos días por demandas de pacientes. Osakidetza se enfrentó el año pasado a un total de 181 procedimientos judiciales por presuntas negligencias cometidas en los centros sanitarios de la red pública vasca”

Y las demandas aumentan año tras año.
Para finalizar este apartado trascribimos los datos OMS 2011(481):

- UE y países desarrollados:

 Global de prevalencia de pacientes infectados con IN en UE (13/28 países declaran habitualmente) para 2008: 7,6%.

 Más de 4 millones de pacientes sufren IN en Europa cada año. En USA 1,7 millones.

 IN del lugar quirúrgico: varía entre 1,5% y 5,2% al año en países desarrollados. Y, en ellos, aprox. el 30% de los pacientes de CMI sufren al menos un episodio de IN.

 En Europa la IN provoca 16 millones de estancias hospitalarias extras, se atribuyen a la IN 37.000 fallecimientos y contribuye adicionalmente a otros 110.000 más. En USA se le atribuyeron a la IN 99.000 fallecimientos en 2002.

 La IN costó en 2004 unos 6.500 millones de dólares, las neumonías asociadas a ventilación mecánica tuvieron una mortalidad atribuible de entre 7% y 30% y supusieron un coste adicional entre 10 y 25.000 dólares por caso. Las IN asociadas a catéter provocaron una estancia hospitalaria adicional de 4 a 14 días y su coste adicional para Europa supuso, por episodio, entre 4.200 y 13.030 €.

- Resto de países (en vías de desarrollo):

 Incremento de estancia media hospitalaria: 5 a 29,5 días.

 Exceso de mortalidad debida a la IN en América Latina, Asia y África es de 18.5%, 23.6% y 29.3%, para ITU asociada a catéter, bacteriemia asociada a catéter y neumonías asociadas a ventilación mecánica, respectivamente.

 El impacto económico de la IN en Belo Horizonte, Brasil, in 1992 fue de 18 millones de dólares. En Méjico, en CMI, cifran el promedio del coste de cada episodio de IN en 12.155 dólares. Y, en Argentina, en Medicina
Intensiva (CMI) supuso un coste extra de 4.888 dólares cada episodio de bacteriemia asociada a catéter y 2.255 las neumonías asociadas a la atención sanitaria.

1.4.- **Cadena epidemiológica.**

Debido a la infinidad de interrelaciones que tienen los seres vivos entre sí y con el medio ambiente, existen numerosos factores de riesgo que influyen en la infección nosocomial, generando hipotéticamente una infinidad de cadenas epidemiológicas posibles (41). A pesar de esa aparente complejidad, en toda cadena epidemiológica se distinguen los siguientes apartados, que son imprescindibles para que se produzca la trasmisión. Es decir, si se elimina cualquiera de los tres no puede haber trasmisión. Por su similitud con una cadena en la que si se rompe un eslabón deja de ser tal cadena, se la denomina cadena epidemiológica:

- Reservorio y fuente de infección
- Mecanismo de transmisión
- Sujeto sano susceptible

Reservorio y fuente de infección

En términos de infección nosocomial, salvo en algunas antropozoonosis, ambos conceptos coinciden. Las fuentes de infección en el medio hospitalario, siguiendo a Gálvez R et al (143), pueden ser clasificadas como se indica a continuación:

<table>
<thead>
<tr>
<th>Cuadro 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animada:</td>
</tr>
<tr>
<td>Humano:</td>
</tr>
<tr>
<td>Endógeno:</td>
</tr>
<tr>
<td>Enfermo</td>
</tr>
<tr>
<td>Portador asintomático</td>
</tr>
<tr>
<td>Portador de flora saprofita</td>
</tr>
<tr>
<td>Exógeno</td>
</tr>
<tr>
<td>Mixto (colonización)</td>
</tr>
<tr>
<td>Animal:</td>
</tr>
<tr>
<td>Exógeno</td>
</tr>
</tbody>
</table>
Las fuentes de infección pueden ser animadas en el caso del ser humano y animales o inanimadas que a su vez pueden ser endógenas, exógenas o mixtas en humanos y exógenas o mixtas en animales y materia inanimada.

Endógeno: Las fuentes de infección de tipo endógeno son también denominadas autoinfecciones ya que es el propio paciente la fuente de su infección. Puede ocurrir que el paciente padezca una infección asintomática que actúe como fuente de infección de otro proceso infeccioso diferente, que sea portador asintomático de gérmenes potencialmente patógenos, o la más frecuente, que sea portador de microorganismos saprofitos, flora inicialmente apatógena que revierte a patógena en circunstancias especiales.

La flora apatógena puede ser portada por el propio paciente previo al ingreso o ser adquirida de forma endógena post ingreso considerada entonces fuente de infección mixta o exoendógena.

Exógeno: Se consideran infecciones exógenas aquellas cuya fuente de infección sea cualquier otra diferente al propio paciente. Son las denominadas infecciones cruzadas. Las fuentes pueden ser animadas o inanimadas. Dentro del primer grupo se distingue la fuente humana que puede ser enfermo, portador asintomático o portador de flora comensal, y la fuente animal (generalmente roedores y aves) e incluso algunas especies vegetales.

En el grupo inanimado se clasifica un gran grupo de microorganismos especialmente bacilos gram negativos, capaces de permanecer largo tiempo en medios inanimados. En ocasiones alimentos, agua y otros fluidos y objetos de uso diagnóstico y/o terapéutico son considerados fuentes de infección debido a la dificultad que entraña diferenciar entre fuente de infección y mecanismo de transmisión por lo que generalmente el aire y alimentos son considerados mecanismos de transmisión.

Otros reservorios de infecciones son el suelo y superficies, pero la importancia real en medio hospitalario es muy limitada.

Mixta: participa de las dos anteriores.

Mecanismo de transmisión:

A nivel hospitalario, desde el punto de vista de la política de aislamientos, son fundamentalmente tres:

- **Contacto**
- **Gotas**

~ 42 ~
Aéreo

También se distinguen dos mecanismos más:

- Objetos contaminados o fómites
- Vectores

Sujeto susceptible\(^{(194)}\).

En este caso de la IN los sujetos suelen presentar con frecuencia inmunodepresión en distintos grados. Estas alteraciones inmunitarias no influyen en la posibilidad de contraer una IN, pero caso de producirse, la evolución del paciente va a ser más tórpida, va a ser posible fuente de infección durante más tiempo.

1.5.- **Tipos de IN (localización):**

Las IN más frecuentes son 4\(^{(112,418,420,421,492)}\):

- Infección del tracto urinario.
- Infección de la herida quirúrgica.
- Infección del tracto respiratorio.
- Bacteriemias (incluidas con el resto de IN del tracto respiratorio).

En la *Figura 2*, tomada del estudio EPINE 1990-2015\(^{(418)}\), aparecen los detalles relativos a este tipo de infecciones y su evolución a lo largo de los últimos 26 años.

Figura 2. Estudio EPINE 1990-2015\(^{(418)}\)
Las IN más frecuentes son las del tracto respiratorio seguidas de las de la herida quirúrgica, de las del tracto urinario, las bacteriemias y otras (incluidas las diarreas por Clostridium difficile). El Staphylococcus aureus Meticilín resistente se aisla en aproximadamente un 5% de las IRAS\(^{(56)}\).

Infección del tracto urinario: Tradicionalmente era la IN más prevalente. Esto ha hecho que se hayan empleado muchos recursos para prevenirla. Los resultados no se dejaron esperar y pronto disminuyó ostensiblemente su prevalencia, al comienzo del EPINE de forma drástica y después más moderada hasta situarse actualmente en el 3\(^{er}\) puesto si bien con poca diferencia respecto a las propias del aparato respiratorio y a las de la herida quirúrgica. EPINE-EPPS España 2015. *Figura 2*

Infección de la herida quirúrgica\(^{(50,55,113,218,299)}\):

Se distinguen tres tipos\(^{(164)}\):

- **Superficial:** afecta sólo a la piel y el tejido celular subcutáneo.
- **Profunda:** afecta a los tejidos blandos profundos de la incisión.
- **De órgano o espacio abierto o manipulado durante el acto operatorio:** afecta a cualquier parte de la anatomía (órganos o espacios) diferente de la incisión.

En la *figura 3*, tomada del estudio EPINE\(^{(418)}\), podemos apreciar la evolución de los tres tipos de herida quirúrgica a lo largo de estos 26 últimos años.

Infección del tracto respiratorio:
Suele clasificarse en tres categorías:

- Neumonía
- Infección de vías respiratorias bajas
- Infección de vías respiratorias altas

En la figura 2 puede verse su evolución conjunta en el tiempo, situándose a la cabeza en 2014 y en 2º lugar en 2015\(^{(418)}\).

Bacteriemias:
Incluimos en este término la invasión del torrente sanguíneo por cualquier microorganismo.

Suele distinguirse la siguiente clasificación, según la procedencia del microorganismo\(^{(169,419)}\):

- Bacteriemia primaria: se desconoce el origen de la misma.
- Bacteriemia secundaria: a otra infección presente en el organismo.
- Bacteriemia secundaria a catéter: la puerta de entrada del microorganismo es un catéter.

Otras: por ejemplo, otitis, conjuntivitis, meningitis, úlcera infectada y un largo etc.

Capítulo aparte merece la definición de infección nosocomial según localización. Desde este punto de vista se hace la siguiente clasificación\(^{(169,419)}\):

- Vías urinarias
- Herida quirúrgica
- Vías respiratorias
- Bacteriemia
- Osteoarticular
- Sistema Nervioso Central
- Sistema cardiovascular
- Ocular, del oído, nariz, faringe o boca
- Aparato digestivo
- Aparato genital
- Piel o partes blandas
- Infección diseminada
- Neumonía
- VIH con o sin criterios de Sida

Los detalles pueden verse en el Anexo 1.

Recientemente el CDC\(^{(59,60)}\) las agrupa en 14 tipos con subclasificaciones en algunos de ellos.

1.6.- **Factores de riesgo**

Un aspecto básico y fundamental en esta tesis lo constituyen los denominados Factores de Riesgo\(^{(64)}\), si bien algunos van a ser más bien Marcadores de Riesgo.

Entendemos por **Marcador de Riesgo** aquellas características presentes en el paciente que pueden influir en la aparición de IN y que no son modificables como, por ejemplo, la edad o el sexo.

Denominamos **Factor de Riesgo** a toda circunstancia o situación que aumenta las probabilidades de una persona de contraer una enfermedad o cualquier otro problema de salud. Los factores de riesgo implican que las personas afectadas por dicho factor de riesgo presentan un riesgo sanitario mayor al de las personas sin este factor. Es preciso destacar que, en ocasiones, el denominado FR puede ser protector (menor probabilidad de contraer la enfermedad del individuo que lo presenta).

En la presente Tesis Doctoral no vamos a distinguir entre marcadores y factores de riesgo ya que la presencia de cualquiera de ellos, *a priori*, incrementa o disminuye el riesgo de contraer una IN.

Sin embargo, desde el punto de vista práctico, sí vamos a clasificarlos como factores de riesgo intrínsecos y factores de riesgo extrínsecos al paciente:

- **Intrínsecos**: son aquellos que presenta el paciente en el momento de requerir la asistencia sanitaria. Por ejemplo: DM, IRC, inmunodepresión, enfermedad de base, IMC etc.
Extrínsecos: los que se le aplican en la atención sanitaria: sondaje urinario, cateterismo venoso o arterial, intervención quirúrgica, profilaxis antibiótica etc.\(108,419\)

Señalamos estas clasificaciones porque son las utilizadas a diario por los profesionales que se dedican a la Vigilancia, Prevención y Control de la IN. Tienen un valor más de centrar el tema que realmente práctico.

En el presente trabajo queremos destacar dos aspectos que, desde el punto de vista pragmático, consideramos sumamente importantes:

1. No vamos a distinguir entre los tipos de factores descritos ya que todos influyen, potencialmente, en la aparición de la IN
2. Vamos a describir cada uno, cuando sea necesario, con una cierta extensión ya que van a constituir las variables que utilizaremos en el análisis.

Los factores de riesgo considerados en los programas de Vigilancia (seguimiento) que constituyen la base del análisis estadístico, dentro del Programa INOZ, son:

1. Sexo
2. Edad
3. Infección al ingreso
4. Enfermedad base
5. DM
6. Inmunodepresión al ingreso
7. Insuficiencia renal
8. Desnutrición
9. Estancia en UCI.
10. Sondaje Urinario abierto
11. Sondaje Urinario cerrado
12. Catéter Venoso Central
13. Catéter Venoso Central de Inserción periférica (CVCIP)
14. Catéter Periférico
15. Catéter arterial
16. Nutrición parenteral
17. Ventilación mecánica
18. Sonda nasogástrica
19. Drenaje
20. Tratamiento inmunosupresor
21. **Procedimiento invasivo**
22. **Tipo intervención**
23. **Procedimiento quirúrgico (CIE 9)**
24. **Equipo Quirúrgico (nº de cirujanos)**
25. **Tipo de herida**
26. **Duración de la intervención**
27. **ASA (American Society of Anesthesiologists)**
28. **NISS (ver explicación en la página 160)**
29. **Preparación**
30. **Profilaxis antibiótica**
31. **Indicación**
32. **Fármaco**
33. **Dosis**
34. **Duración**
35. **Comienzo**
36. **Laparoscopia**
37. **Infección nosocomial**
38. **Tipo de IN**
39. **Empleo de Aros.**
40. **Transfusión**
41. **Cambio**
42. **Número de Cirujanos**
43. **Ostomía**
44. **Tipo de Drenaje**
45. **Perforación**
46. **Anastomosis**
47. **Lavado Intraoperatorio**
48. **Lugar de Administración de la Profilaxis**
49. **Días a riesgo**

Los programas de seguimiento utilizan varios centenares de variables que no describimos porque nos circunscribimos a las que hayan podido influir, positiva o negativamente, en la aparición de la IN. Aquellas circunstancias que se presenten después no influyen en la aparición de la misma y, por tanto, no las consideramos. Por ejemplo: microorganismo-s implicado-s, tratamiento de la IN, ciertas fechas (comienzo del tratamiento, finalización del mismo,…) etc.

Algunos de los datos (variables) recogidos nos serán útiles aunque sea de forma indirecta como, por ejemplo, *fecha de intervención, fecha de aparición de la IN, fecha*
de alta, para obtener los días a riesgo de cada paciente y poder realizar regresión de Cox.

La descripción más detallada de cada variable puede verse en el capítulo Material, Sujetos y Métodos (página 150).

1.7.- Microorganismos implicados en la IN.

Los agentes que provocan infecciones hospitalarias pueden ser bacterias, hongos y virus\(^{(278)}\). Ante circunstancias y determinadas características presentes en los pacientes hospitalizados se multiplican y pueden producir infecciones en los pacientes ingresados.

Obesidad, quimo y radioterapia inmunosupresoras, drogadicción, tratamientos inmunodepresores, incremento de técnicas invasivas etc. favorecen la transmisión de ciertos microorganismos.

Estos microorganismos infecciosos se clasifican en dos grandes grupos según su procedencia:

- **Exógenos** (*cross-infection*) si proceden de fuera del individuo.
- **Endógenos** (*self-infection*) si su procedencia es el propio enfermo.
- **Mixtas o exoendógenas** participando de las características de las dos. Estas son las más frecuentes. En la práctica es muy difícil identificar si la infección es endógena o mixta.

Microorganismos que componen la flora normal del paciente, en ciertas circunstancias pueden convertirse en patógenos. Constituyen un grupo heterogéneo que es capaz de desarrollar mecanismos de resistencia a desinfectantes y antibióticos con facilidad.

Antes de la era antibiótica fueron los estreptococos los más temidos. Poco a poco, con el empleo de la penicilina y las sulfamidas fueron desplazados por los estafilococos, especialmente por *Staphylococcus aureus*\(^{(480)}\). Con el uso de las cefalosporinas y aminoglucósidos se impusieron los bacilos gramnegativos. Pero con el uso abusivo de las cefalosporinas predominaron los cocos grampositivos (*Staphylococcus aureus, Staphylococcus epidermidis y Enterococcus faecalis*). A principios de la década de los 90 el panorama empeoró con la entrada en escena de algunos hongos sobre todo Candidas.
Los nuevos tratamientos provocan cambios en los agentes causantes de IN. Con el fin de exponer el problema lo más actualizado posible y adaptado a nuestro medio, mostramos los datos de EPINE-EPPS de España 2015(415).

El total de pacientes estudiados en 2015 en España fue de 57.142 de los cuales se infectaron con IN 4.608 que padecieron en total 5.098 IN. En el EPINE-EPPS de España de 2015 se constató que en los pacientes estudiados se habían aislado un total de 9.814 microorganismos de los cuales 4.302 fueron IN y el resto comunitarios.

Vamos a describir, ordenándolos por grandes grupos los aislados en IN, siguiendo la clasificación en grupos que se realiza según las directrices de su protocolo. El orden de aparición depende de la frecuencia de aislamiento en IN:

<table>
<thead>
<tr>
<th>Grupo</th>
<th>N</th>
<th>% sobre IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.- Bacilos Gram - Enterobacterias</td>
<td>1528</td>
<td>35.54%</td>
</tr>
<tr>
<td>2.- Cocos Gram +</td>
<td>1496</td>
<td>34.66%</td>
</tr>
<tr>
<td>3.- Bacilos Gram - No fermentadores</td>
<td>612</td>
<td>14.20%</td>
</tr>
<tr>
<td>4.- Levaduras y otros hongos unicelulares</td>
<td>343</td>
<td>7.97%</td>
</tr>
<tr>
<td>5.- Bacilos anaerobios</td>
<td>218</td>
<td>4.97%</td>
</tr>
<tr>
<td>6.- Otros Bacilos Gram-</td>
<td>41</td>
<td>1.00%</td>
</tr>
<tr>
<td>7.- Bacilos Gram +</td>
<td>22</td>
<td>0.67%</td>
</tr>
<tr>
<td>8.- Virus</td>
<td>15</td>
<td>0.35%</td>
</tr>
<tr>
<td>9.- Cocos Gram -</td>
<td>9</td>
<td>0.21%</td>
</tr>
<tr>
<td>10.- Otras bacterias</td>
<td>5</td>
<td>0.16%</td>
</tr>
<tr>
<td>11.- Hongos filamentosos</td>
<td>7</td>
<td>0.16%</td>
</tr>
<tr>
<td>12.- Protozoos y parásitos</td>
<td>2</td>
<td>0.09%</td>
</tr>
<tr>
<td>No encontrados</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>4302</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Grupo 1.- **Bacilos Gram - Enterobacterias**

Escherichia coli, Klebsiella pneumoniae y Enterobacter cloacae suponen, entre los tres, alrededor del 25% de todos los aislamientos de patógenos implicados en la IN.

Destaca *Escherichia coli*, que acapara la 7ª parte de los aislamientos. Es una enterobacteria ubicua, que aparece fundamentalmente en infecciones de vías urinarias y de la herida quirúrgica, y muy resistente a los agentes externos y a los antibióticos.
En la *Tabla 10.1* mostramos el detalle de la frecuencia de estos microorganismos en la IN en España, según el estudio de prevalencia EPINE-EPPS 2015.

<table>
<thead>
<tr>
<th>Tabla 10.1.- Bacilos Gram - Enterobacterias</th>
<th>N</th>
<th>%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>614</td>
<td>14.27%</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>284</td>
<td>6.60%</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>153</td>
<td>3.56%</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>106</td>
<td>2.46%</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>59</td>
<td>1.37%</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>57</td>
<td>1.32%</td>
</tr>
<tr>
<td>Escherichia coli enteropatógena</td>
<td>54</td>
<td>1.26%</td>
</tr>
<tr>
<td>Morganella morganii</td>
<td>52</td>
<td>1.21%</td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td>30</td>
<td>0.70%</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td>29</td>
<td>0.67%</td>
</tr>
<tr>
<td>Citrobacter koseri (ex. diversus)</td>
<td>14</td>
<td>0.33%</td>
</tr>
<tr>
<td>Enterobacter spp., sin especificar</td>
<td>14</td>
<td>0.33%</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>10</td>
<td>0.23%</td>
</tr>
<tr>
<td>Klebsiella spp., sin especificar</td>
<td>10</td>
<td>0.23%</td>
</tr>
<tr>
<td>Enterobacteriaceae, sin especificar</td>
<td>8</td>
<td>0.19%</td>
</tr>
<tr>
<td>Serratia liquefaciens</td>
<td>6</td>
<td>0.14%</td>
</tr>
<tr>
<td>Providencia stuartii</td>
<td>5</td>
<td>0.12%</td>
</tr>
<tr>
<td>Hafnia alvei</td>
<td>5</td>
<td>0.12%</td>
</tr>
<tr>
<td>Proteus spp., sin especificar</td>
<td>3</td>
<td>0.07%</td>
</tr>
<tr>
<td>Citrobacter spp., sin especificar</td>
<td>3</td>
<td>0.07%</td>
</tr>
<tr>
<td>Hafnia spp., sin especificar</td>
<td>2</td>
<td>0.05%</td>
</tr>
<tr>
<td>Citrobacter braakii</td>
<td>2</td>
<td>0.05%</td>
</tr>
<tr>
<td>Serratia spp., sin especificar</td>
<td>2</td>
<td>0.05%</td>
</tr>
<tr>
<td>Providencia rettgeri</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Klebsiella ornithinolytica</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Morganella spp., sin especificar</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Salmonella enteritidis</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Calymmatobacterium spp., sin especificar (klebsiella)</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Enterobacter amnigenus</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Totales</td>
<td>1528</td>
<td></td>
</tr>
</tbody>
</table>

* sobre total de microorganismos aislados en IN
Grup 2.- Cocos Gram positivos

En este 2º grupo consta como más frecuente, con notable diferencia, *Staphylococcus aureus* presente en fosas nasales y piel (fundamentalmente manos y periné)\(^{(36,243,393,480)}\).

La presencia de resistentes a la meticilina (SARM) ha ocasionado problemas hospitalarios. La mayor parte de los aislamientos de contacto se realizan en pacientes portadores o enfermos por SARM. Afortunadamente, según el ECDC, desde 2012 se está detectando una estabilización e incluso un paulatino descenso en la frecuencia de portadores y/o enfermos por este microorganismo en algunos países europeos\(^{(95)}\). También aparecen como frecuentes *Enterococcus faecalis*, *Staphylococcus epidermidis* y *Enterococcus faecium*.

Enterococcus faecalis, forma parte de la flora intestinal. Presenta elevada resistencia enzimática a cefalosporinas, aminoglucósidos, vancomicina y teicoplanina, pudiendo provocar infecciones de orina, herida quirúrgica, prótesis, otitis y bacteriemias.

Staphylococcus epidemidis suele encontrarse en infecciones de las vías urinarias, de la herida quirúrgica, peritonitis, endocarditis y septicemias, infecciones por catéteres intravenoso e implantes (ortopédicos y valvulares).

También aparecen distintos *Streptococcus*, como *Streptococcus pyogenes* aislado en la boca y en heridas quirúrgicas, *Streptococcus pneumoniae* componente habitual de la flora orofaríngea y potencial productor de neumonías u otitis y otros varios como *Streptococcus viridans* o estreptococos del grupo B (intestino, inmunodeprimidos, genitales femeninos, líquido cefalorraquídeo, secreciones respiratorias).

<table>
<thead>
<tr>
<th>Tabla 10.2.- Cocos Gram +</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
</tr>
<tr>
<td>Enterococcus faecium</td>
</tr>
<tr>
<td>Estafilococos coagulas-negativos, sin especificar</td>
</tr>
<tr>
<td>Staphylococcus haemolyticus</td>
</tr>
<tr>
<td>Enterococcus spp., sin especificar</td>
</tr>
</tbody>
</table>

~ 52 ~
<table>
<thead>
<tr>
<th>Microorganismo</th>
<th>Cantidad</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus pneumoniae</td>
<td>19</td>
<td>0.44%</td>
</tr>
<tr>
<td>Streptococcus spp., sin especificar</td>
<td>18</td>
<td>0.42%</td>
</tr>
<tr>
<td>Streptococcus viridans</td>
<td>18</td>
<td>0.42%</td>
</tr>
<tr>
<td>Staphylococcus hominis</td>
<td>15</td>
<td>0.35%</td>
</tr>
<tr>
<td>Streptococcus mitis</td>
<td>14</td>
<td>0.33%</td>
</tr>
<tr>
<td>Estafilococo coagulasa negativo</td>
<td>12</td>
<td>0.28%</td>
</tr>
<tr>
<td>Streptococcus anginosus</td>
<td>12</td>
<td>0.28%</td>
</tr>
<tr>
<td>Staphylococcus spp., sin especificar</td>
<td>12</td>
<td>0.28%</td>
</tr>
<tr>
<td>Streptococcus agalactiae</td>
<td>9</td>
<td>0.21%</td>
</tr>
<tr>
<td>Staphylococcus capitis</td>
<td>8</td>
<td>0.19%</td>
</tr>
<tr>
<td>Enterococcus avium</td>
<td>5</td>
<td>0.12%</td>
</tr>
<tr>
<td>Streptococcus salivarius</td>
<td>5</td>
<td>0.12%</td>
</tr>
<tr>
<td>Cocos gram positivos, sin especificar</td>
<td>4</td>
<td>0.09%</td>
</tr>
<tr>
<td>Streptococcus sanguis</td>
<td>3</td>
<td>0.07%</td>
</tr>
<tr>
<td>Streptococcus bovis</td>
<td>3</td>
<td>0.07%</td>
</tr>
<tr>
<td>Streptococcus milleri</td>
<td>3</td>
<td>0.07%</td>
</tr>
<tr>
<td>Staphylococcus warneri</td>
<td>2</td>
<td>0.05%</td>
</tr>
<tr>
<td>Estreptococo beta-hemolítico</td>
<td>2</td>
<td>0.05%</td>
</tr>
<tr>
<td>Peptococcus spp., sin especificar</td>
<td>2</td>
<td>0.05%</td>
</tr>
<tr>
<td>Staphylococcus simulans</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Peptostreptococcus asaccharolyticus</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Estreptococo beta-hemolítico del grupo a</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Estreptococo beta-hemolítico del grupo g</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Staphylococcus auricularis</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Rothia spp., sin especificar (Stomatococcus)</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Peptostreptococcus magnus</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Peptostreptococcus anaerobius</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Totales</td>
<td>1496</td>
<td></td>
</tr>
</tbody>
</table>

* sobre total de microorganismos aislados en IN
Grupo 3.- **Bacilos Gram - No fermentadores**

Pseudomonas aeruginosa pertenece al grupo de los bacilos gramnegativos no fermentadores de la glucosa, grupo ubicuo y muy resistente al medio ambiente y a los antibióticos. Le favorecen especialmente los medios húmedos o líquidos. Puede producir infecciones en cualquier lugar del organismo y principalmente en el pie diabético y en quemados.

En el grupo de las *Pseudomonas* también destacan *Pseudomonas capacia, Pseudomonas maltophilia, Pseudomonas putida y Pseudomonas sturzeri* entre otros y que generalmente presentan resistencia a antibióticos. Dentro de los bacilos gramnegativos no fermentadores destaca tras *Pseudomonas*, *Acinetobacter calcoaceticus*, bacteria de la microflora cutánea, respiratoria y digestiva, muy resistente a betalactámicos y microorganismo oportunista debido a un mal uso de antibióticos. Aislada en lactantes y prematuros en infecciones respiratorias y epidemias de meningitis.

<table>
<thead>
<tr>
<th>Tabla 10.3.- Bacilos Gram - No fermentadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>Stenotrophomomas maltophilia</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
</tr>
<tr>
<td>Pseudomonas spp., sin especificar</td>
</tr>
<tr>
<td>Burkholderia cepacia (Pseudomonas)</td>
</tr>
<tr>
<td>Pseudomonas putida</td>
</tr>
<tr>
<td>Achromobacter xylosoxidans</td>
</tr>
<tr>
<td>Achromobacter spp., sin especificar</td>
</tr>
<tr>
<td>Acinetobacter spp., sin especificar</td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
</tr>
<tr>
<td>Acinetobacter junii</td>
</tr>
<tr>
<td>Pseudomonas delafieldii</td>
</tr>
<tr>
<td>Pseudomonas thomasii</td>
</tr>
<tr>
<td>Pseudomonas mendocina</td>
</tr>
<tr>
<td>Flavobacterium spp., sin especificar</td>
</tr>
<tr>
<td>Agrobacterium spp., sin especificar</td>
</tr>
<tr>
<td>Oligella urethralis</td>
</tr>
<tr>
<td>Alcaligenes xylosoxidans spp. xylosoxidans</td>
</tr>
<tr>
<td>Totales</td>
</tr>
</tbody>
</table>
Grupo 4.- **Levaduras y otros hongos unicelulares**

En los años 80 un uso inapropiado de antimicrobianos favoreció el desarrollo de infecciones ocasionadas por distintos tipos de hongos. Destacan las infecciones nosocomiales generadas por levaduras del género *Candida* en especial *Candida albicans* que forma parte de la flora microbiana normal de la boca, vagina y tubo digestivo. *C. tropicalis*, *C. glabrata*, *C. krusei*, *C. parapsilosis*, *C. dubliniensis* y *C. lusitaniae*.

En sujetos cuyas barreras defensivas se encuentran disminuidas se ve favorecida su colonización, desarrollo y multiplicación. Así, no es de extrañar encontrarlas en prematuros, ancianos, quemados, diabéticos, pacientes tratados con antibióticos o corticoides o en afectos de hemopatías malignas. Pudiendo ocasionar en los pacientes graves cuadros de presentación clínica múltiple como abscesos cerebrales, nefropatías o infecciones urinarias.

Otras especies del mismo género menos frecuentes son *C tropicalis*, *C guilliermondi*, *C. stellatoidea*, *C. krusei*… En otros géneros encontramos *Torulopsis glabrata* asociada al uso de catéteres, o aspergilosis masivas producidas por *Aspergillus flavus*, *Aspergillus niger*, *Aspergillus fumigatus*, *Aspergillus nidulans* entre otras. En pacientes inmunocomprometidos se han aislado diversos géneros como *Mucor, Rhodotula, Histoplasma, Malassezia, Criptococcus*…

<table>
<thead>
<tr>
<th>Tabla 10.4.- Lebadas y otros hongos unicelulares</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Candida albicans</td>
</tr>
<tr>
<td>Candida glabrata</td>
</tr>
<tr>
<td>Candida parapsilosis</td>
</tr>
<tr>
<td>Candida tropicalis</td>
</tr>
<tr>
<td>Candida spp., sin especificar</td>
</tr>
<tr>
<td>Candida krusei</td>
</tr>
<tr>
<td>Otras levaduras</td>
</tr>
<tr>
<td>Saccharomyces spp., sin especificar</td>
</tr>
<tr>
<td>Geotrichum spp., sin especificar</td>
</tr>
<tr>
<td>Totales</td>
</tr>
</tbody>
</table>

* sobre total de microorganismos aislados en IN

~ 55 ~
Grupo 5.- **Bacilos anaerobios**

En las infecciones generalmente se aíslan asociados con microorganismos aerobios. Su aparición se ve favorecida por un descenso de aporte sanguíneo y del potencial redox (potencial de óxido – reducción) en los tejidos, diabetes, uso antibióticos ineíficaces frente a anaerobios y cirugía abdominal.

Aparecen en cuadros pleuropulmonares (*P. melaminogenica*), infecciones genitales, abdominales, del sistema nervioso central y bacteriemias (generadas por diversas bacterias como *Peptostreptococcus* aunque la más frecuente es *Clostridium perfringens* y la más fulminante *Clostridium septicum*).

Las más importantes son seis especies del grupo *fragilis, Prevotella y B urealyticus*. También caben destacar *F. nucleatum* en infecciones respiratorias, *Actinomyces* capaz de originar cuadros de diseminación hematogena y *Clostridium difficile* que por medio de citotoxinas puede provocar la perforación del intestino grueso. Dentro del grupo de los esporulados merece mención el género *Clostridium* capaces de generar gangrena gaseosa muy grave y es el más frecuente en bacteriemias.

<table>
<thead>
<tr>
<th>Tabla 10.5.- Bacilos anaerobios</th>
<th>N</th>
<th>%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clostridium difficile</td>
<td>133</td>
<td>3.09%</td>
</tr>
<tr>
<td>Bacteroides fragilis</td>
<td>25</td>
<td>0.58%</td>
</tr>
<tr>
<td>Bacteroides spp., sin especificar</td>
<td>10</td>
<td>0.23%</td>
</tr>
<tr>
<td>Lactobacillus spp., sin especificar</td>
<td>9</td>
<td>0.21%</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>7</td>
<td>0.16%</td>
</tr>
<tr>
<td>Propionibacterium acnes</td>
<td>5</td>
<td>0.12%</td>
</tr>
<tr>
<td>Peptostreptococcus spp., sin especificar</td>
<td>4</td>
<td>0.09%</td>
</tr>
<tr>
<td>Bacteroides ovatus</td>
<td>3</td>
<td>0.07%</td>
</tr>
<tr>
<td>Fusobacterium spp., sin especificar</td>
<td>3</td>
<td>0.07%</td>
</tr>
<tr>
<td>Bacteroides vulgatus</td>
<td>3</td>
<td>0.07%</td>
</tr>
<tr>
<td>Bacteroides thetaiotaomicron</td>
<td>2</td>
<td>0.05%</td>
</tr>
<tr>
<td>Propionibacterium spp., sin especificar</td>
<td>2</td>
<td>0.05%</td>
</tr>
<tr>
<td>Anaerobios, sin especificar</td>
<td>3</td>
<td>0.07%</td>
</tr>
<tr>
<td>Bacteroides eggerthii</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Prevotella spp., sin especificar</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Fusobacterium necrophorum</td>
<td>1</td>
<td>0.02%</td>
</tr>
<tr>
<td>Grupo 6. - Otros Bacilos Gram negativos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>En este grupo destacan:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Haemophilus influenzae. Responsable de un amplio rango de enfermedades como meningitis, epiglotitis, neumonía y sepsis. Destaca el tipo b que afecta sobre todo a niños menores de cinco años.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Bordetella pertussis. Produce la Tos ferina.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Campylobacter jejuni. Está implicado en enteritis, diarrea del viajero e intoxicación alimentaria.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 10.6. - Otros Bacilos Gram (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
</tr>
<tr>
<td>Bacterias gram negativas (excluidas enterobacterias), sin especificar</td>
</tr>
<tr>
<td>Haemophilus parainfluenzae</td>
</tr>
<tr>
<td>Campylobacter spp., sin especificar</td>
</tr>
<tr>
<td>Gardnerella vaginalis</td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
</tr>
<tr>
<td>Haemophilus spp., sin especificar</td>
</tr>
<tr>
<td>Actinobacillus spp., sin especificar</td>
</tr>
<tr>
<td>Aeromonas sobria</td>
</tr>
<tr>
<td>Bordetella pertussis</td>
</tr>
<tr>
<td>Totales</td>
</tr>
</tbody>
</table>

* sobre total de microorganismos aislados en IN
Grupo 7.- **Bacilos Gram positivos.**

En el grupo de los bacilos grampositivos destaca *Corynebacterium sp* y especies relacionadas aisladas en pacientes con prótesis, catéteres, shunts, pacientes inmunodeprimidos y trasplantados y pacientes en hemodiálisis.

| Tabla 10.7.- **Bacilos Gram +** |
|-----------------|------|------|
| N | % | |
| Corynebacterium spp., sin especificar | 10 | 0.23%|
| Bacilos gram positivos, sin especificar | 6 | 0.14%|
| Bacillus spp., sin especificar | 3 | 0.07%|
| Actinomyces spp., sin especificar | 2 | 0.05%|
| Corynebacterium aquaticum | 1 | 0.02%|
| **Totales** | 22 | |

* sobre total de microorganismos aislados en IN

Grupo 8.- **Virus**

Son importantes sobre todo en Pediatría. El virus respiratorio sincitial es el más frecuente, aunque no aparezca en esta serie. Otros virus serían *rhinovirus*, *rotavirus*, *influenza*, *parainfluenza* y *adenovirus*.

En cuanto a los productores de hepatitis destacan tres casos de IN por VHC. El VHA rara vez se trasmite como IN, pero sí pueden darse casos de trasmisión de VHB tanto en personal como en pacientes.

El VIH es otro de los virus a tener en cuenta aunque la trasmisión como IN en la actualidad es excepcional.

Por último no es excepcional la transmisión del herpes simple, del *citomegalovirus* y el *Epstein - Barr*; este último mucho menos frecuente.

| Tabla 10.8.- **Virus** |
|----------------------|------|------|
| N | % | |
| Rhinovirus | 4 | 0.09%|
| Rotavirus | 4 | 0.09%|
| Virus de la hepatitis C | 3 | 0.07%|
| Virus parainfluenza | 2 | 0.05%|
| Adenovirus | 1 | 0.02%|
Otros virus | 1 | 0.02%
Totales | 15

* sobre total de microorganismos aislados en IN

Grupo 9.- **Cocos Gram negativos**

Este grupo es poco frecuente. Cabe destacar, por la importancia del cuadro clínico, *Neisseria meningitidis* aunque su transmisión intrahospitalaria sea excepcional.

<table>
<thead>
<tr>
<th>Tabla 10.9.- Cocos Gram -</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Cocos gram negativos, sin especificar</td>
<td>2</td>
</tr>
<tr>
<td>Otros cocos gram negativos</td>
<td>2</td>
</tr>
<tr>
<td>Moraxella catarrhalis</td>
<td>2</td>
</tr>
<tr>
<td>Branhamella catarrhalis</td>
<td>1</td>
</tr>
<tr>
<td>Moraxella nonliquefaciens</td>
<td>1</td>
</tr>
<tr>
<td>Neisseria meningitidis</td>
<td>1</td>
</tr>
<tr>
<td>Totales</td>
<td>9</td>
</tr>
</tbody>
</table>

* sobre total de microorganismos aislados en IN

Grupo 10.- **Otras bacterias**.

Grupo con tan escasa presencia que no merece especial mención.

<table>
<thead>
<tr>
<th>Tabla 10.10.- Otras bacterias</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Otras bacterias, sin especificar</td>
<td>4</td>
</tr>
<tr>
<td>Actinomyces odontolyticus</td>
<td>1</td>
</tr>
<tr>
<td>Totales</td>
<td>5</td>
</tr>
</tbody>
</table>

* sobre total de microorganismos aislados en IN

Grupo 11.- **Hongos filamentosos**

Su presencia en IN es excepcional si bien va en aumento, probablemente debido a que cada vez acuden al hospital mayor número de inmunocomprometidos.

~ 59 ~
<table>
<thead>
<tr>
<th>N</th>
<th>%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus terreus</td>
<td>2</td>
</tr>
<tr>
<td>Otros hongos</td>
<td>2</td>
</tr>
<tr>
<td>Hongos, sin especificar</td>
<td>2</td>
</tr>
<tr>
<td>Mucor spp., sin especificar</td>
<td>1</td>
</tr>
<tr>
<td>Totales</td>
<td>7</td>
</tr>
</tbody>
</table>

* sobre total de microorganismos aislados en IN

Grupo 12. **Protozoos y otros parásitos**

Grupo excepcional en IN como puede deducirse de su escasa frecuencia en esta serie.

<table>
<thead>
<tr>
<th>N</th>
<th>%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongyloides stercoralis</td>
<td>1</td>
</tr>
<tr>
<td>Enterobius spp., sin especificar</td>
<td>1</td>
</tr>
<tr>
<td>Totales</td>
<td>2</td>
</tr>
</tbody>
</table>

* sobre total de microorganismos aislados en IN

Se han descrito como agentes de IN un número considerable de otros microorganismos. Aunque no se detectaron en el EPINE-EPPS de 2015, citaremos algunos: *Cryptosporidium* sp, *Toxoplasma gondii*, *Pneumocystis carinii*, *Isospora belli*, *Sarcoptes scabiei* y *Angiula sp.*, *Aeromonas hidrophila*, *Legionella pneumophila*, *Mycoplasma pneumoniae* y géneros como *Chromobacterium*, *Cardiobacterium*, *Kingella*, *Actinobacillus* …

Frecuencia individual de microorganismos implicados en IN.

En la presentación publicada por la SEMPSPH para 2014\(^{(216)}\) aparece la frecuencia individual de patógenos implicados en la IN. Como puede observarse
destacan tres: *Escherichia coli*, *Pseudomonas aeruginosa* y *Staphylococcus aureus* que suman más del 35% del total. (figura 4)

Figura 4.- EPINE 2014, último publicado[418]. Microorganismos implicados

1.8.- **Resistencia antimicrobiana (multirresistencias):**

El ECDC (European Centre for Disease Prevention and Control) lidera en Europa la lucha contra las resistencias antimicrobianas. En esa línea ha creado el *Día Europeo para el Uso Prudente de los Antibióticos*[98]. Esta iniciativa de salud pública anual se celebra el 18 de noviembre. Tiene como objetivo sensibilizar a profesionales y público en general de la amenaza que la resistencia a los antibióticos supone para la salud pública y fomentar el uso prudente de los mismos. Los datos más recientes confirman que el número de pacientes infectados por bacterias resistentes crece en toda la Unión Europea, y que la resistencia a los antibióticos es una seria amenaza para la salud pública[95].

~ 61 ~
En su página web dicen textualmente: "Usar con prudencia los antibióticos puede ayudar a detener el desarrollo de bacterias resistentes y conseguir que los antibióticos mantengan su eficacia para las generaciones venideras".

Ha preparado diverso material del que destacamos:

- Material para médicos de ámbito hospitalario.
- Material para médicos de atención primaria.
- Para el público en general.
- Para el público en general y centrada en la automedicación.
- Hoja de información para expertos.

De esta Hoja para expertos extraemos la siguiente información relevante:

Las infecciones nosocomiales y la resistencia a los antimicrobianos son dos problemas sanitarios especiales enumerados en el Anexo 1 de la Decisión de la Comisión 2000/96/CE de 22 de diciembre de 1999 relativa a las enfermedades transmisibles que deben quedar progresivamente incorporadas en la red comunitaria de vigilancia, en aplicación de la Decisión nº 2119/98/CE del Parlamento Europeo y del Consejo.

Ámbito: no sólo hospitales sino todas aquellas «infecciones asociadas a la asistencia sanitaria». Abarca, además de las infecciones hospitalarias, las adquiridas en cualquier entorno en los que se preste asistencia sanitaria (centros de asistencia prolongada, residencias de ancianos, hospitalización domiciliaria, etc.).

Microorganismos: bacterias, virus, hongos y parásitos.

Antimicrobianos utilizados. Incluye: son medicamentos que destruyen los microorganismos o impiden su crecimiento y son, entre otros, los siguientes:

- Antibacterianos-antibióticos.
- Antimicobacterianos.
- Antivirales
- Antifúngicos o antimicóticos.
- Antiparasitarios.

La resistencia a uno o varios antibióticos no constituye una enfermedad, sino una característica de determinados microorganismos responsables de las infecciones nosocomiales y otras asociadas a la asistencia sanitaria.
Los microorganismos resistentes a los antimicrobianos (incluidos los multirresistentes) pueden provocar infecciones asociadas a la asistencia sanitaria y también infecciones fuera de los hospitales e incluso pueden detectarse en la flora bacteriana normal de personas sanas, mascotas y medio ambiente, animales de consumo humano y alimentos.

También es preciso aclarar que la mayor parte de las infecciones asociadas a la asistencia sanitaria suelen deberse a microorganismos que no son multirresistentes.

Resistencia a los antimicrobianos

Es la capacidad de un microorganismo para resistir la acción de un antimicrobiano determinado. Es una adaptación del microorganismo al entorno: o se adapta o muere.

Esta característica corresponde a los microorganismos que adquieren resistencia a los antimicrobianos y que habitualmente colonizan y/o infectan a seres humanos y animales. Pero no las personas o animales colonizados y/o infectados. Ni las personas ni los animales se hacen resistentes a los antimicrobianos, sino algunos microorganismos. La resistencia reduce o elimina la capacidad del antimicrobiano para curar o prevenir las infecciones causadas por ese microorganismo\(^{(100)}\).

Es muy interesante en este aspecto la **Hoja de información para expertos**\(^{(100)}\) del ECDC que reproducimos en el Anexo 3 (página 374) y ya comentada.

El reciente informe del ECDC\(^{(95)}\) es muy significativo de la preocupante situación actual. Vamos a trascribir, con cierta extensión, sus principales hallazgos y conclusiones:

Las resistencias antimicrobianas constituyen un importante reto en salud pública. El porcentaje de microorganismos con especial resistencia a múltiples antibióticos continúa aumentando en Europa. La variación en porcentajes de multiresistencias depende del microorganismo, del agente antimicrobiano y de la región geográfica.

En 2012 en Europa la prevalencia de *Staphylococcus aureus* resistente a meticilina (MRSA o SARM) se estabilizó e incluso descendió en varios países europeos. Sin embargo el porcentaje de MRSA entre todos los *Staphylococcus aureus* aislados todavía es de un 25% en siete de los 29 países de Europa que han declarado datos.

En los últimos cuatro años se ha observado una tendencia significativa de aumento de resistencias cruzadas a múltiples antibióticos en *Escherichia coli* y...
Klebsiella pneumoniae en más de una tercera parte de los países europeos. La opción de tratamiento de los pacientes infectados con bacterias multiresistentes se ha limitado a unos pocos antibióticos, como los carbapenems. Sin embargo la resistencia a los carbapenems va en aumento en varios países lo que limita las opciones de tratamiento.(474).

Debe continuar el esfuerzo en promover un uso prudente de los agentes antimicrobianos y del cumplimiento de las medidas de control de la infección para reducir la selección y controlar la transmisión de bacterias multiresistentes.

Microorganismos sometidos a vigilancia especial(100).

Los siguientes microorganismos son objeto de vigilancia especial por sus peculiaridades:

Escherichia coli.

Se encuentra en los aislamientos más frecuentes de bacterias Gram negativas en hemocultivos y es causa mayor de infecciones del tracto urinario. Las resistencias de este microorganismo requieren especial atención sobre todo a los porcentajes de aislamientos de resistentes a los antimicrobianos más habituales. Esta resistencia continúa aumentando en los países europeos. La mayor parte de los aislamientos declarados en 2012 eran resistentes al menos a uno de los antimicrobianos bajo vigilancia(427,450).

Klebsiella pneumoniae(199,407)

Constituye una importante causa de infección en personas con alteraciones del sistema inmunitario y pacientes portadores de diversos dispositivos. Provoca frecuentes infecciones del tracto urinario, del aparato respiratorio y bacteriemias.

Es causa frecuente de brotes hospitalarios. El incremento del porcentaje de resistencias antimicrobianas es un importante problema en salud pública que va en aumento en todo el mundo. La mayor parte de los aislamientos declarados en 2012 eran resistentes al menos a uno de los antimicrobianos bajo vigilancia, y presentaban resistencia combinada a varios antimicrobianos con bastante frecuencia. Se ha declarado un elevado porcentaje de resistencias antimicrobianas de este microorganismo en los países del sudeste, centro y este de Europa.

~ 64 ~
Pseudomonas aeruginosa\(^{(280)}\).

Importante causa de infección en pacientes con alteraciones inmunitarias, en 2012 se detectaron altos porcentajes de aislamientos de resistentes a aminoglucósidos, ceftazidima, fluoroquinolonas, piperacilina-tazobactam y carbapenems en varios países, especialmente del sudeste y del este de Europa. Las resistencias a carbapenems alcanzaron un 10% en 19 de los 29 países declarantes. La resistencia combinada fue muy frecuente, con un 14% de los aislamientos declarados con resistencias al menos a tres antimicrobianos.

Acinetobacter especies\(^{(121)}\).

Se incluyó por primera vez en 2013 en las declaraciones telefónicas. Más de la mitad de las cepas aisladas de *Acinetobacter spp* declaradas en 2012 eran resistentes a todos los antimicrobianos de los grupos bajo vigilancia (carbapenems, fluoroquinolonas y aminoglucósidos)

Streptococcus pneumoniae\(^{(122)}\).

Es causa habitual de infección especialmente en los niños, en los ancianos y los pacientes con alteraciones inmunitarias. Suele producir infecciones del aparato respiratorio superior, sinusitis, otitis media, septicemias y meningitis.

Es también una de las causas mayores de neumonía en el mundo entero y está asociado a alta morbilidad y mortalidad.

Staphylococcus aureus\(^{(61,184)}\).

El *Staphylococcus aureus* y su forma de resistencia a la oxacilina (*Staphylococcus aureus* resistente a meticilina o SARM) es una de las más importantes causas de resistencia antimicrobiana en los centros de atención de salud en todo el mundo. En la pasada década varios países europeos emprendieron acciones especiales orientadas a reducir la diseminación del SARM en los centros de salud.

El porcentaje de *Staphylococcus aureus* aislados declarado como SARM se ha estabilizado o incluso decrecido en algunos países europeos. Su porcentaje ha
disminuido significativamente en los últimos cuatro años.

Enterococcus faecalis y **Enterococcus faecium**\(^{(22,191)}\).

Los enterococos se cuentan entre las bacterias de la flora habitual del tracto gastrointestinal de los humanos, pero puede también causar varias infecciones clínicas incluyendo endocarditis, bacteriemia, meningitis, infección de heridas e infecciones del tracto urinario, y también peritonitis y abscesos intraabdominales.

En el estudio EPINE-EPPS se estudia la resistencia de los microorganismos que se señalan en la tabla 11

<table>
<thead>
<tr>
<th>Tabla 11 Marcadores de resistencia antimicrobiana. EPINE-EPPS 2016.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microorganismos</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>Enterococcus spp.</td>
</tr>
</tbody>
</table>

S: Sensible; R: Resistente

Oxa = Oxaciлина
Gly = Glicopeptidos (Vancomicina, Teicoplanina).
C3G = Cefalosporinas de tercera generación (Cefotaxima, Ceftraxona, Cefazolina)
Car = Carbapenemias (Impinem, Meropenem, Doripenem).

MSSA = Staphylococcus aureus sensible a la Metilicina
MRSA = Staphylococcus aureus resistente a la Metilicina
VRE = Enterococo resistente a la Vancomicina (Vancomycin-resistant enterococci).

Tomado de SEMSPH. Estudio EPINE-EPPS 2016. Protocolo\(^{(419)}\).

Otros autores también se hacen eco de este problema y proponen medidas de prevención para evitar su transmisión en los centros de salud\(^{(445)}\).
1.9.- **Vigilancia, Prevención y Control de la IN.**

1.9.1. **Vigilancia**

Definición: consiste en desarrollar las recomendaciones y protocolos al uso para prevenir la aparición de infección nosocomial. En unos casos consistirá en actualizar y, en la mayor parte de los mismos, recordar estas normas y protocolos para su correcta aplicación.

La Vigilancia Epidemiológica, si la entendemos como *información para la acción*, supone un buen instrumento para identificar, medir y analizar los acontecimientos relacionados con la salud que afectan a la población, en nuestro caso, la IN. Con estos datos podremos adoptar las decisiones necesarias para prevenir la IN. La Vigilancia Epidemiológica conlleva recogida de datos, análisis de los mismos, toma de las decisiones pertinentes e información de los resultados obtenidos a los profesionales y a los responsables hospitalarios, con el objetivo fundamental de disminuir la IN. Otros objetivos, también importantes, son:

- Conocer las tasas de IN
- Comprobar la eficacia de las medidas de prevención
- Detectar brotes
- Compararse con otros hospitales similares
- Disponer de medidas de defensa frente a juicios y demandas.

El proceso de vigilancia debe ser continuo y los datos analizados y valorados periódicamente. Insistimos en que, una vez obtenidas las conclusiones correspondientes es imprescindible informar a los responsables pertinentes, proponiendo las soluciones a adoptar.

Todos los datos recopilados sirven para recordar al personal médico y auxiliar la importancia de una buena práctica de las medidas de control que pueden resultar descuidadas con la rutina del trabajo diario. (Por ej. Higiene de manos).

Por supuesto, también deben ser informadas periódicamente la Comisión de Infecciones del hospital, y la Dirección.
Elementos de la vigilancia:

Bases de la vigilancia:

A. Definición precisa de los sujetos objeto de vigilancia
B. Tipos de vigilancia y objetivos
C. Recopilación de datos:
 1. Fuentes
 2. Tipos de estudios.
D. Comprobación-depuración e informatización de los datos
E. Cálculo de tasas
F. Análisis
G. Interpretación
H. Comunicación de los datos

Realización práctica:

I. Programas de vigilancia actuales en nuestros hospitales:
 1. EPINE-EPPS,
 2. ENVIN,
 3. INOZ
J. Sistema de vigilancia continua.
K. Brotes.
L. Alertas.

1.9.1.1.- *Bases de la vigilancia.*

A.- *Definición precisa de los sujetos objeto de vigilancia*

Para obtener una buena base de datos es de vital importancia la buena definición de los hechos a vigilar y la aplicación uniforme de las definiciones aceptadas sistemáticamente. Pero no es menos importante precisar a qué sujetos vamos a extender la vigilancia.
Cuando se comenzó con estos programas se intentó abarcar a todos los pacientes ingresados. Pronto se hizo patente que este sistema, posible en los estudios de prevalencia, era ineficaz e imposible de realizar, con los recursos existentes, en los estudios de incidencia. Se pensó en realizar vigilancia por objetivos distinguiéndose dos tipos de objetivos:

- **Objetivos de proceso**: son todos los que se refieren a las actividades dirigidas al control y prevención de la infección nosocomial. Van orientados a:
 - Conocer el nivel endémico de infección
 - Identificar epidemias (brotes)
 - Adoptar medidas de control eficaces
 - Evaluar las medidas de control.

- **Objetivos de resultado**:
 - Reducir el riesgo de sufrir una infección nosocomial
 - Reducir los inconvenientes y sufrimientos para los pacientes infectados
 - Disminuir los costos derivados de la infección nosocomial.

Trascurrido no mucho tiempo, alrededor de 1998, se revisaron los resultados del anterior sistema viéndose que era muy mejorable. Se decidió cambiar la estrategia a una vigilancia por procesos médicos o quirúrgicos, mucho más precisa y rentable que la anterior (383).

Esta vigilancia por procesos, regulada y definida anualmente por la Comisión INOZ (68), se fijó en cuatro niveles diferentes como comentaremos en el punto siguiente.

B.- Tipos de vigilancia y objetivos.

El objetivo prioritario de la vigilancia es reducir la infección nosocomial o expresado de otra manera, disminuir el riesgo de contraerla.

Una forma clásica y todavía practicada en muchos hospitales pequeños, algunos medianos y CM (351,436) fue realizar vigilancia por objetivos.

Se definen dos tipos de objetivos: de proceso y de resultado, comentados y desarrollados ya en el anterior apartado.

Sería muy interesante y productivo identificar algunos grupos de pacientes con mayor riesgo de padecer determinados tipos de infección nosocomial para poder modificar aquellos factores de riesgo que sean susceptibles de intervención, si fuese posible. El tipo de programa de vigilancia puede (y, casi siempre, debe) ser diferente para cada localización de la IN: bacteriemias, herida quirúrgica, infecciones urinarias,
La forma actual es realizar esa vigilancia de la siguiente manera:

- En todo el Centro para los estudios de Prevalencia.
- Para los estudios de incidencia: vigilancia por procesos.

1. Proceso de Cirugía Limpia: 1er implante de prótesis de cadera, 1er implante de prótesis de rodilla.
2. Proceso de Cirugía Limpia-Contaminada o Cirugía Contaminada: Cirugía electiva de colon.
4. Unidad de un centro de media-larga estancia.

A este sistema de vigilancia por procesos se le ha adjudicado tanta importancia que ha formado parte de los sistemas de Contrato Programa(353), desde la creación de estos. El cumplimiento o no del Contrato Programa conlleva subvenciones económicas importantes por parte del Departamento de Sanidad. Estos Contratos Programas son evaluados por una Comisión externa a cada Centro.

Estos estudios son estudios de incidencia, es decir, de seguimiento del paciente desde que ingresa en el centro hasta que es dado de alta. Actualmente se ha ampliado el periodo de observación y recogida de datos (hasta completar 30 días en pacientes intervenidos de cirugía de colon(453), estén donde estén y hasta 1 año en grandes prótesis – cadera y/o rodilla)

Los procesos se determinan por consenso (en Euskadi, en la red de Osakidetza, en la Comisión INOZ(68), anualmente), de acuerdo con resultados y experiencias anteriores, para un periodo de tiempo concreto y “obligatorios” para todos los hospitales de agudos de la Red Osakidetza. Cada hospital en particular puede establecer otros tipos de vigilancia según sus resultados (EPINE, brotes, aislamientos de Microbiología, circunstancias epidemiológicas).

C.- Recopilación de datos.

La recogida de los datos es una labor básica y fundamental que debe realizarse minuciosamente, por el mismo personal, a ser posible, bien entrenado y formado, con un protocolo bien diseñado y de comprobada eficacia, consensuado (INOZ(68), con
ficha de recogida completa pero lo más sencilla posible y definiendo de forma concisa y precisa aquello que se quiere vigilar.

Esta labor suelen realizarla enfermeras con formación específica en vigilancia y control de las infecciones nosocomiales. La recomendación es que cada una controle unas 250 camas, si está a dedicación completa\(^{179}\). Son supervisadas por un médico formado en epidemiología, que hace especial hincapié en los diagnósticos de IN (si es IN o no, tipo etc.), en la codificación previa a la informatización y en cualquier aspecto relacionado con la IN.

El CDC dicta las directrices básicas para determinar la presencia y clasificación de la infección\(^ {163,164}\) (Anexo 1, página 334 y Anexo 6, página 412).

Los datos a recopilar pueden variar en función de las necesidades del hospital.

1.- **Fuentes de datos** sobre infecciones nosocomiales.

Los datos pueden recogerse directamente de la historia clínica o bien a través de la revisión de los informes microbiológicos. Así, el método ideal se considerará aquel en que se recogen los datos día a día de la historia clínica, ya que tiene una sensibilidad y especificidad cercanas al 100%. Además permite el trato directo con el personal del área donde se recoge la información, lo que facilita las actividades de control mediante actuaciones rápidas de modificación de hábitos. Otra forma sería a través de la revisión de los resultados microbiológicos. Este método permite detectar el 75% de las infecciones nosocomiales cuando se compara con el de la vigilancia continuada. Se atribuye una sensibilidad del 85% y una especificidad del 48%. Según algunos autores es poco rentable para detección de infecciones respiratorias y de herida quirúrgica y es superponible a la vigilancia continuada para detección de bacteriemias. Asimismo, resulta útil para detección de infecciones cruzadas\(^{351}\).

Para asegurar la máxima caracterización de la infección se deben emplear una amplia variedad de fuentes de información. Una de las más útiles es la revisión periódica de los informes del laboratorio de microbiología.

Se ha de tener en cuenta que esta revisión no es suficiente para identificar las IN ya que no se hacen cultivos en todas las IN y no todos los agentes infecciosos serán identificados en un determinado laboratorio de un hospital (por ej. virus). Tampoco la identificación de microorganismos potencialmente patógenos significa que exista infección ya que se requiere una comprobación clínica.

El contacto con el personal de planta constituye parte integral de un programa efectivo de vigilancia con la finalidad de identificar nuevas infecciones, seguir las
previamente identificadas y compartir con el personal asistencial las normas o prácticas sobre control de infecciones.

Permite una inspección directa y documentación de las infecciones visibles lo que aumenta la validez de los datos.

Otras fuentes de información se indican a continuación teniendo en cuenta que el uso exclusivo de éstas no es recomendable porque la información puede ser sesgada o incompleta:

- Admisión
- Farmacia (p.ej. distribución de antibióticos)
- Informes radiológicos (por ej. neumonías)
- Informes necrópsicos (p.ej. infecciones indetectadas)
- Unidad de salud laboral para IN en empleados
- El seguimiento tras el alta del hospital de pacientes seleccionados (p.ej. pacientes quirúrgicos o recién nacidos)
- Informes verbales o de otro tipo por médicos y enfermeras.

2.- **Tipo de estudios de vigilancia.**

Estudio de incidencia.

Se basa en el seguimiento de los pacientes ingresados hasta el alta. Proporcionan un conocimiento inmediato de los casos y permite la detección de brotes lo que posibilita una actuación inmediata de prevención y control. Tienen además la ventaja de la facilidad de la recogida de datos y que se pueden analizar los efectos con criterios causales, por lo que se constituyó en la vía más adecuada para la investigación en el ámbito de la infección nosocomial.

Tiene la desventaja de que son más costosos que los de prevalencia, que requiere más recursos, tanto humanos como económicos. Ahora bien, aun cuando los estudios de incidencia continuos y extensivos a todos los hospitales son valiosos en periodos iniciales de la vigilancia, no debe prolongarse más de un año. Una vez hayan proporcionado una información básica sobre el nivel endémico del hospital y características epidemiológicas de infección, pueden estar indicados otros estudios menos intensivos y costosos como la vigilancia por objetivos o por procesos. Actualmente, los estudios de incidencia como instrumento de control junto con la vigilancia por objetivos y/o por procesos tienden a ampliarse cada vez más,
sustituyendo a otros métodos utilizados hasta ahora.

Se calcularán las medidas de frecuencia de la infección nosocomial:

1. Incidencia acumulada o tasa de ataque

2. Densidad de incidencia o tasa de incidencia. Puede considerarse como la medida de frecuencia más adecuada para el estudio de infección nosocomial dado que el período de tiempo en el estudio varía con cada paciente

Estudio de prevalencia: estos estudios proporcionan información descriptiva general, que si bien no permite hacer inferencias causales, facilita la generación de hipótesis, que podrán ser estudiadas por otros métodos. Los estudios de prevalencia de infección realizados periódicamente permiten conocer el impacto de las medidas de control aplicadas. Tienen el inconveniente de no permitir el conocimiento de la evolución diaria, originar un mayor número de errores en las encuestas y limitar las posibilidades de intervención. Por otro lado, tienen la ventaja de ser más baratos que los de incidencia y de permitir la inclusión de un mayor número de casos con menos recursos humanos.

D.- Comprobación, depuración e informatización de los datos

Tras la recogida y codificación de los datos es preciso introducirlos en una base de datos. Antes de proceder al análisis de los mismos es importante la comprobación y depuración de éstos. Si no se dispone de una base de datos fidedigna puede peligrar el resto del proceso y llegar a conclusiones erróneas. Así se evitarán redundancias, duplicidades, valores nulos innecesarios, valores missing, valores imposibles, desajuste de datos a los momentos temporales del estudio y un largo etc. Existen programas estadísticos que facilitan enormemente esta tediosa labor, especialmente si el número de pacientes recopilado es grande.

En esencia lo que se pretende evitar es la discordancia entre el valor obtenido (observado) y el real minimizando el impacto del error sobre las medidas a analizar.

Es preciso tener en cuenta los dos tipos de errores:

Sistemático: aquel que se manifiesta solo en un determinado sentido; el que se produce de igual modo en todas las mediciones que se realizan de una determinada magnitud. Va asociado a un defecto del instrumento a una particularidad del medidor o del proceso de medición.

Aleatorio: se asocia a variables de difícil o imposible control por el investigador. Se trata de aquel error inevitable que se produce por eventos únicos imposibles de
controlar durante el proceso de medición. Puede deberse a variables relacionadas con el investigador o con imperfecciones del instrumento, entre otras. Se trata de “pequeñas” discrepancias en la medición que aportan instrumentos de medida análogos utilizados en el mismo momento, o el mismo instrumento utilizado en dos momentos distintos. Puede ir en cualquier dirección.

Estadísticamente hablando las observaciones se constituirían de una parte sistemática y otra aleatoria. La primera de ellas se referiría a la parte de la medición que se corresponde con el objeto real al que representa mientras que la parte aleatoria representaría la incertidumbre sobre la realidad objeto de estudio\(^{(38)}\)

E.- Cálculo de tasas\(^{(38)}\).

El cálculo de tasas es una manera de medir el problema de la IN. Son de fácil comprensión y pueden servir para comprobar la evolución de la IN en el tiempo, valorar programas e mejora, comparación entre distintos centros etc.\(^{(449)}\)

Las tasas utilizadas más frecuentemente son:

- En estudios de prevalencia o trasversales:
 - tasa de prevalencia
 - prevalencia relativa

- En estudios de incidencia:
 - Incidencia acumulada o tasa de ataque (proporción)
 - Tasa de incidencia o densidad de incidencia

Se definirán y analizarán más exhaustivamente en el capítulo de Material, sujetos y métodos.

F.- Análisis.

- Intensidad de la relación:
 - OR (Odds Ratio) para estudios de prevalencia.
 - RR (Riesgo Relativo) para estudios de prevalencia.
 - Riesgo atribuible (Risk difference, rate difference)

- Pruebas de comparación:
 - \(X^2\) (Chi o ji cuadrado)
Consiste en el examen de los datos previamente comprobados y depurados para determinar la naturaleza y relación de sus partes componentes. Con frecuencia no es la parte que se haya desarrollado más. Debido a la formación específica del profesional o a un rechazo irracional a este tipo de trabajo o a otras causas este aspecto es bastante deficiente en general y de escaso desarrollo.

Va a constituir parte fundamental del núcleo de esta investigación por lo que no la desarrollamos más en este momento.

G.- Interpretación y comunicación (difusión) de los datos.

Si la recopilación correcta de los datos es fundamental no lo es menos su interpretación. Para ello serán bases imprescindibles la aplicación correcta de las pruebas estadísticas que pueden consultarse a partir de la página 173, la experiencia y el sentido común. Una vez interpretados los datos deben comunicarse a la Dirección, a la Comisión de Infecciones y difundirse, con las consideraciones y recomendaciones que sean precisas, al personal de los Servicios y Unidades implicados. y, por supuesto, realizar un intercambio de opiniones con dicho personal analizando la utilidad y practicidad de las recomendaciones. Sin esta fase, no se completaría el círculo del sistema de vigilancia epidemiológica y todos los esfuerzos serían inútiles.

1.9.1.2.- Realización práctica:

H. Programas de vigilancia actuales en nuestros hospitales: EPINE-EPPS, ENVIN, INOZ.

- estudio de prevalencia o trasversal: EPINE-EPPS (Estudio de Prevalencia de las Infecciones Nosocomiales en España - European Point Prevalence Survey)

- estudios de incidencia:

 - ENVIN-HELICS (Estudio Nacional de Vigilancia de Infección Nosocomial en servicios de medicina intensiva - Hospital in Europe Link for Infection Control through Surveillance)

- INOZ(68) (Infeczio Nosokomialak Zaintzeko eta Kontrolatzeko Plana)
- Proyecto HELICS (Hospital in Europe Link for Infection Control through Surveillance)(487)

I. Sistema de vigilancia continua.

Algunos hospitales ponen en marcha programas con este tipo de vigilancia, si bien suele ser por cortos periodos de tiempo. Consiste en recopilar información, de todos los pacientes ingresados, que pueda ser compatible con IN. Lo más frecuente es consultar los aislamientos de microbiología. Pero también puede consultarse la historia clínica buscando síntomas susceptibles de ser una IN, las analíticas etc. Una vez detectado algún paciente sospechoso de padecer una IN, se estudia a fondo ese caso y se hace seguimiento del mismo. Puede dar buenos resultados en hospitales pequeños. También puede hacerse seguimiento de los diagnósticos al alta(244) si bien este sistema tiene el inconveniente de que no pueden corregirse los factores de riesgo cuando se detectan. Con el avance de la informática(130), la concienciación de los profesionales para que consten todos los detalles concernientes al paciente en su historia clínica y el desarrollo de programas de cumplimiento obligatorio donde conste hasta el mínimo detalle que afecte al paciente, puede convertirse en un sistema de vigilancia eficaz y efectivo en todos los hospitales.

J. Brotes.

Lo definimos como el incremento en incidencia de una determinada enfermedad por encima de lo habitual(442).

Según Wenzel RP et al.(479) el 5\% de las IN son consecutivas a un brote. Con frecuencia existe una fuente común o trasmisión de persona a persona o está asociada a un determinado procedimiento(449). Su estudio ha proporcionado información relevante de la epidemiología de importantes patógenos(229,295) y de las vías de transmisión(58,225).

Los pasos fundamentales ante una sospecha de brote son(449):

- analizar la información disponible para confirmar o descartar la existencia del brote.

- confirmada la existencia de brote, definir el caso, confirmar el diagnóstico, y determinar la naturaleza, localización y extensión del problema.

- es necesario identificar todos los casos, incluirlos en el listado de afectados por el brote y determinar datos demográficos, signos y síntomas,
localización, enfermedades subyacentes y procedimientos con los que se realiza el diagnóstico

- la información anterior puede ayudar a determinar los factores de riesgo y definir la epidemiología del brote.

- el aislamiento del microorganismo causante debe orientarnos en los pasos que deban darse a continuación. Sydnor ERM, Perl TM (449) ofrecen una lista de cómo utilizar esta información dependiendo del microorganismo del que se trate.

- ayudará realizar una curva colocando los días en el eje de abscisas y el número de casos en el de ordenadas. La forma de esta curva puede sugerir la fuente de infección y el mecanismo de transmisión.

- es preciso conservar los aislamientos microbiológicos y plantearse su tipado molecular.

- y, por supuesto, es imprescindible adoptar a la brevedad posible las medidas de prevención necesarias, comenzando por las básicas (precauciones estándar, por ejemplo) y adoptando cualquier otra que estimemos necesaria según vaya avanzando la investigación.

- establecer una hipótesis general acerca de la transmisión y los factores de riesgo, que deberá sustentarse en estudios comparativos y en los datos microbiológicos.

- comunicación: deberá comunicarse ya en la fase de sospecha, a la Dirección del Centro y posteriormente a los servicios implicados.

- en ocasiones será obligatorio comunicarlo a las autoridades (Salud pública, por ej.) (479).

K. Alertas.

Los sistemas de alerta son útiles para poder adoptar las medidas de prevención pertinentes lo antes posible. Deben activarse ante la presencia inusual de microorganismos capaces de provocar brotes, por cambios en determinados microorganismos (multirresistencias, por ej.), o por la presencia de los mismos en lugares excepcionales o por la presencia de algunos cuadros clínicos (tuberculosis bacilífera, sarampión, gripe, varicela etc.). Es básica la concienciación y colaboración de Servicios como Microbiología, Urgencias y Unidades Clínicas en general. Particular importancia tiene el reingreso de pacientes portadores o infectados por SARM a los que es preciso aislar (400,432,445).
1.9.2- **Prevención**

Prevención: consiste en desarrollar las recomendaciones y protocolos al uso para prevenir la aparición de infección nosocomial. En unos casos consistirá en actualizar y, en la mayor parte de los mismos, recordar estas normas y protocolos para su correcta aplicación.

La línea entre prevención y control es, a menudo, difusa. Con frecuencia depende más del momento y la intención con que se apliquen que las medidas en sí. Muchas de ellas, al menos en teoría, son comunes. Por ejemplo: la limpieza y alta desinfección de un broncoscopio es una medida de prevención. Pero, si se ha producido una infección respiratoria por *Pseudomonas aeruginosa* trasmitida por un broncoscopio mal procesado, y ha sido el origen de un brote, la limpieza y alta desinfección se convierte en una medida de control.

La mayoría de autores no distingue entre medidas de prevención y medidas de control. Ciertamente se trata de una cuestión teórica ya que lo importante es que no ocurra la IN y tanto prevención como control van dirigidos a eso.

Las medidas de prevención han evolucionado a lo largo del tiempo.

Entre las medidas de aislamiento se distinguen dos tipos de precauciones:

- **Precauciones estándar**: aplicables a todos los pacientes y en todas las circunstancias. Se trata de medidas, en principio, de prevención.

- **Precauciones basadas en la trasmisión**: se aplican cuando un paciente está infectado o colonizado por microorganismos multirresistentes o de especial vigilancia epidemiológica. De ahí que los clasifiquemos, esencialmente, como medidas de control.

Precauciones estándar

Las precauciones estándares tienen como objetivo la disminución del riesgo de transmisión de microorganismos tanto de fuentes conocidas como desconocidas. En todo caso es necesario evitar el contacto con líquidos orgánicos de cualquier persona (sangre, líquido cefalorraquídeo, líquido sinovial, líquido pericárdico, líquido pleural, líquido peritoneal, secreciones vaginales, líquido amniótico, semen, leche materna, exudados y cualquier otro líquido contaminado visiblemente con sangre). Estas precauciones estándar van orientadas a todos los pacientes. Es decir, en la atención a los pacientes hospitalizados se aplicarán estas normas estándar a todos los pacientes.
independientemente del diagnóstico que tengan o su situación infecciosa. Insistimos en el concepto de que estas precauciones estándar se aplican a todos los pacientes, o sea, que admitimos que cualquier persona puede estar infectada o colonizada por microorganismos que podríamos transmitir al resto de pacientes ingresados, al personal, a las visitas etc.

Estas medidas comprenden:

1. **Higiene de manos** \(^{(53)}\)

 Es la medida más importante que podemos adoptar en la reducción de riesgo de transmisión de persona a persona o de un lugar a otro en el mismo paciente. Es imprescindible realizarlo correctamente después de entrar en contacto con sangre, fluidos corporales, secreciones y excreciones, artículos contaminados. Esta medida es independiente tanto si utilizamos guantes como si no. Después de quitarse los guantes es necesario realizar la higiene correcta de manos. (Véase *higiene de manos*, páginas 88 a 101)

2. **Uso de guantes.**

 Los guantes se utilizan:

 - Como EPI (Equipo de Protección Individual). Constituyen una barrera protectora para el personal. Esta fue su primera función.
 - Con el fin de reducir o eliminar la trasmisión de microorganismos de las manos del personal a los pacientes.
 - Para reducir la posibilidad de que pasen microorganismos de un enfermo a otro a través de las manos del personal.

 En ningún caso el empleo de guantes sustituye a la higiene de manos ya que los guantes pueden tener defectos que no se aprecian a simple vista o bien romperse al utilizarlos o haberse contaminado las manos al quitarlos etc.

3. **Instalación del paciente en habitación individual** \(^{(432)}\).

 Ubicación del paciente. En muchos casos es imprescindible que el paciente se instale en una habitación individual sobre todo si este paciente tiene malos hábitos de higiene o contamina el ambiente o no es colaborador para aplicar las precauciones. Si se conoce la colonización y/o infección por microorganismos susceptible de ser transmitidos y no se dispone de habitación individual se podría compartir con pacientes que estén colonizados o infectados por el mismo microorganismo, siempre
que no estén ni colonizados ni infectados por otros microorganismos potencialmente trasmisibles ni dispongan de vías de entrada.

4. **Medidas para el transporte de pacientes infectados.**

Debe limitarse al mínimo imprescindible. Si fuese necesario es preciso adoptar ciertas medidas:

- Al paciente se le colocarán por protectores adecuados (mascarilla quirúrgica, vendajes impermeables)
- Es imprescindible informar al personal del lugar de destino de que va llegar el paciente y de las precauciones que se deben adoptar.
- Debe hacerse educación de los pacientes en cuanto a las formas en que pueden ayudar a evitar la trasmisión de los microorganismos que portan.

5. **Uso de medidas personales de protección: mascarillas, protección ocular, protección facial.**

La finalidad de estos protectores es evitar que los microorganismos de los pacientes accedan a las mucosas del personal cuando proveen de procedimientos y cuidados a los pacientes en los que exista posibilidad de que generen salpicaduras o pulverizaciones de sangre, fluidos corporales, secreciones o excreciones.

También puede utilizarse una mascarilla quirúrgica para evitar la transmisión por gotas.

6. **Uso de medidas de barrera: bata e indumentaria adecuada.**

Batas y similares (indumentaria).

Se utilizan cuando se prevé que puede ocurrir la contaminación de la ropa del personal. En el caso de ser necesario deben utilizarse impermeables a los líquidos. Y también deben utilizarse en pacientes que estén infectados o colonizados con microorganismos epidemiológicamente importantes. Si se utilizan con este fin es preciso quitárselas antes de salir del entorno del paciente y, por supuesto, lavarse las manos.

7. **Medidas con los equipos y artículos utilizados en la asistencia al paciente.**

Existen artículos o equipos críticos que se utilizan en el paciente y que son reutilizables (los que se introducen en tejido estéril o a través de los cuales fluye la...
sangre) o *semicríticos* (aquellos que entran en contacto con membranas mucosas). Estos equipos se deben esterilizar o desinfectar (desinfección de alto nivel) una vez que se les haya utilizado. Cuando los equipos son *no críticos* (tocan la piel intacta) que estén contaminados con sangre, fluidos corporales, secreciones o excreciones es preciso limpiarlos y desinfectarlos después de su uso de acuerdo con las normas de limpieza y desinfección del hospital. Los artículos que llevan la denominación de desechables o de único uso se manipularán y transportarán de tal forma que el riesgo de transmisión quede reducido al menor posible, igual que la contaminación ambiental. Es preciso manipular estos equipos de asistencia al paciente que se han manchado con sangre, fluidos corporales, secreciones o excreciones evitando el contacto con la piel del trabajador y con sus membranas mucosas, que contaminen sus ropas y en definitiva, la transferencia de estos microorganismos a otros pacientes o el entorno. Nunca debe utilizarse un equipo con un paciente que haya sido utilizado con otro hasta que no estemos seguros de que se haya procedido a una limpieza y desinfección correctas.

8. **Medidas con la ropa de cama y lavandería.**

Ropa de cama y lencería y lavandería.

Si se utiliza un protocolo correcto y se cumple, la posibilidad de transmisión es mínima siempre que se procese la ropa limpia y la sucia con criterios de higiene y sentido común. La manipulación transporte y lavado deben estar determinadas por un protocolo específico en cada centro sanitario.

Hay que manipular transportar y procesar esta ropa sucia y manchada de sangre, fluidos corporales, secreciones y excreciones de manera que se evite totalmente la exposición de la piel y las membranas mucosas de los trabajadores así como la contaminación de ropas y transferencia de microorganismos a otros pacientes y al entorno.

9. **Medidas respecto a la vajilla y todos los utensilios utilizados en la comida.**

Vajilla (platos, vasos, tazas y utensilios de comida).

No son necesarias medidas específicas. Los procedimientos habituales que utilizan agua caliente y detergente suele ser suficientes. La temperatura alcanzada sobrepasa los 92-93°C. Hay una tendencia a utilizar platos y utensilios desechables, en caso de brote. Creemos que supone un gasto innecesario.
10. **Limpieza rutinaria.**

Las habitaciones se limpian con los mismos criterios para todos los pacientes a no ser que los microorganismos contaminantes y la cantidad de los mismos exijan una limpieza especial. Es preciso realizar desinfección adecuada de los equipos situados junto a la cama y en el entorno del paciente (barandillas, mesillas, mantos de grifos, picaporte). Algunos patógenos, especialmente enterococos, pueden sobrevivir largos periodos de tiempo en el ambiente o en objetos inanimados.

11. **Control ambiental.**

Deben cumplirse estrictamente protocolos adecuados de limpieza y desinfección rutinaria de suelos, camas, superficies, equipos y cualquier otro elemento que sea tocado con frecuencia. Especial atención debe prestarse a la limpieza y eventual desinfección de los pomos de las puertas, interruptores de la luz, mandos de los televisores e incluso teclados de los ordenadores y teléfonos móviles.

12. **Higiene en el trabajo y patógenos de la sangre.**

Es preciso realizar todas las funciones evitando producirse heridas con la manipulación fundamentalmente de agujas y otros elementos cortantes o punzantes. Cuidado también en su limpieza y eliminación. Jamás deben reencapucharse agujas usadas. Tampoco deben ser retiradas de las jeringuillas desechables a mano y las usadas no hay que doblarlas, romperlas o manipularlas de otra manera. Todos los objetos cortantes y punzantes deben colocarse en contenedores específicos que estén próximos al lugar de uso y sean imperforables y puedan finalmente cerrarse herméticamente cuando se ha llenado no más allá de 2/3 de su contenido. Si fuese posible hay que utilizar boquillas, bolsas de resucitación o cualquier otro aparato de ventilación, alternativa a los métodos boca a boca. Para eso deben estar disponibles en áreas que se prevea que puedan necesitarse las maniobras de resucitación.

13. **Nuevas precauciones estándar desarrolladas a partir de 2007 por el CDC**:⁴³²

- Utilización de una mascarilla quirúrgica al realizar determinados procedimientos sobre la espina dorsal: punción lumbar, anestesia epidural etc.

- Prácticas de inyección seguras:

 - utilizar perfusiones y equipos para administrarlas para un único paciente.

 - No administrar medicamentos con una misma jeringa a varios pacientes.

~ 82 ~
El medicamentos parenterales utilizar viales unidosis.

Si la medicación está contenida en viales u ampollas de un único uso no administrarlas a varios pacientes ni combinar restos de contenidos para su uso posterior.

No utilizar botellas o bolsas de soluciones intravenosas comunes para varios pacientes.

- Higiene respiratoria (y de la tos)\(^{(54)}\): son un conjunto de medidas pensadas para minimizar la trasmisión de patógenos respiratorios tanto por mecanismo de gotas como aéreo. Los componentes de esta higiene respiratoria y de la tos son:

 - Cubrirse boca y nariz al toser y/o estornudar.
 - Utilizar pañuelos para contener la secreción de respiratorias y depositarlos lo antes posible en recipientes que no haya que tocar con las manos.
 - Colocar mascarillas quirúrgicas en centros sanitarios a personas que tosen con el fin de no que no contaminen el entorno.
 - Inclinar la cabeza hacia un lado al toser.
 - Mantener una separación de al menos 1 m entre personas con síntomas respiratorios.
 - Si se estornuda sin disponer de un pañuelo o similar, hacerlo sobre el codo.

Estas medidas de higiene respiratoria y de la tos están orientadas a todos los pacientes que presenten síntomas de infección respiratoria así como a sus familiares y amigos que los acompañen y deben ponerse en marcha en el mismo momento del contacto con el centro sanitario (recepción, triaje, consultas ambulatorias etc.)
1.9.3.- **Control**

Definición: es la intervención directa, especialmente sobre los factores de riesgo detectados, para evitar o disminuir la transmisión de infección nosocomial.

Medidas de control. Como ya hemos comentado las medidas de control son un eslabón fundamental dentro de la cadena utilizada para reducir la infección nosocomial y para ello se necesita contar con personal especializado en este campo.

El personal que realiza las actividades de control conoce perfectamente y de forma actualizada el modo correcto de llevar a cabo todas las técnicas de atención al paciente que entrañen riesgo de adquirir una infección nosocomial. Dispone de normas escritas sobre indicadores de aislamiento, técnicas de atención al paciente (sondaje vesical, venopuntura, curas, ventilación mecánica,…), saneamiento ambiental, limpieza, desinfección y esterilización. Además, mantiene informado al personal sanitario de las modificaciones en las diversas técnicas.

Eickhoff, en el año 1981, ya propuso una serie de medidas de control y las clasificó según su eficacia. Esta clasificación sigue básicamente vigente. La mostramos a continuación, con algunas modificaciones, adaptándola a los conocimientos actuales:

- **Categoría I. De eficacia probada (demostrada):**
 - higiene de manos,
 - esterilización y desinfección adecuada del material,
 - cuidados en el sondaje urinario (utilizarlo cerrado),
 - normas para curar heridas,
 - quimioprofilaxis perioperatoria en cirugía limpia con implantes, en cirugía limpia-contaminada y cirugía contaminada,
 - normas para la prevención de neumonías en enfermos sometidos a ventilación mecánica (vigilancia de los equipos de terapia respiratoria),
 - cuidado del catéter intravenoso (vascular),
 - preparación del colon en cirugía de colon,
 - preparación prequirúrgica del enfermo.

- **Categoría II. De eficacia razonable (sugerida por la experiencia o inferida):**
 - precauciones ante enfermedades infecciosas y situaciones clínicas (aislamientos),
 - programas de educación sanitaria,
 - normas para controlar la contaminación microbiana en el
quirófano.

- **Categoría III.** De eficacia no probada o dudosa (o desconocida):
 - utilización de luz ultravioleta,
 - desinfección de suelos, paredes y superficies,
 - nebulización ambiental,
 - muestreo bacteriológico ambiental rutinario,
 - utilización de filtros anti bacterianos en los sistemas de perfusión intravenosa,
 - Flujo de aire laminar (hoy no parece tan dudosa),
 - Profilaxis preoperatoria en cirugía limpia (hoy demostrada su utilidad en implante de prótesis)

También resulta práctica la clasificación de acuerdo con el eslabón de la cadena epidemiológica sobre la que actúe la medida de control. En este sentido distinguimos:

- **Sobre la fuente de infección:**
 - Esterilización y desinfección.
 - Procedimientos de aislamiento; medidas de barrera.
 - Educación e información sanitaria.

- **Sobre el mecanismo de transmisión:**
 - Esterilización y desinfección.
 - Higiene de manos.
 - Drenaje urinario cerrado.
 - Vigilancia de los catéteres intravenosos.
 - Técnicas de no tocar las heridas.
 - Vigilancia de los respiradores.
 - Luz ultravioleta.
 - Nebulizaciones.
 - Sistemas de flujo laminar (aire estéril).
 - Control rutinario del ambiente.
 - Filtros intravenosos terminales.
 - Educación información sanitaria.

- **Sobre el sujeto sano susceptible:**

~ 85 ~
Quimioprofilaxis.

Aislamiento protector.

Vacunación.

Educación información sanitaria.

Precauciones basadas en la transmisión: contacto, gotas y aérea. Aunque existen cinco vías de transmisión de microorganismos (contacto, gotas, aérea, vehículo común y por medio de vectores). Nos vamos a referir esencialmente a las tres utilizadas en los aislamientos o precauciones de aislamiento.

Transmisión por contacto: suele ser la más frecuente y por tanto la más importante en la transmisión de infecciones nosocomiales. Puede ser por contacto directo y por contacto indirecto.

El directo implica que haya un contacto entre la superficie corporal de una persona infectada o colonizada con microorganismo susceptible

El indirecto conlleva contacto del huésped susceptible con objeto intermedio contaminado que generalmente es inanimado (vendajes, guantes que no se han cambiado entre pacientes, instrumentos etc.)

Transmisión por gotas: al toser, hablar, estornudar, cantar, gritar etc. producimos una cantidad importante de aerosoles. Véase la explícita figura 5 (estornudo) y la cantidad de partículas emitidas y en la figura 6 su tamaño al estornudar, toser y hablar.

Figura 5
Podemos provocar la tos y el estornudo en los pacientes al realizar determinados procedimientos como aspiraciones, broncoscopias etc. Se produce transmisión cuando estas gotitas que contienen microorganismos de la persona infectada o colonizada se proyectan a corta distancia porque el tamaño de estas partículas (≥ 5 µ) no permite que recorran más distancia y entran en contacto con la conjuntiva, la mucosa nasal o la boca del huésped.

Estas gotas no permanecen suspendidas en el aire por mucho tiempo y por tanto no es preciso ningún tratamiento especial del aire pero sí del suelo: no utilizar para la limpieza instrumentos que generen polvo (mopa de arrastre húmedo), desinfección adecuada, periodicidad correcta.

Transmisión aérea.

Las partículas que tienen un tamaño inferior a cinco micras (< 5 µ) son las implicadas en este mecanismo. Pueden permanecer mucho tiempo flotando en el aire y pueden dispersarse por corrientes de aire y ser inhaladas por un huésped susceptible dentro de la habitación e incluso a distancias más largas. En estos casos hay que aplicar medidas especiales (habitaciones de presión negativa, con filtrado del aire antes de expulsarlo al exterior).

Vehículo común:

Este cuarto mecanismo comprende la trasmisión de microorganismos por medio de artículos contaminados como alimentos, agua, medicamentos, aparatos y equipos.

Vectores.
En cuanto al quinto mecanismo o transmisión por vectores puede producirse por medio de moscas, mosquitos y, mucho más raro, ratas, cucarachas etc. Tienen muy escasa importancia en la génesis de las IN en nuestro entorno.

A continuación listamos las principales características que deben presentar las técnicas clasificadas en la Categoría I. De eficacia probada (demostrada):

Medidas de eficacia probada (Demostrada)\(^{(115)}\)

1. Higiene de manos,
2. Esterilización y desinfección adecuada del material,
3. Quimioprofilaxis preoperatoria en cirugía limpia con implantes, en cirugía limpia-contaminada y cirugía contaminada,
4. Cuidados en el sondaje urinario Utilizarlo cerrado),
5. Normas para curar heridas,
6. Normas para la prevención de neumonías en enfermos sometidos a ventilación mecánica (vigilancia de los equipos de terapia respiratoria),
7. Cuidado del catéter intravenoso (vascular),
8. Preparación del colon en cirugía de colon,

A modo de ejemplo y dada su trascendencia, sobre todo de la higiene de manos, vamos a describir más ampliamente las tres primeras:

1. **Higiene de manos**.

Partimos de la idea de que las manos son el vehículo más común de transmisión de los microorganismos patógenos asociados a la atención sanitaria. Por tanto los esfuerzos en prevención de la IN deben ir dirigidos prioritariamente a promocionar y cumplir con los buenos hábitos\(^{(40,92,173,195,196,323,328,340)}\).

Vamos a exponer, aunque sea brevemente, los aspectos más relevantes de esta medida de prevención (pacientes no infectados por ej.) o de control (pacientes con IN):

Flora presente en la Piel. Están presentes dos tipos de flora:

1. **Flora Residente**. Presenta las siguientes características:
 - Habita en folículos pilosos, glándulas sudoríparas, capas profundas de la piel.
• No es patógena en piel intacta.
• Supervivencia superior a la flora transitoria.
• Tiene funciones defensivas: Antagonismo microbiano y Competencia por nutrientes
• Bacterias más frecuentes:
 – *Staphylococcus epidermidis*
 – *S. hominis*, otros ECN (Estafilococos Coagulasa Negativos).
 – Corineformes: *Propionibacterium spp*, corinebacterias y micrococos
• Hongos más habituales:
 – *Pityrosporum (Malasezzia)*
• Virus: no

2.- **Flora Transitoria**:
• Aquella que traemos y llevamos en el entorno sanitario.
• No se multiplica en la piel, sobrevive.
• Origen: pacientes o fómites.
 – Transmisibilidad: Depende de número de microorganismos, de su capacidad de supervivencia y de la hidratación de la piel.
 – Microorganismos implicados: Bacterias, hongos y virus.

Kampf G et al.,(234), en 2004, publicaron su experiencia respecto a la presencia de los microorganismos considerados como flora transitoria en las manos del personal sanitario, su supervivencia en las mismas y en las superficies hospitalarias. Dada la importancia práctica de esa publicación vamos a reproducir algunas de sus tablas.

Cocos Gram Positivos. *(Tabla 12)*

- *Staphylococcus aureus*. Actualmente se vislumbra un descenso paulatino *(ECDC*(95)*)
- *Enterococcus spp*
- *E. faecalis* y *E. faecium* en ITU
Aumento de VRE (transmisión por manos)

ECN: *Staphylococcus epidermidis*

Tabla 12.- G. Kampf et al.

<table>
<thead>
<tr>
<th>Patógeno</th>
<th>Tasa contaminación manos</th>
<th>Supervivencia en manos</th>
<th>Supervivencia en superficies</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>10.5-78.3%</td>
<td>>30 min</td>
<td>3-60 días</td>
</tr>
<tr>
<td>SARM</td>
<td><16.9%</td>
<td>-</td>
<td>28-210 días</td>
</tr>
<tr>
<td>VRE</td>
<td><41%</td>
<td><60 min</td>
<td>5-120 días</td>
</tr>
</tbody>
</table>

Bacterias Gram Negativas. (Tabla 13)

Se aislan hasta en 60% de las IN:

- *Escherichia coli*
- *Pseudomonas aeruginosa*
- *Acinetobacter baumannii*
- *Klebsiella spp.*
- *Serratia spp.*

Tabla 13.- G. Kampf et al.

<table>
<thead>
<tr>
<th>Patógeno</th>
<th>Tasa contaminación manos</th>
<th>Supervivencia en manos</th>
<th>Supervivencia en superficies</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>???</td>
<td>6-90 min</td>
<td>1 h-16 meses</td>
</tr>
<tr>
<td>Klebsiella sp</td>
<td>17%</td>
<td><2 h</td>
<td>2 h-30 meses</td>
</tr>
<tr>
<td>Serratia sp</td>
<td>15-24%</td>
<td>>30 min</td>
<td>3 d-5 meses</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>1-25%</td>
<td>30-180 min</td>
<td>6 h-16 meses</td>
</tr>
<tr>
<td>A. baumannii</td>
<td>3-15%</td>
<td>>150 min</td>
<td>3 d-5 meses</td>
</tr>
</tbody>
</table>

~ 90 ~
Bacterias Formadoras de Esporas (*Tabla 14*)

- *Clostridium difficile:*
 - 15-55% de diarreas asociadas a consumo de antimicrobianos
 - 3,6 días de hospitalización adicional
 - 1000 millones USD/año en USA.
 - Mortalidad: 15%
 - Contamina manos y fómites

- *Bacillus cereus*

Tabla 14. G. Kampf et al. *(234)*

<table>
<thead>
<tr>
<th>Patógeno</th>
<th>% contaminación manos</th>
<th>Supervivencia en manos</th>
<th>Supervivencia en superficies</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. difficile</td>
<td>14-59%</td>
<td>??</td>
<td>>24 h: vegetativo < 5 meses: esporas</td>
</tr>
<tr>
<td>B. cereus</td>
<td>37%</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>

Hongos. (*Tabla 15*)

- Aumenta su papel en las IN:
 - Alemania: 6.0%
 - España (EPINE): 3.2%
 - Levaduras en pacientes con IN (EEUU): 10.6%
- Más frecuente: *Candida albicans*
- Producen: candidemia (asociada frecuentemente a catéteres vasculares), ITU, infecciones quirúrgicas.
Virus. (Tabla 16)

- Causan el 5% de las IN
- Causan el 23% de las IN en Pediatría
- 5 grupos:
 - Sangre: HBV, HCV, VIH
 - Respiratorio: VRS, Influenza, Rhino, Corona y Adeno
 - Fecal-oral: Rotavirus, Norovirus, Enterovirus y HAV
 - Directo: HSV, VZV, CMV y EBV
 - Exóticos: Fiebres hemorrágicas y Rabia

Virus transmitidos por la sangre:

- Riesgo a pesar de los guantes
- 17% perforaciones en guantes quirúrgicos
- 83% no detectadas por el cirujano
- 82% de guantes tienen perforaciones invisibles
- 1 µl de sangre puede contener hasta 500 virus viables

~ 92 ~
Transmisión a través de las manos:

Pittet et al. (378) (2006) establecieron y demostraron científicamente los cinco pasos por los que se produce la transmisión a través de las manos:

Paso 1: La fuente más frecuente de microorganismos causantes de IRAS son los del propio paciente y los presentes en los fómites del medio ambiente próximo a él.

Paso 2: Transferencia de microorganismos al personal sanitario.

Paso 3: Supervivencia de los microorganismos en las manos.

Paso 4: Falta de higiene de manos o higiene defectuosa: manos contaminadas.

Paso 5-A: Transmisión cruzada al personal.

Paso 5-B: Transmisión cruzada de un paciente a otro

Además de proporcionar las bases científicas, a la luz de la medicina basada en la evidencia, de todo el proceso, propusieron un modelo dinámico de higiene de manos y establecieron las estrategias de formación del personal sanitario en higiene de manos.

La OMS se implicó totalmente realizando un enorme esfuerzo a nivel internacional. Puede visitarse su página web (326) que proporciona abundante material de primera fila, actualizado (2016) y de forma gratuita. Además orienta hacia los items más relevantes en la higiene de manos.

~ 93 ~
Es tal la profusión de buen material que aporta la OMS que resulta sumamente difícil sintetizarlo o resumirlo.

Tipos de Higiene de Manos.

- Lavado higiénico
- Antisepsia de manos
 - Lavado de manos con jabón antiséptico
 - Antisepsia de manos con solución hidroalcohólica
- Antisepsia quirúrgica
 - Lavado quirúrgico con jabón antiséptico
 - Antisepsia quirúrgica con solución hidroalcohólica

Lavado higiénico.

Objetivo: Eliminar suciedad, materia orgánica y flora transitoria

Producto: Jabón líquido (espuma) de pH neutro (ligeramente ácido)

La frotación con solución hidroalcohólica es una alternativa al lavado higiénico, porque facilita su cumplimiento

Preparación: retirar joyas, uñas sin barniz, heridas cubiertas con apósito impermeable...

Lavado: agua y jabón ligeramente ácido

- Procedimiento.
- Aclarar abundantemente.

Secado: papel desechable.

- Cerrar el grifo con el papel después de haberse secado.

Tan importante como el lavado correcto lo son el aclarado profuso y el secado minucioso\(^{(32b)}\).

Como ya hemos comentado, la OMS ha realizado y realiza grandes esfuerzos en la difusión de los principios fundamentales de la prevención y el control de la IN en general y de la higiene de manos en concreto. Dentro de sus campañas anuales destacamos la de 2016, por ser la más cercana. A continuación puede observarse su eslogan permanente:
«SALVE VIDAS: límpiese las manos»

Y uno de los carteles específicos para 2016:

Campaña mundial anual de la OMS

5 de mayo de 2016

Después de 10 años del programa de la OMS «Una atención limpia es una atención más segura», estas son las 10 razones por las que debería participar en la campaña:

- La higiene de las manos en el momento adecuado salva vidas.
- La higiene de las manos en la atención sanitaria ha salvado millones de vidas en los últimos años.
- La higiene de las manos es un indicador de calidad que destaca la seguridad de los sistemas de salud.
- Los problemas de salud, como las infecciones relacionadas con la atención sanitaria (IRAS), que a menudo son invisibles pero sin embargo ocurren, son retos políticos y sociales que debemos abordar.
• Las infecciones pueden ser evitadas por medio de una buena higiene de las manos, y el daño a la salud de los pacientes y del personal de la atención de la salud se puede prevenir por menos de $10.

• ¡Existe tecnología de bajo costo para salvar vidas! La solución desinfectante a base de alcohol, la cual cuesta aproximadamente $3 por botella, puede prevenir las IRAS y millones de muertes cada año.

• Existe #handhygiene en los medios sociales, lo cual significa que es un tema importante, ya sea debido a las IRAS o a brotes por enfermedades mortales como el ébola.

• El incorporar los momentos específicos para la acción de la higiene de las manos en el flujo de trabajo del personal sanitario facilita hacer lo correcto a cada minuto, a cada hora, cada día.

• La prevención de las infecciones es una parte fundamental del fortalecimiento de los sistemas de salud. La higiene de las manos es la base de todas las intervenciones, ya sea al insertar un dispositivo médico invasivo, manipular una herida quirúrgica, o al realizar una inyección.

• La epidemia social ya ha comenzado a transmitirse con «Salve vidas: límpiese las manos», una campaña exitosa que promueve la acción del lavado de las manos en el punto de atención del paciente.

Facilitamos, a continuación, las direcciones de Webs de la OMS al respecto. Aunque pueden observarse en el apartado bibliografía, aquí las destacamos y señalamos el número que les corresponde en la bibliografía.

Web de Seguridad del paciente. OMS 2016: http://www.who.int/patientsafety/es/
Sus 5 momentos para la higiene de manos:(327):

http://www.who.int/gpsc/information_centre/gpsc_5_momentos_poster_es.pdf
Cómo lavarse las manos:
http://www.who.int/gpsc/information_centre/gpsc_lavarse_manos_poster_es.pdf

Recomendaciones de la OMS (Organización Mundial de la Salud) para:

LAVAR CORRECTAMENTE LAS MANOS

0. Humedezca sus manos con abundante agua.
1. Enjabe sus manos con el gelo cerrado.
2. Comenzar frotando las palmas de las manos.
3. Intercale los dedos y frote por la palma y el anverso de la mano.
4. Continúe con los dedos intercalados y limpie los espacios entre sí.
5. Con las manos de frente, agarre los dedos y mueva de lado a lado.
6. Tome el dedo "guante" comp de la figura para limpiar la zona del agarre de la mano.
7. Limpie las yemas de los dedos, frotándolos contra la palma de la mano.
8. Enjuague sus manos con abundante agua (8 seg. aprox.)
9. Seque las manos con una toalla desechable o con aire caliente.
10. Cierre el grifo con una toalla desechable.
11. Ya está!
Cómo desinfectarse las manos:

¡Desíntéctese las manos por higiene! Lávese las manos solo cuando estén visiblemente sucias

Duración de todo el procedimiento: 20-30 segundos

1. **Dépote una dosis de producto suficiente para cubrir todas las superficies.**
2. **Frótese entre las palmas de las manos.**
3. **Frótese la palma de la mano derecha contra el dorso de la mano izquierda.**
4. **Frótese entre las palmas de las manos.**
5. **Frótese el dorso de los dedos de una mano con la palma de la mano opuesta.**
6. **Frótese con un movimiento de rotación el pulgar izquierdo, atrapándolo con la palma de la mano derecha y viceversa.**
7. **Frótese la punta de los dedos de la mano derecha contra la palma de la mano izquierda, haciendo un movimiento de rotación y viceversa.**
8. **Una vez secas, sus manos son seguras.**

Organización Mundial de la Salud
Seguridad del Paciente
SAVE LIVES Clean Your Hands

La información contenida en el folleto se incluye para mejorar la salud y los cuidados en el hogar. No se puede utilizar para ningún otro propósito. La salud es un derecho de todos. No se puede utilizar para ningún otro propósito. La salud es un derecho de todos.
Pruebas que corroboran la importancia de la higiene de las manos. Una atención limpia es una atención segura: http://www.who.int/gpsc/country_work/es/.

WHO/OMS. Mis 5 momentos para la higiene de manos en la atención a pacientes con heridas quirúrgicas: http://www.who.int/gpsc/5may/5moments-EducationalPoster_A4_ES.pdf

WHO/OMS. Mis 5 momentos para la higiene de manos en la atención a pacientes con catéteres venosos centrales: http://www.who.int/gpsc/5may/WHO_HH15_CentralCatheter_A3_ES.pdf

WHO/OMS. Mis 5 momentos para la higiene de manos en la atención a pacientes con catéteres venosos periféricos: http://www.who.int/gpsc/5may/WHO_HH15_PeripheralCatheter_A3_ES.pdf

WHO/OMS. Mis 5 momentos para la higiene de manos en la atención a pacientes con sonda urinaria: http://www.who.int/gpsc/hh-urinary-catheter_poster_ES.pdf

Higiene de las manos ¿por qué, cómo, cuándo?: http://www.who.int/gpsc/5may/tools/ES_PSP_GPSC1_Higiene-de-las-Manos_Brochure_June-2012.pdf

Higiene de las manos: Cuándo y cómo. http://www.who.int/gpsc/5may/tools/ES_PSP_GPSC1_Cuando_y_Como_LEAFLET_5WEB-2012.pdf

SAVE LIVES. Clean Your Hands. Guía de aplicación de la estrategia multimodal de la OMS para la mejora de la higiene de las manos. Manual técnico de referencia para la higiene de las manos. Dirigido a los profesionales sanitarios, a los formadores y a los observadores de las prácticas de higiene de las manos.

Marco OMS de autoevaluación de la higiene de las manos

Utilizando el Marco OMS de autoevaluación de la higiene de las manos, los centros de atención sanitaria pueden hacer un seguimiento de sus progresos en la promoción de la higiene de las manos, planificar sus actividades y contribuir a la mejora y la sostenibilidad de la higiene de las manos.
El Marco es un instrumento que permite realizar un análisis de la situación de la promoción y las prácticas de higiene de las manos en cada centro sanitario, con arreglo a un conjunto de indicadores. También sirve como instrumento de
diagnóstico, ya que permite determinar las cuestiones fundamentales que requieren atención y mejoras. La aplicación reiterada del Marco permitirá documentar los progresos realizados a lo largo del tiempo.

Una vez cumplimentado, el Marco permitirá:

- calcular la puntuación obtenida por cada sección y la puntuación global, con el fin de determinar el nivel de progreso alcanzado por su centro sanitario;
- evaluar, junto con el Comité de Infecciones y los administradores del hospital, qué áreas precisan mejoras y si alguna de ellas puede ser objeto de enfoques específicos (por ejemplo, formación del personal, preparación de nuevos carteles o recordatorios, etc.);
- divulgar los resultados, en particular para dar a conocer los puntos fuertes y las deficiencias que presenta su centro sanitario en materia de promoción de la higiene de las manos.

Centros piloto en la Región de Europa. Red de Unidades de Cuidados Intensivos (UCI), Italia. El centro piloto italiano es una red de 51 UCI, de las 154 que participan en la Campaña Nacional por la Higiene de las Manos en asociación con la OMS. www.who.int/entity/gpsc/country_work/pilot_sites_euro/es/ (518)

2.- **Esterilización y desinfección adecuada del material** (400).

Los instrumentos médicos invasivos y quirúrgicos pueden vehicular microorganismos si no se les somete a una esterilización o desinfección adecuadas. Y, por supuesto, pueden ser el origen de brotes (439,476).

Se entiende por **esterilización**, en la práctica, la eliminación de toda forma microbiana (incluidas las esporas) y también los priones. Puede conseguirse para el material que se utiliza en los centros médicos por medio de:

Vapor de agua (autoclaves, habitualmente a 3 atmósferas de sobrepresión, \(\geq 135^\circ C\)). Es el método de elección siempre que se pueda utilizar.

Óxido de etileno y Plasma Gas para el material termosensible.

Otras sustancias químicas como \(H_2O_2\), Acido peracético o Cidex OPA, manteniendo el material sumergido el tiempo preciso y a la concentración adecuada del producto. Tiene el inconveniente de que hay que aclararlo cuando termina el proceso y, aunque se aclare con agua estéril, no puede mantenerse estéril hasta su utilización. Por eso se utilizan como
procedimientos de alta desinfección, como detallaremos más adelante\(^{(401)}\).
Radiación gamma (gasas, guantes, etc.), en instalaciones extrahospitalarias por la complejidad de la instalación.

La esterilización es imprescindible cuando se van a realizar técnicas invasivas o intervenciones quirúrgicas.

Con la **alta desinfección** eliminamos todos los microorganismos excepto gran número de esporas bacterianas.

Incluye la pasteurización y algunas sustancias químicas como H\(_2\)O\(_2\), Acido peracético o Cidex OPA.

Se utiliza para material semicrítico (véase su definición más adelante) sensible a la temperatura: endoscopios

El **nivel intermedio** de desinfección destruye las formas vegetativas bacterianas, las micobacterias, la mayor parte de los hongos y de los virus pero no las esporas bacterianas.

Se utilizan los derivados del cloro, los compuestos fenólicos y la inmersión en H\(_2\)O\(_2\).

En la práctica médica se emplea para desinfectar material no crítico o superficies sin sangre visible.

El **nivel bajo** de desinfección eliminamos las formas vegetativas bacterianas y algunos hongos y virus, pero no eliminamos micobacterias ni esporas.

Se emplean derivados del cloro, los compuestos fenólicos y la inmersión en H\(_2\)O\(_2\) concentraciones no tuberculicidas y los amonios cuaternarios.

Se utiliza para desinfectar material no crítico o superficies sin sangre visible.

Teniendo en cuenta la importancia de la esterilización y la desinfección se han creado muchas guías\(^{(47,400,402)}\).

Para indicar el método de esterilización o desinfección preciso para el procesamiento del material de uso médico, en la práctica se utiliza como orientación la siguiente clasificación de dicho material, basada en el riesgo de transmisión de IN\(^{(123,440)}\)

Crítico: con alto riesgo de transmisión de una infección. Es el material que penetra en tejidos estériles o en el sistema vascular. Ejemplos: instrumental quirúrgico, catéteres cardíacos, implantes. Este material se compra estéril o se esteriliza después de su uso y se mantiene estéril hasta su próxima utilización. El método de elección es
el vapor de agua(401).

\textit{Semicrítico}: el que entra en contacto con piel no íntegra o mucosas. Ejemplos: terapia respiratoria, equipos de anestesia y endoscopios. Se utiliza la alta desinfección. Aunque mucho de este material (endoscopios por ej.) penetra en cavidades estériles (broncoscopio, cistoscopio, ureteroscopio, por ejemplo) lo hace a través de conductos altamente colonizados por microorganismos (boca-faringe, uretra, vagina)(400).

\textit{No crítico}: el que contacta con piel íntegra. Ejemplos: incluye multitud de objetos (esfigmomanómetros por ej) camas, ropa, mostradores y otras superficies, suelos etc. Aunque es difícil que transmitan agentes infecciosos directamente al paciente(477) sí pueden contaminar las manos del personal. Deben ser procesados con sistemas de bajo o intermedio nivel(400).

Otro tema importante es la limpieza o limpieza-desinfección. En las habitaciones de los pacientes hay muchas superficies que pueden ser olvidadas a la hora de hacer la limpieza(48). Por su parte Huang SS et al.(213) comunicaron en 2006 que los pacientes que ingresaban en habitaciones ocupadas previamente por pacientes colonizados o infectados por determinados microorganismos como \textit{C difficile} y otros multirresistentes tenían un riesgo incrementado de ser colonizados y/o infectados por esos mismos microorganismos. Se han investigado métodos alternativos para eliminar estos microorganismos. Destacamos los vapores de peróxido de hidrógeno (H\textsubscript{2}O\textsubscript{2}) y la luz UV. El H\textsubscript{2}O\textsubscript{2} ha demostrado su eficacia en la eliminación de numerosos patógenos, incluido \textit{C difficile}(27,39,131). También se han utilizado sistemas automáticos de RUV con el mismo fin(401).

3.- \textbf{Profilaxis antibiótica en cirugía}.

La profilaxis quirúrgica está orientada exclusivamente a la prevención de la infección del sitio quirúrgico.

Consiste en la administración preoperatoria de antimicrobianos a pacientes en los que no existe evidencia de infección, pero si riesgo de sufrirla, por el grado de contaminación del procedimiento quirúrgico o por la utilización de determinados implantes.

La idea básica e ideal es que los tejidos incisionales estén impregnados del agente antimicrobiano en el momento de la incisión.

\textit{Evidencia científica}: El uso adecuado de la profilaxis antibiótica prequirúrgica ha demostrado una disminución significativa del riesgo de infección del sitio quirúrgico. Es
efectiva ya que disminuye a corto plazo la morbi/mortalidad por este tipo de infección y es eficiente al disminuir también los costes hospitalarios. Por otro lado es imprescindible para la denominada cirugía segura.

Existe un gran volumen de intervenciones quirúrgicas como puede apreciarse en la tabla 17 que corresponde a datos del HUD publicados en la Memoria del año 2013 (última publicada) con repercusión en un número muy elevado de pacientes. Es imprescindible estandarizar el uso de la profilaxis para mejorar la seguridad del paciente lo que requiere la existencia de un Protocolo de profilaxis antibiótica propio del Centro y consensuado por todos los profesionales implicados y el empleo de un Checklist quirúrgico. Todo esto sin olvidar el resto de procedimientos asociados al cuidado perioperatorio que corresponda de acuerdo con el tipo de cirugía.

<table>
<thead>
<tr>
<th>Jarduera kirurgikoa</th>
<th>Actividad quirúrgica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operazio-gelak</td>
<td>29</td>
</tr>
<tr>
<td>Programutako interbentziak</td>
<td>24.887</td>
</tr>
<tr>
<td>Interbentziu urgentea</td>
<td>3.783</td>
</tr>
<tr>
<td>Kirurgia bixia</td>
<td>11.566</td>
</tr>
<tr>
<td>Interbentziak guztira</td>
<td>40.236</td>
</tr>
<tr>
<td>Ospitaleko kontsultak</td>
<td>Consultas hospitalarias</td>
</tr>
</tbody>
</table>

Tabla 17. Actividad quirúrgica en HUD (2013)

Indicación de la profilaxis.

Esta profilaxis está indicada en todos los tipos de intervenciones quirúrgicas en las que, utilizando los criterios de la medicina basada en la evidencia, se haya demostrado que su empleo ha conllevado una reducción significativa de las tasas de infección de la herida quirúrgica y en los procesos quirúrgicos en los que una infección de la herida quirúrgica acarree una verdadera catástrofe para el paciente (por ejemplo, la reposición de una prótesis de cadera)

El antibiótico debe ser seguro, bactericida, con un espectro que cubra la mayoría de los posibles contaminantes intraoperatorios, con una vida media larga, al menor coste posible.

El riesgo de desarrollar una IHQ está directamente relacionado con el grado de contaminación bacteriana de la cirugía. A continuación, en la tabla siguiente mostramos la indicación de profilaxis o no, dependiendo del tipo de cirugía.
<table>
<thead>
<tr>
<th>Tipo de cirugía</th>
<th>Condición</th>
<th>Indicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limpia</td>
<td>Con implante protésico</td>
<td>Profilaxis</td>
</tr>
<tr>
<td>Limpia-Contaminada</td>
<td>Siempre</td>
<td>Profilaxis</td>
</tr>
<tr>
<td>Contaminada</td>
<td>Siempre</td>
<td>Profilaxis</td>
</tr>
<tr>
<td>Sucia</td>
<td>Siempre</td>
<td>Tratamiento</td>
</tr>
</tbody>
</table>

Elección del agente antimicrobiano.

Debe presentar las siguientes características:

- Individualizado para cada tipo de procedimiento quirúrgico.
- Debe ser efectivo frente a los patógenos esperados en la intervención a realizar ya que la IHQ es debida habitualmente a un pequeño grupo de patógenos. Sólo estos deben estar cubiertos (no todos los posibles) por lo que hay que disponer de información local y específica de patógenos habituales y su susceptibilidad antimicrobiana.
- Su espectro debe ser lo más reducido posible.
- Tener acción bactericida.
- Como esta acción es tiempo-dependiente, es preciso mantener un nivel superior a la CIM (concentración inhibitoria mínima) para los patógenos diana, de manera continua, todo el tiempo que dure la cirugía.
- Fármaco seguro y de menor coste

Momento.

- En la última hora antes de la intervención. Preferible en los 30 minutos antes de la incisión
- Alcanzar concentraciones tisulares y sanguíneas eficaces del antibiótico antes de que se realice la incisión quirúrgica
- Tiempo requerido según farmacocinética y vía intravenosa: 30-60 minutos previos. Excepciones: vancomicina, fluoroquinolonas, metronidazol...

Dosis.
- La dosis de antibiótico para profilaxis es la misma que se requiere para el tratamiento de una infección (>CIM). *Dosis plena en el nivel superior del rango terapéutico.*

Duración
- Dosis única en la mayor parte de los casos.
- Tiempo de vida media suficientemente largo para mantener la actividad durante la operación.
- Dosis adicionales si se da una de las siguientes circunstancias:
 - Si la duración de la intervención supera las 4 horas
 - Pérdida de sangre > 1500cc
- Duración máxima de pocas horas después de concluida la intervención quirúrgica y no superar nunca las 24 horas posteriores a la misma.

1.10.5.- **PVPCIN** (Programa de Vigilancia, Prevención y Control de la Infección Nosocomial).

Este programa es de vital importancia para nosotros ya que con sus criterios (Comisión INOZ\(^{(68)}\)) que aglutinan los conocimientos del personal responsable de la vigilancia, prevención y control de la IN en los hospitales de la Red pública de Osakidetza, se ha efectuado la recogida de datos, se han seleccionado los tres procesos, se ha creado el protocolo al respecto, se han recopilado los datos en SSCC etc. Esto supone la base insustituible de nuestros datos. Por eso vamos a detallar algunos aspectos.

Vigilancia: consiste en la recogida, codificación, informatización, control de calidad, análisis y conclusiones de los datos recopilados referentes a la infección nosocomial. Posteriormente, se procederá a la difusión de los mismos a los servicios clínicos implicados.
Prevención: consiste en desarrollar las recomendaciones y protocolos al uso para prevenir la aparición de infección nosocomial. En unos casos consistirá en actualizar y, en la mayor parte de los mismos, recordar estas normas y protocolos para su correcta aplicación.

Control: supone la intervención directa, especialmente sobre los factores de riesgo detectados, para evitar o disminuir la transmisión de infección nosocomial. La labor más importante al respecto se llevará a cabo en el contacto diario que se tenga con las unidades de hospitalización cuando se desarrolla el programa de vigilancia.

Prevención y control son términos que, con frecuencia, se confunden. Consideramos que queda suficientemente explicada la diferencia con lo antedicho. No obstante, vamos a poner un ejemplo práctico, del día a día: La higiene de manos habitual atendiendo a pacientes sin IN sería una medida de prevención; sin embargo, la higiene de manos administrando cuidados a un paciente con una IN sería una medida de control.

La Comisión INOZ\(^{(68)}\) ha desarrollado en los últimos años una línea de trabajo para la evaluación y mejora de los PVPCIN. Tanto el despliegue de los planes, como su mejora a través de la evaluación periódica, constituyen una parte importante en el desarrollo de la línea estratégica en seguridad del paciente de Osakidetza.

En el año 2008 se puso en funcionamiento un nuevo sistema de auditoría basado en la autoevaluación por parte de los centros, de los diferentes criterios de los que consta el PVPCIN. Este proceso de autoevaluación está encaminado al propio autoaprendizaje del centro y a la mejora del plan. Asimismo, tanto la Comisión INOZ\(^{(68)}\) como la subdirección de calidad de Osakidetza acordaron la idoneidad de realizar autoevaluaciones en periodos no superiores a dos años, de manera que:

- Cada 4 años se realizarán autoevaluaciones con validaciones externas y elaboración de informes individual y global.
- Cada 2 años se realizarán autoevaluaciones individuales, sin envío de documentación (excepto el cuestionario de evaluación) ni validación externa de la información enviada. El objetivo de esta autoevaluación intermedia sería establecer un seguimiento más continuo de los PVPCIN por cada organización.

En la configuración actual de la evaluación existen 35 criterios repartidos en 7
Áreas:

1. - Enfoque y estructura del plan,
2. - Bioseguridad ambiental,
3. - Proceso asistencial,
4. - Limpieza desinfección y esterilización,
5. - Infección hospitalaria,
6. - Resultados en infección,
7. - Miscelánea.

El sistema de puntuación de cada criterio está basado en el porcentaje de cumplimiento de cada uno de los criterios. La comparabilidad respecto a anteriores evaluaciones está asegurada, teniendo en cuenta que se ha realizado una adaptación de los resultados de ediciones anteriores.

La mayoría de los criterios de esta autoevaluación son en esencia los criterios utilizados en anteriores evaluaciones. Los criterios han sido revisados y se han complementado teniendo en cuenta nuevas evidencias científicas disponibles y lecciones aprendidas de anteriores ediciones. El contexto global del proceso de evaluación está dirigido a la mejora continua, añadiendo la herramienta que se presenta en este documento. Esta herramienta permite:

- Facilitar el proceso de evaluación, limitando la evaluación externa a aspectos muy concretos y específicos del plan.
- Dar mayor independencia a los centros.
- Utilizar un sistema de puntuación más objetivo.
- Realizar con mayor rapidez la gestión de la información.
- Obtener resultados por áreas del plan y globales de manera inmediata.
- *Benchmarking* anónimo para el centro (el centro conoce su resultado y el rango en el que se mueven todos y/o los hospitales de su tamaño, en cada uno de los criterios, y de manera global).
- Detectar fortalezas, debilidades y áreas de mejora.

El sistema de puntuación de los criterios trata de valorar:

1. El nivel de cumplimiento de cada uno de los puntos o ítems que conforman un mismo criterio.
2. El despliegue del criterio la organización mediante una escala que va de la A (no se ha realizado ninguna iniciativa para implantar este punto) hasta la E (éste se ha implantado completamente en toda la organización).

El sistema de puntuación se explica para cada criterio y de manera global en el manual de autoevaluación.

A continuación reproducimos los distintos apartados relacionados con una de las denominada Áreas por el programa. Creemos que es la mejor forma de hacerse una idea precisa, a pesar de lo escueto de la información, de lo que se pretende con los PVPCIN y las auditorías.

Criterios de evaluación del PVPCIN 2013

La autoevaluación está compuesta por 35 criterios divididos en siete áreas:

Área 0: Enfoque y estructura del Plan (8 Criterios)
Área 1: Bioseguridad Ambiental (6 Criterios)
Área 2: Proceso Asistencial (6 Criterios)
Área 3: Limpieza, Desinfección y Esterilización (6 Criterios)
Área 4: Infección Hospitalaria (5 Criterios)
Área 5: Miscelánea (2 Criterios)
Área 6: Resultados en Infección (2 Criterios)

La nomenclatura que recibe cada criterio hace referencia al Área al que pertenece y el número de criterio de dicha área (Ejemplo: A42, es el segundo criterio del Área 4: Infección Hospitalaria).

Vamos a mostrar como ejemplo el despliegue correspondiente al Área 4: Infección Hospitalaria (5 Criterios).
ÁREA 4: INFECCIÓN HOSPITALARIA

Críterio A41 El centro cuenta con un programa para la detección de casos de infección/colonización por microorganismos multirresistentes al ingreso

Ref. A41a: Documento o parte del documento del Plan, en el que se refiere a la definición del circuito de alerta y que contiene el listado de microorganismos susceptibles de aviso, las herramientas que utiliza el circuito, y sus responsables.

Críterio A42 Se ha definido un sistema de alerta ante la aparición de:
1. Microorganismos que requieren precauciones basadas en la transmisión (tuberculosis, varicela, Clostridium difficile...)
2. Microorganismos multirresistentes (Staphylococcus Aureus meticilin resistente, Acinetobacter, Klebsiella con b-lactamasas de espectro extendido...)
3. Microorganismos que requieren medidas ambientales (Aspergillus, Legionella...)
4. Microorganismos relevantes desde el punto de vista de la salud pública

Ref. A42a: Documento o parte del documento del Plan en el que se refiere los elementos contenidos en el apartado de Planificación (P)

Críterio A43 Se ha planificado un sistema de alerta microbiológica y clínica con circuito de repuesta para la detección y control de brotes. Se han definido las actividades a realizar y sus responsables.

Ref. A43a: Documento o parte del documento del Plan en el que se refiere los elementos contenidos en el apartado de Planificación (P)

Críterio A44 Se ha definido un sistema de alerta ante la detección, entre los profesionales del centro, de casos/portadores de microorganismos que pueden ser transmitidos durante la atención al paciente e implicar un riesgo para la salud de los pacientes.
La parrilla de autoevaluación está dividida en 7 columnas (ver figura en página siguiente).

1. La primera columna hace referencia a la nomenclatura del criterio. El Área está identificada por un código de colores.

2. La segunda columna está marcada con una “R”. En dicha columna se recoge un código que hace referencia a la documentación que se solicita para la validación de ese criterio y que hace referencia a ese apartado.

3. La tercera columna se identifica como puntos de evaluación, y en ella se desarrollan los puntos de evaluación de cada criterio.

4. La cuarta columna, es una columna compuesta a su vez por 5 sub-columnas identificadas de la “A” a la “E”. Es en esta columna donde se deben señalar las respuestas. La elección de una u otra casilla, estará en función de la cobertura de ese criterio en la organización, siguiendo el siguiente esquema:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>No se ha realizado ninguna iniciativa para implantar este punto.</td>
</tr>
<tr>
<td>B</td>
<td>Este punto se ha debatido para su posible implantación, pero no se ha implantado.</td>
</tr>
<tr>
<td>C</td>
<td>Este punto se ha implantado parcialmente en algunas o todas las áreas de la organización de servicios.</td>
</tr>
<tr>
<td>D</td>
<td>Este punto se ha implantado completamente en algunas áreas de la organización de servicios.</td>
</tr>
<tr>
<td>E</td>
<td>Este punto se ha implantado completamente en toda la organización de servicios.</td>
</tr>
</tbody>
</table>

De este modo, tanto A como B, indicarán que no se ha implantado ese criterio; C, D y E mostrarán diferentes niveles de desarrollo del despliegue de ese criterio en la organización. La puntuación del criterio variará en función del nivel de cobertura del criterio. En algunos criterios (o ítems) en los que no es posible hacer está diferenciación, sólo es posible puntuar en las casillas A-B y E (es decir, NO o SÍ).
ÁREA 6: INFECCIÓN HOSPITALARIA

<table>
<thead>
<tr>
<th>Nº</th>
<th>R</th>
<th>Puntos de Evaluación</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>2010</th>
<th>2013</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>El centro cuenta con un programa para la detección de infección/colonización por microorganismos multirresistentes al ingreso.</td>
<td>(P) En el Plan consta:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A41</td>
<td></td>
<td>1. Se ha definido un circuito de alerta que asegura que los profesionales de las unidades y el Servicio de Medicina Preventiva o Unidad encargada de la vigilancia, prevención y control de la infección nosocomial reciben notificación temprana, a la llegada de un paciente, de sus antecedentes de infección/colonización previa por multirresistentes. El circuito permite el inicio temprano de medidas preventivas e incluye:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. Listado de microorganismos en alerta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Organización del circuito: herramientas que utiliza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Responsables y funciones en el circuito</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. El programa para la detección de casos en el momento del ingreso incluye:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. Protocolo de recogida de muestras</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Responsables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Medidas a tomar hasta la llegada del resultado de los cultivos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(D) El circuito de alerta está activo. Se dispone de registros del seguimiento realizado a los pacientes con antecedentes de infección/colonización que han ingresado en los 6 últimos meses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N° R

<table>
<thead>
<tr>
<th>Nº</th>
<th>R</th>
<th>Puntos de Evaluación</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>2010</th>
<th>2013</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>A42</td>
<td></td>
<td>Se ha definido un sistema de alerta ante la aparición de:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Microorganismos que requieren precauciones basadas en la transmisión (tuberculosis, varicela, Cladostrium difficile ...)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Microorganismos multirresistentes (Staphylococcus Aerus, meticilín resistente, Acinetobacter, Klebsiella con β-lactamasa de espectro extendido ...)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Microorganismos que requieren medidas ambientales (Aspergillus, Legionella ...)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Microorganismos relevantes desde el punto de vista de la salud pública</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A42a</td>
<td></td>
<td>(P) En el plan se ha definido un circuito de alerta ante la detección de microorganismos que requieren medidas de vigilancia y/o control posteriores:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Las actuaciones son acordes a la evidencia científica del momento (CDC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Responsables y funciones en el circuito</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Canales de comunicación a utilizar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demora máxima posible en esta comunicación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>R</td>
<td>Puntos de Evaluación</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>2010</td>
<td>2013</td>
<td>Observaciones</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>A43a</td>
<td>(P) En el Plan se ha definido:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. El método de vigilancia:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) pasos (basado en declaraciones por parte de las Unidades Asistenciales).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | b) activo (basado habitualmente en resultados microbiológicos y)
| | el análisis semanalizado), dirigido a la identificación de brotes epidémicos que incluye: | | | | | | | | | |
| | - Las fuentes de información | | | | | | | | | |
| | - Los criterios de definición de brotes | | | | | | | | | |
| | - Los métodos | | | | | | | | | |
| | - Periodicidad | | | | | | | | | |
| | 2. **Los elementos del circuito de respuesta:** | | | | | | | | | |
| | a) Servicios e instancias a las que se notificará la existencia del brote (demora máxima permitida) | | | | | | | | | |
| | b) El circuito deberá implicar, como mínimo, al Coordinador del PPVCN y la Gerencia / Dirección Médica del hospital | | | | | | | | | |
| | c) Responsables de las actividades de estudio y control del brote | | | | | | | | | |
| | (D) El sistema de alerta está activo. (Se dispone de los registros de monitorización activa de los últimos seis meses) | | | | | | | | | |

<table>
<thead>
<tr>
<th>N°</th>
<th>R</th>
<th>Puntos de Evaluación</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>2010</th>
<th>2013</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>A44</td>
<td>(P) El sistema y el circuito están definido en el Plan de Gestión de Riesgos Laborales, y en su definición ha participado el Coordinador o algún representante del PPVCN.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(D) Se han notificado las situaciones de riesgo potencial para el paciente de manera puntual al PPVCN, para el seguimiento de los pacientes potencialmente afectados.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A45a</td>
<td>(P) Existe un protocolo del centro donde se definen:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) Indicaciones de las precauciones basadas en la transmisión o ambiente protector (pacientes inmunodeprimidos, pacientes con infecciones o inmunodeprimidos o síndromes clínicos de sospecha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.10.6.- Eficacia y efectividad del sistema de vigilancia, prevención y control.

En los años 60, en Estados Unidos, el CDC organizó programas de control de la infección. Concretamente en 1970 dio a conocer la eficacia de su sistemas de vigilancia SENIC(214). Los resultados del mismo demostraron que eran prevenibles hasta un 32% aproximadamente de las infecciones nosocomiales(67).

En la tabla 18 pueden observarse las conclusiones del SENIC en relación con los porcentajes de IN evitables por medio de las medidas de los programas de vigilancia y control de la infección nosocomial.

Los resultados del proyecto SENIC(214) también realizaron un análisis de coste-beneficio. Concluyeron que todos los costes de un programa de este tipo se compensan si se logra prevenir un 6% de la infección nosocomial. Cuando se supera este 6% se produce un ahorro neto para el hospital(67).

Existen múltiples estudios, muchos con diferente metodología, que intentan cuantificar el coste-beneficio de estos programas. Su conclusión unánime es que la
existencia de Programas de Vigilancia, Prevención y Control de la IN es beneficiosa para el paciente y el hospital.

Contemplado desde otro punto de vista, es sumamente importante manifestar que la no puesta en marcha y/o la inexistencia de un programa de vigilancia suponen un aumento de la tasa de infección de alrededor de un 3% anual, de forma que al cabo de cinco años aumentaría los niveles de infección hasta un 15%\(^{471}\).

En el Proyecto SENIC\(^{214}\) se valoró la eficacia de diversas medidas de control en determinados tipos de IN (\textit{tabla 18})

\textbf{Tabla 18.- Proyecto SENIC. Valoración por Haley RW et al.\(^{178}\)}

<table>
<thead>
<tr>
<th>Tipo de IN</th>
<th>Programas más efectivos</th>
<th>% prevenido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herida quirúrgica</td>
<td>Un programa organizado en el hospital con vigilancia intensiva y control que incluye tasa de IN/cirujanos</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Lo anterior + médico dedicado</td>
<td>35%</td>
</tr>
<tr>
<td>Tracto urinario</td>
<td>Programa organizado en el hospital con vigilancia intensiva al menos durante 1 año.</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>1 DUE / 250 camas</td>
<td></td>
</tr>
<tr>
<td>Bacteriemia primaria</td>
<td>Programa organizado en el hospital</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>Si además consta de: Un programa con vigilancia al menos durante 1 año.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 DUE / 250 camas y 1 médico que controle la IN</td>
<td>35%</td>
</tr>
<tr>
<td>Tracto respiratorio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postoperatorio</td>
<td>Un programa organizado en el hospital con vigilancia intensiva y 1 DUE / 250 camas</td>
<td>27%</td>
</tr>
<tr>
<td>Pacientes no quirúrgicos</td>
<td>Un programa organizado en el hospital con vigilancia y control intenso</td>
<td>13%</td>
</tr>
<tr>
<td>Todos los tipos</td>
<td>Un programa organizado en el hospital con vigilancia y control intenso de todos los componentes anteriormente expuestos</td>
<td>32%</td>
</tr>
</tbody>
</table>

\textit{Tomado de Haley RW et al.\(^{178}\)}

El año 1997 se publicó el Libro blanco de la IN en Euskadi\(^{67}\). Hemos extractado de él la \textit{tabla 19}.

\~ 115 \~
1.10.- **Método científico: Tipos de estudios.**

Desde un punto absolutamente práctico los estudios en medicina pueden dividirse en: experimentales y no experimentales\(^{(21,125,284)}\).

1.10.1.- **Estudios experimentales**\(^{(51)}\): en este tipo de estudios el investigador controla una variable, habitualmente el tratamiento. Es decir, el investigador decide qué tratamiento administrar a un grupo y que tratamiento (o placebo) a otro, además de las dosis, frecuencia, duración, etcétera. Habitualmente, en medicina, para clasificar este tipo de estudios se tiene también en cuenta si ha habido o no aleatorización y simple, doble o triple ciego. Entre estos estudios distinguimos (relación no exhaustiva):

- **Ensayo aleatorizado y a ciegas (EAC) o Ensayo clínico controlado (ECC)**\(^{(20,76,142,236,290,309,310,392,443,472)}\). En él es imprescindible (como su primer nombre indica) la aleatorización y el cegamiento. Este último puede ser simple (el paciente no sabe a qué grupo pertenece) o doble (no conocen a qué grupo pertenece el paciente ni el propio paciente ni el científico que evalúa). Algunos autores distinguen un triple cegamiento (paciente, científico que observa y científico que evalúa). Es el estudio por excelencia y muy utilizado en investigación biomédica. Debe utilizarse un auténtico método de aleatorización (utilizando un programa informático, por ejemplo) y no la falsa aleatorización de "según van incorporándose en el estudio" o

Tabla 19.- Costes y beneficios de un Programa de Vigilancia Epidemiológica.

<table>
<thead>
<tr>
<th></th>
<th>Reducción de la IN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6%</td>
</tr>
<tr>
<td>Nº de enfermos a los que se previene IN</td>
<td>31</td>
</tr>
<tr>
<td>Días de estancia extra reducidos</td>
<td>120</td>
</tr>
<tr>
<td>Costes reducidos</td>
<td>60.000</td>
</tr>
<tr>
<td>Costes del Programa de Vigilancia</td>
<td>60.000</td>
</tr>
<tr>
<td>Saldo neto</td>
<td>0</td>
</tr>
</tbody>
</table>

	20%
	105
Días de estancia extra reducidos	400
Costes reducidos	199.972
Costes del Programa de Vigilancia	60.000
Saldo neto	139.972

	32%
	168
Días de estancia extra reducidos	640
Costes reducidos	320.000
Costes del Programa de Vigilancia	60.000
Saldo neto	200.000

	50%
	262
Días de estancia extra reducidos	1.000
Costes reducidos	500.000
Costes del Programa de Vigilancia	60.000
Saldo neto	440.000
"los pares a un grupo y los impares a otro" o sistemas similares. En el cálculo del número necesario de pacientes hay que ser generoso, especialmente en pacientes con multimorbilidad ya que ante un episodio agudo de la enfermedad tratada o de otra, se suele perder el doble o triple ciego.

Tipos especiales de EACs(21):

- **Diseño con periodo de preinclusión** (*run-in*). Periodo en que a todos se administra placebo (o, generalmente, fármaco activo distinto al del estudio). A los cumplidores se les incluye en el estudio.

- **Diseño factorial**. Puede responder a dos preguntas separadas, en una sola muestra. Ideal para dos preguntas independientes.

- **Aleatorización de pares emparejados**. Para equilibrar variables de confusión basales. Asignación al azar de cada par a cada grupo.

- **Aleatorización previa**. Aleatorización antes de conseguir el consentimiento informado. Poco utilizado.

- **Aleatorización por grupos**. En lugar de aleatorizar individuos, aleatorizar grupos. Por ejemplo: colegios, fábricas etc. Suele ser útil para el estudio de factores de riesgo de determinadas enfermedades como las cardiovasculares.

- **Ensayo de campo** (field trial). Tiene características similares al EAC, con la diferencia de que no suelen ser pacientes sino personas sanas. Por ejemplo: ensayo de una nueva vacuna.

Otros diseños experimentales:

- **Diseños no aleatorizados entre grupos**. Muy influenciados por las variables de confusión, aunque los métodos analíticos pueden ajustar las basales. A veces hay pseudoaleatorización \(\rightarrow\) asignar cada dos individuos o número de historia impar.

- **Diseños entre grupos abiertos**. Aleatorizado pero no doble ciego. Atención a los problemas de confusión por intervenciones no intencionadas y al sesgo en la determinación del desenlace. Puede haber enmascaramiento parcial y simple ciego.

- **Diseños de series temporales**. Cada individuo es su propio control. Se eliminan factores innatos como edad, sexo, genéticos... La
muestra es la mitad, en cuanto a tamaño, ventaja no desdeñable en la práctica.

- Otros diseños intragrupo (crossover). Sin los inconvenientes temporales del anterior. Se asigna a una mitad que comiencen con tratamiento y luego placebo y a la otra al revés. Sirve para tratamiento de procesos crónicos, no curables, ya que si el primer tratamiento curase no podría aplicarse el otro. Hay que prestar especial atención al tiempo de acción del medicamento utilizado en primer lugar, esperando que pase totalmente antes de administrar el segundo. Para eso suele dejarse un periodo intermedio sin administrar ninguno de los dos tratamientos.

- Experimentos naturales. El investigador analiza intervenciones que otros han hecho. Por ejemplo, el uso del casco obligatorio para motoristas y ciclistas. Se asemejan a observacionales.

1.10.2. **Estudios observacionales**\(^{(283, 461)}\): El investigador es un observador, es decir, no controla ninguna de las variables sino que, simplemente, las observa.

Por tanto es absolutamente necesario seguir escrupulosamente las normas establecidas acerca de estos estudios\(^{(468)}\) para tratar de evitar o minimizar la acción de los frecuentes sesgos.

Entre estos estudios nos referiremos a los tres más importantes:

Transversales o de prevalencia: Todas las mediciones se realizan a la vez, sin período de seguimiento. Muy apropiados para describir variables y sus patrones de distribución. Pueden examinar asociaciones pero tienen poca fuerza porque la causa y el efecto se miden a la vez. Pueden constituir una buena base para otros estudios.

Puntos fuertes:
- rápidos
- económicos
- sin problemas de pérdidas
- único para prevalencia (enfermedad y FR)
- base para estudios de cohortes o experimentales.

Puntos débiles:

~ 118 ~
➢ dificultad para establecer relaciones causales.
➢ poco prácticos para enfermedades raras (Ca de estómago en varones de 45 a 49 años → se necesitarían 10.000 individuos).

Estadísticos:
❖ Prevalencia (P)
❖ Odds Ratio (OR)
❖ Prevalencia relativa (PR). (PR = P en expuestos/P en no expuestos).

Casos y controles\(^{(n1)}\):

Se forman dos grupos: uno con los enfermos y otro con controles (sanos de esa enfermedad).

Los casos no siempre son sinónimo de enfermos. También puede ser caso un resultado positivo (por ejemplo dejar de fumar).

Suponen un gran desafío por la mayor posibilidad de sesgos ya que las mediciones fueron realizadas hace ya un tiempo y, habitualmente, por personas distintas a las que plantean el estudio.

No sirven para determinar ni la incidencia ni la prevalencia.

Sí sirve para establecer la fuerza de la asociación causa-efecto.

Puntos fuertes:
➢ Su eficiencia al estudiar desenlaces raros, o con períodos de latencia muy largos.
➢ Son útiles para generar hipótesis.

Puntos débiles:
➢ Información limitada: ni incidencia, ni prevalencia, ni riesgo atribuible, ni exceso de riesgo.
➢ Sólo puede estudiarse un desenlace.
➢ Mayor probabilidad de sesgos, principalmente por dos motivos:
 - El muestreo de casos y controles se efectúa por separado.
 - Carácter retrospectivo de la medición de las variables predictoras.
Estadístico:
Odds Ratio (OR) (RR indirecto o Razón de Odds o Razón de opuestos)

Cohortes:

Los estudios de cohortes o prospectivos son los orientados hacia el futuro, hacia lo que va a ocurrir. Con los participantes se forman dos grupos, uno de expuestos y otro de no expuestos al factor a estudio. Con una periodicidad determinada de antemano en el diseño del estudio, se miden tanto la exposición como la aparición o no del efecto. O sea, en este tipo de estudios se establecen los grupos (o grupo) en un momento determinado (comienzo del estudio) y se les observa a lo largo de un periodo de tiempo preestablecido,midiéndose, en cada periodo, la exposición y el efecto.

Es menor el riesgo de error por sesgos que en los estudios retrospectivos. Sin embargo son más costosos y más dilatados en el tiempo.

Existen estudios, como el que nos ocupa, denominados de una sola cohorte. Son estudios de seguimiento que se establecen en torno a una condición, situación o evento (cirugía electiva de colon, por ejemplo)

Propósitos:

- Descriptivo → incidencia de ciertos efectos a medida que pasa el tiempo.
- Analítico → analizar asociaciones entre FR o causa y efecto o desenlace.

En investigación clínica se trata de un grupo o unos grupos de individuos que presentan alguna característica en común y que se siguen conjuntamente a lo largo del tiempo que se estima necesario para observar las variables a estudio, que se establece en el momento de realizar el diseño y que no presentan el efecto en el momento de incluirlos en el estudio.

Prospectivos → muestra de individuos sin el efecto. En primer lugar se miden en todos los individuos los FR (causa-s). Seguimiento en el tiempo para ver los efectos. En el más simple es suficiente. Pero normalmente se trata de comprobar si los efectos se deben a las causas (FR).

Una sola cohorte → “controles internos” ya que se comparan distintos grupos dentro de la misma cohorte.

En los otros casos → “control externo” con otra cohorte
Puntos fuertes:

- Los FR se miden antes del desenlace → causa-efecto.
- Exactitud en la medición de los FR y de los efectos.
- Especial valor para medir FR de enfermedades mortales.

Puntos débiles:

- Método caro, poco eficiente. Se sigue a muchos individuos durante mucho tiempo.
- Poco útil para patologías raras. Poco recomendado para efectos infrecuentes (1% al año). Más eficiente en los más frecuentes (20% pacientes/infarto fallecen 1er año).

Es preciso prestar atención a las frecuentes variables de confusión.

Una variante son las cohortes históricas:

Básicamente son lo mismo que las cohortes básicas.

Su diferencia: cohorte, mediciones iniciales, seguimiento y desenlace ya se han hecho (en el pasado).

Solo es posible si se dispone de los datos de los FR y los desenlaces en una cohorte definida con otros propósitos.

Estadísticos:

- RR (Riesgo relativo)
- Incidencia acumulada para la población estudiada.
- Densidad de Incidencia

Para el cálculo de estos y otros parámetros puede utilizarse la interesante calculadora facilitada por SEMERGEN-Cantabria accesible en la siguiente dirección: http://www.semergen.es/semergen/calc/atcalc_teoria.htm
1.11. **Métodos de análisis estadístico.**

Los métodos de análisis estadístico a utilizar en este estudio difieren considerablemente dependiendo del número de variables a comparar cada vez:

- **Bivariante**: comparación de 2 variables.
- **Multivariante (multivariable)**: comparación de 3 ó más variables a la vez.

1.11.1.- **Análisis bivariante** \(^{(459,460)}\).

Las técnicas o test a utilizar en este tipo de análisis van a depender fundamentalmente del tipo de variables a comparar. Refiriéndonos exclusivamente a las variables utilizadas en el presente estudio, serán las siguientes:

- \(X^2\) para comparar una variable cualitativa con una variable cualitativa.
- \(t\)-Student-Fisher para comparar una variable cualitativa dicotómica con una variable cuantitativa continua.
- ANOVA para comparar una variable cualitativa con una variable cuantitativa continua.
- Correlación lineal para comparar una variable cuantitativa continua con una variable cuantitativa continua cuando no existe dependencia de una respecto a la otra.
- Regresión lineal para comparar una variable cuantitativa continua con una variable cuantitativa continua cuando una de ellas es dependiente de la otra. No la vamos a utilizar, en principio, porque no disponemos de ninguna variable cuantitativa continua dependiente.

1.11.2.- **Análisis Multivariante** \(^{(17,65,91,152,157,286,363,464,467)}\).

La utilización de técnicas estadísticas de comparación (análisis) de dos variables entre sí se utilizan ampliamente en la investigación médica. Especialmente \(X^2\) para comparar dos variables cualitativas y \(t\)-Student-Fisher para comparar una variable cualitativa dicotómica con una variable cuantitativa continua. Pero de ahí, en general, no suele pasarse dejando de utilizar la regresión lineal para comparar dos variables cuantitativas continuas entre sí y, por supuesto, las técnicas multivariantes. Indudablemente estas últimas tienen una dificultad añadida dada su complejidad.
Creemos que esta "animadversión" por parte de los investigadores biomédicos se debe a tres razones:

- La formación matemática de los médicos es básica. Hoy, con el advenimiento de los ordenadores con coprocesadores matemáticos muy potentes, con su rapidez en realizar las pruebas estadísticas y su seguridad en la ejecución y en la facilitación de los resultados, esta dificultad no debería existir.

- La dificultad de comprensión y realización de estas pruebas. Es decir, qué pedirle al ordenador y cómo interpretar sus respuestas. El médico está acostumbrado a aprender técnicas complejas de todo tipo y además de forma continuada. No debería arredrarse frente a esta dificultad.

- El desconocimiento de las ventajas científicas que aportan y un cierto "desprecio" a técnicas que no son, en principio, médicas. Resulta sorprendente ya que suelen basarse sus conclusiones en comparaciones y resultados estadísticos. Esperamos desarrollar adecuadamente las ventajas de estos métodos.

Las técnicas multivariantes son muy numerosas. Vamos a tratar de sistematizar la cuestión.

La clasificación va a depender de qué estemos buscando, de qué pedimos a estas técnicas, de qué queremos obtener, de cuál es nuestra intención al utilizarlas.

Naturalmente no vamos a hacer una relación exhaustiva de todas las técnicas multivariantes existentes. Nos vamos a centrar en las que consideramos que tienen o pueden tener utilidad en la investigación médica.

1.11.2.1.- Definición.

Cuadras en 1991\(^{(72)}\) lo definió como una rama de la estadística que estudia, interpreta y elabora el material estadístico sobre la base de un conjunto de n>1 variables, que pueden ser de tipo cuantitativo, cualitativo o una mezcla de ambos. Y el mismo autor, en 2014\(^{(71)}\) afirmaba en el prólogo de su publicación: "El Análisis Multivariante es un conjunto de métodos estadísticos y matemáticos, destinados a describir e interpretar los datos que provienen de la observación de varias variables estadísticas, estudiadas conjuntamente". Y más adelante: "El análisis multivariante (AM) es la parte de la estadística y del análisis de datos que estudia, analiza, representa e interpreta los datos que resultan de observar más de una variable estadística sobre una muestra de individuos. Las variables observables son
homogéneas y correlacionadas, sin que alguna predomine sobre las demás. La información estadística en AM es de carácter multidimensional".

Hair et al.\(^{(176)}\) lo entienden como el conjunto de los métodos estadísticos que analizan simultáneamente medidas múltiples de cada individuo u objeto sometido a investigación.

Autores actuales lo definen como el conjunto de métodos estadísticos cuya finalidad es analizar simultáneamente varias variables medidas en cada individuo u objeto estudiado\(^{(211)}\).

Podríamos continuar con una larga lista de autores que han definido, la mayor parte de las veces en un lenguaje muy técnico, el análisis multivariante. Creemos que en lenguaje sencillo, adaptado a los conocimientos que los profesionales de la Medicina suelen tener sobre bioestadística, queda ya definido. Destacamos los siguientes puntos, a modo de resumen:

- Estudio de varias variables simultáneamente en cada individuo.
- Pueden ser dependientes e independientes o tener todos el mismo peso específico.
- Pueden ser cualitativas, cuantitativas o ambas.
- Se buscan modelos que expliquen (describan) los fenómenos estudiados o modelos que se adapten, con mayor o menor precisión, a la relación de dependencia de una-s variable-s de otras.
- Con frecuencia, se pretende obtener un modelo predictivo de manera que introduciendo determinados valores individuales obtengamos la probabilidad de cumplirse la variable dependiente en ese individuo.

Se fundamenta en que consigue un mejor entendimiento del fenómeno estudiado proporcionando información que no pueden aportar los métodos estadísticos univariantes y/o bivariantes.

Los métodos estadísticos multivariantes estudian al mismo tiempo el comportamiento de tres o más variables. Se usan principalmente para detectar variables representativas y construir con ellas el o los modelos a la vez que se eliminan las menos representativas. Son especialmente útiles en los estudios en que el elevado número de variables sea un problema, velando la comprensión de la relación entre varias variables.

Pueden realizarse muchas clasificaciones de estas técnicas teniendo en cuenta diversos aspectos. Nosotros vamos a enumerar diferentes modelos y métodos y especificar en cada uno el tipo de análisis a utilizar:
1.11.2.2.- Clasificación.

Con el fin de analizar distintos puntos de vista sobre el análisis multivariante expondremos las cinco definiciones que consideramos que mejor se adaptan a nuestro propósito.

1.11.2.2.a.- Primera clasificación

Métodos de dependencia

Las variables analizadas podemos clasificarlas en dos grupos: dependientes e independientes. Con estos métodos de dependencia pretendemos determinar si el conjunto de las variables dependientes son afectadas por el conjunto de variables independientes y de qué manera.

Como técnicas multivariantes correspondientes a este grupo tenemos:

A.- Si la variable dependiente es cuantitativa:

A.1.- Regresión: Adecuada cuando tanto la-s variable-s dependiente-s como la-s independiente-s son métricas.

A.2.- Supervivencia: Similar a la regresión pero la variable independiente es el tiempo de supervivencia.

A.3.- Correlación canónica: Su objetivo es analizar la posible existencia de relación entre dos grupos de variables métricas dependientes e independientes calculando combinaciones lineales de cada conjunto que maximicen la correlación existente.

A.4.- Análisis multivariante de la varianza. Un análisis multivariante de la varianza (MANOVA), extendiendo el análisis de la varianza (ANOVA), se utiliza en los casos en los que la muestra está dividida en varios grupos basados en una o varias variables independientes no métricas y las variables dependientes analizadas son métricas.

B.- Si la variable dependiente es cualitativa:

B.1.- Análisis discriminante. Proporciona reglas de clasificación óptimas para nuevas observaciones de las que se desconoce su grupo de procedencia. Nos basamos en la información proporcionada por los
valores que en ella toman las variables independientes. Puede ser utilizada para distinguir entre dos o más grupos, y de este modo tomar decisiones.

B.2.- *Modelos de Regresión Logística*: cuando la variable dependiente es no métrica. Se utilizan como una alternativa al análisis discriminante cuando no hay normalidad.

B.3.- *Análisis Conjoint*: analiza el efecto de variables independientes no métricas sobre variables métricas o no métricas. La diferencia con el Análisis de la Varianza radica en dos hechos: las variables dependientes pueden ser no métricas y los valores de las variables independientes no métricas son fijadas por el analista.

Métodos de interdependencia

En este grupo no distinguimos entre variables dependientes e independientes y nuestro objetivo es identificar qué variables están relacionadas, de qué manera y por qué.

A.- **Con datos métricos**:

A.1.- *Factorial* (factores inobservables) y *Análisis de Componentes Principales* (factores observables): analiza interrelaciones entre un número elevado de variables métricas explicando dichas interrelaciones en términos de un número menor de variables denominadas factores (si son inobservables) o componentes principales (si son observables). En otras palabras, intenta determinar un sistema más pequeño de variables que sinteticen el sistema original.

A.2.- *Escalas multidimensionales*: construye un mapa en el que se dibujan las posiciones de los objetos comparados de forma que aquéllos percibidos como similares están cercanos unos de otros y alejados de objetos percibidos como distintos.

A.3.- *Análisis cluster*. Clasifica una muestra de individuos o variables en un número pequeño de grupos de forma que las observaciones pertenecientes a un grupo sean muy similares entre sí y muy disimilares del resto. A diferencia del Análisis Discriminante se desconoce el número y la composición de dichos grupos.

B.- **Con datos no métricos**:

~ 126 ~
B.1.- **Análisis de Correspondencias**: para tablas de contingencia multidimensionales. Su objetivo es parecido al de las escalas multidimensionales pero representando a la vez las filas y columnas de las tablas de contingencia.

B.2.- **Modelos Log-lineales**: también para tablas de contingencia multidimensionales. Intentan modelizar relaciones de dependencia multidimensional de las variables observadas que buscan explicar las frecuencias observadas.

Métodos estructurales

Como en los métodos de dependencia las variables se dividen en dos tipos: dependientes e independientes. Pero su objetivo no es sólo analizar cómo las variables independientes afectan a las variables dependientes, sino que vamos más lejos: también pretendemos analizar cómo están relacionadas entre sí las variables de los dos grupos.

Los **modelos de ecuaciones estructurales** analizan las relaciones existentes entre un grupo de variables representadas por sistemas de ecuaciones.

Sintetizamos la información aportada reproduciendo un resumen de Figueras S\(^{(404)}\) en el **cuadro 1.12.2.2.a** de la página siguiente.
1.11.2.2.b.- Segunda clasificación.

SHETH, en 1971\(^{(429)}\), clasificaba estas técnicas según la respuesta a estas dos preguntas:

1. ¿Dependen unas variables de otras?: Es decir, si hay o no variables dependientes e independientes.
2. ¿Cuáles son las propiedades de los datos? Se refiere a la escala de medida de cada variable: cuantitativas (méticas) y cualitativas (no métricas).

1.- Si existe dependencia: Técnicas de Dependencia. Detectan las relaciones de dependencia entre una (o varias) variables dependientes y una (o varias) variables independentes elaborando una hipótesis que se intenta validar empíricamente. Se trata de técnicas Explicativas o Predictivas. Entre ellas citamos como más relevantes:

Análisis de Regresión.

Medición Conjunta.
2.- Si NO existe dependencia: Técnicas de Interdependencia. Se acercan a la realidad sin hipótesis específicas y tratan de describir la realidad sintetizando la información relevante. Son técnicas Descriptivas o Reductivas. Como más destacadas citamos:

 Análisis Factorial.

 Análisis de Conglomerados.

 Escalamiento Multidimensional.

1.11.2.2.c.- Tercera clasificación.

Evrard Y, Le Maire P, en 1975\(^{120}\), realizaron la clasificación que puede observarse en el cuadro 1.12.2.2.c.
1.11.2.2.d.- Cuarta clasificación.

Es original de Hair et al\(^{176}\), que la publicaron en 1999.

La basaron exclusivamente en el tipo de relación entre las variables:

- Dependencia:
 - Una variable dependiente:
 * Cualitativa:
 - Análisis discriminante.
 - Análisis conjunto.
 - Regresión logística.
 - Modelos logit.
 * Cuantitativa:
 - Análisis de regresión múltiple.
 - Análisis conjunto.
 - Varias variables dependientes:
 * Cuantitativas en una sola relación:
 ⇒ Con variables independientes cualitativas:
 - MANOVA
 ⇒ Con variables independientes cuantitativas:
 - Correlación canónica
 * Dependientes e independientes cuantitativas en múltiples relaciones:
 - Modelos de ecuaciones estructurales.

- Interdependencia:
 - Relaciones entre variables:
 - Componentes principales.
 - Análisis factorial.
 - Análisis de conglomerados.
 - Relaciones entre casos:
 - Análisis de conglomerados.
- Relaciones entre objetos:

 * Medidas de forma cualitativa:
 - Análisis de correspondencias.

 * Medidas de forma cuantitativa:
 - Escalamiento multidimensional.

1.11.2.2.e.- Quinta clasificación, de Sancho JJ(412).

Esta clasificación está tomada de Sancho JJ del programa de formación continuada de la Sociedad Catalana de Cirugía. Lógicamente es la que mejor se adapta a nuestro punto de vista.
1.11.2.3.- Descripción de algunas técnicas multivariantes

Como puede desprenderse de las cinco formas de clasificar el análisis multivariante que hemos expuesto (a modo de ejemplo), existen muchas formas de entender el tema, cada una adaptada a los intereses, necesidades o formación de cada autor. Analicemos con un poco más de detalle estas técnicas con el fin de seleccionar y justificar las que vamos a utilizar en el presente estudio.

1. **Regresión**\(^{(90,147,411)}\): por medio de estas técnicas pretendemos averiguar hasta qué punto el valor que adopta una variable (dependiente, efecto) puede ser predicho conociendo los valores que adoptan otras variables (denominadas también independientes, predictoras, factores de riesgo, causa, factor). Con estos métodos intentamos predecir el comportamiento de ciertas variables a partir de otras. Por ejemplo, la probabilidad de contraer una IN, incluso IN determinadas, según los valores que adopten factores de riesgo como sexo, edad, duración de la intervención, profilaxis antibiótica, ASA, NNIS, cateterismos etc. Esta técnica en su conjunto tiene la ventaja de que las variables predictoras pueden ser cualitativas, cuantitativas o una combinación de ambas. Y la variable dependiente puede ser categórica o cuantitativa. Precisamente según sea la variable dependiente deberemos utilizar distintas técnicas:

 a. **Regresión Logística Binaria**\(^{(2,4,90,160,409)}\) (en adelante RLB). Nos permite relacionar una variable respuesta o dependiente dicotómica con variables independientes que pueden ser cuantitativas o categóricas, si bien estas últimas deben ser dicotómicas. En el caso de que sean policotómicas es necesario convertirlas en varias dicotómicas (n – 1, entendiendo que n es el número de categorías). En el caso de utilizar el paquete estadístico SPSS como va a ser el nuestro, el propio programa las convierte en n-1 variables dummy. Más adelante nos extenderemos en la descripción de este método que va a constituir uno de los dos pilares fundamentales de este estudio.

 b. **Regresión Logística Multinomial o Politómica**\(^{(90)}\): en el caso de variables dependientes cualitativas de más de dos categorías los datos se deben analizar con este modelo. Las variables independientes deben tener las mismas características que tienen para la RLB.

 c. **Regresión Logística Ordinal**\(^{(90)}\): modelo que sirve cuando existe un orden entre las categorías de una variable con más de dos categorías.
d. Regresión de Poisson\(^{(90,162)}\): para aquellos casos en que la variable dependiente es una variable de tipo recuento que no presente ni sobredispersión ni infradispersión.

e. Si existiese sobredispersión de la variable recuento:

1. Modelo de Poisson con el error estándar corregido. Se basa en corregir los errores estándar, aumentándolos, ya que como la sobredispersión sesga la estimación de los mismos\(^{(90)}\).

2. Modelo de regresión binomial negativa o Poisson Gamma: se basa en la distribución binomial negativa que presenta la asimetría típica de las variables de recuento, pero con una distribución más flexible que la de Poisson\(^{(90)}\).

3. Modelo de regresión de Poisson con ceros inflados: cuando además de sobredispersión en una variable de recuento aparecen más valores 0 que los esperados\(^{(90)}\).

4. Modelo de regresión binomial negativa con ceros inflados: permite modelar la sobredispersión debida tanto a exceso de valores 0 como a otras causa aumentan la variancia en valores distintos de 0\(^{(90)}\).

2. - Correlación canónica\(^{(41,227)}\)

Es aplicable cuando se analiza un conjunto numeroso de variables y se quieren agrupar en dos grupos: uno con las variables explicativas y otro con las explicadas. Es necesario que, en cada grupo, exista un alto grado de correlación entre las variables estudiadas.

Su objetivo es relacionar simultáneamente varias variables métricas dependientes e independientes calculando combinaciones lineales de cada conjunto de variables que maximicen la correlación existente entre los dos conjuntos de variables.

La idea es determinar el par de combinaciones lineales que tienen la correlación más alta, luego el segundo par cuya correlación es menor o igual a la primera, y así sucesivamente. A estos pares de combinaciones lineales se los denomina variables canónicas, de ahí el nombre de correlaciones canónicas que miden la fuerza de asociación entre los dos grupos de variables.
3.- **Análisis discriminante**\(^{(80,150,405)}\). Con esta técnica podemos encontrar una función discriminante con la que distinguir entre dos o más grupos y, de este modo, tomar decisiones. Proporciona reglas de clasificación óptimas de nuevas observaciones de las que se desconoce su grupo de procedencia. Para ello utiliza la información contenida en los valores de las variables independientes.

Objetivo: Identificar funciones capaces de separar dos o más grupos de individuos según sus puntuaciones en una serie de variables, con el fin de localizar las variables que contribuyen en mayor grado a discriminar a los sujetos de los diferentes grupos establecidos a priori en la variable dependiente.

La variable dependiente es cualitativa, categórica.

4.- **Análisis multivariante de la varianza**\(^{(149,464)}\). Denominado habitualmente MANOVA (Multivariate Analysis of Variance), es una extensión del análisis de la varianza o ANOVA (Analysis of Variance) que se utiliza cuando se analiza el caso de más de una variable dependiente y no puede simplificarse más el modelo.

Dicho de otra manera, se utiliza cuando la muestra total está dividida en varios grupos basados en una o varias variables independientes no métricas y las variables dependientes analizadas son métricas. Su objetivo es averiguar si hay diferencias significativas entre dichos grupos en cuanto a las variables dependientes se refiere y en qué medida una variable dependiente está influenciada por una o varias variables independientes.

5.- **Análisis de Componentes Principales**\(^{(144,157,369)}\): intenta reducir dimensiones determinando un sistema más pequeño de variables que sinteticen el sistema original. Se utiliza, como el análisis factorial, para analizar interrelaciones entre un número elevado de variables métricas explicando dichas interrelaciones en términos de un número menor de variables denominadas factores (si son inobservables) o componentes principales (si son observables).

6.- **Análisis Cluster o de conglomerados**\(^{(146,410)}\): clasifica una muestra de entidades (individuos o variables) en un número pequeño de grupos de forma que las observaciones pertenecientes a un grupo sean muy similares entre sí y muy
disimilares del resto. Se diferencia del análisis discriminante en que se desconoce el número y la composición de los grupos.

Su objetivo es identificar grupos homogéneos de sujetos u objetos a partir de su puntuación en una serie de variables. Estos grupos, a su vez, deben de ser muy diferentes entre sí: alta homogeneidad interna y elevada heterogeneidad entre los grupos

Condición: Variables medidas en la misma escala

7.- **Modelos de Ecuaciones Estructurales o Análisis de Estructuras de Covarianza**\(^{(25)}\):

Los modelos de ecuaciones estructurales es una técnica estadística multivariante para probar y estimar relaciones causales a partir de datos estadísticos y asunciones cualitativas sobre la causalidad.

Analizan las relaciones existentes entre un grupo de variables representadas por sistemas de ecuaciones simultáneas en las que se suponen que algunas de ellas (constructos) se miden con error a partir de otras variables observables denominadas indicadores. Podemos distinguir en los modelos dos partes: *estructural* (especifica las relaciones de dependencia existente entre las constructos latentes) y *de medida* (especifica cómo los indicadores se relacionan con sus constructos).

Este Modelo de Ecuaciones Estructurales permite comprobar en qué medida un modelo teórico se ajusta a los datos empíricos y trabaja con variables cuantitativas

Modelos Log-Lineales\(^{(159)}\): Permite poner a pruebas modelos que postulan distinto tipo de relaciones entre dos o más variables categóricas

8.- **Análisis de Supervivencia**\(^{(88,89,285,287,385,397,458)}\).

Es similar al análisis de regresión pero su diferencia fundamental radica en que la variable independiente es el tiempo de supervivencia de un individuo u objeto.

Su objetivo es predecir o modelizar el tiempo que transcurre hasta que ocurre un evento.

Las variables implicadas son de tres tipos diferentes:

- De respuesta: Tiempo de seguimiento (cuantitativa)
- De censura: Si ha ocurrido o no el evento (dicotómica)
- Explicativas: cuantitativas y/o cualitativas.

~ 135 ~

Condición: Variable independiente categórica (atributos) y Variable dependiente ordinal.

Muy utilizado en Marketing (diseño de nuevos productos, test de envases, elasticidad del precio, Identificación del producto ideal, segmentación de mercados, simulaciones, etc.)

10. - **Análisis Factorial**\(^{(71,151,369,408)}\).

Se utiliza para analizar interrelaciones entre un número elevado de variables métricas explicando dichas interrelaciones en términos de un número menor de variables denominadas factores (si son inobservables) o componentes principales (si son observables).

Su objetivo: Por un lado la reducción de datos (variables métricas) y por otro, a partir de la relación entre variables observadas identificar un número menor de variables resumen (factores) o variables latentes que resultan después de eliminar las redundancias existentes entre el conjunto inicial de variables observadas.

Condición: Variables cuantitativas.

11. - **Escalas Multidimensionales**\(^{(19,156)}\)

Su objetivo es transformar juicios de semejanza o preferencia en distancias representadas en un espacio multidimensional. Como consecuencia se construye un mapa en el que se dibujan las posiciones de los objetos comparados de forma que aquéllos percibidos como similares están cercanos unos de otros y alejados de objetos percibidos como distintos.
El escalamiento multidimensional pretende utilizar las proximidades entre objetos para realizar una representación espacial de los mismos, identificando las dimensiones subyacentes.

Condición: Gran versatilidad en la recogida de datos (distintos tipos de tareas).

12.- **Análisis de Correspondencias** \(^{(71,146,368)}\) Se aplica a tablas de contingencia multidimensionales y persigue un objetivo similar al de las escalas multidimensionales pero representando simultáneamente las filas y columnas de las tablas de contingencia.

Su objetivo es la reducción de datos (variables no métricas) y, además, a partir de la relación entre variables observadas identificar **dimensiones** o variables latentes. Profundiza en las relaciones que se establecen entre dos o más variables categóricas.

Condición: Variables cualitativas. **Simple** (entre las categorías de dos variables) o **Múltiple** (más de dos)

13.- **Modelos log-lineales** \(^{(159,351)}\)

Se aplican a tablas de contingencia multidimensionales y modelizan relaciones de dependencia multidimensional de las variables observadas que buscan explicar las frecuencias observadas.

14.- **Series temporales** \(^{(148,364,389)}\)

Secuencia de datos, observaciones o valores, medidos en determinados momentos y ordenados cronológicamente. Los datos pueden estar espaciados a intervalos iguales (la temperatura axilar de un paciente hospitalizado medida todos los días a las 7 de la mañana) o desiguales (la presión arterial de un paciente medida cada vez que acude a consulta).

15.- **Métodos robustos** \(^{(154,155,157)}\),

Son aquellos métodos en los que las inferencias realizadas con ellos, como afirma García Pérez A, "son insensibles a la posible presencia de datos anómalos o a posibles desviaciones en la distribución modelo supuesta". Como son técnicas un poco alejadas de los objetivos y características del presente estudio, vamos a enumerarlas exclusivamente, sin entrar en descripciones detalladas de las mismas.
15.1.- Correlación y estimación multivariante: correlación de porcentaje ajustado, winsorizada, media biponderada etc. (153,155).

15.2.- Análisis de Componentes Principales Robusto (144).

15.3.- Análisis de Regresión (161): estimadores de regresión tipo Huber, para modelos lineales, regresión media biponderada, regresión winsorizada, análisis de la covarianza (155).

1.11.2.4.- Etapas de un análisis multivariante

Pueden sintetizarse en 6:

1) **Establecimiento de los Objetivos del análisis.**

Se define el problema especificando los objetivos y las técnicas multivariantes que se van a utilizar.

El investigador debe establecer el problema definiendo con claridad los conceptos y las relaciones fundamentales que se van a investigar. Se deben establecer si dichas relaciones van a ser relaciones de dependencia o de interdependencia. Con estas bases se determinan las variables a observar.

2) **Diseño.**

Se determina el tamaño muestral, las ecuaciones a estimar (si procede), las distancias a calcular (si procede) y las técnicas de estimación a emplear. Una vez determinado todo esto se procede a observar los datos.

3) **Hipótesis.**

Se deben evaluar las hipótesis subyacentes a la técnica multivariante. Dichas hipótesis pueden ser de normalidad, linealidad, independencia, homocedasticidad, etc. También se debe decidir qué hacer con los datos perdidos (missing).

4) **Realización.**

Se estima el modelo y se evalúa el ajuste a los datos. En este paso pueden aparecer observaciones atípicas (outliers) o influyentes sobre las estimaciones y la bondad de ajuste. Estas influencias se deben analizar en profundidad.
5) **Interpretación de los resultados.**

Dichas interpretaciones pueden llevar a reespecificaciones adicionales de las variables o del modelo con lo cual se puede volver de nuevo a los pasos 3) y 4)

6) **Validación del análisis.**

Consiste en establecer la validez de los resultados obtenidos analizando si los resultados obtenidos con la muestra se generalizan a la población de la que procede. Para ello se puede dividir la muestra en varias partes en las que el modelo se vuelve a estimar y se comparan los resultados. Otras técnicas que se pueden utilizar aquí son las técnicas de remuestreo (jacknife y bootstrap)

Resumen

El Análisis Multivariante es el conjunto de métodos estadísticos cuya finalidad es analizar simultáneamente conjuntos de datos multivariantes considerando que hay varias variables medidas para cada individuo.

Su razón de ser radica en un mejor entendimiento del fenómeno objeto de estudio obteniendo información que los métodos estadísticos univariantes y bivariantes son incapaces de conseguir.

Dicho conjunto de métodos puede dividirse en tres grandes grupos según el papel que juegen en el análisis las variables consideradas:

1) Métodos de dependencia
2) Métodos de interdependencia
3) Métodos estructurales
Peligros y problemas del Análisis multivariante.

Peligros:
- Fácil estimación y difícil interpretación
- Incluir demasiadas variables (vs. parsimonia)
- Olvido de la teoría (modelizar por modelizar)

Problemas:
- Incumplimiento de Supuestos
- Requiere un tamaño muestral elevado
- Casos anómalos
- Relevancia conceptual y significación estadística

1.11.3.- **Medidas de frecuencia**\(^{(135,140,263,381)}\)

Habitualmente, la frecuencia absoluta de casos, que constituyen el numerador, la expresamos en relación a un conjunto de observaciones (pacientes) que constituyen el denominador. El numerador puede estar incluido o no en el denominador.

Entre las relaciones más importantes se encuentran las medidas de la amplitud de un fenómeno (tasas y razones) y de su velocidad de propagación\(^{(230)}\).

Comenzamos definiendo los conceptos básicos de proporción, tasa, razón e índice:

Proporción\(^{(52)}\): Es un cociente en el que el numerador está incluido en el denominador.

Tasa\(^{(21)}\): Es una forma especial de proporción que incorpora un elemento más que es el tiempo.

Número de individuos que presentan un determinado fenómeno (por ej. IN en un determinado proceso quirúrgico) respecto al conjunto de la población observada (por ej. todos los pacientes a los que se les ha practicado ese proceso o intervención).
Los pacientes del numerador también son parte del denominador. Evidentemente, todos los individuos deben provenir de la misma población.

Se utilizan tasas brutas (mortalidad general, por ejemplo) y específicas (mortalidad por tipo de enfermedad, edad, sexo…)

Razón o Índice\(^{(52)}\): relaciona dos entidades con caracteres distintos.

Los pacientes del numerador **NO** son parte del denominador. Por ej. Mujeres con IN (numerador)/Hombres con IN (denominador)

Entre las medidas de frecuencia (morbilidad) propiamente dichas, de interés en esta investigación, citamos:

Prevalencia\(^{(129)}\): incluye el **número total de casos**, sin distinción entre nuevos y antiguos. Es como una fotografía instantánea; o sea, es el número de casos de una enfermedad determinada que hay en un momento concreto. Es un indicador estático.

Según Fletcher y cols es la fracción (porcentaje) de un grupo de individuos que presentan un proceso clínico o resultado en un momento determinado de tiempo.

Se expresa en forma de tasa: número total de casos en un momento determinado (numerador)/número total de observados-población (denominador).

Es una *proportión*, por lo que no tiene dimensiones. Su valor oscila entre 0 y 1. Si se expresa como porcentaje oscila entre 0 y 100.

También existe la **prevalencia durante un periodo dado**. Se refiere al número de pacientes que presentan la enfermedad durante ese periodo. Cada vez es menos utilizada.

Incidencia\(^{(52)}\): incluye los casos nuevos que aparecen en un periodo de tiempo determinado.

Se expresa, también, en forma de tasa: número de casos nuevos aparecidos en un periodo determinado (numerador)/ número total de observados-población en el mismo periodo (denominador). Se denomina habitualmente *Incidencia Acumulada*.

Fletcher y cols\(^{(129)}\) la definen como la fracción o porcentaje de un grupo de individuos inicialmente libres del proceso que lo desarrollan a lo largo de un determinado periodo de tiempo.

Y para Straus y cols\(^{(444)}\) es la proporción de nuevos casos del trastorno designado en la población de riesgo durante un intervalo de tiempo especificado.

~ 141 ~
La incidencia se refiere a la población diana. Dentro de la incidencia hay que distinguir:

- Incidencia acumulada: conjunto de casos nuevos en el periodo estudiado.
- Velocidad de Incidencia: cambio de la incidencia por unidad de tiempo. Debe tener en cuenta tanto el tiempo real de observación como los momentos en que se realiza esta.
- Densidad de Incidencia o "tasa de incidencia por personas-tiempo" según Last(263): en el numerador figura el número de casos y en el denominador personas-tiempo de exposición o personas-período de riesgo (en nuestro caso, días). La tasa de Incidencia es una tasa bruta. La Densidad de Incidencia mide de forma más fina el fenómeno. Especialmente utilizada para valorar el impacto de las medidas de prevención y control de la IN, comparando la evolución de la misma en el tiempo.

La interpretación del numerador no ofrece dificultades. Es un simple recuento. Comprender cómo se conforma el denominador es más complejo. Vamos a tratar de explicarlo lo más sencillamente posible. En nuestro estudio está constituido por la suma (sumatorio) de los días a riesgo de IN de cada paciente. Pueden darse dos circunstancias:

- Paciente que no sufre una IN. Se cuentan los días desde el ingreso o la intervención quirúrgica hasta el alta, en la forma más sencilla. En nuestro caso desde la intervención quirúrgica hasta el alta hospitalaria.
- Paciente que sufre una IN. Se cuentan los días desde el ingreso o la intervención quirúrgica hasta el momento de aparición de la IN. En nuestro caso desde la intervención quirúrgica hasta la aparición de la IN.

Naturalmente, pueden darse situaciones más complejas como la aparición de más de una IN en el mismo paciente o seguimientos post-alta. Lo expuesto pretende, únicamente, aclarar el concepto.

Es bastante frecuente que en la práctica diaria se consideren sinónimos incidencia acumulada y tasa de incidencia. Hay que señalar que no son sinónimos ya que, según la mayoría de autores, los términos sinónimos son tasa de incidencia y densidad de incidencia.

La Densidad de Incidencia es más práctica que la Velocidad de Incidencia. Es muy útil en los estudios de seguimiento de la IN y ampliamente utilizada en los hospitales donde existen programas de vigilancia, como es nuestro caso.
1.11.4.- **Medidas de asociación e impacto**

Medidas que cuantifican la asociación existente entre variables mediante diferencias en las medidas de frecuencia. Si son:

- Diferencias relativas. **Medidas de asociación**, Cuando se trata de valorar asociaciones causales
- Diferencias absolutas. **Medidas de impacto**, Cuando se trata de evaluar actividades preventivas o de salud pública (objetivo: reducción absoluta del riesgo)

Medidas de asociación:

- Riesgo relativo
- **Odds ratio**
- Razón de prevalencias
- Razón de densidad de incidencia

Las "medidas de asociación" intentan estimar:

- Si existe asociación (causal generalmente)
- Dirección de la misma
- Magnitud de esa asociación

Medidas de impacto:

- Riesgo atribuible (o diferencia de riesgo en expuestos)
- Fracción atribuible en expuestos (o fracción etiológica en expuestos)
- Riesgo atribuible poblacional (fracción atribuible población)
- Proporción de RA poblacional

1.11.4.1.- **Riesgo relativo (RR)**

Es una razón: en el numerador figura la incidencia de la enfermedad en el grupo de expuestos y en el denominador la incidencia de enfermedad en el grupo de no expuestos.

En nuestro caso concreto, en los pacientes intervenidos por los procesos cirugía electiva de colon, primer implante de prótesis de cadera y primer implante de prótesis
de rodilla y considerando, a título de ejemplo, como factor de riesgo (FR) la colocación o no en el paciente de un catéter venoso central (CVC)

\[
RR = \frac{\text{Pacientes con IN y con CVC}}{\text{Pacientes con CVC}} \div \frac{\text{Pacientes con IN sin CVC}}{\text{Pacientes sin CVC}}
\]

Indica cuánta probabilidad más tienen las personas expuestas de desarrollar la enfermedad respecto a los no expuestos.

Interpretación de riesgo relativo (RR)

Si el RR = 1, la incidencia en el grupo de expuestos es igual a la incidencia en el grupo de no expuestos, es decir, no se observa asociación entre la exposición (factor de riesgo) y la enfermedad (efecto).

Si el RR > 1, la incidencia en el grupo de expuestos es mayor que la incidencia en el grupo de no expuestos, es decir, se observa asociación directa o positiva entre la exposición (factor de riesgo) y la enfermedad (efecto).

Si el RR < 1, la incidencia en el grupo de expuestos es menor que la incidencia en el grupo de no expuestos, es decir, se observa asociación indirecta o negativa entre la exposición (factor de riesgo) y la enfermedad (efecto). En este caso el hipotético factor de riesgo sería protector.

Interpretación estadística:

A la hora de tomar una decisión no basta con lo expuesto. Es imprescindible considerar los Intervalos de Confianza (IC) generalmente al 95 % (α=0.05).

Si el IC95% incluye el valor nulo, o sea, RR=1, consideramos que no hay diferencia entre expuestos y no expuestos, con un nivel de confianza del 95%.

Si el IC95% no incluye el valor nulo, o sea, RR=1, consideramos que hay diferencia entre expuestos y no expuestos, con un nivel de confianza del 95%. En este caso, si RR > 1: el FR tiene más influencia sobre expuestos; si RR < 1: el FR se considera protector ya que tiene más influencia sobre no expuestos que sobre expuestos.

Otras denominaciones para el RR:

- Razón de riesgos
- Razón de tasas (de incidencia)
- Relative Risk
- Risk Ratio
Por último diremos que es la medida de asociación propia de los estudios de cohortes.

1.11.4.2.- Odds ratio o razón de odds

Definición: medida de asociación que se obtiene dividiendo la odds de enfermedad en los expuestos por la odds de enfermedad en los no expuestos.

\[
\text{Odds de enfermos entre los expuestos} = \frac{\text{Odds de enfermos entre los expuestos}}{\text{Odds de enfermos entre los no expuestos}}
\]

Indica cuánta odds más (o menos) tienen las personas expuestas de desarrollar la enfermedad respecto a los no expuestos.

- Es el cociente entre dos probabilidades complementarias (o mutuamente excluyentes).
- Se puede calcular en cualquier tabla de contingencia.
- Es la medida de asociación propia de los estudios de casos y controles.

También se puede aplicar en estudios de cohortes y de prevalencia.

Se puede calcular tanto una OR de enfermedad como una OR de exposición.

La OR es un buen estimador del RR.

- Los casos son representativos de todos los individuos con la enfermedad, de la población de la que han estado seleccionados, en cuanto a la exposición.
- Los controles son representativos de todos los individuos sin la enfermedad, de la población de la que han estado seleccionados, en cuanto a la exposición.
- La enfermedad estudiada no es demasiado frecuente.

Otras denominaciones:

- Razón de odds
- Razón de ventajas, de posibilidades
- Razón de momios
Odds ratio

Es la medida de asociación propia de los estudios de casos y controles, aunque se puede calcular en estudios de cohortes y de prevalencia.

1.11.4.3.- Razón de prevalencias.

Se puede utilizar como medida de asociación en estudios transversales.

Indica cuántas veces es más probable que los individuos expuestos presenten la enfermedad respecto a los no expuestos.

- Razones de prevalencia de enfermedad ≠ de exposición
- Poco utilizada en la práctica
- Indica asociación, pero no necesariamente causalidad

Otras denominaciones:

- Prevalence rate ratio o prevalence ratio

Valor nulo: RP=1
Asociación negativa: RP<1
Asociación positiva: RP>1

1.11.4.4.- Razón de Densidad de Incidencia:

\[
RDI = \frac{\text{Densidad de incidencia en individuos expuestos}}{\text{Densidad de incidencia en individuos no expuestos}}
\]

Medidas de impacto

- Riesgo atribuible (diferencia de riesgos)
- Fracción etiológica (fracción atribuible)

Las medidas de impacto informan de la cantidad de enfermedad que es atribuible a la exposición, mientras que RR y OR dan una idea relativa de la fuerza y sentido de la asociación entre la exposición y la enfermedad.
1.11.4.5.- **Riesgo atribuible en los expuestos** (diferencia de riesgo en los expuestos):

- Riesgo de tener el efecto en los sujetos expuestos debido a la exposición.
- Se define como la diferencia entre las tasas de incidencia (riesgo absoluto) en el grupo de expuestos y en el grupo de no expuestos.
- Representa la cantidad de incidencia que puede ser atribuida al factor de riesgo.

Es la diferencia entre el riesgo individual en expuestos y en no expuestos. Mide la parte de riesgo que verdaderamente se puede atribuir al factor evaluado y no a otros factores que, teóricamente aparecerían de igual forma en ambos grupos.

1.11.4.6.- **Fracción etiológica del riesgo** (fracción atribuible en los expuestos, proporción de riesgo atribuible):

- Es lo mismo que el riesgo atribuible pero expresado en porcentaje. Se puede calcular para los expuestos o para el total de la población estudiada.

Para el cálculo de estos parámetros es interesante la calculadora facilitada por SEMERGEN-Cantabria y que puede consultarse en:

http://www.semergencantabria.org/calc/atcalc.htm
2.- HIPÓTESIS Y OBJETIVOS
2.- HIPÓTESIS Y OBJETIVOS

Bajo los auspicios de la comisión INOZ los hospitales de Osakidetza están recopilando datos de seguimiento de pacientes sometidos a determinadas intervenciones quirúrgicas desde el año 1992 con una media anual superior a 5.000 pacientes. Esto supone una ingente cantidad de datos que suelen ser estudiados de forma únicamente descriptiva, debido a la falta de tiempo de los profesionales que dedican sus esfuerzos a temas que exigen una resolución inmediata.

Por otro lado, que sepamos, no se ha determinado un "paciente de riesgo" con el que adoptar precauciones o medidas de prevención más estrictas, dado el riesgo más elevado que tiene, a priori, de contraer una infección nosocomial.

En esta tesis nos proponemos completar estos dos aspectos: por un lado profundizar en el análisis de los datos disponibles utilizando fundamentalmente técnicas de análisis estadístico multivariante y por otro intentar perfilar las características más relevantes del paciente intervenido de cirugía electiva de colon o de primer implante de prótesis de cadera o de primer implante prótesis de prótesis de rodilla, que presenta un alto riesgo de infección nosocomial. Así mismo, establecer la cuantía de participación de cada variable y la probabilidad de infección nosocomial de los pacientes que presenten positivas esas variables.

Con estas premisas establecemos los siguientes objetivos:

Objetivo principal: encontrar sistemas estadísticos que, sin ser complejos en su ejecución, aporten información más precisa que los utilizados hasta ahora en estos procesos quirúrgicos (primer implante de prótesis de cadera, primer implante prótesis de prótesis de rodilla, cirugía electiva de colon) y ayuden a perfilar el "paciente de riesgo" de contraer una IN y en la toma de decisiones en las medidas de prevención y control que sea preciso adoptar.

Objetivos secundarios:

01.- Analizar en la literatura cuáles son los factores de riesgo reconocidos por los distintos autores de cada uno de los procesos estudiados.

02.- Describir la frecuencia y características de la IN en Euskadi, en procesos como el primer implante de prótesis de cadera, primer implante prótesis de
rodilla y cirugía electiva de colon, con los datos facilitados por la Comisión INOZ.

03.- Analizar las características y aplicación práctica del estudio INOZ en los hospitales de Osakidetza.

04.- Investigar en la literatura médica especializada la utilización de las técnicas estadísticas y su pertinencia.

05.- Determinar el peso específico de cada variable de predicción (independiente) en la variable dependiente (efecto) IN.

06.- Encontrar un modelo predictivo para la infección nosocomial.

07.- Comprobar qué técnicas estadísticas son más útiles para procesar convenientemente los datos aportados por el Programa INOZ\(^{68}\).

08.- Aplicar esas técnicas estadísticas a los datos disponibles.

09.- Determinar los resultados de esa aplicación.
3.- MATERIAL, SUJETOS Y MÉTODOS
3.** MATERIAL, SUJETOS Y MÉTODOS.**

El presente es un estudio prospectivo, de seguimiento de una cohorte de pacientes intervenidos quirúrgicamente.

Elemento común en la cohorte: proceso quirúrgico al que se somete al paciente.

Procesos quirúrgicos implicados:

- cirugía electiva de colon,
- primer implante de prótesis de cadera,
- primer implante de prótesis de rodilla.

Los sujetos son los pacientes intervenidos de estos tres procesos quirúrgicos en Euskadi en el periodo comprendido entre 2010 y 2015.

El número de pacientes incluidos en cada cohorte son:

- cirugía electiva de colon: 6.709 pacientes
- primer implante de prótesis de cadera: 7.576 pacientes
- primer implante de prótesis de rodilla: 6.521 pacientes

Los datos nos han sido cedidos amablemente por la Comisión INOZ a la que expresamos nuestro agradecimiento. Los datos nos fueron remitidos desde la Comisión INOZ globalizados, es decir, eliminadas las variables por medio de las cuales se pudiera identificar a los pacientes o a los hospitales o Servicios quirúrgicos donde hubieran sido intervenidos los pacientes. Por tanto se ha respetado escrupulosamente la confidencialidad.

Programas estadísticos utilizados:

- SPSS v 22 y v 23.
- Epi Info del CDC de Atlanta v. 7, de distribución gratuita.
- EpiDat de la OPS, distribuido (distribución libre) por el Servicio de Epidemiología de la Dirección Xeral de Saúde Pública da Consellería de Sanidade (Xunta de Galicia) con el apoyo de la Organización Panamericana de la Salud (OPS-OMS) y la Universidad CES de Colombia.

Si no se señala lo contrario hemos utilizado un nivel de significación \(\alpha = 0.05 \).

A continuación pasamos a describir los métodos empleados.
¿Qué tasas, razones, índices, proporciones, cocientes... son útiles y cuáles no?

Consideramos que debemos hacer una sencilla descripción, a la vez que precisa, de los parámetros más importantes para saber con exactitud a qué atenernos. Por otro lado, con una cierta frecuencia, en el quehacer médico diario, no es infrecuente confundir algunos de los términos. Así hemos oído hablar de "razón de prevalencia".

En nuestro caso, además, vamos a definirlos teniendo en cuenta su aplicación práctica a este estudio.

3.1.- **Medidas de frecuencia**

Entre las medidas de frecuencia (morbilidad) propiamente dichas, de interés en esta investigación, citamos:

3.1.1.- **Incidencia acumulada** (véase la definición en la página 142).

La expresaremos en forma de tasa.

Para pacientes:

\[
\text{Número total de pacientes infectados} \quad \frac{}{\text{Número total de pacientes estudiados}}
\]

Para infecciones:

\[
\text{Número total de infecciones} \quad \frac{}{\text{Número total de pacientes estudiados}}
\]

3.1.2.- **Densidad de Incidencia** (véase la definición en la página 142).

Para pacientes:

\[
\text{Número total de pacientes infectados} \quad \frac{}{\text{Número total de pacientes estudiados}} \times (10^3)
\]

\[
\text{Total de días a riesgo}
\]
Para infecciones:

\[
\text{Número total de infecciones} \times (10^3)
\]
\[
\text{Total de días a riesgo}
\]

3.2.- **Medidas de asociación e impacto**

Medidas de asociación:

3.2.1.- Riesgo relativo (RR). (véase la definición en la página 144)

3.2.2.- Odds ratio o razón de odds (véase la definición en la página 145)

3.2.3.- Razón de Densidad de Incidencia:

\[
\text{Densidad de incidencia en individuos expuestos} \div \text{Densidad de incidencia en individuos no expuestos}
\]

Medidas de impacto:

3.2.4.- Riesgo atribuible en los expuestos (diferencia de riesgo en los expuestos) (véase la definición en la página 147)

3.2.5.- Fracción etiológica del riesgo véase la definición en la página 147)

3.3.- **Variables**

A continuación describiremos con más profundidad, y siempre desde la perspectiva pragmática de su utilización en este trabajo, las distintas variables.

1.- **Sexo**: La probabilidad de contraer una IN en el hombre y en la mujer son diferentes. Se trata de una variable dicotómica codificada como:

 0. hombre.
 1. mujer.

2.- **Edad**: La edad es un reconocido marcador de riesgo que es preciso tener en cuenta en cualquier investigación. La edad media de los pacientes ingresados va en constante aumento como ya hemos comentado. Se trata de una variable medida como cuantitativa continua, en años. En el análisis se la considerará habitualmente como
cuantitativa continua, si se distribuye según la Ley Normal y la homocedasticidad. en el caso de no cumplir con esas normas será preciso categorizarla. La American College of Surgeons. Surgical Risk Calculator, 2015: http://riskcalculator.facs.org/ la categoriza en 4 categorías (< 65 años; 65 a 74; 75 a 84; ≥ 85 años).

No obstante, para el caso de la infección de la herida quirúrgica (SSI) algunos autores consideran que el riesgo se incrementa considerablemente a partir de los 75 años de edad[189,463].

Esta es una variable “inevitable” que es preciso tener muy en cuenta, ya que con el aumento de la edad se deterioran las capacidades humanas, por lo menos contemplada como colectividad, y entre ellas la respuesta inmunitaria.

3.- Infección al ingreso: Si el paciente padece una infección al ingreso la probabilidad de contraer una infección nosocomial es muy diferente a si no la padece. Además, si esta enfermedad conlleva tratamiento antibiótico éste, lógicamente, va a influir en la aparición o no de infección nosocomial.

Los criterios para clasificarla son los propios del CDC. Se la clasifica como si y no, si es comunitaria o intrahospitalaria, y en este caso si es de otro hospital público, privado o se trata de un reingreso. En este último caso se específica si es intraservicio o en otro servicio. La infección al ingreso se señala con los siguientes códigos:

01.-Infección de la herida quirúrgica superficial.
02.-Infección de la herida quirúrgica profunda.
03.-Infección quirúrgica no inficionar de órgano o espacio.
05.- Neumonía.
06.- Infección respiratoria inferior.
07.- Flebitis.
08.-Bacteriemia primaria sin fuente aparente.
09 bacteriemia secundaria.
10.-Bacteriemia asociada a catéter.
11.-Otras

En la práctica, para los análisis estadísticos, se la codifica como (aunque no descartamos utilizar el código de localización):

0: No
1: Sí.
4.- **Enfermedad de base:** se trata de determinar el pronóstico clínico de muerte que presenta el paciente en el momento del estudio. Esta probabilidad se realiza considerando la situación clínica del enfermo en el momento del estudio, teniendo en cuenta el tipo de respuesta más probable al tratamiento que se le aplica y la experiencia acumulada en el tratamiento de pacientes con circunstancias similares. Se codifica como tres posibilidades:

 - No fatal (NF). Lo más probable es que el paciente no fallezca en los próximos cinco años.
 - Últimamente fatal (UF): la probabilidad de fallecimiento del paciente oscila entre uno y cinco años.
 - Rápidamente fatal (RF): Lo más probable es que el paciente fallezca antes de un año.

 Se codifica como:

 0: supervivencia prevista ≥ 5 años
 1: supervivencia prevista < 5 años

5.- **Diabetes mellitus (DM):** se considera que el paciente padece diabetes mellitus si así consta en la historia, si aparecen glucemias iguales o superiores a 145 mg/dl, sin que esté sometido a fluidoterapia que pueda producir aumento de glucemia. En los pacientes con fluidoterapia se consideran como diabéticos los que tengan niveles iguales o superiores a 200 mg/dl.

 Se codifica como:

 0: No.
 1: Si.

6.- **Inmunodepresión al ingreso:** se incluyen los pacientes diagnosticados de inmunodeficiencias primarias o secundarias, como por ejemplo: leucemias linfáticas, linfomas, sida, neutropenia con recuentos de neutrófilos inferiores a 1000.

 Se codifica como:

 0: No
 1: Si.
7.- **Insuficiencia renal**: consideramos que el paciente padece insuficiencia renal si consta así en la historia o aparecen valores de creatinina superiores a 1,7 mg/decilitro, en la analítica de ingreso. Se codifica como

0: No
1: Sí.

8.- **Desnutrición**: se clasifica como paciente desnutrido al que presenta una albúmina inferior a 3 g/litro en el análisis de ingreso en los casos en que el ingreso sea inferior a un mes. Si lleva más tiempo ingresado se considerarán la última analítica. Se clasifica como:

0: No
1: Sí.

9.- **Estancia en cuidados intensivos**: se anota si el paciente ha permanecido en el periodo de estudio en una unidad de cuidados intensivos o de reanimación. No se consideran como estancia en estas unidades los postoperatorios con menos de 24 horas de estancia. Se codifica como:

0: No
1: Sí.

10.- **Sistema urinario abierto**: se anota si el paciente presenta un catéter urinario con sistema de drenaje abierto. Se excluye el colocado transitoriamente en el quirófano. Se codifica como:

0: No
1: Sí.

11.- **Sistema urinario cerrado**: presencia de catéter urinario con sistema de drenaje cerrado. Para eso el sistema urinario debe disponer de:

A. Válvula antirreflujo.
B. Lugar para la toma de muestras por punción.
C. Tubo de vaciado de la bolsa colocado en la parte más distal.

Deben cumplirse las tres condiciones. Si se requiere desconexión para toma de muestras o eliminación de orina deben considerarse sistemas abiertos: Se codifica:

0: No
1: Sí.
12. **Catéter venoso central**: catéter central insertado en yugular o subclavia. Se codifica como:

 0: No
 1: Sí.

13. **Catéter venoso central de inserción periférica**: catéter central insertado por vía periférica. Se codifica como:

 0: No
 1: Sí.

14. **Catéter periférico**: catéter vascular periférico. Se codifica como:

 0: No
 1: Sí.

15. **Catéter arterial**: catéter insertado vía arterial. Se codifica como:

 0: No
 1: Sí.

16. **Nutrición parenteral**: nutrición parenteral por vía vascular. Se codifica como:

 0: No
 1: Sí.

17. **Ventilación mecánica**: conexión a un respirador. Se codifica como:

 0: No
 1: Sí.

18. **Sonda nasogástrica**: aplicación de sonda nasogástrica durante el ingreso. Se codifica como:

 0: No
 1: Sí.

19. **Drenaje**: presencia de drenaje después de una intervención quirúrgica. Se codifica como:

 0: No
 1: Sí.

~ 159 ~
20.- **Tratamiento inmunodepresor**: se recogerá si el paciente está recibiendo terapia inmunosupresora, radioterapia, citostáticos, quimioterapia antineoplásica en el mes del estudio, corticoides (20 mg de prednisona/día durante dos semanas al menos en el mes previo o equivalente). Se codifica como:

- 0: No
- 1: Sí.

21.- **Procedimientos invasivos**: se hace constar aquellos procedimientos invasivos utilizados con el enfermo que no tienen lugar en otro lugar de la ficha. Se codificarán de acuerdo con el órgano sobre el que estén aplicando. Son los siguientes:

- **CCV**: procedimientos invasivos del aparato cardiovascular (por ejemplo: cateterismo cardíaco, radiología vascular intervencionista…).
- **DIG**: procedimientos invasivos en el aparato digestivo (por ejemplo: gastroscopia, colonoscopia, polipectomía endoscópica, electrocardiograma transesofágico,…).
- **RES**: procedimientos invasivos en el aparato respiratorio (por ejemplo: broncoscopia, drenaje de neumotórax…).
- **UR**: procedimientos invasivos sobre aparato genitourinario (por ejemplo: radiología intervencionista del aparato genitourinario, cistoscopias…).
- **SNC**: procedimientos invasivos del sistema nervioso central (por ejemplo: catéter epidural, mielografías, estudio de fistulas, punción lumbar…).
- **OTROS**: para aquellos procedimientos que no puedan recogerse en los códigos anteriores. Especificar a continuación de qué se trata. En estos factores es necesario registrar la fecha (día, mes y año) en que se aplica el procedimiento y la fecha de retirada.

Se la codifica como:

- 0: No
- 1: Sí.

22.- **Tipo de intervención (cirugía)**: se refiere a la cirugía practicada al paciente y al momento en que se realiza la misma. Se codifica como:

- 0: Mañanas
- 1: Tardes y urgente.
23.- Procedimiento quirúrgico: se anotará la codificación que corresponda según la CIE-09-MC.

24.- Equipo quirúrgico: se consignará el equipo quirúrgico que ha realizado la intervención.

25.- **Tipo de herida**: se contabilizará la herida operatoria según su grado de contaminación. Se codifica como:

1: limpia.
2: limpia-contaminada.
3: contaminada.
4: sucia.

Limpia: Heridas quirúrgicas no infectadas en las que no se encuentra inflamación, no se trasgrede la técnica y no se entra al tracto respiratorio, digestivo, genitourinario ni en las cavidades orofaríngea. Son heridas electivas, cierran por primera intención y no drenan.

Limpia-Contaminada: Heridas operatorias en las que se entra en el tracto respiratorio, digestivo o genitourinario bajo condiciones controladas y sin contaminación inusual y aquellas con pequeñas trasgresiones en la técnica.

Contaminada: Heridas abiertas, recientes o accidentales. Cirugías con ruptura mayor de la técnica estéril o gran contaminación gastrointestinal e incisiones en las que se encuentra una inflamación aguda no purulenta.

Sucia: Heridas traumáticas antiguas con tejido retenido desvitalizado y en las que existe infecciones clínicas previas o perforación de víscera hueca. Esta definición sugiere que los microorganismos causantes de infecciones postoperatorias están presentes en el campo operatorio desde antes de la intervención\(^{(516)}\).

Para cirugía electiva de colon se la codifica como:

0: Limpia-contaminada.
1: Sucia

Para prótesis de cadera y prótesis de rodilla se la codifica como:
0: Limpia.

1: Resto

26.- **Duración de la intervención**: tiempo en minutos desde el momento de la incisión hasta el cierre de la herida. Se trata de una variable cuantitativa continua.

27.- **Índice ASA**: se cumplimentará según la clasificación del estado físico del paciente de la Sociedad Americana de Anestesiología. Se clasifica de la siguiente manera:

- **Case I**: paciente sano, normal.
- **Clase II**: paciente con enfermedad sistémica leve o moderada.
- **Clase III**: paciente con enfermedad sistémica grave que limita la actividad pero no es incapacitante.
- **Clase IV**: paciente con enfermedad sistémica incapacitante que pone en peligro su vida.
- **Clase V**: paciente moribundo sin expectativas de sobrevivir 24 horas sin cirugía.
- **U**: Urgente.

Se la codifica como:

- 0: ASA 1 + ASA 2
- 1: ASA 3 + ASA 4 + ASA 5

28.- **Score NNISS**\(^{(116)}\): el índice de riesgo del NNISS (National Nosocomial Infection Surveillance System) agrupa factores de riesgo intrínsecos (ASA) y factores de riesgo extrínseco (grado de contaminación de la herida y duración de la intervención). Se relaciona con el riesgo de infección de la herida quirúrgica. Se calcula con los tres factores referidos, de la siguiente manera:

- **A**: paciente que se encuentre en clasificación ASA de 3, 4, ó 5.
- **B**: intervención clasificada como contaminada o sucia.
- **C**: duración de la intervención que supere el percentil 75, en minutos, de los procedimientos agrupados según tabla específica.

La presencia del factor de riesgo en las condiciones mencionadas tomará el valor de uno. La suma de estos factores conforma el índice NNISS\(^{(116)}\). Puede tomar los siguientes valores:
0: no está presente ningún factor.
1: está presente un factor (cualquiera de ellos).
2: están presentes dos factores.
3: están presentes los tres factores.

No la vamos a utilizar como variable ya que preferimos utilizar las individuales de las que se deriva: ASA, grado de contaminación de la herida y duración de la intervención

29.- **Preparación prequirúrgica:** se refiere al cumplimiento o no del protocolo que en cada hospital debe existir en cuanto a la preparación prequirúrgica.

Se codifica como:

0: adecuada.
1: inadecuada.

30.- **Profilaxis antibiótica:** se consigna en el caso de que haya cirugía. Se clasifica como:

S: se ha administrado.
N: no se ha administrado.
I: no se ha administrado, estando indicada.

En nuestro caso suprimimos la categoría I ya que está siempre indicada en los tres procesos que estudiamos: prótesis de cadera 1er implante, prótesis de rodilla 1er implante y cirugía electiva de colon.

Se codifica como:

0: correcta.
1: incorrecta.

31.- **Indicación (profilaxis):** si la profilaxis estaba indicada o no.

Se codifica como:

0: adecuada.
1: inadecuada.
32.- **Fármaco (profilaxis):** se refiere a la adecuación del fármaco según el proceso quirúrgico realizado. Se codifica como:

0: adecuada.
1: inadecuada.

33.- **Dosis (profilaxis):** adecuación o no de la dosis administrada. Se hace especial hincapié en una segunda dosis intraoperatoria, si fuese necesaria. Se codifica como:

0: adecuada.
1: inadecuada.

34.- **Duración (profilaxis):** duración adecuada o inadecuada de utilización del fármaco según el proceso quirúrgico. Se codifica como:

0: adecuada.
1: inadecuada.

35.- **Comienzo (profilaxis):** si se practicó en la preparación anestésica y/o estaban impregnados los tejidos con el antibiótico en el momento de la incisión. Se codifica como:

0: adecuada.
1: inadecuada.

36.- **Cirugía laparoscópica:** si se ha practicado o no cirugía laparoscópica. Se codifica como:

0: Sí.
1: No.

37.- **Infección nosocomial** (variable dependiente): si ha habido o no IN. Esta variable es la variable dependiente, dicotómica cuando utilicemos la regresión logística. Los criterios de clasificación son los descritos por el CDC de Atlanta. Se codifica como:

0: adecuada.
1: inadecuada.
38.- Tipo de IN: la IN que ha contraído el paciente: de la herida quirúrgica, urinaria, bacteriemia, neumonía etc. Se clasifica como:

01.-Infección de la herida quirúrgica superficial.
02.-Infección de la herida quirúrgica profunda.
03.-Infección quirúrgica de órgano o espacio.
04.- Urinaria.
05.- Neumonía.
06.- Infección respiratoria inferior.
07.- Flebitis.
08.-Bacteriemia primaria sin fuente aparente.
09 bacteriemia secundaria.
10.-Bacteriemia asociada a catéter.
11.-Otras

Las siguientes variables o factores de riesgo se han recopilado exclusivamente en cirugía electiva de colon, ya que en los dos implantes de prótesis no procedía.

39.- **Uso de Aros**: si se ha utilizado o no aros.
Se codifica como:

0: Si.
1: No.

40.- **Transfusión**: si se ha administrado trasfusión intraoperatoria.
Se codifica como:

0: Si.
1: No.
41.- **Cambio**: si se ha realizado cambio de guantes, bata, mascarilla, paños, etc. durante la intervención.

Se codifica como:

0: Sí.

1: No.

42.- **Número de Cirujanos**: nº de cirujanos presentes en la intervención.

Se codifica como:

0: Sí.

1: No.

43.- **Ostomía**: se ha practicado ostomía al paciente.

Se codifica como:

0: Sí.

1: No.

44.- **Tipo de Drenaje**: si se ha realizado o no drenaje.

Se codifica como:

0: Sí.

1: No.

45.- **Perforación**: si se ha perforado o no el intestino.

Se codifica como:

0: Sí.

1: No.

46.- **Anastomosis**: Si se ha practicado o no anastomosis.

Se codifica como:

0: Sí.

1: No.
47.- **Lavado Intraoperatorio**: si se ha realizado o no lavado intraoperatorio.

Se codifica como:

0: Sí.

1: No.

48.- **Lugar de Administración de la Profilaxis**.

Se codifica como:

0: Sí.

1: No.

49.- **Días a riesgo**: Esta variable, conjuntamente con la existencia o no de infección constituirán las dos variables utilizadas como dependientes en la regresión de Cox. Es la variable tiempo en la citada regresión. Se utiliza, en principio, como variable cuantitativa continua. Esta variable la hemos obtenido de dos formas distintas:

- Pacientes infectados: restando a fecha de la primera IN la fecha de intervención

- Pacientes no infectados: restando a la fecha de alta la fecha de intervención.

FR considerados **importantes en la literatura profesional** pero que **no se han recogido específicamente en el estudio INOZ** clásico:

50.- Obesidad (IMC).

51.- Tabaquismo

52.- O₂ suplementario (hipoxia) en cirugía electiva de colon.

Existen una serie de variables (o items recogidos) que no se utilizan directamente en el análisis sino que requieren una preparación previa. Nos referimos fundamentalmente a aquellas en las que están implicadas fechas. En estos casos se crean variables nuevas realizando una operación matemática, en general sencilla. Por ejemplo: se especifica **días a riesgo** en la que hemos restado a la fecha del alta, la fecha de intervención quirúrgica para pacientes NO infectados y a la fecha de primera infección, la fecha de intervención quirúrgica para pacientes infectados.

Por último, se recopilan una serie de datos (no van a ser considerados como variables) necesarios en este tipo de vigilancia: filiación, unidad de ingreso (no se
utiliza en nuestro caso, en principio porque los pacientes están ingresados, en el proceso estudiado, en la misma unidad de enfermería; pudiera ser importante como variable en otro tipo de estudios), microorganismo-s implicado-s en la IN, tratamiento de la IN, fármaco utilizado, evolución de la IN, datos relativos al alta como lugar de destino, etc. porque se producen una vez cerrado el evento, es decir, una vez aparecida la IN o después del alta del paciente.

Como ya hemos comentado anteriormente, en la presente investigación los factores de riesgo son fundamentales porque son la base de la misma ya que constituirán las variables bien independientes o bien dependientes para realizar el análisis estadístico.

Por eso, y siguiendo el criterio de la mayoría de autores que realizan regresión logística y/o regresión de Cox, vamos a revisar la bibliografía existente, en cuanto a análisis de factores de riesgo, en la cirugía electiva de colon.

Para ello, hemos realizado una revisión bibliográfica casi exhaustiva en cuanto a los trabajos publicados que refieren factores de riesgo en la aparición de infección en el sitio quirúrgico (SSI - Surgical Site Infection), utilizando MEDLINE (PubMed), Embase y Cochrane desde el año 1946 hasta noviembre de 2015.

Palabras clave: Surgical Site Infection, colorectal surgery, regresión logística, logistic regression, Cox regression, regresión de Cox, hazard ratio, riesgos proporcionales de Cox.

Hemos encontrado 272 publicaciones científicas (entendiendo por científicas las que presentan por lo menos: abstract; material sujetos y métodos; discusión; resultados y conclusiones).

En la tabla 2.2 pueden verse los resultados recopilados en 4 columnas: Factor de Riesgo, primer Autor, Año de publicación y nº de la referencia bibliográfica que pue3de consultarse en el apartado Bibliografía.
Tabla 2.2. - Bibliografía: factores de riesgo de IN en cirugía electiva de colon

<table>
<thead>
<tr>
<th>FR</th>
<th>Autor</th>
<th>Año</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profilaxis antibiótica (41)</td>
<td>Araki T</td>
<td>2014</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Waits SA</td>
<td>2014</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Aosasa S</td>
<td>2014</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Korb ML</td>
<td>2014</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Deierhoi RJ</td>
<td>2013</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Oshima T</td>
<td>2013</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td>Ahn BK</td>
<td>2013</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Friedman ND</td>
<td>2013</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Moine P</td>
<td>2013</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>Isla A</td>
<td>2012</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Hagihara M</td>
<td>2012</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Bellows CF</td>
<td>2011</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Ho VP</td>
<td>2011</td>
<td>197, 198</td>
</tr>
<tr>
<td></td>
<td>Ho VP</td>
<td>2011</td>
<td>197, 198</td>
</tr>
<tr>
<td></td>
<td>Howard DP</td>
<td>2010</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Parakh A</td>
<td>2009</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>Tsutsumi S</td>
<td>2009</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Hrivnak</td>
<td>2009</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>Hayashi MS</td>
<td>2009</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Sato T</td>
<td>2009</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>Lhosiriwat V</td>
<td>2009</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>Fry DE</td>
<td>2008</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Suehiro T</td>
<td>2008</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>Liao XJ</td>
<td>2008</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Itani KM</td>
<td>2008</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>Weber WP</td>
<td>2008</td>
<td>478</td>
</tr>
<tr>
<td></td>
<td>Fujita S</td>
<td>2007</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Kobayashi M</td>
<td>2007</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Spievack AR</td>
<td>2007</td>
<td>441</td>
</tr>
<tr>
<td></td>
<td>Itani KM</td>
<td>2006</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Konishi T</td>
<td>2006</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Hernández-Navarrete MJ</td>
<td>2005</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Jiménez JC</td>
<td>2003</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Miranski J</td>
<td>2001</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Skipper D</td>
<td>1992</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>Ishida H</td>
<td>2001</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Periti P</td>
<td>1993</td>
<td>374</td>
</tr>
<tr>
<td></td>
<td>Lin GL</td>
<td>2012</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>Sun W</td>
<td>2014</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>Leng XL</td>
<td>2014</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>Sexton DJ</td>
<td>2006</td>
<td>426</td>
</tr>
<tr>
<td>IMC (Obesidad) (23)</td>
<td>Kohut AY</td>
<td>2015</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Watanabe M</td>
<td>2014</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>Han J</td>
<td>2014</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>Keenan JE</td>
<td>2014</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Itatsu K</td>
<td>2014</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Bonds AM</td>
<td>2013</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Hedrick TL</td>
<td>2013</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Manilich E</td>
<td>2012</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>Pendlimari R</td>
<td>2012</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>Gervaz P</td>
<td>2012</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Wick EC</td>
<td>2011</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>Kurmann A</td>
<td>2011</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Ho VP</td>
<td>2011</td>
<td>197, 198</td>
</tr>
<tr>
<td></td>
<td>Fuji T</td>
<td>2010</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Itani KM</td>
<td>2008</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Konishi T</td>
<td>2006</td>
<td>249, 250</td>
</tr>
<tr>
<td></td>
<td>Hernández-Navarrete MJ</td>
<td>2005</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Miranski J</td>
<td>2001</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Dineen SP</td>
<td>2015</td>
<td>87</td>
</tr>
<tr>
<td>Tipo herida incisional</td>
<td>Kohut AY</td>
<td>2015</td>
<td>247</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>Watanabe M</td>
<td>2014</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>Keenan JE</td>
<td>2014</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Araki T</td>
<td>2014</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Hedrick TL</td>
<td>2013</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Manilich E</td>
<td>2012</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2012</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>Pendlimari R</td>
<td>2012</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>Gervaz P</td>
<td>2012</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Ho VP</td>
<td>2011</td>
<td>197, 198</td>
</tr>
<tr>
<td></td>
<td>Ata A</td>
<td>2010</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2010</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Konishi T</td>
<td>2006</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Hernández-Navarrete MJ</td>
<td>2005</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Miranski J</td>
<td>2001</td>
<td>303</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duración intervención (>3 h)</th>
<th>Kohut AY</th>
<th>2015</th>
<th>247</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Waits SA</td>
<td>2014</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Manilich E</td>
<td>2012</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>Kurmann A</td>
<td>2011</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Ho VP</td>
<td>2011</td>
<td>197, 198</td>
</tr>
<tr>
<td></td>
<td>Degrate L</td>
<td>2011</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Ata A</td>
<td>2010</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Tsutsumi S</td>
<td>2009</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Yamamoto S</td>
<td>2007</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td>Konishi T</td>
<td>2006</td>
<td>250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abierta o laparoscópica</th>
<th>Kohut AY</th>
<th>2015</th>
<th>247</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Han J</td>
<td>2014</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>Keenan JE</td>
<td>2014</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Itatsu K</td>
<td>2014</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Limon E</td>
<td>2014</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>Hedrick TL</td>
<td>2013</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Manilich E</td>
<td>2012</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>Gervaz P</td>
<td>2012</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Biondo S</td>
<td>2012</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Aimaq R</td>
<td>2011</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Ho VP</td>
<td>2011</td>
<td>197, 198</td>
</tr>
<tr>
<td></td>
<td>Law TE</td>
<td>2011</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2010</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Howard DP</td>
<td>2010</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Poon JT</td>
<td>2009</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Konishi T</td>
<td>2006</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Miranski J</td>
<td>2001</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo herida incisional 3 ó 4</th>
<th>Kohut AY</th>
<th>2015</th>
<th>247</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Watanabe M</td>
<td>2014</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>Itatsu K</td>
<td>2014</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Manilich E</td>
<td>2012</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>Pendlimari R</td>
<td>2012</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>Gervaz P</td>
<td>2012</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Ho VP</td>
<td>2011</td>
<td>197, 198</td>
</tr>
<tr>
<td></td>
<td>Howard DP</td>
<td>2010</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Tsutsumi S</td>
<td>2009</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Konishi T</td>
<td>2006</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Hernández-Navarrete MJ</td>
<td>2005</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Miranski J</td>
<td>2001</td>
<td>303</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abierta o laparoscópica</th>
<th>Kohut AY</th>
<th>2015</th>
<th>247</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Watanabe M</td>
<td>2014</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>Keenan JE</td>
<td>2014</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Araki T</td>
<td>2014</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Hedrick TL</td>
<td>2013</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Manilich E</td>
<td>2012</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2012</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>Pendlimari R</td>
<td>2012</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>Gervaz P</td>
<td>2012</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Ho VP</td>
<td>2011</td>
<td>197, 198</td>
</tr>
<tr>
<td></td>
<td>Ata A</td>
<td>2010</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2010</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Konishi T</td>
<td>2006</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Hernández-Navarrete MJ</td>
<td>2005</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Miranski J</td>
<td>2001</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Hernández-Navarrete MJ</td>
<td>Miranski J</td>
<td>2014</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>Sexo (15)</td>
<td>Keenan JE</td>
<td>2014</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Morikane K</td>
<td>2014</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>Limon E</td>
<td>2014</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>Manilich E</td>
<td>2012</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2012</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>Kurmann A</td>
<td>2011</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Ho VP</td>
<td>2011</td>
<td>197, 198</td>
</tr>
<tr>
<td></td>
<td>Ata A</td>
<td>2010</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2010</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Konishi T</td>
<td>2006</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Hernández-Navarrete MJ</td>
<td>2005</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Miranski J</td>
<td>2001</td>
<td>303</td>
</tr>
<tr>
<td>Edad (14)</td>
<td>Keenan JE</td>
<td>2014</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Hedrick TL</td>
<td>2013</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Manilich E</td>
<td>2012</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2012</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>Pendlimari R</td>
<td>2012</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>Kurmann A</td>
<td>2011</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Degrade L</td>
<td>2011</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2010</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Konishi T</td>
<td>2006</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Hernández-Navarrete MJ</td>
<td>2005</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Miranski J</td>
<td>2001</td>
<td>303</td>
</tr>
<tr>
<td>Trasfusión (12)</td>
<td>Watanabe M</td>
<td>2014</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>Araki T</td>
<td>2014</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Halabi WJ</td>
<td>2013</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Manilich E</td>
<td>2012</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Ho VP</td>
<td>2011</td>
<td>197, 198</td>
</tr>
<tr>
<td></td>
<td>Ata A</td>
<td>2010</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Tsutsumi S</td>
<td>2009</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Konishi T</td>
<td>2006</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Shaffer VO</td>
<td>2014</td>
<td>497</td>
</tr>
<tr>
<td>DM (15)</td>
<td>Akinci B</td>
<td>2014</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Keenan JE</td>
<td>2014</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Bonds AM</td>
<td>2013</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2012</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Karidis NP</td>
<td>2011</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Ata A</td>
<td>2010</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2010</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Konishi T</td>
<td>2006</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Hernández-Navarrete MJ</td>
<td>2005</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Miranski J</td>
<td>2001</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Saur NM</td>
<td>2015</td>
<td>498</td>
</tr>
<tr>
<td></td>
<td>Shaffer VO</td>
<td>2014</td>
<td>497</td>
</tr>
<tr>
<td>Preparación intestinal</td>
<td>Araki T</td>
<td>2014</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Waits SA</td>
<td>2014</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Aosasa S</td>
<td>2014</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Lins-Neto MA</td>
<td>2012</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Ameh EA</td>
<td>2011</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Bertani E</td>
<td>2011</td>
<td>499</td>
</tr>
<tr>
<td></td>
<td>Zhu QD</td>
<td>2010</td>
<td>495</td>
</tr>
<tr>
<td></td>
<td>Gravanite G</td>
<td>2008</td>
<td>168</td>
</tr>
<tr>
<td>Tabaquismo (8)</td>
<td>Kohut AY</td>
<td>2015</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Keenan JE</td>
<td>2014</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Hedrick TL</td>
<td>2013</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2010</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Ghuman A</td>
<td>2015</td>
<td>500</td>
</tr>
<tr>
<td>Tratado corticoides (9)</td>
<td>Kohut AY</td>
<td>2015</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Lamore RF</td>
<td>2014</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2012</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Degrate L</td>
<td>2011</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Konishi T</td>
<td>2006</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Miranski J</td>
<td>2001</td>
<td>303</td>
</tr>
<tr>
<td>Ostomía (9)</td>
<td>Itatsu K</td>
<td>2014</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Ricciardi R</td>
<td>2014</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>Hedrick TL</td>
<td>2013</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Nakagawa H</td>
<td>2013</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Ho VP</td>
<td>2011</td>
<td>197, 198</td>
</tr>
<tr>
<td></td>
<td>Degrate L</td>
<td>2011</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Itani KM</td>
<td>2006</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Konishi T</td>
<td>2006</td>
<td>250</td>
</tr>
<tr>
<td>O$_2$ suplementario (hiperoxia) (9)</td>
<td>Schietroma M</td>
<td>2014</td>
<td>414</td>
</tr>
<tr>
<td></td>
<td>Hovaguimiin F</td>
<td>2013</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Thibon P</td>
<td>2012</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>Togioka B</td>
<td>2012</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>Brar MS</td>
<td>2011</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Meyhoff CS</td>
<td>2011</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Murray BW</td>
<td>2010</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>Al-Niaimi A</td>
<td>2009</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Belda FJ</td>
<td>2005</td>
<td>28</td>
</tr>
<tr>
<td>Hipoalbuminemia (7)</td>
<td>Araki T</td>
<td>2014</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Ho VP</td>
<td>2011</td>
<td>197, 198</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Konishi T</td>
<td>2006</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Hernández-Navarrete MJ</td>
<td>2005</td>
<td>193</td>
</tr>
<tr>
<td>Urgente (6)</td>
<td>Morikane K</td>
<td>2014</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>Manilich E</td>
<td>2012</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>Degrate L</td>
<td>2011</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Ata A</td>
<td>2010</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Hernández-Navarrete MJ</td>
<td>2005</td>
<td>193</td>
</tr>
<tr>
<td>IRC (5)</td>
<td>Watanabe M</td>
<td>2014</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2012</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Blumetti J</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Hernández-Navarrete MJ</td>
<td>2005</td>
<td>193</td>
</tr>
<tr>
<td>Radioterapia reciente (últimos 90 días) (5)</td>
<td>Keenan JE</td>
<td>2014</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Ho VP</td>
<td>2011</td>
<td>197, 198</td>
</tr>
<tr>
<td></td>
<td>de Campos-Lobato</td>
<td>2009</td>
<td>496</td>
</tr>
<tr>
<td>Tipo procedimiento</td>
<td>Keenan JE</td>
<td>2014</td>
<td>240</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Tipo sutura</td>
<td>Keenan JE</td>
<td>2007</td>
<td>35</td>
</tr>
<tr>
<td>Cirujano</td>
<td>Manilich E</td>
<td>2012</td>
<td>282</td>
</tr>
<tr>
<td>Quimioterapia reciente (últ. 30 d)</td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td>Comorbilidad</td>
<td>Manilich E</td>
<td>2012</td>
<td>282</td>
</tr>
<tr>
<td>Oclusión o hilo plata</td>
<td>Siah CJ</td>
<td>2011</td>
<td>431</td>
</tr>
<tr>
<td>Estancia preoperatoria</td>
<td>Takesue Y</td>
<td>2011</td>
<td>452</td>
</tr>
<tr>
<td>Cumplimiento de las (4) recomendaciones de prevención</td>
<td>Anthony T</td>
<td>2011</td>
<td>13</td>
</tr>
<tr>
<td>Irrigación (a presión o no) (3)</td>
<td>Dineen SP</td>
<td>2015</td>
<td>87</td>
</tr>
<tr>
<td>Colon derecho o izquierdo</td>
<td>Kim YW</td>
<td>2014</td>
<td>241</td>
</tr>
<tr>
<td>Funcionalidad (dependiente o no) (2)</td>
<td>Keenan JE</td>
<td>2014</td>
<td>240</td>
</tr>
<tr>
<td>Hemicolecotomía derecha, izda, recto (2)</td>
<td>Itatsu K</td>
<td>2014</td>
<td>224</td>
</tr>
<tr>
<td>Control perioperatoria de glucemia (1)</td>
<td>Waits SA</td>
<td>2014</td>
<td>470</td>
</tr>
<tr>
<td>Sutura o grapas (2)</td>
<td>Sajid MS</td>
<td>2013</td>
<td>505</td>
</tr>
<tr>
<td>Control perioper. de temperatura (2)</td>
<td>Melton GB</td>
<td>2013</td>
<td>298</td>
</tr>
<tr>
<td>Espesor pared abdominal (2)</td>
<td>Kwaan MR</td>
<td>2013</td>
<td>258</td>
</tr>
<tr>
<td>Alcohol (2)</td>
<td>Hedrick TL</td>
<td>2013</td>
<td>189</td>
</tr>
<tr>
<td>Hematocrito preoperatorio (2)</td>
<td>Hedrick TL</td>
<td>2013</td>
<td>189</td>
</tr>
<tr>
<td>Diagnóstico (2)</td>
<td>Manilich E</td>
<td>2012</td>
<td>282</td>
</tr>
<tr>
<td>Retractor Alexis (2)</td>
<td>Cheng KP</td>
<td>2012</td>
<td>62</td>
</tr>
<tr>
<td>UCI (2)</td>
<td>Ho VP</td>
<td>2011</td>
<td>197, 198</td>
</tr>
<tr>
<td>Condición</td>
<td>Autor</td>
<td>Año</td>
<td>Número de página</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Otras enfermedades del colon (2)</td>
<td>Degrate L</td>
<td>2011</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Kiran RP</td>
<td>2010</td>
<td>242</td>
</tr>
<tr>
<td>Gentamicina subcutánea (2)</td>
<td>Dineen SP</td>
<td>2015</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Pochhammer J</td>
<td>2015</td>
<td>506</td>
</tr>
<tr>
<td>Sepsis (1)</td>
<td>Kohut AY</td>
<td>2015</td>
<td>247</td>
</tr>
<tr>
<td>Marcadores inflamación (1)</td>
<td>Takakura Y</td>
<td>2014</td>
<td>451</td>
</tr>
<tr>
<td>Trasfusión > 200 ml (1)</td>
<td>Watanabe M</td>
<td>2014</td>
<td>475</td>
</tr>
<tr>
<td>Ventilación asistida (1)</td>
<td>Watanabe M</td>
<td>2014</td>
<td>475</td>
</tr>
<tr>
<td>Contaminación (1) intraoperatoria</td>
<td>Han J</td>
<td>2014</td>
<td>182</td>
</tr>
<tr>
<td>Raza (1)</td>
<td>Keenan JE</td>
<td>2014</td>
<td>240</td>
</tr>
<tr>
<td>Sepsis preoperatoria (1)</td>
<td>Keenan JE</td>
<td>2014</td>
<td>240</td>
</tr>
<tr>
<td>Cirrosis hepática (1)</td>
<td>Itatsu K</td>
<td>2014</td>
<td>224</td>
</tr>
<tr>
<td>Amplitud de la herida (1)</td>
<td>Itatsu K</td>
<td>2014</td>
<td>224</td>
</tr>
<tr>
<td>Material de sutura (1)</td>
<td>Itatsu K</td>
<td>2014</td>
<td>224</td>
</tr>
<tr>
<td>Neutropenia (1)</td>
<td>Araki T</td>
<td>2014</td>
<td>15</td>
</tr>
<tr>
<td>Normotermia postoperator (1)</td>
<td>Waits SA</td>
<td>2014</td>
<td>470</td>
</tr>
<tr>
<td>Cirugía invasión mínima (1)</td>
<td>Waits SA</td>
<td>2014</td>
<td>470</td>
</tr>
<tr>
<td>Más de una incisión (1)</td>
<td>Limon E</td>
<td>2014</td>
<td>271</td>
</tr>
<tr>
<td>Leptina (IMC) (1)</td>
<td>Ortega-Deballon P</td>
<td>2014</td>
<td>348</td>
</tr>
<tr>
<td>Presión negativa herida (1)</td>
<td>Bonds AM</td>
<td>2013</td>
<td>37</td>
</tr>
<tr>
<td>Neutrofilia postoperatoria (1)</td>
<td>Hautemaniere A</td>
<td>2013</td>
<td>185</td>
</tr>
<tr>
<td>Recambio equipos (1) intraoperator, antes de cerrar</td>
<td>Ortiz H</td>
<td>2012</td>
<td>349</td>
</tr>
<tr>
<td>Hipertensión (1)</td>
<td>Kiran RP</td>
<td>2012</td>
<td>510</td>
</tr>
<tr>
<td>Estadio tumoral (1)</td>
<td>Biondo S</td>
<td>2012</td>
<td>34</td>
</tr>
<tr>
<td>Profilaxis de trombosis (1)</td>
<td>Short SS</td>
<td>2011</td>
<td>430</td>
</tr>
<tr>
<td>Enfermedad de base (1)</td>
<td>Kurmann A</td>
<td>2011</td>
<td>255</td>
</tr>
<tr>
<td>Lesiones en órganos (1)</td>
<td>Kurmann A</td>
<td>2011</td>
<td>255</td>
</tr>
<tr>
<td>Drenaje subcutáneo en (2) (obesos)</td>
<td>Yosimatsu K</td>
<td>2014</td>
<td>493</td>
</tr>
<tr>
<td></td>
<td>Fujii T</td>
<td>2011</td>
<td>137</td>
</tr>
<tr>
<td>Lavado colon intraoperator (1)</td>
<td>Alcántara M</td>
<td>2011</td>
<td>507</td>
</tr>
<tr>
<td>Radiación (1)</td>
<td>Ho VP</td>
<td>2011</td>
<td>1197, 198</td>
</tr>
<tr>
<td>Perforación (1)</td>
<td>Ho VP</td>
<td>2011</td>
<td>1197, 198</td>
</tr>
<tr>
<td>Heparina</td>
<td>Milanchi S</td>
<td>2010</td>
<td>301</td>
</tr>
<tr>
<td>Presión parcial O2 (1) subcutáneo</td>
<td>Govinda R</td>
<td>2010</td>
<td>167</td>
</tr>
<tr>
<td>Retracción con protección (1)</td>
<td>Reid K</td>
<td>2010</td>
<td>387</td>
</tr>
<tr>
<td>Estancia postoperatoria (1)</td>
<td>Tsutumi S</td>
<td>2009</td>
<td>463</td>
</tr>
<tr>
<td>Hipotensión intraoperator (1)</td>
<td>Itani KM</td>
<td>2006</td>
<td>223</td>
</tr>
<tr>
<td>Nivel de hemoglobina (1)</td>
<td>Konishi T</td>
<td>2006</td>
<td>250</td>
</tr>
<tr>
<td>Povidona (2)</td>
<td>Pattana-arun</td>
<td>2008</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>Harihara Y</td>
<td>2006</td>
<td>183</td>
</tr>
<tr>
<td>Intervenciones quirúrg. (1) antes de cerrar</td>
<td>Miranski J</td>
<td>2001</td>
<td>303</td>
</tr>
<tr>
<td>Apósito con sales de Ag (1)</td>
<td>Ruiz-Tovar</td>
<td>2015</td>
<td>398</td>
</tr>
<tr>
<td>Apósito con mupirocina (1)</td>
<td>Ruiz-Tovar</td>
<td>2015</td>
<td>398</td>
</tr>
<tr>
<td>Anestesia con remifentanil (1)</td>
<td>Inagi T</td>
<td>2015</td>
<td>217</td>
</tr>
<tr>
<td>Ascitis (1)</td>
<td>Moghadamyegehaneh Z</td>
<td>2015</td>
<td>304</td>
</tr>
<tr>
<td>Ciorhexitina vs Povidona y nada (1)</td>
<td>Kaoutzanis C</td>
<td>2015</td>
<td>255</td>
</tr>
<tr>
<td>Presión negativa herida (1)</td>
<td>Chadi SA</td>
<td>2015</td>
<td>508</td>
</tr>
<tr>
<td>Uso de anillo (2)</td>
<td>Baier P</td>
<td>2012</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Lauscher JC</td>
<td>2012</td>
<td>264</td>
</tr>
</tbody>
</table>

~ 174 ~
3.4.- Métodos estadísticos (17,90,158,286,289,373,376,)

Al razonar qué métodos estadísticos podemos utilizar para el análisis de los datos recopilados y utilizados en la presente investigación es imprescindible considerar qué tipos de variables componen el estudio. Con los objetivos que nos hemos propuesto, ya expresados en el apartado correspondiente, disponemos de una variable dependiente (IN) y de un número considerable de variables predictoras (independientes) elegidas en el seno de la Comisión INOZ\(^{(68)}\) compuesta por profesionales con experiencia y dedicación a la vigilancia, prevención y control de la IN, de todos los hospitales de agudos de Euskadi.

Por otro lado, la variable dependiente está medida como cualitativa (categórica), con 11 categorías, de las cuales destaca la infección de la herida quirúrgica: 65,86 % del total de IN; Urinaria: 11,48%; Bacteriemias: 9,62%; Neumonía: 5,17%; Respiratorio inferior: 3,83 %. Esto hace que la variable dependiente pueda ser contemplada como dicotómica (IN: SI o NO) o como policotómica (tipo de IN).

Nosotros vamos a realizar el análisis considerándola como dicotómica ya que los objetivos del estudio así lo requieren (o se adquiere una IN o no se adquiere).

Las variables predictoras (independientes) son numerosas. Son dicotómicas, policotómicas y dos cuantitativas continuas. Las policotómicas las hemos dicotomizado y lo mismo hemos hecho con las dos cuantitativas (ninguna de las dos se distribuyen según la Normal), después de varias pruebas contemplándolas como se han medido (dummys para las cualitativas y continuas para las dos cuantitativas) y comprobar que los modelos no variaban cuando dicotomizábamos todas.

Planteadas estas premisas la elección se impone: utilizaremos técnicas bivariantes y multivariantes. Entre estas últimas, RLB (Regresión Logística Binaria) y Regresión de Cox. No utilizaremos RL Multinomial o Politómica porque con el número de pacientes de los que disponemos por categoría queda muy lejos el cumplimiento del número de individuos necesarios para realizar la prueba. Tampoco utilizaremos componentes principales porque no se adapta a las características de nuestro estudio, aunque la variable dependiente, en este tipo de estudios, sea categórica.
3.4.1.- **Técnicas bivariantes**.

Entre las técnicas bivariantes que vamos a utilizar citamos:

- X^2 (Ji o Chi cuadrado) para comparar cualitativas con IN.
- t-Student-Fisher para comparar las dos cuantitativas con IN.
- Kolmogorov-Smirnov para comprobar si las dos cuantitativas se distribuyen según la Normal.
- Prueba de los Rangos de Mann-Witney y prueba de Kolmogorov-Smirnov para dos muestras, como pruebas no paramétricas para comparar las dos cuantitativas con IN al no cumplir las primeras las condiciones de aplicación.

3.4.2.- **Regresión logística**.

Consideramos que, de forma resumida, los pasos a seguir en la práctica para realizar una regresión logística son:

1. Determinar claramente cuál es el objetivo del estudio.
2. Comprobar la relación de cada variable Independiente (factores de riesgo o covariables) con la variable dependiente (en nuestro caso IN).
3. Comprobar si existen interacciones, factores de confusión y/o colinealidad.
4. Construir el modelo en nuestro caso la ecuación de Regresión Logística Binaria).
5. Validar el modelo final.

3.4.2.1.- **Determinar claramente cuál es el objetivo del estudio**.

Una vez que tengamos la certeza de qué pretendemos con el estudio aplicaremos un procedimiento de análisis matemático\(^{(2)}\).

Este aspecto es muy importante en el análisis multivariante ya que si se introducen demasiadas variables predictoras simultáneamente con la intención de evaluar sus relaciones o asociaciones, existe gran posibilidad de encontrar dependencias espúreas (sin interés o absurdas). Hay que añadir que la probabilidad de no encontrar relaciones importantes por no saber cómo analizarlas o porque los datos sean imprecisos (error aleatorio) también puede ser importante.
Por eso es fundamental tener bien claro lo que puede aportar la regresión logística multivariante. Con ella pretendemos:

- obtener una estimación no sesgada o ajustada de la relación entre la variable dependiente Y y una o más variables independientes Xs, de las que intentamos averiguar su peso específico en esa relación.
- evaluar varios factores de riesgo (covariables) a la vez, de los que suponemos relacionados (o no) con la variable dependiente. También intentamos conocer su papel (predictor, confundente, modificador del efecto) y su efecto sobre la variable dependiente.
- construir un modelo plasmándolo en una ecuación con fines predictivos o de cálculo del riesgo. Este modelo, aplicado a un paciente concreto, debe ser útil para conocer el riesgo que tiene ese paciente de padecer una IN. Todo ello manteniendo una determinada precisión y validez.

3.4.2.2.- Comprobar la relación de cada variable Independiente (factores de riesgo o covariables) con la variable dependiente (en nuestro caso IN).

Antes introducir las variables en el modelo es imprescindible comprobar la posible asociación entre la variable dependiente Y las diferentes variables independientes Xs, medidas preferentemente como categóricas y tomadas de una en una. Es decir, hacer valoraciones bivariantes como si no existiesen el resto de variables.

Con esto pretendemos obtener una primera aproximación a la estimación de la medida de asociación, la OR, clasificando las variables de acuerdo con el valor de esta medida y de la significación estadística que obtengamos (Chi cuadrado). Por supuesto, es preciso considerar que puede tratarse de estimaciones sesgadas (confusión), o poco informativas (interacción). De ello nos ocuparemos en un siguiente paso.

Un procedimiento más laborioso, que también vamos a realizar, consiste en el análisis de las asociaciones bivariantes por medio de regresión logística binaria, también individual, para marcar con claridad la categoría de referencia y comprobar que ambos métodos nos aportan estimaciones idénticas. Además, al tratarse de un estudio de cohortes, estableceremos cuál es la variable independiente principal.

También hay que señalar que la codificación numérica de las variables categóricas debe ser cuidadosa ya que los procedimientos automáticos de análisis
utilizan como categoría de referencia la que tiene menor valor numérico (riesgo basal o RR = 1).

Otro requisito así mismo importante en la codificación de las variables dicotómica con 0 par la de referencia o categoría basal y 1 a la categoría que consideramos que es la de exposición o riesgo, lo que nos ayudará a evitar problemas en la interpretación de los resultados. Si disponemos de variables categóricas policotómicas es preferible asignar 0 a la categoría de menor riesgo. Estas variables policotómicas son tratadas en muchos programas estadísticos (SPSS en nuestro caso) creando el mismo número de variables dummy (ficticias) que categorías tenga la variable, menos 1.

3.4.2.3.- Comprobar si existen interacciones, factores de confusión y/o colinealidad(79).

El procedimiento para detectar y tratar variables que presenten interacción y/o confusión se detalla más adelante (página 178 y siguientes). Vamos a señalar aquí las condiciones que deben cumplir las variables de confusión para que las incluyamos en el modelo:

1. Al introducir las dos variables en la ecuación (X y sospechosa de confusión-, sin su término multiplicativo, además de la variable dependiente Y) cambia la OR cruda de la variable principal independiente X de manera importante (> 10 % según la mayoría de los autores). (Citas 3 ó 4)
2. No aumentan sustancialmente los intervalos de confianza de la variable principal X.
3. No cambia la significación estadística del contraste de Wald para el coeficiente de regresión de la variable principal X.
4. La variable sospechosa de ser confundente debe tener un coeficiente de regresión significativo y un OR con IC que no incluya el 1.

Cuando analizamos la asociación de varias variables independientes (predictoras) y una variable dependiente (de desenlace), podemos encontrar relaciones que pueden ser reales pero también podemos encontrarnos con relaciones debidas a confusión y/o interacción o modificación del efecto. Y también puede existir colinealidad que distorsionaría el posible efecto.

Si el diseño y/o las mediciones son incorrectos suelen aparecer los sesgos. Idéntica situación se da con la presencia de factores de confusión no controlados.
Para controlar la confusión existen fundamentalmente las siguientes estrategias:

1. **Emparejamiento o “matching”**: los pacientes se emparejan por la variable sospechosa de confundente. Útil, sobre todo, para estudios de casos y controles.

2. **Restricción**: se eliminan del estudio los individuos que presenten el factor sospechoso de confundente. Podemos perder información y potencia.

3. **Asignación aleatoria**: el mejor sistema para controlar la confusión. Esta aleatorización consigue que los diferentes factores se distribuyan por igual, siempre que se trate de muestras suficientemente grandes. Tiene como inconveniente que sólo puede utilizarse en estudios experimentales donde se controla la variable dependiente.

4. **Análisis estratificado**: se estratifican las variables principales del estudio por medio de las variables sospechosas de ser variables de confusión.

5. **Análisis multivariantes**: se utiliza la regresión múltiple (lineal, logística, de Cox) que nos permite analizar simultáneamente las relaciones entre varias variables. Es un excelente método para controlar variables sospechosas de confundentes(2).

Las tres primeras son útiles en la fase de diseño. Las otras dos en la fase de análisis. En nuestro caso las tres del diseño no son aplicables y sí los dos del análisis. Nos referiremos someramente al análisis estratificado, pero elegiremos, por considerarlo más útil en nuestro estudio, el análisis multivariante que describiremos más ampliamente.

En general, las técnicas de ajuste estadístico permitirán controlar el efecto de terceras variables que pueden influir en la relación entre la exposición (los que hemos denominado factores de riesgo o covariables) y la respuesta (IN en nuestro caso). Para ello debemos asegurarnos esos factores de riesgo o covariables puedan afectar a la relación evaluada. Lo podemos conseguir revisando la bibliografía especializada y basándonos en nuestra experiencia.

Vamos a describir estas situaciones y a relatar los métodos que utilizaremos en su control.

3.4.2.3.1- **Variables de confusión**(27).

Una variable de confusión (o factor de confusión) es aquella que distorsiona la medida de la asociación entre otras dos: la variable predictora o independiente y la
variable de desenlace o dependiente. Son variables externas a la relación que se evalúa, cronológicamente anteriores a la exposición y relacionadas tanto con la exposición como con la respuesta. Su presencia produce sesgos en la relación de la variable dependiente e independiente, que se deben eliminar o controlar a través de ajustes estadísticos

Estas de variables de confusión pueden inducirnos a error ya que podemos atribuir un efecto cuando no existe o sobre interpretar una asociación real (confusión positiva) o se disminuiría (negativa) e incluso podemos invertir el sentido de una asociación auténtica. El sesgo está asociado a la selección de los sujetos para la obtención de los datos sobre enfermedad o exposición. La confusión es el resultado de relaciones específicas existentes entre las variables de una base de datos.

La confusión está con frecuencia presente a pesar de los esfuerzos que se hagan para evitarlo. Por otra parte, una variable puede comportarse como de confusión en un conjunto de datos y no serlo en otra observación

Se atribuye a Mill JS la primera descripción del término si bien algunos autores citan a Bacon F como el primero en utilizar el concepto especificando que ya se observan algunos antecedentes del mismo en sus obras.

En resumen, para catalogar una variable como de confusión es necesario cumplir ciertos requisitos:

1.- Debe ser un FR (o protector) de la variable dependiente. Debe estar asociada con el desenlace o variable dependiente, independientemente de su asociación con la exposición (quiere esto decir que en los no expuestos también tiene que estar relacionada con la variable dependiente).

2.- Debe estar relacionada con la variable independiente. Debe estar asociada a la exposición sin ser un resultado de la misma.

3.- No debe ser un mero paso intermedio en la relación principal evaluada (cronológicamente anterior a la exposición).

4.- No debe ser un eslabón intermedio entre exposición (independiente) y desenlace (dependiente).

Identificación de las variables de confusión.

Con frecuencia no es fácil detectarlas y muchos autores no las tienen en cuenta. Desde un punto de vista amplio consideramos que existe confusión cuando observamos diferencias importantes entre las estimaciones brutas y las ajustadas por
esas posibles variables de confusión. Para detectarlas disponemos de varios sistemas que debemos sistematizar.

En primer lugar hay que estimar los valores ajustados ya que los brutos los hemos obtenido antes (ver apartado 3.4.2). Clásicamente se ha utilizado el método consistente en estratificar la variable sospechosa de confusión y calcular las estimaciones dentro de cada estrato. Pero, cuando utilicemos varias variables predictoras y pretendamos establecer si entre ellas existen variables de confusión nos podemos encontrar con que los estratos podrían estar compuestos por un número insignificante de sujetos. En esos casos la solución más eficiente es utilizar el análisis multivariables o multivariante que es lo que vamos a hacer (5).

Para calcular un riesgo utilizamos como medidas OR (Odds Ratio), RR (riesgo relativo) y RA (riesgo atribuible). OR y el RR nos indican cuantas veces más se presentará el resultado en los expuestos que en los no expuestos (óptica multiplicativa). Es decir, expresan cuantas veces más tienen de riesgo los expuestos que los no expuestos. El RA indica la cantidad adicional de incidencia que tienen los expuestos respecto a los no expuestos (óptica aditiva). Es útil ya que permite evaluar cuanta cantidad se debe a la exposición y por tanto, cuanta incidencia se podría reducir.

Bajo la óptica multiplicativa el OR y el RR deben ser similares en cada estrato y diferentes del bruto para hablar de variable de confusión. Bajo la óptica aditiva tiene que ocurrir lo mismo.

Como hemos comentado, vamos a utilizar el análisis multivariables o multivariante que consideramos menos vulnerable y está más en consonancia con el desarrollo posterior del estudio.

Con el análisis multivariante hallaremos un OR básico para la variable que consideramos la más significativa (independiente principal de la página 175) o que mayor relación tenga con la variable desenlace o variable dependiente. La elegiremos teniendo en cuenta el RA, la p de significación en la prueba individual de X², el OR de la prueba individual utilizando RLB, la amplitud del IC de este OR y, sobre todo, la significación clínica que se asigna a esa variable.

A continuación iremos introduciendo independientemente, es decir, una a una el resto de variables en el análisis multivariante (regresión logística).

Comparando los OR de la variable principal obtenidos con el OR bruto de la misma, podremos saber si esa variable es o no de confusión. Los diversos autores estiman que hay confusión cuando la diferencia entre los OR sea superior a un 10% (5).
Sacaremos del modelo la variable sospechosa de confusión (dejando en el modelo la variable que consideramos principal y la dependiente) e iremos introduciendo, una a una, el resto de sospechosas repitiendo el procedimiento descrito.

Consideraremos una variable como variable de confusión cuando:

1.- La OR (cruda) de la variable independiente con la dependiente cambia de manera importante (> 10%) al introducir en la ecuación de RLB la variable presuntamente de confusión.

2.- No aumenta sustancialmente la amplitud de los intervalos de confianza de la OR de la variable principal (sería más imprecisa la estimación).

3.- No cambia la significación estadística del contraste de Wald para el coeficiente de regresión de la variable principal.

4.- El coeficiente de regresión B de la variable sospechosa o confundente debe ser significativo y, por tanto, su OR no contener en sus intervalos de confianza el valor 1 (nulo).

En nuestro caso utilizaremos las 4 ó 5 variables más destacadas y compondremos, con cada una (realizadas las pruebas de confusión, interacción y/o colinealidad) de ellas, un modelo. Utilizaremos el modelo que mejor ajuste, si cumple las condiciones exigidas.

3.4.2.3.2.- Variable de interacción o modificadora del efecto.

Se consideran variable de interacción o modificadora del efecto aquellas que cambian la intensidad o el sentido de la relación entre la exposición y la respuesta.

Por supuesto, es importante distinguir entre confusión e interacción y considerar que ambos fenómenos pueden coincidir al mismo tiempo.

Aunque hayamos expuesto antes lo concerniente a la confusión que lo relativo a la interacción, en la práctica primero se explora si existe o no interacción y después confusión, debido a que en la interacción generamos nuevas variables (términos multiplicativos).

Identificación de las variables de interacción:

Existen dos modelos: el aditivo (RA) y el multiplicativo (OR y RR).

Si utilizamos el análisis estratificado: la variable analizada es modificadora del efecto cuando el OR y el RA son diferentes en cada estrato.

No obstante, como hemos especificado en el caso de la confusión, vamos a
utilizar el análisis multivariante por las razones expuestas allí.

Para conocer si existe interacción y, en su caso, con qué variables, se procede realizando una RLB introduciendo la variable dependiente y la independiente que hayamos considerado principal, además de la sospechosa de interacción y el término multiplicativo de la variable independiente principal y la sospechosa de interacción. Consideramos que hay interacción cuando hay significación estadística en el coeficiente de regresión logística B del término multiplicativo.

Al incluir los términos multiplicativo de interacción en el modelo (si procede) debemos cumplir con el principio jerárquico que implica que en los modelos jerárquicos, si eliminamos un término todos los de mayor orden deben ser eliminados. Y todos los de menor orden deben mantenerse en el modelo.

La interacción, al contrario que la confusión, no produce sesgo en la evaluación de la relación analizada.

3.4.2.3.3.- **Colinealidad.**

Hemos utilizado el programa SPSS para el diagnóstico de colinealidad. En las dos últimas columnas de la Tabla 116 podemos apreciar:

- Factor de inflación de la varianza (FIV o VIF en las siglas inglesas). Se define como:

 \[FIV_i = \frac{1}{1-R_i^2} \]

 donde \(R_i \) es el coeficiente de determinación de cada variable independiente con todas las demás.

- Tolerancia. Se define como:

 \[T_i = \frac{1}{FIV_i} = \frac{1}{1-R_i^2} \]

Siguiendo a Kleinbaum y colaboradores\(^{511}\) existen problemas de colinealidad cuando FIV es superior a 10 y T inferior a 0,1.

3.4.2.4.- **Construir el modelo (en nuestro caso la ecuación de Regresión Logística Binaria).**

Para la construcción del modelo vamos a utilizar la regresión logística binaria. Iremos construyendo varios modelos y seleccionaremos el que presente un mejor ajuste con nuestros datos. Más adelante plantearemos la utilización del modelo de regresión de Cox con los mismos criterios. El programa estadístico utilizado va a ser SPSS.
Vamos a realizar los siguientes pasos:

A. - *Introducir variables en el modelo*. Este es un punto álgido, motivo de discusión por muchos investigadores. Nosotros vamos a incluir, por lo menos en un primer paso, las siguientes variables:

- Las estadísticamente significativas en su comparación individual con la variable dependiente \(Y\) (presencia o ausencia de infección nosocomial). En el caso de las policotómicas las que sean significativas globalmente o alguna de sus dummy.

- Las que hayamos clasificado como variables de interacción y su término multiplicativo.

- Las clasificadas como variables de confusión que reúnan las condiciones expresadas en el punto 3.4.3.1.

B. - *Considerar y valorar -2LL*

C. - *Prueba de Hosmer y Lemeshow.*

Tiene que ser no significativa

D. - \(R^2\) de Cox y Snell y \(R^2\) de Nagelkerke.

Especially interesante la \(R^2\) de Nagelkerke, que es una modificación de la \(R^2\) de Cox y Snell adaptándola a la escala 0-1. Indica la cantidad de la variable dependiente (IN) que es explicada por las variables independientes (predictoras)

E. - *Clasificación (sensibilidad, especificidad y valor global)*

F. - *Observar el resultado en “variables en la ecuación”.*

Allí aparecen las variables significativas con su coeficiente de regresión \(B\) y su error estándar, (con la prueba de Wald), sus grados de libertad, su significación, sus OR y sus IC al 95%..

G. - *Componer la ecuación.*

Por último hay que componer la ecuación (RL) que mostramos a continuación con las variables que finalmente hayan resultado significativas.

\[
P (Y=1)= \frac{1}{1+ \exp (- \alpha - \beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3 - \ldots - \beta_k X_k)}
\]

~ 184 ~
En ella los componentes significan:

\[P = \text{probabilidad de IN para un paciente que presente las variables que componen la ecuación positivas (valor 1 ya que son dicotómicas y la presencia del FR la hemos codificado como 1)} \]

\[\exp = \text{El número } e (2.718) \text{ se va a elevar al exponente que figura entre paréntesis.} \]

\[\alpha = \text{constante del modelo.} \]

\[\beta_1, \beta_2...\beta_k = \text{constante de la variable 1, 2...k.} \]

\[X_1, X_2...X_k = \text{valor de la variable 1, 2...K. En nuestro caso 1.} \]

3.4.2. 5.- **Validar el modelo final.**

Los resultados obtenidos hasta aquí debemos considerarlos **provisionales** y someterlos a **evaluación**. Entre las múltiples formas de validar el modelo que proponen muchos autores vamos a utilizar las que resultan imprescindibles, son más fáciles de interpretar y están al alcance de usuarios sin una preparación estadística profunda. En la descripción seguimos el orden de aparición en SPSS:

Destacamos los siguientes puntos como imprescindibles\(^{(2,4)}\):

- **Prueba ómnibus sobre los coeficientes del modelo:** utiliza Chi cuadrado para evaluar la hipótesis nula de que los coeficientes \(\beta\) de los términos incluidos en el modelo (excepto la constante), son cero. Es la diferencia de -2 LL para el modelo únicamente con la constante y el modelo -2 LL para el modelo estudiado.

 La significación estadística indica que el modelo con las nuevas variables mejora el ajuste de forma significativa con respecto a lo que teníamos.

- **Devianza - 2LL** (menos 2 veces el logaritmo neperiano de la verosimilitud). Mide hasta qué punto un modelo se ajusta bien a los datos.

 Idealmente es 0, pero es muy difícil conseguir que sea 0 especialmente si el número de variables es elevado, como ocurre en casi todos los estudios médicos y, por supuesto, en el nuestro.

- **Prueba de Hosmer-Lemeshow.** Otra opción para valorar el ajuste global del modelo es el test de Hosmer-Lemeshow.

\~185~
Esta prueba es más robusta que el estadístico de bondad de ajuste tradicionalmente utilizado en la regresión logística, sobre todo si el modelo incluye covariables continuas y si el estudio tiene un tamaño de muestra pequeño. Los casos quedan agrupados en deciles de riesgo. El test compara, en cada decil, la probabilidad observada con la probabilidad esperada.

Se basa en que si hay buen ajuste, un valor alto de la probabilidad predicha (p) se corresponderá con el resultado $Y=1$ (variable dependiente); por el contrario, un valor bajo de p (próximo a cero) se asociará con el resultado $Y=0$. Calcula las probabilidades de la variable dependiente que predice el modelo, para cada observación del conjunto de datos. Además las ordena, las agrupa y calcula, a partir de ellas, las frecuencias esperadas y las compara con las observadas mediante una prueba de Chi cuadrado.

Para demostrar que el modelo es aceptable la prueba tiene que resultar NO significativa (No existen diferencias estadísticamente significativas entre los resultados predichos y los observados)

- La R^2 de Cox y Snell y otros pseudo R^2 que pretenden cumplir el papel del coeficiente de determinación (R^2) de la regresión lineal: la variabilidad de la variable dependiente que explica el modelo. Los valores próximos a 1 indican un muy alto ajuste:
 - La R cuadrado de Cox y Snell también es un coeficiente de determinación generalizado. Se utiliza para comprobar la proporción de varianza de la variable dependiente que explican las variables predictoras. Su fundamento es la comparación del log de la verosimilitud (LL) del modelo con el log de la verosimilitud (LL) del modelo de línea base. Se interpreta como el tanto por ciento de la variación de la variable dependiente que es explicada por las variables introducidas en el modelo. Es interesante pero tiene sus problemas a la hora de interpretarla por lo que se utiliza más la R2 de Nagelkerke.
 - R cuadrado de Nagelkerke: es una versión corregida de la R cuadrado de Cox y Snell. La R cuadrado de Cox y Snell tiene un valor máximo inferior a 1, incluso en modelos perfectos. La R cuadrado de Nagelkerke corrige esa escala.
y cubre el rango completo de 0 a 1.

- Tabla de clasificación. Para completar la evaluación la ecuación de regresión y el modelo obtenido también es necesario construir una tabla de 2 x 2 clasificando a todos los pacientes de acuerdo con la concordancia entre los valores observados en nuestro estudio y los predichos o estimados por el modelo (similar a la evaluación de las pruebas diagnósticas). Recordemos que si la ecuación no tuviese poder de clasificación alguno la especificidad, sensibilidad y total de clasificación correctas sería del 50% (por azar). Se considera aceptable el modelo si especificidad y sensibilidad tienen un nivel alto (al menos 75%).

En el Anexo 4 incluimos las indicaciones para realizar una RLB con el paquete estadístico SPSS versión 23.

3.4.3.- **Regresión de Cox o de los Riesgos Proporcionales**

Las bases de datos son las mismas que en la RLB

Las variables que se van a utilizar son de tres tipos:

- Dependiente dicotómica: IN
- Tiempo, expresada como días a riesgo, cuantitativa.
- Covariables (predictoras): resto

3.4.3.1.- **Asunciones del modelo**

El primer paso consiste en comprobar que se cumplen las condiciones exigidas o asunciones del modelo.

En los modelos de Cox la asunción es que el riesgo relativo instantáneo (hazard ratio) sea proporcional e independiente del tiempo. Con esto se asume que el efecto de las covariables (variables predictoras) sobre la función de riesgo es log-lineal, además de que $h_0(t)$ es proporcional, es decir, multiplicativa. La comprobación de estos asertos se puede demostrar tanto gráfica (sólo para variables categóricas) como estadísticamente.

En nuestro estudio todas las covariables son categóricas excepto edad y tiempo de intervención. Y estas dos también se han categorizado como explicamos en el
apartado correspondiente. No obstante las comprobaremos como categóricas y como
continuas.

En las **variables categóricas** vamos a realizar una comprobación gráfica. Si las
curvas de supervivencia son "paralelas" estaremos cumpliendo con las asunciones del
modelo. Se observa mejor si esa comprobación gráfica se representa en función del
logaritmo del tiempo (SPSS) que si lo hacemos con **función del riesgo**. Para realizarlo
con SPSS, en la carátula 1ª de regresión de Cox introducimos la variable a estudio en
la casilla **Estratos**, en vez de en la de **Covariables**. Y en la carátula **Gráficos** se marcan
Riesgo y Log menos Log, aunque luego elijamos sólo Log menos Log ya que su
resultado es más gráfico.

En las **variables cuantitativas** (**edad** y **duración de la intervención**), a pesar de
que ambas se hayan dicotomizado y utilizado así y resulten sus curvas "paralelas",
vamos a comprobar también si se cumplen las condiciones, consideradas como
cuantitativas, es decir, como se midieron.

Para ello creamos un término multiplicativo entre Tiempo (**Días a riesgo en
nuestro caso**) y cada una de las variables a estudiar: **edad** o **duración de la
intervención**.

Para crear el término multiplicativo (SPSS) debemos ir a
Analizar/Supervivencia/Cox con variable dependiente del tiempo. Se introduce en el
cuadro que aparece: **T_**, término * de multiplicar y la variable a estudio. En el cuadro
Expresión para T_COV_ se introduce T_, el término multiplicar (cogido del cuadro) y la
variable a estudio (**edad** o **duración de la intervención**). Se pincha en el recuadro
Modelo... y nos aparece otra vez la carátula de Regresión de Cox. Ponemos cada
variable en su sitio (en Hora: **Días a riesgo**; en Estado: **IN codificada** (hay que pinchar
en definir el evento y poner 1) y en covariables: **T_COV** y **edad** o **duración de la
intervención**. Aceptamos y nos quedamos con **Pruebas ómnibus de coeficientes de
modelo** (debe ser **significativa**) y **Variables en la ecuación** (debe ser **no significativa**).

Entonces concluimos que no son variables dependientes del tiempo. Qedarían así:

\[
T_\ast edad \\
T_\ast tiempo de intervención.
\]
3.4.3.2. - **Interacción.**

Para conocer si las variables del modelo presentan interacción hay que compararlas de dos en dos, introduciendo a la vez el término multiplicativo. Decimos que un modelo logístico presenta interacción si los tres coeficientes son simultáneamente significativos.

El problema en un estudio de cohortes como el actual es elegir cuál va a ser la variable predictora principal con la que comprobar si existen, en las demás, interacción o confusión. Para ello vemos el comportamiento individual de cada covariable cuando se realiza un Cox (sólo con esa covariable).

Elegiremos la variable principal de acuerdo con los siguientes criterios: importante peso específico en su contribución a la variable de desenlace (infección nosocomial), valor de Wald más elevado y también de X^2 al comparar la posible variable principal con IN y, por tanto, sus significaciones ($p=0,000$). No obstante haremos lo mismo con otras tres variables al menos y nos quedaremos con el modelo que cumpla las condiciones y sea al que mejor ajusten nuestros datos.

Introducimos, entonces, en el cuadro de covariables la variable elegida como principal y el resto de variables una por una, así como su término multiplicativo con UCI. Una vez obtenida la significación para las dos variables y su término multiplicativo, dejamos la principal y sacamos la variable sospechosa de interacción y el término multiplicativo. Repetimos el proceso con todas las variables, una por una. Si las dos variables y su término multiplicativo son significativos estamos ante el fenómeno de la interacción y hay que introducir en el modelo las dos variables y el término multiplicativo.

3.4.3.3. - **Colinealidad:** existe colinealidad cuando -2LL es muy significativa y ni las dos variables originales ni su producto son significativos.

3.4.3.4. - **Confusión.**

Si en un modelo de Cox introducimos una nueva variable independiente y su coeficiente (el de esa variable independiente) cambia significativamente respecto al valor que se obtuvo en el modelo simple o se anula, o si en ese modelo múltiple cambia significativamente el coeficiente de alguna de las variables que ya estaban en el modelo, puede que estemos ante interacción o confusión. Así comprobaremos qué ocurre con el coeficiente de regresión B y lo compararemos con el obtenido en la RLB individual; y las variaciones del coeficiente de regresión B de la variable principal al
que compararemos con el suyo individual. Para ello vamos a utilizar modelos en los que mantendremos la variable principal e iremos introduciendo, una a una, las variables independientes. Como ya hemos estudiado la interacción, debemos comprobar que se cumplen o no los criterios de confusión:

- Que las variables están asociadas entre sí.
- Que ambas están asociadas con la variable dependiente.
- Que la variable “sospechosa” no es un eslabón causal entre las otras dos variables.

Una vez comprobadas todas las condiciones y verificadas las peculiaridades de nuestras variables y partiendo de que todas tienen relevancia clínica que viene avalada por lo publicado por otros autores y por nuestra propia experiencia y la de los profesionales de la Comisión Inoz, vamos a establecer las pautas de inclusión en el modelo:

1º.- Incluiremos las variables significativas individualmente, es decir, las que fueron estadísticamente significativas al realizar una regresión de Cox individual.

2º.- Variables que presentan interacción y sus términos multiplicativos. NOTA: Estas variables ya estaban incluidas por los criterios del punto 1 por lo que se introduce ahora en el modelo el término multiplicativo (subrayado).

3º.- Variables que presentan Coeficiente β con variación $> 10\%$, cumplan los criterios de confusión y que no hayan sido incluidas antes

4º.- Las que cumplan los criterios especificados y no presenten colinealidad.

3.4.3.5.- Variables dependientes del tiempo.

Varías de las covariables estudiadas podrían considerarse como dependientes del tiempo. Pondremos algunos ejemplos: catéter venoso periférico, catéter venoso central, sonda urinaria, alimentación parenteral, sonda nasogástrica y un largo etcétera. Son variables que puede presentarse o no en el paciente a lo largo del tiempo de observación. No obstante, nosotros las hemos representado como dicotómicas, no dependientes del tiempo, ya que sólo se contempla (debido a las características del estudio y de los datos recopilados) si se ha presentado en ese paciente en concreto o no (SI o NO).
3.4.3.6.- Bondad de ajuste.

Una vez comprobadas las condiciones de aplicación de la prueba y que hayamos introducido las variables como se señala en el apartado anterior y realizada la Regresión de Cox, es imprescindible estudiar su ajuste.

Para ello podemos utilizar:

- Significación estadística de la diferencia entre $-2\text{LL}_{0-\text{inicial}}$ y $-2\text{LL}_{0-\text{final}}$: $\Delta_{2\text{LL}}$
- Prueba de Hosmer-Lemeshow.
- Análisis de residuos\(^{(266)}\): Un residuo es la diferencia entre el valor observado (real, observado por nosotros) y el esperado (estimado por el modelo). Esta diferencia sería la parte no explicada por el modelo, por lo que, si son grandes, el modelo no sería el adecuado. Teóricamente está claro, pero, ¿en la práctica? Los más utilizados son:
 - De Cox y Snell: permiten analizar la bondad de ajuste. Deben ser pequeños para que el modelo sea adecuado (Función de impacto en SPSS).
 - De Schoenfeld\(^{(266)}\): para analizar puntos de influencia, valores atípicos y cumplimiento de las asunciones (Residuos parciales en SPSS). Son los más efectivos para detectar anomalías en cada variable que intervienen en el modelo, sugiriéndonos, por ejemplo, que es preciso realizar alguna transformación en los datos. Utiliza un residuo para cada variable y para cada paciente, es decir que si tenemos un modelo de Cox con tres factores pronóstico se calcularán 3 residuos de Schoenfeld\(^{(266)}\) por paciente. Estos residuos valen cero para las observaciones incompletas, por lo que para facilitar su interpretación se suelen presentar en las salidas de ordenador sólo para los pacientes en los que se ha presentado el efecto (IN). Pueden modificarse estos residuos para que su valor no sea cero para las observaciones incompletas. Es lo que hacen los denominados residuos Schoenfeld corregidos o escalados\(^{(266,512)}\).
 - De martingala: con ellos podemos analizar la funcionalidad de las covariables. En general suelen adoptar el valor 1 si se observa
el evento y 0 si no se observa; entonces su valor es negativo para los casos censurados.

- Vector Delta-beta. Permite averiguar si algún caso tiene importancia en el modelo. se calcula para cada variable y caso.

En nuestra investigación vamos a utilizar \(\Delta_{-2LL} \) y los residuos de Schoenfeld por considerarlos los más adecuados a nuestro propósito.

3.4.3.7.- **Fórmula**

Cumplidos todos los puntos anteriores de forma correcta y como parte final del análisis se obtiene un cuadro con las variables que han resultado finalmente significativas. Para utilizarlas en la práctica es preciso trasladarlas a la siguiente fórmula:

\[
h(t; x_1, x_2, \ldots, x_k) = h_0(t) e^{\beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k}
\]

El significado de las distintas partes de la fórmula es:

- \(h_0(t) \) = **riesgo base** que corresponde al riesgo de que se produzca la IN cuando todas las variables tienen valor 0. Esta parte de la fórmula depende del tiempo; la otra parte \(e^{\beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k} \) depende únicamente de las demás variables.

- \(e \) = número e (2,718).

- \(\beta_1, \beta_2 \ldots \beta_k \) = coeficiente B de Cox para las variables X1, X2…Xk.

- X1, X2…Xk = Covariables.

Es un estudio con tiempo de espera (hasta que se produzca la IN o se dé el alta al paciente) y en el que los pacientes se incorporan al estudio al producirse un evento determinado (intervención quirúrgica en nuestro estudio).

En la realidad no conocemos \(\lambda_0(t) \) por lo que este modelo sirve para comparar el riesgo de un paciente que presente determinadas variables positivas frente a otro que no las presente o que presente sólo algunas (riesgos proporcionales).

En la práctica se plantea un cociente en el que en el numerador se colocan los datos correspondientes al paciente a estudio \(h_0(t) e^{\beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k} \). \(\beta \) son los coeficientes de regresión B (o \(\beta \)) de cada variable significativa en el modelo final y \(X \) el valor que hemos asignado a la variable cuando está presente (en nuestro caso 1); y en el denominador los datos correspondientes a un paciente en el que ese factor de...
riesgo estuviese ausente \(h_0(t)e^{\beta_1.0+\beta_2.0+\ldots+\beta_k.0} \), codificado como 0 en nuestro caso. El denominador valdría \(h_0(t)e^0 = 1 \) ya que cualquier número elevado a 0 vale 1.

El cociente quedaría como:

\[
\frac{h_0(t)e^{\beta_1.x_1+\beta_2.x_2+\ldots+\beta_k.x_k}}{h_0(t)e^{\beta_1.0+\beta_2.0+\ldots+\beta_k.0}} = e^{\beta_1.x_1+\beta_2.x_2+\ldots+\beta_k.x_k}
\]

Así se anula \(h_0(t) \) (que desconocemos) por estar en los dos términos, numerador y denominador. Como resultado obtenemos el \textit{hazard ratio}, que se interpreta como que es tantas veces más probable que se infecte el paciente que presenta los factores de riesgo (variables en nuestro caso) que el que no los presenta. Destacar que \textit{hazard ratio} es un cociente entre dos riesgos, habitualmente en el numerador el riesgo de los expuestos a uno o a varios factores de riesgo y en el denominador el riesgo de los no expuestos a ese o esos factores de riesgo, en un instante determinado.

\textbf{Modelos de ajuste del riesgo.}

Tradicionalmente los modelos de ajuste del riesgo de SSI se han realizado utilizando la estratificación del riesgo con el \textit{índice básico de riesgo} de NNIS que incluye tipo de herida, puntuación ASA, y duración de la intervención o bien, el \textit{índice modificado de riesgo} adaptado a las intervenciones endoscópicas. A partir de 2010 el NHSN, formalmente NNIS, cambió de las tasas basadas en un índice (SSI) a la razones de infección estandarizadas (SIR) basadas en el modelo de regresión logística\(^{140}\). Van dirigidas exclusivamente a la IN de la herida quirúrgica. Nosotros pretendemos utilizarlos en una próxima investigación.
4.- RESULTADOS
4.- RESULTADOS

Hemos utilizado las siguientes medidas para los tres procesos estudiados:

- Medidas de frecuencia:
 - incidencia acumulada de pacientes infectados
 - incidencia acumulada de infecciones
 - densidad de incidencia de pacientes infectados
 - densidad de incidencia de infecciones

- Medidas de relación:
 - todas las propias del análisis bivariante: χ^2, t de Student, etc.
 - análisis multivariante: regresión logística y de Cox.

- Medidas de intensidad de la relación: riesgo relativo (RR).

- Medidas de impacto: riesgo atribuible, fracción atribuible del riesgo.

Vamos a exponer los resultados obtenidos distribuyéndolos en los siguientes apartados:

- Descriptivos
- RLB (Regresión Logística Binaria)
- Regresión de Cox

4.1.- DESCRIPTIVOS. En este tipo de resultados podremos apreciar características de las muestras de pacientes en los que se ha realizado seguimiento desde el momento de su intervención quirúrgica hasta su alta. Los detalles pueden consultarse en el apartado Material, Sujetos y Métodos.

4.1.1.- Cirugía electiva de colon.

Datos de Incidencia:

Proceso estudiado: **Cirugía electiva de colon**.

Ámbito: Hospitales de agudos de Osakidetza.

Periodo: 16.08.2010 a 10.08.2015

~ 195 ~
Tipo de cirugía estudiada: limpia contaminada y contaminada.
Total de pacientes estudiados: 6.709.
Total de pacientes infectados: 1.534
Total de infecciones: 1.986
Días a riesgo: 51575 (39.366 en no infectados y 12.209 en infectados)

Incidencia acumulada para pacientes infectados:
Total: 22,86 %
Herida quirúrgica: 17,02%
 Superficial: 6,86%
 Profunda: 2,95%
 Órgano o espacio: 7,21%
Urinaria: 2,34%
Neumonía: 0,83%
Respiratorio inferior: 0,72%
Flebitis: 0,33%
Bacteriemias: 1,32%
 Primaria: 0,40%
 Secundaria: 0,27%
 Asociada a catéter: 0,66%
Otros: 0,30%

Incidencia acumulada para infecciones:
Total: 29,60 %
Herida quirúrgica: 19,50%
 Superficial: 7,96%
 Profunda: 3,13%
 Órgano o espacio: 8,41%
Urinaria: 3,40%
Neumonía: 1,54%
Respiratorio inferior: 1,13%
Flebitis: 0,63%
Bacteriemias: 2,85%
 Primaria: 0,79%
 Secundaria: 0,94%
 Asociada a catéter: 1,12%
Otros: 0,57%

Nota: estos indicadores deben manejarse con la prudencia debida porque, entre otras razones, puede haber (y de hecho así ocurre) pacientes que tengan más de una infección o la misma IN repetida en el mismo ingreso, especialmente en cirugía electiva de colon (véase la Tabla 4.1.1 de la página 197)

Porcentaje de IN respecto a todas las demás IN:
Total de IN: 1.986 (en 1.537 pacientes infectados)
 Herida quirúrgica: 65,86 %
 Superficial: 26,89%
 Profunda: 10,57%
 Órgano o espacio: 28,40%
 Urinaria: 11,48%
 Neumonía: 5,17%
 Respiratorio inferior: 3,83 %
 Flebitis: 2,11 %
 Bacteriemias: 9,62%
 Primaria: 2,67%
 Secundaria: 3,17%
 Asociada a catéter: 3,78%
 Otros: 1,91%

Densidad de incidencia para pacientes infectados (DIPI):

\[
\text{DIPI} = \frac{1534}{51575} \times 1000 = 29,74
\]

\[\sim 197 \sim\]
Densidad de incidencia para infecciones (DII):

1986

\[
\text{DII} = \frac{\text{---------}}{\times 1000} = 38.51
\]

51575

Muchos pacientes padecieron más de una IN. En la tabla 4.1.A puede observarse la distribución de las IN y el nº de pacientes que las padecieron. Concretamente 359 padecieron 2 IN; 77 pacientes, 3 IN; 13 pacientes, 4 IN; y 3 pacientes, 5 IN.

| Tabla 4.1.1. Cirugía electiva de colon. IN por localización y nº de INs por paciente |
|---------------------------------|--------|--------|--------|--------|--------|--------|
| IHQ incisional superficial | 460 | 60 | 11 | 2 | 1 | 534 |
| IHQ incisional profunda | 198 | 9 | 3 | | | 210 |
| IQ de órgano o espacio | 484 | 71 | 9 | | | 564 |
| Urinaria | 157 | 47 | 19 | 4 | 1 | 228 |
| Neumonía | 56 | 41 | 6 | | | 103 |
| Respiratoria inferior | 48 | 24 | 3 | 1 | | 76 |
| Fiebres | 22 | 16 | 2 | 2 | | 42 |
| Bacteriemia primaria | 27 | 18 | 6 | 1 | 1 | 53 |
| Bacteriemia secundaria | 18 | 40 | 3 | 2 | | 63 |
| Bacteriemia asociada a catéter| 44 | 21 | 9 | 1 | | 75 |
| Otras | 20 | 12 | 6 | | | 38 |
| **Total** | 1534 | 359 | 77 | 13 | 3 | 1986 |

IHQ=Infección de la Herida Quirúrgica
IQ=Infección Quirúrgica

La 1ª columna muestra la denominación del tipo de IN. La 2ª el número de pacientes que han padecido esa IN (la indicada en la 1ª columna) como 1ª IN. En la 3ª columna se muestra el número de pacientes que han padecido, como 2ª IN, la IN señalada en la 1ª columna. En la 4ª columna se muestra la 3ª IN sufrida por los pacientes, en la 5ª columna la 4ª IN y en la 6ª la IN padecida en 5ª lugar. Que coincida el tipo de IN en las filas no debe interpretarse como que los pacientes que han sufrido esa IN también han padecido la misma en las otras columnas, sino que ha padecido una IN, sea la que sea. Vamos a ilustrarlo con un ejemplo (Tabla 4.1.1): en la 2ª columna aparecen 460 IHQ incisional superficial como 1ª IN y en la 3ª columna, 60. Veamos qué IN padecieron como 1ª IN los 60 pacientes que padecieron una IHQ incisional superficial como 2ª IN (Tabla 4.1.1.A). Observamos que sólo 1 paciente de
los 68 que hemos seleccionado, había sufrido una IHQ como 1ª IN. El resto había padecido, como 1ª IN, las especificadas en la Tabla 4.1.1.A.

<table>
<thead>
<tr>
<th>Tabla 4.1.1.A.-</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

4.1.2.- **Prótesis de cadera, primer implante.**

Datos de Incidencia:

Proceso estudiado: **Implante de prótesis de cadera.**

Ámbito: Hospitales de agudos de Osakidetza.

Periodo: 16.08.2010 a 10.08.2015

Tipo de cirugía estudiada: limpia.

Total de pacientes estudiados: 7.350.

Total de pacientes infectados: 341.

Total de infecciones: 373.

Días a riesgo totales: 57.946

Incidencia acumulada para pacientes infectados:

Total: 4,64 %

Herida quirúrgica: 1,15%

Superficial: 0,37%

Profunda: 0,33%
Órgano o espacio: 0,45%
Urinaria: 2,14%
Neumonía: 0,45%
Respiratorio inferior: 0,38%
Flebitis: 0,07%
Bacteriemiás: 0,12%

Primaria: 0,07%
Secundaria: 0,03%
Asociada a catéter: 0,03%

Otros: 0,34%

Incidencia acumulada para infecciones:
Total: 5,07 %
Herida quirúrgica: 1,22%

Superficial: 0,39%
Profunda: 0,35%

Órgano o espacio: 0,48%
Urinaria: 2,24%
Neumonía: 0,49%
Respiratorio inferior: 0,44%
Flebitis: 0,10%
Bacteriemiás: 0,20%

Primaria: 0,09%
Secundaria: 0,07%
Asociada a catéter: 0,04%

Otros: 0,38%
% de cada IN respecto a todas las demás IN:

Total de IN: 420 (en 341 pacientes infectados)

- Herida quirúrgica: 24,12%
- Superficial: 7,77%
- Profunda: 6,97%
- Órgano o espacio: 9,38%
- Urinaria: 44,25%
- Neumonía: 9,65%
- Respiratorio inferior: 8,58 %
- Flebitis: 1,88 %
- Bacteriemias: 4,02%
 - Primaria: 1,88%
 - Secundaria: 1,34%
 - Asociada a catéter: 0,80%
- Otros: 7,51%

Densidad de incidencia para **pacientes infectados** (DIPI):

\[
\text{DIPI} = \frac{341}{57946} \times 1000 = 5,88
\]

Densidad de incidencia para **infecciones** (DII):

\[
\text{DII} = \frac{373}{57946} \times 1000 = 6,44
\]

Algunos pacientes padecieron más de 1 IN. En la **tabla 4.1.2** puede observarse la distribución de las IN. 27 pacientes sufrieron 2 IN y 5 pacientes, 3IN.
<table>
<thead>
<tr>
<th>IHQ incisional superficial</th>
<th>1ª IN</th>
<th>2ª IN</th>
<th>3ª IN</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>27</td>
<td>2</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>IHQ incisional profunda</td>
<td>24</td>
<td>2</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>IQ de órgano o espacio</td>
<td>33</td>
<td>2</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Urinaria</td>
<td>157</td>
<td>7</td>
<td>1</td>
<td>165</td>
</tr>
<tr>
<td>Neumonía</td>
<td>33</td>
<td>1</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>Respiratoria inferior</td>
<td>28</td>
<td>4</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Flebitis</td>
<td>5</td>
<td>2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Bacteriemia primaria</td>
<td>5</td>
<td>2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Bacteriemia secundaria</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Bacteriemia asociada a catéter</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Otras</td>
<td>25</td>
<td>2</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>341</td>
<td>27</td>
<td>5</td>
<td>373</td>
</tr>
</tbody>
</table>

IHQ=Infección de la Herida Quirúrgica
IQ=Infección Quirúrgica

4.1.3.- **Prótesis de rodilla, primer implante.**

Datos de Incidencia:

Proceso estudiado: **Prótesis de rodilla**.

Ámbito: Hospitales de agudos de Osakidetza.

Periodo: 16.08.2010 a 10.08.2015

Tipo de cirugía estudiada: limpia.

Total de pacientes estudiados: 6.436.

Total de pacientes infectados: 147.

Total de infecciones: 160.

Días a riesgo: 48.734.

Incidencia acumulada para pacientes infectados:

Total: 2,28%

Herida quirúrgica: 0,76%

Superficial: 0,28%

Profunda: 0,20%

Órgano o espacio: 0,28%

Urinaria: 0,76%
Neumonía: 0,03%
Respiratorio inferior: 0,22%
Flebitis: 0,06%
Bacteriemias: 0,13%
 Primaria: 0,05%
 Secundaria: 0,00%
 Asociada a catéter: 0,08%
Otros: 0,31%

Incidencia acumulada para infecciones:
Total: 2,49 %
Herida quirúrgica: 0,79%
 Superficial: 0,28%
 Profunda: 0,20%
 Órgano o espacio: 0,31%
Urinaria: 0,81%
Neumonía: 0,03%
Respiratorio inferior: 0,23%
Flebitis: 0,08%
Bacteriemias: 0,17%
 Primaria: 0,06%
 Secundaria: 0,00%
 Asociada a catéter: 0,11%
Otros: 0,36%

% de IN respecto a todas las demás IN:
Total de IN: 160 (en 147 pacientes infectados)
Herida quirúrgica: 31,88%
 Superficial: 11,25%
 Profunda: 8,13%
 Órgano o espacio: 12,50%

~ 203 ~
Urinaria: 32,5%
Neumonía: 1,25%
Respiratorio inferior: 9,38 %
Flebitis: 3,13 %
Bacteriemias: 6,88%
 Primaria: 2,50%
 Secundaria: 0,00%
 Asociada a catéter: 4,38%
Otros: 14,38%

Densidad de incidencia para pacientes infectados (DIPI):

\[
\text{DIPI} = \frac{147}{48734} \times 1000 = 3,02
\]

Densidad de incidencia para infecciones (DII):

\[
\text{DII} = \frac{160}{48734} \times 1000 = 3,28
\]

En la tabla 4.1.3 mostramos la distribución de las IN. Algunos pacientes padecieron más de una IN. Concretamente 12 padecieron 2 IN y 1 paciente, 3 IN.
Tabla 4.1.3. - Prótesis de rodilla, 1er implante. Nº de INs

<table>
<thead>
<tr>
<th></th>
<th>1ª</th>
<th>2ª</th>
<th>3ª</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHQ incisional superficial</td>
<td>18</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>IHQ incisional profunda</td>
<td>13</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>IQ de órgano o espacio</td>
<td>18</td>
<td>2</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Urinaria</td>
<td>49</td>
<td>3</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Neumonia</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Respiratoria inferior</td>
<td>14</td>
<td>1</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Flebitis</td>
<td>4</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Bacteriemia primaria</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Bacteriemia secundaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteriemia asociada a catéter</td>
<td>5</td>
<td>2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Otras</td>
<td>20</td>
<td>3</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>En blanco</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>147</td>
<td>12</td>
<td>1</td>
<td>160</td>
</tr>
</tbody>
</table>

4.2. - REGRESIÓN LOGÍSTICA BINARIA.

4.2.1. - Cirugía electiva de colon

4.2.1.1. - En primer lugar realizamos *comparación estadística bivariante* entre cada variable e IN de la siguiente forma:

- Cuando se trata de variables cualitativas tanto las covariables como la variable dependiente, utilizamos Chi-cuadrado (X^2);
- Si las covariables son cuantitativas para compararlas individualmente con la cualitativa IN utilizamos t-Student o la prueba no paramétrica correspondiente, si la variable cuantitativa no cumple las condiciones de aplicación (*tablas 4.2.1.1.a; 4.2.1.1.b; 4.2.1.1.c y 4.2.1.1.d.*)
- Calculamos OR, RR y RA para cada variable con IN, de forma independiente (*tabla 4.2.1.1*).

Tabla 4.2.1.1.

<table>
<thead>
<tr>
<th>Variable</th>
<th>% de IN</th>
<th>X^2</th>
<th>p</th>
<th>OR</th>
<th>RR</th>
<th>RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hom 25,4% Muj 18,6%</td>
<td>40,49</td>
<td>0,000</td>
<td>1,49 (1,32-1,69)</td>
<td>1,37 (1,24-1,50)</td>
<td>6,80 (4,78-8,82)</td>
<td></td>
</tr>
<tr>
<td>Enfermedad de base</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5 años 29,1% ≥5 años 19,6%</td>
<td>77,58</td>
<td>0,000</td>
<td>1,68 (1,50-1,89)</td>
<td>1,48 (1,36-1,62)</td>
<td>9,51 (7,32-11,70)</td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sí 27,4%</td>
<td>22,09</td>
<td>0,000</td>
<td>1,38 (1,21-1,59)</td>
<td>1,28 (1,16-1,42)</td>
<td>5,97 (3,36-8,58)</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>21,4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inmunodepresión</td>
<td>Si</td>
<td>26,4%</td>
<td>22,5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRC</td>
<td>No</td>
<td>0,77</td>
<td>0,378</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desnutrición</td>
<td>Si</td>
<td>23,68</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drenaje</td>
<td>No</td>
<td>0,015</td>
<td>1,97 (1,13-3,42)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tratamiento Inmunodep</td>
<td>Si</td>
<td>65,57</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>No</td>
<td>74,57</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema Urinario abierto</td>
<td>Si</td>
<td>409,74</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
<td>No</td>
<td>3,06</td>
<td>0,801</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catéter Central</td>
<td>Si</td>
<td>6,39</td>
<td>0,012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catéter periférico</td>
<td>No</td>
<td>399,12</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>Si</td>
<td>31,13</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrición parenteral</td>
<td>No</td>
<td>1013,16</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilación mecánica</td>
<td>Si</td>
<td>341,51</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>No</td>
<td>221,76</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedimiento invasivo</td>
<td>Si</td>
<td>0,20</td>
<td>0,0</td>
<td>0,01 (0,90-1,13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U+T</td>
<td>M</td>
<td>37,84</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASA</td>
<td>No</td>
<td>36,2%</td>
<td>22,1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparación intervención</td>
<td>Si</td>
<td>43,07</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profilaxis</td>
<td>No</td>
<td>187,77</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laparoscopia</td>
<td>No</td>
<td>5,48</td>
<td>0,019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empleo de Aros</td>
<td>Si</td>
<td>6,75</td>
<td>0,009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfusión</td>
<td>No</td>
<td>3,92</td>
<td>0,048</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambio ropa, guantes</td>
<td>Si</td>
<td>9,57</td>
<td>0,002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº Cirujanos</td>
<td>Si</td>
<td>0,000</td>
<td>0,03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostomía</td>
<td>No</td>
<td>1,28 (2,27-3,89)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo drenaje</td>
<td>Cer</td>
<td>31,23</td>
<td>0,003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perforación intraoperator</td>
<td>Si</td>
<td>66,11</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anastomosis</td>
<td>No</td>
<td>1,09</td>
<td>0,015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavado intraoperatorio</td>
<td>Si</td>
<td>0,324</td>
<td>0,056</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lugar administr profilaxis</td>
<td>No</td>
<td>0,81</td>
<td>0,08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| AQ | 0,51 (0,42-0,61) |
| 30,51% | 50,71 | 0,000 | 0,51 (0,42-0,61) | 0,60 (0,51-0,69) | 0,32 (0,24-0,42) |

~ 206 ~
Comentario: El cambio de ropa, guantes, mascarilla ..etc. se considera como protector. En nuestra serie ocurre lo contrario: el % de IN en cambio es de 28,41% mientras que en el NO cambio es de 18,13%. La significación estadística y la intensidad de la relación pueden verse en la anterior Tabla 4.2.1.1.

Variables cuantitativas: En primer lugar y, a pesar de ser una muestra grande (n=6709), comprobamos si las variables cuantitativas se distribuyen según la Ley Normal. Para ello utilizamos la prueba de Kolmogorov-Smirnov para una muestra y obtenemos sus p de significación. En ambos casos obtenemos p=0,000. Concluimos que nuestros datos no se distribuyen según la citada Ley. No es necesario que comprobemos si se cumple la homocedasticidad ya que debemos utilizar una prueba no paramétrica si se incumple cualquiera de las dos leyes: normalidad u homocedasticidad. Por tanto, para determinar si las variables cuantitativas edad y duración de la intervención están estadísticamente relacionadas con IN, aplicamos una prueba no paramétrica. Elegimos las siguientes pruebas no paramétricas:

<table>
<thead>
<tr>
<th>Edad</th>
<th>IN codificada</th>
<th>N</th>
<th>Rango promedio</th>
<th>Suma de rangos</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5172</td>
<td>3247,23</td>
<td>16794682,50</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1537</td>
<td>3717,64</td>
<td>5714012,50</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6709</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duración de la interv.</th>
<th>IN codificada</th>
<th>N</th>
<th>Rango promedio</th>
<th>Suma de rangos</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5172</td>
<td>3224,78</td>
<td>16678578,50</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1537</td>
<td>3793,18</td>
<td>5830116,50</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6709</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estadísticos de prueba a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
</tr>
<tr>
<td>U de Mann-Whitney</td>
</tr>
<tr>
<td>W de Wilcoxon</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>Sig. asintótica (bilateral)</td>
</tr>
<tr>
<td>Duración interv.</td>
</tr>
<tr>
<td>U de Mann-Whitney</td>
</tr>
<tr>
<td>W de Wilcoxon</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>Sig. asintótica (bilateral)</td>
</tr>
</tbody>
</table>

a. Variable de agrupación: IN codificada
Conclusión. Concluimos que hay una relación estadísticamente significativa (p=0,000) entre ambas variables y la IN.

A continuación podríamos plantear una RLB con IN como variable dependiente y las variables que han resultado estadísticamente significativas en la prueba anterior como covariables. No obstante preferimos realizar antes otra prueba básica más: RLB individual entre cada una de las variables, consideradas una a una, sin la influencia de las demás, con IN. Los resultados aparecen en la tabla 4.2.1.1.e.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Wald</th>
<th>Signif</th>
<th>Exp(B)</th>
<th>Lim inf</th>
<th>Lim sup</th>
<th>x²*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td>40,21</td>
<td>0,000</td>
<td>1,49</td>
<td>1,32</td>
<td>1,69</td>
<td>0,000</td>
</tr>
<tr>
<td>Edad</td>
<td>54,38</td>
<td>0,000</td>
<td>1,02</td>
<td>1,01</td>
<td>1,03</td>
<td>0,000</td>
</tr>
<tr>
<td>Enfermedad de base</td>
<td>76,74</td>
<td>0,000</td>
<td>1,68</td>
<td>1,50</td>
<td>1,90</td>
<td>0,000</td>
</tr>
<tr>
<td>DM</td>
<td>21,97</td>
<td>0,000</td>
<td>1,39</td>
<td>1,21</td>
<td>1,59</td>
<td>0,354</td>
</tr>
<tr>
<td>Inmunodepresión</td>
<td>0,78</td>
<td>0,379</td>
<td>1,24</td>
<td>0,77</td>
<td>1,98</td>
<td>0,117</td>
</tr>
<tr>
<td>Insuficiencia Renal Crónica</td>
<td>22,98</td>
<td>0,000</td>
<td>1,90</td>
<td>1,46</td>
<td>2,46</td>
<td>0,014</td>
</tr>
<tr>
<td>Desnutrición</td>
<td>5,76</td>
<td>0,016</td>
<td>1,97</td>
<td>1,13</td>
<td>3,42</td>
<td>0,001</td>
</tr>
<tr>
<td>Drenaje</td>
<td>62,61</td>
<td>0,000</td>
<td>2,28</td>
<td>1,86</td>
<td>2,79</td>
<td>0,000</td>
</tr>
<tr>
<td>Tratamiento Inmunodepresor</td>
<td>70,94</td>
<td>0,000</td>
<td>2,36</td>
<td>1,93</td>
<td>2,88</td>
<td>0,000</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>382,38</td>
<td>0,000</td>
<td>3,55</td>
<td>3,13</td>
<td>4,03</td>
<td>0,000</td>
</tr>
<tr>
<td>Sistema Urinario abierto</td>
<td>2,95</td>
<td>0,086</td>
<td>1,99</td>
<td>0,91</td>
<td>4,85</td>
<td>0,063</td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
<td>6,30</td>
<td>0,012</td>
<td>1,55</td>
<td>1,01</td>
<td>2,19</td>
<td>0,000</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>352,46</td>
<td>0,000</td>
<td>3,08</td>
<td>2,74</td>
<td>3,46</td>
<td>0,000</td>
</tr>
<tr>
<td>Catéter Central Inserción Perif</td>
<td>19,56</td>
<td>0,000</td>
<td>1,31</td>
<td>1,16</td>
<td>1,48</td>
<td>0,000</td>
</tr>
<tr>
<td>Catéter periférico</td>
<td>0,29</td>
<td>0,648</td>
<td>0,91</td>
<td>0,60</td>
<td>1,37</td>
<td>0,004</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>353,03</td>
<td>0,000</td>
<td>4,48</td>
<td>3,83</td>
<td>5,24</td>
<td>0,000</td>
</tr>
<tr>
<td>Nutrición parenteral</td>
<td>852,82</td>
<td>0,000</td>
<td>7,70</td>
<td>6,72</td>
<td>8,83</td>
<td>---</td>
</tr>
<tr>
<td>Ventilación mecánica</td>
<td>157,83</td>
<td>0,000</td>
<td>26,38</td>
<td>15,43</td>
<td>43,95</td>
<td>0,000</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>213,33</td>
<td>0,000</td>
<td>2,55</td>
<td>2,25</td>
<td>2,89</td>
<td>0,000</td>
</tr>
<tr>
<td>Procedimiento invasivo</td>
<td>0,029</td>
<td>0,865</td>
<td>1,01</td>
<td>0,90</td>
<td>1,13</td>
<td>0,080</td>
</tr>
<tr>
<td>Tipo de intervención</td>
<td>36,80</td>
<td>0,000</td>
<td>0,53</td>
<td>0,43</td>
<td>0,65</td>
<td>0,000</td>
</tr>
<tr>
<td>Tipo de herida</td>
<td>41,93</td>
<td>0,000</td>
<td>2,01</td>
<td>1,63</td>
<td>2,49</td>
<td>0,000</td>
</tr>
<tr>
<td>ASA</td>
<td>96,65</td>
<td>0,000</td>
<td>1,78</td>
<td>1,59</td>
<td>1,99</td>
<td>0,000</td>
</tr>
<tr>
<td>Preparación para intervención</td>
<td>3,86</td>
<td>0,050</td>
<td>1,59</td>
<td>1,01</td>
<td>2,51</td>
<td>0,004</td>
</tr>
<tr>
<td>Profilaxis</td>
<td>8,95</td>
<td>0,003</td>
<td>2,48</td>
<td>1,37</td>
<td>4,49</td>
<td>0,234</td>
</tr>
<tr>
<td>Laparoscopia</td>
<td>181,72</td>
<td>0,000</td>
<td>2,52</td>
<td>2,20</td>
<td>2,88</td>
<td>0,000</td>
</tr>
<tr>
<td>Duración de la intervención</td>
<td>111,37</td>
<td>0,000</td>
<td>1,004</td>
<td>1,003</td>
<td>1,004</td>
<td>0,000</td>
</tr>
<tr>
<td>Aros</td>
<td>5,27</td>
<td>0,022</td>
<td>2,06</td>
<td>1,11</td>
<td>3,82</td>
<td>0,028</td>
</tr>
<tr>
<td>Transfusión</td>
<td>6,42</td>
<td>0,011</td>
<td>2,27</td>
<td>1,20</td>
<td>4,35</td>
<td>0,101</td>
</tr>
<tr>
<td>Cambio guantes etc.</td>
<td>7,46</td>
<td>0,006</td>
<td>0,56</td>
<td>0,37</td>
<td>0,85</td>
<td>0,145</td>
</tr>
<tr>
<td>Nº de Cirujanos</td>
<td>12,12</td>
<td>0,000</td>
<td>1,54</td>
<td>1,21</td>
<td>1,97</td>
<td>0,108</td>
</tr>
<tr>
<td>Ostomía</td>
<td>63,44</td>
<td>0,000</td>
<td>2,97</td>
<td>2,28</td>
<td>3,89</td>
<td>0,000</td>
</tr>
<tr>
<td>Tipo drenaje</td>
<td>14,27</td>
<td>0,000</td>
<td>1,92</td>
<td>1,37</td>
<td>2,70</td>
<td>0,000</td>
</tr>
<tr>
<td>Perforación intraoperatoria</td>
<td>14,09</td>
<td>0,000</td>
<td>2,36</td>
<td>1,51</td>
<td>3,69</td>
<td>0,000</td>
</tr>
<tr>
<td>Anastomosis</td>
<td>45,46</td>
<td>0,000</td>
<td>0,38</td>
<td>0,29</td>
<td>0,51</td>
<td>0,007</td>
</tr>
<tr>
<td>Lavado intraoperatorio</td>
<td>0,32</td>
<td>0,570</td>
<td>0,81</td>
<td>0,39</td>
<td>1,69</td>
<td>0,315</td>
</tr>
<tr>
<td>Lugar profilaxis</td>
<td>49,82</td>
<td>0,000</td>
<td>0,51</td>
<td>0,42</td>
<td>0,61</td>
<td>0,000</td>
</tr>
</tbody>
</table>

* Significación de cada variable con Nutrición parenteral.
En las variables con OR (Exp(B)) >1 y que no incluyen 1 en sus IC, concluimos que se trata de un factor de riesgo puesto que el riesgo en los expuestos (numerador) es superior al riesgo en los no expuestos (denominador). Hemos codificado como 1 la presencia del FR y como 0 su ausencia. Hay que destacar que en la variable *profilaxis* (quirúrgica) el FR sería la NO administración de la misma y se codificaría como 1; la administración se codificó como 0 (ausencia del factor de riesgo). Como OR es superior a 1 y entre los límites superior e inferior del IC no está incluido el 1, se considera FR la NO administración de la *profilaxis*.

Las variables con OR (Exp(B))<1 y que no incluyen 1 en sus IC, se interpretan como FR protector. Las significativas están codificadas como se indica a continuación:

- Tipo de intervención quirúrgica. Urgentes y tardes está codificado como 1 y resultaría protector. Podría explicarse considerando que por la mañana se programan las más complicadas ya que se dispone de más tiempo, más personal etc. También hay que señalar que había 5 que se clasificaron como urgentes, pero eran programadas realizadas en los quirófanos de urgencias (de ahí su denominación).
- Cambio de guantes, instrumental, sábanas, batas etc. Ha resultado protector NO REALIZARLO, ya que estaba codificado el no cambio como 1. Esto va en contra del criterio generalmente aceptado pero no científicamente demostrado de que el cambio a partir de las dos horas de intervención puede disminuir la IN. Queda como línea de investigación para el futuro.
- Anastomosis: Se ha codificado como 1 su realización y como 0 la no realización. De acuerdo con los resultados la realización de anastomosis resultaría protectora.
- Lavado intraoperatorio: Se codificó con 1 la NO realización. No se introduce por no ser significativa.
- Lugar de aplicación de la profilaxis antibiótica. Se codificó como 1 la realizada en planta (FR) y como 0 la realizada en el antequirófano. Ha resultado protectora la realizada en el antequirófano.

4.2.1.2. **Interacción y confusión.**

A continuación comprobamos si existen **variables de interacción** y/o **variables de confusión**. Como no partimos de una variable predictora única cuya influencia sobre IN queramos comprobar, aunque influenciada o no por otras covariables, hemos seleccionado la variable *Nutrición Parenteral (H8)* que presenta relevancia clínica, un
RA de los más elevados y, a la vez, unos IC reducidos y una presencia del FR aceptable (el 58,3% de los pacientes han sido alimentados con nutrición parenteral).

Hemos realizado una RLB base con sólo nutrición parenteral como variable independiente y la variable dependiente IN. Anotamos su OR (Exp(B)) (0,130) y comprobamos que su IC no contiene 1. Dejando nutrición parenteral en el modelo, vamos introduciendo, una a una, todas las covariables. Se saca la variable nueva y se introduce la siguiente (No se saca nutrición parenteral). Anotamos los datos de RLB, que mostramos en la tabla 4.2.2, de cada covariable junto con nutrición parenteral. Hacemos especial hincapié en:

- El OR de IN con cada covariable y sus IC (columnas 2, 3 y 4)
- El término multiplicativo (quinta y séptima columnas).
 Consideramos que existe interacción cuando el término multiplicativo es estadísticamente significativo.
- El porcentaje de variación del OR de nutrición parenteral (sexta y octava columnas) al introducir, una por una, las covariables en cuestión. Hablamos de confusión cuando el OR de la variable principal (nutrición parenteral), en el modelo en que está con la variable "sospechosa", cambia en más de un 10% respecto al OR de esa variable principal que se obtuvo cuando se hizo una RLB con la variable principal e IN como variable dependiente. Además esa variable "sospechosa" debe estar relacionada estadísticamente con la variable principal (nutrición parenteral) y con la variable dependiente (IN) y no ser eslabón causal entre estas dos variables.
En las columnas 5a y 7a señalamos en azul y negrita los términos de interacción significativos ($\alpha < 0.10$) de las variables con nutrición parenteral. Son: Tratamiento inmunodepresor, Ventilación mecánica, Tipo de intervención, Tipo de herida, Laparoscopia, Cambio y Lugar de administración de profilaxis.

En las columnas 6a y 8a señalamos, también en azul y negrita, las variaciones superiores al 10\% del OR de nutrición parenteral al introducir en el modelo individual dicha variable y nutrición parenteral. Presentan, por tanto, confusión: Estancia en UCI, Catéter central, Catéter arterial, Sonda nasogástrica, Laparoscopia, Aros, Ostomía, Tipo de drenaje, Perforación intraoperatoria y Lugar de administración de la profilaxis.
Dos variables (*Laparoscopia* y *Lugar de aplicación de profilaxis*) presentan interacción y confusión a la vez.

4.2.1.3.- Colinealidad.

Hemos utilizado el programa SPSS para el diagnóstico de colinealidad. En las dos últimas columnas de la *Tabla 4.2.3* podemos apreciar:

- Factor de inflación de la varianza (FIV o VIF en las siglas inglesas). Se define como:
 \[FIV_i = 1/1-R^2 \]
- Tolerancia. Se define como:
 \[Ti = 1/FIV_i = 1 - R^2 \]

Siguiendo a Kleinbaum y colaboradores, existen problemas de colinealidad cuando FIV es superior a 10 y T inferior a 0,1.

En nuestro caso, como puede observarse en la *Tabla 4.2.3* no hay ningún valor FIV (VIF) superior a 10 (el mayor es 4,664 correspondiente a UCI), ni ningún valor T < 0,1 (el menor es 0,214 correspondiente también a UCI).

![Tabla 4.2.3. Coeficientes](image)

~ 213 ~
Aguayo Canela\(^{(2)}\), al hablar del número de variables a introducir en el modelo de RL indica, de forma indirecta, el número de individuos mínimo que debe componer la muestra. Dice textualmente: *Finalmente pondere el número de variables a introducir en el modelo multivariante: pocas quizás no predigan mucho; muchas quizás "metan" mucho ruido (imprecisión). Debe tener en cuenta que los cálculos de la regresión se hacen a través del método de máxima verosimilitud con los datos de la muestra; una buena regla es no superar en ningún caso la relación “una variable en el modelo por cada diez individuos en la muestra analizada”.*

En nuestro caso el número de variables consideradas ha sido de 37 de las que hemos introducido en el modelo en primera instancia (por cumplir los criterios expuestos) 31. Finalmente han quedado en el modelo 9, por ser significativas (*tabla 4.2.1.4.-e*). Recordemos que el número de individuos de la muestra para cirugía electiva de colon es de 6.709, por lo que consideramos cumplido ampliamente este requisito.
4.2.1.4. **MODELO:**

En el modelo, partiendo de que todas las variables estudiadas tienen relevancia clínica (lo basamos en las publicaciones de otros autores, en la experiencia de los componentes de la Comisión INOZ\(^{(68)}\) y en la nuestra), introduciremos:

- Las variables **significativas** al comparar, individualmente, cada una con IN. Estas variables son: Sexo, Edad (dicotómica), Enfermedad de base, DM, IRC, Desnutrición, Drenaje, Tratamiento inmunodepresor, Estancia en UCI, Sistema Urinario Cerrado, Catéter Central, Catéter Central de Inserción Periférica, Catéter arterial, Nutrición parenteral, Ventilación mecánica, Sonda nasogástrica, Tipo de intervención, Tipo de herida, ASA, Profilaxis quirúrgica, Laparoscopia, Duración de la intervención (dicotómica), Empleo de Aros, Transfusión, Cambio de material, Número de cirujanos, Ostomía, Tipo de drenaje, Perforación intraoperatoria, Anastomosis y Lugar de administración de profilaxis.

- Las variables que han mostrado **interacción**: Tratamiento inmunodepresor, Ventilación mecánica, Tipo de intervención, Tipo de herida, Laparoscopia, Cambio de material y Lugar de administración de profilaxis. Ya están introducidas por ser significativas. Es preciso introducir los siguientes términos multiplicativos (interacción de 1er orden):

 - Nutrición parenteral*Tratamiento inmunodepresor
 - Nutrición parenteral*Ventilación mecánica
 - Nutrición parenteral*Tipo de intervención
 - Nutrición parenteral*Tipo de herida
 - Nutrición parenteral*Laparoscopia
 - Nutrición parenteral*Cambio de material
 - Nutrición parenteral*Lugar de administración de profilaxis

- Las variables de **confusión** que han conllevado una variación superior al 10% del OR de la variable Nutrición parenteral al introducir éstas en un modelo que ya contenía como independiente la variable Nutrición parenteral. Estas son: Estancia en UCI, Catéter central, Catéter arterial, Sonda nasogástrica, Laparoscopia, Aros, Ostomía, Tipo de drenaje, Perforación intraoperatoria, Lavado intraoperatorio y Lugar de administración de profilaxis. Introducidas ya como significativas excepto Lavado intraoperatorio, que introducimos como confusora.
Como se trata de encontrar el modelo que mejor se adapte a nuestros datos también hemos considerado como independientes individuales, una por una, con las que comparar el resto de variables: Ventilación mecánica (RA = 66,33), UCI (RA = 25,51), ASA (RA = 10,32) y Profilaxis antibiótica (RA = 19,44) (Tabla 4.2.1.1). Insistimos en que lo que se pretende es encontrar el modelo que mejor ajuste.

Pueden observarse a continuación resultados obtenidos con el SPSS (trascribimos literalmente las salidas del programa SPSS para COLON 2010-15):

Utilizamos el método **entrar** con el fin de controlar cada variable (mostramos solamente las tablas y datos relevantes).

Bloque 1: Método = Entrar

<table>
<thead>
<tr>
<th>Tabla 4.2.1.4.a- Pruebas ómnibus de coeficientes de modelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Paso 1</td>
</tr>
<tr>
<td>Bloque</td>
</tr>
<tr>
<td>Modelo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 4.2.1.4.b- Resumen del modelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

a. La estimación ha terminado en el número de iteración 20 porque se ha alcanzado el máximo de iteraciones. La solución final no se puede encontrar.

Encontramos un valor de -2LL bueno. Recordemos que idealmente es 0, pero es muy difícil de conseguir con un número de variables tan elevado. Además existen una serie de razones para explicarlo:

- Los datos son de todos los hospitales de agudos de Euskadi.
Son varias las personas que han recopilado los datos.

Ha habido cambios de personal en algunos hospitales durante el periodo de recogida de datos.

Ha sido codificado por un profesional diferente al que ha recogido los datos e informatizado por otra persona diferente.

El número de pacientes ha sido elevado y el número de variables enorme (124), aunque para este trabajo hayamos utilizado 41 de forma directa y 12 de forma indirecta (fechas fundamentalmente), seleccionando finalmente un total de 37.

La R cuadrado de Cox y Snell también es interesante pero tiene sus problemas a la hora de interpretarla.

Todavía es más interesante la R cuadrado de Nagelkerke (Tabla 4.2.1.4.b), basada en la R^2 de Cox y Snell y adaptada a la escala 0-1. Significa que el 78,1% de la variabilidad de IN está explicada por las variables introducidas en el modelo.

Tabla 4.2.1.4.c- Prueba de Hosmer y Lemeshow

<table>
<thead>
<tr>
<th>Paso</th>
<th>Chi-cuadrado</th>
<th>gl</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,208</td>
<td>8</td>
<td>.974</td>
</tr>
</tbody>
</table>

Otra prueba importante es la de Hosmer y Lemeshow (Tabla 4.2.1.4.c). Esta prueba tiene que ser no significativa, si el modelo ajusta. Como puede observarse en el cuadro el valor de p (0,974) está muy por encima del valor de α (0,05) y muy próximo a 1.

Tabla 4.2.1.4.d- Tabla de clasificación*

<table>
<thead>
<tr>
<th>Observado</th>
<th>Pronosticado</th>
<th>IN codificada</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Porcentaje correcto</td>
<td></td>
<td>87,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paso 1</th>
<th>IN codificada</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3565</td>
<td>527</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>1141</td>
<td></td>
</tr>
</tbody>
</table>

~ 217 ~
En la tabla de clasificación (Tabla 4.2.1.d) se busca la relación entre la clasificación de valores calculados por el modelo y los valores observados. Se acepta que si son valores superiores a 80% son buenos y el modelo ajusta bien. En nuestro caso son los siguientes:
- Sensibilidad: 92,7%
- Especificidad: 87,1%
- Global: 88,5%

Por tanto consideramos que el modelo ajusta bien considerando como variable independiente principal Nutrición Parenteral.

Finalmente, las variables que han quedado en el modelo por ser significativas, las podemos observar en la Tabla 4.2.1.e.

Tabla 4.2.1.e.- Variables en la ecuación.

<table>
<thead>
<tr>
<th>B</th>
<th>E.T.</th>
<th>Wald</th>
<th>gl</th>
<th>Sig</th>
<th>Exp(B)</th>
<th>I.C. 95% para EXP(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inferior</td>
</tr>
<tr>
<td>Edad</td>
<td>0.020</td>
<td>0.007</td>
<td>8,172</td>
<td>1</td>
<td>.006</td>
<td>1.020</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>1.263</td>
<td>0.300</td>
<td>17,719</td>
<td>1</td>
<td>.000</td>
<td>3.537</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>0.558</td>
<td>0.223</td>
<td>6,279</td>
<td>1</td>
<td>.012</td>
<td>1.748</td>
</tr>
<tr>
<td>Catéter Arterial</td>
<td>-0.557</td>
<td>0.126</td>
<td>19,542</td>
<td>1</td>
<td>.000</td>
<td>0.573</td>
</tr>
<tr>
<td>Nutrición parenteral</td>
<td>1.381</td>
<td>0.208</td>
<td>43,911</td>
<td>1</td>
<td>.000</td>
<td>3.979</td>
</tr>
<tr>
<td>ASA</td>
<td>0.654</td>
<td>0.275</td>
<td>5,664</td>
<td>1</td>
<td>.017</td>
<td>1.923</td>
</tr>
<tr>
<td>Duración de la intervención</td>
<td>0.016</td>
<td>0.007</td>
<td>5,224</td>
<td>1</td>
<td>.022</td>
<td>1.016</td>
</tr>
<tr>
<td>Cambio</td>
<td>1.804</td>
<td>0.274</td>
<td>43,348</td>
<td>1</td>
<td>.000</td>
<td>6.073</td>
</tr>
<tr>
<td>Perforación</td>
<td>-0.397</td>
<td>0.137</td>
<td>8,397</td>
<td>1</td>
<td>.000</td>
<td>0.672</td>
</tr>
<tr>
<td>Constante</td>
<td>-2.638</td>
<td>1.976</td>
<td>1,781</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El modelo para la variable Nutrición parenteral como principal, sería el siguiente:

\[
P \left(Y=1 \right) = \frac{1}{1 + \exp \left(-\alpha - \beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3 - \ldots - \beta_k X_k \right)}
\]

\[
P \left(Y=1 \right) = \frac{1}{1 + e^{(2,638 - 0.021 - 1.2631 - 0.5581 + 0.5571 - 1.3811 - 0.6541 - 0.0021 - 1.8041 + 0.4971)}} \approx 0.218
\]
Tiene una probabilidad de sufrir una IN de 88,99%.

En el caso de un paciente que no presente positivas esas variables (factores de riesgo), la fórmula sería:

\[P(Y=0) = \frac{1}{1 + e^{-(2.638 - 0.020 - 1.263.0 - 0.558.0 + 0.557.0 - 1.381.0 - 0.654.0 - 0.002.0 - 1.804.0 + 0.497.0)}} = \]

\[0.0667 = 6.67 \% \text{ probabilidad de adquirir una IN} \]
Es decir: Un paciente que no presenta positivas esas variables tiene una probabilidad de contraer una IN de 6.67%. Esto está de acuerdo con la idea generalizada de que no es posible evitar toda la IN.

Como hemos comentado anteriormente vamos a construir modelos también considerando como variable principal a aquellas que, teóricamente, eran las siguientes candidatas de acuerdo con los criterios de selección ya especificados. Nos quedaremos con el modelo que mejor ajuste. Las variables en cuestión son: ventilación mecánica, estancia en UCI, ASA y profilaxis antibiótica.

Ventilación mecánica (como variable principal):

Variables estadísticamente significativas con IN (individualmente): Sexo, Enfermedad de base, DM (Diabetes Mellitus), IRC (Insuficiencia Renal Crónica), Desnutrición, Drenaje, Tratamiento inmunodepresor, Estancia en UCI, Sistema Urinario cerrado, Catéter central, CCIP (Catéter Central de Inserción Periférica), Catéter arterial, Nutrición parenteral, Ventilación mecánica, Sonda nasogástrica, Tipo de intervención, Tipo de herida, ASA, Preparación para la Intervención, Profilaxis antibiótica, Laparoscopia, Colocación de Aros, Transfusión, Cambio guantes-mascarilla-campos..., Número de cirujanos, Ostomía, Tipo de drenaje, Perforación intraoperatoria, Anastomosis, Lugar de administración de la profilaxis, Edad, Duración de la intervención.

Variables con interacción: Inmunodepresión, Nutrición parenteral, Número de cirujanos, Anastomosis.

Variables con confusión: Estancia en UCI, Catéter central, Catéter arterial, Nutrición parenteral, Sonda nasogástrica, Laparoscopia, Colocación de Aros, Transfusión, Cambio guantes-mascarilla-campos..., Número de cirujanos, Anastomosis, Lavado intraoperatorio, Lugar de administración de la profilaxis.

Modelo: Para una visión más cómoda presentamos los datos más relevantes en la Tabla 4.2.1.4.f

Estancia en UCI (como variable principal):

Variables estadísticamente significativas con IN (individualmente): Sexo, Enfermedad de base, DM (Diabetes Mellitus), IRC (Insuficiencia Renal Crónica), Desnutrición, Drenaje, Tratamiento inmunodepresor, Estancia en UCI, Sistema Urinario cerrado, Catéter central, CCIP (Catéter Central de Inserción Periférica), Catéter arterial, Nutrición parenteral,
Ventilación mecánica, Sonda nasogástrica, Tipo de intervención, Tipo de herida, ASA, Preparación para la Intervención, Profilaxis antibiótica, Laparoscopia, Colocación de Aros, Transfusión, Cambio guantes-mascarilla-campos..., Número de cirujanos, Ostomía, Tipo de drenaje, Perforación intraoperatoria, Anastomosis, Lugar de administración de la profilaxis, Edad, Duración de la intervención.

Variables con interacción: Enfermedad de base, Catéter central, CCIP (Catéter Central de Inserción Periférica), Procedimiento invasivo, Tipo de intervención, Laparoscopia, Número de cirujanos, Tipo de drenaje, Lavado intraoperatorio, Lugar de administración de la profilaxis, Duración de la intervención.

Variables con confusión: Desnutrición, Catéter central, Catéter arterial, Nutrición parenteral, Ventilación mecánica, Sonda nasogástrica, Laparoscopia, Transfusión, Cambio guantes-mascarilla-campos..., Número de cirujanos, Tipo drenaje, Anastomosis, Lavado intraoperatorio, Lugar de administración de la profilaxis.

Modelo: Presentamos los datos más relevantes en la Tabla 4.2.1.4.f

ASA (como variable principal):

Variables estadísticamente significativas con IN (individualmente): Sexo, Enfermedad de base, DM (Diabetes Mellitus), IRC (Insuficiencia Renal Crónica), Desnutrición, Drenaje, Tratamiento inmunodepresor, Estancia en UCI, Sistema Urinario cerrado, Catéter central, CCIP (Catéter Central de Inserción Periférica), Catéter arterial, Nutrición parenteral, Ventilación mecánica, Sonda nasogástrica, Tipo de intervención, Tipo de herida, ASA, Preparación para la Intervención, Profilaxis antibiótica, Laparoscopia, Colocación de Aros, Transfusión, Cambio guantes-mascarilla-campos..., Número de cirujanos, Ostomía, Tipo de drenaje, Perforación intraoperatoria, Anastomosis, Lugar de administración de la profilaxis, Edad, Duración de la intervención.

Variables con interacción: IRC (Insuficiencia Renal Crónica), Catéter arterial, Sonda nasogástrica, Profilaxis antibiótica, Colocación de Aros.

Variables con confusión: Estancia en UCI, Catéter central, Catéter arterial, Nutrición parenteral, Laparoscopia, Colocación de Aros, Cambio guantes-mascarilla-campos..., Número de cirujanos, Ostomía, Tipo drenaje, Perforación intraoperatoria, Anastomosis.

Modelo: Para una visión más cómoda presentamos los datos más relevantes en la Tabla 4.2.1.4.f

Profilaxis antibiótica (como variable principal):
Variables estadísticamente significativas con IN (individualmente): Sexo, Enfermedad de base, DM (Diabetes Mellitus), IRC (Insuficiencia Renal Crónica), Desnutrición, Drenaje, Tratamiento inmunodepresor, Estancia en UCI, Sistema Urinario cerrado, Catéter central, CCIP (Catéter Central de Inserción Periférica), Catéter arterial, Nutrición parenteral, Ventilación mecánica, Sonda nasogástrica, Tipo de intervención, Tipo de herida, ASA, Preparación para la Intervención, Laparoscopia, Colocación de Aros, Transfusión, Cambio guantes-mascarilla-campos..., Número de cirujanos, Ostomía, Tipo de drenaje, Perforación intraoperatoria, Anastomosis, Lugar de administración de la profilaxis, Edad, Duración de la intervención.

Variables con interacción: Sexo, ASA.

Variables con confusión: Desnutrición, Drenaje, Estancia en UCI, Sonda nasogástrica, Tipo de herida, ASA, Laparoscopia, Colocación de Aros, Transfusión, Cambio guantes-mascarilla-campos..., Número de cirujanos, Ostomía, Tipo drenaje, Perforación intraoperatoria, Anastomosis, Lavado intraoperatorio, Duración de la intervención.

Resultados (resumen) de los diferentes modelos considerando las 5 variables, independientemente, como variable principal. Para una visión más cómoda presentamos los datos más relevantes en la Tabla 4.2.1.4.f

<table>
<thead>
<tr>
<th></th>
<th>Nutrición parenteral</th>
<th>Ventilación mecánica</th>
<th>Estancia en UCI</th>
<th>ASA</th>
<th>Profilaxis antibiótica</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2LL</td>
<td>43,04</td>
<td>59,08</td>
<td>58,46</td>
<td>62,05</td>
<td>59,31</td>
</tr>
<tr>
<td>R cuadrado de Cox y Snell</td>
<td>0,516</td>
<td>0,406</td>
<td>0,420</td>
<td>0,386</td>
<td>0,400</td>
</tr>
<tr>
<td>R cuadrado de Nagelkerke</td>
<td>0,781</td>
<td>0,604</td>
<td>0,626</td>
<td>0,578</td>
<td>0,596</td>
</tr>
<tr>
<td>Prueba de Hosmer y Lemeshow</td>
<td>0,974</td>
<td>0,895</td>
<td>0,536</td>
<td>0,001</td>
<td>0,587</td>
</tr>
<tr>
<td>Sensibilidad</td>
<td>92,9</td>
<td>70,5</td>
<td>70,5</td>
<td>66,7</td>
<td>73,8</td>
</tr>
<tr>
<td>Especificidad</td>
<td>87,1</td>
<td>75,5</td>
<td>75,3</td>
<td>73,3</td>
<td>71,3</td>
</tr>
</tbody>
</table>

Evidentemente, el mejor modelo es el que utiliza nutrición parenteral como variable principal independiente. Los otros 4 modelos quedan desechados.
4.2.2.- **Prótesis de cadera. Primer implante.**

4.2.2.1.- **RLB univariante.** Se utiliza con el fin de determinar la significación de cada variable (considerada ella únicamente, sin la influencia de las demás) con la variable dependiente IN y para determinar la variable principal (*Tabla 4.2.1*).

El número de variables o factores de riesgo es menor en prótesis de cadera y prótesis de rodilla que en cirugía electiva de colon por las peculiaridades de estas cirugías (361).

Tabla 4.2.2.1. Comparación univariante con IN utilizando RLB.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>WALD</th>
<th>Sig Wald</th>
<th>OR</th>
<th>Lím inf</th>
<th>Lím sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td>12,535</td>
<td>0,000</td>
<td>0,665</td>
<td>0,531</td>
<td>0,834</td>
</tr>
<tr>
<td>Edad (dicotómica)</td>
<td>53,974</td>
<td>0,000</td>
<td>2,410</td>
<td>1,906</td>
<td>3,047</td>
</tr>
<tr>
<td>Infección al ingreso</td>
<td>0,411</td>
<td>0,522</td>
<td>0,835</td>
<td>0,482</td>
<td>1,448</td>
</tr>
<tr>
<td>Enfermedad base</td>
<td>46,624</td>
<td>0,000</td>
<td>2,686</td>
<td>2,023</td>
<td>3,566</td>
</tr>
<tr>
<td>DM</td>
<td>2,123</td>
<td>0,145</td>
<td>1,233</td>
<td>0,930</td>
<td>1,634</td>
</tr>
<tr>
<td>Inmunodepresión</td>
<td>0,721</td>
<td>0,396</td>
<td>0,543</td>
<td>0,133</td>
<td>2,222</td>
</tr>
<tr>
<td>Desnutrición</td>
<td>7,308</td>
<td>0,007</td>
<td>4,461</td>
<td>1,509</td>
<td>13,192</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>1,096</td>
<td>0,295</td>
<td>0,794</td>
<td>0,516</td>
<td>1,223</td>
</tr>
<tr>
<td>Sistema Urinario abierto</td>
<td>0,277</td>
<td>0,599</td>
<td>0,586</td>
<td>0,080</td>
<td>4,290</td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
<td>52,928</td>
<td>0,000</td>
<td>2,339</td>
<td>1,860</td>
<td>2,941</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>64,226</td>
<td>0,000</td>
<td>6,063</td>
<td>3,902</td>
<td>9,421</td>
</tr>
<tr>
<td>Catéter Central Inserción Perif</td>
<td>14,090</td>
<td>0,000</td>
<td>3,453</td>
<td>1,808</td>
<td>6,596</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>7,105</td>
<td>0,008</td>
<td>4,366</td>
<td>1,477</td>
<td>12,905</td>
</tr>
<tr>
<td>Insuficiencia renal crónica</td>
<td>18,268</td>
<td>0,000</td>
<td>2,206</td>
<td>1,535</td>
<td>3,171</td>
</tr>
<tr>
<td>Nutrición parenteral</td>
<td>12,835</td>
<td>0,000</td>
<td>15,541</td>
<td>3,465</td>
<td>69,716</td>
</tr>
<tr>
<td>Ventilación mecánica</td>
<td>18,298</td>
<td>0,000</td>
<td>20,783</td>
<td>5,176</td>
<td>83,459</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>35,565</td>
<td>0,000</td>
<td>12,638</td>
<td>5,490</td>
<td>29,090</td>
</tr>
<tr>
<td>Drenaje</td>
<td>0,122</td>
<td>0,727</td>
<td>0,879</td>
<td>0,428</td>
<td>1,807</td>
</tr>
<tr>
<td>Tratamiento inmunodepresor</td>
<td>4,647</td>
<td>0,031</td>
<td>1,776</td>
<td>1,054</td>
<td>2,995</td>
</tr>
<tr>
<td>Procedimiento invasivo</td>
<td>7,487</td>
<td>0,006</td>
<td>1,356</td>
<td>1,090</td>
<td>1,686</td>
</tr>
<tr>
<td>Tipo intervención</td>
<td>1,488</td>
<td>0,222</td>
<td>0,848</td>
<td>0,650</td>
<td>1,106</td>
</tr>
<tr>
<td>ASA</td>
<td>32,024</td>
<td>0,000</td>
<td>1,895</td>
<td>1,519</td>
<td>2,364</td>
</tr>
<tr>
<td>Preparación para intervención</td>
<td>10,999</td>
<td>0,001</td>
<td>3,611</td>
<td>1,691</td>
<td>7,713</td>
</tr>
<tr>
<td>Profilaxis</td>
<td>0,037</td>
<td>0,848</td>
<td>0,893</td>
<td>0,280</td>
<td>2,850</td>
</tr>
<tr>
<td>Duración de la intervención</td>
<td>0,760</td>
<td>0,383</td>
<td>1,102</td>
<td>0,886</td>
<td>1,371</td>
</tr>
</tbody>
</table>
Son significativas: Sexo, Edad, Enfermedad de base, Desnutrición, Sistema Urinario cerrado, Catéter Central, Catéter Central Inserción Periférica, Catéter arterial, Insuficiencia renal crónica, Nutrición parenteral, Ventilación mecánica, Sonda nasogástrica, Tratamiento inmunodepresor, Procedimiento invasivo, ASA y Preparación intervención.

4.2.2.2.- Interacción y confusión.

Se elige como variable independiente principal Edad por tener un OR aceptable 2,410; un IC estrecho; una presencia del FR próximo al 50% (45,8% hombres y 54,2% mujeres); ser significativa y tener relevancia clínica. Hay otras variables con OR mayores como ventilación mecánica (OR=20,78), nutrición parenteral (OR=15,54) o sonda nasogástrica (OR=12,64), pero el número de pacientes que presentaron el FR fue muy reducido y sus IC anormalmente amplios (véase Tabla 4.2.2.1). En el caso de enfermedad de base el porcentaje de uno de los dos grupos (probabilidad de fallecimiento antes de trascurridos 5 años) es de 8,6%.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Wald</th>
<th>Sign Wald</th>
<th>Exp(B) OR</th>
<th>Inf</th>
<th>Sup</th>
<th>Interac</th>
<th>Confusión</th>
<th>Var OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>53,974</td>
<td>0,000</td>
<td>2,410</td>
<td>1,906</td>
<td>3,047</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sexo</td>
<td>2,286</td>
<td>0,131</td>
<td>0,834</td>
<td>0,660</td>
<td>1,055</td>
<td>0,447</td>
<td>2,292</td>
<td></td>
</tr>
<tr>
<td>Infección al ingreso</td>
<td>0,002</td>
<td>0,969</td>
<td>1,011</td>
<td>0,582</td>
<td>1,758</td>
<td>0,395</td>
<td>2,411</td>
<td></td>
</tr>
<tr>
<td>Enfermedad de base</td>
<td>21,929</td>
<td>0,000</td>
<td>2,020</td>
<td>1,505</td>
<td>2,710</td>
<td>0,018</td>
<td>2,132 >10%</td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>0,672</td>
<td>0,412</td>
<td>1,126</td>
<td>0,848</td>
<td>1,495</td>
<td>0,345</td>
<td>2,400</td>
<td></td>
</tr>
<tr>
<td>Inmunodepresión</td>
<td>0,473</td>
<td>0,491</td>
<td>0,609</td>
<td>0,148</td>
<td>2,501</td>
<td>0,998</td>
<td>2,464</td>
<td></td>
</tr>
<tr>
<td>Desnutrición</td>
<td>6,471</td>
<td>0,011</td>
<td>4,150</td>
<td>1,386</td>
<td>12,421</td>
<td>0,932</td>
<td>2,426</td>
<td></td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>1,371</td>
<td>0,242</td>
<td>0,772</td>
<td>0,501</td>
<td>1,190</td>
<td>0,474</td>
<td>2,416</td>
<td></td>
</tr>
<tr>
<td>Sistema Urinario abierto</td>
<td>0,336</td>
<td>0,562</td>
<td>0,554</td>
<td>0,075</td>
<td>4,076</td>
<td>0,998</td>
<td>2,411</td>
<td></td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
<td>43,868</td>
<td>0,000</td>
<td>2,178</td>
<td>1,730</td>
<td>2,742</td>
<td>0,831</td>
<td>2,247</td>
<td></td>
</tr>
<tr>
<td>Catéter Central</td>
<td>57,992</td>
<td>0,000</td>
<td>5,663</td>
<td>3,624</td>
<td>8,849</td>
<td>0,225</td>
<td>2,360</td>
<td></td>
</tr>
<tr>
<td>Catéter Central Inserción Perifér</td>
<td>14,525</td>
<td>0,000</td>
<td>3,570</td>
<td>1,855</td>
<td>6,869</td>
<td>0,864</td>
<td>2,419</td>
<td></td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>7,627</td>
<td>0,006</td>
<td>4,706</td>
<td>1,568</td>
<td>14,126</td>
<td>0,129</td>
<td>2,418</td>
<td></td>
</tr>
<tr>
<td>IRC</td>
<td>8,467</td>
<td>0,004</td>
<td>1,728</td>
<td>1,196</td>
<td>2,499</td>
<td>0,706</td>
<td>2,323</td>
<td></td>
</tr>
<tr>
<td>Nutrición parenteral</td>
<td>13,431</td>
<td>0,000</td>
<td>17,728</td>
<td>3,810</td>
<td>82,496</td>
<td>0,999</td>
<td>2,423</td>
<td></td>
</tr>
<tr>
<td>Ventilación mecánica</td>
<td>19,764</td>
<td>0,000</td>
<td>25,294</td>
<td>6,088</td>
<td>105,09</td>
<td>0,191</td>
<td>2,438</td>
<td></td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>32,730</td>
<td>0,000</td>
<td>11,946</td>
<td>5,107</td>
<td>27,943</td>
<td>0,118</td>
<td>2,395</td>
<td></td>
</tr>
<tr>
<td>Drenaje</td>
<td>0,008</td>
<td>0,927</td>
<td>0,967</td>
<td>0,469</td>
<td>1,992</td>
<td>0,520</td>
<td>2,409</td>
<td></td>
</tr>
<tr>
<td>Tratamiento inmunodepresor</td>
<td>5,102</td>
<td>0,024</td>
<td>1,833</td>
<td>1,083</td>
<td>3,101</td>
<td>0,428</td>
<td>2,417</td>
<td></td>
</tr>
<tr>
<td>Procedimiento invasivo</td>
<td>5,997</td>
<td>0,014</td>
<td>1,315</td>
<td>1,056</td>
<td>1,637</td>
<td>0,584</td>
<td>2,386</td>
<td></td>
</tr>
<tr>
<td>Tipo intervención</td>
<td>3,397</td>
<td>0,065</td>
<td>0,778</td>
<td>0,595</td>
<td>1,016</td>
<td>0,096</td>
<td>2,453</td>
<td></td>
</tr>
<tr>
<td>ASA</td>
<td>10,509</td>
<td>0,001</td>
<td>1,475</td>
<td>1,166</td>
<td>1,865</td>
<td>0,027</td>
<td>2,110 >10%</td>
<td></td>
</tr>
<tr>
<td>Preparación intervención</td>
<td>8,561</td>
<td>0,003</td>
<td>3,135</td>
<td>1,458</td>
<td>6,739</td>
<td>0,559</td>
<td>2,410</td>
<td></td>
</tr>
<tr>
<td>Profilaxis</td>
<td>0,102</td>
<td>0,750</td>
<td>0,827</td>
<td>0,258</td>
<td>2,652</td>
<td>0,998</td>
<td>2,411</td>
<td></td>
</tr>
<tr>
<td>Durante categorica</td>
<td>2,752</td>
<td>0,097</td>
<td>1,205</td>
<td>0,967</td>
<td>1,502</td>
<td>0,006</td>
<td>2,457</td>
<td></td>
</tr>
</tbody>
</table>
Presentan **Interacción** con *edad* como independiente principal: *Enfermedad de base, ASA y Duración de la intervención*. Los términos multiplicativos a introducir en el modelo serían:

\[\text{Edad}*\text{Enfermedad de base}, \]

\[\text{Edad}*\text{ASA}, \]

\[\text{Edad}*\text{Duración de la intervención}. \]

Presentan **Confusión** con *edad* como independiente principal: *Enfermedad de base, ASA* (Ya incluidas en el análisis por ser significativas)

4.2.2.3.- **Variables a introducir en el modelo:**

Significativas: *Sexo, Edad, Enfermedad de base, Desnutrición, Sistema Urinario cerrado, Catéter Central, Catéter Central Inserción Periférica, Catéter arterial, Insuficiencia renal crónica, Nutrición parenteral, Ventilación mecánica, Sonda nasogástrica, Tratamiento inmunodepresor, Procedimiento invasivo, ASA y Preparación intervención.*

Interacción: *Edad* *Enfermedad de base, Edad* *ASA, Edad* *Duración de la intervención y Duración de la intervención* (Duración de la intervención hay que incluirla como variable independiente por la jerarquía de la interacción, además del término multiplicativo y porque no está incluida entre las significativas por no serlo.)

Confusión: ninguna ya que *Enfermedad de base y ASA que presentan confusión, ya han sido incluidas en el análisis por ser significativas.*

4.2.2.5.- **Resultados:** En la Tabla 4.2.2.5a se presentan los resultados del análisis de RLB

<table>
<thead>
<tr>
<th>Índices</th>
</tr>
</thead>
</table>
| -2LL | 2303,218
| R² Cox y Snell | 0,031
| R² Nagelkerke | 0,101
| Hosmer y Lemeshow | 0,687
| Especificidad | 71,3%
| Sensibilidad | 59%
| Global | 70,7%

~ 225 ~
En la tabla 4.2.2.5b se detallan las variables que, después de realizar el proceso completo, han resultado estadísticamente significativas.

Con los datos de la Tabla 4.2.2.5a debemos concluir que la RLB no es un buen sistema para el análisis multivariante de los datos del proceso prótesis de cadera, primer implante. No obstante, a modo de ejercicio, puesto que estamos intentando encontrar el modelo al que mejor ajusten nuestros datos, vamos a aplicar la fórmula de la RLB con las variables que finalmente han resultado estadísticamente significativas. Puede observarse en la página siguiente, después de la tabla comentada.

<table>
<thead>
<tr>
<th>Tabla 4.2.2.5b. Variables in the Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Edad</td>
</tr>
<tr>
<td>Sexo</td>
</tr>
<tr>
<td>Desnutrición</td>
</tr>
<tr>
<td>Sistema Urinario Cerrado</td>
</tr>
<tr>
<td>Catéter Central</td>
</tr>
<tr>
<td>Catéter Central Inserción Periférica</td>
</tr>
<tr>
<td>Procedimiento Invasivo</td>
</tr>
<tr>
<td>Preparación para Intervención</td>
</tr>
<tr>
<td>Duración de la intervención</td>
</tr>
<tr>
<td>ASA by EDAD</td>
</tr>
<tr>
<td>Duración de la intervención by Edad</td>
</tr>
<tr>
<td>Constant</td>
</tr>
</tbody>
</table>

\[
P(Y=1) = \frac{1}{1 + \exp(-\alpha - \beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3 - \ldots - \beta_k X_k)}
\]

\[
P(Y=1) = \frac{1}{1 + e^{(4.597-1.164*1+0.288*1-1.179*1-0.859*1-1.286*1-0.945*1-0.477*1-1.136*1-0.497*1+0.570*1+0.653*1)}}
\]

\[
= \frac{1}{1 + 2.718^{(1.435)}} = \frac{1}{1 + 0.238} = 0.81
\]

La probabilidad de adquirir una IN es de 81%

La conclusión es inadecuada puesto que no se cumplen los preceptos básicos (Tabla 4.2.2.5a). Si hubiésemos tenido en cuenta sólo el resultado final hubiéramos
llegado a una conclusión totalmente incorrecta. De ahí que insistamos, una vez más, que es necesario que los autores detallen también estos datos cuando utilicen la RLB y no simplemente un resultado final que ha podido conseguirse sin tener en cuenta los resultados necesarios para la validación de la prueba.
4.2.3.** Prótesis de rodilla. Primer implante.**

4.2.3.1.-Se hace **RLB individual** para ver la significación de las variables y poder elegir la variable principal.

Las variables significativas ($\alpha \leq 0.05$) son: **enfermedad de base, UCI, SU cerrado, CCentral, CCIP, Procedimiento invasivo, tipo intervención** y **ASA**. En la **Tabla 4.2.3.1** pueden observarse los detalles.

<table>
<thead>
<tr>
<th>Variable</th>
<th>WALD</th>
<th>Sign</th>
<th>OR</th>
<th>Lim inf</th>
<th>Lim sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td>0.668</td>
<td>0.414</td>
<td>0.864</td>
<td>0.609</td>
<td>1.227</td>
</tr>
<tr>
<td>Edad</td>
<td>2.602</td>
<td>0.107</td>
<td>1.018</td>
<td>0.996</td>
<td>1.040</td>
</tr>
<tr>
<td>Edad (dicotómica)</td>
<td>1.002</td>
<td>0.317</td>
<td>1.182</td>
<td>0.852</td>
<td>1.640</td>
</tr>
<tr>
<td>Infección ingreso</td>
<td>1.183</td>
<td>0.277</td>
<td>1.655</td>
<td>0.667</td>
<td>4.106</td>
</tr>
<tr>
<td>Enfermedad base</td>
<td>4.713</td>
<td>0.030</td>
<td>2.369</td>
<td>1.087</td>
<td>5.162</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>0.699</td>
<td>0.403</td>
<td>1.184</td>
<td>0.797</td>
<td>1.758</td>
</tr>
<tr>
<td>Inmunodepresión</td>
<td>0.014</td>
<td>0.905</td>
<td>1.129</td>
<td>0.154</td>
<td>8.291</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>25.493</td>
<td>0.000</td>
<td>2.747</td>
<td>1.856</td>
<td>4.066</td>
</tr>
<tr>
<td>Sondaje Urinario cerrado</td>
<td>19.195</td>
<td>0.000</td>
<td>2.197</td>
<td>1.545</td>
<td>3.124</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>13.044</td>
<td>0.000</td>
<td>4.318</td>
<td>1.952</td>
<td>9.551</td>
</tr>
<tr>
<td>Catéter Central Inserción Periférica</td>
<td>23.629</td>
<td>0.000</td>
<td>7.621</td>
<td>3.360</td>
<td>17.283</td>
</tr>
<tr>
<td>Catéter periférico</td>
<td>0.205</td>
<td>0.650</td>
<td>0.629</td>
<td>0.085</td>
<td>4.663</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>2.189</td>
<td>0.139</td>
<td>4.780</td>
<td>0.602</td>
<td>37.976</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>3.308</td>
<td>0.069</td>
<td>7.174</td>
<td>0.858</td>
<td>39.964</td>
</tr>
<tr>
<td>Drenaje</td>
<td>0.504</td>
<td>0.478</td>
<td>2.048</td>
<td>0.283</td>
<td>14.802</td>
</tr>
<tr>
<td>Tratamiento inmunodepresor</td>
<td>0.935</td>
<td>0.334</td>
<td>1.648</td>
<td>0.599</td>
<td>4.534</td>
</tr>
<tr>
<td>Procedimiento invasivo</td>
<td>9.985</td>
<td>0.002</td>
<td>1.791</td>
<td>1.248</td>
<td>2.570</td>
</tr>
<tr>
<td>Tipo de intervención</td>
<td>5.909</td>
<td>0.015</td>
<td>0.555</td>
<td>0.345</td>
<td>0.892</td>
</tr>
<tr>
<td>ASA</td>
<td>14.595</td>
<td>0.000</td>
<td>1.894</td>
<td>1.365</td>
<td>2.628</td>
</tr>
<tr>
<td>Profilaxis</td>
<td>0.091</td>
<td>0.763</td>
<td>1.244</td>
<td>0.302</td>
<td>5.122</td>
</tr>
<tr>
<td>Duración de la intervención</td>
<td>1.397</td>
<td>0.237</td>
<td>1.218</td>
<td>0.878</td>
<td>1.690</td>
</tr>
<tr>
<td>Laparoscopia</td>
<td>0.843</td>
<td>0.359</td>
<td>0.888</td>
<td>0.051</td>
<td>2.930</td>
</tr>
</tbody>
</table>

Se elige como **variable independiente principal** *Sondaje Urinario cerrado* por tener relevancia clínica en este proceso, presentar un OR de los mayores y estar equilibrada la presencia y ausencia del factor de riesgo o variable (de 6436 pacientes al 49,6% no se les ha implantado una sonda urinaria cerrada y al 50,4% restante, sí) e IC no amplios.

4.2.3.2.- **Interacción y confusión.**

Recordemos que existe interacción cuando al introducir en el modelo únicamente la variable principal, la sospechosa de interacción y el término multiplicativo entre las
dos, existe significación para el término multiplicativo. Y existe confusión cuando al introducir en el modelo únicamente la variable principal y la sospechosa de confusión, el OR de la variable principal obtenido al realizar una RLB sólo con la variable principal, varía en más del 10%. Veámoslo en la tabla 4.2.3.2.

<table>
<thead>
<tr>
<th>Tabla 4.2.3.2.- Interacción y confusión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
</tr>
<tr>
<td>Sexo</td>
</tr>
<tr>
<td>Edad</td>
</tr>
<tr>
<td>Infección al ingreso</td>
</tr>
<tr>
<td>Enfermedad de base</td>
</tr>
<tr>
<td>DM</td>
</tr>
<tr>
<td>Inmunodepresión</td>
</tr>
<tr>
<td>Desnutrición</td>
</tr>
<tr>
<td>Estancia en UCI</td>
</tr>
<tr>
<td>Sistema Urinario abierto</td>
</tr>
<tr>
<td>Catéter Central</td>
</tr>
<tr>
<td>Catéter Central Inserc Perifér</td>
</tr>
<tr>
<td>Catéter periférico</td>
</tr>
<tr>
<td>Catéter arterial</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
</tr>
<tr>
<td>Drenaje</td>
</tr>
<tr>
<td>Tratamiento inmunodepresor</td>
</tr>
<tr>
<td>Procedimiento invasivo</td>
</tr>
<tr>
<td>Tipo intervención</td>
</tr>
<tr>
<td>ASA</td>
</tr>
<tr>
<td>Preparación para intervención</td>
</tr>
<tr>
<td>Profilaxis</td>
</tr>
<tr>
<td>Duración de la intervención</td>
</tr>
<tr>
<td>Laparoscopia</td>
</tr>
</tbody>
</table>

Presenta interacción con **Sistema Urinario cerrado: Tratamiento inmunodepresor**

Presentan confusión con **Sistema Urinario cerrado: Estancia en UCI y Procedimiento invasivo**

4.2.3.3.- Introducción de las variables en el modelo (en cursiva):

- Variables significativas: **SU cerrado, Enfermedad de base, UCI, Catéter central, CCIP, procedimiento invasivo, tipo intervención, ASA**.

- Interacción: **SU cerrado* Tratamiento inmunodepresor, Tratamiento inmunodepresor**.

- Confusión: **Estancia en UCI y procedimiento invasivo (ya introducidas)**

~ 229 ~
4.2.3.4.- Resultados. Presentamos los resultados en la Tabla 4.2.3.4. Los comentaremos en el apartado discusión.

<table>
<thead>
<tr>
<th>Tabla 4.2.3.4.- Prótesis de rodilla. Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índices</td>
</tr>
<tr>
<td>-2LL</td>
</tr>
<tr>
<td>R² Cox y Snell</td>
</tr>
<tr>
<td>R² Nagelkerke</td>
</tr>
<tr>
<td>Hosmer y Lemeshow</td>
</tr>
<tr>
<td>Especificidad</td>
</tr>
<tr>
<td>Sensibilidad</td>
</tr>
<tr>
<td>Global</td>
</tr>
</tbody>
</table>

4.2.3.5.- Variables en la ecuación final y modelo

<table>
<thead>
<tr>
<th>Tabla 4.2.3.5. Variables in the Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Sistema Urinario Cerrado</td>
</tr>
<tr>
<td>Enfermedad de Base</td>
</tr>
<tr>
<td>Catéter Central</td>
</tr>
<tr>
<td>Catéter Central Inserción Periférica</td>
</tr>
<tr>
<td>Procedimiento Invasivo</td>
</tr>
<tr>
<td>ASA</td>
</tr>
<tr>
<td>SUCerrado by Tratam Inmunodep</td>
</tr>
<tr>
<td>Constant</td>
</tr>
</tbody>
</table>

Aplicada la fórmula final se obtiene el siguiente resultado:

98,14 % probabilidad de adquirir una IN.

Esta conclusión es incorrecta. Ocurre lo mismo que con prótesis de cadera, primer implante. Los datos son todavía más pobres en el caso de la prótesis de rodilla. Lo comentaremos en el capítulo de Discusión.
4.3.- **REGRESIÓN DE COX O DE LOS RIESGOS PROPORCIONALES.**

4.3.1.- Cirugía electiva de colon.

4.3.1.1.- **Asunciones del modelo.**

En primer lugar vamos a comprobar que se cumplen las condiciones exigidas o asunciones del modelo.

En los modelos de Cox la asunción es que el riesgo relativo instantáneo (*hazard ratio*) sea proporcional e independiente del tiempo. Con esto se asume que el efecto de las covariables (variables predictoras) sobre la función de riesgo es log-lineal, además de que $h_0(t)$ es proporcional, es decir, multiplicativa. La comprobación de estos asertos se puede demostrar tanto gráfica (sólo para variables categóricas) como estadísticamente.

En nuestro estudio todas las variables son categóricas excepto edad y tiempo de intervención. Y estas dos también se han categorizado como explicamos en el apartado correspondiente. No obstante las comprobaremos como categóricas y como continuas.

En las variables categóricas podemos realizar una comprobación gráfica\(^{(11)}\). Si las curvas de supervivencia son “paralelas” estaremos cumpliendo con las asunciones del modelo. Se observa mejor si se representa en función del *logaritmo del tiempo* (SPSS) que si lo hacemos con *función del riesgo*. Para realizarlo con SPSS, en la carátula 1ª de regresión de Cox, la variable a estudio se introduce en la casilla *Estratos*, en vez de en la de *Covariables*. Y en la carátula *Gráficos* se marcan *Riesgo* y *Log menos Log*, aunque luego elijamos sólo *Log menos Log* ya que su resultado es más gráfico.

En los siguientes cuadros presentamos estos resultados para cada variable:

![Gráficos de supervivencia para variables categóricas](image)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Curva de supervivencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td>[Gráfico]</td>
</tr>
<tr>
<td>Edad</td>
<td>[Gráfico]</td>
</tr>
<tr>
<td>Enfermedad de base</td>
<td>[Gráfico]</td>
</tr>
</tbody>
</table>
Inmunodepresión
Desnutrición
Catéter central
Diabetes Mellitus
Inmunodepresión
IRC
Drenaje
Sistema urinario abierto
Estancia en UCI
Sistema urinario cerrado
Catéter periférico
Tratamiento
CVCIP

~ 232 ~
Catéter arterial
Nutrición parenteral
Ventilación mecánica
Sonda nasogástrica
Procedimiento invasivo
Tipo de intervención
Tipo de herida
ASA
Preparación para la intervención
Profilaxis
Cambio de material
Duración de la intervención
Laparoscopia
Empleo de aros
Transfusión
Variables cuantitativas: Edad y Duración de la intervención (gráficas 4.3.1.1.a y b; gráficas 4.3.1.1.c y d respectivamente) A pesar de que ambas se han dicotomizado y utilizado así resultando sus curvas “paralelas”, vamos a comprobar también si cumplen las condiciones si las consideramos como cuantitativas, es decir, como se midieron.

Para ello lo primero que hicimos fue crear un término multiplicativo entre Tiempo (Días a riesgo en nuestro caso) y cada una de las variables a estudiar: edad o duración de la intervención.

Para crear el término multiplicativo debemos ir a Analizar/Supervivencia/Cox con variable dependiente del tiempo. Se introduce en el cuadro que aparece: \(T_\cdot \) término * de multiplicar y la variable a estudio. En el cuadro Expresión para \(T_{COV} \) se
introduce T_*, el término multiplicar (cogido del cuadro) y la variable a estudio (*edad* o *duración de la intervención*). Se pincha en el recuadro *Modelo*… y nos aparece otra vez la carátula de Regresión de Cox. Ponemos cada variable en su sitio (en *Hora*, *Días a riesgo*). En Estado, *IN codificada* (hay que pinchar en definir el evento y poner 1) y en covariables, T_{COV} y *edad* o *duración de la intervención*. Aceptamos y nos quedamos con **Pruebas ómnibus de coeficientes de modelo** (debe ser **significativa**) y **Variables en la ecuación** (debe ser **no significativa**). Entonces decimos que no son variables dependientes del tiempo. Qedarían así:

$$T_*$edad$$

$$T_*$tiempo de intervención.$$

Los resultados obtenidos son:

Para *edad*:

Tabla 4.3.1.1.a- Pruebas ómnibus de coeficientes de modelo

<table>
<thead>
<tr>
<th>Logaritmo de la verosimilitud -2</th>
<th>Global (puntuación)</th>
<th>Cambio respecto a paso anterior</th>
<th>Cambio respecto a bloque anterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-cuadrado</td>
<td>gl</td>
<td>Sig.</td>
</tr>
<tr>
<td>24077,165</td>
<td>11,097</td>
<td>2</td>
<td>.004</td>
</tr>
</tbody>
</table>

a. Número de bloque de inicio 1. Método = Entrar

Como se puede observar el modelo es estadísticamente significativo (p= 0,004).

Tabla 4.3.1.1.b- Variables en la ecuación

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>gl</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{COV}</td>
<td>.000</td>
<td>.000</td>
<td>.053</td>
<td>1</td>
<td>.818</td>
<td>1,000</td>
</tr>
<tr>
<td>Edad</td>
<td>.008</td>
<td>.004</td>
<td>3,980</td>
<td>1</td>
<td>.046</td>
<td>1,008</td>
</tr>
</tbody>
</table>

Como mostramos en la **tabla 4.3.1.1.b** la nueva variable creada como producto del Tiempo y edad (T_{COV}) no es significativa (p=0,818) de lo que deducimos que la variable edad no interacciona con el Tiempo y cumple las asunciones necesarias.
Para *duración de la intervención*:

Repetimos los mismos pasos que con la variable *edad* y obtenemos:

<table>
<thead>
<tr>
<th>Tabla 4.3.1.1.c- Pruebas ómnibus de coeficientes de modeloa</th>
</tr>
</thead>
</table>
| Logaritmo de la verosimilitud -2
global (puntuación) | Cambio respecto a paso anterior | Cambio respecto a bloque anterior |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado gl</td>
<td>Sig.</td>
<td>Chi-cuadrado gl</td>
</tr>
<tr>
<td>24068,240</td>
<td>.000</td>
<td>20,292</td>
</tr>
</tbody>
</table>

a. Número de bloque de inicio 1. Método = Entrar

Concluimos que el modelo es estadísticamente significativo (*p*=0,000).

<table>
<thead>
<tr>
<th>Tabla 4.3.1.1.d- Variables en la ecuación</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
</tr>
<tr>
<td>T_COV_</td>
</tr>
<tr>
<td>Duración interv.</td>
</tr>
</tbody>
</table>

El producto de las variables es no significativo (*p*=0,134). Concluimos que la variable *duración de la intervención* también cumple las condiciones exigidas (asunciones) cuando la consideramos cuantitativa continua.

4.3.1.2. Analítica: **Comparación estadística bivariante: Regresión de Cox**

El problema en un estudio de cohortes como el actual es elegir cuál va a ser la variable predictora principal con la que comprobar si existen, en las demás, interacción o confusión. Para ello vemos el comportamiento individual de cada covariable cuando se realiza una regresión de Cox (sólo con esa covariable) y la prueba de *χ²*. Véase en la Tabla 4.3.1.2.
Tabla 4.3.1.2.- Significación individual (RLB y X^2)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Wald</th>
<th>Significación*</th>
<th>X^2</th>
<th>Significación**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td>27,84</td>
<td>0,000</td>
<td>28,05</td>
<td>0,000</td>
</tr>
<tr>
<td>Enfermedad de base</td>
<td>96,30</td>
<td>0,000</td>
<td>98,36</td>
<td>0,000</td>
</tr>
<tr>
<td>DM</td>
<td>11,12</td>
<td>0,001</td>
<td>11,16</td>
<td>0,001</td>
</tr>
<tr>
<td>Inmunodepresión</td>
<td>1,67</td>
<td>0,196</td>
<td>1,68</td>
<td>0,194</td>
</tr>
<tr>
<td>Insuficiencia Renal Crónica</td>
<td>4,73</td>
<td>0,030</td>
<td>4,75</td>
<td>0,029</td>
</tr>
<tr>
<td>Desnutrición</td>
<td>0,61</td>
<td>0,435</td>
<td>0,61</td>
<td>0,435</td>
</tr>
<tr>
<td>Drenaje</td>
<td>7,02</td>
<td>0,008</td>
<td>7,05</td>
<td>0,008</td>
</tr>
<tr>
<td>Tratamiento Inmunodepresor</td>
<td>12,49</td>
<td>0,000</td>
<td>12,57</td>
<td>0,000</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>241,54</td>
<td>0,000</td>
<td>254,80</td>
<td>0,000</td>
</tr>
<tr>
<td>Sistema Urinario abierto</td>
<td>0,256</td>
<td>0,613</td>
<td>0,256</td>
<td>0,613</td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
<td>0,74</td>
<td>0,389</td>
<td>0,742</td>
<td>0,389</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>109,42</td>
<td>0,000</td>
<td>111,94</td>
<td>0,000</td>
</tr>
<tr>
<td>Catéter Central Inserc Periférica</td>
<td>4,43</td>
<td>0,035</td>
<td>0,44</td>
<td>0,035</td>
</tr>
<tr>
<td>Catéter periférico</td>
<td>0,15</td>
<td>0,698</td>
<td>0,15</td>
<td>0,698</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>180,04</td>
<td>0,000</td>
<td>189,31</td>
<td>0,000</td>
</tr>
<tr>
<td>Nutrición parenteral</td>
<td>228,67</td>
<td>0,000</td>
<td>238,09</td>
<td>0,000</td>
</tr>
<tr>
<td>Ventilación mecánica</td>
<td>152,98</td>
<td>0,000</td>
<td>170,26</td>
<td>0,000</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>56,36</td>
<td>0,000</td>
<td>57,22</td>
<td>0,000</td>
</tr>
<tr>
<td>Procedimiento invasivo</td>
<td>4,28</td>
<td>0,039</td>
<td>4,28</td>
<td>0,039</td>
</tr>
<tr>
<td>Tipo de intervención</td>
<td>12,01</td>
<td>0,001</td>
<td>12,13</td>
<td>0,000</td>
</tr>
<tr>
<td>Tipo de herida</td>
<td>14,42</td>
<td>0,000</td>
<td>14,56</td>
<td>0,000</td>
</tr>
<tr>
<td>ASA</td>
<td>32,92</td>
<td>0,000</td>
<td>33,16</td>
<td>0,000</td>
</tr>
<tr>
<td>Preparación para la intervención</td>
<td>0,28</td>
<td>0,596</td>
<td>0,281</td>
<td>0,596</td>
</tr>
<tr>
<td>Profilaxis</td>
<td>5,73</td>
<td>0,017</td>
<td>5,88</td>
<td>0,016</td>
</tr>
<tr>
<td>Laparoscopia</td>
<td>46,35</td>
<td>0,000</td>
<td>46,96</td>
<td>0,000</td>
</tr>
<tr>
<td>Aros</td>
<td>2,21</td>
<td>0,137</td>
<td>2,23</td>
<td>0,135</td>
</tr>
<tr>
<td>Transfusión</td>
<td>0,17</td>
<td>0,677</td>
<td>0,17</td>
<td>0,677</td>
</tr>
<tr>
<td>Cambio (ropa, guantes, campo…)</td>
<td>0,22</td>
<td>0,637</td>
<td>0,22</td>
<td>0,637</td>
</tr>
<tr>
<td>Nº Cirujanos</td>
<td>0,69</td>
<td>0,405</td>
<td>0,70</td>
<td>0,404</td>
</tr>
<tr>
<td>Ostomía</td>
<td>14,14</td>
<td>0,000</td>
<td>15,37</td>
<td>0,000</td>
</tr>
<tr>
<td>Tipo drenaje</td>
<td>25,16</td>
<td>0,000</td>
<td>26,29</td>
<td>0,000</td>
</tr>
<tr>
<td>Perforación intraoperatoria</td>
<td>5,48</td>
<td>0,018</td>
<td>5,57</td>
<td>0,019</td>
</tr>
<tr>
<td>Anastomosis</td>
<td>4,63</td>
<td>0,031</td>
<td>4,65</td>
<td>0,032</td>
</tr>
<tr>
<td>Lavado intraoperatorio</td>
<td>0,18</td>
<td>0,672</td>
<td>0,18</td>
<td>0,671</td>
</tr>
<tr>
<td>Lugar profilaxis</td>
<td>81,47</td>
<td>0,000</td>
<td>85,46</td>
<td>0,000</td>
</tr>
<tr>
<td>Edad (dicotómica)</td>
<td>14,50</td>
<td>0,000</td>
<td>14,55</td>
<td>0,000</td>
</tr>
<tr>
<td>Edad</td>
<td>11,05</td>
<td>0,001</td>
<td>11,05</td>
<td>0,001</td>
</tr>
<tr>
<td>Duración de la intervención (dic)</td>
<td>15,73</td>
<td>0,000</td>
<td>15,78</td>
<td>0,000</td>
</tr>
<tr>
<td>Duración de la intervención</td>
<td>18,56</td>
<td>0,000</td>
<td>18,55</td>
<td>0,000</td>
</tr>
</tbody>
</table>

*Significación prueba de Wald. **Significación de las Pruebas ómnibus coeficientes modelo.

Elegimos la variable *Nutrición parenteral* porque nos parece una variable de mucho peso en su contribución a la variable de desenlace (*IN, infección nosocomial*), tiene el segundo valor de Wald más elevado (241,54) y también en X^2 al compararla con IN (254,80) y, por tanto, sus significaciones (p=0,000). Desechamos *Estancia en UCI* (**Estancia en la Unidad de Cuidados Intensivos**) a pesar de tener los valores más elevados en Regresión de Cox porque puede englobar otras variables (**Nutrición**
parenteral, sonda nasogástrica, ventilación mecánica, catéter central, catéter central de inserción periférica etc.) que se utilizan prácticamente sólo en UCI.

Con el fin de completar lo más posible nuestra investigación haremos lo mismo con otras dos variables también muy relevantes en la comparación individual: Cateterismo arterial y Ventilación mecánica. Los detalles pueden observarse en el anexo 5 (página 388 y siguientes). Después de someter a dichas variables al mismo proceso que a Nutrición parenteral, elegimos como principal a Nutrición parenteral.

4.3.1.3. - Interacción.

Para conocer si las variables del modelo presentan interacción hay que compararlas de dos en dos, introduciendo a la vez el término multiplicativo. Decimos que un modelo logístico presenta interacción si los tres coeficientes son simultáneamente significativos.

Introducimos, entonces, en el cuadro de covariables la variable Nutrición parenteral y vamos introduciendo el resto de variables una por una, así como su término multiplicativo con Nutrición parenteral. Una vez obtenida la significación para las dos variables y su término multiplicativo, dejamos en el modelo Nutrición parenteral y sacamos la variable introducida y el término multiplicativo. Repetimos el proceso con todas las variables, una por una. Si las dos variables y su término multiplicativo son significativos estamos ante el fenómeno de la interacción y hay que introducir en el modelo las dos variables y el término multiplicativo. Los resultados de las variables que han presentado interacción, teniendo a Nutrición parenteral como principal, son: Tratamiento inmunodepresor, Ventilación mecánica, Sonda nasogástrica, Laparoscopia y Anastomosis. Puede verse el resumen en la tabla 4.3.1.4.

En las tablas 4.3.1.2.b, c, d, e, f mostramos los resultados.
Tabla 4.3.1.2.b. Variables en la ecuación. Tratamiento Inmunodepresor.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95,0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrición Parenteral</td>
<td>,863</td>
<td>,057</td>
<td>228,401</td>
<td>1</td>
<td>,000</td>
<td>2,370</td>
<td>2,119 – 2,651</td>
</tr>
<tr>
<td>Tratamiento Inmunodepresor</td>
<td>,502</td>
<td>,111</td>
<td>20,399</td>
<td>1</td>
<td>,000</td>
<td>1,652</td>
<td>1,329 – 2,054</td>
</tr>
<tr>
<td>NutriParen*TtoInmunodepresor</td>
<td>- .536</td>
<td>,161</td>
<td>11,039</td>
<td>1</td>
<td>,001</td>
<td>.585</td>
<td>.427 – .803</td>
</tr>
</tbody>
</table>

Tabla 4.3.1.2.c. Variables en la ecuación. Ventilación mecánica

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95,0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrición Parenteral</td>
<td>,804</td>
<td>,056</td>
<td>204,992</td>
<td>1</td>
<td>,000</td>
<td>2,235</td>
<td>2,002 – 2,496</td>
</tr>
<tr>
<td>Ventilación Mecánica</td>
<td>1,670</td>
<td>,165</td>
<td>103,014</td>
<td>1</td>
<td>,000</td>
<td>5,314</td>
<td>3,849 – 7,337</td>
</tr>
<tr>
<td>NutriParen*VentilaMecanica</td>
<td>-1,028</td>
<td>,203</td>
<td>25,645</td>
<td>1</td>
<td>,000</td>
<td>.358</td>
<td>.240 – .533</td>
</tr>
</tbody>
</table>

Tabla 4.3.1.2.d. Variables en la ecuación. Sonda nasogástrica.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95,0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrición Parenteral</td>
<td>1,009</td>
<td>,112</td>
<td>81,406</td>
<td>1</td>
<td>,000</td>
<td>2,744</td>
<td>2,204 – 3,416</td>
</tr>
<tr>
<td>Sonda Nasogástrica</td>
<td>.368</td>
<td>,072</td>
<td>26,018</td>
<td>1</td>
<td>,000</td>
<td>1,445</td>
<td>1,254 – 1,664</td>
</tr>
<tr>
<td>NutriParen*SondaNaso</td>
<td>-.331</td>
<td>,127</td>
<td>6,853</td>
<td>1</td>
<td>,009</td>
<td>.718</td>
<td>.560 – .920</td>
</tr>
</tbody>
</table>

~ 239 ~
Tabla 4.3.1.2.e. Variables en la ecuación. Laparoscopia.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95,0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrición Parenteral</td>
<td>,921</td>
<td>,094</td>
<td>95,860</td>
<td>1</td>
<td>,000</td>
<td>2,513</td>
<td>2,090 - 3,022</td>
</tr>
<tr>
<td>Laparoscopia</td>
<td>,433</td>
<td>,079</td>
<td>30,287</td>
<td>1</td>
<td>,000</td>
<td>1,541</td>
<td>1,321 - 1,798</td>
</tr>
<tr>
<td>Laparoscopia*NutriParen</td>
<td>-324</td>
<td>,122</td>
<td>7,008</td>
<td>1</td>
<td>,008</td>
<td>.723</td>
<td>.569 - .919</td>
</tr>
</tbody>
</table>

Tabla 4.3.1.2.f. Variables en la ecuación. Anastomosis.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95,0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrición Parenteral</td>
<td>,549</td>
<td>,202</td>
<td>7,368</td>
<td>1</td>
<td>,007</td>
<td>1,731</td>
<td>1,165 - 2,573</td>
</tr>
<tr>
<td>Anastomosis</td>
<td>-478</td>
<td>,149</td>
<td>10,240</td>
<td>1</td>
<td>,001</td>
<td>,620</td>
<td>,463 - ,831</td>
</tr>
<tr>
<td>Anastomosis*NutriParen</td>
<td>,444</td>
<td>,220</td>
<td>4,069</td>
<td>1</td>
<td>,044</td>
<td>1,559</td>
<td>1,013 - 2,399</td>
</tr>
</tbody>
</table>

4.3.1.4. Colinealidad

Una de las formas de comprobar si existe colinealidad es verificar el comportamiento de -2LL y la significación de las dos variables y su término multiplicativo: consideramos que existe colinealidad cuando -2LL es muy significativa y ni las dos variables originales ni su producto son significativos.

Mostramos la variable en la que hemos encontrado colinealidad: en la Tabla 4.3.1.3.a, la significación de -2LL y en la Tabla 4.3.1.3.b, la significación de los coeficientes de regresión B.

Tabla 4.3.1.3.a- Pruebas ómnibus de coeficientes de modelo

<table>
<thead>
<tr>
<th></th>
<th>Global (puntuación)</th>
<th>Cambio respecto a paso anterior</th>
<th>Cambio respecto bloque anterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-cuadrado</td>
<td>gl</td>
<td>Sig.</td>
</tr>
<tr>
<td></td>
<td>29,895</td>
<td>3</td>
<td>,000</td>
</tr>
</tbody>
</table>
Tabla 4.3.1.3.b- Significación de coeficientes del modelo

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95,0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrición Parenteral</td>
<td>.237</td>
<td>,638</td>
<td>,138</td>
<td>1</td>
<td>,710</td>
<td>1,267</td>
<td>.363 - 4,424</td>
</tr>
<tr>
<td>LavadoIntra</td>
<td>-.078</td>
<td>,458</td>
<td>.029</td>
<td>1</td>
<td>,866</td>
<td>,925</td>
<td>.377 - 2,272</td>
</tr>
<tr>
<td>LavadoIntra*NutriParen</td>
<td>.554</td>
<td>,652</td>
<td>,723</td>
<td>1</td>
<td>,395</td>
<td>1,741</td>
<td>.485 - 6,250</td>
</tr>
</tbody>
</table>

Existe colinealidad entre *Nutrición parenteral* y *Lavado intraoperatorio*.

No es estadísticamente significativa cuando realizamos la regresión de Cox individual ni presenta interacción con *Nutrición parenteral*, ni son variables de confusión, por lo que no las incluimos en el modelo.

4.3.1.5.- **Confusión**

Recordemos que si en un modelo de Cox introducimos una nueva variable independiente y su coeficiente (el de esa variable independiente) cambia significativamente respecto al valor que se obtuvo en el modelo simple o se anula, o si en ese modelo múltiple cambia significativamente el coeficiente de alguna de las variables que ya estaban en el modelo, puede que estemos ante interacción o confusión. Para ello vamos a utilizar modelos en los que mantendremos la variable principal (*Nutrición parenteral*) e iremos introduciendo, una a una, las variables independientes. Así comprobaremos qué ocurre con el coeficiente de regresión B y lo compararemos con el obtenido en la Regresión e Cox individual; y las variaciones del coeficiente de regresión B de la variable principal al que compararemos con el suyo individual (0,813). Como ya hemos estudiado la interacción, debemos comprobar que se cumplen o no los criterios de confusión (*Tabla 4.3.1.4*):

- Que las variables están asociadas entre sí.
- Que ambas están asociadas con la variable dependiente.
- Que la variable “sospechosa” no es un eslabón causal entre las otras dos variables.

~ 241 ~
Lo comprobamos en nuestro modelo (*Tabla 4.3.1.4*). Esta tabla sintetiza mucha información. Hemos preferido presentarlo así para que sea más cómoda la visión de conjunto, en vez de hacerlo en varias tablas:

<table>
<thead>
<tr>
<th>Variable</th>
<th>CB1</th>
<th>CB2</th>
<th>CB3</th>
<th>v1</th>
<th>v2</th>
<th>X^2</th>
<th>Wald</th>
<th>Confusión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td>0,298</td>
<td>0,249</td>
<td>0,835</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
<tr>
<td>Edad</td>
<td>0,192</td>
<td>0,150</td>
<td>0,842</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
<tr>
<td>Enfermedad de base</td>
<td>0,511</td>
<td>0,465</td>
<td>0,821</td>
<td>No</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>No</td>
</tr>
<tr>
<td>DM</td>
<td>0,200</td>
<td>0,206</td>
<td>0,876</td>
<td>No</td>
<td>No</td>
<td>0,331</td>
<td>0,186</td>
<td>No**</td>
</tr>
<tr>
<td>Inmunodepresión</td>
<td>-0,120</td>
<td>-0,141</td>
<td>0,873</td>
<td>Si</td>
<td>No</td>
<td>0,150</td>
<td>0,045</td>
<td>Si</td>
</tr>
<tr>
<td>Insuficiencia Renal Crónica</td>
<td>0,300</td>
<td>0,303</td>
<td>0,871</td>
<td>No</td>
<td>No</td>
<td>0,014</td>
<td>0,035</td>
<td>No**</td>
</tr>
<tr>
<td>Desnutrición</td>
<td>0,244</td>
<td>0,105</td>
<td>0,893</td>
<td>Si</td>
<td>No</td>
<td>0,001</td>
<td>0,489</td>
<td>No***</td>
</tr>
<tr>
<td>Drenaje</td>
<td>0,278</td>
<td>0,177</td>
<td>0,843</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,008</td>
<td>Si</td>
</tr>
<tr>
<td>Tratamiento Inmunodepisor</td>
<td>0,334</td>
<td>0,257</td>
<td>0,841</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>0,869</td>
<td>0,736</td>
<td>0,736</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
<tr>
<td>Sistema Urinario abierto</td>
<td>0,399</td>
<td>0,379</td>
<td>0,851</td>
<td>No</td>
<td>No</td>
<td>0,170</td>
<td>0,579</td>
<td>No**</td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
<td>-0,242</td>
<td>-0,360</td>
<td>0,857</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,400</td>
<td>No***</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>0,574</td>
<td>0,383</td>
<td>0,731</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
<tr>
<td>Catéter Central Inserción Periférica</td>
<td>0,099</td>
<td>0,002</td>
<td>0,851</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,045</td>
<td>Si</td>
</tr>
<tr>
<td>Catéter periférico</td>
<td>-0,358</td>
<td>-0,009</td>
<td>0,851</td>
<td>Si</td>
<td>No</td>
<td>0,003</td>
<td>0,705</td>
<td>No***</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>0,859</td>
<td>0,729</td>
<td>0,756</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
<tr>
<td>Nutrición parenteral</td>
<td>0,813</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilación mecánica</td>
<td>1,405</td>
<td>1,114</td>
<td>0,768</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>0,446</td>
<td>0,270</td>
<td>0,789</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
<tr>
<td>Procedimiento invasivo</td>
<td>-0,081</td>
<td>-0,092</td>
<td>0,853</td>
<td>Si</td>
<td>No</td>
<td>0,097</td>
<td>0,028</td>
<td>No*</td>
</tr>
<tr>
<td>Tipo de intervención</td>
<td>-0,338</td>
<td>-0,280</td>
<td>0,840</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,001</td>
<td>Si</td>
</tr>
<tr>
<td>Tipo de herida</td>
<td>0,288</td>
<td>0,203</td>
<td>0,843</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
<tr>
<td>ASA</td>
<td>0,309</td>
<td>0,249</td>
<td>0,829</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
<tr>
<td>Preparación para intervención</td>
<td>0,030</td>
<td>-0,126</td>
<td>0,845</td>
<td>Si</td>
<td>No</td>
<td>0,002</td>
<td>0,604</td>
<td>No***</td>
</tr>
<tr>
<td>Profilaxis antibiótica</td>
<td>0,415</td>
<td>0,403</td>
<td>0,851</td>
<td>No</td>
<td>No</td>
<td>0,227</td>
<td>0,017</td>
<td>No</td>
</tr>
<tr>
<td>Laparoscopia</td>
<td>0,447</td>
<td>0,341</td>
<td>0,773</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
<tr>
<td>Duración de la intervención</td>
<td>0,197</td>
<td>0,158</td>
<td>0,841</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
<tr>
<td>Empleo de Aros</td>
<td>0,361</td>
<td>0,286</td>
<td>0,862</td>
<td>Si</td>
<td>No</td>
<td>0,028</td>
<td>0,137</td>
<td>No***</td>
</tr>
<tr>
<td>Transfusión intraoperatoria</td>
<td>-0,401</td>
<td>-0,417</td>
<td>0,912</td>
<td>No</td>
<td>Si</td>
<td>0,101</td>
<td>0,677</td>
<td>No**</td>
</tr>
<tr>
<td>Cambio (guantes, mascarilla... etc.)</td>
<td>-0,094</td>
<td>-0,097</td>
<td>0,798</td>
<td>No</td>
<td>No</td>
<td>0,144</td>
<td>0,637</td>
<td>No**</td>
</tr>
<tr>
<td>Número de Cirujanos</td>
<td>0,237</td>
<td>0,190</td>
<td>0,951</td>
<td>Si</td>
<td>Si</td>
<td>0,108</td>
<td>0,405</td>
<td>No**</td>
</tr>
<tr>
<td>Ostomía</td>
<td>0,480</td>
<td>0,435</td>
<td>0,904</td>
<td>No</td>
<td>Si</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
<tr>
<td>Tipo de drenaje</td>
<td>0,760</td>
<td>0,493</td>
<td>0,771</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
<tr>
<td>Perforación intraoperatoria</td>
<td>0,487</td>
<td>0,409</td>
<td>0,895</td>
<td>Si</td>
<td>Si</td>
<td>0,000</td>
<td>0,019</td>
<td>Si</td>
</tr>
<tr>
<td>Anastomosis</td>
<td>-0,269</td>
<td>-0,256</td>
<td>0,955</td>
<td>No</td>
<td>Si</td>
<td>0,007</td>
<td>0,011</td>
<td>Si</td>
</tr>
<tr>
<td>Lavado intraoperatorio</td>
<td>-0,026</td>
<td>0,020</td>
<td>0,768</td>
<td>Si</td>
<td>No</td>
<td>0,315</td>
<td>0,672</td>
<td>No**</td>
</tr>
<tr>
<td>Lugar aplicación profilaxis</td>
<td>-0,752</td>
<td>-0,574</td>
<td>0,777</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Si</td>
</tr>
</tbody>
</table>

CB1: Coeficiente B de Regresión de cada variable, de forma independiente.
CB2: Coeficiente B de Regresión de cada variable con Nutrición parenteral como variable principal.
CB3: Coeficiente B de Regresión de la variable principal en el modelo con la variable de esa fila.
V1: % de variación de CB2 respecto a CB1.
V2: % de variación de CB3 respecto a su coeficiente B de Regresión individual con IN (0,813)
X^2: p de significación de cada variable con Nutrición parenteral.
Wald: Significación (Wald) de cada variable con IN con Regresión de Cox.
Confusión= No: % de variación de CB2 y CB - < 10%; **No**: No significación estadística con Nutrición parenteral; **No****: No significación estadística ni con Nutrición parenteral ni con IN; **No***: No sig. estadística con IN.

~ 242 ~
Han presentado confusión con Nutrición parenteral las variables señaladas con Si en la Tabla 4.3.1.4, columna 9.

4.3.1.6.- **Variables dependientes del tiempo.**

Varias de las covariables estudiadas podrían considerarse como dependientes del tiempo. Pondremos algunos ejemplos: catéter venoso periférico, catéter venoso central, sonda urinaria, alimentación parenteral, sonda nasogástrica y un largo etcétera. Son variables que puede presentarse o no en el paciente a lo largo del tiempo de observación. No obstante, nosotros las hemos representado como dicotómicas, no dependientes del tiempo, ya que sólo se contemplan (debido a las características del estudio – datos recopilados) si se ha presentado en ese paciente en concreto o no (SI o NO).

4.3.1.7.- **Variables en el modelo.**

Una vez comprobadas todas las condiciones y verificadas las peculiaridades de nuestras variables y partiendo de que todas tienen relevancia clínica que viene avalada por lo publicado por otros autores y por nuestra propia experiencia, vamos a establecer las pautas de inclusión en el modelo:

1º.- Incluiremos las variables significativas individualmente, es decir, las que fueron estadísticamente significativas al realizar una regresión de Cox individual (Tabla 4.3.1.2): Sexo, Enfermedad de base, DM, IRC, Drenaje, Tratamiento inmunodepresor, UCI, Catéter Central, Catéter Central de Inserción Periférica, Catéter arterial, Nutrición parenteral, Ventilación mecánica, Sonda nasogástrica, Procedimiento invasivo, Tipo de intervención, Tipo de herida, ASA, Profilaxis quirúrgica, Laparoscopia, Ostomía, Tipo de drenaje, Perforación intraoperatoria, Anastomosis, Lugar de administración de la profilaxis, edad (dicotómica), Duración de la intervención (dicotómica).

2º.- Variables que presentan interacción y sus términos multiplicativos: Tratamiento inmunodepresor, Nutrición parenteral*Tratamiento inmunodepresor, Ventilación mecánica, Nutrición parenteral*Ventilación mecánica, Sonda nasogástrica, Nutrición parenteral*Sonda nasogástrica, Laparoscopia, Nutrición parenteral*Laparoscopia, Anastomosis, Nutrición parenteral*Anastomosis.
NOTA: Estas variables ya estaban incluidas por los criterios del punto 1 por lo que se introduce ahora en el modelo el término multiplicativo (subrayados).

3°.- Variables que presentan confusión (Coeficiente β con variación > 10% de la variable a estudio o de la variable principal y cumplimiento de los criterios de confusión: asociación con la variable Nutrición parenteral y la variable IN y no ser eslabón causal) y que no han sido incluidas antes: Han quedado todas incluidas por los criterios de los anteriores apartados.

4°.- Como puede comprobarse no introducimos en el modelo la variable Lavado intraoperatorio que ha presentado colinealidad, pero que, además, no se había incluido por no ser significativa respecto a la variable dependiente (IN).

4.3.1.8.- Realización del análisis con SPSS.

Hemos introducido las variables especificadas en el apartado anterior (covariables) en un modelo de Regresión de Cox con la variable IN como dependiente, obteniendo los siguientes resultados:

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B) Lower</th>
<th>95.0% CI for Exp(B) Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estancia en UCI</td>
<td>.897</td>
<td>.224</td>
<td>16,013</td>
<td>1</td>
<td>.000</td>
<td>2,452</td>
<td>1,580</td>
<td>3,806</td>
</tr>
<tr>
<td>Sexo</td>
<td>.107</td>
<td>.139</td>
<td>.588</td>
<td>1</td>
<td>.443</td>
<td>1,113</td>
<td>.847</td>
<td>1,463</td>
</tr>
<tr>
<td>Edad</td>
<td>.141</td>
<td>.137</td>
<td>1,056</td>
<td>1</td>
<td>.304</td>
<td>1,151</td>
<td>.880</td>
<td>1,507</td>
</tr>
<tr>
<td>Enfermedad de Base</td>
<td>.391</td>
<td>.196</td>
<td>3,988</td>
<td>1</td>
<td>.046</td>
<td>1,479</td>
<td>1,007</td>
<td>2,171</td>
</tr>
<tr>
<td>DM</td>
<td>.280</td>
<td>.152</td>
<td>3,397</td>
<td>1</td>
<td>.065</td>
<td>1,324</td>
<td>.982</td>
<td>1,784</td>
</tr>
<tr>
<td>Insuficiencia Renal Crónica</td>
<td>-.399</td>
<td>.356</td>
<td>.909</td>
<td>1</td>
<td>.340</td>
<td>.712</td>
<td>.355</td>
<td>1,431</td>
</tr>
<tr>
<td>Tratam. Inmunodepresor</td>
<td>.050</td>
<td>.335</td>
<td>.022</td>
<td>1</td>
<td>.882</td>
<td>1,051</td>
<td>.545</td>
<td>2,029</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>.234</td>
<td>.170</td>
<td>1,913</td>
<td>1</td>
<td>.167</td>
<td>1,264</td>
<td>.907</td>
<td>1,763</td>
</tr>
<tr>
<td>Catéter Central Inserc Periférica</td>
<td>.098</td>
<td>.171</td>
<td>.329</td>
<td>1</td>
<td>.566</td>
<td>1,103</td>
<td>.789</td>
<td>1,541</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>-.721</td>
<td>.349</td>
<td>4,265</td>
<td>1</td>
<td>.082</td>
<td>1,051</td>
<td>.545</td>
<td>2,029</td>
</tr>
<tr>
<td>Nutrición Parenteral</td>
<td>.624</td>
<td>.502</td>
<td>1,544</td>
<td>1</td>
<td>.214</td>
<td>1,867</td>
<td>.698</td>
<td>4,995</td>
</tr>
<tr>
<td>Ventilación Mecánica</td>
<td>3,904</td>
<td>.696</td>
<td>31,427</td>
<td>1</td>
<td>.000</td>
<td>49,59</td>
<td>12,666</td>
<td>194,14</td>
</tr>
<tr>
<td>Sonda Nasogástrica</td>
<td>.136</td>
<td>.186</td>
<td>.532</td>
<td>1</td>
<td>.466</td>
<td>1,145</td>
<td>.795</td>
<td>1,649</td>
</tr>
<tr>
<td>Procedimiento Invasivo</td>
<td>.064</td>
<td>.157</td>
<td>.166</td>
<td>1</td>
<td>.684</td>
<td>1,066</td>
<td>.784</td>
<td>1,449</td>
</tr>
<tr>
<td>Tipo de Intervención</td>
<td>-.498</td>
<td>.351</td>
<td>2,008</td>
<td>1</td>
<td>.156</td>
<td>.608</td>
<td>.305</td>
<td>1,210</td>
</tr>
<tr>
<td>Tipo de Herida</td>
<td>.461</td>
<td>.246</td>
<td>3,508</td>
<td>1</td>
<td>.061</td>
<td>1,585</td>
<td>.979</td>
<td>2,567</td>
</tr>
<tr>
<td>ASA</td>
<td>.181</td>
<td>.138</td>
<td>1,737</td>
<td>1</td>
<td>.188</td>
<td>1,199</td>
<td>.915</td>
<td>1,570</td>
</tr>
<tr>
<td>Laparoscopia</td>
<td>.050</td>
<td>.184</td>
<td>.074</td>
<td>1</td>
<td>.785</td>
<td>1,051</td>
<td>.733</td>
<td>1,507</td>
</tr>
</tbody>
</table>

~ 244 ~
Siguiendo a Álvarez(11) vamos a plantear un nuevo modelo con las variables significativas del anterior (tabla 4.3.1.8). Los resultados pueden observarse en la tabla 4.3.1.8.b.

Tabla 4.3.1.8.b.- Variables in the Equation(b)

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95,0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estancia en UCI</td>
<td>.383</td>
<td>.069</td>
<td>30,608</td>
<td>1</td>
<td>.000</td>
<td>1,466</td>
<td>1,280 - 1,679</td>
</tr>
<tr>
<td>Enfermedad de Base</td>
<td>.325</td>
<td>.056</td>
<td>33,236</td>
<td>1</td>
<td>.000</td>
<td>1,384</td>
<td>1,239 - 1,545</td>
</tr>
<tr>
<td>DM</td>
<td>.148</td>
<td>.060</td>
<td>5,974</td>
<td>1</td>
<td>.015</td>
<td>1,159</td>
<td>1,030 - 1,305</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>.248</td>
<td>.072</td>
<td>11,792</td>
<td>1</td>
<td>.001</td>
<td>1,282</td>
<td>1,112 - 1,477</td>
</tr>
<tr>
<td>Nutrición Parenteral</td>
<td>.696</td>
<td>.059</td>
<td>141,244</td>
<td>1</td>
<td>.000</td>
<td>2,005</td>
<td>1,788 - 2,249</td>
</tr>
<tr>
<td>Ventilación Mecánica</td>
<td>1,121</td>
<td>.171</td>
<td>42,733</td>
<td>1</td>
<td>.000</td>
<td>3,068</td>
<td>2,192 - 4,293</td>
</tr>
<tr>
<td>Tipo de Herida</td>
<td>.227</td>
<td>.089</td>
<td>6,526</td>
<td>1</td>
<td>.011</td>
<td>1,255</td>
<td>1,054 - 1,494</td>
</tr>
<tr>
<td>Duración de la Intervención</td>
<td>.018</td>
<td>.054</td>
<td>.104</td>
<td>1</td>
<td>.747</td>
<td>1,018</td>
<td>.915 - 1,132</td>
</tr>
<tr>
<td>NutriParen*VentilaMecanica</td>
<td>-.776</td>
<td>.205</td>
<td>14,296</td>
<td>1</td>
<td>.000</td>
<td>.460</td>
<td>.308 - .688</td>
</tr>
</tbody>
</table>

Planteamos otro modelo de Regresión de Cox con las variables significativas del modelo anterior. En la tabla 4.3.1.8.c. pueden verse la variación de -2LL y su significación estadística. Y en la tabla 4.3.1.8.d. los resultados del análisis. Ahora
todas las variables que quedan en el modelo son significativas y, por tanto, construiremos con ellas el modelo.

Tabla 4.3.1.8.c- Pruebas ómnibus de coeficientes de modelo*

<table>
<thead>
<tr>
<th></th>
<th>Logaritmo de la verosimilitud</th>
<th>Cambio respecto a paso anterior</th>
<th>Cambio respecto a bloque anterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d -2</td>
<td>Global (puntuación)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chi-cuadrado gl Sig.</td>
<td>Chi-cuadrado gl Sig.</td>
<td>Chi-cuadrado gl Sig.</td>
</tr>
<tr>
<td>22408,658</td>
<td>672,320</td>
<td>8</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>527,292</td>
<td>8</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>527,292</td>
<td>8</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Número de bloque de inicio 1. Método = Entrar

Tabla 4.3.1.8.d.- Variables in the Equation(b)

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95,0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>.387</td>
<td>.068</td>
<td>32,668</td>
<td>1</td>
<td>.000</td>
<td>1.473</td>
<td>1.290</td>
</tr>
<tr>
<td>Enfermedad de Base</td>
<td>.325</td>
<td>.056</td>
<td>33,318</td>
<td>1</td>
<td>.000</td>
<td>1.384</td>
<td>1.240</td>
</tr>
<tr>
<td>DM</td>
<td>.147</td>
<td>.060</td>
<td>5,936</td>
<td>1</td>
<td>.015</td>
<td>1.158</td>
<td>1.029</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>.249</td>
<td>.072</td>
<td>11,813</td>
<td>1</td>
<td>.001</td>
<td>1.282</td>
<td>1.113</td>
</tr>
<tr>
<td>Nutrición Parenteral</td>
<td>.696</td>
<td>.059</td>
<td>141,229</td>
<td>1</td>
<td>.000</td>
<td>2.005</td>
<td>1.788</td>
</tr>
<tr>
<td>Ventilación Mecánica</td>
<td>1.122</td>
<td>.171</td>
<td>42,836</td>
<td>1</td>
<td>.000</td>
<td>3.071</td>
<td>2.195</td>
</tr>
<tr>
<td>Tipo de Herida</td>
<td>.229</td>
<td>.089</td>
<td>6,629</td>
<td>1</td>
<td>.010</td>
<td>1.257</td>
<td>1.056</td>
</tr>
<tr>
<td>NutriParen*TratºInmunodepresor</td>
<td>-.781</td>
<td>.205</td>
<td>14,582</td>
<td>1</td>
<td>.000</td>
<td>.458</td>
<td>.307</td>
</tr>
</tbody>
</table>

COMENTARIO: Podría pensarse que no es necesario realizar tantos modelos y que puede ser suficiente con el primero y construir el modelo final con las variables que resulten significativas en el. Obsérvese que los coeficientes de regresión B son diferentes en cada modelo. Estos coeficientes son fundamentales ya que forman parte del exponente de e en la formula final, por lo que es preciso utilizar los adecuados, como vamos a mostrar en el siguiente apartado.
4.3.1.9.- **Modelo.**

En el siguiente recuadro exponemos, de la forma más simplificada posible, la fórmula práctica para realizar la regresión de Cox.

\[h(t; x_1, x_2, ..., x_k) = h_0(t)e^{\beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k} \]

\[h_0(t) \] es el riesgo base y corresponde al riesgo de contraer IN cuando todas las variables tienen valor 0. Esta parte de la fórmula depende del tiempo. La otra parte \((\beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k) \) depende únicamente de las demás variables.

\(e \) es el número e (2.71828)

Para un paciente que presentase positivas las variables de la tabla anterior sería:

\[h(t; x_1, x_2, ..., x_k) = h_0(t)e^{(0.387.1+0.325.1+0.147.1+0.249.1+0.696.1+1.122.1+0.229.1-0.781.1)} = e^{(2.374)} = 10,74 \]

Para un paciente que no presentase positivas esas variables:

\[e^{(0.387.0+0.325.0+0.147.0+0.249.0+0.696.0+1.122.0+0.229.0-0.781.0)} = e^{(0)} = 1 \]

Para hallar **Hazard Ratio** (comparar el riesgo) de estos dos pacientes:

\[
\begin{array}{c|c}
10,74 & HR = \frac{10,74}{1} = 10,74 \\
\end{array}
\]

Es decir, **el paciente que presenta positivas estas variables tiene un riesgo 10,74 veces más de padecer una IN que el que no las presenta.**

\~ 247 \~
4.3.1.10.- **Bondad de ajuste.**

Para completar el apartado de resultados en cirugía electiva de colon vamos a comprobar la bondad de ajuste de las variables cuyos coeficientes de regresión B han formado parte de la fórmula final.

En el apartado 3.4.3.6 de *Material, sujetos y métodos* hacemos una descripción de los métodos de *bondad de ajuste* existentes para regresión de Cox. Nosotros vamos a elegir los dos que consideramos que son más adecuados para nuestra investigación:

- Significación estadística de la variación de -2LL: \(\Delta_{-2LL} \)
- Análisis de residuos de Schoenfeld\(^{(266)}\)

1.- En nuestro caso \(\Delta_{-2LL} = 672,320 \). Utilizando la prueba \(\chi^2 \), para 8 gl, obtenemos \(p<0,001 \) (\(p=6,5E-140 \)). Concluimos que **hay significación estadística** muy marcada.

2.- Análisis de residuos. Como en cualquier modelo de regresión se verifica el modelo analizando los residuos, en nuestro caso, los de Schoenfeld\(^{(266)}\). Estos residuos son los más efectivos en cuanto a detectar anomalías para cada una de las variables que intervienen en el modelo (sugiriéndonos por ejemplo que es necesario realizar alguna transformación para los datos). En el caso de los residuos de Schoenfeld tenemos un residuo para cada variable y para cada paciente, es decir que si tenemos un modelo de Cox con tres factores pronóstico se calcularán 3 residuos de Schoenfeld por paciente. Estos residuos valen cero para las observaciones incompletas, por lo que para facilitar su interpretación se suelen presentar en las salidas de ordenador sólo para los pacientes en los que se haya producido el evento (IN en nuestro caso). Es posible modificar estos residuos con el fin de que no valgan cero para las observaciones incompletas, obteniéndose entonces los denominados **residuos Schoenfeld corregidos o escalados**\(^{(266,512)}\). Lo comprobamos gráficamente. Para ello obtenemos los **residuos parciales** con el programa SPSS. A continuación colocamos en el eje de abscisas \(\text{días a riesgo} \) y en el de ordenadas los residuos parciales de cada variable. Si hay paralelismo entre los dos grupos de datos, se cumple la bondad de ajuste. En las gráficas que mostramos a continuación se representan las correspondientes a la variables estadísticamente significativas y al producto *Nutrición Parenteral*\(^*\)Ventilación Mecánica. En el apartado Discusión (página 283) comentaremos su significado.
1. Enfermedad de base.
2. Diabetes Mellitus.
3. Estancia en UCI (Unidad de Cuidados Intensivos).
5. Nutrición parenteral.
6. Ventilación mecánica.
7. Tipo de herida.
Consideraciones:

Es un estudio con tiempo de espera (hasta que se produzca la IN o se dé el alta al paciente) y en el que los pacientes se incorporan al estudio al producirse un evento determinado (intervención quirúrgica en nuestro estudio).

En la realidad no conocemos $\lambda_0(t)$ por lo que este modelo sirve para comparar el riesgo de un paciente que presente determinadas variables positivas frente a otro que no las presente (riesgos proporcionales).
4.3.2.- **Prótesis de cadera (primer implante).**

4.3.2.1.- Comprobar las condiciones exigidas o asunciones del modelo.

Como ya hemos comentado, en los modelos de Cox la asunción es que el riesgo relativo instantáneo (hazard ratio) sea proporcional e independiente del tiempo. Con esto se asume que el efecto de las covariables (variables predictoras) sobre la función de riesgo es log-lineal, además de que \(h_0(t) \) es proporcional, es decir, multiplicativa. La comprobación de estos asertos se puede demostrar tanto gráficamente (sólo para variables categóricas) como estadísticamente. Dado que las variables de nuestro estudio son categóricas (excepto edad y duración de la intervención que hemos categorizado porque no se distribuyen según la Normal) nos centraremos en la demostración gráfica.
4.3.2.2.- Regresión de Cox individual.

La finalidad de realizar una Regresión de Cox con cada variable de forma independiente de las demás es comprobar qué variables son significativas individualmente y, además, poder elegir la variable principal ya que el presente estudio es observacional. En este tipo de estudios no existe de entrada una variable principal como ocurre con los estudios experimentales en los que se establece esta desde el momento del planteamiento de la investigación. Esta variable principal tendrá un valor importante ya que interacción, colinealidad y confusión se investigarán respecto a ella.

En la tabla 4.3.2.2 pueden observarse los resultados.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>WALD</th>
<th>Significación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td>9,010</td>
<td>0,003</td>
</tr>
<tr>
<td>Edad</td>
<td>27,747</td>
<td>0,000</td>
</tr>
<tr>
<td>Infección al ingreso</td>
<td>0,208</td>
<td>0,648</td>
</tr>
<tr>
<td>Enfermedad de base</td>
<td>26,448</td>
<td>0,000</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>0,675</td>
<td>0,411</td>
</tr>
<tr>
<td>Inmunodepresión</td>
<td>1,386</td>
<td>0,239</td>
</tr>
<tr>
<td>Insuficiencia Renal Crónica</td>
<td>6,038</td>
<td>0,014</td>
</tr>
<tr>
<td>Desnutrición</td>
<td>1,043</td>
<td>0,307</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>4,593</td>
<td>0,032</td>
</tr>
<tr>
<td>Sondaje Urinario abierto</td>
<td>0,822</td>
<td>0,365</td>
</tr>
<tr>
<td>Sondaje Urinario cerrado</td>
<td>40,942</td>
<td>0,000</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>21,350</td>
<td>0,000</td>
</tr>
<tr>
<td>Catéter Central de Inserción Periférica</td>
<td>4,498</td>
<td>0,034</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>2,674</td>
<td>0,102</td>
</tr>
<tr>
<td>Nutrición parenteral</td>
<td>2,083</td>
<td>0,149</td>
</tr>
<tr>
<td>Ventilación mecánica</td>
<td>11,769</td>
<td>0,001</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>12,850</td>
<td>0,000</td>
</tr>
<tr>
<td>Drenaje</td>
<td>1,027</td>
<td>0,311</td>
</tr>
<tr>
<td>Tratamiento inmunodepresor</td>
<td>2,125</td>
<td>0,145</td>
</tr>
<tr>
<td>Procedimiento invasivo</td>
<td>1,340</td>
<td>0,247</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Tipo intervención</td>
<td>0,682</td>
<td>0,409</td>
</tr>
<tr>
<td>ASA</td>
<td>11,456</td>
<td>0,001</td>
</tr>
<tr>
<td>Preparación intervención</td>
<td>8,041</td>
<td>0,005</td>
</tr>
<tr>
<td>Profilaxis</td>
<td>0,875</td>
<td>0,349</td>
</tr>
<tr>
<td>Duración intervención</td>
<td>0,410</td>
<td>0,522</td>
</tr>
<tr>
<td>Laparoscopia</td>
<td>0,023</td>
<td>0,880</td>
</tr>
</tbody>
</table>

Son variables estadísticamente significativas: Sexo, edad, enfermedad de base, Insuficiencia Renal Crónica, Estancia en UCI, Catéter central, Catéter central inserción periférica, ventilación mecánica, sonda nasogástrica, ASA, preparación intervención y Sistema Urinario cerrado.

Se elige Sondaje Urinario cerrado como variable independiente principal de acuerdo con los criterios ya expresados.

4.3.2.3.- **Interacción.** Recuérdese que, en Regresión de Cox, para que consideremos que existe interacción entre dos variables, en esta prueba realizada entre la variable principal, la variable sospechosa y el término multiplicativo de las dos, deben ser significativas (las tres).

Ninguna de las 25 pruebas correspondientes ha cumplido la condición por lo que concluimos que las variables de nuestra muestra no presentan interacción con Sondaje Urinario cerrado.

4.3.2.4.- **Colinealidad.** Para que exista colinealidad -2LL debe ser muy significativa y no ser significativas ni la variable principal ni la variable sospechosa ni el término multiplicativo entre las dos, en el modelo de Cox realizado con las tres.

La encontramos en: **Infección al ingreso** y **Drenaje** como puede comprobarse en las tablas 3.2.4 a y 3.2.4 b. Ninguna de las dos es significativa en la prueba individual (Tabla 3.2.2) por lo que no se introducirán en el modelo. Además, en el caso de Infección al ingreso -2LL es no significativa. A continuación pueden verse las tablas referenciadas.

~ 254 ~
Infección al ingreso:

Tabla 4.3.2.4 a.- Pruebas ómnibus de coeficientes de modelo

<table>
<thead>
<tr>
<th>-2LL</th>
<th>Global (puntuación)</th>
<th>Cambio respecto a paso anterior</th>
<th>Cambio respecto a bloque anterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-cuadrado</td>
<td>gl</td>
<td>Sig.</td>
</tr>
<tr>
<td>121,674</td>
<td>,918 3</td>
<td>,821</td>
<td>1,153</td>
</tr>
</tbody>
</table>

Número de bloque de inicio 1. Método = Entrar

Tabla 4.3.2.4 b. Variables en la ecuación

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>ET</th>
<th>Wald</th>
<th>gl</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% IC para Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sondaje Urinario cerrado</td>
<td>,762</td>
<td>,764</td>
<td>,995</td>
<td>1</td>
<td>,319</td>
<td>2,143</td>
<td>,479</td>
</tr>
<tr>
<td>Infección al ingreso</td>
<td>,310</td>
<td>,714</td>
<td>,189</td>
<td>1</td>
<td>,664</td>
<td>1,363</td>
<td>,337</td>
</tr>
<tr>
<td>Sondaje Urinario cerrado* Infección al ingreso</td>
<td>,014</td>
<td>,773</td>
<td>,000</td>
<td>1</td>
<td>,986</td>
<td>,986</td>
<td>,217</td>
</tr>
</tbody>
</table>

Drenaje:

Tabla 4.3.2.4 c.- Pruebas ómnibus de coeficientes de modelo

<table>
<thead>
<tr>
<th>-2LL</th>
<th>Global (puntuación)</th>
<th>Cambio respecto a paso anterior</th>
<th>Cambio respecto a bloque anterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-cuadrado</td>
<td>gl</td>
<td>Sig.</td>
</tr>
<tr>
<td>5175,850</td>
<td>40,917 3</td>
<td>,000</td>
<td>41,375</td>
</tr>
</tbody>
</table>

Número de bloque de inicio 1. Método = Entrar
4.3.2.5. **Confusión.**

Si en un modelo de Cox introducimos una nueva variable independiente y su coeficiente (el de esa variable independiente) cambia significativamente respecto al valor que se obtuvo en el modelo simple o se anula, o si en ese modelo múltiple cambia significativamente el coeficiente de alguna de las variables que ya estaban en el modelo estamos ante interacción o confusión. Como ya hemos estudiado la interacción, debemos comprobar que se cumplen o no los criterios de confusión:

- Que las variables están asociadas entre sí.
- Que ambas están asociadas con la variable dependiente.
- Que la variable “sospechosa” no es un eslabón causal entre las otras dos variables.

Lo comprobamos en nuestro modelo considerando como variable principal *Sistema Urinario cerrado* (tabla 4.3.2.5):
Tabla 4.3.2.5.- Confusión. Prótesis de cadera.

<table>
<thead>
<tr>
<th></th>
<th>CB1</th>
<th>CB2</th>
<th>CB3</th>
<th>% var1</th>
<th>% var2</th>
<th>X²</th>
<th>Signif (Wald)</th>
<th>Confusión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema Urinario cerrado</td>
<td>0,720</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sexo</td>
<td>0,712</td>
<td>0,717</td>
<td>0,715</td>
<td>0,7</td>
<td>0,7</td>
<td>0,116</td>
<td>0,003</td>
<td>No</td>
</tr>
<tr>
<td>Edad</td>
<td>1,864</td>
<td>1,730</td>
<td>0,660</td>
<td>7,19</td>
<td>8,3</td>
<td>0,000</td>
<td>0,000</td>
<td>No</td>
</tr>
<tr>
<td>Infección al ingreso</td>
<td>1,133</td>
<td>1,348</td>
<td>0,655</td>
<td>18,97</td>
<td>9,0</td>
<td>0,000</td>
<td>0,648</td>
<td>No*</td>
</tr>
<tr>
<td>Enfermedad de base</td>
<td>2,046</td>
<td>2,161</td>
<td>0,748</td>
<td>5,6</td>
<td>3,9</td>
<td>0,000</td>
<td>0,000</td>
<td>No</td>
</tr>
<tr>
<td>DM</td>
<td>1,122</td>
<td>1,092</td>
<td>0,720</td>
<td>2,67</td>
<td>0,0</td>
<td>0,068</td>
<td>0,411</td>
<td>No</td>
</tr>
<tr>
<td>Insuficiencia Renal Crónica</td>
<td>0,433</td>
<td>0,482</td>
<td>0,710</td>
<td>11,31</td>
<td>1,4</td>
<td>0,000</td>
<td>0,239</td>
<td>No***</td>
</tr>
<tr>
<td>Desnutrición</td>
<td>1,553</td>
<td>1,429</td>
<td>0,701</td>
<td>7,98</td>
<td>2,6</td>
<td>0,007</td>
<td>0,014</td>
<td>No</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>0,629</td>
<td>0,453</td>
<td>0,827</td>
<td>27,96</td>
<td>14,9</td>
<td>0,000</td>
<td>0,032</td>
<td>SI</td>
</tr>
<tr>
<td>Sistema Urinario abierto</td>
<td>0,403</td>
<td>0,608</td>
<td>0,715</td>
<td>50,87</td>
<td>0,7</td>
<td>0,000</td>
<td>0,365</td>
<td>No***</td>
</tr>
<tr>
<td>Catéter central</td>
<td>2,581</td>
<td>2,290</td>
<td>0,697</td>
<td>11,27</td>
<td>3,2</td>
<td>0,000</td>
<td>0,000</td>
<td>SI</td>
</tr>
<tr>
<td>Catéter central inserción periférica</td>
<td>1,924</td>
<td>1,572</td>
<td>0,707</td>
<td>18,3</td>
<td>1,8</td>
<td>0,000</td>
<td>0,034</td>
<td>SI</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>2,289</td>
<td>1,841</td>
<td>0,714</td>
<td>19,57</td>
<td>0,8</td>
<td>0,011</td>
<td>0,102</td>
<td>No***</td>
</tr>
<tr>
<td>Nutrición parenteral</td>
<td>2,339</td>
<td>1,804</td>
<td>0,715</td>
<td>22,87</td>
<td>0,7</td>
<td>0,005</td>
<td>0,149</td>
<td>No***</td>
</tr>
<tr>
<td>Ventilación mecánica</td>
<td>5,713</td>
<td>4,948</td>
<td>0,713</td>
<td>13,4</td>
<td>1,0</td>
<td>0,156</td>
<td>0,001</td>
<td>No**</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>3,437</td>
<td>2,933</td>
<td>0,705</td>
<td>14,67</td>
<td>2,1</td>
<td>0,022</td>
<td>0,000</td>
<td>SI</td>
</tr>
<tr>
<td>Drenaje</td>
<td>0,695</td>
<td>0,712</td>
<td>0,719</td>
<td>2,446</td>
<td>0,1</td>
<td>0,806</td>
<td>0,311</td>
<td>No</td>
</tr>
<tr>
<td>Tratamiento inmunodepresor</td>
<td>1,454</td>
<td>1,614</td>
<td>0,731</td>
<td>11</td>
<td>1,5</td>
<td>0,000</td>
<td>0,145</td>
<td>No***</td>
</tr>
<tr>
<td>Procedimiento invasivo</td>
<td>1,135</td>
<td>1,459</td>
<td>0,825</td>
<td>28,55</td>
<td>14,6</td>
<td>0,000</td>
<td>0,247</td>
<td>No***</td>
</tr>
<tr>
<td>Tipo de intervención</td>
<td>0,896</td>
<td>0,948</td>
<td>0,717</td>
<td>5,8</td>
<td>0,4</td>
<td>0,000</td>
<td>0,409</td>
<td>No</td>
</tr>
<tr>
<td>ASA</td>
<td>1,462</td>
<td>1,354</td>
<td>0,676</td>
<td>7,39</td>
<td>6,1</td>
<td>0,000</td>
<td>0,001</td>
<td>No</td>
</tr>
<tr>
<td>Preparación para intervención</td>
<td>2,772</td>
<td>3,081</td>
<td>0,715</td>
<td>11,15</td>
<td>0,7</td>
<td>0,173</td>
<td>0,005</td>
<td>SI</td>
</tr>
<tr>
<td>Profilaxis antibiótica quirúrgica</td>
<td>0,580</td>
<td>0,584</td>
<td>0,720</td>
<td>0,69</td>
<td>0,0</td>
<td>0,057</td>
<td>0,349</td>
<td>No</td>
</tr>
<tr>
<td>Duración de la intervención</td>
<td>0,932</td>
<td>0,925</td>
<td>0,720</td>
<td>0,75</td>
<td>0,0</td>
<td>0,000</td>
<td>0,522</td>
<td>No</td>
</tr>
</tbody>
</table>

CB1 = Coeficiente B de regresión de cada variable de forma independiente.
CB2 = Coeficiente B de regresión de cada variable con Sistema Urinario cerrado como variable principal.
CB3 = Coeficiente B de regresión de la variable principal en el modelo con la variable de esa fila.

% var1 = % de variación de CB2 respecto a CB1.

% var2 = % de variación de CB3 respecto a su coeficiente B de Regresión individual con IN (0,720).

X² = Chi cuadrado entre cada variable y Sistema Urinario cerrado (p de significación).

Wald = Significación (Wald) de cada variable con IN con regresión de Cox.

Confusión = No: % de variación de CB2 y CB· < 10%; No*: No significación estadística con Sistema Urinario cerrado; No**: No significación estadística ni con Sistema Urinario cerrado ni con IN; No***: No signif. estadística con IN .

Encontramos como variables confusoras: Estancia en UCI, Catéter central, Catéter central de inserción periférica, sonda nasogástrica y preparación para la intervención. Todas ya incluidas en el modelo puesto que eran significativas.

4.3.2.6.- Variables dependientes del tiempo

Aunque las variables que componen el estudio puedan parecer dependientes del tiempo, la realidad es que se miden como presencia o ausencia por lo que no tienen dependencia del tiempo.

4.3.2.7.- Realización del análisis con SPSS

Comprobación de Normalidad para edad y duración de la intervención.
Ni edad ni duración de la intervención (quirúrgica) se distribuyen según la Ley Normal por lo que es preciso categorizarlas.

Tratamos de encontrar el modelo al que mejor ajusten nuestros datos. Por eso vamos a plantear los siguientes:

Modelo A: Con sólo las variables significativas, interacción y confusión.

Modelo B: Con todas las variables más interacciones (términos multiplicativos).

Modelo C: Con sólo las variables significativas de modelos A y B.

Modelo A (con variables significativas, interacción y confusión).

<table>
<thead>
<tr>
<th>Logaritmo de la verosimiltud -2</th>
<th>Global (puntuación)</th>
<th>Cambio respecto a paso anterior</th>
<th>Cambio respecto a bloque anterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-cuadrado</td>
<td>gl</td>
<td>Sig.</td>
</tr>
<tr>
<td>4614,214</td>
<td>129,898</td>
<td>12</td>
<td>.000</td>
</tr>
</tbody>
</table>

Volumen de bloque de inicio 1. Método = Entrar
Tabla 4.3.2.7.c - Variables en la ecuación

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>gl</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95,0% CI para Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inferior</td>
</tr>
<tr>
<td>Sexo</td>
<td>-.248</td>
<td>.125</td>
<td>3,958</td>
<td>1</td>
<td>.047</td>
<td>.780</td>
<td>.611</td>
</tr>
<tr>
<td>Edad</td>
<td>-.400</td>
<td>.140</td>
<td>8,211</td>
<td>1</td>
<td>.004</td>
<td>.670</td>
<td>.510</td>
</tr>
<tr>
<td>Enfermedad de Base</td>
<td>-.502</td>
<td>.156</td>
<td>10,340</td>
<td>1</td>
<td>.001</td>
<td>.605</td>
<td>.446</td>
</tr>
<tr>
<td>Insuficiencia Renal Crónica</td>
<td>-.188</td>
<td>.188</td>
<td>1,008</td>
<td>1</td>
<td>.315</td>
<td>.828</td>
<td>.573</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>.848</td>
<td>.243</td>
<td>12,180</td>
<td>1</td>
<td>.000</td>
<td>2,334</td>
<td>1,450</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>-.445</td>
<td>.237</td>
<td>3,515</td>
<td>1</td>
<td>.061</td>
<td>.641</td>
<td>.402</td>
</tr>
<tr>
<td>Catéter Central de Inserción Periférica</td>
<td>-.528</td>
<td>.329</td>
<td>2,566</td>
<td>1</td>
<td>.109</td>
<td>.590</td>
<td>.309</td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
<td>-.717</td>
<td>.123</td>
<td>33,733</td>
<td>1</td>
<td>.000</td>
<td>.488</td>
<td>.383</td>
</tr>
<tr>
<td>Ventilación mecánica</td>
<td>-.1236</td>
<td>.796</td>
<td>2,407</td>
<td>1</td>
<td>.121</td>
<td>.291</td>
<td>.061</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>-.282</td>
<td>.499</td>
<td>.320</td>
<td>1</td>
<td>.572</td>
<td>.754</td>
<td>.284</td>
</tr>
<tr>
<td>ASA</td>
<td>-.064</td>
<td>.128</td>
<td>.251</td>
<td>1</td>
<td>.617</td>
<td>.938</td>
<td>.730</td>
</tr>
<tr>
<td>Prepara para la Intervención</td>
<td>-.679</td>
<td>.431</td>
<td>2,475</td>
<td>1</td>
<td>.116</td>
<td>.507</td>
<td>.218</td>
</tr>
</tbody>
</table>

Variables finalmente significativas: **Sexo, Edad, Enfermedad de Base, Estancia en UCI, Sistema Urinario cerrado.**

Modelo B (todas las variables y términos multiplicativos de las de interacción).

Tabla 4.3.2.7.d - Pruebas ómnibus de coeficientes de modelo*

<table>
<thead>
<tr>
<th>Logaritmo de la verosimilitud -2</th>
<th>Global (puntuación)</th>
<th>Cambio respecto a paso anterior</th>
<th>Cambio respecto a bloque anterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-cuadrado</td>
<td>gl</td>
<td>Sig.</td>
</tr>
<tr>
<td></td>
<td>4541.167</td>
<td>149,832</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Número de bloque de inicio 1. Método = Entrar
<table>
<thead>
<tr>
<th>Variable en la ecuación</th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>gl</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95,0% CI para Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td>-0.26</td>
<td>0.13</td>
<td>4.086</td>
<td>1</td>
<td>0.043</td>
<td>0.774</td>
<td>0.603 - 0.992</td>
</tr>
<tr>
<td>Edad</td>
<td>-0.354</td>
<td>0.14</td>
<td>6.175</td>
<td>1</td>
<td>0.013</td>
<td>0.702</td>
<td>0.530 - 0.928</td>
</tr>
<tr>
<td>Enfermedad de Base</td>
<td>-0.504</td>
<td>0.162</td>
<td>9.632</td>
<td>1</td>
<td>0.002</td>
<td>0.604</td>
<td>0.439 - 0.830</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>0.082</td>
<td>0.152</td>
<td>0.292</td>
<td>1</td>
<td>0.589</td>
<td>1.085</td>
<td>0.806 - 1.461</td>
</tr>
<tr>
<td>Inmunodepresión</td>
<td>1.239</td>
<td>0.758</td>
<td>2.668</td>
<td>1</td>
<td>0.102</td>
<td>3.451</td>
<td>0.781 - 15.261</td>
</tr>
<tr>
<td>Insuficiencia Renal Crónica</td>
<td>-0.212</td>
<td>0.191</td>
<td>1.236</td>
<td>1</td>
<td>0.266</td>
<td>0.809</td>
<td>0.556 - 1.176</td>
</tr>
<tr>
<td>Desnutrición</td>
<td>-0.713</td>
<td>0.538</td>
<td>1.756</td>
<td>1</td>
<td>0.185</td>
<td>0.490</td>
<td>0.171 - 1.407</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>0.808</td>
<td>0.248</td>
<td>10.600</td>
<td>1</td>
<td>0.001</td>
<td>2.243</td>
<td>1.379 - 3.648</td>
</tr>
<tr>
<td>Sistema Urinario abierto</td>
<td>0.342</td>
<td>1.007</td>
<td>0.115</td>
<td>1</td>
<td>0.735</td>
<td>1.407</td>
<td>0.195 - 10.133</td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
<td>-0.776</td>
<td>0.128</td>
<td>36.997</td>
<td>1</td>
<td>0.000</td>
<td>0.460</td>
<td>0.358 - 0.591</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>-0.502</td>
<td>0.238</td>
<td>4.452</td>
<td>1</td>
<td>0.035</td>
<td>0.605</td>
<td>0.380 - 0.965</td>
</tr>
<tr>
<td>Catéter Central Inserción Periférica</td>
<td>-0.584</td>
<td>0.333</td>
<td>3.080</td>
<td>1</td>
<td>0.079</td>
<td>0.558</td>
<td>0.290 - 1.071</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>0.082</td>
<td>0.820</td>
<td>0.010</td>
<td>1</td>
<td>0.921</td>
<td>1.085</td>
<td>0.218 - 5.410</td>
</tr>
<tr>
<td>Nutrición parenteral</td>
<td>1.475</td>
<td>1.009</td>
<td>2.140</td>
<td>1</td>
<td>0.144</td>
<td>4.373</td>
<td>0.606 - 31.575</td>
</tr>
<tr>
<td>Ventilación mecánica</td>
<td>-1.504</td>
<td>0.900</td>
<td>2.791</td>
<td>1</td>
<td>0.095</td>
<td>0.222</td>
<td>0.038 - 1.298</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>-0.650</td>
<td>0.514</td>
<td>1.596</td>
<td>1</td>
<td>0.206</td>
<td>0.522</td>
<td>0.191 - 1.431</td>
</tr>
<tr>
<td>Drenaje</td>
<td>0.233</td>
<td>0.362</td>
<td>0.414</td>
<td>1</td>
<td>0.520</td>
<td>1.262</td>
<td>0.621 - 2.568</td>
</tr>
<tr>
<td>Tratamiento Inmunodepresor</td>
<td>-0.099</td>
<td>0.299</td>
<td>0.109</td>
<td>1</td>
<td>0.741</td>
<td>0.906</td>
<td>0.504 - 1.628</td>
</tr>
<tr>
<td>Procedimiento Invasivo</td>
<td>-0.219</td>
<td>0.125</td>
<td>3.056</td>
<td>1</td>
<td>0.080</td>
<td>0.804</td>
<td>0.629 - 1.027</td>
</tr>
<tr>
<td>Tipo de Intervención</td>
<td>0.067</td>
<td>0.140</td>
<td>0.229</td>
<td>1</td>
<td>0.632</td>
<td>1.069</td>
<td>0.812 - 1.408</td>
</tr>
<tr>
<td>Duración de la intervención</td>
<td>0.070</td>
<td>0.122</td>
<td>0.327</td>
<td>1</td>
<td>0.567</td>
<td>1.072</td>
<td>0.844 - 1.362</td>
</tr>
<tr>
<td>ASA</td>
<td>0.029</td>
<td>0.130</td>
<td>0.503</td>
<td>1</td>
<td>0.478</td>
<td>0.912</td>
<td>0.707 - 1.176</td>
</tr>
<tr>
<td>Preparación para la intervención</td>
<td>-0.835</td>
<td>0.422</td>
<td>3.912</td>
<td>1</td>
<td>0.048</td>
<td>0.434</td>
<td>0.190 - 0.992</td>
</tr>
<tr>
<td>Profilaxis antibiótica</td>
<td>0.831</td>
<td>0.590</td>
<td>1.982</td>
<td>1</td>
<td>0.159</td>
<td>2.296</td>
<td>0.722 - 7.301</td>
</tr>
</tbody>
</table>
Variables significativas: Sexo, Edad, Enfermedad de Base, Estancia en UCI, Sistema Urinario cerrado, Catéter Central y Preparación para la intervención.

Modelo C1. Significativas del modelo A: Sexo, Edad, Enfermedad de Base, Estancia en UCI, Sistema Urinario cerrado.

| Tabla 4.3.2.7.f.- Pruebas ómnibus de coeficientes de modelo a |
|---------------------------------|-----------------|-----------------|-----------------|
| Logaritmo de la verosimilitud -2 | Global (puntuación) | Cambio respecto a paso anterior | Cambio respecto a bloque anterior |
| Chi-cuadrado | gl | Sig. | Chi-cuadrado | gl | Sig. | Chi-cuadrado | gl | Sig. |
| 5120,832 | 100,532 | 5 | ,000 | 95,929 | 5 | ,000 | 95,929 | 5 | ,000 |

a. Número de bloque de inicio 1. Método = Entrar

| Tabla 4.3.2.7.g- Variables en la ecuación |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | B | SE | Wald | gl | Sig. | Exp(B) | 95.0% CI para Exp(B) |
| Sexo | -.202 | .116 | 3.021 | 1 | ,082 | .817 | .651 | 1.026 |
| Edad | -.378 | .126 | 8.990 | 1 | ,003 | .685 | .535 | .877 |
| Enfermedad de Base | -.589 | .145 | 16.543 | 1 | ,000 | .555 | .418 | .737 |
| Estancia en UCI | .707 | .221 | 10.259 | 1 | ,001 | 2.029 | 1.316 | 3.128 |
| Sistema Urinario cerrado | -.783 | .118 | 44.141 | 1 | ,000 | .457 | .363 | .576 |

Variables significativas: Edad, Enfermedad de Base, Estancia en UCI, Sistema Urinario cerrado.

Modelo C2. Significativas del modelo B: Sexo, Edad, Enfermedad de Base, Estancia en UCI, Sistema Urinario cerrado, Catéter Central y Preparación para la intervención.
Tabla 4.3.2.7. Pruebas ómnibus de coeficientes de modelo

<table>
<thead>
<tr>
<th>Logaritmo de la verosimilitud -2</th>
<th>Global (puntuación)</th>
<th>Cambio respecto a paso anterior</th>
<th>Cambio respecto a bloque anterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado</td>
<td>gl</td>
<td>Sig.</td>
<td>Chi-cuadrado</td>
</tr>
<tr>
<td>5070,095</td>
<td>114,519</td>
<td>7</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Número de bloque de inicio 1. Método = Entrar

Tabla 4.3.2.7.i. Variables en la ecuación

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>gl</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>Inferior</th>
<th>Superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td>-.178</td>
<td>.116</td>
<td>2,339</td>
<td>1</td>
<td>.126</td>
<td>.837</td>
<td>.666</td>
<td>1,051</td>
</tr>
<tr>
<td>Edad</td>
<td>-.391</td>
<td>.126</td>
<td>9,609</td>
<td>1</td>
<td>.002</td>
<td>.677</td>
<td>.529</td>
<td>.866</td>
</tr>
<tr>
<td>Enfermedad de Base</td>
<td>-.535</td>
<td>.146</td>
<td>13,358</td>
<td>1</td>
<td>.000</td>
<td>.586</td>
<td>.440</td>
<td>.780</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>.753</td>
<td>.221</td>
<td>11,579</td>
<td>1</td>
<td>.001</td>
<td>2,124</td>
<td>1,376</td>
<td>3,277</td>
</tr>
<tr>
<td>Sistema urinario cerrado</td>
<td>-.759</td>
<td>.118</td>
<td>41,122</td>
<td>1</td>
<td>.000</td>
<td>.468</td>
<td>.371</td>
<td>.590</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>-.583</td>
<td>.210</td>
<td>7,687</td>
<td>1</td>
<td>.006</td>
<td>.558</td>
<td>.370</td>
<td>.843</td>
</tr>
<tr>
<td>Preparación para la Intervención</td>
<td>-1,019</td>
<td>.361</td>
<td>7,954</td>
<td>1</td>
<td>.005</td>
<td>.361</td>
<td>.178</td>
<td>.733</td>
</tr>
</tbody>
</table>

Variables significativas: Edad, Enfermedad de Base, Estancia en UCI, Sistema Urinario cerrado, Catéter Central y Preparación para la intervención.

Modelo C3. Significativas del modelo C1: Edad, Enfermedad de Base, Estancia en UCI, Sistema Urinario cerrado.
Logaritmo de la verosimilitud

<table>
<thead>
<tr>
<th></th>
<th>Global (puntuación)</th>
<th>Cambio respecto a paso anterior</th>
<th>Cambio respecto a bloque anterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-cuadrado</td>
<td>gl</td>
<td>Sig.</td>
</tr>
<tr>
<td>Logaritmo de la verosimilitud -2</td>
<td>5123,901</td>
<td>97,341</td>
<td>4</td>
</tr>
</tbody>
</table>

a. Número de bloque de inicio 1. Método = Entrar

<table>
<thead>
<tr>
<th>Tabla 4.3.2.7.k.- Variables en la ecuación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables en la ecuación</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Edad</td>
</tr>
<tr>
<td>Enfermedad de Base</td>
</tr>
<tr>
<td>Estancia en UCI</td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
</tr>
</tbody>
</table>

Variables significativas: Edad, Enfermedad de Base, Estancia en UCI, Sistema Urinario cerrado.

Modelo C4: Significativas del modelo C2: Edad, Enfermedad de Base, Estancia en UCI, Sistema Urinario cerrado, Catéter Central y Preparación para la intervención.

<table>
<thead>
<tr>
<th>Tabla 4.3.2.7.i.- Pruebas ómnibus de coeficientes de modelo*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logaritmo de la verosimilitud -2</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Logaritmo de la verosimilitud -2</td>
</tr>
</tbody>
</table>

a. Número de bloque de inicio 1. Método = Entrar

~ 263 ~
Tabla 4.3.2.7.m.- Variables en la ecuación

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>gl</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI para Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>-0.431</td>
<td>0.123</td>
<td>12.261</td>
<td>1</td>
<td>0.000</td>
<td>0.650</td>
<td>0.510 - 0.827</td>
</tr>
<tr>
<td>Enfermedad de Base</td>
<td>-0.544</td>
<td>0.146</td>
<td>13.836</td>
<td>1</td>
<td>0.000</td>
<td>0.581</td>
<td>0.436 - 0.773</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>0.748</td>
<td>0.221</td>
<td>11.445</td>
<td>1</td>
<td>0.001</td>
<td>2.114</td>
<td>1.370 - 3.261</td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
<td>-0.755</td>
<td>0.118</td>
<td>40.657</td>
<td>1</td>
<td>0.000</td>
<td>0.470</td>
<td>0.373 - 0.593</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>-0.597</td>
<td>0.209</td>
<td>8.130</td>
<td>1</td>
<td>0.004</td>
<td>0.550</td>
<td>0.365 - 0.830</td>
</tr>
<tr>
<td>Preparación para la intervención</td>
<td>-1.021</td>
<td>0.361</td>
<td>7.993</td>
<td>1</td>
<td>0.005</td>
<td>0.360</td>
<td>0.177 - 0.731</td>
</tr>
</tbody>
</table>

Variables significativas: Edad, Enfermedad de Base, Estancia en UCI, Sistema Urinario cerrado, Catéter Central y Preparación para la intervención.

3.2.8.- Modelos (aplicación de la fórmula)

Modelo A:

\[
h(t; x_1, x_2, \ldots, x_k) = h_0(t)e^{(-0.248 \text{Sexo} - 0.400 \text{Edad} - 0.502 \text{Enferm base}+0.848 \text{Estancia UCI} - 0.717 \text{Sist Urin cerrado})}
\]

\[
= h_0(t)e^{(-0.248 \cdot 1 - 0.400 \cdot 1 - 0.502 \cdot 1 + 0.848 \cdot 1 - 0.717 \cdot 1)} = h_0(t) e^{(-1.019)} = 0.3609
\]

Para un paciente que no presentase positivas esas variables:

\[
e^{(-0.248 \cdot 0 - 0.400 \cdot 0 - 0.502 \cdot 0 + 0.848 \cdot 0 - 0.717 \cdot 0)} = e^{(0)} = 1
\]
Modelo B:

\[h(t; x_1, x_2, \ldots, x_k) = h_0(t)e^{(-0.256 \cdot \text{Sexo} - 0.354 \cdot \text{Edad} - 0.502 \cdot \text{Enf base} + 0.808 \cdot \text{SU cerr} - 0.835 \cdot \text{CC} - 0.502 \cdot \text{Rep int})} \]

\[= h_0(t)e^{(-0.256 \cdot 1 - 0.354 \cdot 1 - 0.502 \cdot 1 + 0.808 \cdot 1 - 0.835 \cdot 1 - 0.502 \cdot 1 + 0.808 \cdot 1 - 0.835 \cdot 1)} = h_0(t)e^{(-2.419)} = 0.0890 \]

Para un paciente que no presentase positivas esas variables:

\[e^{(-0.256 \cdot 0 - 0.354 \cdot 0 - 0.502 \cdot 0 + 0.808 \cdot 0 - 0.835 \cdot 0)} = e^{(0)} = 1 \]

Modelo C1:

\[h(t; x_1, x_2, \ldots, x_k) = h_0(t)e^{(-0.378 \cdot \text{Edad} - 0.589 \cdot \text{Enf base} + 0.707 \cdot \text{SU cerrado})} \]

\[= h_0(t)e^{(-0.378 \cdot 1 - 0.589 \cdot 1 + 0.707 \cdot 1)} = h_0(t)e^{(-1.043)} = 0.3524 \]

Para un paciente que no presentase positivas esas variables:

\[e^{(-0.378 \cdot 0 - 0.589 \cdot 0 + 0.707 \cdot 0)} = e^{(0)} = 1 \]

Modelo C2:

\[h(t; x_1, x_2, \ldots, x_k) = h_0(t)e^{(-0.391 \cdot \text{Edad} - 0.535 \cdot \text{Enf base} + 0.753 \cdot \text{SU cerrado} - 0.585 \cdot \text{CC} - 1.019 \cdot \text{Preparación intervención})} \]

\[= h_0(t)e^{(-0.391 \cdot 1 - 0.535 \cdot 1 + 0.753 \cdot 1 - 0.585 \cdot 1 + 1.019 \cdot 1)} = h_0(t)e^{(-2.534)} = 0.0793 \]

Para un paciente que no presentase positivas esas variables:

\[e^{(-0.391 \cdot 0 - 0.535 \cdot 0 + 0.753 \cdot 0 - 0.585 \cdot 0 + 1.019 \cdot 0)} = e^{(0)} = 1 \]
Modelo C3:

\[h(t; x_1, x_2, \ldots, x_k) = h_0(t)e^{-0.426.\text{Edad}-0.598.\text{Enfermedad de base}+0.707.\text{Estancia en UCI}-0.780.\text{Sistema Urinario cerrado})} \]

\[= h_0(t)e^{-0.426.1-0.598.1+0.707.1-0.780.1} = h_0(t)e^{-1.097} = 0.3339 \]

Para un paciente que no presentase positivas esas variables:

\[e^{-0.426.0+0.707.0-0.780.0} = e^{0} = 1 \]

Modelo C4:

\[h(t; x_1, x_2, \ldots, x_k) = h_0(t)e^{-0.431.\text{Edad}+0.544.\text{Enfer base}-0.748.\text{UCI}-0.755.\text{SU cerrado}+0.597.\text{CC}-1.021.\text{Preparación intervención})} \]

\[= h_0(t)e^{-0.431.1+0.544.1-0.748.1+0.755.1-0.597.1-1.021.1} = h_0(t)e^{-1.852} = 0.1569 \]

Para un paciente que no presentase positivas esas variables:

\[e^{-0.431.0+0.544.0-0.748.0+0.755.0-0.597.0-1.021.0} = e^{0} = 1 \]

Podría pensarse que lo importante es elegir un modelo en el que participen el mayor número de estas variables. Esto iría en contra de los principios básicos del análisis multivariante que pretende explicar la variable dependiente con el menor número posible de variables independientes. Ya que los coeficientes de regresión \(\beta \) son diferentes para la misma variable en los distintos modelos, debido a la influencia del resto de variables, aunque no sean significativas, vamos a construir nuevos modelos con las variables que, a nuestro juicio, cumplen las asunciones del modelo y las de bondad de ajuste.

~ 266 ~
4.3.2.9.- **Bondad de ajuste**.

Contrastar -2LL_0 y $-2\text{LL}_{\text{final}}$ y comprobar que su diferencia es significativa (si lo es quiere decir que al menos una variable influye sobre la dependiente). Es significativa en todos los modelos. Puede comprobarse en las tablas 4.3.2.7.b, d, f, h, j, l.

Residuos de Schoenfeld\(^{(266)}\): los mostramos para las variables significativas en alguno de los modelos o en todos ellos, en el cuadro 4.3.2.9. Comentaremos estas gráficas en el apartado resultados.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Cuadro 4.3.2.9.- Residuos de Schoenfeld. Prótesis de cadera, primer implante. & \\
\hline
\end{tabular}
\end{table}
4.3.3.- **Prótesis de rodilla (primer implante).**

4.3.3.1.- **Asunciones.** En primer lugar vamos a comprobar las condiciones exigidas o asunciones del modelo, es decir, que Hazard Ratio sea proporcional e independiente del tiempo. Con esto se asume que el efecto de las covariables (variables predictoras) sobre la función de riesgo es log-lineal, además de que $h_0(t)$ es proporcional, es decir, multiplicativa. Como se trata de variables categóricas vamos a realizar una representación gráfica. Lo haremos en función del logaritmo del tiempo.
4.3.3.2.- **Cox individual.**

Regresión de Cox univariante de todas las variables por separado para decidir cuál será la variable independiente principal y las variables significativas (*Tabla 4.3.3.2.a*).

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>WALD</th>
<th>Significación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td>1,916</td>
<td>0.166</td>
</tr>
<tr>
<td>Edad</td>
<td>0,052</td>
<td>0.820</td>
</tr>
<tr>
<td>Infección al ingreso</td>
<td>0,346</td>
<td>0.556</td>
</tr>
<tr>
<td>Enfermedad de base</td>
<td>3,690</td>
<td>0.055</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>0,787</td>
<td>0.375</td>
</tr>
<tr>
<td>Inmunodepresión</td>
<td>0,031</td>
<td>0.861</td>
</tr>
<tr>
<td>Desnutrición</td>
<td>0,037</td>
<td>0.847</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>6,530</td>
<td>0.011</td>
</tr>
<tr>
<td>Sistema Urinario abierto</td>
<td>0,151</td>
<td>0.697</td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
<td>15,551</td>
<td>0.000</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>7,092</td>
<td>0.008</td>
</tr>
<tr>
<td>Catéter Central de Inserción Periférica</td>
<td>7,704</td>
<td>0.006</td>
</tr>
<tr>
<td>Catéter periférico</td>
<td>0,103</td>
<td>0.749</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>1,544</td>
<td>0.214</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>0,050</td>
<td>0.824</td>
</tr>
<tr>
<td>Drenaje</td>
<td>0,312</td>
<td>0.576</td>
</tr>
<tr>
<td>Tratamiento inmunodepresor</td>
<td>1,041</td>
<td>0.308</td>
</tr>
</tbody>
</table>
Procedimiento invasivo | 0,008 | 0,927
Tipo intervención | 2,751 | 0,097
ASA | 4,674 | 0,031
Preparación intervención | 0,129 | 0,720
Profilaxis | 0,512 | 0,474
Duración intervención | 0,017 | 0,895
Laparoscopia | 2,351 | 0,125

Elegimos *Sistema Urinario cerrado* (Wald 15,551 y significación 0,000; OR 2,023) y además los datos están proporcionados 49,6% IN No y 50,4% IN Si.

No se recopiló ningún caso de pacientes a los que se les hubiera administrado *Nutrición parenteral* ni colocado *Sonda nasogástrica*. No se considera la variable *Tipo de herida* porque son todas *Limpias*.

Las variables son cualitativas dicotómicas excepto *edad* y *duración de la intervención* que son cuantitativas continuas. Comprobamos, por medio de la prueba de Kolmogorov-Smirnov, si estas dos últimas se distribuyen según la Ley Normal.

<table>
<thead>
<tr>
<th>Tabla 4.3.3.2.b- Prueba de Kolmogorov-Smirnov para una muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
</tr>
<tr>
<td>6416</td>
</tr>
<tr>
<td>Parámetros normales<sup>a,b</sup></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Máximas diferencias extremas</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Estadístico de prueba</td>
</tr>
<tr>
<td>Sig. asintótica (bilateral)</td>
</tr>
</tbody>
</table>

^a La distribución de prueba es normal.
^b Se calcula a partir de datos.
^c Corrección de significación de Lilliefors.

Concluimos que ninguna de las dos se distribuye según la Normal por lo que las debemos categorizar.
4.3.3.3.- **Interacción.**

Para que se determine que hay interacción debemos crear un modelo de Regresión de Cox en el que introduzcamos la variable que consideramos principal (*Sistema Urinario cerrado*), la variable de la que queremos comprobar si existe interacción con la principal y el término multiplicativo entre ambas. Si las tres son significativas: existe interacción.

En nuestro estudio no hemos encontrado interacción de ninguna variable con *Sistema Urinario cerrado* considerada como variable principal.

4.3.3.4.- **Colinealidad.**

Para comprobar si hay colinealidad, como en el caso de la interacción, debemos crear un modelo de Regresión de Cox en el que introduzcamos la variable que consideramos principal (*Sistema Urinario cerrado*), la variable de la que queremos comprobar si existe colinealidad con la principal y el término multiplicativo entre ambas. Si las tres son no significativas y -2LL es muy significativo: existe colinealidad.

En nuestro estudio no hemos encontrado colinealidad, en las condiciones descritas, en los datos correspondientes a prótesis de rodilla, primer implante.

4.3.3.5.- **Confusión.**

Como hemos comentado en el apartado 3.2.5, si en un modelo de Cox introducimos una nueva variable independiente y su coeficiente (el de esa variable independiente) cambia significativamente respecto al valor que se obtuvo en el modelo simple o se anula, o si en ese modelo múltiple cambia significativamente el coeficiente de alguna de las variables que ya estaban en el modelo estamos ante interacción o confusión. Como ya hemos estudiado la interacción, debemos comprobar que se cumplen o no los criterios de confusión:

- Que las variables están asociadas entre sí.
- Que ambas están asociadas con la variable dependiente.
- Que la variable “sospechosa” no es un eslabón causal entre las otras dos variables.

Lo comprobamos en nuestro modelo considerando como variable principal *Sondaje Urinario cerrado*:
Tabla 4.3.3.5.- Confusión

<table>
<thead>
<tr>
<th>Sistema Urinario cerrado</th>
<th>CB1</th>
<th>CB2</th>
<th>CB3</th>
<th>% var1</th>
<th>% var2</th>
<th>X²</th>
<th>Signif (Wald)</th>
<th>Confusión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema Urinario cerrado</td>
<td>0,676</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sexo</td>
<td>0,782</td>
<td>0,721</td>
<td>0,699</td>
<td>7,8</td>
<td>3,4</td>
<td>0,207</td>
<td>0,166</td>
<td>No</td>
</tr>
<tr>
<td>Edad</td>
<td>0,963</td>
<td>0,960</td>
<td>0,676</td>
<td>0,3</td>
<td>0,0</td>
<td>0,628</td>
<td>0,820</td>
<td>No</td>
</tr>
<tr>
<td>Infección al ingreso</td>
<td>1,308</td>
<td>1,019</td>
<td>0,681</td>
<td>22,09</td>
<td>0,7</td>
<td>0,000</td>
<td>0,556</td>
<td>No***</td>
</tr>
<tr>
<td>Enfermedad de base</td>
<td>2,111</td>
<td>2,393</td>
<td>0,698</td>
<td>13,35</td>
<td>3,1</td>
<td>0,000</td>
<td>0,055</td>
<td>No***</td>
</tr>
<tr>
<td>DM</td>
<td>1,194</td>
<td>1,191</td>
<td>0,706</td>
<td>0,25</td>
<td>4,4</td>
<td>0,631</td>
<td>0,375</td>
<td>No</td>
</tr>
<tr>
<td>Inmunodepresión</td>
<td>1,192</td>
<td>1,449</td>
<td>0,716</td>
<td>21,56</td>
<td>5,9</td>
<td>0,001</td>
<td>0,861</td>
<td>No***</td>
</tr>
<tr>
<td>Desnutrición</td>
<td>0,050</td>
<td>0,0004</td>
<td>0,712</td>
<td>99,2</td>
<td>5,8</td>
<td>0,629</td>
<td>0,847</td>
<td>No**</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>1,666</td>
<td>1,223</td>
<td>0,603</td>
<td>26,6</td>
<td>10,8</td>
<td>0,000</td>
<td>0,011</td>
<td>SI</td>
</tr>
<tr>
<td>Sistema Urinario abierto</td>
<td>0,050</td>
<td>0,00017</td>
<td>0,671</td>
<td>99,6</td>
<td>0,7</td>
<td>0,000</td>
<td>0,697</td>
<td>No***</td>
</tr>
<tr>
<td>Catéter central</td>
<td>2,850</td>
<td>2,886</td>
<td>0,679</td>
<td>1,26</td>
<td>0,3</td>
<td>0,275</td>
<td>0,008</td>
<td>No</td>
</tr>
<tr>
<td>Catéter central inserción perif</td>
<td>3,031</td>
<td>2,632</td>
<td>0,660</td>
<td>13,16</td>
<td>2,4</td>
<td>0,005</td>
<td>0,006</td>
<td>SI</td>
</tr>
<tr>
<td>Catéter periférico</td>
<td>0,725</td>
<td>0,695</td>
<td>0,677</td>
<td>4,14</td>
<td>0,0</td>
<td>0,673</td>
<td>0,749</td>
<td>No</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>3,496</td>
<td>3,635</td>
<td>0,677</td>
<td>3,97</td>
<td>0,0</td>
<td>0,063</td>
<td>0,214</td>
<td>No</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>1,256</td>
<td>1,062</td>
<td>0,676</td>
<td>15,45</td>
<td>0,0</td>
<td>0,453</td>
<td>0,824</td>
<td>No**</td>
</tr>
<tr>
<td>Drenaje</td>
<td>1,753</td>
<td>1,307</td>
<td>0,672</td>
<td>25,4</td>
<td>0,6</td>
<td>0,000</td>
<td>0,576</td>
<td>No***</td>
</tr>
<tr>
<td>Tratamiento inmunodepresor</td>
<td>1,679</td>
<td>2,405</td>
<td>0,718</td>
<td>43,24</td>
<td>6,2</td>
<td>0,000</td>
<td>0,308</td>
<td>No***</td>
</tr>
<tr>
<td>Procedimiento invasivo</td>
<td>0,983</td>
<td>1,106</td>
<td>0,688</td>
<td>12,5</td>
<td>1,8</td>
<td>0,000</td>
<td>0,927</td>
<td>No***</td>
</tr>
<tr>
<td>Tipo de intervención</td>
<td>0,669</td>
<td>0,742</td>
<td>0,653</td>
<td>10,9</td>
<td>3,4</td>
<td>0,000</td>
<td>0,097</td>
<td>No***</td>
</tr>
<tr>
<td>ASA</td>
<td>1,443</td>
<td>1,412</td>
<td>0,667</td>
<td>2,15</td>
<td>1,3</td>
<td>0,002</td>
<td>0,031</td>
<td>No</td>
</tr>
<tr>
<td>Preparación para intervención</td>
<td>0,05</td>
<td>0,0001</td>
<td>0,679</td>
<td>99,8</td>
<td>0,4</td>
<td>0,597</td>
<td>0,720</td>
<td>No**</td>
</tr>
<tr>
<td>Profilaxis antibiótica quirúrgica</td>
<td>0,597</td>
<td>0,556</td>
<td>0,680</td>
<td>12,9</td>
<td>0,6</td>
<td>0,167</td>
<td>0,474</td>
<td>No**</td>
</tr>
<tr>
<td>Laparoscopia</td>
<td>1,022</td>
<td>0,225</td>
<td>0,568</td>
<td>78,97</td>
<td>15,9</td>
<td>0,216</td>
<td>0,125</td>
<td>No**</td>
</tr>
<tr>
<td>Duración de la intervención</td>
<td>0,214</td>
<td>0,987</td>
<td>0,687</td>
<td>364,95</td>
<td>1,6</td>
<td>0,000</td>
<td>0,895</td>
<td>No*</td>
</tr>
</tbody>
</table>

CB1= Coeficiente B de regresión de cada variable de forma independiente
CB2= Coeficiente B de regresión de cada variable con Sistema Urinario cerrado como variable principal.
CB3= Coeficiente B de regresión de la variable principal en el modelo con la variable de esa fila.
% var1 = % de variación de CB2 respecto a CB1.
% var2 = % de variación de CB3 respecto a su coeficiente B de Regresión individual con IN (0,676).
X² = Chi cuadrado entre cada variable y Sistema Urinario cerrado (p de significación)
Wald = Significación (Wald) de cada variable con IN con regresión de Cox
Confusión = Presencia o ausencia de confusión:
No: % de variación de CB2 y CB3 es < 10%
No* = No hay relación estadísticamente significativa con Sistema Urinario cerrado.
No** = No hay relación estadísticamente significativa ni con la variable principal (Sistema Urinario cerrado) ni con IN (variable dependiente).
No*** = No hay relación estadísticamente significativa con IN.
Catalogamos como variables confusoras: Estancia en UCI y Catéter Central de Inserción Periférica que ya se iban a incluir en el modelo por ser significativas con Regresión de Cox individual.

4.3.3.6. **Variables dependientes del Tiempo.**
Aunque intuitivamente la mayor parte de las variables que forman parte del estudio puedan parecer dependientes del tiempo puesto que se trata de un estudio de seguimiento, no lo son ya que se considera sólo su presencia o ausencia (Sí o No).

4.3.3.7. **Análisis con SPSS.**
Las variables que, en principio, van a conformar el estudio son las siguientes:

- Variables significativas (*Tabla 4.3.3.5; 7ª columna*): UCI, Sistema urinario cerrado, Catéter central, Catéter central de inserción periférica y ASA.
- Interacción: No hay
- Confusión: UCI y Catéter central de inserción periférica (ya introducidas como significativas)

En nuestro intento por encontrar el mejor modelo, en el caso de la prótesis de rodilla vamos a intentarlo con dos planteamientos diferentes:

A. Con las variables significativas, términos multiplicativos de las de interacción y las de confusión.

B. Con todas las variables y términos multiplicativos de las de interacción.

C. Con sólo las variables significativas de los distintos modelos.
Modelo A (significativas, interacción y confusión).

Tabla 4.3.3.7.a.- Pruebas ómnibus de coeficientes de modelo

<table>
<thead>
<tr>
<th>Logaritmo de la verosimilitud -2</th>
<th>Global (puntuación)</th>
<th>Cambio respecto a paso anterior</th>
<th>Cambio respecto a bloque anterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado gl Sig.</td>
<td>Chi-cuadrado gl Sig.</td>
<td>Chi-cuadrado gl Sig.</td>
<td></td>
</tr>
<tr>
<td>2072,028 30,261 5 .000</td>
<td>26,642 5 .000</td>
<td>26,642 5 .000</td>
<td></td>
</tr>
</tbody>
</table>

a. Número de bloque de inicio 1. Método = Entrar

Tabla 4.3.3.7.b.- Variables en la ecuación

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>gl</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI para Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estancia en UCI</td>
<td>-.243</td>
<td>.219</td>
<td>1,236</td>
<td>1</td>
<td>.266</td>
<td>.784</td>
<td>.511-1.204</td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
<td>-.579</td>
<td>.198</td>
<td>8,549</td>
<td>1</td>
<td>.003</td>
<td>.561</td>
<td>.380-.826</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>-.999</td>
<td>.398</td>
<td>6,303</td>
<td>1</td>
<td>.012</td>
<td>.368</td>
<td>.169-.803</td>
</tr>
<tr>
<td>Catéter Central Inserción Perif</td>
<td>-.795</td>
<td>.434</td>
<td>3,354</td>
<td>1</td>
<td>.067</td>
<td>.452</td>
<td>.193-1.057</td>
</tr>
<tr>
<td>ASA</td>
<td>-.301</td>
<td>.173</td>
<td>3,038</td>
<td>1</td>
<td>.081</td>
<td>.740</td>
<td>.527-1.038</td>
</tr>
</tbody>
</table>

Resultan significativas: **Sistema Urinario cerrado y Catéter Central**

Modelo B (todas las variables e interacción):

Tabla 4.3.3.7.c.- Pruebas ómnibus de coeficientes de modelo

<table>
<thead>
<tr>
<th>Logaritmo de la verosimilitud -2</th>
<th>Global (puntuación)</th>
<th>Cambio respecto a paso anterior</th>
<th>Cambio respecto a bloque anterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado gl Sig.</td>
<td>Chi-cuadrado gl Sig.</td>
<td>Chi-cuadrado gl Sig.</td>
<td></td>
</tr>
<tr>
<td>1878,839 42,790 23 .007</td>
<td>40,102 23 .015</td>
<td>40,102 23 .015</td>
<td></td>
</tr>
</tbody>
</table>

a. Número de bloque de inicio 1. Método = Entrar

~ 275 ~
<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>gl</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI para Exp(B)</th>
<th>Inferior</th>
<th>Superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estancia en UCI</td>
<td>-.129</td>
<td>.277</td>
<td>.217</td>
<td>1</td>
<td>.641</td>
<td>.879</td>
<td>.510</td>
<td>1.513</td>
<td></td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
<td>-.754</td>
<td>.220</td>
<td>11,800</td>
<td>1</td>
<td>.001</td>
<td>.470</td>
<td>.306</td>
<td>.723</td>
<td></td>
</tr>
<tr>
<td>Catéter Central</td>
<td>-1,028</td>
<td>.451</td>
<td>5,195</td>
<td>1</td>
<td>.023</td>
<td>.358</td>
<td>.148</td>
<td>.866</td>
<td></td>
</tr>
<tr>
<td>Catéter Central Inserción Periférica</td>
<td>-.763</td>
<td>.518</td>
<td>2,172</td>
<td>1</td>
<td>.141</td>
<td>.466</td>
<td>.169</td>
<td>1.286</td>
<td></td>
</tr>
<tr>
<td>ASA</td>
<td>-.393</td>
<td>.189</td>
<td>4,323</td>
<td>1</td>
<td>.038</td>
<td>.675</td>
<td>.466</td>
<td>.978</td>
<td></td>
</tr>
<tr>
<td>Sexo</td>
<td>-.131</td>
<td>.098</td>
<td>1,780</td>
<td>1</td>
<td>.182</td>
<td>.877</td>
<td>.724</td>
<td>1.063</td>
<td></td>
</tr>
<tr>
<td>Edad</td>
<td>-.039</td>
<td>.186</td>
<td>.045</td>
<td>1</td>
<td>.832</td>
<td>.961</td>
<td>.668</td>
<td>1.384</td>
<td></td>
</tr>
<tr>
<td>Infección al Ingreso</td>
<td>-.373</td>
<td>.488</td>
<td>.585</td>
<td>1</td>
<td>.444</td>
<td>.689</td>
<td>.265</td>
<td>1.791</td>
<td></td>
</tr>
<tr>
<td>Enfermedad de Base</td>
<td>.841</td>
<td>.408</td>
<td>4,241</td>
<td>1</td>
<td>.039</td>
<td>2,319</td>
<td>1.041</td>
<td>5.162</td>
<td></td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>-.043</td>
<td>.226</td>
<td>.036</td>
<td>1</td>
<td>.850</td>
<td>.958</td>
<td>.616</td>
<td>1.491</td>
<td></td>
</tr>
<tr>
<td>Inmunodepresión</td>
<td>-.234</td>
<td>1.095</td>
<td>.046</td>
<td>1</td>
<td>.831</td>
<td>.791</td>
<td>.093</td>
<td>6.765</td>
<td></td>
</tr>
<tr>
<td>Desnutrición</td>
<td>-9.773</td>
<td>419.67</td>
<td>.001</td>
<td>1</td>
<td>.981</td>
<td>.000</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema Urinario abierto</td>
<td>-9.787</td>
<td>261.5</td>
<td>.001</td>
<td>1</td>
<td>.970</td>
<td>.000</td>
<td>2.289E+218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catéter periférico</td>
<td>.379</td>
<td>1.100</td>
<td>.119</td>
<td>1</td>
<td>.730</td>
<td>1.461</td>
<td>.169</td>
<td>12.620</td>
<td></td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>1.704</td>
<td>1.105</td>
<td>2,380</td>
<td>1</td>
<td>.123</td>
<td>5.497</td>
<td>.631</td>
<td>47.911</td>
<td></td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>-1.025</td>
<td>1.170</td>
<td>.769</td>
<td>1</td>
<td>.381</td>
<td>.359</td>
<td>.036</td>
<td>3.549</td>
<td></td>
</tr>
<tr>
<td>Drenaje</td>
<td>.173</td>
<td>1.010</td>
<td>.029</td>
<td>1</td>
<td>.864</td>
<td>1.189</td>
<td>.164</td>
<td>8.616</td>
<td></td>
</tr>
<tr>
<td>Tratamiento inmunodepresor</td>
<td>.813</td>
<td>.551</td>
<td>2,177</td>
<td>1</td>
<td>.140</td>
<td>2.254</td>
<td>.766</td>
<td>6.635</td>
<td></td>
</tr>
<tr>
<td>Procedimiento invasivo</td>
<td>-.030</td>
<td>.230</td>
<td>.017</td>
<td>1</td>
<td>.895</td>
<td>.970</td>
<td>.618</td>
<td>1.522</td>
<td></td>
</tr>
<tr>
<td>Tipo de intervención</td>
<td>-.176</td>
<td>.269</td>
<td>.431</td>
<td>1</td>
<td>.511</td>
<td>.838</td>
<td>.495</td>
<td>1.419</td>
<td></td>
</tr>
<tr>
<td>Preparación para la intervención</td>
<td>-10.116</td>
<td>297.68</td>
<td>.001</td>
<td>1</td>
<td>.973</td>
<td>.000</td>
<td>.000</td>
<td>9.798E+248</td>
<td></td>
</tr>
<tr>
<td>Profilaxis antibiótica</td>
<td>-.825</td>
<td>.747</td>
<td>1.222</td>
<td>1</td>
<td>.269</td>
<td>.438</td>
<td>.101</td>
<td>1.893</td>
<td></td>
</tr>
<tr>
<td>Duración de la intervención</td>
<td>-.197</td>
<td>.199</td>
<td>.979</td>
<td>1</td>
<td>.322</td>
<td>.821</td>
<td>.556</td>
<td>1.213</td>
<td></td>
</tr>
</tbody>
</table>

Resultan significativas: Sistema Urinario cerrado, Catéter Central, ASA y Enfermedad de base.

C1.- Si planteamos un nuevo modelo con las 4 variables significativas del modelo A (variables significativas Sistema Urinario cerrado y Catéter Central), obtenemos:
Tabla 4.3.3.7.e.- Pruebas ómnibus de coeficientes de modelo

<table>
<thead>
<tr>
<th>Logaritmo de la verosimilitud -2</th>
<th>Global (puntuación)</th>
<th>Cambio respecto a paso anterior</th>
<th>Cambio respecto a bloque anterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-cuadrado</td>
<td>gl</td>
<td>Sig.</td>
</tr>
<tr>
<td>2078,892</td>
<td>21,824</td>
<td>2</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Número de bloque de inicio 1. Método = Entrar

Tabla 4.3.3.7.f.- Variables en la ecuación

<table>
<thead>
<tr>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>gl</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI para Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inferior</td>
</tr>
<tr>
<td>S. Urinario cerrado</td>
<td>-.679</td>
<td>.184</td>
<td>13,681</td>
<td>1</td>
<td>.000</td>
<td>.507</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>-1.057</td>
<td>.395</td>
<td>7,158</td>
<td>1</td>
<td>.007</td>
<td>.347</td>
</tr>
</tbody>
</table>

Nos quedan en el modelo: *Sistema urinario cerrado y catéter central*.

C2.- Si planteamos un nuevo modelo con las 4 variables significativas, obtenemos:

Tabla 4.3.3.7.g.- Pruebas ómnibus de coeficientes de modelo

<table>
<thead>
<tr>
<th>Logaritmo de la verosimilitud -2</th>
<th>Global (puntuación)</th>
<th>Cambio respecto a paso anterior</th>
<th>Cambio respecto a bloque anterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-cuadrado</td>
<td>gl</td>
<td>Sig.</td>
</tr>
<tr>
<td>2072,250</td>
<td>29,503</td>
<td>4</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Número de bloque de inicio 1. Método = Entrar

~ 277 ~
Son ahora variables significativas: Sistema Urinario cerrado, Catéter Central y Enfermedad de base. Es decir, sale del modelo ASA.

C3.- Si planteamos un nuevo modelo con las 3 variables significativas (Sistema Urinario cerrado, Catéter Central y Enfermedad de base) del modelo C2, obtenemos:

Las tres variables siguen siendo significativas por lo que se quedan en el modelo: Sistema Urinario cerrado, Catéter Central y Enfermedad de base.
4.3.3.8.- **Modelos** (aplicación de la fórmula).

Modelo A:

\[h(t; x_1, x_2, \ldots, x_k) = h_0(t)e^{-\gamma_0} \]

Para un paciente que no presentase positivas esas variables:

\[e^{-\gamma_0} = e^0 = 1 \]

Modelo B:

\[h(t; x_1, x_2, \ldots, x_k) = h_0(t)e^{-\gamma_1} \]

Para un paciente que no presentase positivas esas variables:

\[e^{-\gamma_1} = e^0 = 1 \]

Modelo C1:

\[h(t; x_1, x_2, \ldots, x_k) = h_0(t)e^{-\gamma_2} \]

Para un paciente que no presentase positivas esas variables:

\[e^{-\gamma_2} = e^0 = 1 \]

Modelo C2:

\[h(t; x_1, x_2, \ldots, x_k) = h_0(t)e^{-\gamma_3} \]

Para un paciente que no presentase positivas esas variables:

\[e^{-\gamma_3} = e^0 = 1 \]
Modelo C3:

\[h(t; x_1, x_2, \ldots, x_k) = h_0(t)e^{(-0.696 \cdot \text{Sistema Urinario cerrado}-1.026 \cdot \text{Catéter Central}+0.851 \cdot \text{Enfermedad de Base})} \]

\[= h_0(t)e^{(-0.696 \cdot 1-1.026 \cdot 1+0.851 \cdot 1)} = h_0(t)e^{(-0.871)} = 0.4185 \]

Para un paciente que no presentase positivas esas variables:

\[e^{(0.696 \cdot 0-1.026 \cdot 0+0.851 \cdot 0)} = e^{(0)} = 1 \]

4.3.3.9. **Bondad de ajuste.**

\(-2\text{LL}\) es significativo en todos los modelos como puede observarse en las **tablas** 4.3.3.7.a, c, e, g, i.

Residuos de Schoenfeld: pueden observarse, para las variables significativas en cualquiera de los modelos o en todos, en el **cuadro 4.3.3.9.** Comentaremos estas gráficas en el apartado **Discusión.**

Cuadro 4.3.3.9.- Residuos de Schoenfeld. Prótesis de rodilla, primer implante.

<table>
<thead>
<tr>
<th>Enfermedad de base</th>
<th>Sistema Urinario Cerrado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catéter Central</th>
<th></th>
</tr>
</thead>
</table>
5.- DISCUSIÓN
5.- **DISCUSIÓN**

Nos vamos a referir exclusivamente a datos generales de IN. Somos conscientes de que podría realizarse una descripción más detallada, por ejemplo, refiriéndonos a cada factor o marcador de riesgo. Pero ese no es el objeto del estudio por lo que lo obviaremos.

Vamos a seguir la numeración que establecimos en el capítulo de resultados con el fin de hacer más fácil la lectura y la línea de pensamiento. Por eso vamos a dividirlo en tres apartados principales:

1. Descriptivos.
2. RLB.
3. Regresión de Cox

5.1.- **RESULTADOS DESCRIPTIVOS.** Nos encontramos con un abigarrado número de resultados.

5.1.1.- **Cirugía electiva de colon.**

En el capítulo 4 (Resultados) mostramos los obtenidos en Euskadi. En la tabla 5.1.A en la que exponemos los autores, el año de publicación, el número de pacientes sobre los que se realizó el estudio, la incidencia acumulada (IA), el tipo de herida considerado y la densidad de incidencia (DI), los comparamos con los datos publicados con otros autores.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Año</th>
<th>Nº pac</th>
<th>IA</th>
<th>Tipo</th>
<th>DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hernandez MC</td>
<td>2005</td>
<td>158</td>
<td>10.14%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blumetti J et al</td>
<td>2007</td>
<td>428</td>
<td>24.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Díaz-Agero C et al</td>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Llanos Méndez A et al</td>
<td>2010</td>
<td></td>
<td>10%</td>
<td></td>
<td>0.57*</td>
</tr>
<tr>
<td>ECDC</td>
<td>2013</td>
<td>51.526</td>
<td>9.5%</td>
<td>Sup, Prof, Org o Esp</td>
<td>6.2</td>
</tr>
<tr>
<td>Cima R et al</td>
<td>2013</td>
<td></td>
<td>9.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallol M et al</td>
<td>2014</td>
<td>100</td>
<td>25%</td>
<td>superficial y prof</td>
<td>6.47</td>
</tr>
</tbody>
</table>
La incidencia acumulada que hemos encontrado es elevada si bien está dentro de los límites de lo que otros autores han publicado. Como incidencias acumuladas más bajas destacan las comunicadas por el ECDC(106) en 2013 que comunicó un 9,5%, seguida de la de Cima et al(83) que, también en 2013, encontraron un 9,8% si bien el ECDC contó con 51.526 pacientes, una serie importante, y los segundos no especificaron en qué número de pacientes se realizó la intervención quirúrgica. Llanos Méndez et al(275) encontraron un 10% de IA y Hernández et al(193) un 10,14%; los primeros no especificaron el número de pacientes intervenidos y el segundo una serie pequeña (158 pacientes). Ishikawa K et al(220), y Morikane K et al(313), ambos en 2014, comunicaron una IA de 14,17% en una serie 224 pacientes intervenidos, los primeros, y una IA de 15,76% los segundos, en una serie verdaderamente importante: 62.938 pacientes. Como cifras más elevadas destacan Blumetti J et al(35) con una IA de un 24,5% en 428 pacientes intervenidos y Mallol M et al(281) con una IA de 25% aunque su serie es muy reducida: 100 pacientes. En nuestro caso se encontró una IA de 17,02% para Euskadi en el periodo 2010-2015 con 6.709 pacientes intervenidos y una IA de 18,39% en 2013. Citamos este último ejemplo para poder compararnos con los datos del programa del ECDC por ser el más cercano a nosotros en todas las características y utilizar un protocolo de recogida similar.

En cuanto a la densidad de incidencia pocos autores la comunican; en nuestro caso 3 de 9 (4 de 10 si nos incluimos). Y de ellas la comunicada por Llanos Menéndez et al(275) utiliza un denominador completamente distinto a los demás, por lo que no es comparable con nuestros datos.

Mallol et al(281) encontraron una DI de 6,47%. Sorprende su alta IA y su DI más en consonancia con el resto de DI, lo que puede deberse al escaso número de pacientes

<table>
<thead>
<tr>
<th>Morikane K et al(313)</th>
<th>2014</th>
<th>62.938</th>
<th>15,76%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ishikawa K et al(220)</td>
<td>2014</td>
<td>224</td>
<td>14,17%</td>
</tr>
<tr>
<td>Euskadi</td>
<td>2010-15</td>
<td>6.709</td>
<td>17,02%</td>
</tr>
<tr>
<td>Euskadi</td>
<td>2013</td>
<td>1.517</td>
<td>18,39%</td>
</tr>
</tbody>
</table>

IA: Incidencia acumulada
DI: Densidad de incidencia. La referimos a 1.000 días a riesgo
*Se midió de forma poco habitual: por 100 pacientes intervenidos/día
estudiados. El ECDC\(^{106}\) comunicó una DI de 6,2 mientras que nosotros hemos encontrado un 7,3 para el quinquenio 2010-2015 y un 7,7 para 2013. Aunque la IA de Euskadi es elevada la DI puede considerarse aceptable, especialmente si tenemos en cuenta que nuestros datos son al alta por lo que muchos pacientes sin infección no completaron los 30 días de observación que es lo típico de esta situación.

La densidad de incidencia es un parámetro muy interesante para comparar nuestros propios datos a través del tiempo, entre distintos servicios o situaciones y de distintas unidades o instituciones. No obstante existe un problema básico: la mayoría de autores no define con claridad qué ha entendido por densidad de incidencia. Queremos decir que existen problemas con el denominador, es decir, con el periodo que se considera que el paciente está "a riesgo". Para unos autores se considera periodo a riesgo desde que el paciente ingresa en el hospital hasta que es dado de alta (no infectados) o el momento en que se produce la primera infección, para infectados. Para otros es desde el momento de la intervención quirúrgica hasta que se le da el alta del hospital o se produce la primera infección. Por último, para otros, es el periodo que va desde la intervención quirúrgica hasta que el paciente ha causado alta en ese servicio.

Donde sí encontramos una gran diferencia con los datos proporcionados por el ECDC\(^{106}\) es en los porcentaje de infección de la herida en los distintos tipos de herida. En el caso del ECDC el 50% eran superficiales, el 30% profundas y el 20% de órgano o espacio. En nuestro caso las cifras cambian considerablemente: en el caso de las heridas superficiales se encontró un 40,3%, en el caso de las profundas un 17,3% y en el caso de las de órgano o espacio un 42,4%. Esta diferencia en las de órgano o espacio es muy grande y además hay que considerar que son las clínicamente más graves y conllevan un peor pronóstico. Consideramos que es un hallazgo que debe investigarse mucho más a fondo (lo que no es el objetivo actual de este estudio).

Numerosos autores insisten en la necesidad de implementar y desarrollar programas de prevención de la IN más eficaces\(^{1128,343,382,424,464,486,490}\) y también la investigación de otras peculiaridades de la infección de la herida quirúrgica en este tipo de cirugía\(^{46}\).

Destacamos que el 29,60% de las IN en cirugía electiva de colon no fueron infecciones de la herida quirúrgica. Suele dárselle poca importancia a este hecho (la mayoría de autores ni lo citan). En nuestro caso, se detectaron nada menos que 103 neumonías y 191 bacteriemias, por referirnos sólo a las más graves.

~ 285 ~
5.1.2.- **Primer implante de prótesis de cadera**

Incidencia acumulada para pacientes infectados:

Total: 4,64 %

- Herida quirúrgica: 1,15%
- Superficial: 0,37%
- Profunda: 0,33%
- Órgano o espacio: 0,45%

En la tabla 5.1.B hacemos un resumen por autores, año de publicación, número de pacientes sobre los que se realizó el estudio, incidencia acumulada (IA), tipo de herida considerado y densidad de incidencia (DI), para poder compararnos con los datos publicados por otros autores.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Año</th>
<th>Nº pac</th>
<th>Periodo</th>
<th>IA</th>
<th>Tipo</th>
<th>DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillips CB et al</td>
<td>2003</td>
<td>71.477</td>
<td>6 meses</td>
<td>1,1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phillips JE et al</td>
<td>2006</td>
<td>5.947</td>
<td></td>
<td>0,57%</td>
<td>profunda</td>
<td></td>
</tr>
<tr>
<td>van Kasteren MEE et al</td>
<td>2007</td>
<td>11.924</td>
<td>1 año</td>
<td>2,6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ong KLet al</td>
<td>2009</td>
<td>39.929</td>
<td>2 años</td>
<td>1,63%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Del Pozo JL et al</td>
<td>2009</td>
<td></td>
<td></td>
<td>0,3 a</td>
<td></td>
<td>1,7%</td>
</tr>
<tr>
<td>Urquhart DM et al</td>
<td>2010</td>
<td>Alta</td>
<td></td>
<td>0,2%</td>
<td>órgano o espacio</td>
<td>1,1%</td>
</tr>
<tr>
<td>Dale H et al (NAR)</td>
<td>2011</td>
<td>5.540</td>
<td>1 año</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dale H et al (NOIS)</td>
<td>2011</td>
<td>24.512</td>
<td>1 año</td>
<td>0,7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kurtz SM et al</td>
<td>2012</td>
<td></td>
<td></td>
<td>2,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECDC</td>
<td>2013</td>
<td>267.985</td>
<td>1 año</td>
<td>1,0%</td>
<td>Sup, Prof, Org o Esp</td>
<td>0,5</td>
</tr>
<tr>
<td>Euskadi</td>
<td>2010-15</td>
<td>7.350</td>
<td>Alta</td>
<td>1,2%</td>
<td>Sup, Prof, Org o Esp</td>
<td>1,55</td>
</tr>
</tbody>
</table>

IA: Incidencia acumulada

DI: Densidad de incidencia. La referimos a 1.000 días a riesgo

NAR: Norwegian Arthroplasty Register

NOIS: Norwegian Surveillance System for Healthcare-Associated Infections
Los diversos autores que hemos consultado proporcionan cifras de IA que oscilan de 0,7 (Dale H et al, 2011, con 5.540 casos) y 3% del mismo autor (Dale H et al, 2011, con 24.512 casos). Los demás publican cifras entre esos dos extremos, como puede consultarse en la tabla 5.1.B. Hay que resaltar que dos grupos de investigadores Phillips JE et al en 2006 y Urquhart DM et al en 2010, únicamente refieren los datos los primeros a Infección de la herida profunda y los segundos a la de órgano o espacio. Lo comentaremos más adelante. Las IA del ECDC y la nuestra difieren, siendo la nuestra más elevada. Es posible que se deba a la diferencia de los denominadores (267.985 y 7.350 respectivamente). Nuevamente consideramos que debe estudiarse en profundidad este aspecto.

Como hemos comentado Phillips JE et al publicaron en 2006 una IA de 0,57% en herida quirúrgica profunda. Nuestra IA para infecciones de este tipo es de 0,35%, claramente inferior.

Urquhart DM et al encontraron una IA de 0,2% al alta en infección de órgano o espacio. Nosotros hemos detectado una IA por órgano o espacio de 0,48, bastante superior. Volvemos a encontrar en prótesis de cadera 1er implante el problema ya detectado en cirugía electiva de colon.

Otro punto de vista para analizar esta cuestión es el porcentaje relativo de cada una de las tres tipos de infección de la herida quirúrgica (superficial, profunda y de órgano o espacio). El ECDC publicó en 2013 estos porcentajes: superficial 39%; profunda 39%; órgano o espacio 22%. Nosotros encontramos los siguientes: superficial 32,2%; profunda 28,9%; órgano o espacio 38,9%. Destaca también desde este punto de vista y comparado con este Organismo oficial cercano a nosotros y con protocolo muy similar. De nuevo destacamos este hecho y proponemos estudios que aclaren este tema y, si es preciso, se instauren medidas correctoras. Esto es especialmente importante ya que la infección de la prótesis supone su reposición con los gastos correspondientes (probablemente triplique el coste de un primer implante) y, sobre todo, el dramatismo que vive el paciente durante un prolongado periodo de tiempo.

Nuestra DI triplica la publicada por el ECDC (única que hemos encontrado). Desgraciadamente no son comparables ya que en la nuestra el periodo "a riesgo" se consideró hasta el alta del paciente y en la del ECDC trascurrido un año desde la intervención. Esto hace que los denominadores sean muy diferentes, estando muy incrementado el del ECDC. Destacan las infecciones del tracto urinario: 44,25% frente a 24,12% de las de la herida quirúrgica que son las siguientes en frecuencia.
5.1.3.- Primer implante de prótesis de rodilla

Para poder comparar nuestros resultados con los publicados por otros autores mostramos tabla 5.1.C en la que incluimos los autores, el año de publicación, el número de pacientes sobre los que se realizó el estudio, la incidencia acumulada (IA), el tipo de herida considerado y la densidad de incidencia (DI).

<table>
<thead>
<tr>
<th>Autor</th>
<th>Año</th>
<th>Nº pac</th>
<th>Periodo</th>
<th>IA</th>
<th>Tipo</th>
<th>DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillips JE</td>
<td>2006</td>
<td>4.788</td>
<td></td>
<td>0,86</td>
<td>profunda</td>
<td></td>
</tr>
<tr>
<td>Ariza J et al</td>
<td>2008</td>
<td>2 años</td>
<td></td>
<td>1,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matthews PC</td>
<td>2009</td>
<td></td>
<td></td>
<td>0,6-2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Del Pozo JL et al</td>
<td>2009</td>
<td></td>
<td></td>
<td>0,8-1,9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jämsen E et al</td>
<td>2010</td>
<td>2.647</td>
<td>1 año</td>
<td>2,9%</td>
<td>Superficial</td>
<td>0,80%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prótesis</td>
<td></td>
</tr>
<tr>
<td>Breier AC et al</td>
<td>2011</td>
<td>33.463*</td>
<td>1 año</td>
<td>0,74%</td>
<td></td>
<td>0,63%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.554**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jaén F et al</td>
<td>2012</td>
<td>2.088</td>
<td>1 año</td>
<td>2,1%</td>
<td></td>
<td>65% órgano/espacio</td>
</tr>
<tr>
<td>Kurtz SM et al</td>
<td>2012</td>
<td></td>
<td></td>
<td>2,4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECDC</td>
<td>2013</td>
<td>187.786</td>
<td>1 año</td>
<td>0,7%</td>
<td>Sup, Prof, Org o Esp</td>
<td>0,3</td>
</tr>
<tr>
<td>Euskadi</td>
<td>2010-15</td>
<td>7.350</td>
<td>Alta</td>
<td>0,69%</td>
<td></td>
<td>0,88</td>
</tr>
</tbody>
</table>

IA: Incidencia acumulada
DI: Densidad de incidencia. La referimos a 1.000 días a riesgo
* Artrosis
** Recopilados de 38 hospitales

Las IA publicadas por diversos autores y recopiladas en la tabla 5.1.C oscilan entre 0,63 comunicada por Breier AC et al en 2011, en 20.554 pacientes y 2,9% publicada por Jämsen E et al en el año 2010 que hicieron el seguimiento de 2.647 pacientes durante un año. Cabe destacar, además, que se refiere sólo a infecciones de herida superficial. Lo comentaremos más adelante.

Nosotros presentamos una IA de 0,69, similar a la comunicada por el ECDC para 2013. Nos comparamos especialmente con el ECDC por pertenecer a su entorno geográfico y porque utilizamos protocolos casi idénticos. La diferencia, en este caso, radica en que nosotros hemos considerado el periodo "a riesgo" hasta el alta hospitalaria del paciente y el ECDC durante un año. Esto hace que su denominador sea, proporcionalmente, muy superior al nuestro. Entonces cabe concluir que nuestro
numerador (número de infecciones de herida quirúrgica) es, proporcionalmente, inferior al suyo. En otras palabras: nuestros datos de IA son mejores que los publicados por el ECDC.

En cuanto a la IA detectada en las infecciones de los distintos tipos de herida, comunicaron Jämsen E et al\cite{514}, en 2010, estudiando a lo largo de un año a 2.647 pacientes intervenidos, una IA de 2,9% en infección de la herida superficial. La IA detectada en nuestro estudio es de 0,24% también en ese tipo de infección de la herida superficial. Además nuestros datos son al alta hospitalaria y los de los autores referenciados al año.

En el año 2006, Phillips JE et al\cite{513} publicaron una IA de 0,86% en infección de la herida profunda, tras realizar un seguimiento de 4788 pacientes intervenidos sin que especificasen el periodo de seguimiento. Nuestra IA para infección de la herida profunda fue de 0,18%, claramente inferior a la de los autores señalados.

La infección de la de la herida denominada de órgano o espacio supone frecuentemente la retirada de la prótesis, el tratamiento de la infección y la posterior implantación de otra prótesis. Esto conlleva unos sufrimientos y pérdida de movilidad para el paciente hasta que se le reponga la prótesis y unos gastos que habitualmente triplican los correspondientes al primer implante\cite{73}. De ahí que destaquemos su importancia. Jämsen E et al\cite{514}, en 2010, tras el seguimiento de 2647 pacientes a lo largo de un año después de su intervención, encontraron una IA de infección de la prótesis de 0,80%. Jaen et al\cite{226}, en 2012, publicaron una IA de 1,36% de infección de la prótesis después de estudiar a lo largo de un año a un total 2088 pacientes intervenidos. Nuestra IA para infección de la prótesis al alta hospitalaria del paciente fue de 0,27. Nuestros resultados son sensiblemente mejores en cuanto a IA que los de estos autores.

El ECDC\cite{106}, en 2013, comunicó los datos del seguimiento, durante un año tras la prótesis, de 187.768 pacientes intervenidos, en porcentajes referidos al tipo de infección de la herida quirúrgica en primer implante de prótesis de rodilla. Estos fueron: superficial 46%; profunda 32%; órgano o espacio 20%. Nosotros encontramos los siguientes: superficial 35,3%; profunda 25,5%; órgano o espacio 39,2%. También en prótesis de rodilla presentamos un porcentaje de IN de órgano o espacio sensiblemente superior al publicado por el ECDC. Y esto sí es comparable ya que se trata de un porcentaje sobre el total de IN de este tipo de prótesis. En otras palabras: nuestra IA es mejor que la publicada por el ECDC para prótesis de rodilla primer implante pero nuestras IN son más graves.
Respecto a la DI, el ECDC18, en 2013, publicó una DI de 0,3. Nosotros, en nuestro estudio, detectamos una DI de 0,88, sensiblemente superior a la del ECDC. Recordemos que los denominadores son muy diferentes ya que nuestro periodo de seguimiento del paciente "a riesgo" finaliza al alta hospitalaria y el del ECDC al año de la intervención. No podemos comparar las DI. El resto de autores no señala ninguna.

Como en el primer implante de cadera, también en el primer implante de rodilla llama la atención el elevado percentaje de infecciones del tracto urinario (32,5\%), sobre el total de infecciones, que supera al porcentaje de infección de la herida quirúrgica (31,88\%).
5.2. - **RLB (Regresión Logística Binaria).**

La regresión logística es un método estadístico algo más complicado que las pruebas convencionales de comparación de variables. Pero aporta tales beneficios a la investigación que es conveniente que se emplee una parte de nuestro tiempo para realizarla. Es preciso ser muy cuidadosos y sistemáticos.

La regresión logística a utilizar en nuestro caso es la regresión logística binaria, ya que el modelo está compuesto por una variable dependiente dicotómica (*infección nosocomial*) y por múltiples variables independientes o covariables que pueden ser cualitativas o cuantitativas. Es un método altamente útil en la investigación médica siempre que las variables sean del tipo que acabamos de describir.

En el seguimiento bibliográfico que realizamos para los tres procesos señalados con las palabras clave *logistic regression, logistic models, nosocomial infection, hospital infection, cross infection, regresión logística, modelos logísticos, infección nosocomial, infección hospitalaria, infección cruzada*, nos hemos encontrado con un escaso número de autores que utilizaban estos términos. Concretamente (267, 316, 386, 462, 478) en el caso de cirugía electiva de colon, ninguno en primer implante de prótesis de rodilla y ninguno en primer implante de prótesis de cadera. Si se encuentran numerosas referencias a regresión logística múltiple.

Vamos a proceder a realizar la discusión de cada uno de los procesos quirúrgicos estudiados cuando se utiliza como método estadístico la regresión logística binaria.

5.2.1. - **Cirugía electiva de colon.**

En primer lugar hemos realizado una comparación estadística bivariante de cada una de las variables independientes con infección nosocomial. Cuando era una variable cualitativa hemos utilizado chi cuadrado. Cuando se trataba de una variable cuantitativa hemos utilizado la t de Student o la prueba no paramétrica pertinente. En realidad con las dos variables que se midieron de forma continua (edad y duración de la intervención) comprobamos, antes de aplicar ninguna prueba estadística, si se distribuían o no según la Ley Normal. Realizada la prueba Kolmogorov-Smirnov pertinente esta resultó estadísticamente significativa por lo que tuvimos que llegar a la conclusión de que ninguna de las dos cumplía la Normalidad. Aplicamos la prueba no paramétrica correspondiente (Rangos de Mann-Witney y Kolmogorov-Smirnov de dos muestras. Ver tablas 4.2.1.1.a y 4.2.1.1.c) y ambas resultaron significativas en su relación con IN. Como no podíamos tratarlas como cuantitativas continuas procedimos a su categorización. En cirugía electiva de colon el corte se ha hecho en 72 años para

~ 291 ~
edad y 180 minutos para duración de la intervención. Una vez dicotomizadas las volvimos a comparar con IN resultando las dos estadísticamente significativas. En la tabla 4.2.1.1 mostramos en la primera columna la variable de que se trata; en la segunda el porcentaje de infección nosocomial tanto para la presencia de esa variable como factor de riesgo, como para la ausencia; en la tercera columna la prueba de chi cuadrado y en la cuarta su p de significación; en la quinta el OR para esa variable, con sus intervalos de confianza al 95%; en la sexta columna el riesgo relativo también con sus intervalos de confianza y en la última el riesgo atribuible y sus IC al 95%.

De acuerdo con los resultados expresados en la tabla citada anteriormente hemos elegido una variable como principal. Éste es un problema muy importante en los estudios de seguimiento en los que no se ha realizado aleatorización. No se dispone de partida de una variable que pueda llamarse principal ya que no se trata de un estudio experimental. Entonces es preciso seleccionar la variable que reúna una serie de condiciones: tener RA, RR y OR más grandes (con IC correctos), chi cuadrado elevado y lo mismo su p de significación (muy pequeña) y que tenga una relevancia clínica importante. Este último aspecto es menos importante en nuestra investigación ya que las variables o factores de riesgo han sido seleccionadas previamente por la Comisión INOZ\(^{(68)}\) (véase el apartado correspondiente a Comisión INOZ) que aglutina a los profesionales dedicados a la vigilancia, prevención y control de la IN (actualmente IRAS) en Osakidetza.

Por si una sola variable no fuese suficientemente significativa seleccionamos varias y realizamos las pruebas con todas ellas para quedarnos con el modelo al que mejor ajusten nuestros datos.

Con el fin de completar al máximo posible esta investigación, antes de seguir adelante, se realizó una regresión logística binaria de cada variable con la dependiente infección nosocomial (IN). Los resultados pueden verse en la tabla 4.2.1.1.e. También en el apartado 4.- Resultados se explican las peculiaridades que presentaron algunas de las variables.

A continuación, como paso imprescindible en el estudio, comprobamos la interacción, la confusión y la colinealidad. Como variable principal en un primer momento elegimos la que más destacaba de todas: nutrición parenteral.

Interacción: cuando la variable sospechosa se introduce en el modelo en el que ya tenemos nutrición parenteral y el término multiplicativo de dicha variable con nutrición parenteral y el término multiplicativo es significativo estadísticamente hablamos de interacción. Así se seleccionaron las variables que en este caso se consideran de interacción.
Confusión: decimos que existe confusión cuando al introducir una variable nueva en el modelo que tiene introducida sólo la variable principal (nutrición parenteral) varía el OR de la variable principal en más de un 10%.

Colinealidad: otro problema importante es la colinealidad especialmente si existen variables cuantitativas. En nuestro caso su importancia es menor ya que las dos variables cuantitativas no cumplían las condiciones de la Ley Normal y hemos tenido que categorizarlas. Y, por comodidad, lo hemos hecho como dicotómicas. No obstante sí hemos realizado una prueba utilizando el factor de inflación de la varianza (FIV) y la tolerancia (T). Siguiendo a Kleinbaum y colaboradores hemos considerado que existirían problemas de colinealidad cuando el factor de inflación de la varianza FIV es superior a 10 y la tolerancia T inferior a 0,1.

Una vez que comprobamos que se cumplían todas las condiciones exigidas por esta prueba y determinadas qué variables son de interacción y de confusión y que no existía colinealidad procedimos a realizar la prueba con el paquete estadístico SPSS.

El primer resultado importante (tabla 4.2.1.b) fue \(-2LL \) que fue de 43,039. Es un buen resultado ya que es prácticamente imposible, especialmente utilizando tantas variables y con las características de recogida de los datos y demás aspectos del estudio, llegar a cero que sería el ideal.

En el mismo cuadro aparece la \(R^2 \) de Cox y Snell que es de 0,516. Pero es más práctica la \(R^2 \) de Nagelkerke adaptada a la escala cero-uno. Esta última tiene un valor de 0,781. Significa que 78,1% de la variabilidad de la variable dependiente infección nosocomial (IN) se explica por las variables introducidas en el modelo.

Otra prueba importante al realizar la regresión logística binaria es la prueba de Hosmer y Lemeshow. Tiene que ser no significativa si el modelo ajusta bien, como ocurre en nuestro caso.

En tercer lugar mostramos una tabla de clasificación similar a las utilizadas para las pruebas diagnósticas. Encontramos una sensibilidad de 92,7%, una especificidad de 87,1% y un porcentaje global de la prueba de 88,5%. Diversos autores consideran que si los valores superan el 75% son buenos y el modelo está bien ajustado. Por tanto consideramos que este modelo ajusta bien considerando como variable independiente principal nutrición parenteral. Realizada la prueba con datos reales, es decir, utilizando la fórmula con las variables que finalmente han resultado significativas, su coeficiente de regresión B multiplicado por uno (el valor que hemos asignado cuando el factor de riesgo o variable está presente), hemos obtenido como resultado que el 88,99% de probabilidad de adquirir una infección nosocomial la presentan los pacientes que tienen positivas estas variables que resultaron
significativas. Por fin hemos determinado, como creemos que es absolutamente necesario, las características del paciente que están detalladas en la página 217 del apartado Resultados.

También hemos realizado las pruebas considerando como variables principales ventilación mecánica, estancia en UCI, ASA, y profilaxis antibiótica.

En la tabla 4.2.1.4.f, como es de rigor, ofrecemos las características más importantes de estas cinco variables justificando por qué seguimos eligiendo el modelo que considera como variable principal nutrición parenteral.

No realizamos comparación con los 5 autores señalados porque los datos que aportan no lo permiten.

Aplicado el modelo (fórmula) concluimos que los pacientes que presentan positivas las variables que quedaron en el modelo final con significación estadística (página 217) tienen una probabilidad de contraer una IN de 88,96%, mientras que los pacientes que las presentan negativas tienen una probabilidad de 6,69%.

5.2.2.- Prótesis de cadera, primer implante.

Siguiendo con la misma sistemática utilizada en cirugía electiva de colon estudiamos el comportamiento de las diversas variables cuando se trata de este tipo de prótesis. Nótese que existen bastantes variables menos que en la cirugía electiva de colon, como es fácil de comprender si nos fijamos en las características que presentan estos dos tipos de cirugía. En la tabla 4.2.2.1 aparecen las variables a estudio.

Las dos variables cuantitativas (edad y duración de la intervención) no se distribuyen según la Ley Normal. Por eso las dicotomizamos (<74 años y ≥74 años para edad y <90 minutos y ≥91 minutos para duración de la intervención) como en el caso de cirugía electiva de colon, aunque con distintos valores ya que son procesos quirúrgicos muy diferentes, y a partir de este momento se las trató como dicotómicas.

Una vez que dispusimos de todas las variables a estudio aplicamos, de forma individual, la RLB con el fin de comprobar la significación de esas variables con la variable dependiente. Los resultados los presentamos en la tabla 4.2.2.1.

Con los resultados expresados en la tabla 4.2.2.1 elegimos la variable principal en este caso correspondió a edad. Había tres variables (ventilación mecánica, nutrición parenteral y sonda nasogástrica) que presentaban una significación y un Wald superior, pero el número de pacientes en esos factores de riesgo (variables) fue muy reducido y por tanto sus intervalos de confianza anormalmente amplios, lo que
nos llevó a desecharlas. También el nº de pacientes con el factor de riesgo (supervivencia a los 5 años) en enfermedad de base era reducido.

Estudiadas la interacción y la confusión se vio que había interacción entre Edad y enfermedad de base, ASA y duración de la intervención. En el caso de la confusión la presentaron enfermedad de base y ASA. Con todos estos resultados se planteó el análisis introduciendo en el modelo todas las variables significativas, los términos multiplicativo y las dos variables de confusión aunque estas últimas estaban incluidas como variables significativas.

Mostramos en la tabla 4.2.5.a los resultados, que son malos: un \(-2\)LL muy elevado (2303,218), indices de R² muy bajos (el mayor de un 10%, que sería el porcentaje de la variable dependiente que explican las independientes) aunque la prueba de Hosmer y Lemeshow resultó ser no significativa, y la especificidad, la sensibilidad y el valor global no alcanzaron el 75% que hemos considerado como mínimo inferior. Por último mostramos las variables en la ecuación es decir aquellas que fueron significativas finalmente, y no construimos el modelo por no merecer la pena ya que no tendría validez por los resultados que acabamos de comentar.

La conclusión es que los resultados expuestos en el párrafo anterior no alcanzan los mínimos requeridos para poder utilizar adecuadamente RLB.

5.2.3.- Prótesis de rodilla, primer implante.

Con la misma sistemática ya descrita se realiza una regresión logística binaria individual teniendo como variable dependiente la dicotómica infección nosocomial. Aparecen las variables significativas que no son muchas: enfermedad de base, estancia en UCI, sistema urinario cerrado, catéter central, catéter central de inserción periférica, procedimiento invasivo, tipo de intervención y duración de la intervención.

En la tabla 4.2.3.1 pueden observarse los detalles.

Una vez realizada la prueba anterior se elige como variable independiente principal sistema urinario cerrado por las razones ya expuestas anteriormente.

El estudio de la interacción y de la confusión demostró que presentaba interacción con sistema urinario cerrado la variable tratamiento inmunosupresor. Y presentaron confusión con sistema urinario cerrado: estancia en UCI y procedimiento invasivo.

Construimos el modelo con las variables significativas, con el término multiplicativo de la interacción: sistema urinario cerrado por tratamiento inmunosupresor (Se introdujo también tratamiento inmunosupresor por ser parte del
término multiplicativo y no estar entre las variables significativas) y las variables confusoras estancia en UCI y procedimiento invasivo que ya se habían introducido por ser significativas. En la tabla 4.2.3.4 presentamos los resultados globales que son malos:

- -2LL elevado (1314,546);
- R^2 que apenas llega a 7%;
- especificidad, sensibilidad y valor global de la clasificación bajos.
- Hosmer y Lemeshow negativo (correcto)

Por último se presentan las variables que quedarían en el modelo final. No podemos realizar comparación con otros autores porque no hemos encontrado trabajos que sean similares al nuestro.

Concluimos que no podemos utilizar RLB en este proceso quirúrgico porque los resultados no alcanzan los mínimos exigidos.
5.3.- Regresión de Cox.

La utilización de la regresión de Cox por parte de los distintos autores es escasa. Con frecuencia, además, los pocos que la utilizan proporcionan muy poca información al respecto. Se limitan a indicar si hay o no significación estadística. Excepcionalmente se basan en el estadístico de Wald y señalan su significación con número (por ejemplo, p=0,003). Últimamente se comienza tímidamente a aportar el hazard ratio, al menos en la bibliografía referente a los tres procesos que hemos estudiado (cirugía electiva de colon, primer implante de prótesis de cadera y primer implante de prótesis de rodilla).

Si analizamos esta actitud (en estudios diferentes a estos tres procesos como puede ser la aparición de IN en herida quirúrgica sin diferenciar procesos) llegamos a la conclusión de que los aspectos estadísticos de la investigación parecen ser de segundo orden en la misma. Paradójicamente sus conclusiones se basan en las conclusiones estadísticas o, por lo menos, se refuerzan con las mismas. Abogamos porque sea este un aspecto a cuidar más por los investigadores. Y que aporten información más completa.

Respecto a otros aspectos fundamentales como son la presencia de confusión, la presencia de interacción o la presencia de colinealidad, habitualmente no se dice nada. Y, sin embargo, son aspectos fundamentales como hemos indicado en el capítulo correspondiente. No queremos decir que se van a detallar estos aspectos como lo hacemos nosotros en el presente trabajo en el que sí procede detallarlos. Pero sí que los diversos autores que utilicen estas técnicas estadísticas en las que es imprescindible comprobar la interacción, la confusión y la colinealidad por la repercusión que pueden tener en los resultados si están presentes, indiquen específicamente que se han comprobado y su presencia o ausencia, además de cómo se han tratado si están presentes. Y, por supuesto, si se cumplen las condiciones de aplicabilidad y su ajuste correcto, ya que estos modelos matemáticos, como dice Álvarez RC(11), "no siempre representan la realidad de los datos; para que su aplicabilidad sea correcta no es suficiente que converja y que los coeficientes sean clínica y estadísticamente significativos. Además hay que comprobar que se cumplen las asunciones del modelo. Una vez verificadas las condiciones de aplicabilidad, se comprueba el ajuste adecuado".

El primer aspecto con el que nos encontramos es la diferencia en -2LL. Ésta es una prueba que debe resultar significativa estadísticamente. Eso quiere decir que se compara la variabilidad de -2LL o el cambio desde el bloque anterior (cuando todas las variables son cero) y el modelo. Si es estadísticamente significativa indica que por lo menos alguna de las variables tiene influencia sobre la variable dependiente, en
nuestro caso la Infección Nosocomial. A continuación se facilita las variables que quedan en el modelo con su coeficiente beta, su error estándar, la prueba de Wald, los grados de libertad, la significación de la prueba de Wald, Exp(B) y sus intervalos de confianza al 95% (podemos variar el %). Exp(B) es el número euliano e (2,718) elevado al coeficiente de regresión B (β) de esa variable.

Al final se configura el modelo entendiendo que el tiempo cero ($h_0(t)$) no lo conocemos. Por tanto este es un modelo que sólo sirve para comparar entre dos situaciones diferentes, en nuestro caso, entre dos pacientes distintos. Para ello se conforma un cociente en el cual en el numerador se colocan los datos correspondientes a paciente a estudio ($h_0(t)e^{β_1x_1+β_2x_2+…+β_kx_k}$) donde β son los coeficientes de regresión B (α o β) de cada variable significativa en el modelo final y X el valor que hemos asignado a la variable cuando está presente (en nuestro caso 1); y en el denominador los datos correspondientes a un hipotético paciente que no presentase esa variable, es decir, en el que ese factor de riesgo estuviese ausente (en nuestro caso codificado como 0): ($h_0(t)e^{β_10+β_20+…+β_k0}$). Entonces el denominador valdría $h_0(t)e^0$. Cualquier número elevado a 0 vale 1. En conclusión el cociente quedaría como:

$$\frac{h_0(t)e^{β_1x_1+β_2x_2+…+β_kx_k}}{h_0(t)e^{β_10+β_20+…+β_k0}} = \frac{e^{β_1x_1+β_2x_2+…+β_kx_k}}{e^{0}} = h_0(t)\frac{e^{β_1x_1+β_2x_2+…+β_kx_k}}{e^{0}} = e^{β_1x_1+β_2x_2+…+β_kx_k}$$

Tengamos en cuenta que se anula $h_0(t)$ (que desconocemos) por estar en los dos términos, numerador y denominador. Como resultado obtenemos el hazard ratio. Al final el resultado quiere decir que es tantas veces más probable que se infecte el paciente que presenta los factores de riesgo (variables en nuestro caso) que el que no los presenta. Destacar que hazard ratio es un cociente entre dos riesgos, habitualmente en el numerador el riesgo de los expuestos a uno o a varios factores de riesgo y en el denominador el riesgo de los no expuestos a ese o esos factores de riesgo, en un instante determinado.

Haciendo el seguimiento bibliográfico para los tres procesos señalados con las palabras clave hazard ratio, Cox regression, nosocomial infection, hospital infection, cross infection, regresión de Cox, riesgos proporcionales, infección nosocomial, infección hospitalaria, infección cruzada, nos hemos encontrado con un escaso número de autores que utilizaban estos términos. Concretamente ninguno en el caso de cirugía electiva de colon, 1 en primer implante de prótesis de rodilla y ninguno en
primer implante de prótesis de cadera. Como hemos comentado ya esto quiere decir que es una prueba muy poco utilizada por los investigadores médicos cuando en realidad puede aportar mucha información, lo mismo que la regresión logística; al menos en los procesos quirúrgicos señalados.

5.3.1.- Cirugía electiva de colon.

Al estudiar la relación individual de cada variable independiente con la variable dependiente infección nosocomial por medio de la regresión de Cox no es necesario detallar lo que ocurre con cada una de las variables. No obstante, y con fines didácticos, en este caso se desarrolló o mostró lo correspondiente a cada una de las variables y cómo se realizó la selección. Recordemos que se introdujeron (en un modelo en el que ya estaban introducidas, en su casilla correspondiente, los días a riesgo y la variable dependiente IN) una a una las variables (covariables) comenzando por la que ha mostrado un mayor interés que en nuestro caso es Nutrición parenteral. Se introdujo en un modelo simple primero la variable independiente que seleccionamos, es decir Nutrición parenteral, y posteriormente se fueron introduciendo una a una el resto de las variables. En el caso de que las variables modificuen el modelo estudiamos cómo es esa modificación. Si la nueva variable se muestra no significativa en el modelo o lo altera negativamente, la desechamos.

A continuación quisimos comprobar las asunciones del modelo o condiciones de aplicabilidad. La mayoría de nuestras variables eran categóricas por lo que la demostración de que se cumplen las condiciones predichas la hicimos gráficamente como indican los autores que hemos consultado. No obstante, al disponer de dos variables cuantitativas (edad y duración de la intervención) y a pesar de que estas dos variables no se distribuyen según la Ley Normal y las hemos tenido que categorizar y concretamente dicotomizar, comprobamos también que cumplían las asunciones del modelo si las contemplábamos como variables cuantitativas continuas, como se midieron.

En el primer caso elegimos la representación gráfica en función del logaritmo del tiempo que es más impactante y aceptada por la mayoría de autores y que representamos para cada una de las variables. En el apartado Resultados puede observarse el paralelismo exigido para cumplir las condiciones señaladas.

En el caso de las variables cuantitativas el tratamiento es estadístico. Se creó un nuevo término multiplicativo para cada variable (días a riesgo*edad y días a riesgo*duración de la intervención). Una vez realizados los modelos en los que se introdujeron las variables días a riesgo e IN, cada una en su casilla correspondiente y

~ 299 ~
edad o duración de la intervención con sus respectivos términos multiplicativos en la
casilla covariables, observamos los resultados. Interesan pruebas ómnibus de
coeeficientes del modelo que debe ser significativa y variables en la ecuación en la que
nos fijamos en el término multiplicativo que debe ser no significativo, como así ocurre
(puede verse en las tablas 4.3.1.1.a, b, c, d)

Una vez comprobado que cumplíamos con las asunciones del modelo,
planteamos una regresión de Cox individual, de cada una de las variables,
introduciendo en el modelo días a riesgo, la variable independiente infección
nosocomial y la variable a estudio. La variable que presentase mayores el estadístico
de Wald, la significación precisa, el OR (exp(B)) mayor y cuyos intervalos de confianza
no incluyesen el 1 y no fuesen demasiado amplios, la elegiríamos como variable
principal. Todo esto se debe a que se trata de un estudio de cohortes de seguimiento
en el que no existe de entrada una variable independiente principal. En nuestro caso
hemos elegido como variable principal nutrición parenteral. No elegimos como variable
principal estancia en UCI porque supone el compendio de varias otras que interesa
tratar de forma individualizada: nutrición parenteral, sonda nasogástrica, ventilación
mecánica etc. además realizamos un modelo completo con estancia en UCI y nos
llevamos la sorpresa de que no era significativa en el modelo final. Hubiera sido
incomprensible que hubiéramos elegido como variable principal una variable no
significativa (y por tanto rechazada) en el modelo final.

Interacción: para decidir si existe interacción creamos un modelo para cada
variable en los que quedaron fijas días a riesgo e infección nosocomial en sus casillas
y Nutrición parenteral en covariables y se introdujo en la casilla covariables la variable
a estudio y el término multiplicativo de esta con Nutrición parenteral. Decidimos que un
modelo logístico presenta interacción si los tres coeficientes son simultáneamente
significativos. Encontramos interacción de Nutrición parenteral con: tratamiento
inmunodepresor, ventilación mecánica, sonda nasogástrica, laparoscopia y
anastomosis. Lo mostramos en las tablas correspondientes en la sección de
Resultados.

Confusión: en el modelo básico de regresión de Cox en el que están introducidas
días a riesgo, infección nosocomial y Nutrición parenteral fuimos introduciendo una a
una las variables independientes. Si el coeficiente de la variable independiente cambia
significativamente comparado con el valor que obtuvimos en el modelo simple es decir
cuando se hizo regresión de Cox con ella sola, estamos ante interacción o confusión.
Ya tratamos la interacción. Ocupémonos ahora de la confusión.

Para que decidamos que una variable es de confusión, además del cambio de
su coeficiente señalado en el párrafo anterior, debe reunir una serie de condiciones:
que esté asociada con la principal, que esté asociada con la variable dependiente y que no sea un eslabón causal entre las otras dos (principal y dependiente). En la tabla 4.3.1.4 pueden verse los resultados respecto a confusión.

Colinealidad: una de las formas más habituales de comprobar la colinealidad es verificar qué ocurre con -2LL y la significación de las variables (principal y a estudio) y de su producto. Consideramos que existe cuando -2 LL es muy significativa y no son significativos ni las variables originales ni su producto. En el apartado Resultados mostramos las tablas correspondientes a las variables que han presentado colinealidad: lavado intraoperatorio. Esta variable ni fue significativa en la regresión de Cox individual ni presentó confusión por lo que no se introdujo en el modelo.

Otro aspecto importante antes de seguir adelante, pues cambiaría totalmente el planteamiento, es determinar si nuestras variables son dependientes del tiempo. Intuitivamente lo serían ya que se trata de un estudio de seguimiento. Las hemos introducido sólo como presencia o ausencia (0 ó 1), por lo que consideramos que no tienen ninguna dependencia del tiempo.

Seguidamente se construyó un modelo en el que se incluyeron las variables significativas individualmente, las variables que presentaban interacción y sus términos multiplicativo y las variables de confusión. Los detalles pueden observarse en el apartado Resultados.

Realizado el modelo nos centraremos en las partes más importantes para determinar si es significativo o no. En primer lugar observamos qué había ocurrido con la variación de -2LL. Debe ser significativa lo que indicaría que por lo menos una de las variables influiría sobre la variable dependiente, como así ocurre en nuestro modelo.

Para más claridad mostramos un cuadro con las variables significativas que se incluyeron en la ecuación.

También mostramos, como creemos que debe ser, la fórmula indicando que \(h_0(t) \), lo que se denomina riesgo base y que corresponde al riesgo de contraer infección nosocomial cuando todas las variables tienen valor cero, nos es desconocido. Pero como se trata de un cociente y \(h_0(t) \) formará parte del numerador (paciente que presenta esos factores de riesgo, por ejemplo) y del denominador (paciente que no presenta ninguno de esos factores de riesgo) no presentará el menor problema. Obtenemos así una hazard ratio que expresa las veces que tiene más de riesgo el paciente estudiado (numerator) de contraer una IN.

Realizado el modelo, otro requisito imprescindible es comprobar su bondad de ajuste. La bondad de ajuste se basa en varias pruebas de las cuales elegimos las dos
que consideramos más relevantes: la significación estadística de la variación de -2LL y el análisis de residuos de Schoenfeld. Las dos pruebas son satisfactorias por lo que concluimos que nuestro modelo tiene un buen ajuste.

Así mismo hemos explorado la posibilidad de utilizar como variable principal a las dos variables que presentan las mejores opciones después de Nutrición parenteral. Estas variables son Catéter arterial y Ventilación mecánica. Los resultados pueden consultarse en el anexo 5, páginas 388 y siguientes.

El ajuste de los modelos creados con estas dos variables cumplen con la condición de significación del cambio de -2LL (Δ-2LL). No obstante, ese cambio de -2LL es considerablemente mayor en magnitud utilizando como variable principal Nutrición parenteral (Δ-2LL = 672,32) que Catéter arterial (Δ-2LL = 131,183) y Ventilación mecánica (Δ-2LL = 233,37).

En cuanto al paralelismo de los residuos de Schoenfeld corregidos encontramos mayores problemas:

- utilizando como variable principal Catéter arterial resultan variables predictoras significativas Estancia en UCI, Catéter central, Nutrición parenteral y Perforación intraoperatoria. En ninguna de ellas aparece un paralelismo aceptable más allá de los 10 días de observación. Además, esta variable principal (Catéter arterial) no se queda en el modelo final.

- utilizando como variable principal Ventilación mecánica encontramos como variables predictoras significativas Nutrición parenteral, Ventilación mecánica y Ostomía. El paralelismo es relativamente aceptable hasta los días 12-13 de estancia para Nutrición parenteral y Ostomía. En el caso de Ventilación mecánica (que es la elegida en este caso como variable principal) no existe ningún tipo de paralelismo.

Nótese que Nutrición parenteral queda entre las variables seleccionadas como significativas en el modelo final, sea cual sea la variable candidata a variable principal.

Por todo lo expuesto, la conclusión es obvia: consideramos una buena elección seleccionar a Nutrición parenteral como variable principal para el modelo de Cox en el proceso cirugía electiva de colon.

Concluimos que se cumplen los requisitos de bondad de ajuste y que la Hazard Ratio es de 10,74. Es decir, que un paciente que presente positivas las variables que finalmente tuvieron significación estadística en el modelo de Regresión de Cox (página 247) tiene 10,74 veces más de contraer una IN, en el proceso quirúrgico cirugía electiva de colon, que otro paciente que presente estas variables negativas.
5.3.2.- **Prótesis de cadera, primer implante.**

Seguimos el mismo orden que en cirugía electiva de colon y comprobamos, en primer lugar, las condiciones de aplicación o asunciones del modelo, que, como puede verse en los gráficos correspondientes (página 251), son satisfactorias.

A continuación se realizó una regresión de Cox individual con cada una de las variables con el fin de elegir la principal y obtener la significación básica de cada una de las variables y poder utilizarla para determinar la confusión (*tabla 4.3.2.2*).

Elegimos como variable principal *sistema urinario cerrado* por varias razones: tiene el valor más elevado de la prueba de Wald y es significativo, además de ser una variable con peso específico importante y bien equilibrada en cuanto a la presencia o ausencia de ese factor de riesgo.

Interacción: realizada la comprobación de la interacción entre las variables, con la técnica ya descrita, detectamos que no existe interacción entre la variable principal *sistema urinario cerrado* y el resto de variables.

Confusión: se estudia como hemos señalado en el apartado anterior, resultando variables confusoras con *sistema urinario cerrado: catéter central, catéter central de inserción periférica, ventilación mecánica, sonda nasogástrica y preparación para la intervención* (*tabla 4.3.2.5*).

Normalidad de las dos variables cuantitativas: como puede apreciarse en la *tabla 4.3.2.7.a* no se cumplen las condiciones de la Ley Normal por lo que es preciso utilizar pruebas no paramétricas (categorizando las variables continuas)

A la hora del análisis introdujimos una novedad puesto que estamos buscando el modelo al que mejor ajusten nuestros datos. Inicialmente utilizamos dos modelos: uno que denominamos modelo A (*tablas 4.3.2.7.b y c*) y otro que denominamos modelo B (*tablas 4.3.2.7.d y e*).

En el modelo A incluimos sólo las variables significativas en su comparación individual con infección nosocomial, las que han presentado interacción con su término multiplicativo y las que han presentado confusión. Obtenemos unos resultados que son significativos en cuanto a la variación de -2LL y con distintas variables en la ecuación que comentaremos más adelante. Por otra parte comprobamos también en el ajuste del modelo por medio de los residuos de Schoenfeld*(266)*. Los gráficos se muestran en el apartado *Resultados*.

También se realizaron varios modelos más con las variables significativas del anterior, hasta que todas fueron significativas*(11)*

Modelo C1: con las significativas del modelo A (*tablas 4.3.2.7.f y g*)

~ 303 ~
Modelo C2: con las significativas del modelo B (*tablas 4.3.2.7.h e i*)

Modelo C3: con las significativas del modelo C1 (*tablas 4.3.2.7.j y k*)

Modelo C4: con las significativas del modelo C2 (*tablas 4.3.2.7.i y m*)

Se realizaron las fórmulas correspondientes a todos los modelos obteniendo resultados por debajo de la unidad lo que resulta chocante ya que el conjunto de las variables estadísticamente significativas resultaron protectoras. Consideramos que era imprescindible observar qué ocurría con la bondad de ajuste.

Bondad de ajuste: la evolución de -2LL fue significativa, lo que se interpreta como que al menos una variable influye sobre la variable dependiente (IN). En cuanto a los gráficos de los residuos de Schoenfeld observamos una buena bondad de ajuste en Edad, pero Enfermedad de base, estancia en UCI y Catéter central la presentan hasta el día 15 aproximadamente de evolución para luego desaparecer. Con sistema urinario cerrado se prolonga el paralelismo hasta el día 30 aproximadamente y luego es relativamente aceptable. Y con preparación para la intervención no existe.

El conjunto nos lleva a la conclusión de que es preciso considerar con reservas la utilización de la regresión de Cox en este tipo de proceso, especialmente si el seguimiento se hace durante un año, como es la tendencia actual.

5.3.3.- Prótesis de rodilla, primer implante.

Siguiendo la sistemática ya descrita comprobamos en primer lugar las asunciones del modelo por medio de la representación gráfica de las variables, que es satisfactoria (páginas 269 y siguientes).

Realizamos una regresión de Cox con cada variable comparándolas con IN (*tabla 4.3.3.2.a*). Para ello introducimos una a una todas las variables del modelo para comprobar o elegir la variable principal y además para que nos sirva de base para el resto de cálculos.

Como variable principal elegimos también sistema urinario cerrado, por las mismas razones que en prótesis de cadera.

Normalidad para edad y duración de la intervención (*tabla 4.3.3.2.b*). Ninguna de las dos se distribuye según la Ley Normal por lo que las hemos categorizado.

Interacción: siguiendo la sistemática ya descrita, después de crear un modelo para cada variable, no hemos detectado interacción con ninguna de las variables estudiadas.
Confusión: realizado la prueba encontramos que son variables confusoras: *estancia en UCI* y *catéter central de inserción periférica* (tabla 4.3.3.5).

Variables dependientes del tiempo. Es imprescindible tenerlo en cuenta porque si hubiese alguna variable dependiente del tiempo no podría realizarse la regresión de Cox que estamos utilizando sino que habría que utilizar otro tipo de pruebas. Ya hemos comentado que no hay dependencia del tiempo: aunque sea un estudio de seguimiento las variables se consideran como presencia o ausencia únicamente.

En el modelo deben introducirse las variables significativas (*estancia en UCI, sistema urinario cerrado, catéter central, catéter central de inserción periférica* y ASA), las de interacción (ninguna la ha presentado) y las de confusión (*estancia en UCI, catéter central de inserción periférica*), ya introducidas por ser significativas.

Continuando con la idea de investigar cuál es el mejor modelo para nuestros datos planteamos cinco diferentes:

A.- Variables significativas, interacciones y sus términos multiplicativo y variables de confusión *(tablas 4.3.3.7.a y b).*

B.-Todas las variables y los productos de interacción *(tablas 4.3.3.7.c y d).*

C1.- Sólo las variables que resulten significativas en el modelo A *(tablas 4.3.3.7.e y f).*

C2.- Sólo las variables que resulten significativas en el modelo B *(tablas 4.3.3.7.g y h).*

C3.- Sólo las variables que resulten significativas en los modelos C1 y C2 *(tablas 4.3.3.7.i y j).*

Modelos. Realizamos las fórmulas correspondientes a los cinco modelos.

Bondad de ajuste: la variación de -2LL ha sido significativa en todos los modelos indicando que al menos una variable influye sobre la variable dependiente (IN). Respecto a las gráficas de los residuos de Schoenfeld no se observa paralelismo ni en *enfermedad de base* ni en *catéter central*. Se observa, aunque no perfecto en *sistema urinario cerrado*.

Dada la pobreza de la bondad de ajuste de los tres residuos de Schoenfeld concluimos que la Regresión de Cox no es adecuada para analizar los datos correspondientes a la IN en pacientes sometidos a primer implante de prótesis de rodilla.
6.- **CONCLUSIONES**
6.- **CONCLUSIONES**

1.- Existen pocos datos publicados de infección nosocomial diferentes al de la herida quirúrgica, razón por lo que este estudio ha querido resaltar la importancia de las infecciones que afectaron a otras localizaciones anatómicas.

2.- En nuestro estudio un 23% de los pacientes intervenidos de cirugía electiva de colon sufrió una infección nosocomial, con una incidencia acumulada cercana al 30% (29,6%). La infección en estos pacientes supuso más del 78% (78,8%) del total de infecciones nosocomiales detectadas en el periodo de estudio y más de un tercio de ellas (34,1%) ocurrieron fuera de la herida quirúrgica, incluyendo infecciones graves como neumonías (n=103) y bacteriemias (n=191).

3.- La frecuencia de pacientes infectados intervenidos de primer implante de prótesis de cadera y primer implante de prótesis de rodilla fue inferior al 5%, con una incidencia acumulada de infecciones del 5,1% y 2,5%, respectivamente. Más de la mitad de estas infecciones se dieron fuera de la herida quirúrgica.

4.- En los pacientes intervenidos de primer implante de prótesis de cadera la infección del tracto urinario fue casi dos veces más frecuente que el de la herida quirúrgica (44,3% y 24,1% del total de sus infecciones, respectivamente). También fue algo más frecuente la infección urinaria que la infección de la herida quirúrgica en pacientes con primer implante de prótesis de rodilla (32,5% y 31,9%, respectivamente).

5.- Diez de cada 100 pacientes intervenidos quirúrgicamente en los hospitales de Osakidetza, en el periodo estudiado, adquirieron una infección de la herida quirúrgica que fue la infección nosocomial más común, representando el 57,5% del total de infecciones nosocomiales. Por tipos de infección, mayoritariamente se trataron de infecciones de órgano o espacio contabilizando el 39,2% de ellas. Las infecciones superficiales representaron el 35,3% y las profundas el 25,5% restante.

6.- Al comparar nuestros datos de infección de la herida superficial y profunda con los datos publicados por el ECDC, la incidencia fue comparable. Sin embargo, respecto a las infecciones de órgano o espacio, las más graves, nuestra prevalencia fue superior. Hay que resaltar que las infecciones de órgano o espacio cursan con peritonitis en el caso de la cirugía de colon y en las prótesis de cadera y rodilla conllevan el dramatismo de la retirada y reposición de la prótesis.

7.- El coste de la infección de la herida quirúrgica en los 5 años del estudio, calculados según metodología del Ministerio de Sanidad, fue superior a 35 millones de euros.

~ 308 ~
8. La presente tesis se valió de los datos recogidos según el protocolo vigente en los hospitales de agudos de Osakidetza. Dicho protocolo no incluye las importantes variables “masa corporal” o “tabaquismo” por lo que es aconsejable que en próximos INOZ se programe su recogida.

9.- Pese a lo anteriormente mencionado, el estudio INOZ tiene un buen protocolo, si bien, al requerir la intervenir de diverso personal en su cumplimentación, no todas las variables son rellenadas, por lo que cuando falta alguna de las variables cualitativas hay que excluir del análisis a dicho paciente. Esto llevó a que en 3 años de los 5 incluidos, más del 30% de los pacientes tuvieron que ser excluidos.

10.- En nuestra experiencia, las técnicas de análisis multivariante que resultaron más útiles para el estudio de las variables con dependiente dicotómica fueron la Regresión logística binaria y la Regresión de Cox. Mediante la Regresión de Cox encontramos que los "pacientes de alto riesgo" tuvieron una posibilidad de contraer una infección nosocomial que superó en 10 veces a la de los pacientes sin riesgo.

11.- En la cirugía electiva de colon, los pacientes de alto riesgo tuvieron un elevadísimo riesgo de infección nosocomial. Mediante la Regresión logística binaria determinamos que aquellos pacientes de más de 68 años ingresados en UCI, con catéter central y arterial, alimentación parenteral, ASA > 3, duración de su intervención > 180 minutos y alteraciones intraoperatorias como cambio completo del material quirúrgico y perforación de intestino tenían una probabilidad de contraer una infección nosocomial superior al 85%.

12.- Los datos aquí aportados sugieren que las cifras de infección nosocomial en nuestro medio, en los tres procesos estudiados, pese a ser mayoritariamente aceptables, tienen capacidad de mejora, por lo que los esfuerzos de prevención deben incrementarse.
7.- BIBLIOGRAFÍA
6. **BIBLIOGRAFÍA**

1. Abboud EC; Settle JC; Legare TB; Marcet JE; Barillo DJ; Sanchez JE. Silver-based dressings for the reduction of surgical site infection: review of current experience and recommendation for future studies. Burns 2014; 40 Suppl 1:S30-39.
9. Akinci B; Terzi C; Sevindik G; Yuksel F; Tunc UA; Tunali S; Yesil S. Hyperglycemia is associated with lower levels of urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor in wound fluid. Journal of Diabetes & its Complications 2014; 28:844-849.
13. Anthony T; Murray BW; Sum-Ping JT; Lenkovsky F; Vornik VO; Parker BJ; McFarlin JE; Hartless K; Huerta S. Evaluating an evidence-based bundle for preventing surgical site infection: a randomized trial. Archives of Surgery 2011;146:263-9.
15. Araki T; Okita Y; Uchino M; Ikeuchi H; Sasaki I; Funayama Y; Fukushima K; Futami K; Maeda K; Iiai T; Itabashi M; Hase K; Motoya S; Kitano A; Mizushima T; Maeda K; Kobayashi M; Mohri Y; Kusunoki M. Risk factors for surgical site infection in Japanese patients with ulcerative colitis: a multicenter prospective study. Surgery Today 2014; 44:1072-1078.
4. Ata A; Valerian BT; Lee EC; Bestle SL; Elmendorf SL; Stain SC. The effect of diabetes mellitus on surgical site infections after colorectal and noncolorectal general surgical operations. American Surgeon 2010; 76:697-702.
8. Belda FJ; Aguilera L; García de la Asunción J; Alberti J; Vicente R; Ferrandiz L; Rodríguez R; Company R; Sessler DI; Aguilar G; Botello SG; Oriol R; Spanish Reducción de la Tasa de Infección Quirúrgica Group. Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. [Erratum appears in JAMA. 2005 Dec 21;294(23):2973] JAMA 2005; 294:2035-2042.
16. Bonds AM; Novick TK; Dietert JB; Araghizadeh FY; Olson CH. Incisional negative pressure wound therapy significantly reduces surgical site infection in open colorectal surgery. Diseases of the Colon & Rectum 2013; 56:1403-1408.
17. Bonillo Matín A. Sistematización del proceso de depuración de datos en estudios con seguimientos. Tesis Doctoral. Universidad Autónoma de Barcelona. Bellaterra 2003, Barcelona

~ 313 ~

45. Brennan SL; Bull A; Wilson J; Worth LJ; Stuart RL; Gillespie E; Waxman B; Shearer W; Richards M. A bundle of care to reduce colorectal surgical infections: an Australian experience. Journal of Hospital Infection 2011; 78:297-301.

58. CDC/NHSN. Exophiala infection from contaminated injectable steroids prepared by a compounding pharmacy—United States July-November 2002. MMWR; 51:1109–1112.

62. Cheng KP; Roslan AC; Seah N; Kueh JH; Law CW; Chong HY; Arumugam K. ALEXIS O-Ring wound retractor vs conventional wound protection for the prevention of surgical site infections in colorectal resections Colorectal Disease 2012; 14:e346-51.

63. Cima R; Dankbar E; Lovely J; Pendlimari R; Aronhalt K; Nehring S; Hyke R; Tyndale D; Rogers J; Quast L. Colorectal surgery surgical site infection reduction program: a national surgical quality improvement program—driven multidisciplinary single-institution experience. Colorectal Surgical Site Infection Reduction Team. Journal of the American College of Surgeons 2013: 216:23–33.

Degrate L; Garancini M; Misani M; Poli S; Nobili C; Romano F; Giordano L; Motta V; Uggeri F. Right colon, left colon, and rectal surgeries are not similar for surgical site infection development. Analysis of 277 elective and urgent colorectal resections. International Journal of Colorectal Disease 2011; 26:61-69.

Deierhoi RJ; Dawes LG; Vick C; Itani KM; Hawn MT. Choice of intravenous antibiotic prophylaxis for elective and urgent colorectal resections. International Journal of Colorectal Disease 2011; 26:61-69.

Departamento de Estadística. Universidad Carlos III de Madrid. BIOESTATISTICA. Medidas de frecuencia, asociación, e impacto. http://www.est.uc3m.es/amalonso/esp/bstat-tema3m.pdf

Dineen SP; Pham TH; Murray BW; Parker BJ; Hartless K; Anthony T; Huerta S. Feasibility of subcutaneous gentamicin and pressurized irrigation as adjuvant strategies to reduce surgical site infection in colorectal surgery: results of a pilot study. American Surgeon 2015; 81:573-579.

Drosdeck J; Harzman A; Suizo A; Arnold M; Abdel-Rasoul M; Husain S. Multivariate analysis of risk factors for surgical site infection after laparoscopic colorectal surgery. Surgical Endoscopy 2013; 27:4574-4580.

~ 315 ~

~ 316 ~
117. EPINE 1990-2014 web.pdf. Puede consultarse en:

118. Esemuede IO; Murray AC; Lee-Kong SA; Feingold DL; Kiran RP. Obesity, regardless of comorbidity, influences outcomes after colorectal surgery-time to rethink the pay-for-performance metrics? Journal of Gastrointestinal Surgery 2014; 18:2163-2168.

133. Friedman ND; Styles K; Gray AM; Low J; Athan E. Compliance with surgical antibiotic prophylaxis at an Australian teaching hospital. American Journal of Infection Control 2013; 41:71-74.

136. Fuji T; Tabe Y; Yajima R; Tsutsumi S; Asao T; Kuwano H. Relationship between C-reactive protein levels and wound infections in elective colorectal surgery: C-reactive protein as a predictor for incisional SSI. Hepato-Gastroenterology 2011: 58:752-755.

137. Fuji T; Tabe Y; Yajima R; Yamaguchi S; Tsutsumi S; Asao T; Kuwano H. Effects of subcutaneous drain for the prevention of incisional SSI in high-risk patients undergoing colorectal surgery. International Journal of Colorectal Disease 2011; 26:1151-1155.

138. Fuji T; Tsutsumi S; Matsumoto A; Fukasawa T; Tabe Y; Yajima R; Asao T; Kuwano H. Thickness of subcutaneous fat as a strong risk factor for wound infections in elective colorectal surgery: impact of prediction using preoperative CT. Digestive Surgery 2010; 27:331-335.

139. Fujita S; Saito N; Yamada T; Takii Y; Kondo K; Ohue M; Ikeda E; Moriya Y. Randomized, multicenter trial of antibiotic prophylaxis in elective colorectal surgery: single dose vs 3 doses of a second-generation cephalosporin without metronidazole and oral antibiotics. Archives of Surgery 2007; 142:657-661.
167. Govinda R; Kasuya Y; Bala E; Mahboobi R; Devarajan J; Sessler DI; Akca O. Early postoperative subcutaneous tissue oxygen predicts surgical site infection. Anesthesia & Analgesia 2010; 111:946-952.

182. Han J; Wang Z; Wei G; Yi B; Ma H; Gao Z; Yang Y; Zhao B; Zhao B; Tao Y. [Risk factors associated with incisional surgical site infection in colorectal cancer surgery with primary anastomosis]. Chung-Hua Wai Ko Tsa Chih [Chinese Journal of Surgery] 2014; 52:415-419.

183. Hanhara Y; Konishi T; Kobayashi H; Furushima K; Ito K; Noie T; Nara S; Tanimura K. Effects of applying povidone-iodine just before skin closure. Dermatology 2006; 212 Suppl 1:53-57.

186. Hawn MT. Surgical quality measurement: the good, the bad, and the ugly. JAMA Surgery 2015; 150:58.

190. Hedrick TL; Sawyer RG; Hennessy SA; Turrentine FE; Friel CM. Can we define surgical site infection accurately in colorectal surgery?. Surgical Infections 2014; 15:372-376.
193. Hernandez-Navaratte MJ; Arribas-Llorrente JL; Solano-Bernad VM; Misiego-Peral A; Rodriguez-Garcia J; Fernandez-Garcia JL; Martinez-German A. [Quality improvement program of nosocomial infection in colorectal cancer surgery]. Medicina Clinica (Barc) 2005; 125:521-524.
195. Higien de las manos ¿por qué, cómo, cuándo?: file:///C:/Users/JR/AppData/Local/Windows/INetCache/IE/RJRR6H7U/ES_PSP_GSPC1_Higiene-de-las-Manos_Brochure_June-2012.pdf
197. Ho VP; Barie PS; Stein SL; Trencheva K; Milsom JW; Lee SW; Sonoda T. Antibiotic regimen and the timing of prophylaxis are important for reducing surgical site infection after elective abdominal colorectal surgery. Surgical Infections 2011; 12:255-260.
198. Ho VP; Stein SL; Trencheva K; Barie PS; Milsom JW; Lee SW; Sonoda T. Differing risk factors for incisional and organ/space surgical site infections following abdominal colorectal surgery. Diseases of the Colon & Rectum 2011; 54:818-825.
203. Horiiuchi T; Tanishima M; Tamagawa K; Matsuura I; Nakai H; Shouyo Y; Tsubakihara H; Inoue M; Tabuse K. Randomized, controlled investigation of the anti-infective properties of the Alexis retractor/protector of incision sites. Journal of Trauma-Injury Infection & Critical Care 2007; 62:212-215.
204. Hovaguimian F; Lysakowski C; Elia N; Tramer MR. Effect of intraoperative high inspired oxygen fraction on surgical site infection, postoperative nausea and vomiting, and pulmonary function: systematic review and meta-analysis of randomized controlled trials. Anesthesiology 2013; 119:303-316.
205. Howard DP; Datta G; Cunnick G; Gatzen C; Huang A. Surgical site infection rate is lower in laparoscopic than open colorectal surgery. Colorectal Disease 2010; 12:423-427.
212. http://www.who.int/gpsc/background/es/
213. Huang SS, Datta R, Platt R. Risk of acquiring antibiotic resistant bacteria from prior room occupants. Arch
215. Huszar G; Baracs J; Toth M; Damjanovich L; Kotan R; Lazar G; Man E; Baradnai G; Ohal A; Benedek-Toth Z; Bogdan-Rajcs S; Zemanek P; Ohal T; Somodi K; Svebis M; Molnar T; Horvath OP. [Comparison of wound infection rates after colon and rectal surgeries using triclosan-coated or bare sutures -- a multi-center, randomized clinical study]. Magyar Sebeszet 2012; 65:83-91.
216. hws.vehbron.net/epine/Descargas/EPINE%201990-2014%20web.pdf
217. Inagi T; Suzuki M; Osumi M; Bito H. Remifentanil-based anaesthesia increases the incidence of postoperative surgical site infection. Journal of Hospital Infection 2015; 89:61-68.
218. Inigo JJ; Bermejo B; Oronoz B; Herrera J; Tarifa A; Perez F; Miranda C; Lera JM. [Surgical site infection in general surgery: 5-year analysis and assessment of the National Nosocomial Infection Surveillance (NNIS) index]. Cirugía Española 2006; 79:224-230.
221. Isla A; Troconiz IF; de Tejada IL; Vazquez S; Canut A; Lopez JM; Solinis MA; Rodriguez Gascon A. Population pharmacokinetics of prophylactic cefoxitin in patients undergoing colorectal surgery. European Journal of Clinical Pharmacology 2012; 68:735-745.
222. Itani KM; Jensen EH; Finn TS; Tomassini JE; Abramson MA. Effect of body mass index and ertapenem versus cefotetan prophylaxis on surgical site infection in elective colorectal surgery. Surgical Infections 2008; 9:131-137.
http://www.academia.edu/5738462/Correlaci%C3%B3n_con_SPSS
232. Ju MH; Ko CY; Hall BL; Bosk CL; Bilimoria KY; Wick EC. A comparison of 2 surgical site infection monitoring systems. JAMA Surgery 2015; 150:51-57.
235. Kaoutzianis C; Kavanagh CM; Leichtle SW; Welch KB; Talsma A; Vandewarker JF; Lampman RM; Cleary RK. Chlorhexidine with isopropyl alcohol versus iodine povacrylex with isopropyl alcohol and alcohol- versus nonalcohol-based skin preparations: the incidence of and readmissions for surgical site infections after colorectal operations. Diseases of the Colon & Rectum 2015; 58:588-596.
237. Karidis NP; Lekakos L; Dimitroulis D. Stratification of patients who underwent colorectal surgery: determining the risk of surgical site infection related to postoperative hyperglycemia. Archives of Surgery 2011; 146:369.

239. Keenan JE; Speicher PJ; Nussbaum DP; Adam MA; Miller TE; Mantyh CR; Thacker JK. Improving Outcomes in Colorectal Surgery by Sequential Implementation of Multiple Standardized Care Programs. Journal of the American College of Surgeons 2015; 221:404-414.e1.

244. Kobayashi M; Mohri Y; Inoue Y; Okita Y; Miki C; Kusunoki M. Continuous follow-up of surgical site infections for 30 days after colorectal surgery. World Journal of Surgery 2008; 32:1142-1146.

246. Kobayashi S; Ito M; Yamamoto S; Kinugasa Y; Kotake M; Saida Y; Kobatake T; Yamanaka T; Saito N; Moriya Y. Randomized clinical trial of skin closure by subcuticular suture or skin stapling after elective colorectal cancer surgery. British Journal of Surgery 2015; 102:495-500.

250. Konishi T; Watanabe T; Morikane K; Fukatsu K; Kitayama J; Umetani N; Kishimoto J; Nagawa H. Prospective surveillance effectively reduced rates of surgical site infection associated with elective colorectal surgery at a university hospital in Japan. Infection Control & Hospital Epidemiology 2006; 27:526-528.

251. Konishi T; Watanabe T; Morikane K; Fukatsu K; Kitayama J; Umetani N; Kishimoto J; Nagawa H. Prospective surveillance effectively reduced rates of surgical site infection associated with elective colorectal surgery at a university hospital in Japan. Infection Control & Hospital Epidemiology 2006; 27:526-528.

253. Krieger BR; Davis DM; Sanchez JE; Mateka JJ; Nfonsam VN; Frattini JC; Marcet JE. The use of silver nylon in preventing surgical site infections following colon and rectal surgery. Diseases of the Colon & Rectum 2011; 54:1014-1019.

254. Kuhnen AH; Marcello PW; Roberts PL; Read TE; Schoetz DJ; Rusin LC; Hall JF; Ricciardi R. Can the national surgical quality improvement program provide surgeon-specific outcomes?. Diseases of the Colon & Rectum 2015; 58:247-253.

255. Kurmann A; Vorburer SA; Candinas D; Beldi G. Operation time and body mass index are significant risk factors for surgical site infection in laparoscopic sigmoid resection: a multicenter study. Surgical Endoscopy 2011; 25:3531-3534.

258. Kwaan MR; Sirany AM; Rothenberger DA; Madoff RD. Abdominal wall thickness: is it associated with superficial and deep incisional surgical site infection after colorectal surgery?. Surgical Infections 2013; 14:363-368.

260. Lamore RF 3rd; Hechenleikner EM; Ha C; Salvator R; Harris LH; Marohn MR; Gearhart SL; Efron JE; Wick EC. Perioperative glucocorticoid prescribing habits in patients with inflammatory bowel disease: a call for standardization. JAMA Surgery 2014; 149:459-466.

262. Larcheille M; Hyman N; Gruppi L; Oser T. Diminishing surgical site infections after colorectal surgery with surgical care improvement project: is it time to move on?. Diseases of the Colon & Rectum 2011; 54:394-400.

264. Lauscher JC; Grittner F; Stroux A; Zimmermann M; le Claire M; Buhr HJ; Ritz JP. Reduction of wound infections in laparoscopic-assisted colorectal resections by plastic wound ring drapes (REDWL)? - A randomized controlled trial. Langenbecks Archives of Surgery 2012; 397:1079-1085.

268. Leng XS; Zhao YJ; Cao YK; Zhu WH; Shen JF; Paschke A; Dai WM; Caldwell N; Wang J. Ertapenem prophylaxis of surgical site infections in elective colorectal surgery in China: a multicentre, randomized, double-blind, active-controlled study. Journal of Antimicrobial Chemotherapy 2014; 69:3379-3386.

269. Letourneau AR; Calderwood MS; Huang SS; Bratzler DW; Ma A; Yokoe DS. Harnessing claims to improve detection of surgical site infections following hysterectomy and colorectal surgery. Infection Control & Hospital Epidemiology 2013; 34:1321-1323.

271. Limon E; Shaw E; Badia JM; Piriz M; Escotef R; Gudiol F; Pujol M; VINCat Program and REIPI. Post-discharge surgical site infections after uncomplicated elective colorectal surgery: impact and risk factors. The experience of the VINCat Program. Journal of Hospital Infection 2014; 86:127-132.

~ 323 ~

282. Manilich E; Vogel JD; Kiran RP; Church JM; Seyidova-Khoshkhanabi D; Remzi FH. Key factors associated with postoperative complications in patients undergoing colorectal surgery. Diseases of the Colon & Rectum. 56(1):64-71, 2013 Jan.

294. Mazeh H; Samet Y; Abu-Wasel B; Beglaibter N; Grinbaum R; Cohen T; Pinto M; Hamburger T; Freund HR; Nissan A. Application of a novel severity grading system for surgical complications after colorectal resection. Journal of the American College of Surgeons 2009; 208:355-361.

298. Melton GB; Vogel JD; Swenson BR; Remzi FH; Rothenberger DA; Wick EC. Continuous intraoperative temperature measurement and surgical site infection risk: analysis of anesthesia information system data in 1008 colorectal procedures. Annals of Surgery 2013; 258:606-612.

299. Merkow RP; Bentrem DJ; Chung JW; Paruch JL; Ko CY; Bilimoria KY. Differences in patients, surgical complexity, and outcomes after cancer surgery at National Cancer Institute-designated cancer centers compared to other hospitals. Medical Care 2013; 51:606-613.

300. Meyhoff CS; Jorgensen LN; Rasmussen LS; Weterslev J. Meta-analysis of hyperoxia to prevent surgical site infection. Journal of the American College of Surgeons 2011; 212:909.

301. Milanchi S; Nasserri Y; Westhout F; Murrell ZA; Fleshner PR. Does prophylactic subcutaneous heparin increase the risk of wound infection after colorectal surgery?. American Surgeon 2010; 76:1412-1415.

303. Miransky J; Ruo L; Nicoletta S; Eagan J; Sepkowitz K; Margetson N; Thaler H; Cohen AM; Guillem JG. Impact of a surgeon-trained observer on accuracy of colorectal surgical site infection rates. Diseases of the Colon & Rectum 2001; 44:1100-1105.

~ 324 ~

305. Moghadamyeghan Z; Hanna MH; Carmichael JC; Mills SD; Pigazzi A; Nguyen NT; Stamos MJ. Nationwide analysis of outcomes of bowel preparation in colon surgery. Journal of the American College of Surgeons 2015; 220:912-920.

312. Monitorización y Evaluación de las Infecciones Relacionadas con la Asistencia Sanitaria (MEDIRAS)

314. Muller-Stich BP; Choudhry A; Vetter G; Antolovic D; Mehrabi A; Koninger J; Weitz J; Buchler MW; Gutt CN. Preoperative bowel preparation: surgical standard or past?. Digestive Surgery 2006; 23:375-380.

321. OCU (escritorío IN)

324. OMS/WHO. Cómo lavarse las manos:
http://C:/Users/JR/AppData/Local/Microsoft/Windows/INetCache/IE/OZAYLE4/gpsc_lavarse_manos_poster_es.pdf

325. OMS/WHO. Guía de aplicación de la estrategia multimodal de la OMS para la mejora de la higiene de las manos:

326. OMS/WHO. Items más relevantes en higiene de manos (2016):
http://www.who.int/gpsc/5may/tools/es/

327. OMS/WHO. Los 5 momentos en la higiene de manos:
http://C:/Users/JR/AppData/Local/Microsoft/Windows/INetCache/IE/YRQI2FK9/gpsc_5_momentos_poster_es.pdf

328. OMS/WHO. Manual técnico de referencia para la higiene de las manos dirigido a los profesionales sanitarios, a los formadores y a los observadores de las prácticas de higiene de las manos. Hand hygiene

330. OMS/WHO. Mis 5 momentos para la higiene de manos en cuidado de un paciente con sonda urinaria: http://www.who.int/gpsc/hh-urinary-catheter_poster_ES.pdf

331. OMS/WHO. Mis 5 momentos para la higiene de manos en la atención a pacientes con heridas quirúrgicas: http://www.who.int/gpsc/5may/5moments-EducationalPoster_A4_ES.pdf

332. OMS/WHO. Mis 5 momentos para la higiene de manos en la atención a pacientes con catéteres venosos centrales: http://www.who.int/gpsc/5may/WHO_HH15_CentralCatheter_A3_ES.pdf

333. OMS/WHO. Mis 5 momentos para la higiene de manos en la atención a pacientes con catéteres venosos periféricos: http://www.who.int/gpsc/5may/WHO_HH15_PeripheralCatheter_A3_ES.pdf

335. OMS/WHO. Pruebas que corroboran la importancia de la higiene de las manos. Una atención limpia es una atención segura: http://www.who.int/gpsc/country_work/es/

336. OMS/WHO. Sus 5 momentos para la higiene de manos: file:///C:/Users/JR/AppData/Local/Microsoft/Windows/INetCache/IE/YRQI2FK9/gpsc_5_momentos_poster_es.pdf

338. OMS/WHO. ¿Cómo desinfectarse las manos?: file:///C:/Users/JR/AppData/Local/Microsoft/Windows/INetCache/IE/YRQI2FK9/gpsc_desinfectmanos_poster_es.pdf

340. OMS/WHO. SALVE VIDAS: limpieza de los manos. Campaña mundial anual de la OMS. 5 de mayo de 2016. ttp://www.who.int/gpsc/5may/es/

349. Ortiz H; Armendariz P; Kreisler E; Garcia-Granero E; Espin-Basany E; Roig JV; Martin A; Parajo A; Valero G; Martinez M; Biondo S. Influence of rescrubbing before laparotomy closure on abdominal wound infection after colorectal cancer surgery: results of a multicenter randomized clinical trial. Archives of Surgery 2012; 147:614-620.

~ 326 ~

356. Oshima T; Takesue Y; Ikeuchi H; Matsuoka H; Nakajima K; Uchino M; Tomita N; Sasaki M. Preoperative oral antibiotics and intravenous antimicrobial prophylaxis reduce the incidence of surgical site infections in patients with ulcerative colitis undergoing IPAA. Diseases of the Colon & Rectum 2013; 56:1149-1155.

358. Pastor C; Artinyan A; Varma MG; Kim E; Gibbs L; Garcia-Aguilar J. An increase in compliance with the Surgical Care Improvement Project measures does not prevent surgical site infection in colorectal surgery. Diseases of the Colon & Rectum 2010; 53:24-30.

359. Pastor C; Baek JH; Varma MG; Kim E; Indorf LA; Garcia-Aguilar J. Validation of the risk index category as a predictor of surgical site infection in elective colorectal surgery. Diseases of the Colon & Rectum 2010; 53:721-727.

362. Pellino G; Sciaudone G; Candillo G; De Fatico GS; Landino I; Della Corte A; Guerniero R; Benevento R; Santorielo A; Campitello F; Selvaggi F; Canonico S. Preventive NPWT over closed incisions in general surgery: does age matter?. International Journal Of Surgery 2014; 12(Suppl 2):S64-86.

380. Poon JT; Law WL; Wong IW; Ching PT; Wong LM; Fan JK; Lo OS. Impact of laparoscopic colorectal resection on surgical site infection. Annals of Surgery 2009; 249:77-81.

387. Ricciardi R; Roberts PL; Hall JF; Read TE; Pinchot SN; Schoetz DJ; Marcello PW. What is the effect of stoma construction on surgical site infection after colorectal surgery? Journal of Gastrointestinal Surgery 2014; 18:789-795.

392. Rovera F; Dionigi G; Boni L; Ferrari A; Bianchi V; Diurni M; Carcano G; Dionigi R. Mechanical bowel preparation for colorectal surgery. Surgical Infections 2006; 7(Suppl 2):S61-3.

403. Sadava EE; Kerman Cabo J; Carballo FH; Bun ME; Rotholtz NA. Incisional hernia after laparoscopic colorectal surgery. Is there any factor associated? Surgical Endoscopy 2014; 28:3421-3424.

413. Sato T; Takayama T; Fuji M; Song K; Matsuda M; Higaki T; Okada S. Systemic use of antibiotics does not prevent postoperative infection in elective colorectal surgery: a randomized controlled trial. Journal of Infection & Chemotherapy 2004; 24:313.

414. Schietroma M; Cecilia EM; Sista F; Carlei F; Pessia B; Amicucci G. High-concentration supplemental perioperative oxygen and surgical site infection following elective colorectal surgery for rectal cancer: a prospective, randomized, double-blind, controlled, single-site trial. American Journal of Surgery 2014; 208:719-726.

~ 329 ~

451. Takakura Y; Ohdan H. Inflammatory markers as predictors of surgical site infection after elective colorectal surgery: authors’ reply. Langenbecks Archives of Surgery 2014; 399:797-798.

452. Takesue Y; Takahashi Y; Ichiki K; Nakajima K; Tsuchida T; Uchino M; Keuchi H. Application of an electrolyzed strongly acidic aqueous solution before wound closure in colorectal surgery. Diseases of the Colon & Rectum 2011; 54:826-832.

457. Togioika B; Galvagno S; Sumida S; Murphy J; Ouanes JP; Wu C. The role of perioperative high inspired oxygen therapy in reducing surgical site infection: a meta-analysis. Anesthesia & Analgesia 2012; 114:334-342.

~ 331 ~
file://C:/Users/JR/AppData/Local/Microsoft/Windows/INetCache/E/YRQI2FK9/tema_1.pdf
473. Watanabe A; Kohnoe S; Sonoda H; Shirabe K; Fukuzawa K; Maekawa S; Matsuda H; Kitamura M; Matsuura Y; Yamanaka T; Kakeji Y; Tsujitani S; Maehara Y. Effect of intra-abdominal absorbable sutures on surgical site infection. Surgery Today 2012; 42:52-59.
file://C:/Users/JR/AppData/Local/Microsoft/Windows/INetCache/E/OZ1AYLE4/9789241501507_eng.pdf
484. Wick EC; Gibbs L; Indor LF; Varma MG; Garcia-Aguilar J. Implementation of quality measures to reduce surgical site infection in colorectal patients. Diseases of the Colon & Rectum 2008; 51:1004-1009.
485. Wick EC; Hirose K; Shore AD; Clark JM; Gearhart SL; Elfron J; Makary MA. Surgical site infections and cost in obese patients undergoing colorectal surgery. Archives of Surgery 2011; 146:1068-1072.
486. Wick EC; Hobson DB; Bennett JL; Demski R; Maragakis L; Gearhart SL; Elfron J; Berenholtz SM; Makary MA. Implementation of a surgical comprehensive unit-based safety program to reduce surgical site infections. Journal of the American College of Surgeons 2012; 215:193-200.

~ 332 ~

491. Yokoe DS; Khan Y; Olsen MA; Hooper DC; Greenbaum M; Vostok J; Lankiewicz J; Fraser VJ; Stevenson KB; Centers for Disease Control and Prevention Epicenters Program. Enhanced surgical site infection surveillance following hysterectomy, vascular, and colorectal surgery. Infection Control & Hospital Epidemiology 2012; 33:768-773.

493. Yoshimatsu K; Yokomizo H; Matsumoto A; Yano Y; Nakayama M; Okayama S; Shiozawa S; Shimakawa T; Katsube T; Naritaka Y. Liquid tissue adhesive, subcuticular suture and subcutaneous closed suction drain for wound closure as measures for wound infection in a colorectal cancer surgery with stoma creation. Hepato-Gastroenterology 2014; 61:363-366.

499. Bertani E; Chiappa A; Biffi R; Bianchi PP; Radice D; Branchi V; Spampatti S; Vetranio I; Andreoni B. Comparison of oral polyethylene glycol plus a large volume glycerine enema with a large volume glycerine enema alone in patients undergoing colorectal surgery for malignancy: a randomized clinical trial. Colorectal Disease 2011; 13:e327-334.

505. Sajid MS, Parampalli U, McFall MR. A meta-analysis comparing tacker mesh fixation with suture mesh fixation in laparoscopic incisional and ventral hernia repair. Hernia 2013; 17:159-166.

~ 333 ~

518. Centros piloto en la Región de Europa. Red de Unidades de Cuidados Intensivos (UCI), Italia. www.who.int/entity/gpsc/country_work/pilot_sites_euro/es/
8.- **ANEXOS**
Anexo 1.- Definiciones de las IN según localización.

CRITERIOS PARA DIAGNOSTICAR UNA INFECCIÓN DE LAS VÍAS URINARIAS

Las infecciones de las vías urinarias incluyen las infecciones sintomáticas y el resto de infecciones urinarias.

Infección sintomática de las vías urinarias
Debe cumplir alguno de los siguientes criterios:

- **Criterio 1:** el paciente tiene al menos uno de los siguientes, sin cualquier otra causa que los explique: fiebre (>38º C), micción imperiosa, polaquiuria, disuria o dolor a la palpación en zona suprapúbica y el urocultivo ha sido positivo (>100.000 colonias/ml) o dos microorganismos diferentes en orina como máximo.

- **Criterio 2:** el paciente tiene al menos dos de los siguientes: fiebre (>38º), imperiosidad miccional, polaquiuria, disuria o dolor a la palpación en zona suprapúbica y al menos uno de los siguientes:

 A) La tira reactiva es positiva, en orina, para la esterasa leucocítica y/o los nitratos.
 B) Piuria (10 leucocitos o más por ml, o 3 leucocitos o más por ml, al analizar con un objetivo de alto poder una muestra de orina no centrifugada).
 C) En una tinción Gram de orina no centrifugada se han visualizado microorganismos.
 D) En dos cultivos de orina obtenida por punción suprapúbica se han aislado más de 100 colonias por mililitro del mismo uropatógeno (bacterias Gram negativas o *S. saprophyticus*).
 E) En un paciente sometido a tratamiento antibiótico correcto, el aislamiento en un urocultivo de menos de cien mil colonias por ml de un único uropatógeno (bacterias Gram negativas o *S. Saprophyticus*).
 F) Existe un diagnóstico médico.
 G) El médico ha prescrito el tratamiento antibiótico adecuado.

- **Criterio 3:** en pacientes =12 meses de edad, al menos uno de los siguientes síntomas o signos: fiebre (>38º C) hipotermia (<37º C), apnea, bradicardia, disuria, letargo o vómitos y un urocultivo positivo (>100.000 colonias/ml) a no más de dos microorganismos diferentes.

- **Criterio 4:** en pacientes =1 año de edad, al menos uno de los siguientes síntomas o signos: fiebre (>38º C), hipotermia (>37º C), apnea, bradicardia, disuria, letargo o vómitos y al menos uno de los siguientes:

 A) La tira reactiva es positiva, en orina, para la esterasa leucocítica y/o nitratos.
 B) Piuria (>10 leucocitos/ml, o >=3 leucocitos/ml al analizar con un campo de gran aumento una muestra no centrifugada).
 C) Visualización de microorganismos en una tinción de Gram de orina no
centrifugada.

D) En dos cultivos de orina obtenida por punción suprapúbica se han aislado >100 colonias/ml del mismo uropatógeno (bacterias Gram negativas o S. Saprophyticus).

E) En un paciente sometido a tratamiento antibiótico adecuado, aislamiento en un urocultivo de <100.000/ml de un único uropatógeno (bacterias Gram negativas o S. Saprophyticus).

F) Existe un diagnóstico médico.

G) El médico ha prescrito el tratamiento antibiótico adecuado para una infección del tracto urinario.

Notas

- Un cultivo positivo de punta de catéter urinario no es un test de laboratorio aceptable para diagnosticar una infección del tracto urinario.
- Las muestras deben obtenerse de forma aséptica mediante la técnica adecuada (recogida limpia, sondaje vesical).
- En los niños, se puede obtener una muestra mediante sondaje vesical o punción suprapúbica; un cultivo positivo de una muestra de una bolsa colectora no es fiable y se debe confirmar mediante una muestra recogida de forma aséptica por cateterización vesical o punción suprapúbica.

Bacteriuria asintomática

Para su diagnóstico debe cumplir al menos una de los siguientes criterios:

- **Criterio 1**: el paciente ha estado sondado durante los 7 días previos al urocultivo y tiene un urocultivo positivo, o sea =105 UFC/ml, con no más de 2 especies distintas. Y el paciente no debe tener fiebre (>38º C), polaquiuria, urgencia miccional ni molestias suprapúbicas o disuria.

- **Criterio 2**: en pacientes que no han estado sondados durante los 7 días previos al primer urocultivo positivo. Y el paciente tiene al menos dos urocultivos positivos con =105 UFC/ml, aislándose repetidamente el mismo microorganismo, y no más de 2 especies distintas. Y el paciente no debe tener fiebre (>38ºC), polaquiuria, urgencia miccional ni molestias suprapúbicas o disuria.

Notas

- Un cultivo positivo de punta de catéter urinario no es un test de laboratorio aceptable para diagnosticar una infección del tracto urinario.
• Las muestras deben obtenerse de forma aséptica mediante la técnica adecuada (recogida técnica limpia o de segundo chorro o sondaje vesical).

Otras infecciones de las vías urinarias

Riñón, uréter, vejiga, uretra o tejidos de los espacios retroperitoneal o perinefrítico. Deben cumplir al menos uno de los siguientes criterios:

- Criterio 1: en el cultivo de un tejido o fluido (que no sea orina) de la zona afectada se ha aislado un microorganismo.
- Criterio 2: en una intervención quirúrgica o en un estudio anatomopatológico se ha observado un signo claro de infección (un absceso, por ejemplo).
- Criterio 3: el paciente tiene al menos dos de los siguientes: fiebre (>38º C), dolor o hipersensibilidad en la zona afectada.

Y al menos uno de los siguientes:

A. Drenaje purulento de la zona afectada.
B. Aislamiento de un microorganismo en el hemocultivo, compatible con el sitio donde se sospecha la infección.
C. Evidencia radiológica de infección, por ejemplo signos de infección en una ecografía, tomografía computarizada (TAC), resonancia magnética nuclear (RMN) o gammagrafía (galio, tecnecio).
D. Existe un diagnóstico médico de infección de riñón, uréter, vejiga o tejidos que rodean los espacios retroperitoneal o perinefrítico.
E. El médico ha prescrito el tratamiento antibiótico adecuado para una infección de riñón, uréter, vejiga o tejidos que rodean los espacios retroperitoneal o perinefrítico.

- Criterio 4: paciente ≤1 año de edad con al menos uno de los siguientes síntomas signos sin ninguna otra causa que los explique: fiebre (>38º C), hipotermia (<37º C), apnea, bradicardia, letargo o vómitos

Y al menos uno de los siguientes:

- Drenaje purulento de la zona afectada.
- Aislamiento de un microorganismo en el hemocultivo, compatible con el sitio donde se sospecha la infección.
- Evidencia radiológica de infección, por ejemplo signos de infección en una ecografía, tomografía computarizada (TAC), resonancia magnética nuclear (RMN) o gammagrafía (galio, tecnecio).
- Existe un diagnóstico médico de infección de riñón, uréter, vejiga o tejidos que rodean los espacios retroperitoneal o perinefrítico.
- El médico ha prescrito el tratamiento antibiótico adecuado para una infección de riñón, uréter, vejiga o tejidos que rodean los espacios retroperitoneal o perinefrítico.

CRITERIOS PARA DIAGNOSTICAR UNA INFECCIÓN DE LA HERIDA QUIRÚRGICA

Las infecciones de la herida quirúrgica se dividen en dos tipos: las incisionales y las de órganos o espacios. A su vez, las incisionales se subdividen en dos tipos, la superficial y la profunda.

Las infecciones incisionales superficiales son aquellas que afectan sólo la piel y el tejido celular subcutáneo, mientras que las profundas afectan los tejidos blandos profundos de la incisión. La infección
de los órganos o espacios, abiertos o manipulados durante el acto operatorio, afecta a cualquier parte de la anatomía (órganos o espacios) diferente de la incisión.

Infección superficial de la incisión

Excepto tras by pass aortocoronario con doble incisión en tórax y pierna (CBGB); si la infección se da en el pecho usar SKNC (Skin-Chest), y si es en la pierna (donante del injerto), usar SKNL (Skin-Leg).

Debe cumplir los siguientes criterios:

- Se produce durante los 30 días posteriores a la cirugía.
- Afecta sólo piel y tejido celular subcutáneo en el lugar de la incisión.
- El paciente debe tener al menos uno de los siguientes:
 A) Drenaje purulento de la incisión superficial.
 B) Aislamiento de un microorganismo en el cultivo de un líquido o de un tejido procedente de la incisión superficial obtenido de forma aséptica).
 C) Al menos uno de los siguientes signos o síntomas de infección: dolor o hipersensibilidad al tacto o a la presión, tumefacción localizada, eritema o calor y una incisión superficial abierta deliberadamente por el cirujano, a menos que el cultivo de la incisión sea negativo.
 D) Diagnóstico médico de infección superficial de la incisión.

Notas

- Los siguientes casos no se consideran infecciones superficiales: absceso mínimo del punto de sutura, quemadura infectada, infección incisional que se extiende hacia la fascia y paredes musculares. Las heridas punzantes se clasifican como infección de piel o tejidos blandos dependiendo de su profundidad.
- La circuncisión y la episiotomía no son procedimientos quirúrgicos del NNISS, por lo que su infección no se considera infección quirúrgica.
- Las infecciones que afectan tejidos superficiales y profundos se clasifican como incisionales profundos.
- Las muestras para cultivo de incisiones superficiales se clasifican como drenaje incisional.

Infección incisional profunda (SSI-ST)

Debe cumplir los siguientes criterios:

- Se produce durante los 30 días posteriores a la cirugía si no se ha colocado ningún implante (cualquier cuerpo extraño de origen no humano como válvula cardíaca, prótesis vascular, de cadera, o corazón artificial, que se implanta de forma permanente), o dentro del primer año si se había colocado alguno, y la infección está relacionada con el procedimiento quirúrgico.
- La infección afecta los tejidos blandos profundos de la incisión (fascia y paredes musculares).
El paciente tiene al menos uno de los siguientes:

A) Drenaje purulento de la zona profunda de la incisión pero no de los órganos o espacios.

B) Se produce dehiscencia espontánea de la incisión profunda o la abre el cirujano deliberadamente cuando el paciente tiene al menos uno de los siguientes signos o síntomas, a no ser que el cultivo sea negativo: fiebre (>38º) o dolor localizado o hiperesensibilidad al tacto o a la presión.

C) Durante una reintervención o por inspección directa o por estudio histopatológico o radiológico, se halla un absceso u otra evidencia de infección que afecta los tejidos profundos de la incisión.

D) Diagnóstico médico de infección profunda de la incisión.

Infección de órgano o de espacio (SSI-órgano/espacio específico)
Afecta a cualquier parte de la anatomía, distinta de la incisión en la piel, la fascia o las capas musculares que se abren o manipulan durante el procedimiento operatorio. En el cuadro adjunto se listan las principales localizaciones específicas de infección de órgano o de espacio. Por ejemplo, la appendicectomía con absceso subdiafragmático subsecuente sería un caso típico de infección de órgano/espacio intraabdominal.

Debe cumplir los siguientes criterios:

- Se produce en los 30 días posteriores a la intervención si no se han colocado implantes, o en el curso del año siguiente a la intervención si se han colocado, y la infección está relacionada con el procedimiento quirúrgico.

- Además, la infección afecta cualquier parte de la anatomía, abierta o manipulada durante el acto operatorio, distinta de la incisión.

- El paciente tiene además uno de los siguientes:

 A) A través de alguno de los drenajes colocados en una herida punzante en un órgano/espacio sale material purulento.

 B) Aislamiento de microorganismos en muestras obtenidas de forma aséptica a partir de fluidos o tejidos procedentes de órganos o espacios.

 C) Durante una reintervención o por inspección directa, o por estudio histopatológico o radiológico, se halla un absceso u otra evidencia de infección que afecta a algún órgano o espacio.

 D) Diagnóstico médico de infección quirúrgica de órgano/espacio.

Localizaciones específicas de la infección de órgano/espacio

- Infección arterial o venosa (VASC).
Absceso mamario o mastitis (BRST).

Espacio discal (DISC).

Oído, mastoides (EAR).

Endometritis (EMET).

Endocarditis (ENDO).

Ojo. excepto conjuntivitis (EYE).

Tracto gastrointestinal (GIT).

Intraabdominal, no especificada en otro lugar (IAB).

Intracraneal, absceso cerebral o de la duramadre (IC).

Articular (JNT).

Mediastinitis (MED).

Meningitis o ventriculitis (MEN).

Miocarditis o pericarditis (CARD).

Cavidad oral (boca, lengua o encías) (ORAL).

Osteomielitis (BONE).

Otras infecciones del tracto respiratorio inferior (LUNG).

Otras infecciones del tracto urinario (OUTI).

Otras infecciones del aparato reproductor masculino o femenino (OREP).

Sinusitis (SINU).

Tracto respiratorio superior (UR).

Absceso espinal sin meningitis (SA).

Faringitis (UR).
■ Vaginal (VCUF).

Infecciones que afectan a más de un sitio específico
Las infecciones que afectan tanto la incisión superficial como la profunda se clasificarán como infección profunda de la incisión.

Ocasionalmente, una infección de órgano/espacio drena a través de la incisión. En general estas infecciones se consideran como complicaciones de la incisión, por lo que se clasificarán como infecciones incisionales profundas.

CRITERIOS PARA DIAGNOSTICAR ENFERMEDADES DE VÍAS RESPIRATORIAS

Neumonía (PNEU-PNEU)
La neumonía se define independientemente del resto de infecciones de las vías respiratorias bajas. Para diagnosticarla se han incluido diversas combinaciones de signos clínicos, radiológicos y de laboratorio. Normalmente, los cultivos de las secreciones respiratorias expectoradas por el paciente no son útiles para el diagnóstico pero sí para la identificación del agente y de su perfil de resistencias. El diagnóstico efectuado a partir de una serie de radiografías es más fiable que el obtenido con una única radiografía.

Los algoritmos empleados para su diagnóstico se incluyen en el Anexo I.

CRITERIOS PARA DIAGNOSTICAR UNA BACTERIEMIA

Bacteriemia primaria confirmada por el laboratorio
Debe cumplir al menos uno de los siguientes criterios:

■ Criterio 1: en el hemocultivo se ha aislado un microorganismo sin relación con cualquier otro foco infeccioso.

■ Criterio 2: el paciente tiene al menos uno de los siguientes síntomas o signos: fiebre (>38° C), escalofríos o hipotensión.

Y al menos uno de los siguientes:

- En dos hemocultivos que no se han practicado simultáneamente se ha aislado el mismo contaminante habitual de la piel (p. Ej. _diphteroides_, _Bacillus sp._, _Propionibacterium sp._, estafilococos coagulasa negativo o micrococos) sin relación con ningún otro foco infeccioso.

- En un hemocultivo practicado a un paciente portador de una cánula intravascular se ha aislado un contaminante habitual de la piel (p. Ej. _diphteroides_, _Bacillus sp._, _Propionibacterium sp._, estafilococos coagulasa negativo o micrococos) y el médico ha prescrito el tratamiento antibiótico pertinente.

- Resultado positivo de una prueba para la detección de antígenos en sangre (p. Ej. _Haemophilus influenzae_, _Streptococcus pneumoniae_, _Neisseria meningitidis_ o _Streptococcus_ grupo B) [7].

Y los signos y síntomas y resultados de laboratorio positivos no se relacionan con otro foco infeccioso.
Criterio 3: paciente =12 meses de edad con al menos uno de los siguientes signos o síntomas: fiebre (>38º C), hipotermia (<37º C), apnea, bradicardia.

Y al menos uno de los siguientes:

- En dos hemocultivos que no se han practicado simultáneamente se ha aislado el mismo contaminante habitual de la piel (p. Ej. diphteroides, Bacillus sp., Propionibacterium sp., estafilococos coagulasa negativo o micrococos)
- En al menos un hemocultivo practicado a un paciente que es portador de una cánula intravascular se ha aislado un contaminante habitual de la piel (p. Ej. diphteroides, Bacillus sp., Propionibacterium sp., estafilococos coagulasa negativo o micrococos) y el médico ha prescrito el tratamiento antibiótico correcto.
- Resultado positivo de una prueba para la detección de antígenos en sangre (p. Ej. H. influenzae, S. pneumoniae, N. meningitidis, Streptococcus del grupo B).

Y los signos y síntomas y resultados de laboratorio positivos no se relacionan con otro foco infeccioso.

Notas

- Las pseudobacteriemias no son infecciones nosocomiales.
- Considerar cualquier aislamiento de microorganismos en un hemocultivo como bacteriemia primaria si no existe otro foco evidente de infección.
- Considere las flebitis purulentas con un cultivo semicuantitativo de la punta del catéter positivo pero sin hemocultivo o con hemocultivo negativo como infección vascular.

Sepsis clínica

Debe cumplir al menos uno de los siguientes criterios:

- Criterio 1: al menos uno de los siguientes síntomas y signos si no hay ninguna otra causa que los explique: fiebre (>38º C), hipotensión (presión sistólica igual o menor a 90 mm Hg) u oliguria (<20 ml/h).

Y no se ha practicado ningún hemocultivo o éstos han sido negativos y el resultado de las pruebas para la detección de antígenos en sangre han sido negativos; y no se ha descubierto ningún otro foco infeccioso, y el médico ha prescrito el tratamiento antibiótico adecuado para una sepsis.

- Criterio 2: paciente =12 meses, con al menos uno de los siguientes signos o síntomas si no se encuentra ninguna otra causa que los explique: fiebre (>38º C), hipotermia (<37º C), apnea o bradicardia; y no se ha practicado ningún hemocultivo o no se ha aislado ningún microorganismo y el resultado de las pruebas para la detección de antígenos en sangre han sido negativos.

No se ha descubierto ningún otro foco infeccioso. El médico ha prescrito el tratamiento antibiótico adecuado para una sepsis.

CRITERIOS PARA DIAGNOSTICAR UNA INFECCIÓN OSTEARTICULAR

Las infecciones osteoarticulares incluyen las osteomielitis, las infecciones articulares o de la cápsula y las infecciones del disco intervertebral.
Osteomielitis
Debe cumplir al menos uno de los siguientes criterios:

- **Criterio 1**: en el cultivo de una biopsia ósea se ha aislado un microorganismo.
- **Criterio 2**: por observación directa durante una cirugía o estudio histopatológico se han observado signos claros de osteomielitis.
- **Criterio 3**: al menos dos de los siguientes signos o síntomas sin ninguna otra causa que los explique: fiebre (>38º C), tumefacción, hipersensibilidad, calor local o salida de exudado de la zona sospechosa de infección.

Y al menos uno de los siguientes:

- En un hemocultivo se ha aislado un microorganismo.
- Resultado positivo de una prueba para la detección de antígenos en la sangre (p. Ej. H. influenzae, S. pneumoniae)
- Evidencia radiográfica de infección, por ejemplo en rayos X, TAC, RMN, gammagrafía (galio, tecnecio, etc.).

Infección articular o de la bursa
Debe cumplir al menos uno de los siguientes criterios:

- **Criterio 1**: en un cultivo de líquido articular o de una biopsia sinovial se ha aislado un microorganismo.
- **Criterio 2**: en una intervención o estudio anatomopatológico se han observado signos evidentes de infección de la articulación o de la bursa.
- **Criterio 3**: el paciente tiene al menos dos de los siguientes signos o síntomas sin otra causa que los explique: dolor articular, hipersensibilidad, tumefacción, calor, signos de derrame o limitación de la movilidad

Y al menos uno de los siguientes:

- En una tinción de Gram del líquido articular se observan microorganismos y leucocitos.
- Resultado positivo de una prueba para la detección de antígenos en sangre, orina o líquido articular.
- Las características bioquímicas y el recuento leucocitario del líquido articular son compatibles con una infección y no se explican por un enfermedad reumática subyacente.
- Evidencia radiológica de infección por ejemplo en rayos X, TAC, RMN, gammagrafía (galio, tecnecio, etc.).

Infección del disco intervertebral
Debe cumplir al menos uno de los siguientes criterios:

- **Criterio 1**: en el cultivo de una muestra de tejido del espacio intervertebral obtenida durante una
intervención quirúrgica o por aspiración con aguja se ha aislado un microorganismo.

- Criterio 2: en una intervención o estudio anatomopatológico se han observado signos claros de infección del espacio intervertebral.

- Criterio 3: fiebre (>38°C) sin ninguna otra causa que lo explique o dolor en el disco intervertebral afectado.

Y evidencia radiológica de infección por ejemplo en rayos X, TAC, RMN, gammagrafía (galio, tecnecio, etc.).

- Criterio 4: Fiebre (>38°C) sin ninguna otra causa que lo explique y dolor en el disco intervertebral afectado.

CRITERIOS PARA DIAGNOSTICAR UNA INFECCIÓN DEL SISTEMA NERVIOSO CENTRAL

Las infecciones del sistema nervioso central incluyen las infecciones intracraneales, las meningitis o ventriculitis y los abscesos espinales sin meningitis.

Infección intracraneal
(Absceso cerebral, subdural o epidural y la encefalitis). Debe cumplir al menos uno de los siguientes criterios:

- Criterio 1: en el cultivo de una muestra de tejido cerebral o de duramadre se ha aislado un microorganismo.

- Criterio 2: en una intervención o estudio anatomopatológico se ha observado un absceso o signos evidentes de infección intracraneal.

- Criterio 3: el paciente tiene al menos dos de los siguientes síntomas o signos sin otra causa que los explique: cefalea, vértigos, fiebre (>38°C), signos de focalización neurológica, cambios del nivel de conciencia o síndrome confusional.

Y el médico ha prescrito el tratamiento antibiótico adecuado, si se había diagnosticado antes de la muerte.

Y al menos uno de los siguientes:
En el examen microscópico de una muestra de tejido cerebral o de un absceso cerebral obtenido por aspiración con aguja o de una biopsia practicada en una intervención quirúrgica o en la autopsia se ha observado un microorganismo.

Resultado positivo de una prueba para la detección de antígenos en sangre u orina.

Evidencia radiológica de infección, por ejemplo hallazgos anormales en la ecografía, TAC, MRN, gammagrafía cerebral o arteriografía.

Un único título de anticuerpos específicos es diagnóstico (lgM) o un aumento de cuatro veces el valor inicial en sueros sucesivos para el patógeno (lgG).

Criterio 4: paciente ≥12 meses de edad con al menos dos de los siguientes síntomas o signos sin ninguna otra causa que los explique: fiebre (>38°C), hipotermia (<37°C), apnea, bradicardia, signos de focalización neurológica, cambios en el nivel de consciencia.

Y el médico ha prescrito el tratamiento antibiótico adecuado, si se había diagnosticado antes de la muerte.

Y al menos uno de los siguientes:

- En el examen microscópico de una muestra de tejido cerebral o de un absceso cerebral obtenido por aspiración con aguja o de una biopsia practicada en una intervención quirúrgica o en la autopsia se ha observado un microorganismo.
- Resultado positivo de una prueba para la detección de antígenos en sangre u orina.
- Evidencia radiológica de infección, por ejemplo hallazgos anormales en la ecografía, TAC, MRN, gammagrafía cerebral o arteriografía.
- Un único título de anticuerpos específicos es diagnóstico (lgM) o un aumento de cuatro veces el valor inicial en sueros sucesivos para el patógeno (lgG).

Nota

- Si se dan simultáneamente meningitis y absceso cerebral, considerarlo como infección intracraneal.

Meningitis o ventriculitis

Debe cumplir al menos uno de los siguientes criterios:

- Criterio 1: en el cultivo del líquido cefalorraquídeo (LCR) se ha aislado un microorganismo.
- Criterio 2: el paciente tiene al menos uno de los siguientes síntomas o signos si no hay ninguna otra causa que los explique: fiebre (>38°C), cefalea, rigidez de nuca, signos meníngeos, signos de irritación o déficit de un par craneal o irritabilidad.

Y el médico ha prescrito el tratamiento antibiótico adecuado si se había diagnosticado antes de la muerte.

Y al menos uno de los siguientes:

- Aumento del número de leucocitos en el LCR, de la proteinorragia y/o descenso de la glucorragia.
- En la tinción de Gram del LCR se han observado microorganismos.
- En un hemocultivo se ha aislado un microorganismo.
- Resultado positivo de una prueba para la detección de antígenos en sangre, orina o LCR.
Un único título de anticuerpos específicos es diagnóstico (lgM) o un aumento de cuatro veces el valor inicial en sueros sucesivos para el patógeno (lgG).

Criterio 3: paciente =12 meses de edad con al menos uno de los siguientes síntomas o signos sin ninguna otra causa que los explique: fiebre (>38º C), hipotermia (<37º C), apnea, bradicardia, rigidiz de nuca, signos meníngeos, signos de irritación o déficit de un par craneal o irritabilidad.

Y el médico ha prescrito el tratamiento antibiótico adecuado, si se había diagnosticado antes de la muerte.

Y al menos uno de los siguientes:

•Aumento del número de leucocitos en el LCR, de la proteinorraquia y/o descenso de la glucorraquia.
•En la tinción de Gram del LCR se han observado microorganismos.
•En un hemocultivo se ha aislado un microorganismo.
•Resultado positivo de una prueba para la detección de antígenos en sangre, orina o LCR.
•Un único título de anticuerpos específicos es diagnóstico (lgM) o un aumento de cuatro veces el valor inicial en sueros sucesivos para el patógeno (lgG).

Notas

•Una meningitis en un recién nacido se considera siempre nosocomial a no ser que exista una evidencia clara que indique que fue adquirida de forma transplacentaria.
•Considerar una infección del LCR con un shunt como meningitis asociada a la intervención quirúrgica si ocurre menos de un año después de la intervención; si se da después de un año tras su realización considerarla solamente como meningitis.
•Considerar las meningoencefalitis como meningitis.
•Considerar los abscesos espinales con meningitis como meningitis.

Absceso espinal sin meningitis

(Absceso epidural o subdural medular que no afecte al líquido cefalorraquideo ni a las estructuras óseas de alrededor). Debe cumplir al menos uno de los siguientes criterios:

Criterio 1: en el cultivo de un absceso localizado en el espacio subdural o epidural se ha aislado un microorganismo.

Criterio 2: en una intervención quirúrgica, una autopsia o en un estudio anatomopatológico se ha observado un absceso epidural o subdural intraraquídeo.

Criterio 3: el paciente tiene al menos uno de los siguientes síntomas o signos sin otra causa que los explique: fiebre (>38º C), dorsalgias, tensión localizada, radiculitis, paraparesia o paraplejia.

Y el médico ha prescrito el tratamiento antibiótico adecuado, si se había diagnosticado antes de la muerte.

Y al menos uno de los siguientes:

•En un hemocultivo se ha aislado un microorganismo.
•Evidencia radiológica de un absceso espinal por ejemplo hallazgos anormales en la mielografía, ecografía, TAC, MRN u otras pruebas (galio, tecnecio, etc.)
CRITERIOS PARA DIAGNOSTICAR UNA INFECCIÓN DEL SISTEMA CARDIOVASCULAR

Las infecciones del sistema cardiovascular incluyen las arteritis, las flebitis, las endocarditis, las miocarditis o pericarditis y las mediastinitis. Las mediastinitis se incluyen en este grupo porque es más frecuente observarlas después de una intervención cardíaca.

Flebitis o arteritis
Debe cumplir al menos uno de los siguientes criterios:

- **Criterio 1:** en el cultivo de una biopsia arterial o venosa obtenida durante intervención quirúrgica se ha aislado un microorganismo y los hemocultivos han sido negativos o no se han practicado.

- **Criterio 2:** durante una cirugía o en el estudio anatomopatológico se han observado signos de infección arterial o venosa.

- **Criterio 3:** el paciente tiene al menos uno de los siguientes síntomas o signos sin ninguna otra causa que los explique: fiebre (>38º C), dolor, eritema o calor en la zona vascular afectada.

Y en el cultivo semicuantitativo de punta del catéter intravascular se han aislado más de 15 colonias.

Y los hemocultivos han sido negativos o no se han practicado.

- **Criterio 4:** supuración de la zona vascular afectada y los hemocultivos han sido negativos o no se han practicado.

- **Criterio 5:** paciente =12 meses con al menos uno de los siguientes síntomas o signos sin ninguna otra causa que los explique: fiebre (>38º C), hipotermia (<37º C), apnea, bradicardia, letargo o dolor, eritema o calor en la zona vascular afectada.

Y en el cultivo semicuantitativo del extremo intravascular de la cánula se han aislado más de 15 colonias.

Y los hemocultivos han sido negativos o no se han practicado.

Nota

- Una infección de un injerto arteriovenoso, shunt, fistula o sitio de canulación intravascular con hemocultivos negativos se considera CVS-VASC. Las infecciones intravasculares con hemocultivos positivos se consideran BSI-LCBI.

Endocarditis de una válvula natural o protésica
Debe cumplir al menos uno de los siguientes criterios:
Criterio 1: en el cultivo de la válvula o de la vegetación se ha aislado un microorganismo.

Criterio 2: el paciente tiene al menos dos de los siguientes síntomas o signos sin otra causa que los explique: fiebre (>38° C), aparición de un soplo o cambio del que ya existía, episodio embólico, manifestaciones cutáneas (p. Ej. petequias, hemorragias subungueales en astilla, nódulos subcutáneos dolorosos), insuficiencia cardíaca congestiva o anomalías de la conducción cardíaca.

Y el médico ha prescrito el tratamiento antibiótico adecuado (si se había diagnosticado antes de la muerte).

Y al menos uno de los siguientes:

- Se ha aislado el mismo microorganismo en dos hemocultivos.
- Las tinciones de Gram de la válvula han sido negativos o no se han practicado.
- En una intervención quirúrgica o en la autopsia se ha observado una vegetación valvular.
- Resultado positivo de una prueba para la detección de antígenos en sangre u orina (ej. H. influenzae, S. pneumoniae, N. meningitidis o Streptococcus del grupo B).
- Evidencia de una nueva vegetación en el ecocardiograma.

Criterio 3: paciente =12 meses de edad con dos o más de los siguientes síntomas o signos sin ninguna otra causa que los explique: fiebre (>38° C), hipotermia (<37° C), apnea, bradicardia, aparición de un soplo o cambio de las características del que ya existía, episodio embólico, manifestaciones cutáneas (p. Ej. petequias, hemorragias subungueales en astilla, nódulos subcutáneos dolorosos), insuficiencia cardíaca congestiva o anomalías de la conducción cardíaca.

Y el médico ha prescrito el tratamiento antibiótico adecuado (si se había diagnosticado antes de la muerte)

Y al menos uno de los siguientes:

- Se ha aislado el mismo microorganismo en dos o más hemocultivos.
- Se observan microorganismos en la tinción de Gram cuando los cultivos han sido negativos o no se han practicado.
- En una intervención quirúrgica o en la autopsia se ha observado una vegetación valvular.
- Evidencia de una nueva vegetación en el ecocardiograma.

Miocarditis o pericarditis

Debe cumplir al menos uno de los siguientes criterios:

Criterio 1: en el cultivo de una muestra de tejido o líquido pericárdico obtenida en una intervención quirúrgica o por aspiración con aguja se ha aislado un microorganismo.

Criterio 2: dos de los siguientes síntomas o signos sin otra causa que los explique: fiebre (>38° C), dolor torácico, pulso paradójico o cardiomegalia.
Y al menos uno de los siguientes:

- Anomalías en el electrocardiograma compatibles con una miocarditis o pericarditis.
- Resultado positivo de una prueba para la detección de antígenos en sangre (p. Ej. H. influenzae, S. pneumoniae)
- En un estudio histológico se han observado signos de miocarditis o de pericarditis.
- Cuadriplicación del título de anticuerpos específicos de tipo con o sin aislamiento de un virus en faringe o heces.
- Signos de derrame pericárdico en un ecocardiograma, TAC, RMN o angiografía.

Criterio 3: paciente =12 meses de edad con dos o más de los siguientes síntomas o signos sin ninguna otra causa que los explique: fiebre (>38º C), hipotermia (<37º C), apnea, bradicardia, pulso paradójico o cardiomegalia. Y al menos uno de los siguientes:

- Anomalías en el electrocardiograma compatibles con una miocarditis o pericarditis.
- Resultado positivo de una prueba para la detección de antígenos en sangre (p. Ej. H. influenzae, S. pneumoniae)
- En un estudio histológico del tejido cardíaco se han observado signos de miocarditis o de pericarditis.
- Cuadriplicación del título de anticuerpos específicos de tipo con o sin aislamiento de un virus en faringe o heces.
- Signos de derrame pericárdico en un ecocardiograma, resonancia magnética nuclear, angiografía u otra evidencia radiológica de infección.

Notas

- La mayoría de las pericarditis tras una intervención quirúrgica o un infarto agudo de miocardio no son infecciosas.

Mediastinitis

Debe cumplir al menos uno los siguientes criterios:

Criterio 1: en el cultivo de una muestra de tejido o líquido mediastínico obtenida en una intervención quirúrgica o por aspiración con aguja se ha aislado un microorganismo.

Criterio 2: evidencia de mediastinitis en una intervención quirúrgica o en el estudio anatomo-patológico.

Criterio 3: el paciente tiene al menos uno de los siguientes síntomas o signos sin ninguna otra causa que los explique: fiebre (>38º C), dolor torácico o inestabilidad esternal.

Y al menos uno de los siguientes:

- Drenaje purulento de la zona mediastínica.
- En un hemocultivo o en un cultivo de un drenaje del área mediastínica se ha aislado un microorganismo.
- Ensamblamiento del mediastino en la exploración radiológica.

Criterio 4: paciente =12 meses de edad con al menos uno de los siguientes síntomas o signos sin ninguna otra causa que los explique: fiebre (>38º C), hipotermia (<37º C), apnea, bradicardia, o inestabilidad esternal.
Y cualquiera de los siguientes:

- Drenaje purulento de la zona mediastínica.
- En un hemocultivo o en un cultivo de un exudado del área mediastínica se ha aislado un microorganismo.
- Ensanchamiento del mediastino en la exploración radiológica.

CRITERIOS PARA DIAGNOSTICAR UNA INFECCIÓN OCULAR, DEL OÍDO, NARIZ, FARINGE O BOCA

Las infecciones oculares incluyen las conjuntivitis y el resto de infecciones oculares. Las infecciones del oído incluyen las otitis externas, medias e internas y las mastoiditis. Las infecciones nasales, faríngeas y bucales incluyen la sinusitis, las infecciones de vías respiratorias altas y las de cavidad oral.

Conjuntivitis

Debe cumplir al menos uno de los siguientes criterios:

- **Criterio 1:** en el cultivo de un exudado purulento obtenido de la conjuntiva o de órganos accesorios como el párpado, la córnea, las glándulas de Meibomio o los lacrimales, se ha aislado un microorganismo.

- **Criterio 2:** dolor o enrojecimiento conjuntival o periocular

Y al menos uno de los siguientes:

- En la tinción de Gram del exudado se han observado leucocitos y microorganismos.
- Un exudado purulento.
- Resultado positivo de una prueba para la detección de antígenos en un exudado o raspado conjuntival (p. Ej. ELISA o inmunofluorescencia para Chlamydia trachomatis, virus herpes simple, adenovirus).
- En el examen microscópico de un exudado o frotis conjuntival se han observado células multinucleadas.
- Resultado positivo de un cultivo para virus del exudado conjuntival.
- Un único título de anticuerpos específicos es diagnóstico (lgM) o un aumento de cuatro veces el valor inicial en sueros sucesivos para el patógeno (lgG).

Notas

- Cualquier otra infección ocular se considera infección ocular no conjuntival.
- No considerar nosocomiales las conjuntivitis químicas por nitrato de plata.
- No considerar las conjuntivitis que ocurren como parte de una enfermedad viral diseminada (ej. sarampión, varicela).

Infecciones oculares distintas de la conjuntivitis

Deben cumplir al menos uno de los siguientes criterios:

- **Criterio 1:** en el cultivo de cámara anterior o posterior o de humor vítreo se ha aislado un microorganismo.

- **Criterio 2:** el paciente tiene al menos dos de los siguientes síntomas o signos sin otra causa que
los explique: dolor ocular, dificultad para ver o hipopión

• Y al menos uno de los siguientes:
• Existe un diagnóstico médico de infección ocular
• Resultado positivo de una prueba para detección de antígenos en sangre (p. Ej. H. influenzae, S. pneumoniae).
• En un hemocultivo se ha aislado un microorganismo.

Oído, mastoides

Otitis externa
Debe cumplir al menos uno de los siguientes criterios:

■ Criterio 1: en un cultivo del drenaje purulento del conducto auditivo externo se ha aislado un patógeno.

■ Criterio 2: el paciente tiene al menos uno de los siguientes síntomas o signos sin otra causa que los explique: fiebre (>38º C), dolor, eritema o supuración del canal auditivo y en la tinción de Gram del drenaje purulento se han observado microorganismos.

Otitis media
Debe cumplir al menos uno de los siguientes criterios:

■ Criterio 1: en un cultivo de contenido del oído medio obtenido por timpanocentesis o cirugía se ha aislado un patógeno.

■ Criterio 2: dos de los siguientes síntomas o signos sin otra causa que los explique: fiebre (>38º C), dolor a nivel del tímpano, inflamación, retracción o disminución de la movilidad de la membrana timpánica o presencia de líquido detrás de esta membrana.

Otitis interna
Debe cumplir al menos uno de los siguientes criterios:

■ Criterio 1: en un cultivo de contenido del oído interno obtenido en una intervención quirúrgica se ha aislado un patógeno.

■ Criterio 2: existe un diagnóstico médico de infección del oído interno

Mastoiditis
Debe cumplir al menos uno de los siguientes criterios:

■ Criterio 1: en un cultivo del drenaje purulento de la mastoides se ha aislado un patógeno.

■ Criterio 2: dos de los siguientes síntomas o signos sin otra causa que los explique: fiebre (>38º C), dolor espontáneo o a la palpación, eritema, cefalea o parálisis facial

~ 352 ~
Y al menos uno de los siguientes:

- En la tinción de Gram de material purulento procedente del mastoides se han observado patógenos.
- Resultado positivo de una prueba para la detección de antígenos en sangre.

Infección de cavidad oral
Boca, lengua o encías. Debe cumplir al menos uno de los siguientes criterios:

- **Criterio 1:** en un cultivo de material purulento procedente de tejidos bucales se ha aislado un microorganismo.
- **Criterio 2:** en la exploración clínica, una intervención quirúrgica, o un estudio anatomopatológico se ha observado un absceso u otro signo claro de infección de la cavidad oral.
- **Criterio 3:** el paciente tiene al menos uno de los siguientes signos o síntomas sin otra causa que los explique: absceso, úlcera, parches elevados de color blanco sobre la mucosa inflamada o placas sobre mucosa oral.

Y al menos uno de los siguientes:

- En la tinción de Gram se han observado microorganismos.
- Resultado positivo de la tinción con hidróxido de potasio (KOH).
- En examen microscópico del frotis bucal se han observado células gigantes multinucleadas.
- Resultado positivo de una prueba para la detección de antígenos en las secreciones bucales.
- Un único título de anticuerpos específicos es diagnóstico (IgM) o un aumento de cuatro veces el valor inicial en sueros sucesivos para el patógeno (IgG).

Notas

- Considerar así las primoinfecciones nosocomiales por virus herpes simple. Las infecciones recurrentes no son nosocomiales.

Sinusitis
Debe cumplir al menos uno de los siguientes criterios:

- **Criterio 1:** en el cultivo del secreción purulenta de un seno se ha aislado un microorganismo.
- **Criterio 2:** el paciente tiene al menos uno de los siguientes síntomas o signos sin otra causa que los explique: fiebre (>38°C), dolor espontáneo o a la palpación del seno afectado, cefalea, exudado purulento u obstrucción nasal.

Y al menos uno de los siguientes:

- Prueba de la transiluminación positiva.
- Evidencia radiológica de infección.
Infección de vías respiratorias altas
Faringitis, laringitis o epiglotitis. Debe cumplir al menos uno de los siguientes criterios:

- Criterio 1: el paciente tiene al menos dos de los siguientes síntomas o signos sin ninguna otra causa que los explique: fiebre (>38º C), eritema de la faringe, dolor al tragar, tos, voz ronca o exudado purulento en la garganta.

Y al menos uno de los siguientes:
- En un cultivo de la zona afectada se ha aislado un microorganismo.
- En un hemocultivo se ha aislado un microorganismo.
- Resultado positivo de una prueba para la detección de antígenos en sangre o secreciones respiratorias.
- Un único título de anticuerpos específicos es diagnóstico (lgM) o un aumento de cuatro veces el valor inicial en sueros sucesivos para el patógeno (lgG).
- Existe un diagnóstico médico de infección respiratoria superior.

- Criterio 2: durante la exploración clínica, una intervención quirúrgica, o en un estudio anatomiopatológico se ha observado un absceso.

- Criterio 3: paciente =12 meses de edad, con al menos uno de los siguientes síntomas o signos sin ninguna otra causa que los explique: fiebre (>38º C), hipotermia <37º C), apnea, bradicardia, rinorrea o exudado purulento en la garganta.

Y al menos uno de los siguientes:
- En un cultivo de la zona afectada se ha aislado un microorganismo.
- En un hemocultivo se ha aislado un microorganismo.
- Resultado positivo de una prueba para la detección de antígenos en sangre o en las secreciones respiratorias.
- Un único título de anticuerpos específicos es diagnóstico (lgM) o un aumento de cuatro veces el valor inicial en sueros sucesivos para el patógeno (lgG).
- Existe un diagnóstico médico de infección respiratoria superior.

CRITERIOS PARA DIAGNOSTICAR UNA INFECCIÓN DEL APARATO DIGESTIVO
Las infecciones del aparato digestivo incluyen las gastroenteritis, las hepatitis, las enterocolitis necrotizantes, las infecciones del tracto gastrointestinal y aquellas infecciones intraabdominales que no se han definido en ningún otro apartado.

Gastroenteritis
Debe cumplir al menos uno de los siguientes criterios:

- Criterio 1: diarrea de aparición aguda (heces líquidas durante más de 12 horas), con o sin vómitos o fiebre (>38º C), si tras el diagnóstico diferencial con una etiología no infecciosa (p. Ej. exploración complementaria, un tratamiento, exacerbación de un trastorno crónico o estrés psicológico) ésta es poco probable.

- Criterio 2: dos de los siguientes signos o síntomas si no existe ninguna otra causa que los
explique: náuseas, vómitos, dolor abdominal o cefalea.

Y al menos uno de los siguientes:

- En un cultivo de heces o en un frotis rectal se ha aislado un microorganismo enteropatógeno.
- En un estudio al microscopio óptico o electrónico se ha observado un microorganismo enteropatógeno.
- Resultado positivo de una prueba para la detección de antígenos o anticuerpos en sangre o en heces de un microorganismo enteropatógeno.
- En un cultivo celular se han observado cambios citopáticos que permiten diagnosticar la presencia de un enteropatógeno (prueba con toxinas).
- El título de anticuerpos específicos IgM es diagnóstico o el de anticuerpos IgG se ha cuadruplicado en dos muestras sucesivas.

Infección del tracto gastrointestinal

Excluyendo la apendicitis y la gastroenteritis, debe cumplir al menos uno de los siguientes criterios:

- **Criterio 1:** durante una intervención quirúrgica, o en un estudio anatomopatológico se ha observado un absceso u otro signo evidente de infección.

- **Criterio 2:** el paciente tiene al menos dos de los siguientes síntomas o signos sin otra causa que los explique y son compatibles con una infección en la localización sospechada: fiebre (>38º C), náuseas, vómitos, dolor abdominal o tensión.

Y al menos uno de los siguientes:

- En el cultivo de un drenaje o de una muestra de tejido obtenida en una intervención quirúrgica, una endoscopia o de un tubo de drenaje colocado en una cirugía se ha aislado un microorganismo.
- En el estudio de un exudado o de una muestra de tejido obtenida en una intervención quirúrgica, una endoscopia o de un tubo de drenaje insertado durante una cirugía se han observado microorganismos en las tinciones de Gram o con KOH o células gigantes multinucleadas en el estudio microscópico.
- En un hemocultivo se ha aislado un microorganismo.
- Evidencia radiológica de infección.
- Hallazgos patológicos en la endoscopia (p. Ej. esofagitis o proctitis por Candida).

Hepatitis

Debe presentar dos de los siguientes síntomas o signos sin otra causa que los explique: fiebre (>38º C), anorexia, náuseas, vómitos, dolor abdominal, ictericia o antecedentes de transfusión durante los 3 meses previos.

Y al menos uno de los siguientes:

- Resultado positivo de las pruebas de antígeno o anticuerpo para virus de hepatitis A, hepatitis B, hepatitis C, o hepatitis delta.
- Pruebas de función hepática alteradas (p. Ej. elevación de las transaminasas, bilirrubina).
- En orina o en secreciones orofaríngeas se ha detectado Citomegalovirus.

Notas
Una hepatitis crónica por el virus de la hepatitis B debe cumplir los siguientes criterios:
• Cuadro de hepatitis de más de 6 meses de evolución.
• Positividad de los siguientes marcadores:
 • HbsAg + (positivo) y anti-HBc (que definan al sujeto como portador) o
 • Anti-HBc + con HbsAg – (negativo), con alteración de funcionalismo hepático debido a esta infección y no a otras causas.

Una hepatitis crónica por el virus de la hepatitis C debe cumplir los siguientes criterios:
• Cuadro de hepatitis de más de 6 meses de evolución.
• Positividad del marcador Anti-VHC +, con alteración de funcionalismo hepático debido a esta infección y no a otras causas.
• No considerar las hepatitis o ictericias no infecciosas (p. ej. déficit de α-1-antitripsina), las originadas por exposición a tóxicos (alcohol, acetaminofeno) ni las originadas por obstrucción biliar (colecistitis).

Infección intraabdominal
Incluye la de vesícula biliar, vías biliares, hígado (a excepción de las hepatitis virales), bazo, páncreas, peritoneo, espacio subfrénico o subdiafragmático, y la de aquellos tejidos o zonas intraabdominales que no se han definido en ningún otro apartado, deben cumplir al menos uno de los siguientes criterios:

■ Criterio 1: en el cultivo de un material purulento de un espacio intraabdominal, obtenido en una intervención quirúrgica o por aspiración con aguja se ha aislado un microorganismo.

■ Criterio 2: en una intervención quirúrgica o en un estudio anatomopatológico se ha observado un absceso u otro signo evidente de infección intraabdominal.

■ Criterio 3: el paciente tiene al menos dos de los siguientes síntomas o signos si no hay ninguna otra causa que los explique: fiebre (>38º C), náuseas, vómitos, dolor abdominal o ictericia.

Y al menos uno de los siguientes:

• En el cultivo del drenaje de un tubo colocado durante una cirugía (p. ej. sistema de drenaje por succión cerrado, tubo abierto o drenaje por tubo en T,) se ha aislado un microorganismo.

• En la tinción de Gram de un exudado o de una muestra de tejido obtenida en una intervención quirúrgica o por aspiración con aguja se han observado microorganismos.

• En un hemocultivo se ha aislado un microorganismo y hay evidencia radiológica de infección, por ejemplo, hallazgos anormales en la ecografía, TAC, RMN o gammagrafía (galio, tecnecio, etc.) o en los rayos X de abdomen.

Nota
• No considerar las pancreatitis (síndrome inflamatorio caracterizado por dolor abdominal, náuseas, vómitos y aumento de los niveles plasmáticos de enzimas pancreáticas, a no ser que se determine un origen infeccioso.

Enterocolitis necrotizante
El niño debe presentar al menos dos de los siguientes síntomas o signos sin otra causa que los explique: vómitos, distensión abdominal o residuos alimentarios; y presencia de sangre en heces (microscópica o franca) de forma persistente.

Y al menos uno de estos hallazgos radiográficos abdominales:
• Neumoperitoneo.
• Neumatosis intestinal.
• Asas de intestino delgado rígidas y sin cambios.

Infecciones de las vías respiratorias bajas
(Excluyendo la neumonía) incluyen infecciones como la bronquitis, la traqueobronquitis, la bronquiolitis, la traqueítis, el absceso pulmonar y el empiema.

Bronquitis, traqueobronquitis, bronquiolitis o traqueítis
En un paciente sin ninguna evidencia clínica ni radiológica de neumonía debe cumplir alguno de los siguientes criterios:

■ Criterio 1: en un paciente sin ningún signo clínico o radiográfico evidente de neumonía

Y al menos dos de los siguientes signos o síntomas sin otra causa que los explique: fiebre (>38º), tos, aparición o aumento de la producción de esputo, roncus, sibilantes.

Y al menos uno de los siguientes:

• En el cultivo de una muestra de esputo obtenida por aspiración traqueal o broncoscopia se ha aislado un microorganismo.
• Resultado positivo de una prueba para la detección de antígenos en las secreciones respiratorias.

■ Criterio 2: paciente ≥12 meses de edad sin ningún signo evidente clínico ni radiológico de neumonía.

Y debe presentar al menos dos de los siguientes: fiebre (>38º C), tos, aparición o aumento de la producción de secreciones respiratorias, roncus, sibilantes, distrés respiratorio, apnea, bradicardia.

Y al menos uno de los siguientes:

• En el cultivo de una muestra de secreciones respiratorias obtenidas por aspiración traqueal o broncoscopia se ha aislado un microorganismo.
• Resultado positivo de una prueba para la detección de antígenos en las secreciones respiratorias.

El título de anticuerpos específicos IgM es diagnóstico o el de anticuerpos IgG se ha cuadriplicado en dos muestras sucesivas.

Nota

• No considerar como infecciosa tal una bronquitis crónica en pacientes con enfermedad pulmonar a no ser que exista evidencia de infección aguda secundaria manifestada por un cambio en el microorganismo responsable.

Otras infecciones del tracto respiratorio inferior
Deben cumplir alguno de los siguientes criterios:

■ Criterio 1: en el frotis de una muestra de tejidos o líquidos pulmonares se ha observado un microorganismo o se ha aislado al hacer el cultivo.

■ Criterio 2: en una intervención quirúrgica o en un estudio anatomopatológico se ha observado un absceso pulmonar o un empiema.

~ 357 ~
Criterio 3: en la exploración radiológica del tórax se ha observado un signo de absceso.

Notas

- Considerar una infección del tracto respiratorio inferior con neumonía concurrente por el mismo microorganismo como neumonía.
- Considerar los abscesos pulmonares/empieza sin neumonía como otras infecciones del tracto respiratorio inferior.

CRITERIOS PARA DIAGNOSTICAR UNA INFECCIÓN DEL APARATO GENITAL

Se consideran infecciones del aparato genital a una serie de infecciones que se producen en las pacientes ginecológicas y en los varones con problemas urológicos. Estas infecciones incluyen la endometritis, las infecciones de la episiotomía o del fondo de saco vaginal, y el resto de infecciones del aparato genital masculino y femenino.

Endometritis

Debe cumplir al menos uno de los siguientes criterios:

- Criterio 1: en el cultivo del exudado o de una muestra de tejido obtenida durante una intervención quirúrgica, por aspiración con aguja o biopsia por raspado, se ha aislado un microorganismo.
- Criterio 2: al menos dos de los siguientes síntomas o signos sin ninguna otra causa que los explique: fiebre (>38º C), dolor abdominal, tensión uterina o drenaje purulento del útero.

Nota

- Considerar la endometritis posparto como infección nosocomial a menos que el líquido amniótico esté infectado en el momento del ingreso o que la paciente ingrese 48 horas después de la ruptura de membranas.

Infección de la episiotomía

Debe cumplir al menos uno de los siguientes criterios:

- Criterio 1: drenaje purulento de la episiotomía.
- Criterio 2: absceso en la episiotomía.

Nota

- No es un procedimiento quirúrgico del NNISS, no se considera nunca infección de la herida quirúrgica.
Infección del fondo de saco vaginal
Debe cumplir al menos uno de estos criterios:

- Criterio 1: drenaje purulento del fondo de saco vaginal tras una histerectomía.
- Criterio 2: absceso en el fondo de saco vaginal tras una histerectomía.
- Criterio 3: en el cultivo del exudado o de tejido del fondo de saco vaginal se ha aislado un patógeno tras una histerectomía.

Nota
• La mayoría de las infecciones del fondo de saco vaginal son postquirúrgicas (SSI). Considerar como REPR-VCUF sólo las que aparecen >30 días después de la histerectomía.

Otras infecciones del aparato genital masculino o femenino
Epidídimo, testículos, próstata, vagina, ovarios, útero o cualquier otro tejido profundo de la pelvis, a excepción de la endometritis o de la infección del manguito vaginal: deben satisfacer al menos uno de los siguientes criterios:

- Criterio 1: en el cultivo del exudado o del tejido del sitio afectado se ha aislado un microorganismo.
- Criterio 2: en una intervención quirúrgica o en un estudio anatomopatológico se ha observado un absceso u otra evidencia de infección.
- Criterio 3: el paciente tiene al menos dos de los siguientes síntomas o signos sin otra causa que los explique: fiebre (>38º C), náuseas, vómitos, dolor, hipersensibilidad local o disuria.

Y al menos uno de los siguientes:
• En el hemocultivo se ha aislado un microorganismo.
• Existe un diagnóstico médico.

CRITERIOS PARA DIAGNOSTICAR UNA INFECCIÓN DE LA PIEL O DE PARTES BLANDAS

Las infecciones de la piel o de partes blandas incluyen las infecciones de piel (exceptuando la infección superficial de la herida quirúrgica), de partes blandas, de una úlcera de decúbito o quemadura, los abscesos mamarios, las mastitis, las onfalitis, las pustulosis del lactante y las infecciones de la herida de la circuncisión.

Infección de la piel
Debe cumplir al menos uno de los siguientes criterios:
Criterio 1: el paciente tiene supuración, pústulas, vesículas o forúnculos.

Criterio 2: el paciente tiene al menos dos de los siguientes síntomas o signos sin otra causa que los explique: dolor espontáneo o a la palpación, tumefacción localizada, eritema o calor.

Y al menos uno de los siguientes:

• En el cultivo de un aspirado o de un drenaje de la zona afectada se ha aislado un microorganismo, si forma parte de la flora normal de la piel el cultivo debe ser puro y de un único microorganismo (p. ej. Staphylococcus coagulasa negativos, diphteroides y micrococos).
• En un hemocultivo se ha aislado un microorganismo.
• Resultado positivo de una prueba para la detección de antígenos en el tejido afectado o en sangre (virus herpes simple, virus varicela zoster, N. meningitidis, H. influenzae).
• En el estudio microscópico del tejido afectado se han observado células gigantes multinucleadas.
• Un único título de anticuerpos específicos es diagnóstico (IgM) o un aumento de cuatro veces el valor inicial en sueros sucesivos para el patógeno (IgG).

Infección de partes blandas
(Fascitis necrotizante, gangrena infecciosa, celulitis necrotizante, miositis infecciosa, linfadenitis o linfangitis) deben cumplir al menos uno de los siguientes criterios:

Criterio 1: en el cultivo de un tejido o drenaje de la zona afectada se ha aislado un microorganismo.

Criterio 2: supuración de la zona afectada.

Criterio 3: en una intervención quirúrgica o estudio anatomopatológico se ha observado un absceso u otro signo claro de infección.

Criterio 4: el paciente tiene al menos dos de los siguientes síntomas o signos en la zona afectada: dolor espontáneo o a la palpación, tumefacción, eritema o calor.

Y al menos uno de los siguientes:

• En un hemocultivo se ha aislado un microorganismo.
• Resultado positivo de la prueba para la detección de antígenos en sangre u orina (p. ej. H. influenzae, S. pneumoniae, N. meningitidis, Streptococcus del grupo B, Candida sp.).

Un único título de anticuerpos específicos es diagnóstico (IgM) o un aumento de cuatro veces el valor inicial en sueros sucesivos para el patógeno (IgG).

Infección de una úlcera de decúbito
Puede ser superficial o profunda.
Debe presentar dos de los siguientes síntomas o signos sin otra causa que los explique: eritema, tensión o tumefacción de los bordes de la herida.
Y al menos uno de los siguientes:
• En el cultivo de un aspirado o de una biopsia tomado de manera apropiada se ha aislado un microorganismo.
• En un hemocultivo se ha aislado un microorganismo.

Notas

• El aislamiento de microorganismos en la superficie de la úlcera no es evidencia suficiente de infección. Una muestra correcta se debe recoger por aspiración o biopsia de los márgenes de la úlcera.
• La presencia únicamente de drenaje purulento no es diagnóstica de infección.

Infección de una quemadura
Debe satisfacer al menos uno de los siguientes criterios:

- **Criterio 1:** cambio del aspecto de la quemadura (p. Ej. la escara se desprende precozmente, o se vuelve de color marrón oscuro, negro o violáceo, o aparece un edema alrededor de la herida).

 Y en el examen histológico la biopsia de la quemadura muestra invasión por microorganismos del tejido viable adyacente.

- **Criterio 2:** cambio del aspecto de la quemadura (p. Ej. la escara se desprende demasiado pronto, o se vuelve de color marrón oscuro, negro o violáceo, o aparece un edema alrededor de la herida).

 Y al menos uno de los siguientes:

 • En un hemocultivo se ha aislado un microorganismo y no se ha encontrado ningún otro foco infeccioso.
 • Aislamiento de virus herpes simplex, identificación histológica de inclusiones mediante microscopía óptica o electrónica, visualización de partículas víricas con el microscopio electrónico en biopsia o raspado de lesiones.

- **Criterio 3:** dos de los siguientes síntomas o signos sin otra causa que los explique en un paciente con quemaduras: fiebre (>38°C) o hipotermia(<36°C), hipotensión, oliguria (<20 ml/hr), hiperglucemia con una ingesta de carbohidratos tolerada previamente o confusión mental.

 Y al menos uno de los siguientes:

 • En el examen histológico de una biopsia de la quemadura se observan microorganismos que han invadido el tejido viable adyacente.
 • En un hemocultivo se ha aislado un microorganismo.
 • Aislamiento de virus herpes simplex, identificación histológica de inclusiones mediante microscopía óptica o electrónica, o visualización de partículas víricas con el microscopio electrónico en biopsias o raspado de lesiones.

Notas

• La presencia de pus, por sí misma, en la quemadura no es adecuada para el hacer el diagnóstico de infección; esta pus puede reflejar un mal cuidado de la herida.
• La fiebre aislada no es suficiente para el diagnóstico, puede deberse al trauma tisular o a una infección en otro lugar.
Absceso mamario o mastitis
Deben cumplir al menos uno de los siguientes criterios:

- Criterio 1: en el cultivo de una biopsia del tejido afectado o de líquido obtenido mediante incisión y drenaje o aspiración con aguja se ha aislado un microorganismo.
- Criterio 2: en una intervención quirúrgica o en un estudio anatomopatológico se ha observado un absceso u otro signo claro de infección.
- Criterio 3: fiebre (>38º C), inflamación local de la mama y existencia de un diagnóstico médico de absceso de mama.

Notas
• Se producen generalmente tras un parto. Las que ocurren en los 7 días siguientes se deben considerar una infección nosocomial.

Onfalitis
La onfalitis en el recién nacido (≤ 30 días de edad) debe cumplir al menos uno de los siguientes criterios:

- Criterio 1: eritema y/o drenaje de exudado seroso por el ombligo,

Y al menos uno de los siguientes:

• En el cultivo del exudado o del líquido aspirado con aguja se ha aislado un microorganismo.
• En un hemocultivo se ha aislado un microorganismo.

- Criterio 2: el paciente tiene eritema y supura por el ombligo.

Notas
• Considerar como una infección nosocomial si aparece en los 7 días posteriores al alta.

Pustulosis infantil
(12 meses o menos de vida). Debe satisfacer al menos uno de los siguientes criterios:

- Criterio 1: el lactante tiene una o más pústulas.

Y existe un diagnóstico médico.

- Criterio 2: el paciente tiene una o más pústulas.

Y el médico ha prescrito el tratamiento antibiótico adecuado.

Notas
• No incluir eritema tóxico ni pustulosis de por causas no infecciosas.
• Si se da en los 7 días posteriores al alta considerarla una infección nosocomial.

Infección de la herida de la circuncisión en un recién nacido
Pacientes con 30 o menos días de vida. Debe cumplir al menos uno de los siguientes criterios:

- Criterio 1: en un recién nacido la herida de la circuncisión supura.
- Criterio 2: recién nacido con al menos uno de los siguientes síntomas o signos en un recién nacido sin otra causa que los explique: eritema, tumefacción, o dolor al palpar la herida de la circuncisión.

Y en el cultivo de la herida se ha aislado un patógeno.

- Criterio 3: un recién nacido con al menos uno de los siguientes síntomas o signos en un recién nacido sin otra causa que los explique: eritema, tumefacción o hipersensibilidad de la herida de la circuncisión.

Y en un cultivo de la herida se ha aislado un contaminante de la piel (Staphylococcus coagulasa negativos, diphteroides, Bacillus spp, micrococos).

Y el médico ha prescrito el tratamiento antibiótico adecuado.

Nota
• No es una infección de la incisión quirúrgica.

CRITERIOS PARA DIAGNOSTICAR UNA INFECCIÓN DISEMINADA
Una infección diseminada afecta a más de un órgano o sistema y no tiene un foco de infección claro, usualmente de origen viral, con signos y síntomas compatibles con afectación de múltiple órganos o sistemas y sin otra causa reconocida.

Normalmente se diagnostican por la clínica únicamente (sarampión, parotiditis, rubéola y varicela). Es excepcional que se trate de infecciones hospitalarias. No debe considerarse como tal una infección nosocomial con focos metastáticos, como una endocarditis bacteriana.

No se incluye la fiebre de origen desconocido.

CRITERIOS PARA DEFINIR UNA NEUMONÍA NOSOCOMIAL
Comentarios generales aplicables a todas las neumonías

1. El diagnóstico de neumonía realizado por un médico por sí solo no es un criterio aceptable de neumonía nosocomial.
2. Aunque se incluyen criterios específicos para niños y bebés, los pacientes pediátricos pueden cumplir los otros criterios de neumonía de localización específica.
3. La neumonía asociada a ventilación mecánica (ej. neumonía en personas con un dispositivo para asistir o controlar la respiración de forma continuada a través de una
traqueotomía o intubación endotraqueal durante las 48 horas anteriores al comienzo de la infección) se debe consignar específicamente como tal.

4. Cuando se explora a un paciente ante la sospecha de neumonía, es importante diferenciar los posibles cambios en el status clínico derivados de otras enfermedades, como un infarto de miocardio, embolismo pulmonar, síndrome de distrés respiratorio, atelectasias, tumores malignos, EPOC, enfermedad por membranas hialinas, displasia broncopulmonar etc. Se debe tener mucho cuidado al explorar pacientes intubados para distinguir entre colonización traqueal, infecciones del tracto respiratorio superior (ej. la traqueobronquitis), neumonía temprana. Finalmente, puede ser difícil diagnosticar una neumonía nosocomial en ancianos, bebés y enfermos inmunocomprometidos, ya que los signos y síntomas típicos asociados pueden estar enmascarados. Se incluyen criterios específicos para ancianos, bebés y enfermos inmunocomprometidos en este definición de neumonía nosocomial.

5. La neumonía nosocomial puede clasificarse por su inicio en temprana o tardía. La neumonía de temprana ocurre durante los 4 primeros días de hospitalización, y con frecuencia está causada por Moraxella catarralis, H influenzae y S pneumoniae. Los agentes causales de la neumonía tardía son con frecuencia bacilos Gram negativos o Staphylococcus aureus, incluyendo Staphylococcus aureus resistente a meticilina. Los virus (p. Ej. influenza A y B, o virus respiratorio sincitial) pueden causar neumonía nosocomial de temprana o tardía, mientras que las levaduras, hongos, legionellas y Pneumocystis carinii son generalmente patógenos de inicio tardío.

6. La neumonía por grandes aspiraciones (ej. durante una intubación de emergencia en urgencias o en el quirófano) se considera nosocomial si cumple algún criterio específico y no estaba claramente presente o en incubación en el momento del ingreso.

7. En pacientes críticos con largas estancias hospitalarias se pueden producir múltiples episodios de neumonía nosocomial. Ante la duda de notificar múltiples episodios de neumonía nosocomial en un mismo paciente, se deben buscar pruebas de la resolución del primer episodio. La aparición de un nuevo patógeno solo o aunado a los ya existentes indica que estamos ante un nuevo episodio de neumonía. Se requiere la combinación de nuevos síntomas, signos y evidencia radiológica u otras pruebas diagnósticas.

8. La tinción de bacterias Gram positivas y la reacción positiva al KOH de fibras de elastina y/o hifas de muestras de esputo correctamente recogidas son pruebas importantes que ayudan a dilucidar la etiología de la infección. Sin embargo, las muestras de esputo se contaminan con frecuencia con flora de la vía respiratoria y por lo tanto los resultados deben interpretarse con cautela. En especial, es frecuente encontrar Candida en las tinciones, pero rara vez causa neumonía nosocomial.

 • Codificar una infección del tracto respiratorio bajo (p. Ej. absceso o empiema) con neumonía concurrente, ambas por el mismo microorganismo, como neumonía.

 • Considerar un absceso o empiema sin neumonía como otras infecciones del tracto respiratorio inferior.

 • Las bronquitis, traqueítis, traqueobronquitis o bronquiolitis agudas sin neumonía se incluyen en su propia categoría.

Neumonía (PNEU)
Algoritmo diagnóstico. Neumonía definida por la clínica

<table>
<thead>
<tr>
<th>Radiología</th>
<th>Signos/síntomas/laboratorio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dos o más radiografías torácicas seriadas con al menos uno de</td>
<td>Para cualquier paciente, al menos uno de los siguientes:</td>
</tr>
<tr>
<td></td>
<td>• Fiebre (>38° C) sin otra causa que la explique.</td>
</tr>
</tbody>
</table>

~ 364 ~
los siguientes:\n• Infiltrados nuevos o progresivos persistentes.
• Consolidación.
• Cavitación.
• Neumatoceles en niños =1 año.

Nota: en pacientes sin enfermedad cardiaca o pulmonar subyacente (p. ej. síndrome de distrés respiratorio, displasia broncopulmonar, edema pulmonar, EPOC), se acepta una única placa de tórax definitiva\n
<table>
<thead>
<tr>
<th>Los siguientes:</th>
<th>Leucopenia (<4.000 leucocitos/mm3) o leucocitosis (≥12.000 leucocitos/mm3).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>En adultos =70 años, alteración del estado mental sin otra causa que lo explique.</td>
</tr>
<tr>
<td></td>
<td>Y al menos dos de los siguientes:</td>
</tr>
<tr>
<td></td>
<td>Aparición de expectoración purulenta(^2) o cambios en sus características(^3), aumento de las secreciones respiratorias o aumento de las necesidades de aspiración.</td>
</tr>
<tr>
<td></td>
<td>Aparición o empeoramiento de la tos, disnea o taquipnea(^4).</td>
</tr>
<tr>
<td></td>
<td>Crepitantes(^5) o ruidos respiratorios bronquiales.</td>
</tr>
<tr>
<td></td>
<td>Empeoramiento del intercambio gaseoso (ej. desaturación de O(_2) [ej. Pa O(_2) / FiO(_2) =240](^6), aumento de los requerimientos de oxígeno, o aumento de las necesidades de ventilación).</td>
</tr>
</tbody>
</table>

Criterios alternativos para niños =1 año:

Empeoramiento del intercambio gaseoso (ej. desaturación de O\(_2\), aumento de los requerimientos de oxígeno, o aumento de las necesidades de ventilación).

Y al menos tres de los siguientes:

• Temperatura inestable sin ninguna otra causa que lo explique.
• Leucopenia (<4.000 leucocitos/mm3) o leucocitosis (≥15.000 leucocitos/mm3) y desviación a la izquierda (≥10% cayados).
• Aparición de expectoración purulenta\(^2\) o cambios en sus características\(^3\), aumento de las secreciones respiratorias o aumento de las necesidades de aspiración.
• Apnea, taquipnea\(^4\), aleteo nasal con retracción de la pared torácica o quejido respiratorio.
• Sibilancias, crepitantes\(^5\); o roncus.
• Tos.
• Bradicardia (<100 lpm) o taquicardia (>170 lpm).

Criterios alternativos para niños >1 año o =12 años: al menos tres de los siguientes:

• Fiebre (>38.4º C) o hipotermia (<37º C) sin otra causa que lo explique.
• Leucopenia (<4.000 leucocitos/mm3) o leucocitosis (≥15.000 leucocitos/mm3).
• Aparición de expectoración purulenta\(^2\) o cambios en sus características\(^3\), aumento de las secreciones respiratorias o aumento de las necesidades de aspiración.
<table>
<thead>
<tr>
<th>Radiología</th>
<th>Signos/síntomas</th>
<th>Laboratorio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dos o más radiografías torácicas seriadas con al menos uno de los siguientes:</td>
<td>Al menos uno de los siguientes.</td>
<td>Al menos uno de los siguientes:</td>
</tr>
<tr>
<td>Infiltrados persistentes o progresivos.</td>
<td>Fiebre (>38°C) sin otra causa que la explique.</td>
<td>Cultivo de secreciones respiratorias positivo para virus o Chlamydia.</td>
</tr>
<tr>
<td>Consolidación.</td>
<td>Leucopenia (<4,000 leucocitos/mm3) o leucocitosis (=12,000 leucocitos/mm3).</td>
<td>Detección en secreciones respiratorias de antígenos o anticuerpos virales (p. ej. PCR, enzimoinmunoensayo, prueba de cápside viral).</td>
</tr>
<tr>
<td>Cavitación.</td>
<td>En adultos =70 años, alteración del estado mental sin otra causa que lo explique.</td>
<td>El título de anticuerpos IgG contra algún patógeno (ej. virus influenza, Chlamydia) se ha cuadriplicado en dos muestras sucesivas.</td>
</tr>
</tbody>
</table>

Nota: en pacientes sin enfermedad cardíaca o pulmonar subyacente (ej. síndrome de distrés respiratorio, displasia broncopulmonar, edema pulmonar, EPOC), se acepta una única placa de tórax definitiva.

Neumonía (PNEU)

Algoritmo diagnóstico. Neumonía por virus, Legionella, Chalymia, Micoplasma y otros patógenos poco frecuentes y hallazgos específicos de laboratorio.

- Aparición o empeoramiento de la tos o disnea, apnea o taquipnea.
- Crepitantes o ruidos respiratorios bronquiales.
- Empeoramiento del intercambio gaseoso (ej. desaturación de O2 [ej. pulso-oxímetro < 94%], aumento de los requerimientos de oxígeno, o aumento de las necesidades de ventilación).
Neumonía (PNEU)
Algoritmo diagnóstico para Neumonía en pacientes inmunocomprometidos

<table>
<thead>
<tr>
<th>Radiología</th>
<th>Signos/síntomas</th>
<th>Laboratorio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dos o más radiografías torácicas seriadas con al menos uno de los siguientes:</td>
<td>En un paciente inmunocomprometido al menos uno de los siguientes:</td>
<td>Al menos uno de los siguientes:</td>
</tr>
<tr>
<td>• Infiltrados persistentes o progresivos.</td>
<td>• Fiebre (>38º C) sin otra causa que la explique.</td>
<td>• Hemocultivo y cultivo de esputo positivo para Candida spp.</td>
</tr>
<tr>
<td>• Consolidación.</td>
<td>• En adultos = 70 años, alteración del estado mental sin otra causa que lo explique.</td>
<td>• Evidencia de hongos o Pneumocystis carinii en muestra mínimamente contaminada del tracto respiratorio inferior (p. Ej. Lavado broncoalveolar o muestra de cepillado bronquial protegido mediante una de las siguientes técnicas:</td>
</tr>
<tr>
<td>• Cavitación.</td>
<td>• Aparición de esputo purulento o cambios en sus características, aumento de las secreciones respiratorias o aumento de las necesidades de aspiración.</td>
<td>- Examen microscópico directo.</td>
</tr>
<tr>
<td>Nota: en pacientes sin enfermedad cardiaca o pulmonar subyacente (ej. síndrome de distrés respiratorio, displasia broncopulmonar, edema pulmonar, EPOC), se acepta una única placa de tórax definitiva.</td>
<td>• Aparición o empeoramiento de la tos, disnea o taquipnea.</td>
<td>- Cultivo positivo para hongos.</td>
</tr>
<tr>
<td></td>
<td>• Crepitantes o ruidos bronquiales respiratorios.</td>
<td>• Cualquiera de los criterios definidos en los algoritmos diagnósticos de neumonía con hallazgos de laboratorio.</td>
</tr>
<tr>
<td></td>
<td>• Empeoramiento del intercambio gaseoso (ej. desaturación de O2 [ej. Pa O2 / FiO2 =240]), aumento de los requerimientos de oxígeno, o de las necesidades de ventilación).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hemoptisis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dolor pleurítico.</td>
<td></td>
</tr>
</tbody>
</table>
Ocasionalmente, en pacientes sin ventilación mecánica, el diagnóstico de neumonía nosocomial puede ser muy claro por la sintomatología, signos y una sola radiografía de tórax definitiva. Sin embargo, en pacientes con enfermedad cardiaca o pulmonar (p. Ej. enfermedad pulmonar intersticial o insuficiencia cardiaca congestiva), el diagnóstico puede ser especialmente difícil. Otras enfermedades no infecciosas (p. Ej. edema pulmonar por insuficiencia cardiaca congestiva descompensada) pueden simular la manera en que se presenta una neumonía. En estos casos más difíciles se deben realizar radiografías seriadas para diferenciar los procesos pulmonares infecciosos de los no infecciosos. Para ayudar a confirmar casos difíciles, puede ser útil revisar radiografías del día del diagnóstico, de 3 días antes y en los días 2 y 7 después del diagnóstico. La neumonía puede tener una aparición y progresión rápida, pero no se resuelve con la misma rapidez. Los cambios radiológicos persisten durante varias semanas. Por ello, una rápida resolución radiológica sugiere que el paciente no tenía neumonía, sino un proceso no infeccioso como atelectasias o insuficiencia cardiaca congestivo.

Tómese en cuenta que hay muchas maneras de describir las características radiográficas de una neumonía. Por ejemplo enfermedad aire-espacio, opacificación focal o zonas con aumento de densidad. Aunque tal vez no estén especificadas por los radiólogos como neumonía, en el contexto clínico adecuado éstas descripciones alternas deben considerarse seriamente como hallazgos positivos potenciales.

El esputo purulento se define como secreciones pulmonares, bronquiales o traqueales que contienen \(\geq 25\) neutrófilos y \(<10\) células epiteliales escamosas por campo de bajo aumento (x100). Si los datos se comunican de forma cualitativa (p. Ej. mucho leucocitos o pocas escamas) asegurarse de que sus criterios concuerden con éste. Se requiere confirmación de laboratorio ya que las descripciones clínicas de las secreciones purulentas son muy variables.

Una única anotación en la historia de la presencia de esputo purulento o cambio en sus características no es significativa. Múltiples anotaciones en un periodo de 24 horas pueden ser más indicativas del inicio de un proceso infeccioso. Los cambios en las características del esputo se refieren al color, consistencia, olor y cantidad.

En los adultos la taquipnea se define como \(>25\) respiraciones/minuto. En niños prematuros nacidos antes de las 37 semanas de gestación y hasta la semana 40 se define como \(>75\) respiraciones/minuto; en niños \(<2\) meses \(>60\) respiraciones/minuto; en niños 2-12 meses \(>50\) respiraciones/minuto; en niños \(<1\) año \(>30\) respiraciones/minuto.

Los crepitantes pueden haberse descrito como estertores.

La medida de la oxigenación arterial se define como la razón de la tensión arterial (PaO2) entre la fracción inspiratoria de oxígeno (FiO2).

Se debe tener cuidado al determinar la etiología de una neumonía en un paciente con hemocultivos positivos y signos radiológicos sugestivos, especialmente si el paciente tiene dispositivos invasivos como una vía intravascular o una sonda Foley. En general, en pacientes inmunocompetentes, hemocultivos positivos para Staphylococcus coagulasa negativos, flora habitual de la piel y levaduras no serán los agentes etiológicos de la neumonía.

Tabla de valores umbral en cultivos de bacterias*. Un aspirado endotraqueal no es una muestra
mínimamente contaminada, por lo tanto, no reúne las condiciones requeridas.

10 Una vez que los casos sospechosos de neumonía por virus respiratorio sincitial, adenovirus o virus influenza han sido confirmados por el laboratorio en un hospital, se acepta como criterio aceptable el diagnóstico de presunción de neumonía nosocomial por estos microorganismos en casos subsecuentes con signos y síntomas similares.

11 En adultos con neumonía por virus y Micoplasma es frecuente que las secreciones sean escasas o acuosas, aunque a veces el esputo puede ser mucopurulento. En niños la neumonía por virus respiratorio sincitial o influenza se presenta con esputo abundante. Los pacientes (excepto lactantes prematuros), con neumonía viral o por Micoplasma pueden presentar pocos síntomas o signos, incluso cuando se observen infiltrados importantes en la radiografía de tórax.

12 En pacientes con neumonía por Legionella spp, Micoplasma o virus pueden verse muy pocas bacterias en una tinción de secreciones respiratorias.

13 Entre los pacientes inmunocomprometidos se incluyen aquellos con neutropenia (conteo absoluto de neutrófilos <500/mm3), leucemia, linfoma, VIH con CD4<200 o esplenectomizados, los ingresados por trasplante y pacientes en tratamiento con citotóxicos, esteroides a altas dosis u otros inmunosupresores durante más de 2 semanas (ej. >40 mg de prednisona o sus equivalentes [>160 mg hidrocortisona; >32 mg metilprednisolona; >6 mg dexametasona; >200 mg cortisona]).

14 Las muestras de sangre y esputo se deben tomar con menos de 48 horas de diferencia.

15 Los cultivos semicuantitativos o no cuantitativos de esputo obtenido por tos profunda, inducción, aspiración o lavado son aceptables. Si los valores cuantitativos están disponibles, refiérase a los algoritmos específicos.

Valores umbral de cultivos para el diagnóstico de neumonía

<table>
<thead>
<tr>
<th>Toma de muestra/técnica</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Parénquima pulmonar</td>
<td>• 10⁴ UFC/gramo de tejido**</td>
</tr>
<tr>
<td>• Muestras obtenidas mediante broncoscopia:</td>
<td></td>
</tr>
<tr>
<td>■ Lavado broncoalveolar.</td>
<td>• 10⁴ UFC/ml</td>
</tr>
<tr>
<td>■ Lavado broncoalveolar protegido.</td>
<td>• 10⁴ UFC/ml</td>
</tr>
<tr>
<td>■ Cepillado bronquial protegido</td>
<td>• 10³ UFC/ml</td>
</tr>
<tr>
<td>• Muestras no obtenidas mediante broncoscopia:</td>
<td></td>
</tr>
<tr>
<td>■ Lavado broncoalveolar</td>
<td></td>
</tr>
<tr>
<td>■ Cepillado bronquial protegido</td>
<td></td>
</tr>
</tbody>
</table>
**Muestras obtenidas mediante biopsia abierta y muestras postmortem inmediatas recogidas mediante biopsia transtorácica o transbronquial.

INFECCIÓN POR EL VIH CON O SIN CRITERIOS DE SIDA

A) Clasificación de los pacientes

- Adolescentes y adultos (=13 años): se clasificarán según la clasificación que se expone en el apartado B.

- Niños (<13 años): según el apartado C.

B) Clasificación de la infección por el VIH en adolescentes y adultos (=13 años). CDC.1992

Incorpora el recuento de linfocitos CD4 como marcador importante de la situación clínica del paciente infectado por el VIH.

<table>
<thead>
<tr>
<th>CATEGORÍA CLÍNICA</th>
<th>Linfocitos CD4</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorías</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. >500 ul</td>
<td>A1</td>
<td>B1</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>2. 200-499 ul</td>
<td>A2</td>
<td>B2</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>3. <200 ul</td>
<td>A3</td>
<td>B3</td>
<td>C3</td>
<td></td>
</tr>
</tbody>
</table>

Categoría A

- Infección asintomática por el VIH.
- Linfadenopatia persistente generalizada.
- Infección aguda primaria por el VIH.

Categoría B

No incluidas dentro de la categoría C, pero relacionadas con la infección por el VIH o cuyo manejo o tratamiento pueda verse complicado por la infección por VIH. Incluye entre otras:

- Angiomatosis bacilar.
- Candidiasis orofaríngea.
- Candidiasis vulvovaginal persistente, frecuente o con poca respuesta al tratamiento.
- Displasia cervical (moderada o severa) o carcinoma in situ.
- Síntomas constitucionales, fiebre (38,5°C) o diarrea de más de 1 mes.
- Leucoplaquia oral vellosa.
- Herpes zóster, dos episodios distintos o más de un dermatoma de afectación.
- Púrpura trombocitopénica idiopática.
- Listeriosis.
- Enfermeredad inflamatoria pélvica, particularmente si se complica con absceso tuboovárico.
- Neuropatía periférica.

Categoría C

Incluye las situaciones clínicas diagnósticas de SIDA:
- Neumonía por Pneumocystis carinii.
- Criptosporidiosis con diarrea de más de un mes.
- Toxoplasmosis cerebral.
- Isosporiasis crónica intestinal de más de un mes de duración.
- Candidiasis traqueal, bronquial o pulmonar.
- Candidiasis esofágica.
- Criptococosis extrapulmonar.
- Histoplasmosis extrapulmonar o diseminada.
- Infección por Citomegalovirus de una víscera (distinta al hígado, bazo ganglio linfático).
- Retinitis por Citomegalovirus con pérdida de visión.
- Infección diseminada o extrapulmonar por Mycobacterium avium complex o M. kansasii (no se incluye pulmón, ganglios cervicales o hiliares).
- Infección diseminada o extrapulmonar por otras micobacterias.
- Infección diseminada o extrapulmonar por Mycobacterium tuberculosis.
- Bacteremia recurrente por Salmonella typhi.
- Infección mucocutánea crónica de más de un mes de duración o bronquitis, neumonitis o esofagitis por Herpex simplex.
- Leucoencefalopatía multifocal progresiva.
- Coccidiomicosis extrapulmonar o diseminada.
- Encefalopatía por VIH.
- Sarcoma de Kaposi (de 60 años de edad).
- Linfoma primario de cerebro (<de 60 años de edad).
- Linfoma inmunoblástico.
- Linfoma de Burkitt.
- Síndrome consuntivo.
- Carcinoma invasivo de cérvix.
- Infección pulmonar por Mycobacterium tuberculosis.
- Neumonía recurrente.

Infección por el VIH con criterios de SIDA: pacientes incluidos en las categorías: B3, C1, C2 y C3 (se consideran casos de SIDA).

Infección por el VIH sin criterios de SIDA: pacientes incluidos en las categorías: A1, A2, A3, B1 y B2.

Nota: cuando el número absoluto de linfocitos CD4 no está disponible se puede utilizar el porcentaje respecto a la cifra de linfocitos totales:

<table>
<thead>
<tr>
<th>Porcentaje CD4</th>
<th>CD4 absolutos</th>
</tr>
</thead>
<tbody>
<tr>
<td>>29%</td>
<td>>500 ul</td>
</tr>
<tr>
<td>14-28%</td>
<td>200-499 ul</td>
</tr>
<tr>
<td><14%</td>
<td><200 ul</td>
</tr>
</tbody>
</table>

C) SIDA pediátrico (menores de 13 años). Revisión del CDC/1994

El diagnóstico de infección VIH en niños nacidos de madres infectadas es complejo debido a la presencia de anticuerpos maternos anti-VIH tipo IgG, que atraviesan la placenta. Como consecuencia de esto, la mayoría de niños nacidos de madres seropositivas tienen anticuerpos al nacer, aunque sólo del 15% al 30% de ellos son realmente positivos. En niños no infectados, estos anticuerpos pueden permanecer detectables durante los 9 primeros meses e incluso hasta los 18 primeros meses de edad. Por
ello, los métodos estándar para la determinación de anticuerpos en estos niños no son válidos. Así pues, es necesario adoptar unas modificaciones al protocolo general de diagnóstico (anterior apartado B), con el fin de identificar los niños verdaderamente positivos.

Se considerará que un niño está infectado por VIH en las siguientes circunstancias:

1.- Niño menor de 18 meses, seropositivo a VIH o nacido de una madre seropositiva y:
 A) Tiene resultados positivos en dos determinaciones distintas (excluyendo la del cordón umbilical), mediante cultivo, PCR o antígeno p24 (paciente sin criterios de SIDA), o
 B) Cumple los criterios de SIDA vigentes en la actualidad (con criterios de SIDA; según el anterior apartado B).

2.- Niño de 18 meses de edad o mayor, nacido de madre seropositiva, o cualquier niño expuesto a cualquier modo conocido de transmisión que:
 A) Tiene anticuerpos VIH positivos por ELISA y confirmado mediante Western blot o inmunofluorescencia, (sin criterios de SIDA), o
 B) Cumple los criterios de SIDA vigentes en la actualidad (con criterios de SIDA; según el anterior apartado B).

Niño de cualquier edad catalogado de VIH positivo (sin criterios de SIDA) o SIDA (con criterios de SIDA) por parte de los médicos responsables del enfermo.
Anexo 2. Microorganismos implicados en la IN.

<table>
<thead>
<tr>
<th>Agrupación de microorganismos</th>
<th>TOTAL</th>
<th>NOSOCOMIALES</th>
<th>COMUNITARIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N total de microorganismos aislados</td>
<td>9814 100.00%</td>
<td>4302 100.00%</td>
<td>5512 100.00%</td>
</tr>
<tr>
<td>Cocos Gram +</td>
<td>3035 30.93%</td>
<td>1491 34.66%</td>
<td>1544 28.01%</td>
</tr>
<tr>
<td>Cocos Gram -</td>
<td>42 0.43%</td>
<td>9 0.21%</td>
<td>33 0.60%</td>
</tr>
<tr>
<td>Bacilos Gram +</td>
<td>83 0.85%</td>
<td>29 0.67%</td>
<td>54 0.98%</td>
</tr>
<tr>
<td>Bacilos Gram - Entrobacterias</td>
<td>3536 36.03%</td>
<td>1520 35.54%</td>
<td>2007 36.41%</td>
</tr>
<tr>
<td>Bacilos Gram - No fermentadores</td>
<td>1116 11.37%</td>
<td>611 14.20%</td>
<td>505 9.16%</td>
</tr>
<tr>
<td>Otros Bacilos Gram-</td>
<td>190 1.94%</td>
<td>43 1.00%</td>
<td>147 2.67%</td>
</tr>
<tr>
<td>Bacilos anaerobios</td>
<td>366 3.73%</td>
<td>214 4.97%</td>
<td>152 2.76%</td>
</tr>
<tr>
<td>Otras bacterias</td>
<td>158 1.61%</td>
<td>7 0.16%</td>
<td>151 2.74%</td>
</tr>
<tr>
<td>Levaduras y otros hongos unicelulares</td>
<td>552 5.62%</td>
<td>343 7.97%</td>
<td>209 3.79%</td>
</tr>
<tr>
<td>Hongos filamentosos</td>
<td>85 0.87%</td>
<td>7 0.16%</td>
<td>78 1.42%</td>
</tr>
<tr>
<td>Protozoos</td>
<td>26 0.26%</td>
<td>4 0.09%</td>
<td>22 0.40%</td>
</tr>
<tr>
<td>Virus</td>
<td>625 6.37%</td>
<td>15 0.35%</td>
<td>610 11.07%</td>
</tr>
<tr>
<td>Microorganismo no identificado</td>
<td>659 -</td>
<td>140 -</td>
<td>519 -</td>
</tr>
<tr>
<td>No se ha realizado cultivo u otra prueba de laboratorio</td>
<td>3344 -</td>
<td>652 -</td>
<td>2692 -</td>
</tr>
<tr>
<td>Resultado negativo en el cultivo u otra prueba de laboratorio</td>
<td>1671 -</td>
<td>337 -</td>
<td>1344 -</td>
</tr>
<tr>
<td>Resultado no disponible o perdido</td>
<td>2523 -</td>
<td>599 -</td>
<td>1924 -</td>
</tr>
</tbody>
</table>

N = Numero de microorganismos aislados
% = Porcentaje sobre el total
Anexo 3. Hoja de información para expertos.

Las infecciones nosocomiales y la resistencia a los antimicrobianos son dos problemas sanitarios especiales enumerados en el Anexo 1 de la Decisión de la Comisión 2000/96/CE de 22 de diciembre de 1999 relativa a las enfermedades transmisibles que deben quedar progresivamente incorporadas en la red comunitaria de vigilancia, en aplicación de la Decisión nº 2119/98/CE del Parlamento Europeo y del Consejo.

Las infecciones nosocomiales son las infecciones que se contraen en los hospitales. Actualmente se prefiere el término «infecciones asociadas a la asistencia sanitaria» porque abarca, además de las infecciones contraídas en el hospital, las que se adquieren en otros entornos en los que se presta asistencia sanitaria, p. ej., centros de asistencia prolongada, residencias de ancianos, hospitalización domiciliaria, etc.

Los microorganismos —denominados también microbios— comprenden bacterias, virus, hongos y parásitos.

Los antimicrobianos son medicamentos que destruyen los microorganismos vivos o impiden su crecimiento y son, entre otros, los siguientes:

- **Antibacterianos** (llamados con frecuencia antibióticos, que son activos contra las infecciones por bacterias).
- **Antimicobacterianos** (antibacterianos que son activos específicamente contra la tuberculosis y otras infecciones causadas por micobacterias).
- **Antivirales** (activos contra las infecciones causadas por virus, como la gripe o las infecciones por el VIH o el herpes).
- **Antifúngicos o antimicóticos** (activos frente a las infecciones por hongos).
- **Antiparasitarios** (activos contra el paludismo y otras infecciones causadas por parásitos).

La resistencia a los antimicrobianos, es decir, a uno o varios antibióticos usados como tratamiento o profilaxis, no constituye una enfermedad, sino una característica que puede aplicarse, por principio, a cada uno de los microorganismos responsables de las enfermedades transmisibles enumeradas en la Decisión de la Comisión 2000/96/CE y de las infecciones nosocomiales y otras asociadas a la asistencia sanitaria.

Los microorganismos resistentes a los antimicrobianos, incluidos los tipos multirresistentes, suelen provocar infecciones asociadas a la asistencia sanitaria, pero también son responsables de infecciones contraídas fuera de los hospitales y pueden detectarse en la flora bacteriana normal de las personas sanas, en mascotas y en el medio ambiente. También causan infecciones y se aislan en animales destinados al consumo humano y, en ocasiones, se aíslan en los alimentos.

A la inversa, numerosas infecciones asociadas a la asistencia sanitaria están causadas por microorganismos que no son resistentes a los antimicrobianos. Los dos conceptos son, por tanto, bastante diferentes, pero por motivos históricos y profesionales suelen abordarse juntos.
Resistencia a los antimicrobianos

La resistencia a los antimicrobianos es la capacidad de un microorganismo (p. ej., una bacteria, un virus o un parásito, como el causante del paludismo) para resistir la acción de un fármaco antimicrobiano.

- Se trata de una adaptación del microorganismo a su entorno.
- El uso de un antimicrobiano obliga a los microorganismos a adaptarse para no morir.
- Son los microorganismos que colonizan y a veces infectan a los seres humanos y los animales los que se vuelven resistentes a los antimicrobianos, y no las propias personas o animales. Ni las personas ni los animales se hacen resistentes a los tratamientos antimicrobianos, pero las bacterias y otros microorganismos sí.
- La resistencia reduce o elimina la eficacia del antimicrobiano para curar o prevenir las infecciones causadas por el microorganismo concreto.

En el caso de las bacterias, la resistencia a los antibióticos es la capacidad de estos microorganismos para resistirse a los efectos de un antibiótico.

- Se dice que una bacteria ha desarrollado resistencia cuando un antibiótico específico pierde su capacidad para destruirla o detener su crecimiento.
- Algunas bacterias son resistentes por naturaleza a determinados antibióticos (resistencia intrínseca o inherente).
- El problema es más preocupante cuando algunas bacterias que normalmente son sensibles a los antibióticos se vuelven resistentes como consecuencia de su adaptación a través de alguna alteración genética (resistencia adquirida).
- Asimismo, dentro del organismo humano, los genes que codifican la resistencia a los antibióticos en una especie de bacterias pueden transmitirse fácilmente a otras especies mediante un intercambio de material genético.
- En la lucha continua por el «espacio ecológico», todas las bacterias resistentes son seleccionadas cuando el antibiótico destruye las bacterias que todavía son sensibles a su alrededor.
- Todas las bacterias resistentes sobreviven en presencia del antibiótico y siguen creciendo y multiplicándose, prolongando la enfermedad e incluso causando la muerte.
- Las infecciones provocadas por bacterias resistentes exigen mayores cuidados y el uso de antibióticos alternativos y más costosos que, en ocasiones, tienen efectos secundarios más graves. El tratamiento de las bacterias resistentes puede precisar además el uso de antibióticos intravenosos que han de administrarse en los hospitales, en lugar de otros orales que el paciente puede tomar en casa.

~ 375 ~
• Una vez establecidas en una persona, las bacterias resistentes a los antibióticos pueden diseminarse a otra persona, y el consumo elevado de antibióticos en una población (dentro o fuera del hospital) favorece en gran medida esta diseminación.

La multirresistencia es la resistencia de un microorganismo a varios antimicrobianos.

• El problema de la multirresistencia es importante con todos los microorganismos, incluidas las bacterias causantes de infecciones asociadas a la asistencia sanitaria, los microorganismos responsables de infecciones de origen alimentario o hídrico y tuberculosis, y los microorganismos responsables de enfermedades de transmisión sexual, p. ej., gonorrea e infección por el VIH.

• El desafío que plantean los microorganismos multirresistentes reside en el escaso número de opciones terapéuticas disponibles (si hay alguna) para los pacientes con estas infecciones.

Algunos ejemplos de bacterias multirresistentes frecuentes son los siguientes:

• *Staphylococcus aureus* resistente a la meticilina (SARM)
• Enterococos resistentes a la vancomicina (ERV)
• *Enterobacteriaceae* productoras de betalactamasa de espectro extendido (BLEE) (son ejemplos de *Enterobacteriaceae* habituales *Escherichia coli* y *Klebsiella pneumoniae*)
• *Pseudomonas aeruginosa* multirresistente
• *Clostridium difficile*

Los dos factores principales que conducen a la resistencia a los antimicrobianos son:

• El uso de antimicrobianos, que ejerce una presión ecológica sobre los microorganismos y contribuye a la aparición y selección de microorganismos resistentes a los antimicrobianos en las poblaciones.

• La diseminación y la transmisión cruzada de microorganismos resistentes a los antimicrobianos entre personas, entre animales y entre personas y animales y el entorno.

Por consiguiente, las dos esferas principales para el abordaje, el control y la prevención de la resistencia a los antimicrobianos son:

• Uso prudente de los antimicrobianos (es decir, sólo cuando sean necesarios, en la dosis correcta, a los intervalos correctos y durante el tiempo correcto).

• Medidas higiénicas para el control de la transmisión cruzada de microorganismos resistentes a los antimicrobianos (control de las infecciones), que comprenden higiene de las manos, detección selectiva, aislamiento, etc.

Una parte del problema que supone la resistencia a los antimicrobianos en la UE está relacionada con los medicamentos utilizados en los animales destinados al consumo humano.

• Los antibióticos usados en el tratamiento y la prevención de las infecciones de los animales pertenecen a los mismos grupos químicos que los empleados en
la medicina humana y, por consiguiente, los animales pueden portar bacterias que sean resistentes a los antibióticos que también se utilizan para combatir las infecciones humanas.

- Ciertas bacterias, p. ej., Salmonella y Campylobacter están asociadas al consumo de alimentos contaminados y provocan diarrea.

- Debido a la exposición a los antibióticos, los animales pueden portar cepas de Salmonella y Campylobacter resistentes a los antimicrobianos que se transmiten de los animales a las personas a través de los alimentos.

- Las personas también pueden adquirir bacterias resistentes a los antimicrobianos a través del contacto directo con los animales, como sucede con determinadas cepas de SARM que se aislan en ocasiones del ganado, sobre todo, del porcino.

Sin embargo, la principal causa de resistencia a los antimicrobianos en los microorganismos humanos sigue siendo el uso de estos fármacos en la medicina humana, tanto en la sociedad como en los hospitales y otros centros de asistencia sanitaria.

A escala individual o del paciente:

- El consumo de antibióticos modifica siempre la flora bacteriana humana normal, lo que a menudo provoca efectos secundarios, p. ej., diarrea, así como la aparición o la selección de bacterias resistentes a los antibióticos.

- Estas bacterias resistentes pueden persistir, generalmente sin causar infección, durante seis meses y a veces más.

- Los pacientes colonizados o que portan bacterias resistentes tienen más probabilidades en general de contraer una infección por estas cepas resistentes que por otras variantes sensibles de esas mismas bacterias.

- Los antibióticos no deben emplearse cuando no son necesarios, p. ej., para infecciones víricas como resfriados comunes o la gripe.

- Cuando se precisan antibióticos (la decisión la toma un médico, que extiende una receta), deben usarse adecuadamente, es decir, en la dosis correcta, a los intervalos correctos y durante el tiempo prescrito, a fin de conseguir una eficacia óptima para curar la infección y de reducir al mínimo la aparición de resistencia.

- Incluso cuando los antibióticos se utilizan adecuadamente, a veces aparece resistencia, que representa una reacción de adaptación de la bacteria. Cada vez que aparecen y se desarrollan bacterias resistentes a los antibióticos, es fundamental adoptar precauciones para controlar las infecciones con el fin de impedir la transmisión entre los pacientes infectados y otros pacientes o personas sanas.
A escala de la población general:

- Hay importantes diferencias en la proporción de bacterias resistentes entre los países de la UE, y estas variaciones, que a menudo muestran un gradiente norte-sur, pueden observarse en la mayoría de las bacterias resistentes a los antibióticos estudiadas por el Sistema Europeo de Vigilancia de la Resistencia a los Antibióticos (EARSS).

- También se observan grandes variaciones en el uso de antibióticos entre los Estados miembros de la UE, según demuestran los datos del proyecto de Vigilancia Europea del Consumo de Antimicrobianos (ESAC).

- Tras los ajustes en función del tamaño de la población, los Estados miembros que utilizan más antibióticos para tratar a pacientes ambulatorios —Grecia y Chipre— emplean una cantidad aproximadamente tres veces mayor por habitante y año que el Estado miembro con un menor uso —los Países Bajos—

- El nivel de consumo de antibióticos guarda una relación constante con los índices de resistencia, es decir, cuanto más elevado sea el uso de antibióticos en una población, mayor será la resistencia de las bacterias causantes de infecciones en esa población.

Según la Directiva 2001/83/CE y las leyes nacionales de los Estados miembros, los antimicrobianos de uso sistémico (es decir, no local) únicamente deberían dispensarse en las farmacias previa presentación de una receta, extendida normalmente por un médico. Pese a ello, en algunos Estados miembros todavía se siguen dispensando antimicrobianos sin receta en las farmacias.

Desde octubre de 2008, los pacientes del Reino Unido que no tienen síntomas, pero a quienes se ha diagnosticado una infección genital por clamidias, pueden acudir a una farmacia y adquirir (sin necesidad de receta) una dosis única del antibiótico azitromicina, que representa un ciclo de tratamiento completo. Se trata de la única excepción que permite la dispensación de antibióticos sistémicos sin receta médica.

En algunos países se está observando un descenso de la tendencia al uso de antibióticos entre los pacientes ambulatorios y de la resistencia de las bacterias que suelen causar infecciones en estos pacientes.

Seis Estados miembros (Francia, Bélgica, Eslovaquia, la República Checa, Eslovenia y Suecia) han comunicado recientemente una tendencia a la baja en el consumo de antibióticos entre los pacientes ambulatorios.

- En Francia y Bélgica, este descenso se atribuyó a la intervención estatal, que incluyó una campaña pública anual a escala nacional sobre el uso prudente de los antibióticos.

- El Informe Anual de 2007 del EARSS, así como los datos nacionales, indicaron una tendencia a la baja de la resistencia de Streptococcus pneumoniae, una bacteria que suele causar infecciones a los pacientes ambulatorios, sobre todo, a los niños.
En base a estas experiencias positivas en algunos Estados se ha establecido el Día Europeo para el Uso Prudente de los Antibióticos, una campaña dirigida a reducir el uso de antibióticos en situaciones en las que no son necesarios, por ejemplo, en las infecciones viricas como resfriados y gripe.

En algunos países, también se están observando descensos de la resistencia de un microorganismo responsable de infecciones asociadas a la asistencia sanitaria: SARM.

El Informe Anual de 2007 del EARSS señaló que siete Estados miembros están comunicando porcentajes significativamente más bajos de *Staphylococcus aureus* en las infecciones de la sangre.

Ello es probablemente debido al aumento de los esfuerzos para controlar las infecciones, a las medidas de higiene de las manos y a la política sobre antibióticos implantada en los hospitales de estos países, según demuestran los datos nacionales de Eslovenia, Francia y el Reino Unido, entre otros.

Pese a estas experiencias tan alentadoras, la resistencia a los antimicrobianos sigue siendo alta o sigue incrementándose en la mayoría de los Estados miembros, en especial, en bacterias habituales como *Staphylococcus aureus* (SARM), *Escherichia coli*, *Klebsiella pneumoniae* y Pseudomonas aeruginosa.

Asimismo, se están detectando en la UE casos de infecciones por bacterias totalmente o casi totalmente resistentes a los antibióticos, como por ejemplo, Enterobacteriaceae productoras de carbapenemasa (KPC; a menudo, *Klebsiella pneumoniae*) y Acinetobacter multirresistente. No existe ninguna opción de antibióterapia razonable para estos pacientes y el tratamiento suele basarse en antibióticos antiguos y tóxicos como la colistina.

Esta nueva tendencia es preocupante, pues hay muy pocos compuestos en fase de investigación y desarrollo que puedan tener actividad contra estas bacterias y que puedan llegar a comercializarse en los próximos 5 a 10 años.

La medicina moderna depende de la disponibilidad de antibióticos eficaces en caso de producirse una complicación infecciosa o como profilaxis de las infecciones. Si no existieran antibióticos eficaces, no serían posibles los cuidados intensivos, los trasplantes de órganos, la quimioterapia contra el cáncer, la asistencia de los bebés prematuros ni las intervenciones quirúrgicas habituales, como el implante de una prótesis de cadera o de rodilla.

Dado que los microorganismos resistentes a los antimicrobianos no responden al tratamiento, las infecciones causadas por estos microorganismos comportan un mayor riesgo de muerte y prolongan la duración de la enfermedad y de la hospitalización. Actualmente se desconoce la carga total de la resistencia a los antimicrobianos entre todas las enfermedades transmisibles enumeradas en la Decisión de la Comisión 2000/96/CE (incluidas las infecciones nosocomiales). Según las estimaciones preliminares, el número de muertes que pueden atribuirse directamente a infecciones intrahospitalarias causadas por las principales bacterias multirresistentes más frecuentes son entre un tercio y la mitad del número total de infecciones (véase más adelante; ECDC, datos preliminares).

La resistencia a los antimicrobianos constituye un problema mundial.
- Pese a que en los países en desarrollo mueren personas porque no tienen acceso al tratamiento antimicrobiano correcto, la resistencia derivada del uso inadecuado de los antimicrobianos es preocupante en todos los continentes.

- La Organización Mundial de la Salud (OMS) ha publicado una estrategia mundial y una serie de directrices para ayudar a los países a implantar sistemas para vigilar la resistencia a los antimicrobianos y adoptar intervenciones, por ejemplo, garantizar que los antibióticos sólo puedan adquirirse con receta médica.

Los viajeros que precisen asistencia hospitalaria durante su estancia en un país con una prevalencia elevada de resistencia a los antimicrobianos, dentro o fuera de la UE, y que más adelante sean repatriados a su país de origen, pueden estar colonizados o incluso infectados por bacterias multirresistentes a su regreso. Las personas que viajan a un país con una alta prevalencia de resistencia a los antimicrobianos también pueden estar colonizadas por bacterias multirresistentes a su regreso, aun cuando no hayan recibido asistencia sanitaria.

- See more at: http://ecdc.europa.eu/es/eaad/antibiotics-get-informed/factsheets/Pages/experts.aspx#sthash.u50Ps4mY.dpuf
Anexo 4.- Realización de RLB utilizando el programa SPSS.

Vamos a describir los pasos a realizar en el programa es SPSS para poner en práctica lo que hemos venido diciendo hasta este momento.

Analizar/regresión/logística binaria

- Introduciremos la variable dependiente dicotómica codificada como 0 y 1 (0 para los casos en que no se ha producido el evento y 1 para los casos en que sí se ha producido).

- En el cuadro de como variables introduciremos las variables independientes sean predictoras, confundentes o modificadoras de efecto.

- En el cuadro método se nos permite elegir entre tres opciones principales:
 - *Introducir*. Nos permite decidir qué variables se van a introducir o extraer del modelo.
 - *Adelante* es un método automático (por pasos) por medio del cual el programa introduce variables en el modelo empezando por las que tienen coeficientes de regresión más grandes, estadísticamente significativos.
 - *Atrás* es lo mismo que adelante pero introduce todos las covariables que se hayan seleccionado en el cuadro de diálogo y va eliminando las que no tienen significación estadística.

- También debemos especificar en el cuadro de diálogo principal que variables (covariables) son cualitativas o categóricas. Si se da el caso, presionaremos la pestaña *categórica*… y en su cuadro de diálogo seleccionamos las que cumplen el criterio. A continuación nos pide que especifiquemos cuál es el método de contraste (*indicador*, por defecto) y cuál es la categoría de referencia (*última*, por defecto). Si lo deseamos podemos clicar la pestaña cambiar.

- En el cuadro *Opciones* podemos obtener que el programa realice tareas interesantes:
- **Estadísticos y gráficos.** Disponemos de los siguientes cuadros:
 - **Gráficos de clasificación.** Se trata de un histograma de los valores actuales y pronosticados por el modelo para la variable dependiente.
 - **Bondad de ajuste de Hosmer-Lemeshow.** Constituye un método para evaluar el ajuste global del modelo, más robusto que el estadístico de bondad de ajuste tradicionalmente utilizado en la regresión logística, especialmente para los modelos con covariables continuas y los estudios con tamaño de muestras pequeños. Agrupa los casos en deciles de riesgo y compara la probabilidad observada con la probabilidad esperada dentro de cada decil.
 - **Listado de residuos por caso** nos facilitan los residuos no estandarizados, la probabilidad pronosticada y los grupos de pertenencia observado y pronosticado.
 - **Correlaciones de estimaciones** muestra la matriz de correlaciones de las estimaciones de los parámetros para los términos del modelo.
 - **Historial de iteraciones** nos facilita los coeficientes y el logaritmo de la verosimilitud en cada iteración del proceso de estimación de los parámetros.
 - **IC para la OR** proporciona el rango de valores que N% de las veces incluye el valor $e^{2,71828}$ elevado al valor del parámetro (coeficientes de regresión logística, B). Podemos introducir un valor entre 1 y 99 para cambiar el valor por defecto (95%). Los valores habituales son 90, 95 y 99. En el caso de que el valor verdadero del parámetro poblacional sea 0, los límites de confianza de $\text{Exp}(B)$ deben incluir el valor 1 (el valor nulo de la OR)
 - **En mostrar** podemos seleccionar si queremos que se muestren los estadísticos y los gráficos en cada paso o bien solo para el modelo final (en el último paso).
 - **En probabilidad para los pasos,** el programa nos permite controlar los criterios por los que las variables se introducen y
se eliminan de la ecuación. En concreto, podemos especificar los criterios para la entrada o para la salida de variables de tal modo que una variable se introduce en el modelo si la probabilidad de su estadístico de puntuación es menor que el valor de entrada y se elimina si la probabilidad es mayor que el valor de salida. La entrada debe ser menor que la salida.

- **En punto de corte para la clasificación**, podemos establecer el punto de corte para la clasificación de los casos. Los casos con valores pronosticados que han sobrepasado el punto de corte para la clasificación se clasifican como positivos (en ellos se cumpliría el evento), mientras que los aquellos con valores pronosticados menores que el punto de corte se clasifican como negativos (sin el evento). Para cambiarlos debemos elegir valores comprendidos entre 0,01 y 0,99.

- **En número máximo de iteraciones** se nos permite cambiar el número máximo de veces que el modelo itera antes de finalizar.

- **En incluir constante en el modelo** se nos permite indicar si el modelo debe incluir un término constante. Si lo desactivamos, el término constante será 0.

SALIDA DE RESULTADOS

En esta descripción vamos a utilizar el método **Adelante RV** que es un método automático por pasos, hacia adelante, que utilizará la prueba de la Razón de Verosimilitud para comprobar las covariables a incluir o excluir.

En primer lugar aparece un cuadro resumen con el número de casos introducidos, con los que hemos seleccionado para el análisis y los que han quedado excluidos (casos perdidos). Enseguida aparece una tabla que especifica la codificación de la variable dependiente (dicotómica). La variable dicotómica debe codificarse como 0 y 1 siendo importante que el valor 1 identifique la categoría de la variable que identifique el efecto producido (“muerto” o infección sí), para comprender mejor el coeficiente b_i de las variables independientes y de control: un coeficiente de regresión positivo nos indicará que la probabilidad de producirse el efecto se incrementa con la exposición X. A continuación aparecen tablas donde se muestra la codificación...
empleada en las variables independientes y de control. También nos señala la frecuencia absoluta de cada valor. Si en Definir Variables Categóricas hemos seleccionado en Contraste Indicador y en Categoría de referencia Última (se dan por defecto) la categoría más baja (cero) será la de referencia (la última para él SPSS).

Bloque 0: bloque inicial.

Lo primero se calcula la verosimilitud de un modelo. La verosimilitud L es un número muy pequeño (entre 0 y 1) por lo que se suele representar el logaritmo neperiano de la verosimilitud LL que es un número negativo, o -2 veces el logaritmo neperiano de la verosimilitud (-2LL) que es un número positivo. El estadístico -2 LL mide hasta qué punto un modelo se ajusta bien a los datos. Este resultado también se llama desviación. Cuanto más pequeño sea el valor, mejor será el ajuste (un modelo sin poder predictivo alguno asigna la probabilidad 0,5. Si n es el número de observaciones, \(L = 0,5n \), y \(LL = n \times \ln 0,5 \)).

Al pedir en Opciones el historial de iteraciones el ordenador nos muestra en resumen el proceso iterativo de estimación de los parámetros (en este caso \(b_0 \)). Nos dice el número de ciclos que ha necesitado para estimar correctamente el término constante. También nos muestra el valor del parámetro calculado (\(b_0 \)).

También nos muestra una tabla de clasificación similar a la empleada para valorar una prueba diagnóstica. Nos permite evaluar el ajuste del modelo de regresión (hasta ahora con un solo parámetro en la ecuación). Lo hace comparando los valores predichos con los valores observados. Por defecto se ha empleado un punto de corte de la probabilidad de Y para clasificar a los individuos de 0, 5. Esto significa que los individuos para los que la ecuación calcula una probabilidad < 0, 5 se clasifican como 0 (no producido el efecto) y aquellos en los que la probabilidad es \(\geq 0,5 \) se clasifican como 1 (se ha producido el efecto). En el porcentaje global nos informa del porcentaje que el modelo clasificar correctamente.

Aparece una nueva tabla: variables de en la ecuación. En ella se presenta el parámetro estimado B, su error estándar (ET) y la significación estadística con la prueba de Wald (Wald y Sig) (estadístico que sigue una ley Chi cuadrado con los gl que se ven debajo de la casilla gl. Por último aparece la estimación de la OR (Exp(B)).

También aparecen variables que no están en la ecuación. Nos facilita la
puntuación, los gl y la Sig. Si tiene significación estadística en el proceso automático por pasos se incorporaría de nuevo la ecuación. (Antiguamente el SPSS ofrecía una prueba denominada Chi Cuadrados Residual con un número de grados de libertad igual al número de variables no incluidas en el modelo. Si esta prueba era estadísticamente significativa se rechazaba la H_0 de nulidad del conjunto de coeficientes de regresión y el proceso debía continuar incorporándolas puesto que aportarían información al modelo)

Bloque 1. Método por pasos hacia adelante RV

Se inicia automáticamente un segundo paso (bloque 1). Sólo vamos a trabajar con una variable predictora.

En primer lugar aparece la tabla de historial de iteraciones.

Prueba ómnibus sobre los coeficientes del modelo. Esta tabla nos muestra una prueba Chi cuadrado que evalúa la hipótesis nula de que los coeficientes β de todos los términos (excepto la constante) incluidos en el modelo son cero. Éste estadístico es la diferencia del valor $-2 LL$ para el modelo sólo con la constante y el modelo $-2 LL$ para el modelo actual.

En la prueba ómnibus aparece en la columna de la izquierda las siguientes anotaciones:

- **PASO:** es la correspondiente al cambio de verosimilitud (de $-2LL$) entre pasos sucesivos en la construcción del modelo, contrastando la hipótesis nula de que los coeficientes de las variables añadidas en el último paso son cero.

- **Bloque:** es el cambio en $-2LL$ entre bloques de entrada sucesivos durante la construcción del modelo. Si como es habitual en la práctica se introducen las variables en un solo bloque, el Chi cuadrado del bloque es el mismo que Chi cuadrado del modelo.

- **Modelo:** es la diferencia entre el valor de $-2LL$ para el modelo sólo con la constante y el valor de $-2LL$ para el modelo actual.

Si hay significación estadística nos indica que el modelo con la nueva variable introducida mejora el ajuste de forma significativa con respecto a lo que teníamos

~ 385 ~
E programa proporciona otra tabla con RESUMEN DE LOS MODELOS.

En esta nueva tabla aparecen:

- **-2 log de la verosimilitud (-2LL)**. Mide hasta que punto un modelo se ajusta bien a los datos. También se le llama "desviación". Cuanto más pequeño sea el valor mejor será el ajuste.

- **La R cuadrado de Cox y Snell**. Es un coeficiente de determinación generalizado que se utiliza para estimar la proporción de varianza de la variable dependiente explicada por las variables predictoras. Se basa en la comparación del log de la verosimilitud (LL) para el modelo respecto al log de la verosimilitud (LL) para el modelo de línea base. Sus valores oscilan entre 0 y 1. Indica el tanto por ciento de la variación de la variable dependiente que explica la variable incluida en el modelo.

- **R cuadrado de Nagelkerke** que es una versión corregida de la R cuadrado de Cox y Snell. La R cuadrado de Cox y Snell tiene un valor máximo inferior a 1, incluso para un modelo perfecto. La R cuadrado de Nagelkerke corrige la escala del estadístico para cubrir el rango completo de 0 a 1.

Si se lo hemos indicado en opciones, aparece una prueba de ajuste global del modelo que se conoce como prueba de Hosmer y Lemeshow. Se trata de otra prueba para evaluar la bondad de ajuste de un modelo de regresión logística. Parte de la idea de que si el ajuste es bueno, un valor alto la probabilidad predicha (p) se asociará con el resultado 1 de la variable binomial dependiente, mientras que un valor bajo de p (próxima cero) corresponderá, en la mayoría de los casos, con el resultado $Y=0$. Se trata de calcular para cada observación del conjunto de datos las probabilidades de la variable dependiente que predice el modelo, ordenar las, agruparlas y calcular, a partir de ellas, las frecuencias esperadas y compararlas con las observadas mediante una prueba de Chi cuadrado.

Esta prueba de bondad de ajuste presenta algunas pegas: El estadístico de Hosmer y Lemeshow no se computa cuando por algunos grupos, los valores esperados o observados menos los esperados son muy pequeños (menores de 5). Por otra parte, lo que buscamos en esta prueba es que **no haya significación** (lo contrario de lo habitual). Por eso algunos proponen simplemente cotejar los valores observados y esperados mediante simple inspección y evaluar el grado de concordancia entre unos y otros a partir de sentido.
Siguiendo este razonamiento, para evaluar la ecuación de regresión y el modelo obtenido podemos construir una tabla de 2×2 clasificando a todos los individuos según la concordancia de los valores observados con los predichos o estimados por el modelo de forma similar a como se evalúan las pruebas diagnósticas. Una ecuación sin poder de clasificación alguno presentaría especificidad, sensibilidad y total de clasificación correctas del 50% (simple azar) un modelo podemos considerarlo aceptable si la especificidad y la sensibilidad tienen un nivel alto (al menos 75%).

En el ejemplo aparece una especificidad alta (100%) y una sensibilidad nula (0%). Es decir, clasifica malo a los individuos con el evento. Si solicitamos en opciones, gráficos de clasificación obtendremos una representación gráfica de lo que ocurre. Esto concuerda con la escasa capacidad explicativa que se ha detectado con los coeficientes de determinación y mejorará cuando se introduzcan nuevas variables en el modelo.

Para finalizar el programa muestra las variables que se quedarán en la ecuación, sus coeficientes de regresión con los correspondientes errores estándar, el valor del estadístico de Wald para evaluar la hipótesis nula ($\beta_i= 0$), la significación estadística asociada y el valor de la OR (exp(B)) con sus intervalos de confianza.

Con estos datos podemos construir la ecuación de regresión logística.

Por último nos muestra una evaluación de cuánto perdería el modelo obtenido si se elimina la variable incluida en este paso, ya que en los modelos automáticos de construcción del modelo por pasos el proceso evalúa la inclusión y la exclusión de variables. Es la tabla que presenta, para cada variable del modelo, los cambios en la verosimilitud si dicha variable se elimina. Si la significación estadística (Sig. del cambio) fuese mayor que el criterio de exclusión establecido, la variable se eliminaría del modelo en el paso siguiente.
Anexo 5.- Regresión de Cox: *Catéter arterial y ventilación mecánica* como variables principales.

Como comentamos en la página 238, hemos sometido a las variables *Catéter arterial y ventilación mecánica* al mismo proceso que a *Nutrición parenteral* porque eran variables que se mostraban importantes en la comparación individual de cada variable con IN, utilizando la regresión de Cox. Nos estamos refiriendo exclusivamente al proceso cirugía electiva de colon.

5.1.- Comenzaremos con **CATÉTER ARTERIAL**.

En las tablas CA 1, 2, 3, 4, 5, 6, 7 y 8 podemos observar las variables que presentan interacción.

CA.1. - **Interacción.**

Para conocer si las variables del modelo presentan interacción hay que compararlas de dos en dos (una de ellas será siempre la que queremos analizar para poder o no utilizarla como variable principal), introduciendo a la vez su término multiplicativo. **Si las dos variables y su término multiplicativo son significativos a la vez estamos ante el fenómeno de la interacción** y hay que introducir en el modelo las dos variables y el término multiplicativo.

Las variables que han presentado interacción, considerando a *Catéter arterial* como principal, son: *Tratamiento inmunodepresor, Catéter central, ASA, Laparoscopia, Ostomía, Tipo de drenaje y Lugar de aplicación de la profilaxis*. Puede verse el resumen en la tabla 4.3.1.4.

En las tablas siguientes mostramos los resultados, indicando cada variable.

Tratamiento inmunodepresor.

<table>
<thead>
<tr>
<th>Omnibus Tests of Model Coefficients(a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
</tr>
<tr>
<td>23819,801</td>
</tr>
<tr>
<td>Chi-square</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 24003,672
b Beginning Block Number 1. Method = Enter

~ 388 ~
Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7</td>
<td>.897</td>
<td>.064</td>
<td>194.000</td>
<td>1</td>
<td>.000</td>
<td>2.453</td>
<td>2.162-2.783</td>
</tr>
<tr>
<td>TotImunodeCod</td>
<td>.321</td>
<td>.104</td>
<td>9.504</td>
<td>1</td>
<td>.002</td>
<td>1.378</td>
<td>1.124-1.691</td>
</tr>
<tr>
<td>G7*TotImunodeCod</td>
<td>-.495</td>
<td>.169</td>
<td>8.615</td>
<td>1</td>
<td>.003</td>
<td>.610</td>
<td>.438-.848</td>
</tr>
</tbody>
</table>

G7: Catéter arterial.

Catéter central (D4).

Omnibus Tests of Model Coefficients

| -2 Log Likelihood Overall (score) Change From Previous Step Change From Previous Block Chi-square df. Sig. Chi-square df. Sig. Chi-square df. Sig. |
|-----------------|---------------------|-----------------|-----------------|-----------------|
| | Overall (score) | Change From Previous Step | Change From Previous Block |
| | Chi-square | df. | Sig. | Chi-square | df. | Sig. | Chi-square | df. | Sig. |
| 23760.629 | 278.486 | 3 | .000 | 243.043 | 3 | .000 | 243.043 | 3 | .000 |

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 24003.672

b Beginning Block Number 1. Method = Enter

Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7</td>
<td>.902</td>
<td>.105</td>
<td>74.127</td>
<td>1</td>
<td>.000</td>
<td>2.465</td>
<td>2.007-3.026</td>
</tr>
<tr>
<td>D4</td>
<td>.490</td>
<td>.060</td>
<td>67.321</td>
<td>1</td>
<td>.000</td>
<td>1.632</td>
<td>1.452-1.835</td>
</tr>
<tr>
<td>D4*G7</td>
<td>-.278</td>
<td>.128</td>
<td>4.725</td>
<td>1</td>
<td>.030</td>
<td>.757</td>
<td>.589-.973</td>
</tr>
</tbody>
</table>

D4: Catéter central.

G7: Catéter arterial.

ASA

Omnibus Tests of Model Coefficients

| -2 Log Likelihood Overall (score) Change From Previous Step Change From Previous Block Chi-square df. Sig. Chi-square df. Sig. Chi-square df. Sig. |
|-----------------|---------------------|-----------------|-----------------|-----------------|
| | Overall (score) | Change From Previous Step | Change From Previous Block |
| | Chi-square | df. | Sig. | Chi-square | df. | Sig. | Chi-square | df. | Sig. |
| 23699 604 | 232.108 | 3 | .000 | 194.053 | 3 | .000 | 194.053 | 3 | .000 |

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 23893.657

b Beginning Block Number 1. Method = Enter
Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G7</td>
<td>1.015</td>
<td>.096</td>
<td>112.291</td>
<td>1</td>
<td>.000</td>
<td>2.760</td>
<td>2.287 - 3.330</td>
</tr>
<tr>
<td>ASA</td>
<td>.264</td>
<td>.060</td>
<td>19.628</td>
<td>1</td>
<td>.000</td>
<td>1.302</td>
<td>1.159 - 1.463</td>
</tr>
<tr>
<td>ASA*G7</td>
<td>-.352</td>
<td>.123</td>
<td>8.232</td>
<td>1</td>
<td>.004</td>
<td>.703</td>
<td>.553 - .895</td>
</tr>
</tbody>
</table>

G7: Catéter arterial.

Omnibus Tests of Model Coefficients (a,b)

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-square</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>17029.337</td>
<td>178.405</td>
<td></td>
<td>.000</td>
</tr>
</tbody>
</table>

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 17185.023
b Beginning Block Number 1. Method = Enter

Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G7</td>
<td>.995</td>
<td>.113</td>
<td>77.193</td>
<td>1</td>
<td>.000</td>
<td>2.704</td>
<td>2.166 - 3.375</td>
</tr>
<tr>
<td>Laparoscopia</td>
<td>.413</td>
<td>.069</td>
<td>36.209</td>
<td>1</td>
<td>.000</td>
<td>1.512</td>
<td>1.321 - 1.730</td>
</tr>
<tr>
<td>G7*Laparoscopia</td>
<td>-.390</td>
<td>.144</td>
<td>7.400</td>
<td>1</td>
<td>.007</td>
<td>.677</td>
<td>.511 - .897</td>
</tr>
</tbody>
</table>

G7: Catéter arterial.

Omnibus Tests of Model Coefficients (a,b)

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-square</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>4531.086</td>
<td>67.156</td>
<td></td>
<td>.000</td>
</tr>
</tbody>
</table>

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 4586.860
b Beginning Block Number 1. Method = Enter
Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7</td>
<td>1.066</td>
<td>.165</td>
<td>41.920</td>
<td>1</td>
<td>.000</td>
<td>2.905</td>
<td>2.103</td>
<td>4.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostomía</td>
<td>.464</td>
<td>.133</td>
<td>12.206</td>
<td>1</td>
<td>.000</td>
<td>1.591</td>
<td>1.226</td>
<td>2.065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7*Ostomía</td>
<td>-.551</td>
<td>.259</td>
<td>4.535</td>
<td>1</td>
<td>.033</td>
<td>.576</td>
<td>.347</td>
<td>.957</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G7: Catéter arterial.

Tipo drenaje.

Omnibus Tests of Model Coefficients(a,b)

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-square</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>3848.340</td>
<td>40.666</td>
<td>3</td>
<td>.000</td>
</tr>
</tbody>
</table>

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 3881.817
b Beginning Block Number 1. Method = Enter

Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7</td>
<td>.899</td>
<td>.215</td>
<td>17.472</td>
<td>1</td>
<td>.000</td>
<td>2.458</td>
<td>1.612</td>
<td>3.747</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo de Drenaje</td>
<td>.682</td>
<td>.195</td>
<td>12.184</td>
<td>1</td>
<td>.000</td>
<td>1.978</td>
<td>1.349</td>
<td>2.900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7*Tipo de Drenaje</td>
<td>-.757</td>
<td>.341</td>
<td>4.943</td>
<td>1</td>
<td>.026</td>
<td>.469</td>
<td>.240</td>
<td>.914</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G7: Catéter arterial.

Lugar de administración de la profilaxis.

Omnibus Tests of Model Coefficients(a,b)

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-square</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>7986.397</td>
<td>148.564</td>
<td>3</td>
<td>.000</td>
</tr>
</tbody>
</table>

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 8119.593
b Beginning Block Number 1. Method = Enter
CA.2.- **Colinealidad**

Una de las formas de comprobar si existe colinealidad es verificar el comportamiento de -2LL y la significación de las dos variables y su término multiplicativo: consideramos que existe colinealidad cuando -2LL es muy significativa y ni las dos variables originales ni su producto son significativos.

Mostramos las variables en las que hemos encontrado colinealidad con *Catéter arterial*:

Sistema urinario cerrado.

Omnibus Tests of Model Coefficients(a,b)

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-square</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>23827,890</td>
<td>215,456</td>
<td>3</td>
<td>.000</td>
</tr>
</tbody>
</table>

\[a\] Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 24003,672
\[b\] Beginning Block Number 1. Method = Enter

Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>G7</td>
<td>.565</td>
<td>.105</td>
<td>29,089</td>
<td>1</td>
<td>.000</td>
<td>1,759</td>
<td>1,433</td>
</tr>
<tr>
<td>Lugar Admin. Profilaxis</td>
<td>-.600</td>
<td>.101</td>
<td>35,120</td>
<td>1</td>
<td>.000</td>
<td>.549</td>
<td>.450</td>
</tr>
<tr>
<td>G7*Lugar Adm Profilaxis</td>
<td>.668</td>
<td>.244</td>
<td>7,485</td>
<td>1</td>
<td>.006</td>
<td>1,951</td>
<td>1,209</td>
</tr>
</tbody>
</table>

G7: Catéter arterial.

C3: Sistema urinario cerrado.

G7: Catéter arterial.
Lavado intraoperatorio.

Omnibus Tests of Model Coefficients(a,b)

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square</td>
<td>df</td>
<td>Sig.</td>
<td>Chi-square</td>
</tr>
<tr>
<td>2382.012</td>
<td>15,074</td>
<td>.002</td>
<td>12,628</td>
</tr>
</tbody>
</table>

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 2394.640
b Beginning Block Number 1. Method = Enter

Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G7</td>
<td>1,259</td>
<td>1,058</td>
<td>1,417</td>
<td>1</td>
<td>.234</td>
<td>3,523</td>
<td>.443</td>
</tr>
<tr>
<td>Lavado Intraoperatorio</td>
<td>-.071</td>
<td>.344</td>
<td>.042</td>
<td>1</td>
<td>.837</td>
<td>.932</td>
<td>.475</td>
</tr>
<tr>
<td>G7*Lavado Intraoperatorat</td>
<td>-.643</td>
<td>1.072</td>
<td>.360</td>
<td>1</td>
<td>.549</td>
<td>.526</td>
<td>.064</td>
</tr>
</tbody>
</table>

G7: Catéter arterial.

Existe colinealidad entre Nutrición parenteral y las variables Sistema urinario cerrado y Lavado intraoperatorio.

Ninguna de las dos son estadísticamente significativas cuando realizamos la regresión de Cox individual con INI, ni son variables de confusión, por lo que no las incluimos en el modelo.

CA.3.- Confusión\(^{(11)}\).

Recordemos que si en un modelo de Cox introducimos una nueva variable independiente y su coeficiente (el de esa variable independiente) cambia significativamente respecto al valor que se obtuvo en el modelo simple o se anula, o si en ese modelo múltiple cambia significativamente el coeficiente de alguna de las variables que ya estaban en el modelo, puede que estemos ante interacción o confusión. Para ello vamos a utilizar modelos en los que mantenemos la variable principal (Catéter arterial) e iremos introduciendo, una a una, las variables independientes. Así comprobaremos qué ocurre con el coeficiente de regresión B y lo compararemos con el obtenido en la Regresión de Cox individual; y las variaciones del coeficiente de regresión B de la variable principal al que compararemos con el suyo.

~ 393 ~
individual (0,813). Como ya hemos estudiado la interacción, debemos comprobar que se cumplen o no los criterios de confusión (Tabla 4.3.1.4):

- Que las variables están asociadas entre sí.
- Que ambas están asociadas con la variable dependiente.
- Que la variable “sospechosa” no es un eslabón causal entre las otras dos variables.

Lo comprobamos en nuestro modelo. En la siguiente tabla presentamos la información obtenida. Hemos preferido sintetizarla así para que sea más cómoda la visión de conjunto, en vez de hacerlo en varias tablas:

<table>
<thead>
<tr>
<th>Confusión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Sexo</td>
</tr>
<tr>
<td>Edad</td>
</tr>
<tr>
<td>Enfermedad de base</td>
</tr>
<tr>
<td>DM</td>
</tr>
<tr>
<td>Inmunodepresión</td>
</tr>
<tr>
<td>Insuficiencia Renal Crónica</td>
</tr>
<tr>
<td>Desnutrición</td>
</tr>
<tr>
<td>Drenaje</td>
</tr>
<tr>
<td>Tratamiento Inmunodepresor</td>
</tr>
<tr>
<td>Estancia en UCI</td>
</tr>
<tr>
<td>Sistema Urinario abierto</td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
</tr>
<tr>
<td>Catéter Central</td>
</tr>
<tr>
<td>Catéter Central Inserción Periférica</td>
</tr>
<tr>
<td>Catéter periférico</td>
</tr>
<tr>
<td>Catéter arterial</td>
</tr>
<tr>
<td>Nutrición parenteral</td>
</tr>
<tr>
<td>Ventilación mecánica</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
</tr>
<tr>
<td>Procedimiento invasivo</td>
</tr>
<tr>
<td>Tipo de intervención</td>
</tr>
<tr>
<td>Tipo de herida</td>
</tr>
<tr>
<td>ASA</td>
</tr>
<tr>
<td>Preparación para intervención</td>
</tr>
<tr>
<td>profilaxis antibiótica</td>
</tr>
<tr>
<td>Laparoscopia</td>
</tr>
<tr>
<td>Duración de la intervención</td>
</tr>
<tr>
<td>Empleo de Aros</td>
</tr>
<tr>
<td>Transfusión intraoperatoria</td>
</tr>
<tr>
<td>Cambio (guantes, mascarilla... etc.)</td>
</tr>
<tr>
<td>Número de Cirujanos</td>
</tr>
<tr>
<td>Ostomía</td>
</tr>
<tr>
<td>Tipo de drenaje</td>
</tr>
<tr>
<td>Perforación intraoperatoria</td>
</tr>
<tr>
<td>Anastomosis</td>
</tr>
<tr>
<td>Lavado intraoperatorio</td>
</tr>
<tr>
<td>Lugar aplicación profilaxis</td>
</tr>
</tbody>
</table>
Han presentado confusión con Catéter arterial las variables señaladas con Sí en la anterior Tabla, columna 9.

CA.4.- Variables dependientes del tiempo.

Como ya hemos comentado anteriormente entre las variables (covariables) estudiadas ninguna es variable dependientes del tiempo.

CA.5.- Variables en el modelo.

Una vez comprobadas todas las condiciones y verificadas las peculiaridades de nuestras variables y partiendo de que todas tienen relevancia clínica que viene avalada por lo publicado por otros autores y por nuestra propia experiencia, vamos a establecer las pautas de inclusión en el modelo:

1º.- Incluiremos las variables significativas individualmente, es decir, las que fueron estadísticamente significativas al realizar una regresión de Cox individual: Sexo, Edad, Enfermedad de base, DM, IRC, Drenaje, Tratamiento inmunodepresor, Estancia en UCI, Catéter Central, Catéter Central de Inserción Periférica, Catéter arterial, Nutrición parenteral, Ventilación mecánica, Sonda nasogástrica, Procedimiento invasivo, Tipo de intervención, Tipo de herida, ASA, Profilaxis quirúrgica, Laparoscopia, Duración de la intervención, Ostomía, Tipo de drenaje, Perforación intraoperatoria, Anastomosis y Lugar de administración de la profilaxis.

2º.- Variables que presentan interacción y sus términos multiplicativos. Las variables ya están introducidas en el apartado anterior por lo que sólo indicamos los términos multiplicativos: Catéter arterial*Tratamiento inmunodepresor, Catéter arterial*Catéter central, Catéter arterial*ASA, Catéter arterial*Laparoscopia, Catéter arterial*Ostomía, Catéter arterial*Tipo de drenaje y Catéter arterial*Lugar de aplicación de la profilaxis.
3º.- Variables que presentan confusión (Coeficiente \(\beta \) con variación > 10% de la variable a estudio o de la variable principal y cumplimiento de los criterios de confusión: asociación con la variable Catéter arterial y la variable \(IN \) y no ser elabón causal) y que no han sido incluidas antes: Han quedado todas incluidas por los criterios de los anteriores apartados.

4º.- No introducimos en el modelo las variables Sistema urinario cerrado y Lavado intraoperatorio, que han presentado colinealidad, porque ninguna de las dos son estadísticamente significativas cuando realizamos la regresión de Cox individual con \(IN \), ni son variables de confusión.

CA.6.- Realización del análisis con SPSS.

Introducidas las variables especificadas en el apartado anterior (covariables) en un modelo de Regresión de Cox con la variable \(IN \) como dependiente, hemos obtenido los siguientes resultados:

Omnibus Tests of Model Coefficients(a,b)

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-square</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>3319,949</td>
<td>196,258</td>
<td>31</td>
<td>.000</td>
</tr>
</tbody>
</table>

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 3470,915
b Beginning Block Number 1. Method = Enter

Variables in the Equation(b)

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>Sexo</td>
<td>.121</td>
<td>.139</td>
<td>.755</td>
<td>1</td>
<td>.385</td>
<td>1.129</td>
<td>.859</td>
</tr>
<tr>
<td>Edad</td>
<td>.139</td>
<td>.137</td>
<td>1.027</td>
<td>1</td>
<td>.311</td>
<td>1.149</td>
<td>.878</td>
</tr>
<tr>
<td>Enfer de Base</td>
<td>.245</td>
<td>.197</td>
<td>1.554</td>
<td>1</td>
<td>.213</td>
<td>1.278</td>
<td>.869</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>.262</td>
<td>.151</td>
<td>3.024</td>
<td>1</td>
<td>.082</td>
<td>1.299</td>
<td>.967</td>
</tr>
<tr>
<td>Insuficiencia Renal Crónica</td>
<td>-.201</td>
<td>.341</td>
<td>.348</td>
<td>1</td>
<td>.555</td>
<td>.818</td>
<td>.419</td>
</tr>
<tr>
<td>Tii Inmunodepresor</td>
<td>.112</td>
<td>.291</td>
<td>.147</td>
<td>1</td>
<td>.701</td>
<td>1.118</td>
<td>.632</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>.942</td>
<td>.209</td>
<td>20.387</td>
<td>1</td>
<td>.000</td>
<td>2.565</td>
<td>1.704</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>.337</td>
<td>.171</td>
<td>3.882</td>
<td>1</td>
<td>.049</td>
<td>1.401</td>
<td>1.002</td>
</tr>
<tr>
<td>Catéter Central Ins Perif</td>
<td>.031</td>
<td>.170</td>
<td>.033</td>
<td>1</td>
<td>.856</td>
<td>1.031</td>
<td>.740</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>-1.072</td>
<td>.709</td>
<td>2.285</td>
<td>1</td>
<td>.131</td>
<td>.342</td>
<td>.085</td>
</tr>
<tr>
<td>Nutrición parenteral</td>
<td>.395</td>
<td>.159</td>
<td>6.192</td>
<td>1</td>
<td>.013</td>
<td>1.484</td>
<td>1.087</td>
</tr>
<tr>
<td>Ventilación mecánica</td>
<td>.084</td>
<td>.476</td>
<td>.031</td>
<td>1</td>
<td>.860</td>
<td>1.088</td>
<td>.427</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>.029</td>
<td>.154</td>
<td>.037</td>
<td>1</td>
<td>.848</td>
<td>1.030</td>
<td>.762</td>
</tr>
<tr>
<td>Procedimiento Invasivo</td>
<td>.127</td>
<td>.157</td>
<td>.656</td>
<td>1</td>
<td>.418</td>
<td>1.136</td>
<td>.835</td>
</tr>
<tr>
<td>Tipo Intervención</td>
<td>-.421</td>
<td>.352</td>
<td>1.426</td>
<td>1</td>
<td>.232</td>
<td>.656</td>
<td>.329</td>
</tr>
</tbody>
</table>

~ 396 ~
De acuerdo con Álvarez\(^{(11)}\) vamos a plantear un nuevo modelo con las variables significativas del anterior análisis. Los resultados pueden observarse en las siguientes tablas.

Omnibus Tests of Model Coefficients\((a,b)\)

<table>
<thead>
<tr>
<th>Omnibus Tests of Model Coefficients((a,b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>3753,177</td>
</tr>
</tbody>
</table>

\(a\) Beginning Block Number 0. Initial Log Likelihood function: -2 Log likelihood: 3860.468
\(b\) Beginning Block Number 1. Method = Enter

Variables in the Equation

<table>
<thead>
<tr>
<th>Variables in the Equation</th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>.640</td>
<td>.168</td>
<td>14,515</td>
<td>1</td>
<td>.000</td>
<td>1.896</td>
<td>1.364, 2.634</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>.304</td>
<td>.136</td>
<td>4,974</td>
<td>1</td>
<td>.026</td>
<td>1.355</td>
<td>1.037, 1.770</td>
</tr>
<tr>
<td>Nutrición parenteral</td>
<td>.511</td>
<td>.135</td>
<td>14,231</td>
<td>1</td>
<td>.000</td>
<td>1.666</td>
<td>1.278, 2.173</td>
</tr>
<tr>
<td>PerforaciónCod</td>
<td>.464</td>
<td>.195</td>
<td>5,645</td>
<td>1</td>
<td>.018</td>
<td>1.590</td>
<td>1.085, 2.330</td>
</tr>
<tr>
<td>Lugar Administración ProfCod</td>
<td>-.181</td>
<td>.157</td>
<td>1,322</td>
<td>1</td>
<td>.250</td>
<td>.834</td>
<td>.613, 1.136</td>
</tr>
<tr>
<td>G7*Lugar Administración Prof</td>
<td>.515</td>
<td>.259</td>
<td>3,956</td>
<td>1</td>
<td>.047</td>
<td>1.673</td>
<td>1.008, 2.777</td>
</tr>
</tbody>
</table>

\(G7\): Catéter arterial.
Con las variables significativas del modelo anterior planteamos otro modelo de Regresión de Cox. En las tablas siguientes pueden verse la variación de -2LL y su significación estadística y los resultados del análisis. Ahora todas las variables que quedan en el modelo son significativas.

Omnibus Tests of Model Coefficients(a,b)

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-square</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>3835,634</td>
<td>131,183</td>
<td>4</td>
<td>.000</td>
</tr>
</tbody>
</table>

* a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 3942,238
* b Beginning Block Number 1. Method = Enter

Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>.784</td>
<td>.144</td>
<td>29,707</td>
<td>1</td>
<td>.000</td>
<td>2,191</td>
<td>1,652</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>.310</td>
<td>.133</td>
<td>5,420</td>
<td>1</td>
<td>.020</td>
<td>1,363</td>
<td>1,050</td>
</tr>
<tr>
<td>Nutrición parenteral</td>
<td>.583</td>
<td>.129</td>
<td>20,431</td>
<td>1</td>
<td>.000</td>
<td>1,792</td>
<td>1,391</td>
</tr>
<tr>
<td>Perforación</td>
<td>.541</td>
<td>.189</td>
<td>8,212</td>
<td>1</td>
<td>.004</td>
<td>1,718</td>
<td>1,186</td>
</tr>
</tbody>
</table>

CA.7.- Modelo.

En el siguiente recuadro exponemos, de la forma más simplificada posible, la fórmula práctica para realizar la regresión de Cox.

\[
h(t; x_1, x_2, ..., x_k) = h_0(t)e^{\beta_1x_1 + \beta_2x_2 + ... + \beta_kx_k}
\]

\(h_0(t) = \text{riesgo base}\) y corresponde al riesgo de contraer IN cuando todas las variables tienen valor 0. Esta parte de la fórmula depende del tiempo. La otra parte \(e^{\beta_1x_1 + \beta_2x_2 + ... + \beta_kx_k}\) depende únicamente de las demás variables.

\(\epsilon = \text{número e (2,71828)}\)
No mostramos el resultado de la aplicación de la fórmula porque no se cumplen las condiciones de bondad de ajuste con las residuos de Schoenfeld, como puede observarse en el siguiente apartado CA8. Lo comentamos en el capítulo Discusión.

CA.8.- **Bondad de ajuste.**

Para completar el apartado de resultados en cirugía electiva de colon vamos a comprobar la bondad de ajuste de las variables cuyos coeficientes de regresión B han formado parte de la fórmula final.

En el apartado 3.4.3.6 de Material, sujetos y métodos hacemos una descripción de los métodos de bondad de ajuste existentes para regresión de Cox. Hemos elegido los dos que consideramos que son más adecuados para nuestra investigación:

- Significación estadística de la variación de -2LL: Δ_{-2LL}
- Análisis de residuos de Schoenfeld\(^{(266)}\)

1.- Encontramos $\Delta_{-2LL} = 131,183$. Utilizando la prueba χ^2, para 4 gr, obtenemos $p<0,001$. Concluimos que **hay significación estadística**.

2.- Análisis de residuos. Como en cualquier modelo de regresión se verifica el modelo analizando los residuos, en nuestro caso, los de Schoenfeld\(^{(266)}\). Estos residuos son los más efectivos en cuanto a detectar anomalías para cada una de las variables que intervienen en el modelo. En el caso de los residuos de Schoenfeld tenemos un residuo para cada variable y para cada paciente, es decir que si tenemos un modelo de Cox con tres factores pronóstico se calcularán 3 residuos de Schoenfeld por paciente. Estos residuos valen cero para las observaciones incompletas, por lo que para facilitar su interpretación se suelen presentar en las salidas de ordenador sólo para los pacientes en los que se haya producido el evento (IN en nuestro caso). Es posible modificar estos residuos con el fin de que no valgan cero para las observaciones incompletas, obteniéndose entonces los denominados **residuos Schoenfeld corregidos o escalados**\(^{(266,512)}\). Lo comprobamos gráficamente. En las gráficas que mostramos a continuación se representan las correspondientes a la variables estadísticamente significativas.
5.2.- Realizaremos las mismas pruebas con **VENTILACIÓN MECÁNICA**.

En las tablas siguientes podemos observar las variables que presentan interacción.

VM1.- **Interacción**.

Para conocer si las variables del modelo presentan interacción hay que compararlas de dos en dos (una de ellas será siempre la que queremos analizar para poder o no utilizarla como variable principal), introduciendo a la vez su término multiplicativo. **Si las dos variables y su término multiplicativo son significativos a la vez estamos ante el fenómeno de la interacción** y hay que introducir en el modelo las dos variables y el término multiplicativo.

Las variables que han presentado interacción, considerando a **Ventilación mecánica** como variable principal, son: **Tratamiento inmunodepresor, Estancia en UCI, Nutrición parenteral, Sonda nasogástrica, Laparoscopia y Ostomía**. Pueden verse los resultados en las **tablas** que mostramos a continuación para cada variable que presenta interacción con **Ventilación mecánica**.

Tratamiento inmunodepresor.

<table>
<thead>
<tr>
<th>Omnibus Tests of Model Coefficients(a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
</tr>
<tr>
<td>Overall (score)</td>
</tr>
<tr>
<td>Chi-square</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>23864,782</td>
</tr>
</tbody>
</table>

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 24003,672

b Beginning Block Number 1. Method = Enter
Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>I9</td>
<td>1.394</td>
<td>.108</td>
<td>166.379</td>
<td>1</td>
<td>.000</td>
<td>4.030</td>
<td>3.261</td>
<td>4.980</td>
<td></td>
</tr>
<tr>
<td>Tto Inmunodepresor</td>
<td>.295</td>
<td>.087</td>
<td>11.355</td>
<td>1</td>
<td>.001</td>
<td>1.343</td>
<td>1.131</td>
<td>1.594</td>
<td></td>
</tr>
<tr>
<td>I9*Tto Inmunodepresor</td>
<td>-.642</td>
<td>.240</td>
<td>7.160</td>
<td>1</td>
<td>.007</td>
<td>.527</td>
<td>.329</td>
<td>.842</td>
<td></td>
</tr>
</tbody>
</table>

I9: Ventilación mecánica.

Estancia en UCI (A1)

Omnibus Tests of Model Coefficients(a,b)

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-square</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>Overall (score)</td>
<td>23712.582</td>
<td>392.270</td>
<td>.000</td>
</tr>
</tbody>
</table>

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 24003.672
b Beginning Block Number 1. Method = Enter

Nutrición parenteral (H8)

Omnibus Tests of Model Coefficients(a,b)

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-square</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>Overall (score)</td>
<td>23673.064</td>
<td>414.507</td>
<td>.000</td>
</tr>
</tbody>
</table>

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 24003.672
b Beginning Block Number 1. Method = Enter
Variables in the Equation

<table>
<thead>
<tr>
<th>Variables</th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I9</td>
<td>2.650</td>
<td>.412</td>
<td>41.426</td>
<td>1</td>
<td>.000</td>
<td>14.154</td>
<td>6.316</td>
</tr>
<tr>
<td>J10</td>
<td>.396</td>
<td>.060</td>
<td>44.095</td>
<td>1</td>
<td>.000</td>
<td>1.486</td>
<td>1.322</td>
</tr>
<tr>
<td>B*J10</td>
<td>-1.525</td>
<td>.424</td>
<td>12.940</td>
<td>1</td>
<td>.000</td>
<td>.218</td>
<td>.095</td>
</tr>
</tbody>
</table>

Sonda nasogástrica (J10).

Omnibus Tests of Model Coefficients(a,b)

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-square</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>23826.059</td>
<td>269.990</td>
<td>3</td>
<td>.000</td>
</tr>
</tbody>
</table>

I9: Ventilación mecánica; J10: Sonda nasogástrica.

Laparoscopia.

Omnibus Tests of Model Coefficients(a,b)

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-square</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>17051.967</td>
<td>185.465</td>
<td>3</td>
<td>.000</td>
</tr>
</tbody>
</table>

~ 402 ~
Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I9</td>
<td>1.762</td>
<td>,192</td>
<td>84,629</td>
<td>1</td>
<td>,000</td>
<td>5.824</td>
<td>4.001 - 8.478</td>
</tr>
<tr>
<td>Laparoscopia</td>
<td>,426</td>
<td>,062</td>
<td>46,603</td>
<td>1</td>
<td>,000</td>
<td>1.531</td>
<td>1.355 - 1.730</td>
</tr>
<tr>
<td>I9*Laparoscopia</td>
<td>- ,921</td>
<td>,237</td>
<td>15,075</td>
<td>1</td>
<td>,000</td>
<td>,398</td>
<td>,250 - ,634</td>
</tr>
</tbody>
</table>

I9: Ventilación mecánica

Omnibus Tests of Model Coefficients

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-square</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>4550.417</td>
<td>56,326</td>
<td>3</td>
<td>,000</td>
</tr>
</tbody>
</table>

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 4586.860
b Beginning Block Number 1. Method = Enter

Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I9</td>
<td>1.878</td>
<td>,341</td>
<td>30,320</td>
<td>1</td>
<td>,000</td>
<td>6.537</td>
<td>3.351 - 12.754</td>
</tr>
<tr>
<td>Ostomía</td>
<td>,470</td>
<td>,116</td>
<td>16,344</td>
<td>1</td>
<td>,000</td>
<td>1.600</td>
<td>1.274 - 2.009</td>
</tr>
<tr>
<td>I9*Ostomía</td>
<td>-1,223</td>
<td>,524</td>
<td>5,460</td>
<td>1</td>
<td>,019</td>
<td>,294</td>
<td>,105 - ,821</td>
</tr>
</tbody>
</table>

I9: Ventilación mecánica

VM2.- Colinealidad.

Una de las formas de comprobar si existe colinealidad es verificar el comportamiento de -2LL y la significación de las dos variables y su término multiplicativo: consideramos que existe colinealidad cuando -2LL es muy significativa y ni las dos variables originales ni su producto son significativos.

No hemos encontrado colinealidad de ninguna variable con Ventilación mecánica.
VM3.- **Confusión** *(11)*.

Recordemos que si en un modelo de Cox introducimos una nueva variable independiente y su coeficiente (el de esa variable independiente) cambia significativamente respecto al valor que se obtuvo en el modelo simple o se anula, o si en ese modelo múltiple cambia significativamente el coeficiente de alguna de las variables que ya estaban en el modelo, puede que estemos ante interacción o confusión. Para ello vamos a utilizar modelos en los que mantendremos la variable principal (*Sonda nasogástrica*) e iremos introduciendo, una a una, las variables independientes. Así comprobaremos qué ocurre con el coeficiente de regresión B y lo compararemos con el obtenido en la Regresión de Cox individual; y las variaciones del coeficiente de regresión B de la variable principal al que comparamos con el suyo individual (1,280). Como ya hemos estudiado la interacción, debemos comprobar que se cumplen o no los criterios de confusión:

- Que las variables están asociadas entre sí.
- Que ambas están asociadas con la variable dependiente.
- Que la variable “sospechosa” no es un eslabón causal entre las otras dos variables.

Lo comprobamos en nuestro modelo (*Tabla 4.3.1.4*). Esta tabla sintetiza mucha información. Hemos preferido presentarlo así para que sea más cómoda la visión de conjunto, en vez de hacerlo en varias tablas:

<table>
<thead>
<tr>
<th>Confusión</th>
<th>CB1</th>
<th>CB2</th>
<th>CB3</th>
<th>v1</th>
<th>v2</th>
<th>χ²</th>
<th>Wald</th>
<th>Confusión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td>0,298</td>
<td>0,273</td>
<td>1,255</td>
<td>No</td>
<td>No</td>
<td>0,001</td>
<td>0,000</td>
<td>No</td>
</tr>
<tr>
<td>Edad</td>
<td>0,192</td>
<td>0,164</td>
<td>1,260</td>
<td>Sí</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Sí</td>
</tr>
<tr>
<td>Enfermedad de base</td>
<td>0,511</td>
<td>0,478</td>
<td>1,210</td>
<td>No</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>No</td>
</tr>
<tr>
<td>DM</td>
<td>0,200</td>
<td>0,277</td>
<td>1,306</td>
<td>Sí</td>
<td>No</td>
<td>0,916</td>
<td>0,001</td>
<td>No*</td>
</tr>
<tr>
<td>Inmunodepresión</td>
<td>-0,120</td>
<td>0,219</td>
<td>1,300</td>
<td>Sí</td>
<td>No</td>
<td>0,712</td>
<td>0,186</td>
<td>No**</td>
</tr>
<tr>
<td>Insuficiencia Renal Crónica</td>
<td>0,300</td>
<td>0,262</td>
<td>1,276</td>
<td>Sí</td>
<td>No</td>
<td>0,000</td>
<td>0,035</td>
<td>Sí</td>
</tr>
<tr>
<td>Desnutrición</td>
<td>0,244</td>
<td>0,207</td>
<td>1,272</td>
<td>Sí</td>
<td>No</td>
<td>0,025</td>
<td>0,489</td>
<td>No***</td>
</tr>
<tr>
<td>Drenaje</td>
<td>0,278</td>
<td>0,215</td>
<td>1,263</td>
<td>Sí</td>
<td>No</td>
<td>0,000</td>
<td>0,008</td>
<td>Sí</td>
</tr>
<tr>
<td>Tratamiento Inmunodepresor</td>
<td>0,334</td>
<td>0,197</td>
<td>1,243</td>
<td>Sí</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Sí</td>
</tr>
<tr>
<td>Estancia en UCI</td>
<td>0,869</td>
<td>0,742</td>
<td>0,749</td>
<td>Sí</td>
<td>Sí</td>
<td>0,000</td>
<td>0,000</td>
<td>Sí</td>
</tr>
<tr>
<td>Sistema Urinario abierto</td>
<td>0,399</td>
<td>-0,439</td>
<td>1,299</td>
<td>No</td>
<td>No</td>
<td>0,092</td>
<td>0,579</td>
<td>No</td>
</tr>
<tr>
<td>Sistema Urinario cerrado</td>
<td>-0,242</td>
<td>-0,243</td>
<td>1,286</td>
<td>No</td>
<td>No</td>
<td>0,064</td>
<td>0,400</td>
<td>No</td>
</tr>
<tr>
<td>Catéter Central</td>
<td>0,574</td>
<td>0,481</td>
<td>1,072</td>
<td>Sí</td>
<td>Sí</td>
<td>0,000</td>
<td>0,000</td>
<td>Sí</td>
</tr>
<tr>
<td>Catéter Central Inserción Periférica</td>
<td>0,099</td>
<td>0,106</td>
<td>1,273</td>
<td>No</td>
<td>No</td>
<td>0,048</td>
<td>0,045</td>
<td>No</td>
</tr>
<tr>
<td>Catéter periférico</td>
<td>-0,358</td>
<td>-0,059</td>
<td>1,281</td>
<td>Sí</td>
<td>No</td>
<td>0,330</td>
<td>0,705</td>
<td>No**</td>
</tr>
<tr>
<td>Catéter arterial</td>
<td>0,859</td>
<td>0,702</td>
<td>0,898</td>
<td>Sí</td>
<td>Sí</td>
<td>0,000</td>
<td>0,000</td>
<td>Sí</td>
</tr>
<tr>
<td>Nutrición parenteral</td>
<td>0,813</td>
<td>0,769</td>
<td>0,997</td>
<td>Sí</td>
<td>Sí</td>
<td>0,000</td>
<td>0,000</td>
<td>Sí</td>
</tr>
<tr>
<td>Ventilación mecánica</td>
<td>1,280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Si</td>
</tr>
<tr>
<td>Sonda nasogástrica</td>
<td>0,446</td>
<td>0,381</td>
<td>1,171</td>
<td>Sí</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Sí</td>
</tr>
<tr>
<td>Procedimiento invasivo</td>
<td>-0,081</td>
<td>-0,093</td>
<td>1,280</td>
<td>Sí</td>
<td>No</td>
<td>0,298</td>
<td>0,028</td>
<td>No*</td>
</tr>
<tr>
<td>Tipo de intervención</td>
<td>-0,338</td>
<td>-0,325</td>
<td>1,269</td>
<td>No</td>
<td>No</td>
<td>0,046</td>
<td>0,001</td>
<td>No</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Tipo de herida</td>
<td>0,288</td>
<td>0,294</td>
<td>1,272</td>
<td>No</td>
<td>No</td>
<td>0,010</td>
<td>0,000</td>
<td>No</td>
</tr>
<tr>
<td>ASA</td>
<td>0,309</td>
<td>0,268</td>
<td>1,239</td>
<td>Si</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>Sí</td>
</tr>
<tr>
<td>Preparación para intervención</td>
<td>0,030</td>
<td>-0,052</td>
<td>1,287</td>
<td>Sí</td>
<td>No</td>
<td>0,031</td>
<td>0,604</td>
<td>No***</td>
</tr>
<tr>
<td>Profilaxis antibiótica</td>
<td>0,415</td>
<td>0,573</td>
<td>1,285</td>
<td>Sí</td>
<td>No</td>
<td>0,235</td>
<td>0,017</td>
<td>No*</td>
</tr>
<tr>
<td>Laparoscopia</td>
<td>0,447</td>
<td>0,373</td>
<td>1,087</td>
<td>Sí</td>
<td>Sí</td>
<td>0,000</td>
<td>0,000</td>
<td>Sí</td>
</tr>
<tr>
<td>Duración de la intervención</td>
<td>0,197</td>
<td>0,186</td>
<td>1,262</td>
<td>No</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>No</td>
</tr>
<tr>
<td>Empleo de Aros</td>
<td>0,361</td>
<td>0,238</td>
<td>1,210</td>
<td>Sí</td>
<td>No</td>
<td>0,444</td>
<td>0,137</td>
<td>No**</td>
</tr>
<tr>
<td>Transfusión intraoperatoria</td>
<td>-0,401</td>
<td>-0,190</td>
<td>1,396</td>
<td>Sí</td>
<td>No</td>
<td>0,046</td>
<td>0,677</td>
<td>No***</td>
</tr>
<tr>
<td>Cambio (guantes, mascarilla,... etc.)</td>
<td>-0,094</td>
<td>-0,058</td>
<td>1,154</td>
<td>Sí</td>
<td>No</td>
<td>0,141</td>
<td>0,637</td>
<td>No**</td>
</tr>
<tr>
<td>Número de Cirujanos</td>
<td>0,237</td>
<td>0,287</td>
<td>1,698</td>
<td>Sí</td>
<td>Sí</td>
<td>0,424</td>
<td>0,405</td>
<td>No**</td>
</tr>
<tr>
<td>Ostomía</td>
<td>0,480</td>
<td>0,413</td>
<td>1,196</td>
<td>Sí</td>
<td>No</td>
<td>0,011</td>
<td>0,000</td>
<td>Sí</td>
</tr>
<tr>
<td>Tipo de drenaje</td>
<td>0,760</td>
<td>0,728</td>
<td>1,640</td>
<td>No</td>
<td>Sí</td>
<td>0,392</td>
<td>0,000</td>
<td>No*</td>
</tr>
<tr>
<td>Perforación intraoperatoria</td>
<td>0,487</td>
<td>0,443</td>
<td>1,548</td>
<td>No</td>
<td>Sí</td>
<td>0,548</td>
<td>0,019</td>
<td>No*</td>
</tr>
<tr>
<td>Anastomosis</td>
<td>-0,269</td>
<td>-0,249</td>
<td>1,326</td>
<td>No</td>
<td>No</td>
<td>0,417</td>
<td>0,011</td>
<td>No</td>
</tr>
<tr>
<td>Lavado intraoperatorio</td>
<td>-0,026</td>
<td>-0,050</td>
<td>1,457</td>
<td>Sí</td>
<td>Sí</td>
<td>0,255</td>
<td>0,672</td>
<td>No**</td>
</tr>
<tr>
<td>Lugar aplicación profilaxis</td>
<td>-0,752</td>
<td>-0,710</td>
<td>1,169</td>
<td>No</td>
<td>No</td>
<td>0,000</td>
<td>0,000</td>
<td>No</td>
</tr>
</tbody>
</table>

CB1: Coeficiente B de Regresión de cada variable, de forma independiente.
CB2: Coeficiente B de Regresión de cada variable con Ventilación mecánica como variable principal.
CB3: Coeficiente B de Regresión de la variable principal en el modelo con la variable de esa fila.
V1: % de variación de CB2 respecto a CB1.
V2: % de variación de CB3 respecto a su coeficiente B de Regresión individual con \(IN (0,813) \)
X²: \(p \) de significación de cada variable con Ventilación mecánica.
Wald: Significación (Wald) de cada variable con \(IN \) con Regresión de Cox.
Confusión: No: % de variación de CB2 y CB < 10%; No*: No significación estadística con Ventilación mecánica; No**: No significación estadística ni con Ventilación mecánica ni con \(IN \); No***: No sig. estadística con \(IN \).

Han presentado confusión con Ventilación mecánica las variables señaladas con Sí en la anterior Tabla, columna 9.

VM4.- Variables dependientes del tiempo.

Ninguna de las variables estudiadas es dependiente del tiempo.

VM5.- Variables en el modelo.

Una vez comprobadas todas las condiciones y verificadas las peculiaridades de nuestras variables y partiendo de que todas tienen relevancia clínica que viene avalada por lo publicado por otros autores y por la experiencia de la Comisión INOZ y la nuestra propia, vamos a establecer las pautas de inclusión en el modelo:

1º.- Incluiremos las variables significativas individualmente, es decir, las que fueron estadísticamente significativas al realizar una regresión de Cox individual: Sexo, Edad, Enfermedad de base, DM, IRC, Drenaje, Tratamiento inmunodepresor, Estancia en UCI, Catéter Central, Catéter Central de Inserción Periférica, Catéter arterial, Nutrición parenteral,
Ventilación mecánica, Sonda nasogástrica, Procedimiento invasivo, Tipo de intervención, Tipo de herida, ASA, Profilaxis quirúrgica, Laparoscopia, Duración de la intervención, Ostomía, Tipo de drenaje, Perforación intraoperatoria, Anastomosis y Lugar de administración de la profilaxis.

2º.- Variables que presentan interacción y sus términos multiplicativos. Las variables ya están introducidas en el apartado anterior por lo que sólo indicamos los términos multiplicativos: Ventilación mecánica*Tratamiento inmunodepresor, Ventilación mecánica*Estancia en UCI, Ventilación mecánica*Nutrición parenteral, Ventilación mecánica*Sonda nasogástrica, Ventilación mecánica*Laparoscopia y Ventilación mecánica*Ostomía.

3º.- Variables que presentan confusión (Coeficiente \(\beta \) con variación > 10% de la variable a estudio o de la variable principal y cumplimiento de los criterios de confusión: asociación con la variable Ventilación mecánica y la variable \(\text{IN} \) y no ser eslabón causal) y que no han sido incluidas antes: Han quedado todas incluidas por los criterios de los anteriores apartados.

VM6.- Realización del análisis con SPSS.

Hemos introducido las variables especificadas en el apartado anterior (covariables) en un modelo de Regresión de Cox con la variable \(\text{IN} \) como dependiente, obteniendo los siguientes resultados:

<table>
<thead>
<tr>
<th>Omnibus Tests of Model Coefficients(a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 Log Likelihood</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Overall Log Likelihood</td>
</tr>
<tr>
<td>3316.407</td>
</tr>
</tbody>
</table>

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 3470.915

b Beginning Block Number 1. Method = Enter

~ 406 ~
Si siguiendo a Álvarez(11) vamos a plantear un nuevo modelo con las variables significativas del anterior análisis. Los resultados pueden observarse en las siguientes tablas.

Omnibus Tests of Model Coefficients(a,b)

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
<th>Chi-square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>3820.495</td>
<td>279.307</td>
<td>7</td>
<td>.000</td>
<td>91.323</td>
<td>7</td>
<td>.000</td>
<td>91.323</td>
<td>7</td>
</tr>
</tbody>
</table>

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 3911.818

b Beginning Block Number 1. Method = Enter
Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H8</td>
<td>3.052</td>
<td>.672</td>
<td>20.607</td>
<td>1</td>
<td>.000</td>
<td>21,155</td>
<td>5.664-79.005</td>
</tr>
<tr>
<td>Tipo de Herida</td>
<td>-.152</td>
<td>.222</td>
<td>.465</td>
<td>1</td>
<td>.495</td>
<td>.859</td>
<td></td>
</tr>
<tr>
<td>Ostomía</td>
<td>.837</td>
<td>.431</td>
<td>3.772</td>
<td>1</td>
<td>.052</td>
<td>2,308</td>
<td>9.92-5.370</td>
</tr>
<tr>
<td>Perforación</td>
<td>-.351</td>
<td>.203</td>
<td>2.977</td>
<td>1</td>
<td>.084</td>
<td>.704</td>
<td>0.473-1.049</td>
</tr>
<tr>
<td>H8*I9</td>
<td>.115</td>
<td>.246</td>
<td>.220</td>
<td>1</td>
<td>.639</td>
<td>1,122</td>
<td>.693-1.816</td>
</tr>
<tr>
<td>H8*Ostomía</td>
<td>-3.908</td>
<td>.678</td>
<td>33.229</td>
<td>1</td>
<td>.000</td>
<td>.020</td>
<td>0.005-0.076</td>
</tr>
<tr>
<td>T°Immunodepres</td>
<td>-.351</td>
<td>.203</td>
<td>2.977</td>
<td>1</td>
<td>.084</td>
<td>.704</td>
<td>0.473-1.049</td>
</tr>
</tbody>
</table>

H8: Nutrición parenteral; I9: Ventilación mecánica.

Planteamos otro modelo de Regresión de Cox con las variables significativas del modelo anterior. En las tablas siguientes pueden verse la variación de -2LL y su significación estadística, y los resultados del análisis. Ahora todas las variables que quedan en el modelo son significativas.

Omnibus Tests of Model Coefficients(a,b)

<table>
<thead>
<tr>
<th>-2 Log Likelihood</th>
<th>Overall (score)</th>
<th>Change From Previous Step</th>
<th>Change From Previous Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chi-square</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4477,121</td>
<td>233,372</td>
<td>4</td>
<td>.000</td>
</tr>
</tbody>
</table>

a Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 4586,860
Beginning Block Number 1. Method = Enter

Variables in the Equation

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95.0% CI for Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H8</td>
<td>2.294</td>
<td>.473</td>
<td>23.465</td>
<td>1</td>
<td>.000</td>
<td>9.910</td>
<td>3.918-25.067</td>
</tr>
<tr>
<td>Ostomía</td>
<td>.734</td>
<td>.355</td>
<td>4.277</td>
<td>1</td>
<td>.039</td>
<td>2.084</td>
<td>1.039-4.178</td>
</tr>
<tr>
<td>H8*I9</td>
<td>-3.173</td>
<td>.475</td>
<td>44.641</td>
<td>1</td>
<td>.000</td>
<td>.042</td>
<td>.017-1.106</td>
</tr>
<tr>
<td>I9*Ostomía</td>
<td>-1.122</td>
<td>.353</td>
<td>10.108</td>
<td>1</td>
<td>.001</td>
<td>.326</td>
<td>.163-1.650</td>
</tr>
</tbody>
</table>

H8: Nutrición parenteral; I9: Ventilación mecánica

VM7. **Modelo.**

En el siguiente recuadro exponemos, de la forma más simplificada posible, la fórmula práctica para realizar la regresión de Cox.
Con el fin de no confundir, no mostramos el resultado de la aplicación de la fórmula ya que no se cumplen las condiciones de bondad de ajuste con los residuos de Schoenfeld, como puede observarse en el siguiente apartado VM8. Lo comentamos en el capítulo Discusión.

VM8: Bondad de ajuste.

Para completar el apartado de resultados en cirugía electiva de colon vamos a comprobar la bondad de ajuste de las variables cuyos coeficientes de regresión B han formado parte de la fórmula final.

En el apartado 3.4.3.6 de Material, sujetos y métodos hacemos una descripción de los métodos de bondad de ajuste existentes para regresión de Cox. Nosotros vamos a elegir los dos que consideramos que son más adecuados para nuestra investigación:

- Significación estadística de la variación de -2LL: \(\Delta -2LL \)
- Análisis de residuos de Schoenfeld\(^{(266)}\)

1.- Encontramos \(\Delta -2LL = 233,372 \). Utilizando la prueba \(\chi^2 \), para 4 gl, obtenemos \(p<0,001 \). Concluimos que hay significación estadística.

2.- Análisis de residuos. Vamos a verificar el modelo analizando los residuos, en este caso, los de Schoenfeld\(^{(266)}\) que son los más efectivos para detectar anomalías para cada una de las variables que intervienen en el modelo. Los residuos de Schoenfeld proporcionan un residuo para cada variable y para cada paciente, es decir que si tenemos un modelo de Cox con tres factores pronóstico (variables) se calcularán 3 residuos de Schoenfeld por paciente. Valen cero para las observaciones incompletas, por lo que para facilitar su interpretación se suelen presentar en las
salidas de ordenador sólo para los pacientes en los que se haya producido el evento (IN en nuestro caso). Es posible modificar estos residuos con el fin de que no valgan cero para las observaciones incompletas, obteniéndose entonces los denominados residuos Schoenfeld corregidos o escalados\(^{(266,512)}\). Lo comprobamos gráficamente y mostramos el resultado a continuación, para las variables estadísticamente significativas. Si hay paralelismo entre los dos grupos de datos, se cumple la bondad de ajuste.

![Gráficos de residuos](attachment:residuals.png)

\(\text{H8: Nutrición parenteral.} \)

\(\text{I9: Ventilación mecánica.} \)

\(\text{Ostomía} \)
9.- GLOSARIO
GLOSARIO

- **2LL**: menos 2 veces el logaritmo neperiano de la verosimilitud.

ANOVA: ANalysis Of VAriance.

ASA: American Society of Anesthesiologists.

CDC: Center for Disease Control and Prevention

CIE 9: Clasificación internacional de enfermedades versión 9.

CIM: Concentración Inhibitoria Mínima.

CIN: Cuidados intensivos neonatales.

CIP: Cuidados intensivos pediátricos.

CMI: Cuidados médicos intensivos.

CMV: Citomegalovirus.

CVCIP: Catéter Venoso Central de Inserción periférica.

DII: Densidad de incidencia para infecciones.

DIPI: Densidad de incidencia para pacientes infectados.

DM: Diabetes Mellitus

EAC: Ensayo aleatorizado y a ciegas.

EARSS: Sistema Europeo de Vigilancia de la Resistencia a los Antibióticos.

EBV: Virus de Epstein Barr.

ECC: Ensayo clínico controlado.

ECDC: European Centre for Disease Prevention and Control.

ECN: Estafilococo Coagulas Negativo.

EM: Estancia media expresado en días.

ENVIN: Estudio Nacional de Vigilancia de Infección Nosocomial en servicios de medicina intensiva.

EPI: Equipo de Protección Individual.

EPINE: Estudio de Prevalencia de las Infecciones Nosocomiales en España

ESAC: Vigilancia Europea del Consumo de Antimicrobianos.

FR: Factor de Riesgo.

H2O2: Peróxido de hidrógeno o agua oxigenada.

Hª Cª: Historia Clínica

HELICS: Hospital in Europe Link for Infection Control through Surveillance

HICPAC: Healthcare Infection Control Practices Advisory Committee.
HSV: Virus del herpes simple.
HUD: Hospital Universitario Donostia.
IC: Intervalo de Confianza.
IHQ: Infección de la Herida Quirúrgica.
IMC: Índice de Masa Corporal.
IN: Infección Nosocomial o infección contraída en el hospital
INHQ: Infección Nosocomial de la Herida Quirúrgica.
INOZ: (Infekzio Nosokomialak Zaintzeko eta Kontrolatzeko Plana - Plan de Vigilancia y Control de las Infecciones Nosocomiales).
IOM (Institute of Medicine) de los EEUU.
IRAS: Infecciones Relacionadas con la Atención Sanitaria.
IRC: Insuficiencia Renal Crónica
ITU: Infección del tracto urinario
MANOVA: Multivariate ANalysis Of VAriance.
NHSN: National Healthcare Safety Network
NNIS: National Nosocomial Infection Surveillance del CDC
OMS: Organización Mundial de la Salud
OPA: Orb-Phtal-Aldehyde (desinfectante aldehídico).
OR: Odds Ratio.
PR: Prevalencia relativa.
PVPCIN: Plan de Vigilancia Prevención y Control de la Infección Nosocomial.
RA: Riesgo Atribuible.
RDI: Razón de densidad de incidencia.
RLB: Regresión Logística Binaria.
RP: Razón de prevalencia.
RR: Riesgo relativo.
RUV: Radiación Ultra Violeta.
Rx: Radiografía
SARM o MRSA: Staphylococcus aureus resistente a la meticilina
SEMICYUC: Sociedad Española de Medicina Intensiva, Crítica y Unidades Coronarias
SEMPSPH: Sociedad Española de Medicina Preventiva, Salud Pública e Higiene
SENIC: Study of the Efficacy of Nosocomial Infection Control
SIR: Razones de infección estandarizadas ()

~ 413 ~
Sobredispersión: variancia observada superior a la teórica

SPSS: Statistical Package for the Social Science.

SSCC: Servicios Centrales (en nuestro caso Departamento de Sanidad y Osakidetza)

SSI: Surgical site Infection.

UCI: Unidad de Cuidados Intensivos.

UV: Ultra Violeta (radiación).

UVA: Radiación Ultra Violeta tipo A.

VHA: Virus de hepatitis A.

VHB: Virus hepatitis B.

VHC: Virus hepatitis C.

VIH: Virus de la Inmunodeficiencia humana.

VRE: Enterococo Resistente a Vancomicina.

VZV: Virus varicela-zóster.

WHO: World Health Organization (OMS).

X²: Chi o ji cuadrado (prueba estadística).