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Ari Urkullu Villanueva Aritz Pérez Mart́ınez Borja Calvo molinos
Department of Computer Science

and Artificial Intelligence,
University of the Basque Country

UPV/EHU

Department of Data Sciences,
Basque Center

for Applied Mathematics

Department of Computer Science
and Artificial Intelligence,

University of the Basque Country
UPV/EHU

Abstract

Recently, concerns about the reproducibil-
ity of scientific studies have been growing
among the scientific community, mainly due
to the existing large quantity of irrepro-
ducible results. This has reach such an extent
that a perception of a reproducibility crisis
has spread through the scientific community
(Baker, 2016). Among others, researchers
point out “insufficient replication in the lab,
poor oversight or low statistical power” as
the reasons behind this crisis. Indeed, the
A.S.A. warned almost two years ago that the
problem derived from an inappropriate use of
some statistical tools (Wasserstein & Lazar,
2016). Motivated to work on this repro-
ducibility problem, in this paper we present
a framework that allows to model the repro-
ducibility in ranking based feature subset se-
lection problems. In that context, among n
features that could be relevant for a given
objective, an attempt is made to choose the
best subset of a prefixed size i ∈ {1, . . . , n}
through a method capable of ranking the fea-
tures. In this situation, we will analyze the
reproducibility of a given method which is
defined as the consistency of the selection in
different repetitions of the same experiment.

1 Introduction

In order to explain the context for which the model
proposed in this paper has been developed, we will
use a running example: The biomarker selection in
genomic studies. A biomarker consists of “any sub-
stance, structure, or process that can be measured in
the body or its products and influence or predict the

incidence of outcome or disease”1. So, in the search for
undiscovered biomarkers, many biomedical researches
measure a large amount of candidate biomarkers (n) in
individuals belonging to different groups. The search
for candidate biomarkers typically uses some method
to quantify the differences between groups (e.g., a sta-
tistical test) and selects a subset based on that quan-
tification (e.g., setting a threshold, fixing the size of
the subset, etc.).

In our work, we focus on problems with only two
groups, control and disease, in which the selection of
candidate biomarkers is made through a ranking of all
the candidates so as to identify the i top ranked can-
didates. In this context, the expected reproducibility
of the results of the method can be assessed as the
similarity of different subsets obtained in several rep-
etitions of the same experiment.

In summary, our main target is to analyze the meth-
ods by how reproducible the results they generate are.
It is convenient to remark that, although we use the
biomarker selection problem as an example, the same
process is followed in other contexts where features are
ranked and selected, e.g., ranking based feature subset
selection.

This paper is organized as follows. In Section 2 we
will explain a procedure to estimate empirically the
reproducibility of the results of the method through
two repetitions of the same experiment. Section 3 ex-
poses the modeling of reproducibility curves. Section
4 poses how the model can be fitted to empirical data.
Then, in Section 5 the experimentation in which the
model has been fitted to different experimental data
is explained and its results are described. Finally in
Section 6 the main conclusions that have been drawn
from this research and the future work possibilities will
be discussed.

1Definition by the World Health Organization:
http://www.inchem.org/documents/ehc/ehc/ehc222.htm
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2 Empirical analysis of the
reproducibility

In this section we present a measure which allows to as-
sess the reproducibility of the results of a given method
M. In addition, we pose a procedure to estimate its
expected value in scenarios where it can not be analyt-
ically derived. Finally, in order to illustrate its use, we
estimate the expected value of the mentioned measure
for the results of two classical statistical tests applied
to real (genomic) datasets.

2.1 The reproducibility curves

Let us assume that we have a set of candidate biomark-
ers X = (X1, . . . , Xn) and a medical condition C
which takes binary values c ∈ {+,−} distributed ac-
cording to some unknown probability distribution p
over (X, C). Let us have N+ i.i.d. samples drawn
from p(X|C = +) and N− i.i.d. samples drawn from
p(X|C = −) in a dataset D to which a given method
M is applied so as to obtain a ranking of the candidate
biomarkers. We denote that ranking as a permutation
σ = (σ1, . . . , σn), where σi = j denotes that Xj is in
the i-th position of the ranking. Let us denote by σ≤i
the first i elements of σ, σ≤i = (σ1, . . . , σi).

Let σ and σ′ be two rankings obtained from two dif-
ferent datasets D and D′ of samples obtained as ex-
plained above (i.e., N+ drawn from p(X|C = +) and
N− drawn from p(X|C = −)). We can define the
random variable2 Li, which consists of the amount of
coincidences between two top-i rankings derived from
two random datasets. That is, given σ and σ′, an ob-
servation of the random variable Li can be computed
as:

li = |σ≤i ∩ σ′≤i|. (1)

In addition, we define the random variable Ri, refer-
ring to it as top-i reproducibility, as the random vari-
able Li divided by i. Consequently, an observation of
Ri can be computed as:

ri =
li
i
. (2)

We denote as ρi the expected top-i reproducibility
givenM and given the procedure of sampling datasets
presented above:

2To denote a given random variable, a given observation
of it and its expected value, we will use an uppercase let-
ter, its corresponding lowercase letter and its correspond-
ing Greek letter, respectively.

ρi =

∫
D

∫
D′
rip(D)p(D′)dDdD′, (3)

where, abusing the notation, p(D) represents the prob-
ability of D, which, given that D is made of N+ i.i.d.
samples from p(X|C = +) and N− i.i.d. samples from
p(X|C = −), is the product of the probabilities of
these samples. In words, we define the expected top-
i reproducibility as the expected proportion of can-
didate biomarkers that are present in both σ≤i and
σ′≤i derived from any pair of datasets D and D′ sam-
pled as aforementioned. We define the expected re-
producibility curve (or simply reproducibility curve)
ofM for pairs of datasets where each has N+ samples
of p(X|C = +) and N− samples of p(X|C = −) as the
sequence of points3 (0, 0), (1, ρ1), (2, ρ2), . . . , (n, ρn).

2.2 Estimating the expected reproducibility
curve

Unfortunately, in real situations p is unknown and we
have a single dataset D of N+ and N− samples. In
this subsection, we propose a procedure for estimating
the expected reproducibility curve in this situation.

Given D, we can split it into two equally sized datasets
D1 and D2 with N+/2 and N−/2 samples each. Now,
the method M is applied to D1 and D2 to rank the
candidates, and from these rankings r = r1, . . . , rn is
computed. In order to clarify this whole process, a
graphical explanation is displayed in Figure 1.

By repeating this procedure t times using different ran-
dom splits, we obtain t different r vectors. Then, we
can make an estimation of the expected reproducibil-
ity curve ρ of M given D, which we denote as ρ̂, by
averaging them:

ρ̂ =
1

t

t∑
k=1

rk, (4)

Notice that with this scheme we are actually estimat-
ing the reproducibility of a method with datasets of
half the size. In this work, we focus on the model and
how it can be fitted and, thus, this is not a concern.
For practical uses, in the future work section we will
discuss alternative estimation procedures.

As an example, we have computed ρ̂ for two classi-
cal statistical tests, the t-test and the Wilcoxon rank
sum test4 in two different real-life datasets, an ovarian
cancer database and a nephropathy database. These

3Since the computation of this curve is straightforward
given ρ = (ρ1, . . . , ρn), from here on we refer to this curve
simply as ρ.

4How adequate the selected methods are to rank the
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Figure 1: From a dataset to a “reproducibility curve”.

two real datasets are DNA methylation datasets with
over 27000 candidate biomarkers that are available at
the GEO database5. Figures 2a and 2b show the dif-
ferent ρ̂ corresponding to the t-test and the Wilcoxon
test applied to the two real datasets mentioned (with
t = 10). Additionally, as a reference, Figures 2a and
2b include the ρ corresponding to a method that gen-
erates rankings uniformly at random6.

In Figure 2a, both estimated reproducibility curves
corresponding to the t-test and the Wilcoxon rank sum
test start by rising very steeply until they flatten out
and then each reaches a peak. Then they start de-
creasing and getting closer to the curve of a uniform
random selection, to finally converge asymptotically to
it. These results seem to match a scenario in which the
methods consistently assess a few candidate biomark-
ers as more relevant than the rest of the candidate
biomarkers. Consequently, they tend to appear in the
first positions of the rankings consistently, while the
orders of the vast rest of candidate biomarkers are fre-

candidates is irrelevant for our purpose of showing how our
statistical approach to the reproducibility problem works.
These methods have been selected because they are classi-
cal approaches to the problem.

5http://www.ncbi.nlm.nih.gov/geo; ovarian cancer
database has accession number GSE19711; nephropathy
database has accession number GSE20067.

6It can be easily calculated given that, for a uniform
random selection, li ∼ Hypergeometric(li;n, i, i) and, thus,
ρi = i/n.

quently interchanged by the tests. Quite interestingly,
we can see that the Wilcoxon estimated reproducibil-
ity curve is almost always above the t-test estimated
reproducibility curve.

In contrast, in Figure 2b both methods show estimated
reproducibility curves similar to a uniform random se-
lection. One possible explanation is that the differ-
ences between groups are so small that the tests are
barely able to detect them. Subsequently, any change
in the sample leads to changes in the rankings the
methods produce. An alternative possible cause which
would lead to similar consequences could be that the
methods are not designed to detect the type of differ-
ences underlying the sample (e.g., differences in vari-
ance). Another explanation is that the methods do not
show preferences towards any feature and, therefore,
they produce rankings at random.

3 Modeling the reproducibility curves

Although the estimated reproducibility curves can be
used for analyzing the reproducibility of a method that
generates rankings of candidate biomarkers, it would
be interesting to statistically model the reproducibility
curves, in order to gain insights into the reproducibility
of a given method by fitting the parameters of the
model to the observed behavior. In this section, we
propose a simple yet powerful model that can be used

4



0.00

0.25

0.50

0.75

1.00

0 10000 20000
Amount of features at the top

R
ep

ro
du

ci
bi

lit
y

Randomness
T−test
Wilcoxon

(a) Ovarian cancer database

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000 20000
Amount of features at the top

R
ep

ro
du

ci
bi

lit
y

Randomness
T−test
Wilcoxon

(b) Nephropathy database

Figure 2: Example of the estimated reproducibility curves in the ovarian cancer database (a) and in the nephropa-
thy database (b), together with the expected reproducibility curve when the candidates are selected randomly.

in order to analyze reproducibility curves.

The proposed model is based on an urn with n
balls representing the n candidate biomarkers. The
model assumes that there are two types of candidate
biomarkers, those that present differences which are
detectable by the method under study and those that
do not. The candidates that are detectable are repre-
sented as white balls while the non-detectable candi-
dates are represented as black balls. A complete ex-
traction of the balls in the urn represents a ranking of
the candidates and it will be denoted by a permuta-
tion, σ.

As a way of simplifying the model, we will assume that
the amount of white balls in any top-i ranking σ≤i is
the same and we will denote it as ai, for i ∈ {1, . . . , n}.
In concordance, the sequence of the amounts of white
balls extracted is denoted as a = (a1, . . . , an). Taking
by convention a0 = 0, it is convenient to mention that,
due to the nature of the process, ai must be equal
to or greater by one than ai−1 for i ∈ {1, . . . , n}. A
diagram is shown in Figure 3 so as to clarify this whole
explanation.

Under the proposed model, it is assumed that the
probability of extracting any specific white ball given
that the extracted ball color is white is the same for
each of the remaining white balls in the urn; an anal-
ogous assumption is done regarding the extraction of
black balls. When a is known, that assumption makes

13

2

3

4

1

5

6

78 9 10

11

12

14

15

0.667

0.666

0.571

0.500

0.556

0.727

0.923

1.000

1

23

4

5

7

8

10

12

0

2

1

2

4

4

3

13

2

3

4

1

5

6

7

8

9

10

11

12

14

15

13

2

3

4

1

5

6

7

8

9

10

11

12

14

15

0.000

0.500

0.500

0.800

0.700

0.833

1.000

4

4

4

4

4

4

4

4

4

4

4

4

14

15

Figure 3: From the urn with two types of balls to r.

5



it easy to compute, for any given i ∈ {1, . . . , n}, the
expected amount of coincidences between σ≤i and σ′≤i,
which we denote as λi. In order to compute this, first
we decompose λi as the sum of the expected amount
of coincident white balls, which we denote as λai , and
the expected amount of coincident black balls, which
we denote as λbi . In fact, the random variable be-
neath λai , that is, the amount of coincident white balls
between σ≤i and σ′≤i, follows a hypergeometric distri-
bution: La

i ∼ Hypergeometric(an, ai, ai), where the
three parameters represent the population size, the
amount of successes in the population and the amount
of draws, respectively. In consequence, λai = a2i /an.
An analogous procedure can be performed with λbi :
Lb
i ∼ Hypergeometric((n − an), (i − ai), (i − ai)) and,

thus, λbi = (i− ai)2/(n− an). Finally, λi can be com-
puted as the sum of λai and λbi , leading to the following
expected top-i reproducibility under the model repre-
sented by a:

ρi =
a2i
i · an

+
(i− ai)2

i · (n− an)
. (5)

Note that the expected top-i reproducibility under the
proposed model for i ∈ {1, . . . , n} is symmetric regard-
ing the relative amount of white and black balls. How-
ever, in most practical scenarios, such as the biomarker
selection, the relevant features (white balls, an) are far
less than the irrelevant ones (black balls, n− an). Be-
sides, it is worth mentioning that the sequence a can
be used to compute ai/i for any size i ∈ {1, . . . , n},
which can be interpreted as the true positive rates as-
sociated to the selection of the top-i candidates.

4 Fitting the model to empirical data

This section is divided in two subsections, each one
dedicated to a different stage of the fitting process. In
the first one, a procedure is described to find the se-
quence a that best fits a given estimated reproducibil-
ity curve ρ̂ in terms of a cumulative error function E.
In the second one, a procedure is presented to esti-
mate quantitatively how often the white balls tend to
be drawn before the black balls.

4.1 Finding the sequence a with the best fit

The main motivation for fitting the model to a given
estimated reproducibility curve ρ̂ is to analyze the pa-
rameters of the fitted model. As aforementioned, se-
quence a can be interpreted in terms of the true pos-
itive rate. Additionally, the estimation of the amount
of white balls an can be interpreted as the amount
of candidate biomarkers that present differences de-

tectable by the given method in the light of the given
dataset.

Before explaining how the fitting can be undertaken,
it is convenient to recall the set of constraints that
any given sequence a must satisfy so as to be feasible.
A given sequence a belongs to the set A of all the
feasible sequences if and only if ai − ai−1 ∈ {0, 1} for
i ∈ {1, . . . , n}, assuming by convention that a0 = 0.
With those restrictions in mind, from here on we only
deal with feasible sequences, unless explicitly stated
otherwise.

In order to begin the fitting of the proposed model,
we define a cumulative error function E. This cumu-
lative error function E assesses the difference between
a given estimated reproducibility curve ρ̂ and the ex-
pected reproducibility curve given a particular a (see
Equation 5):

E(ρ̂,a) =

n∑
i=1

ei(ρ̂i, ai, an), (6)

where ei is the quadratic difference between the esti-
mated top-i reproducibility ρ̂i and the expected top-i
reproducibility ρi given a (expressed in Equation 5).
Consequently we have:

ei(ρ̂i, ai, an) =
(
ρ̂i −

( a2i
i · an

+
(i− ai)2

i · (i− an)

))2
. (7)

Now, given the estimated reproducibility curve ρ̂, the
problem consists of finding the feasible sequence a that
minimizes the cumulative error function E:

a∗ = arg min
a∈A

E(ρ̂,a). (8)

In order to solve this problem, first we divide it into
n + 1 subproblems, in each of which an has a fixed
different value. So, any given subproblem specified
by the constraint of an having a specific fixed value is
solvable using dynamic programming through the next
recursive function:

Ei
ai

(ρ̂) = ei(ρ̂i, ai, an)+min(Ei−1
ai

(ρ̂), Ei−1
ai−1(ρ̂)), (9)

departing from En
an

(ρ̂), where Ei
ai

(ρ̂) = ∞ when
i < ai or when ai < 0 and E0

0(ρ̂) = 0. When the
n + 1 subproblems are solved, n + 1 cumulative error
values are available. Additionally, for each subprob-
lem, while it is being solved it is possible to gather the
sequence a that solves it by noting the choices made in

6



every step of the recursion in Equation 9. As a result,
the sequence a∗ that minimizes the cumulative error
can be found searching for the a sequence whose as-
sociated cumulative error is the minimum among the
n+ 1 computed ones.

Regarding the computational complexity, in order to
find a∗, n + 1 dynamic programming problems are
solved, one for each possible value of an. In addition,
to solve each of these, n recursions are performed. In
the worst cases each dynamic programming problem
is solved in O(n2), and, thus, the whole search for a∗

has a computational complexity of O(n3).

4.2 Modeling the differences between types
of balls

So far we have modeled the empirical data as a se-
quence of extractions. With the aim of gathering
further information about the reproducibility, we will
model the sequence a∗ using the process underlying
the non-central hypergeometric distribution of Walle-
nius (Wallenius, 1963).

In this process we have an urn with white and black
balls, but each type has a weight that biases the ex-
traction. The balls are extracted sequentially and, at
each step, the probability of extracting a white ball
will be the total weight of the remaining white balls
divided by the total weight of the remaining balls. As
any common factor between both weights does not af-
fect the probabilities, we will assume without loss of
generality that the weight of a black ball is 1 and the
weight of a white ball (or simply referred to as weight)
is w.

Therefore, in this second stage we see a as the sum-
mary of the outcome of a complete sequence of draws
that follows the process described above. In conse-
quence, the likelihood of a given w can be seen as the
product of the probabilities of obtaining a white or a
black ball at each step of the sequence of extractions
given w, the color of the ball depending on what a
states for each extraction. This is, assuming the con-
vention a0 = 0, the likelihood of a given w can be
expressed as:

L(a|w) =

n∏
i=1

(ai − ai−1) · w · (an − ai−1)

w · (an − ai−1) + n− (i− 1− ai−1)
+

(1− (ai − ai−1)) · (n− (i− 1− ai−1))

w · (an − ai−1) + n− (i− 1− ai−1)
,

(10)

where ai − ai−1 determines whether in extraction i a
white ball is extracted or not.

Given an a, all the parameters except w are fixed and,
as we can compute the likelihood of a given a certain
w, we can look for the w that maximizes the likeli-
hood of a. This piece of information is very important
due to its interpretation: The more reproducible the
method, the higher the value of w. The weight also
summarizes the degree of mixing between the white
and black balls in the sequence of extractions, w be-
coming further away from 1 as the mixing decreases.

In order to carry out the search, an approximate value
of w can be achieved through a search based on nu-
merical analysis, like for instance the method of Brent.
This approximation of w can be very quickly achieved
compared with the search for a∗ of the previous stage
of the fitting process.

5 Experimentation

In this section, in order to illustrate the model and its
use, we test the proposed model by fitting it to the
estimated reproducibility curve ρ̂ derived from both
synthetic and real data. Fitting the model to synthetic
data enables the appropriateness of the model to be
checked in controlled scenarios. Fitting the model to
real data, enables the model behaviors to be tested in
real situations within the context in which the model
can be applied. In addition, it also can be used to
gather information of the situations.

We have designed four different configurations for syn-
thetic data, derived from the combinations of the two
methods and two different scenarios. The two methods
are the t-test and the Wilcoxon rank sum test. The
two scenarios are defined by the kind of differences that
the truly relevant candidate biomarkers show among
groups, which may be differences in location or both
in location and spread.

In each synthetic data configuration there are just 2
groups and 100 samples per group. For each, 1000 can-
didate biomarkers are simulated and only 50 of those
are truly relevant biomarkers. The 950 non-relevant
biomarkers are drawn from a normal distribution with
µ = 0 and σ = 0.5 for both groups, while the 50 truly
relevant biomarkers are drawn from different distribu-
tions in each group. In one of those groups, the same
normal distribution with µ = 0 and σ = 0.5 is used,
but in the other group a different distribution is used.
Specifically, a normal distribution with µ = 0.35 and
σ = 0.5 is used if it must be only differences in loca-
tion, while a normal distribution with µ = 0.25 and
σ = 0.25 is used if it must be differences both in lo-
cation and spread. For each configuration of synthetic
data, the estimated reproducibility curve ρ̂ has been
estimated as explained in Section 2.2 (with t = 10).
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Regarding the fitting of the model to real data, we have
used the four estimated reproducibilities derived from
the use of the statistical tests that appear in Figures
2a and 2b (Section 2.2).

In order to display the results of the models fitting for
both the synthetic and the real data, we made four
different types of plots per experiment:

• Reproducibility plots (Subfigures 4a, 5a, 6a and
7a): They have already been explained and dis-
played in Figures 2a and 2b.

• Error plots (Subfigures 4b, 5b, 6b and 7b): They
display in their abscissa axis the total amount of
white balls (an) that correspond to different dy-
namic programming problems. The ordinate axis
shows the cumulative errors of the optimum solu-
tion for each problem. The vertical non-solid lines
mark the an values with the minimum cumulative
errors. In addition, in the case of synthetic data,
since the true an value is known, a vertical solid
line marks where that value is located.

• Proportion plots (Subfigures 4c, 5c, 6c and 7c):
For each i ∈ {1, . . . , n} of the abscissa axis, the
proportion of white balls in the top i is displayed
in the ordinate axis. The lines show the sequences
of proportions of the white balls derived from the
a∗ sequences issued by the model. In addition, in
the case of synthetic data, since at which extrac-
tion each truly relevant biomarker is extracted is
known, analogous curves can be computed depart-
ing from the data. Specifically, the 20 different se-
quences of extractions (2 per partition multiplied
by the t = 10 repetitions of the partitioning) can
be used to estimate the expected sequence of the
proportions of extracted white balls. First, from
each of those, a sequence of proportions of ex-
tracted white balls is computed, and then, the
different computed sequences are averaged.

• Log-likelihood plots (Subfigures 4d, 5d, 6d and
7d): They display in their abscissa axis the dif-
ferent possible values of w while showing in the
ordinate axis the log-likelihood of the sequence a∗

given w. The vertical lines are used to show the
locations of the w for which their log-likelihoods
of a∗ are maximum. In addition, the values of
these w are displayed.

The results for synthetic data are shown in Figures 4
and 5, while Figures 6 and 7 show the results for real
data.

5.1 Discussion

Now we briefly discuss the results derived from the
experimentation. To start with, in the light of the
experimentation with synthetic data, it can be seen
that, as expected, the proposed model for reproducibil-
ity curves fits well to empirical data coming from two
types of candidates (with and without differences be-
tween groups). In addition, it seems convenient to
note that the model fits well regardless of the as-
sumption that the amount of white balls in the top-
i of any sequence of extractions is the same for any
i ∈ {1, . . . , n}.

However, the fittings to the real data give results that
are not as good as the results achieved with synthetic
data. In fact, in real data it is very likely to occur
that there are no longer just two types of candidate
biomarkers. As a consequence, the model proposed
may be too simple to properly represent this situa-
tion. Regarding the different weights obtained, a big
difference between the two datasets can be seen, the w
values issued for the ovarian cancer dataset being far
bigger than the w values issued for the nephropathy
dataset.

6 Conclusions

Paying attention to the reproducibility of the meth-
ods used in scientific studies is essential to ensure
sound conclusions. Motivated by this concern, we have
presented a statistical approach to analyze the repro-
ducibility of ranking based selection methods. In ad-
dition to the model, we have exposed a way in which
it can be fitted to experimental data. Then, so as to
illustrate its behavior and the fitting process, we have
used the problem of biomarker selection as an exam-
ple. After testing the behavior of the model with both
synthetic and real data, we have drawn some conclu-
sions.

Regarding the results of the experimentation with syn-
thetic data, we recall the achievement of good results
despite the simplification about the amount of white
balls drawn from both sequences of extractions. This
implies that the restriction does not have a great im-
pact on the results.

In the case of real data, specifically in the results of
the ovarian cancer dataset, the model does not fit the
empirical curve correctly. A likely explanation for this
is that in real-life problems there are more than just 2
types of candidates and, thus, the model is not flexible
enough to represent that situation. In particular, it
seems that the model for reproducibility curves tends
to issue a total amount of white balls an at a point of
equilibrium. This idea can be seen in the results for
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Figure 5: Plots for the synthetic problem in which the data shows differences both in central tendency and
variability.
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Figure 6: Plots for the ovarian cancer database.
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Figure 7: Plots for the nephropathy database.
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the ovarian cancer database. Namely, it seems that if
an was smaller, then the reproducibility curve would
rise faster in the first tops. However, after peaking it
would fall earlier than it does because it would run out
of white balls to extract. Similarly, it seems that if an
was bigger, then the reproducibility curve would not
decrease so fast after the peak, but it would not rise
as fast before the peak as it does.

Regarding the different weights obtained, a big differ-
ence between the w values issued for the ovarian can-
cer dataset and the w values issued for the nephropa-
thy dataset can be seen. In fact, in the nephropathy
database both weights for the t-test and the Wilcoxon
rank sum tests are close to 1, suggesting that both
methods rank the candidates almost at random. One
possible cause is that both tests are apparently unable
to detect differences, this may be because the differ-
ences present are small enough or because the nature
of the differences is undetectable for the methods. Re-
garding the w values for the ovarian cancer database,
it is noteworthy that although the Wilcoxon rank sum
test obtains an an greater than the t-test, it gets a
lower weight. It is possible that in the tops (or in the
majority of them) in which the t-test obtains white
balls, the Wilcoxon rank sum test also obtains white
balls. Moreover, it is possible that the additional white
balls obtained by the Wilcoxon rank sum test are ob-
tained in further tops. Thus, it could be interesting so
as to compare the w values better, compare them af-
ter computing them for sequences in which the amount
of white balls is the same, painting the leftover white
balls located in the later tops as black balls.

Our research opens several future lines of work. One
possible way to proceed can be to extend the model to
more than just two types of balls, which most likely
will increase the precision of the fittings in real data
at the cost of increasing the computational complexity.
As an approach to this, we could first fit the model con-
sidering two types of balls and then use its minimum
error solution as a departing point for the fitting of a
model considering three types of balls, for instance.

Another important line to follow is the estimation of
the expected reproducibility curve. At this point we
are splitting the dataset into two partitions, leading
to an evident (pessimistic) bias in the estimations. In
the future, we will explore other schemes, such as boot-
strapping, which may ease this problem at the cost of
introducing dependencies between the two sets of sam-
ples.
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