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Abstract 

Most research in Statistical Learning (SL) has focused on mean success rate of participants in 

detecting statistical contingencies at a group level. In recent years, however, researchers show 

increased interest in individual abilities in SL, either to predict other cognitive capacities or as 

a tool for understanding the mechanism underlying SL. Most, if not all of this research 

enterprise employs SL tasks that were originally designed for group-level studies. We argue 

that from an individual difference perspective, such tasks are psychometrically weak and 

sometimes even flawed. In particular, existing SL tasks have three major shortcomings: (1) the 

number of trials in the test phase is often too small (or, there is extensive repetitions of the same 

targets throughout the test), (2) a large proportion of the sample performs at chance level so 

that most of the data points reflect noise, and (3) test items following familiarization are all of 

the same type and identical level of difficulty. These factors lead to high measurement error, 

inevitably resulting in low reliability and thereby doubtful validity. Here we present a novel 

method specifically designed for the measurement of individual differences in visual SL. The 

novel task we offer displays substantially superior psychometric properties. We report data 

regarding the reliability of the task, and discuss the importance of the implementation of such 

tasks in future research.  
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Statistical learning (SL), the ability to extract distributional properties of sensory input 

across time and space, is taken to be the main mechanism by which cognitive systems discover 

the underlying regularities of the environment. Starting from the seminal work of Saffran and 

her colleagues (Saffran, Aslin, & Newport, 1996), a large number of studies have unequivocally 

demonstrated a remarkable ability of humans in detecting subtle differences in transitional 

probabilities embedded in a continuous input, whether auditory (Endress & Mehler, 2009), or 

visual (Kirkham, Slemmer, & Johnson, 2002), verbal (Pelucchi, Hay, & Saffran, 2009) or 

nonverbal (Gebhart, Newport, & Aslin, 2009), comprising adjacent or non-adjacent 

contingencies (Gómez, 2002; Newport & Aslin, 2004), without overt attention (Evans, Saffran, 

& Robe-Torres, 2009), and from a very early age (as young as 1-3 day old newborns, Bulf, 

Johnson, & Valenza, 2011). The common aim of all these important studies has been to show 

that the often complex distributional properties of a given input can indeed be extracted and 

learned, shaping behavior (see Erickson & Thiessen, 2015; Thiessen, Kronstein, & Hufnagle, 

2013, for reviews). From an operational perspective this end was achieved by demonstrating 

that the mean success rate of the sampled participants in detecting a variety of statistical 

contingencies is significantly above chance.  

In recent years, however, there is a substantial theoretical interest in individual capacities 

of SL. In general, researchers focus on individual rather than group-level performance to 

achieve one of two goals. The first is to use SL ability to predict a range of related cognitive 

capacities (most notably linguistic functions), thereby demonstrating a theoretical link between 

SL and these functions. In this vein, performance in implicit artificial grammar learning (AGL) 

tasks was shown to predict sentence comprehension (Misyak & Christiansen, 2012), the 

processing of relative-clause sentences with long-distance dependencies (Misyak, Christiansen, 

& Tomblin, 2010), and speech perception abilities (Conway, Bauernschmidt, Huang, & Pisoni, 

2010; Conway, Karpicke, & Pisoni, 2007). Similarly, visual SL has been demonstrated to 

predict reading abilities in one’s first language (L1; Arciuli & Simpson, 2012), and also literacy 

acquisition in a second language (L2; Frost, Siegelman, Narkiss, & Afek, 2013), and auditory 

SL was found to predict lexical and oral language skills in L1 (Mainela-Arnold & Evans, 2014; 
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Singh, Steven Reznick, & Xuehua, 2012; Spencer, Kaschak, Jones, & Lonigan, 2014). A 

second approach to the study of individual differences stems from the assumption that 

understanding the source of individual differences in SL holds the promise of revealing critical 

insight regarding the cognitive operations underlying its mechanisms, leading to deeper 

comprehension of what SL capacity could predict and why (see Frost, Armstrong, Siegelman, 

& Christiansen, 2015, for a theoretical discussion). For example, researchers have recently 

investigated individual performance in SL to examine the role of explicit versus implicit 

knowledge in SL (Batterink, Reber, Neville, & Paller, 2015; Bertels, Boursain, Destrebecqz, & 

Gaillard, 2014; Bertels, Franco, & Destrebecqz, 2012; Kim, Seitz, Feenstra, & Shams, 2009), 

the relation between different types of computations in SL (Romberg & Saffran, 2013), the 

impact of input modality (Siegelman & Frost, 2015), and also to pinpoint the neurocircuitry 

involved in detection of regularities (Karuza et al., 2013; Turk-Browne, Scholl, Chun, & 

Johnson, 2009).  

Although these studies have targeted individual differences as their main interest, they 

all employed the original tasks which were designed for group-level explorations with little to 

no modifications (but see Bertels et al., 2014, 2012, for task modification). Note that this same 

trend is revealed across other types of implicit learning paradigms, so that the tasks designed to 

show learning at the group level are used to probe individual capacities (i.e., AGL, Conway et 

al., 2010; Serial Reaction Time (SRT) task, Kaufman et al., 2010; Hebb repetition learning, 

Mosse & Jarrold, 2008). Here we raise a critical methodological concern: Although all the tasks 

reported here have advanced us considerably in understanding the promise of SL as a theoretical 

construct, they are not suited to study and measure individual differences, because they are 

psychometrically weak and from this perspective, they are sometimes even flawed. The concern 

we raise is not simply methodological, rather, it is deeply theoretical. Psychometric 

considerations require any task to display a series of important criteria. These include (among 

others), a large enough variance of output scores, split-half reliability, test-retest reliability, and 

internal validity. If these criteria are not met, then the task cannot reliably predict other 

capacities, and this raises doubts regarding its predictive validity. In a nutshell, if a task does 
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not reliably tap the theoretical construct it is supposed to tap (in our case, a postulated individual 

capacity in SL), its explanatory adequacy remains empty.  

To explicate these concerns in detail, in the following we will focus on the popular visual 

statistical learning (VSL) task that has served many recent individual differences studies, 

including our own (Frost et al., 2013). This task is taken, however, simply as a token example 

to make a more general point common to many other experimental tasks recently employed for 

the study of individual differences. 

 

The visual statistical learning task (VSL)- A test case 

A popular test of SL performance in the visual modality has employed a sequential 

stream of meaningless shapes with adjacent contingencies to demonstrate the general ability of 

picking up regularities in the visual modality (e.g., Emberson, Conway, & Christiansen, 2011; 

Glicksohn & Cohen, 2013; Kirkham et al., 2002; Turk-Browne, Junge, & Scholl, 2005). Similar 

to most SL tasks, the VSL task includes a familiarization phase that is immediately followed 

by a test phase. In the common variant of the VSL task (e.g., Frost et al., 2013), familiarization 

includes 24 abstract shapes (but some have used 12 shapes only), such as those presented in 

Figure 1. Unbeknownst to participants, the shapes are organized into 8 triplets, all with 

transitional probabilities (TPs) of 1. These triplets are then repeatedly presented during 

familiarization which usually spans for about 10 minutes (with the constraint that the same 

triplet cannot be immediately repeated). Since the input appears as a continuous stream, the 

only source of information regarding its triplet composition lies in the statistical properties of 

the shapes in the sequence (TPs of shapes within a triplet is 1, whereas TPs of shapes between 

triplets is 1/7). Following familiarization, the test phase begins. It consists of a series of 2-

alternative-forced-choice (2-AFC) trials, each contrasting one of the triplets presented during 

learning, and one "foil" – a group of three shapes that never appeared together in the 

familiarization phase (TPs=0). In each trial of the test, one foil and one triplet are presented, 

and participants are asked to decide which group of shapes appears more familiar, given the 

stream they have seen.  
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Figure 1 example for shapes for standard VSL tasks. 

In recent years this popular task was borrowed with little modifications to serve as an 

individual measure of one’s visual SL ability, mainly to predict other cognitive functions such 

L1 literacy (Arciuli & Simpson, 2012), L2 literacy (Frost et al., 2013), implicit RT-based 

measures (Bertels et al., 2012, 2014), auditory SL abilities (Siegelman & Frost, 2015), etc. 

Given these objectives, we will now consider this task from a psychometric perspective, and 

outline its critical shortcomings for studying individual differences.  

 

Psychometric shortcomings:  

a. Number of trials in the test phase: The first dimension to consider is the number of 

trials employed in the test phase to assess individual learning following familiarization. Given 

memory constraints, the number of triplets in the familiarization phase of SL tasks is relatively 

small, usually set to eight triplets (but sometimes even to four, e.g., Arciuli & Simpson, 2012). 

Hence, unless triplets are repeated, the test phase would involve four to eight binary decisions. 

However, psychometrical considerations in individual differences studies require a 

significantly larger number of trials, to increase the resolution of the measure and to allow for 

larger variance within the sample, thereby reducing measurement error. Figure 2 presents a 

simulation of two individuals, A and B, who differ in their sensitivity to TPs (see Frost et al., 

2015, for discussion). The probability of individual A in detecting a triplet in the stream is set 

to 0.6, whereas that of individual B is set to 0.8. The figure demonstrates the extent of 

separability of the distributions of correct responses, that belonging to individual A, and that 
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belonging to individual B, when the test phase comprises 4, 8, 16, or 32 2AFC trials (k=1000 

samples). It is evident that number of 2AFC trials in the test phase is critical for discerning the 

two individuals. For example, if the obtained test score of individual B (who has a 0.8 chance 

to answer correctly on each question) is, say, 75% correct responses, the probability of correctly 

identifying him/her by his/her score in a test comprising 8 trials is p=0.58 (i.e., P(B) / (P(B) + 

P(A)) = 314/542), whereas the probability of falsely identifying individual A is p=0.42 

(228/542). However, if the same two individuals are tested with 32 2AFC trials, the chances of 

correctly identifying individual B increase to 0.87, whereas the chances of falsely identifying 

individual A decrease to 0.13. Perhaps unaware of this problem, some recent studies have used 

test trials as few as four (e.g., Spencer et al., 2014), to predict individual abilities. Our simple 

simulation demonstrates that correlations obtained in such studies are most probably spurious, 

reflecting noise. Consequently, the theoretical conclusion that success in the task is related to a 

given cognitive ability is simply unwarranted. 

 
Figure 2. Distribution of scores for two individuals that differ in their probability to identify triplets in the test phase 

(p=0.6 and p=0.8), in tests with 8, 16 and 32 trials, over a simulation of 1000 iterations. As the number of trials 

increases, the overlap between the distributions decreases and the test better discriminates between the two 

individuals. 

 

A possible solution for this problem is to introduce in the test phase repeated trials, where 

in several 2AFC trials the same triplet is contrasted with different or repeated foils. Indeed, this 
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is the solution that most individual differences studies in SL have used to date. Table 1 presents 

the number of patterns, repetitions and number of trials employed in some recent studies. As 

can be seen, most studies have extensively repeated the same triplets in multiple trials during 

test, with as many as 16 repetitions of only 4 triplets, aiming for a test with 64 items (Arciuli & 

Simpson, 2012). This solution, however, does not come without a cost. With extensive 

repetitions, performance in the test intermixes the learning of the initial stream, with memory 

of items reappearing again and again in the test phase, introducing other sources of noise in the 

measurement. With extensive repetitions it is not evident whether the score obtained in the test 

phase reflects learning of the original stream, or whether it reflects episodic memory of the 

previous responses that were given to the same triplet during the test. This leads us then to our 

first conclusion: a good test of individual differences must have a large number of trials, but a 

minimal number of repetitions.  

 Number of triplets 

Number of repetitions 

of each triplet  

Number of 

2AFC test trials 

Arciuli & Simpson, 2012, VSL 4 16 64 

Batterink et al., 2015, ASL 6 6 36 

Frost et al., 2013, VSL 8 4 32 

Mainela-Arnold & Evans, 2014, ASL 6 6 36 

Siegelman & Frost, 2015, ASL 6 6 36 

Spencer et al., 2015, ASL 4 1 4 

Turk-Browne et al., 2009, VSL 4 4 16 

Table 1. Number of triplets, trials, and repetitions of each triplet in test in recent SL individual differences studies.  
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b. Chance level performance for most of the sample: Another critical shortcoming of the VSL 

task (and even more so in other current SL tasks) is that a large proportion of the sample 

performs at chance level. This problem is under-emphasized, since most studies of SL report 

the mean group performance, showing that it is significantly above chance, without reporting 

the individual scatter-plots. However, from an individual difference perspective, if many 

participants in the sample perform at chance, even if the mean group performance is above 

chance, a large proportion of data points in the sample reflects simple noise it terms of their 

predictive validity. Figure 3 presents an individual performance histogram in the VSL task with 

a relatively large sample of participants (n=76, 32 trials in test) from a recent study (Siegelman 

& Frost, 2015). The mean performance of the sample is 67%, significantly better than chance 

(50%) at the group-level (t(75)=8.84, p<0.001), replicating many studies that used this task 

(e.g., Arciuli, von Koss Torkildsen, Stevens, & Simpson, 2014; Glicksohn & Cohen, 2013; 

Turk-Browne et al., 2005, 2009). Note that this statistical test is based on a comparison of the 

mean value of the whole sample to the hypothetical group-level chance of 50% (in the case of 

2AFC test). However, considering central tendency measures in the group level might be very 

misleading when it comes to individual performance. Indeed, examining the level of 

performance of each individual in the sample, reveals that most individuals did not exhibit 

learning that is significantly above chance. In order to examine whether the score of a particular 

individual is significantly above-chance, we can look at the binomial distribution and calculate 

on how many trials an individual needs to answer correctly in order to reject the null hypothesis 

of performance based random guessing. Since the test is based on 32 2-AFC trials, according 

to the binomial distribution significant above chance performance for an individual is set to 22 

correct responses or more (p<0.05). The red line in Figure 3 presents this threshold, separating 

individuals below this line and those above. As can be seen, 43 out of 76 subjects (57%) 

performed below this threshold, thus not showing significant evidence of learning. Table 2 

presents data taken from the few studies that reported individual performance in addition to 

mean group performance in a variety of SL tasks. The table reveals that in all of these studies 

most of the sample does not significantly perform above chance at the individual level. 
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Figure 3. Performance histogram of n=76 in a VSL task, from Siegelman & Frost, 2015. The red line depicts the 

individual chance level threshold – number of correct trials needed for a given individual to show learning. 

 

 

 Number of participants  Number of participants 

significantly above chance at the 

individual level (%) 

Endress & Mehler, 2009; 

experiment 2; ASL 
14 3 (21%) 

Frost et al., 2013, VSL 27 13 (48%) 

Misyak & Christiansen, 2012, 

AGL 
30 8 (27%) 

Saffran et al., 1997,   

experiment 1, ASL 

24  

(12 adults, 12 children) 
8 (33%) 

Saffran et al., 1999, ASL 35 17 (47%) 

Table 2. Number of participants significantly above chance at the individual level in published studies that reported 

individual performance. As can be seen, most participants do not display evidence of learning. 

 

 

This analysis outlines a major concern. If most of the sample does not show significant 

evidence of learning, the variance in performance of this part of the sample may be driven by 

random guess, leading to spurious correlations with the cognitive measures that SL is supposed 

to predict. In other words, the existing tasks provide reliable information for the higher (and 

smaller) part of the distribution of individuals' performance, whereas the lower (and larger) part 

of the distribution most likely reflects noise. This leads us to our second conclusion: SL tasks 

must be designed so they provide information for larger portions of the sample to enable 

reliable measurements of performance.  
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c. All test items are of the same type and same level of difficulty: The test phase in most 

existing SL tasks includes a few dozen 2AFC trials (but see, for example, Bertels et al., 2012, 

2014, for a test with 4AFC trials only), each contrasting a "real" triplet from the learning phase 

(TPs of shapes typically set to 1.0), and a foil (TPs of shapes typically set to 0.0). Thus, the test 

phase comprises multiple items measuring the same type of knowledge, with the same level of 

difficulty. This leads to two psychometric problems, one that is theoretical, and one that is 

statistical.  

 From a theoretical perspective, repeating items of the same type constrains the test to tap 

only a small part of the measured ability. To best exemplify this problem we draw on Facet 

Theory (a systematic approach to theory construction and data collection for complex 

multifaceted constructs; see, e.g., Shye, Elizur, & Hoffman, 1994), and phrase the following 

mapping sentence to describe the range of measurement of the current VSL task: The VSL task 

measures the ability to recognize sequences of triplets, of TP=1, from foils of TP=0, without 

violation of positions. This mapping sentence highlights the limited range of computations that 

are assessed by the existing VSL task. Visual SL as a theoretical construct naturally involves a 

wide scope of potential computations (e.g., production as well as recognition, contingencies of 

sequences of different length rather than triplets only, sensitivity to a range of quasi-regularities 

rather than sensitivity to full regularity, graded sensitivity of violations of positions in foils, 

etc.). Consequently, the test should be able to tap a large portion of the ability range, and this 

can be done only by including items that will expand the mapping sentence. For example, a 

comprehensive VSL task should have in the test phase items that involve production of learned 

patterns (rather than recognition only), with both pairs and triplets as targets (instead of just 

triplets), with a range of TPs of triplets and foils (instead of a set value across all items), with 

and without violation of positions in foils, etc. This leads us to our third criterion: SL tests must 

be designed so they provide a better coverage of the measured ability.   

 The statistical concern of using a test that comprises items with the same properties and 

level of difficulty stems from Item Response Theory (IRT, e.g., Embretson & Reise, 2000). In 

IRT, each test item is characterized by its Item Response Function. Figure 3 presents an 
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example for such theoretical curve. The figure depicts the expected probability to answer 

correctly in a given item i, as a function of the theoretical construct that is measured by the test. 

The most common model in IRT is the three-parametric logistic model, first developed by 

Birnbaum (1968), in which the Item Response Function is derived from three parameters: 1) 

the discrimination index of the item (the maximal slope of the function), 2) the item difficulty 

(the point on the x-axis with the maximal function slope), and 3) chance level performance (the 

intercept; the probability of answering correctly with minimal ability in the construct). 

According to IRT, a given item provides information about performance only in areas of the 

distribution where the slope is larger than zero. For example, the item in Figure 4 does not 

provide any information for individual performance in areas of less than (-1.5) or more than 

(+1.5) standard deviations from the population mean performance, and cannot discriminate 

between participants in these ranges of ability.  

 
Figure 4. Item Response Function for a hypothetical item. The x-axis represents the ability in the measured 

construct, and the y-axis depicts the expected probability to answer correctly on this specific item. The center square 

highlights regions where the item is informative and discriminative, while the adjacent rectangles marks regions of 

the distribution in which the item is not informative.  

   

 Since all items in current SL tasks share the same properties and the same level of 

difficulty, they all provide information regarding the same area of the distribution. This leaves 

the upper and lower parts of the distribution to reflect mostly noise- low-level statistical learners 

cannot answer correctly (aside of chance success) any of the items, and are therefore 

indistinguishable from one another. Similarly, high-level statistical learners can answer 

correctly all items, and are again, indistinguishable from one another. This noise inevitably 

increases measurement error, and reduces the task's reliability. Note that current SL tasks stand 
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in contrast to most standard cognitive tests, such as IQ or working memory, in which test items 

are specifically set to represent a wide range of difficulty, thereby maximizing discrimination 

between individuals, and increasing the test's reliability. This leads us to our fourth criterion: A 

good task should provide information across most parts of the distribution. This can be 

achieved only by varying the level of difficulty of items in the test. 

 In a recent investigation, Siegelman and Frost (2015) examined the test-retest reliability 

of the VSL task (as well as other tasks routinely employed in SL literature), reporting relatively 

mediocre scores (r=0.58 for VSL, r=0.6 for Auditory SL, while reliability coefficients in 

psychological measurement are about r=0.8, Nunnally & Bernstein, 1994). Although this 

provides preliminary evidence that SL is a stable and reliable capacity of an individual, the 

tasks clearly leave a lot to be desired in terms of their psychometric properties. Further analysis 

of the VSL task reveals a split-half reliability of 0.64 (0.76 Spearman-Brown corrected), and a 

Cronbach's alpha coefficient of 0.75, which is yet again below standards (e.g., Raven's 

advanced progressive matrices: test retest of 0.91, alpha of 0.86; Raven, Court, & Raven, 1992). 

The other SL tasks examined in this study did not fare better. Given our theoretical discussion 

so far, this should not come as a surprise.  

 This brings us to the initial discussion of SL as a theoretical construct. SL is taken to 

underlie a wide range of sensory, motor, and cognitive abilities, and plays a key role in 

segmentation, discrimination, prediction, and categorization. Since these are fundamental 

functions, unsurprisingly SL is currently attracting much attention, similar to the g factor 

decades ago. Mapping SL as an individual capacity is becoming, then, a major theoretical 

challenge for cognitive and educational science. However success in this research enterprise 

requires an infrastructure of psychometrically valid and reliable SL tasks. This is the goal of 

the present research. 

 

Towards better measurement of individual differences in SL: Blueprints for new SL tasks. 

 In this study we aimed to develop a new, better, and more reliable SL task. We did so by 

dealing directly with the psychometric shortcomings described above. To preview our findings 
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we show that we can reduce noise and maximize task sensitivity by increasing the number of 

items in the test while minimizing the number of repeated items across trials. Second, we show 

that by including items of different difficulty and of different types, we improve discrimination 

between participants and covered wider range of SL ability. Third, by "pushing" more of the 

population above chance-level performance, we demonstrate how information regarding a 

larger part of the distribution can be obtained.  

 

The new VSL 

The new visual SL task includes 16 complex visual shapes (taken from Fiser & Aslin, 

2001; see Appendix A). As in current SL tasks, the task includes two parts: a familiarization 

phase followed by a test phase. 

 Prior to familiarization, the 16 shapes (hereinafter labeled as numbers 1 to 16) are 

randomly organized for each participant into eight triplets. In contrast to current SL tasks, the 

eight triplets are not all similar in terms of their TPs, but rather are of two sub-types: (1) four 

triplets with TPs=0.33 (made from four shapes – 1-2-3, 2-1-4, 4-3-1, 3-4-2) and (2) four triplets 

with TPs of 1 between shapes (made from the remaining 12 shapes – 5-6-7, 8-9-10, 11-12-13, 

14-15-16). During familiarization, the eight triplets appear immediately one after the other in a 

random order to create a 10-minute familiarization stream in which each triplet appears 24 times 

(randomized separately in each run, with a constraint that the same triplet cannot be repeated 

twice in a row). Each shape appears on the screen for 800 ms, with a 200 ms break between 

shapes1. Before familiarization, participants are instructed to watch the stream of shapes as they 

will later be tested. No cover task is performed during familiarization. 

Following familiarization, a 42-item test phase begins. The targets, foils, and the 

characteristics of each item are presented in the left portion of Table 3. As can be seen, in 

contrast to standard SL tasks, the 42 test items differ from one another in various properties. 

First, items differ in their required response: participants are either asked to pick the familiar 

                                                           
1 Note that these parameters are identical to the common procedure employed in the VSL task (e.g., 

Siegelman & Frost, 2015). 
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pattern (“pattern recognition” trials) or to complete a missing shape in a pattern (“pattern 

completion” trials). Second, items differ in whether they include pairs or triplets. Third, they 

differ in the TPs of target (low TPs of 0.33 or high TPs of 1). Fourth, items differ in the mean 

TPs of the foils (ranging from 0 to 0.5). Fifth, the number of distractors is different across items 

(either 2, 3, or 4 forced-choice questions). Finally, items differ in the amount of position 

violations in foils. This creates a wide range of levels of difficulty across the 42 test items.  

 The test begins with a block of 34 "pattern recognition" items, and ends in a block of 

eight "pattern-completion" items. In each block, the order of items is randomized for each 

subject (in each run). In each test trial, all the options appear together on the screen (with the 

internal position of target and foils randomized in each item), and participants are asked to 

choose the correct answer using the keyboard (see examples in Figure 4). The total score on the 

task ranges from 0 to 42, based on the number of correct responses in the test.  

 Note that foils are manipulated in two dimensions. First, and most importantly, foils 

differ in TPs between shapes (i.e., the mean expected TPs between the shapes within the foil). 

In addition, we manipulated the degree of position violations in foils, that is, whether the shapes 

appear in the foils in the same internal position as in the original triplets. Position violations 

ranged from 0 to 1 for each foil: a value of 0 means that the shapes kept the internal order within 

the foils as in the original triplets (e.g., from the triplets 1-2-3, 4-5-6, and 7-8-9, the foil 1-5-9 

contains 0 position violations, as all shapes in the foil appear in the same internal position as in 

the triplets). Maximal position violations of 1 means that all shapes appeared in different 

internal positions. Values between 0 and 1 stands for different degree of violations (e.g., from 

the triplets 1-2-3, 4-5-6, and 7-8-9, the foil 1-6-9 contains 0.33 position violations, as one shape 

– shape 6 – appears in a different position than in the triplets).  

 Also note that despite the relatively large number of trials in the test (42), the number of 

repeated targets and foils does not exceed that of current SL tasks. In pattern recognition trials, 

each triplet-target and triplet-foil appears three times only (except for one foil appearing four 

times, due to the overall required number of foils needed), and each target-pair and foil-pair 

appears only once (the frequency of foils and targets is matched in order to ensure that 
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transitional statistics provide the only cues for choosing targets over foils, e.g., Aslin, Saffran, 

& Newport, 1998). In addition, four triplets and four pairs also appear as targets in the pattern 

completion trials. Overall, this follows the blueprint for the development of the test raised in 

the introduction, of maximizing the number of items in test, while minimizing the number of 

repeated targets and foils.   

Figure 5. Example of three trials from the test (left to right): (1) a 4-forced-choice pattern recognition trial with 

triplets, (2) a 2-forced-choice pattern recognition trial with pairs, and (3) a pattern completion trial of triplet. 

Instructions were originally presented in Hebrew. 

The study 

 Participants Sixty-two adults (13 males), all students at the Hebrew University, 

participated for course credit or payment. Their age ranged from 20 to 31 (mean 23.7). 

Participants were all Hebrew native speakers, with no reported history of ADD, ADHD, or 

reading disabilities. 

 General procedure All 62 subjects participated in a first session in which they were tested 

with the new VSL task described above. Three months after the first session, the participants 

were contacted and asked to undergo another testing session - a re-test of the same task. Forty-

three participants agreed to come back to the second session. This sample of participants had 

similar characteristics to the initial sample, both in their demographics (age: 20-27, mean = 

23.1; 8 males) and in their VSL performance (see Results section below). 
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Item 
No. 

Target Foil(s) Triplet/pair 
#options 
(chance) 

TP 
target 

mean 
TP foils 

position 
violations 

d index (item by 
total minus item 

correlation) 

item performance  
(% of participants 

correct) 

 "Pattern recognition" items  
1 1 2 3 2 13 8 triplet 2 (0.5) 0.33 0.00 0.67 0.40 0.66 

2 2 1 4 1 2 4 triplet 2 (0.5) 0.33 0.19 0.00 0.22 0.39 

3 4 3 1 4 3 9 triplet 2 (0.5) 0.33 0.17 0.00 0.26 0.77 

4 3 4 2 7 1 3 triplet 2 (0.5) 0.33 0.09 0.33 0.25 0.77 

5 5 6 7 9 5 11 triplet 2 (0.5) 1 0.00 1.00 0.49 0.68 

6 8 9 10 16 11 6 triplet 2 (0.5) 1 0.07 1.00 0.43 0.73 

7 11 12 13 14 6 10 triplet 2 (0.5) 1 0.00 0.00 0.35 0.77 

8 14 15 16 3 1 15 triplet 2 (0.5) 1 0.17 0.67 0.37 0.73 

9 1 2 3 15 1 4 triplet 2 (0.5) 0.33 0.02 0.33 0.35 0.63 

10 2 1 4 14 6 10 triplet 2 (0.5) 0.33 0.00 0.00 0.46 0.68 

11 4 3 1 2 8 4 triplet 2 (0.5) 0.33 0.00 0.33 0.44 0.63 

12 3 4 2 16 11 6 triplet 2 (0.5) 0.33 0.07 1.00 0.16 0.81 

13 5 6 7 14 3 2 triplet 2 (0.5) 1 0.02 0.00 0.34 0.76 

14 8 9 10 5 12 13 triplet 2 (0.5) 1 0.50 0.00 0.31 0.63 

15 11 12 13 1 2 4 triplet 2 (0.5) 1 0.19 0.00 0.14 0.63 

16 14 15 16 16 7 10 triplet 2 (0.5) 1 0.00 0.67 0.42 0.73 

17 1 2 3 
9 5 11 
2 8 4 

14 3 2 
triplet 4 (0.25) 0.33 0.01 0.44 0.19 0.53 

18 2 1 4 
9 5 11 

16 11 6 
1 2 4 

triplet 4 (0.25) 0.33 0.09 0.67 0.37 0.34 

19 4 3 1 
16 7 10 
2 13 8 
2 8 4 

triplet 4 (0.25) 0.33 0.00 0.56 0.45 0.56 

20 3 4 2 
5 12 13 
15 1 4 
3 1 15 

triplet 4 (0.25) 0.33 0.28 0.22 0.23 0.47 

21 5 6 7 
16 7 10 
14 6 10 
2 13 8 

triplet 4 (0.25) 1 0.00 0.44 0.51 0.52 

22 8 9 10 
1 2 4 
4 3 9 

15 1 4 
triplet 4 (0.25) 1 0.18 0.11 0.27 0.53 

23 11 12 13 
14 3 2 
7 1 3 

3 1 15 
triplet 4 (0.25) 1 0.09 0.22 0.48 0.53 

24 14 15 16 
5 12 13 

4 3 9 
7 1 3 

triplet 4 (0.25) 1 0.25 0.22 0.55 0.50 

25 2 3 1 16 pair 2 (0. 5) 0.33 0.00 0.00 0.28 0.73 

26 1 4 2 4 pair 2 (0. 5) 0.33 0.04 0.00 0.19 0.50 

27 3 1 6 3 pair 2 (0. 5) 0.33 0.00 0.00 0.52 0.68 

28 4 2 13 2 pair 2 (0. 5) 0.33 0.14 0.00 0.14 0.74 

29 6 7 5 11 pair 2 (0. 5) 1 0.00 0.50 0.55 0.68 

30 8 9 3 14 pair 2 (0. 5) 1 0.04 0.00 0.24 0.76 

31 12 13 
6 11 

12 15 
9 4 

pair 4 (0.25) 1 0.00 0.33 0.52 0.56 

32 14 15 
8 10 
1 8 

15 7 
pair 4 (0.25) 1 0.01 0.17 0.57 0.47 

33 1 2 
7 1 

3 14 
13 5 

pair 4 (0.25) 0.33 0.11 0.33 0.44 0.52 

34 4 3 
9 2 

10 4 
16 12 

pair 4 (0.25) 0.33 0.05 0.17 0.37 0.61 

  
35 1 (?) 3 2; 13; 9 triplet 3 (0.33) 0.33 0.04 0.17 0.37 0.68 

36 2 1 (?) 4; 6 16 triplet 3 (0.33) 0.33 0.00 0.00 0.35 0.71 

37 (?) 6  7 5; 14; 3 triplet 3 (0.33) 1 0.00 0.00 0.38 0.63 

38 8 (?) 10 9; 15; 4 triplet 3 (0.33) 1 0.00 0.17 0.39 0.68 

39 11 (?) 12; 7; 1 pair 3 (0.33) 1 0.00 0.00 0.32 0.69 

40 (?) 15 14; 8; 12 pair 3 (0.33) 1 0.00 0.00 0.36 0.63 

41 3 (?) 1; 2; 5 pair 3 (0.33) 0.33 0.04 0.25 0.21 0.48 

42 (?) 4 3; 11; 10 pair 3 (0.33) 0.33 0.07 0.25 0.60 0.65 

Table 3 Summary of the 42 test items of the new VSL task (data from first administration of the task only). The left 

section of the table depicts the targets and foils (each shape is represented by a number from 1 to 16), and the various 

properties of each item (items examining knowledge of pairs/triplets; number of options in question; TP of target; 

mean TP of foils; degree of position violations). The right section of the table shows the discrimination index, as 

well as the performance rate (percent of participants correct on each item). 
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Results  

First session – group- and individual-level performance  

 The distribution of scores in the first session is shown in Figure 6. On average, 

participants answered correctly on 26.35 of 42 items (SD = 8.17). According to the binomial 

distribution (aggregating the different probabilities of correct responses for the different test-

items), chance level performance was 16.67 correct trials. Hence, at the group level the task 

indeed produced significant learning (t(61) = 9.3, p<0.0001). However, as noted above, from a 

psychometric perspective, a critical measure is the number of participants that perform above 

chance, not the mean performance of the sample. We therefore calculated the individual chance-

level, which is the number of trials on which a given participant needs to answer correctly in 

order to show above-chance level at an individual-level. We calculated this individual threshold 

using a computer simulation of 10000 iterations2, and found that correct responses on 23 trials 

or more presents significant evidence of learning, with an alpha of 5% (i.e., less than 5% of the 

iterations had a score of 23 or more). As shown in Figure 5, 37 out of 62 participants (60%) 

performed above this threshold. This presents an important increase of participants who 

perform significantly above chance (about 40% only in the original VSL task, as reported by 

Siegelman & Frost, 2015).  

 
Figure 6. Distribution of scores in the first session. The black dashed line shows the group chance-level (success in 

16.67 trials), and the solid red line shows the individual chance-level (success in 23 trials or more). 

                                                           
2 In contrast to the computation of group-level chance, or to a calculation of individual chance-level in a 

test where all items have the same number of trials, the calculation of individual chance level in a test 

with items with different number of options is not straightforward. This was the reason for using a 

computer simulation for this calculation instead of analytical calculation. In each iteration, the computer 

randomly selected a series of 42 responses (for all test trials), and the total score for this iteration was 

calculated. Following 10000 iterations, we calculated the value for which only less than 5% of the 

iterations resulted in higher scores. Hence, scores above the obtained threshold (of 23 correct responses) 

have a p<0.05 to result from type-I error under the null hypothesis of random guessing. 
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Reliability and internal consistency 

 To examine the internal reliability and consistency of the obtained scores, we calculated 

the Split-half and Cronbach-alpha coefficients. Our results show an increase in both measures 

compared to the old VSL task: Cronbach-alpha = 0.88 (95% CI [0.84, 0.92]; compared to 0.75, 

95% CI [0.67, 0.83] to in the old VSL task), split half (Spearman-Brown corrected) = 0.83 (95% 

CI [0.72, 0.9]; compared to 0.76, 95% CI [0.65, 0.86], in the old VSL). These indices suggest 

that the new task is indeed better in terms of the degree to which all items in the task tap the 

underlying construct, probably due to less noise in the measurement. Note that the present 

observed coefficient of the new VSL task reaches the values of standard psychometric tests 

(with recommended values of Cronbach-alpha typically ranging from 0.8 to 0.95, see Streiner, 

2003). The high Cronbach's alpha value also suggest that the test taps into a single latent 

variable. This is also supported by a confirmatory factor analysis with one underlying SL factor 

(Comparative Fit Index (CFI): 0.987: Tucker-Lewis Index (TLI): 0.978; Root Mean Square 

Error (RMSE): 0.062; all values represent a good model fit, see, Hu & Bentler, 1999). 

 

Item analysis 

 To further examine the psychometric properties of the new task, we conducted an item-

analysis, in which we calculated the discrimination index (d) for each item, by computing the 

correlation between the success in the item and the overall success rate in the test minus the 

success in the item (item by total-minus-item correlations; e.g., Everitt & Skrondal, 2010). This 

index reflects how well each item discriminates between participants with low and high visual 

SL ability. The discrimination index of items ranged from 0.14 to 0.6 (see Table 3 above for 

observed d's for all items), with a mean of 0.36. This constitutes a significant improvement 

relative to the old VSL task, in which the mean discrimination index was 0.26 (two-sample 

t(72) = 4.05, p < .001).  

 In addition, in order to validate our manipulation of levels of difficulty across items and 

to see whether indeed TPs of targets and foils influence performance, we conducted a mixed-
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effect logistic regression model (using lme4 package in R, Bates, Maechler, Bolker, & Walker, 

2015). The dependent measure of this analysis was correctness (correct/incorrect) in each 

experimental trial, with TP of the target, mean TPs of foils, and mean position violations in 

foils as fixed-effects, and chance-level in the item (1 divided by the number of options in the 

item) and mean-centered trial number as control variables. The model also included by-item 

random intercept, and by-subject random slopes for TP of target and mean TPs of foils (the 

maximal random effect structure justified by the data that converged, see Barr, Levy, 

Scheepers, & Tily, 2013). Collinearity in the model was small (correlations between fixed 

effects all smaller than 0.25). Theoretically, we predicted that performance would improve with 

higher TPs of the target, lower mean TP of foils, and more position violations. The results of 

the model, shown in Table 4, confirmed the TP manipulation: we found a significant positive 

effect for TP of target (B = 0.72, SE = 0.25, p < 0.01) and a significant negative effect for TPs 

of foils (B = -1.32, SE = 0.51, p = 0.01). No significant effect of position violations was found 

(B = 0.03, SE = 0.16, p = 0.86), suggesting that position violations in foils may not influence 

performance. This, however, requires additional investigation.  

 

fixed effect β estimate (SE) Z p-value 

intercept -0.95 (0.2) -4.84 <0.001 

TP of target 0.72 (0.25) 2.84 <0.01 

mean TP of foils -1.32 (0.51) -2.57 =0.01 

position violations 0.03 (0.16) 0.18 =0.86 

chance-level for item (1/k) 3.25 (0.4) 8.06 <0.001 

trial number (mean centered) 0.005 (0.0038) 1.32 0.19 

Table 4 Estimates of fixed-effects for item analysis. 

 

 

 



 21 

Second session – test-retest reliability 

 As noted above, three months following the first administration of the task all 

participants were contacted and invited to return for another testing session, in which a re-test 

of the task was conducted. Forty-three participants returned to the re-test. Their mean score in 

the first administration of the task did not differ significantly from those who did not came back 

for the re-test (27.14 vs. 24.7 correct items, t(60) = 1.09, p = 0.28). The mean score of the 

second session (i.e., re-test) was 26.3 correct trials (SD = 7.51), showing no overall 

improvement from the first administration of the task at the group-level (t(42) = -0.78, p = 

0.44). This conforms to previous findings showing no improvement in performance in multiple 

testing sessions (Siegelman & Frost, 2015). Most importantly, the second administration of the 

test enabled us to estimate the task test-retest reliability: Figure 7 shows the test-retest scatter 

plot of observed scores in the two sessions. The observed test-retest reliability coefficient was 

0.68 (95% CI [0.48, 0.81]), an increased value compared to the previous VSL task reported in 

Siegelman & Frost (2015), which had a test-retest of 0.58 (95% CI [0.4, 0.71]).  

 

 

Figure 7. Test-retest for the new VSL task.  
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Discussion 

 In the current paper, we outline the pitfalls of existing SL tasks for measuring individual 

differences in SL ability, and offer blueprints for novel tasks specifically designed to measure 

individual performance in visual SL. Specifically, current SL tasks which were originally 

designed for group-level investigations, have three major limitations: (1) an insufficient number 

of trials in the test phase (or repeated testing of the same targets), (2) a chance-level 

performance for most of the sample, and (3) an equal level of difficulty across all test items. 

This led us to develop a visual SL task with a maximal number of trials and a minimal number 

of repeated patterns, which presents above chance performance for a larger portion of the 

population3, and includes items that vary in difficulty to cover a wider range of the measured 

ability. Following the implementation of these modifications, the new VSL task indeed displays 

superior and improved psychometric properties compared with previous tasks. 

 However, in addition to the improved psychometric properties, from a theoretical 

perspective, the new VSL task has an important advantage. Current SL tasks are limited in their 

coverage of the scope of VSL ability, as they measure only one kind of response (mostly, 

selecting a familiar pattern), applied only to sequences of three elements, with targets and foils 

with only one TP structure (typically, 1 and 0), and with no manipulation of position violations. 

As noted in the introduction, in line with Facet Theory, this can be formalized by comparing 

the complexity of the respective mapping sentences that describe the current and the new tasks: 

whereas the current VSL task measures the ability to recognize sequences of triplets, of TP=1, 

from foils of TP=0, without violation of positions, the new VSL task measures the ability to 

(𝒓𝒆𝒄𝒐𝒈𝒏𝒊𝒛𝒆 
𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆

) sequences of (𝒕𝒓𝒊𝒑𝒍𝒆𝒕 
𝒑𝒂𝒊𝒓𝒔

), of ( 𝑻𝑷=𝟏 
𝑻𝑷=𝟎.𝟑𝟑

), from foils of (𝒓𝒂𝒏𝒈𝒊𝒏𝒈 𝒇𝒓𝒐𝒎 
𝟎 𝒕𝒐 𝟎.𝟓

), 

(𝒘𝒊𝒕𝒉 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒕
𝒅𝒆𝒈𝒓𝒆𝒆 𝒐𝒇

) violation of positions. This latter mapping sentence shows the better conceptual 

coverage of the scope of the measured ability (i.e., visual SL) by the new VSL task. In addition, 

                                                           
3 Note that more participants performing above chance-level may actually decrease variance, since in 

the binomial distribution the variance is dependent on the performance level, 𝑆𝐷 =  √𝑛𝑝𝑞, so that 

chance level decisions (p=q=0.5) yields the highest value. However, variance around chance is not 
reliable, as it is derived from random guesses. 
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it also provides the blueprints for further expanding the coverage of the ability, by possibly 

adding other parameters to the facets (e.g., by including more values of TPs for targets, by 

including additional types of responses, etc.,), which can be implemented in future improved 

versions of the task.  

 Developing adequate SL tasks to study individual differences has important theoretical 

implications. If SL is taken to predict a cognitive measure (such as, for example, a linguistic 

capacity), the predictive validity of the task is constrained by its reliability: the correlation 

between the score obtained in the SL task (x) and the measured cognitive capacity (y) is upper-

bounded by the square root of the product of the measures’ reliability (𝜌𝑥𝑦 ≤ √𝜌𝑥𝑥 ∗ 𝜌𝑦𝑦). 

Current SL tasks, having relatively mediocre reliability, are then limited in the extent of 

correlations they can display with various cognitive measures. The new SL task has, therefore, 

the potential of better predicting linguistic abilities (e.g., Arciuli & Simpson, 2012; Frost et al., 

2013), or providing more accurate estimations of the inter-relations between different SL tasks 

(e.g., Romberg & Saffran, 2013; Siegelman & Frost, 2015). In addition, it can serve as a better 

measure for behavioral SL performance that can be then correlated with neural activation in the 

process of identifying the neurocircuitry underlying SL (e.g., Karuza et al., 2013; Turk-Browne 

et al., 2009). 

 We should emphasize that the advantage of using more reliable tasks is not limited to 

studies of individual differences. The use of more reliable SL measures has also the promise of 

increasing the statistical power of group-level investigations, by simply decreasing error 

variance. For example, two recent studies investigating the role of awareness in SL (Arciuli et 

al., 2014; Batterink et al., 2015), independently reported a better, albeit non-significant, 

performance in an intentional learning condition relative to an unintentional one (an advantage 

of 5.4% in the Arciuli et al., 2014 study, and an advantage of 4.7% in the Batterink et al., 2015 

study). This converging pattern of “null-results”, may hint however, to a real advantage of 

intentional learning which was simply masked by the extensive noise related to the tasks’ low 
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reliability. Using psychometrically improved tasks in group-level investigations could then 

reduce possible type-II errors. 

 

Current Limitations and future research 

Although the current investigation goes some way towards the development of better SL tasks 

for measuring individual differences, it is clear that there is still room for improvement in terms 

of reliability and discriminative power. In this section, we outline directions that can guide 

future development of such tasks. 

 In the new task, 60% of the sample exhibit learning, suggesting that the novel task still 

does not provide reliable information about SL abilities of a relatively large proportion of the 

sample. A possible avenue to further improve the ratio of participants that show above-chance 

level performance, thereby increasing the test’s reliability, is to reduce the difficulty level of 

some of the items (through altering target and foil similarity). Improved reliability could also 

be obtained by using only 4-AFC format test items, which will reduce baseline chance-level 

performance and decrease the error variance which stems from random guesses.  

  Another option to further increase the discriminative power of the task is to use a 

weighted scoring method, in which correct responses on more difficult items (i.e., with lower 

TP of targets, higher TPs of foils, and with a higher number of foils) or with higher 

discriminative power (i.e., with higher discrimination index) credit the participants with more 

test points. As can be seen in Table 3, the items in the current task vary across all these 

dimensions, and our data suggest that indeed performance is influenced by these factors. Future 

research can take these factors as weights for scores in a new, independent sample, and 

examine, as cross-validation, whether this scoring procedure improves the reliability of the 

scores and their predictive power. Similarly, an adaptive testing procedure, in which each 

participant is presented with items of a certain level of difficulty on the basis of his/her 

performance on preceding items, can result in a maximally precise test score (while using even 

fewer items). However, the development of adaptive tests is a complex process that requires 



 25 

precise knowledge of what are the factors influencing SL performance, and their relative degree 

of impact. We believe the current investigation may serve as a first step towards this direction. 

 Note also that the factors contributing to SL performance are important not only from a 

methodological perspective but also from a theoretical one. Specifically, empirical evidence 

regarding the relevant factors that determine performance may serve as important constrains 

for computational models of SL, specifying the computations involved in extracting regularities 

from the input. Although not the main focus of the current investigation, the results of the novel 

task already provide some preliminary insights regarding SL computations. For example, we 

found that although TP of targets and foils affected performance, violations of position did not. 

This finding suggests that participants are not sensitive to the location of shapes within patterns. 

Another interesting theoretical issue stemming from the current data is that, although the stream 

of shapes was made of chunks of triplets, pairs (being 'part-chunks' of the triplets) were learned 

just as well (mean performance index for triplet items = 0.384, mean performance for pair items 

= 0.381)4. Future research can build upon these preliminary findings to investigate the effect of 

these factors (and others) to accurately predict SL performance.  

 Future research also requires to examine whether similar task modifications in SL tasks 

in other modalities (e.g., auditory SL) and with different types of stimuli (e.g., verbal) have the 

same positive effect on the tasks' psychometric characteristics. However, some of the proposed 

modifications might present challenges in tasks in the auditory modality – for example, the 

auditory presentation of 4 alternatives in the same test item might exceed working memory 

capacities (for some individuals). A possible issue in using the same procedure with verbal 

material might stem from interference with existing linguistic knowledge, due to the large 

number of different foils. Despite these challenges, we believe that task construction across 

different modalities and materials is a crucial step towards the understanding of how both 

                                                           
4  In order to control for the different chance-level in different items, we calculated the mean 

performance on pair- and triplet- items according to the formula  
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
, where po stands for the percent 

of participants who answered correctly on the item, and pe is the chance-level.  
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modality specific and domain-general processes result in a given individual's performance in a 

given SL task (for a discussion, see Frost et al., 2015). 

 

Conclusions 

 To summarize, the current paper reports a novel method for assessing individual 

differences in SL. The development of such tasks is crucial in light of the growing interest in 

individual differences in SL, both as a predictor of other capacities, and as a tool for 

understanding the mechanisms underlying SL. The measures reported here with the new task 

demonstrate its superior psychometric properties, and thus can serve as guidelines for future 

studies in this important line of research.  
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Appendix A – the 16 shapes used in the new VSL task. 

 

 

 

 

 


