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Almost all types of learning involve, to some degree, the ability to encode regularities across 

time and space. Although statistical learning (SL) research initially focused on offering a viable 

alternative to rule-based grammars and specialized mechanisms for word learning (e.g., [1,2]), the 

processing of regularities embedded in sensory input extends well beyond language. SL, therefore, was 

taken to offer a comprehensive theory of information processing, holding the promise of advancing 

knowledge across various domains of cognition including visual and auditory perception, multi-modal 

integration, motor learning, segmentation, categorization, and generalization, to name a few. 

On the theoretical level, SL has had substantial impact on the cognitive sciences, viewed as a 

powerful domain-general learning mechanism and often invoked to argue against nativist or domain-

specific accounts of language and cognition. However, a retrospective view of two decades of SL 

research reveals a substantial gulf between the wide-reaching promise of SL as a theoretical construct 

and the actual empirical work that would support it. Since the foundational work of Reber [1], and 

Saffran and colleagues [2], research on SL has primarily focused on providing a proof of concept of the 

human ability to perceive and learn the distributional properties of visual or auditory input. This has 

been achieved by monitoring participants’ performance in laboratory settings with a strikingly narrow 

set of tasks: In one paradigm, sequences of stimuli generated by some miniature artificial grammar are 

presented for familiarization, and then subsequent correct classification of novel grammatical and 

ungrammatical sequences attests for learning (i.e., Artificial Grammar Learning-AGL). In another 

paradigm, regularities are embedded in a sensory input (typically visual or auditory), and learning of 

these regularities (i.e., co-occurrence of elements, their transitional probabilities, etc.) during a relatively 

brief familiarization phase, usually on the order of minutes, is assessed in a subsequent test phase. 

Extensive research using this approach has indeed provided us with detailed information regarding 

performance profiles in this particular set of artificial laboratory tasks. We know, for example, that 

infants are able to segment artificial speech on the basis of the distributional properties of the 

embedded elements [2], that newborns, like adults, display remarkable sensitivity to the co-occurrence 

of items in a continuous stream (e.g., [3]), that this sensitivity is displayed across sensory modalities, 

(visual: e.g.,[4–6]; auditory: e.g., [7]; tactile: e.g., [8]), for verbal as well as non-verbal stimuli (e.g., [9]), 

that sensitivity extends to both adjacent (e.g., [10]) and nonadjacent contingencies (e.g., [11,12]), and 

that learning does not require overt attention (e.g., [13]), nor explicit memory (e.g., [14]).   

Although these findings represent considerable progress within the field, much of SL research 

has focused on relatively restricted sets of issues, often related to the types of regularities extracted 

from the input, the possible cues that modulate extraction, the necessary conditions for determining 

above chance performance in terms of rate of presentation, complexity of embedded stimuli, their 

similarity to previously established representations, etc. At large, the “Zeitgeist” of this research 

implicitly regards SL as an independent computational mechanism, akin to a device, that is specialized 

for extracting the distributional properties of the sensory input, where research should focus on 

determining its operational scope. This has naturally led to investigating SL in isolation as a separate 

ability from other systems. A corollary of this approach is that advancing knowledge of SL would be 

achieved by mapping the set of constraints on its operation. 
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Is this all there is to SL? From a theoretical perspective, would the full description of constraints 

on SL reveal its exact role across the full breadth of cognitive systems? Should the field continue along 

the same trajectory of the previous two decades for the next two decades? 

We take it as self-evident that a full understanding of SL is not tantamount to detailing 

performance of children and adults in registering the structural similarity of grammatical sequences in 

an AGL paradigm, and/or extracting the transitional probabilities between syllables or meaningless 

shapes in a stream. A powerful theory of SL as a domain-general mechanism—or set of mechanisms—

requires a wider perspective. If SL is a cornerstone of cognition in general, then a comprehensive theory 

will have to integrate and constrain SL by what we know about key cognitive faculties, such as 

perception, attention, and memory, what we know about their development throughout the life span or 

through evolution, and what we know about their neurobiological and computational instantiation. 

The main goal of this special issue is therefore to place SL in its rightful role as fundamental part 

of learning and development across cognition. It aims to foster a transition from studying SL in isolation 

to studying it as an integral part of different cognitive systems. This would involve, for instance, tying 

early statistical sensitivities in infants to phonological structure, to broader theories of language 

emergence, constrained by what we know about memory, attention, and their developmental 

trajectories. From learning basic regularities in the visual modality, to theories of perception, visual 

cognition, scene segmentation, object recognition, and what we know about the neural systems that 

support these functions. From treating individual variation in statistical learning as noise, to emphasizing 

the functional significance of such variability, in relation to what we know about learning and 

communication abilities and disabilities. In sum, this special issue offers a way forward to understanding 

how SL subserves cognition. 

Through this approach, what has traditionally been termed “learning” may usefully be construed 

as SL operating at a large scale, in coordination with the core mechanisms of other cognitive systems 

and abilities. This approach has the promise to offer not only a better understanding of SL, but also a 

better understanding of the cognitive systems it operates within. This forward-looking foundational 

viewpoint, however, requires stressing a different set of theoretical questions for the SL research 

community, allocating a central role for an interdisciplinary program that leverages the unique insights 

from different disciplines and methodologies. Fortunately, the seeds of this new perspective has already 

been sown and the time is ripe to bring these into an integrated whole.  

The diverse papers of the present volume, in one way or another, exemplify this direction 

towards the new frontiers of SL research. Each one of them identifies fundamental questions along the 

lines outlined above, and offers a blueprint for addressing them. Together, the papers thus provide an 

exciting picture of what the future may hold for a more integrated and interdisciplinary approach to SL, 

viewed within its rightful place in cognition. 

The volume was put together to provide a broad glimpse of the new frontiers, building from a 

low-level neurobiological understanding of SL and its neurocomputational instantiation, to a scaffolded 
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consideration of how these mechanisms connect with higher-level key cognitive systems. This 

understanding is achieved by drawing upon insights from evolution, development, and computational 

constraints on processing. The volume thus begins with Hasson’s (this issue) critical review of the basic 

neural building blocks for detecting regularities or their absence. Hasson outlines areas of convergence 

and divergence between models of SL and models focused on the coding of uncertainty. He then derives 

desiderata for future neurobiological work in SL. This review sets the stage for understanding the 

possible neurobiological constraints for any theory of SL.  

Next, Schapiro and her colleagues (this issue) provide a higher-level perspective on the 

important role of the hippocampus in extracting regularities from different sensory input streams. 

Through a series of neurocomputational simulations, they reveal how the hippocampal system can 

resolve an apparent paradox created by the need to encode distinct memories for particular events, on 

the one hand, and rapidly extract regularities among events, on the other.  Drawing upon insights from 

computational modeling, their work clearly illustrates how a more integrated understanding of SL and 

complementary memory systems can better define the interplay between the hippocampus and the 

neocortex.   

 Gomez (this issue) addresses the critical gap between the rapid encoding of regularities in brief 

laboratory experiments, and what is required for the permanent retention of knowledge in the domain 

of language. This work is informed by developmental insights into the different memory systems that 

support initial encoding versus subsequent consolidation. Gomez, thus, specifically targets the problem 

of ecological validity in SL research. Whereas typical learning in the laboratory proceeds at an 

exceedingly rapid pace, language acquisition during infancy is known to be slow in relative terms. This 

discrepancy cannot be resolved without considering the constraints of the different memory systems 

implicated in learning, as well as their developmental trajectories. In focusing on these considerations, 

we gain a better understanding of what underlies the observed differences between adult and infant SL.  

 In a related vein, Arciuli (this issue), discusses SL in the context of age-related changes and 

neurodevelopmental accounts of typical and impaired communication abilities, such as autism spectrum 

disorder. This work touches on a fundamental question: is SL a unitary mechanism or a composite ability 

that relies upon the close coordination of a number of separate cognitive systems such as perception, 

attention, and memory? Arciuli provides substantial evidence for considering SL as a multi-faceted 

ability, where individual differences in SL performance should be understood in terms of variability in 

the efficacy and relative maturation of these respective systems. This approach of deriving meaning 

from individual variability, as opposed to considering it as noise, not only explicates contrasting findings 

in SL research, but also offers a theoretical perspective for tying SL to a range of disorders. 

 Generalizing this perspective, Siegelman and colleagues (this issue) offer a formal conceptual 

framework for defining SL as a componential ability. By considering a range of findings from group and 

individual level studies, they outline potential dimensions of SL, and point to the major methodological 

consequences that this has for tying individual differences in SL to specific cognitive functions. This 
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framework offers clear blueprints for structuring future research, requiring researchers to specify a 

priori how and why specific SL tasks would engage particular cognitive systems. As a corollary, they 

explicate how some learning measures are better suited for probing certain dimensions of SL.  

 Of key importance to understanding SL as embedded in our broader cognitive abilities is 

determining the nature of input available for such learning. Clerkin and colleagues (this issue) adopt an 

ecologically-motivated approach to the development of early word learning, asking what the visual 

environment looks like during the first year of an infant's life. Although the visual input is very cluttered 

with many objects in view, the frequency distribution of particular object categories follows a power-law 

distribution: a very small set of objects occur repeatedly. The authors note that this frequency pattern is 

quite different from the uniform distribution that is typically used in SL experiments (typically under the 

heading of “cross-situational learning”). Nonetheless, the right-skewed distribution of objects in the 

child’s visual field may be crucial for word learning, as suggested by the fact that the names for these 

visual object categories belong to the first words that are learned. This paper thus underscores the 

importance of incorporating ecological constraints into both experimental work and theoretical 

considerations about SL. 

Although often implicit in the discussion of SL results, it is clear that the outcome of SL is not 

simply a representation of the statistics of the input. Rather, the cognitive system uses sensitivity to 

distributional patterns to shape its expectations and behavioral responses in an adaptive way, 

constrained by pre-existing biases in that system. The study by Feher and colleagues (this issue) 

provides an innovative test of this perspective in the context of self-tutored bird song learning. They 

record the songs of juvenile zebra finches placed in isolation and play it back to them moments later. 

These birds normally learn from adult males that have established categories of song elements. 

However, the juvenile birds themselves start out with a broadly distributed signal. Yet, the self-tutored 

birds quickly developed categorical signals at the same rate as birds raised with an adult tutor. These 

results demonstrate that SL does not simply involve recording distributional patterns, but rather reflects 

an active process of learning, shaped by existing perceptual and cognitive biases.  

The empirical work of Shimizu and colleagues (this issue) extends SL research on several 

important fronts. First, it focuses on visuo-motor SL, thereby probing the link between perception and 

action. Second it shifts away from classical SL brain areas associated with SL, investigating the relatively 

understudied role of the cerebellum. Third, rather than using the typical design where neural activity is 

indirectly driven by the experimental manipulation of the input, Shimizu and colleagues manipulate 

neural activity itself via transcranial direct current stimulation (tDCS) to probe for commensurate 

changes in performance. This work not only reveals the critical role of the cerebellum in learning and 

generalizing regularities in the motor domain, but also raises intriguing questions regarding its role in SL 

across a range of domains.  

By complementing neurocomputational simulations, computational modeling at the cognitive 

level can provide additional insights into the possible mechanisms underlying SL. Thiessen (this issue) 
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discusses recent modeling efforts situating SL within a basic memory framework. He proposes that SL 

may be accommodated by two distinct kinds of computational mechanisms: one that relies on chunk-

based memory processes to store exemplars, and another that captures central tendencies in 

distributional input by integrating over prior exemplars stored in memory. A key feature of this 

computational account is that statistics are stored in any form—the effects of exposure to statistical 

patterns are instead reflected implicitly in the system’s memory traces. The paper thus provides a 

parsimonious way in which to understand statistical learning in the context of exemplar memory. 

Mareschal and French (this issue) address a related question that is currently the subject of 

heated debate: Does the SL mechanism target the transitional probabilities between elements in the 

input signal, or is it simply designed to group together co-occurring elements into memory chunks? 

Using a variant of a connectionist autoencoder model, they show how gradual chunking of co-occurring 

elements within an input can potentially explain effects associated with backward and forward 

transitional probability learning, as well as preference for whole-words over part-words which occur 

with equal probability in the stream. They also show that such a model is developmentally plausible by 

predicting the established improvement of SL with age. This work demonstrates the critical role that 

explicit computational theories of SL can have in reconciling apparently discrepant findings and 

theoretical accounts, offering a more parsimonious explanation of a range of effects without sacrificing 

descriptive adequacy.   

 Using the domain of sentence processing as an anchor, Altmann (this issue), in a sense, turns SL 

on its head. After describing how repeated encounters with regularities in the input are the basis for 

generalization and abstraction in the form of semantic knowledge, he reverse engineers this process. In 

so doing, Altmann offers a possible account of how semantic types acquired through SL underpin the 

ability to process and generate novel episodic tokens. By pointing to the reciprocal relationship between 

comprehension and generation of sentence meaning, we gain novel insight regarding the tight and 

intertwined relationship between SL, semantic memory and the comprehension of novel episodes. 

 The volumes closes with an evolutionary perspective on the interaction between SL, language 

learning, and the evolution of linguistic variation. Smith and colleagues (this issue) put forward the 

hypothesis that the relatively low prevalence of unpredictable variation in natural languages could be 

attributed to children´s SL biases against such variations, along with processes related to language 

transmission over multiple generations. To substantiate this idea, they develop a Bayesian model of 

language learning and language transmission, and compare its performance against that of humans in 

an artificial language learning task. The data generated by this approach cast light on the rich and 

complex relationships between the constraints imposed by SL and the evolution of linguistic structure. 

The emergent perspective considers SL not simply in terms of individuals extracting the regularities of 

the environment.  Rather, there is a two way street between human created “environments” such as 

language and SL learning mechanisms.       
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Collectively the series of papers reveal that the tide is beginning to turn in the SL community, 

where the accumulated evidence regarding processing regularities in the environment is now taken to 

shape and constrain theories of cognitive systems. The outcome of SL is not simply a veridical internal 

representation of the regularities of the environment. Rather it is a product of the interaction between 

environmental statistics, the computational principles of the cognitive systems in which learning takes 

place, and pre-existing biases, either from prior exposure to other input patterns or architectural 

constraints. The discussions going forward will consequently inevitably shift from dialog within 

community to cross-disciplinary interactions between communities. This would gradually narrow the 

gulf between the original promise of SL as a theoretical construct, and its actual implementation and 

impact on theories of language, vision, audition, memory, social behavior, etc.  

Such a change of perspective, however, brings a new set of challenges and questions to center 

stage. For example, how does encoding uncertainty in low-level biology (Hasson, this issue) relate to 

uncertainty in high-level domains such as visual word recognition, or sentence comprehension? How 

would the hippocampal system capable of encoding both statistical regularities and distinct episodes 

(Schapiro et al., this issue) relate to the representation of semantic types and episodic tokens (Altmann 

this issue)? Would the basic computational mechanisms tested in small artificial language experiments 

(Thiessen this issue; Mareschal and French, this issue) scale up to dealing with the real-world input, 

such as natural language (Clerkin and colleagues, this issue)? This small sample of questions highlights 

the new frontiers of SL research for the road ahead. 
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