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Abstract 

We evaluated the Dual Route Cascaded (DRC) model of visual word recognition using 

Greek behavioral data on word and nonword naming and lexical decision, focusing on the effects 

of syllable and bigram frequency. DRC was modified to process polysyllabic Greek words and 

nonwords. The Greek DRC and native speakers of Greek were presented with the same sets of 

word and nonword stimuli, spanning a wide range on several psycholinguistic variables, and the 

sensitivity of the model to lexical and sublexical variables was compared to the effects of these 

factors on the behavioral data. DRC pronounced correctly all the stimuli and successfully 

simulated the effects of frequency in words, and of length and bigram frequency in nonwords. 

However, unlike native speakers of Greek, DRC failed to demonstrate sensitivity to word length 

and syllabic frequency. We discuss the significance of these findings in constraining models of 

visual word recognition. 

 

Keywords: visual word recognition, dual-route models, syllable frequency effect, polysyllabic 

words, Greek  
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Lexical and sublexical effects on visual word recognition in Greek: 

Comparing the Dual Route Cascaded (DRC) model to human behavior 

According to the dual-route theory of word recognition and reading aloud, visually 

presented words are processed via two parallel routes; one lexical and one non-lexical (Forster & 

Chambers, 1973; Marshall & Newcombe, 1973). Within the lexical route, the orthographic 

information of each known word is directly linked to its phonological representation. In that way, 

the activation of a word’s orthographic representation leads to simultaneous activation of all its 

phonemes. This means that the lexical route is potentially very fast. In contrast, non-lexical 

processing operates via the application of grapheme-to-phoneme conversion (GPC) rules, which 

leads to the activation of the word’s phonemes in a serial (left-to-right) manner. Both words and 

nonwords are processed by both routes in parallel, but only known words are part of the lexical 

system. Therefore, words can be read via the (typically faster1) lexical route, whereas in the case 

of nonwords, the system relies primarily on the serial non-lexical route.   

The Dual Route Cascaded (DRC) model (Coltheart, Rastle, Perry, Langdon, & Ziegler, 

2001) is one implementation of the dual-route theory and it is considered one of the most 

successful (Coltheart et al., 2001) and influential (Norris, 2013) models of visual world 

recognition. A crucial characteristic of the DRC is that GPC rules are hard-wired into the model 

(Coltheart, Curtis, Atkins, & Haller, 1993) and, as the name implies, they operate on 

representations of pre-defined size (i.e. graphemes, mapping on individual phonemes). However, 

hard-wired rules are not a theoretical commitment of the dual-route theory; in a different 

implementation of the same theory, the Connectionist Dual-Process (CDP) model (Perry, 

Ziegler, & Zorzi, 2007, 2010; Zorzi, Houghton, & Butterworth, 1998; Zorzi, 2010), non-lexical 

                                                           
1
 Since activation of the lexical route is delayed compared to the non-lexical one (see Figure 9 in Coltheart et al., 

2001), this applies to words with more than two phonemes. 
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processing relies on mappings from orthographic to phonological elements that are learned via a 

connectionist network, instead of predefined GPC rules. The DRC does not explicitly aim to 

simulate the learning process via which conversion rules are acquired; and even when this is 

attempted (Pritchard, Coltheart, Marinus, & Castles, 2016), the grain size of sublexical units 

remains fixed at the grapheme-phoneme level. Therefore, it remains an open question whether 

hard-wiring the GPC rules themselves, or the size of the units they operate on, may deprive the 

model of the opportunity to learn certain systematicities intrinsic to the input that are not (and 

maybe cannot be) represented in rules at this level. That is, since the hard-wired rules operate on 

pre-defined representations, this may set intrinsic limitations to the model regarding the nature 

and size of the representations on which the non-lexical route operates (e.g. whether the basic 

unit of processing is the letter, the grapheme, or the syllable). 

Evaluating the theoretical assumptions of DRC  

One way to evaluate the theoretical assumptions of a model is by testing how 

successfully it can simulate human data in comparison to other models. Pritchard, Coltheart, 

Palethorpe, and Castles (2012)) compared the two implementations of the dual-route theory in 

nonword reading. They reported both overall accuracy scores of how well the model’s 

pronunciation matched the human data, as well as more detailed analyses of the types of errors 

performed by the humans and the models. The results showed that the overall performance of the 

DRC model was better than any of the CDP versions, even though the DRC did not account for 

the entire range of responses observed in the human data.  

Such a qualitative comparison between human and model responses is one approach to 

evaluating computational models. An alternative approach would be to measure the effects of 

different factors and directly compare the pattern of results between behavioral and modeling 
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data. Specifically, one can test whether a factor X that is found to have a significant effect on 

human responses also has a similar effect on the model’s behavior (see discussion in Adelman & 

Brown, 2008). One way to do this is by comparing the proportion of variance accounted for by 

one variable in the human data versus the modeling data. Yap and Balota (2009) conducted an 

evaluation of specific factors affecting word recognition using a hierarchical regression model. 

The degree of agreement between the regression equations for the human and the modeling data 

allows the modeler not only to evaluate the sensitivity of the model to specific factors, but also to 

compare that sensitivity to the corresponding human data. Unfortunately, this approach is not 

guaranteed to produce interpretable results. For example, if predictor variables significantly co-

vary then it is difficult to estimate the unique contribution of each predictor. Despite its 

limitations, this approach enables us to tease apart the effects of different variables and use them 

to evaluate models (e.g. see comparative evaluation of models in simulating stress assignment in 

Mousikou, Sadat, Lucas, & Rastle, 2017). 

What can lexical and sublexical effects tell us about visual word recognition? 

Yap and Balota (2009) confirmed and extended findings from other studies showing that 

word recognition/naming latencies depend on a variety of  lexical and sublexical factors (see, 

e.g., Balota, Yap, Hutchison, & Cortese, 2012, for a review). Prominent among these stand word 

frequency (Forster & Chambers, 1973; Spieler & Balota, 2000), length (Barca, Burani, & 

Arduino, 2002; Spieler & Balota, 2000; Weekes, 1997), neighborhood density (Arduino & 

Burani, 2004; Barca et al., 2002; Reynolds & Besner, 2004; Spieler & Balota, 2000), and 

syllable frequency (Carreiras, Alvarez, & Devega, 1993; Conrad & Jacobs, 2004; Hawelka, 

Schuster, Gagl, & Hutzler, 2013). Therefore, it seems reasonable that a model of visual word 

recognition should be sensitive to these factors, similarly to human readers. 



Running head: GREEK WORD RECOGNITION BY THE DRC MODEL 

 

7 

The effect of syllabic frequency has been of particular interest, partly due to the fact that 

it appears to be inhibitory or facilitatory depending on the specific task demands. When the task 

relies heavily on lexical access (e.g. lexical decision), words with more frequent initial syllables 

are recognized more slowly compared to words with less frequent initial syllables (see review in 

Conrad, Tamm, Carreiras, & Jacobs, 2010). This inhibitory effect is thought to reflect lexical 

interference from competitor words that have the same first syllable as the target word; when the 

first syllable of a word is high-frequency, this indicates that the target word shares its first 

syllable with many other words that are partially activated during visual word recognition and, 

thus, interfere with the recognition of the target word (Carreiras et al., 1993; Mahé, Bonnefond, 

& Doignon-Camus, 2014).  

In contrast, facilitatory effects have been observed in naming (Carreiras & Perea, 2004; 

Perea & Carreiras, 1998) – a shift that has been attributed to the fact that in naming tasks 

participants need to construct phonological output for production; under these conditions, 

frequent syllables are activated and produced faster (Ferrand, Segui, & Grainger, 1996). Looking 

closer into this complex pattern of results, Mahé and colleagues (2014) argue that the net syllable 

frequency effect depends on the strength of syllable activation: strongly activated syllables (e.g. 

due to bigrams that are not congruent with word parsing into syllable units) lead to faster 

activation of phonological units, which in turn activate the target word along with its lexical 

competitors. Thus, the net effect is inhibitory in this case. In contrast, when syllable activation is 

weak/slow, lexical competitors are not as strongly activated, while the target word is still directly 

activated by letter units, leading to an overall facilitatory effect.  

Several studies have examined more closely into the nature of syllable frequency effects 

and how they are linked to other sublexical effects, as a way of uncovering the mechanisms that 
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underlie visual word recognition. Syllabic frequency effects, for example, could be understood in 

terms of orthographic processing. According to this account, syllabic frequency effects are in 

essence bigram frequency effects. That is, bigrams straddling a syllable boundary (i.e. the last 

letter of one syllable plus the first letter of the following syllable) are less frequent than bigrams 

contained within syllables. This interpretation highlights the theoretical distinction between 

bigram and syllable frequency effects. In fact, studies examining the effect of bigram frequency 

have yielded contradictory results (for a review see Chetail, 2015), which may be partly due to 

the fact that different studies control for different factors. For example, most studies of bigram 

frequency effects have not controlled syllable frequency, which is correlated with bigram 

frequency, therefore it remains an open question whether studies reporting significant bigram 

frequency effects may in fact have indirectly revealed effects best attributed to syllables. 

Accordingly, the orthographic interpretation of syllabic frequency effects has been 

questioned by the results of studies that used words without this bigram difference (Carreiras et 

al., 1993) or that orthogonally manipulated syllable and bigram frequency (Conrad, Carreiras, 

Tamm, & Jacobs, 2009). Crucially, both studies showed that the effect of syllable frequency is 

independent from bigram frequency. Other studies have shown that the inhibitory syllable effect 

is related to token, rather than type, syllable frequency (Conrad, Carreiras, & Jacobs, 2008), and 

to phonological, rather than orthographic, syllable units (Conrad, Grainger, & Jacobs, 2007; 

Mahé et al., 2014). These findings are consistent with the proposal that syllabic frequency effects 

arise due to the automatic phonological syllabic parsing of the visually presented word, which in 

turn activates other words with the same initial syllable (Mahé et al., 2014; Perea & Carreiras, 

1998). 
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According to this account, the frequency of only the initial syllable of each word is 

relevant. Thus, the definition of syllabic frequency in most studies is based on word-initial 

syllables. This approach makes it difficult to dissociate the effect of syllable frequency from 

what is broadly known in the spoken word recognition literature as cohort effects (Allopenna, 

Magnuson, & Tanenhaus, 1998; Connine, Blasko, & Titone, 1993; Marslen-Wilson, Moss, & 

Van Halen, 1996). Cohort effects are relevant in directional access processes, which necessarily 

operate in spoken word recognition because speech unfolds in time starting from the beginning 

of the word. As the initial part of a spoken word overlaps with other existing words, a potentially 

large set of lexical candidates can be activated. This set becomes progressively pruned as more 

of the spoken word is heard and mismatching candidates are dropped. In this conceptualization, 

the initial syllable is of crucial importance, because it constrains the starting candidate set. 

Similar processes may conceivably apply in visual word recognition to the extent that left-to-

right processing is operative, as in the DRC sublexical route. Thus, if the syllable frequency 

effect reflects a disguised cohort-type process it should indeed be dependent on the frequency of 

the initial syllable only. In contrast, a genuine syllable frequency effect might arise if the visual 

word is parsed into syllables and all of them can affect access. To evaluate these alternatives, 

syllable frequency could be defined as the average syllabic frequency of all the syllables in the 

word, to be contrasted with first-syllable frequency. 

More broadly, by extracting independent estimates of cohort, syllable, and bigram 

frequency effects, we can identify the nature and size of the representations that are most 

relevant for visual word recognition. This is particularly useful when it comes to evaluating 

whether it is necessary for a model to be able to learn what is the unit that is most relevant for 

processing, or whether it is just as good to hard-code this aspect of processing into the model. 



Running head: GREEK WORD RECOGNITION BY THE DRC MODEL 

 

10 

Present study 

The present study aimed at evaluating the DRC model and the corresponding theoretical 

assumptions on which it is based, by comparing DRC simulations to Greek word and nonword 

reading data from human readers. We were particularly interested in assessing the degree to 

which different sublexical units are relevant for reading and for this reason we focused on 

sublexical effects. The non-lexical route of the DRC architecture operates via grapheme-to-

phoneme conversion, which assumes that the graphemic unit has a special status in visual word 

recognition. However, it is unclear whether this is the case in Greek word reading – an issue 

linked to the broader question of whether there are cross-linguistic differences in the cognitive 

mechanisms and representations underlying visual word recognition (Schmalz, Robidoux, 

Castles, Coltheart, & Marinus, 2017).  

In particular, in this study, we (a) examined the degree to which different levels of 

processing, and corresponding units, are relevant in Greek visual word recognition, and then 

proceeded to (b) testing the DRC assumption regarding the special status of graphemes, by 

comparing it to the behavioral data. We estimated the effects of interest using the multiple 

regression method proposed by Yap and Balota (2009). Both naming and lexical decision data 

were collected from native Greek speakers, while simulation data were produced by a Greek 

version of the DRC model adapted to process multisyllabic Greek words and nonwords. 

Stimuli spanned a wide range of frequency and sublexical characteristics, as well as a 

much greater range of syllables (2–5) than most previous studies. This was mainly done because 

polysyllabic words are more representative in Greek (Protopapas & Vlahou, 2009), but it also 

allows us to draw conclusions that are applicable to a wider range of stimuli. In addition, word 

and nonword stimuli in the two tasks were carefully matched on several of these variables (see 



Running head: GREEK WORD RECOGNITION BY THE DRC MODEL 

 

11 

Protopapas & Kapnoula, 2013, 2016; Protopapas et al., 2016, Table 1). Crucially, to facilitate 

accurate estimation of individual effects, our stimulus set was designed to minimize inter-

correlations among several major predictor variables (Protopapas & Kapnoula, 2013, 2016, 

Appendix B; Protopapas et al., 2016, Table 2). This allowed us to compare, among others, the 

predictive power of initial syllable frequency to that of average syllable frequency, taking into 

account all the syllables in each word.  

Greek is a language with relatively transparent orthography, with consistency and 

regularity in the reading direction (i.e., from graphemes to phonemes) estimated at 95%, thus 

being more transparent than English (69.3%; Ziegler, Stone, & Jacobs, 1997), French, and 

German, but less transparent than Hungarian and Italian (Protopapas & Vlahou, 2009). Given the 

considerable difference between the Greek and English writing systems, the primary question 

addressed by this study was whether the DRC (which is built predominantly based on English 

behavioral data) would be able to exhibit a pattern of effects similar to that observed in the Greek 

behavioral data. 

 

Method 

Human data collection 

The behavioral data analyzed below are the same as those reported in Protopapas and 

Kapnoula (2013, 2016), where the reader is directed for more details about the stimuli and 

aspects of the method, as well general patterns of findings. All analyses reported here are novel. 

Participants. In total 132 native speakers of Greek (97 women) participated in this 

experiment. Ages ranged from 18 to 36 years old (M = 23.3, SD = 4.7). The majority were 

university students (12–21 years of education, M = 15.4, SD = 2.1). Fourteen were left-handed. 
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Stimuli. The experimental materials consisted of 300 visual stimuli (150 words and 150 

nonwords)
 2 2–5 syllables long. The words were selected from the ILSP PsychoLinguistic 

Resource (IPLR) word list (Protopapas, Tzakosta, Chalamandaris, & Tsiakoulis, 2012). The 

nonwords were constructed to match the criteria set for the words (i.e. phonotactically and 

morphologically legal, 2–5 syllables long). To facilitate assessment of reading accuracy, all 

stimuli were free from orthographic ambiguities – meaning they had only one possible 

pronunciation. 

For the purposes of this study, we focused on the following variables: word frequency 

(log number of appearances in the corpus), word length (number of letters), average orthographic 

bigram frequency (mean log number of appearances in word tokens), average phonological 

syllabic frequency (mean log number of appearances in word tokens), frequency of first 

orthographic bigram, frequency of first phonological syllable3, orthographic neighborhood 

(defined as the number of words that have the same length as the target word and differ by only 

one letter, i.e., Coltheart’s N; Coltheart, Davelaar, Jonasson, & Besner, 1977)4, and grapho-

phonemic transparency (computed as mean token probability of unique grapheme-phoneme 

mappings, termed “sonographs” following Spencer, 2009). Syllable and bigram frequencies were 

calculated independently of their position within the word, based on preliminary analyses 

indicating that position-dependent measures accounted for less variance in the behavioral data. 

                                                           
2
 A list of word and nonword stimuli is available in Protopapas and Kapnoula (2016; Appendix C). 

3
 In our data, positional syllable frequency was not a better measure, and this is why we have not chosen to base our 

report on it; in our preliminary analyses, positional first syllable frequency (equivalent to a syllable-based cohort 

frequency) accounted for slightly less variance in naming and lexical decision RT than frequency of the first syllable 

measured cumulatively over all word positions. 
4
 Given that this is the first investigation of its kind in Greek, we decided to use this metric of neighborhood density 

instead of the more recent OLD20 (Yarkoni, Balota, & Yap, 2008) in order to have data directly comparable to the 

majority of the literature.  



Running head: GREEK WORD RECOGNITION BY THE DRC MODEL 

 

13 

These variables were collected using the IPLR (available at http://speech.ilsp.gr/iplr/, Protopapas 

et al., 2012) and are listed in Table 1.  

 

---Table 1 here--- 

 

The nonwords were matched to the words as closely as possible. As shown in Table 1, 

they were not significantly different in most variables, according to the Kolmogorov-Smirnov 

non-parametric criterion. Neighborhood was an unavoidable exception, because otherwise long 

nonwords with many neighbors would inescapably be very similar to individual known words 

and their inflectional variants. That is, longer nonwords would resemble real words more 

strongly than shorter words, thus, confounding the effects of length and neighborhood. 

Therefore, to avoid systematic activation of known words we selected nonwords with as few 

neighbors as possible — and, for this reason, orthographic neighborhood was not included in the 

main nonword analyses. 

 

---Table 2 here--- 

 

Stimuli were selected to minimize the covariance between major predictor variables, 

aiming to keep their unique effects as distinct as possible. As seen in Table 2, most correlations 

were very small and not significant for words (an exception is the first orthographic bigram and 

first phonological syllable frequency). For nonwords, again most correlations were not 

significant. An important exception was orthographic neighborhood, which was significantly 

correlated with length because of the length range of our stimuli and the restriction to select 
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nonwords with few or no neighbors, which was not possible for the shorter nonwords. In 

addition, for the nonwords, first phonological syllable frequency was significantly correlated 

with first orthographic bigram and average orthographic bigram frequency, while average 

phonological syllabic frequency was significantly correlated with average orthographic bigram 

frequency. 

Apparatus and procedure. Participants performed a naming and a lexical decision (LD) 

task. In the naming task, words and nonwords were presented in separate blocks5. Block order 

was counterbalanced between participants. Participants were asked to read each stimulus aloud. 

Responses were recorded via a headset microphone. In the LD task, words and nonwords were 

presented in the same intermixed block. Participants were asked to press one key on the 

keyboard for words and another for nonwords (the right and left CRTL keys). Correspondence 

between response type (i.e., lexicality), button placement, and handedness was counterbalanced 

between participants. Task order was counterbalanced between participants, to eliminate task 

order effects (see Protopapas & Kapnoula, 2016 for an examination of such effects). A digit-span 

task was inserted between the two tasks to minimize the effect of memory traces for specific 

stimuli. In both tasks, each stimulus was presented on a 12.1” laptop screen in white 36-pt Arial 

font on black background for 2000 ms. Stimulus order was randomized individually between 

participants (within task and block). Stimulus presentation and response recording was controlled 

by DMDX (Forster & Forster, 2003). The entire session lasted approximately one hour. 

                                                           
5
 This was done to minimize any effects on real word naming due to repeated nonword naming. As has been 

suggested in the literature (Coltheart & Rastle, 1994; Rastle & Coltheart, 1999), repeated exposure to nonwords can 

lead to a shift in the balance between the two routes, such that readers increase the contribution from the non-lexical 

route to phonemic activation and decrease the contribution from the lexical route. That is, as Coltheart (1978) 

suggested, when a reader is exposed to many nonwords in a row, they adjust their strategy either by turning down 

the lexical route, or turning up the non-lexical route, or both. 
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Model data collection 

Greek DRC. The architecture of the Greek version of the DRC model is identical to that 

of the English version 1.2.1 (http://www.cogsci.mq.edu.au/~ssaunder/DRC/2009/10/drc-1-2-1/). 

However, certain changes were necessary for the DRC to handle polysyllabic Greek stimuli. In 

the lexical route, the two lexica (orthographic and phonological) of the Greek model contained 

all 217,662 words in the IPLR C corpus (Protopapas et al., 2012) and their associated 

frequencies. In the non-lexical route, the GPC rules were replaced by the Greek rule set of 

Protopapas and Vlahou (2009); originally based on Petrounias, 2002). The two routes were 

balanced by adjusting parameters to achieve accurate performance6.  

Additional adjustments included: (a) Increasing the number of units in each position of 

the visual feature and letter layers to 37 — one for each of the 36 Greek letters, and an extra unit 

for the 'blank', (b) increasing the number of units in each position of the phoneme layer to 33 — 

one for each of the 32 Greek phonemes, and one for the 'blank', and (c) increasing the number of 

positions in each of the visual feature, letter, and phoneme layers to 24 to accommodate long 

Greek words. Crucially, the Greek DRC could handle polysyllabic words correctly, including 

stress assignment, because stress is orthographically marked in Greek with a stress diacritic. 

Therefore, stress assignment was represented in the model by distinguishing between stressed 

and unstressed vowel letters (e.g., unstressed α differed from stressed ά).  

The stimuli used in the behavioral experiment were provided as input to the model and 

the phonological output of the model was noted. Following Coltheart et al. (2001), the number of 

processing cycles was used as a proxy for response latency in the naming task. The LD task is 

simulated by the DRC based on the three decision criteria described by Coltheart et al. (2001): if 

                                                           
6
 Details about model parameters and their values are listed in the Appendix. 

http://www.cogsci.mq.edu.au/~ssaunder/DRC/2009/10/drc-1-2-1/
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any one entry in the orthographic lexicon reaches a minimum activation level (A), or if the 

overall sum of activations among the entries in the orthographic lexicon reaches a given 

threshold (S), then a “yes” response is given. Otherwise, if a given number of cycles (D) has 

elapsed and neither of these two aforementioned thresholds were reached, then a “no” decision is 

made. We collected LD modeling data using the DRCLD tool (available at 

https://github.com/stevenjs/drcld).  

Results 

Descriptives and pre-processing 

Spoken responses from the naming task were processed with CheckVocal (Protopapas, 

2007) to check accuracy and placement of response time (RT) marks. Incorrect responses, 

defined as responses with any phonemic difference from the canonical pronunciation7, were 

excluded from RT analysis. Average naming accuracy was 99.1% for the words and 91.1% for 

the nonwords. In the lexical decision task, response accuracy was 95.3% for the words and 

96.4% for the nonwords. The DRC was 100% successful in pronouncing (naming task) and 

classifying (LD task) all stimuli. Response latency data are presented in Table 3. 

 

---Table 3 here--- 

 

                                                           
7
 Defining naming errors was straightforward because nonword stimuli had unambiguously correct pronunciations. 

Naming errors were mostly due to haste and inattention. For example, a nonword like δογορονήσω [ðoɣoronίso] 

could be misnamed as [ɣoðoronίso]. 

https://github.com/stevenjs/drcld
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Main analyses 

Stage 1: Variable selection. The aforementioned correlations (between first phonological 

syllable frequency and first orthographic bigram frequency for words, and among first 

phonological syllable frequency, average phonological syllabic frequency, and average 

orthographic bigram frequency for nonwords) make interpreting the data via simple linear 

regression problematic. Therefore we followed Yap and Balota (2009) and conducted a series of 

hierarchical regressions to estimate the unique variance accounted for by each variable before 

entering them into the final multiple regression equation. The dependent variable was RT. To 

allow comparisons between human and DRC data, RTs were averaged across all participants for 

each item (word and nonword), separately for the naming and the LD task.  

The effect of the initial phoneme (dummy-coded into classes of vowel, liquid, fricative, 

voiced stop, and unvoiced stop consonant) was removed from the naming RT in a preliminary 

regression step (not shown). We then entered frequency, length, orthographic neighborhood, and 

grapho-phonemic transparency in the first step, for words; for nonwords, we only entered length 

and grapho-phonemic transparency (orthographic neighborhood was excluded, because, as 

explained in the Method section, it was impossible to de-correlate it from length). In the second 

step, four different models were created, by entering each of the four target variables (first 

phonological syllable frequency, average phonological syllabic frequency, first orthographic 

bigram frequency, and average orthographic bigram frequency). Each variable was then entered 

in a third step in every combination with second-step variables, thus creating a total of 12 models 

for each task and each stimulus type (see Tables 4 and 5). This allowed us to better assess the 

relative importance of each of our key predictors (i.e. syllable and bigram frequency measures). 
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---Table 4 here--- 

 

---Table 5 here--- 

 

For words, first phonological syllable frequency had a marginally significant effect on 

naming RTs, accounting for about 2% of the residual item variance, and a significant effect on 

LD RTs, accounting for about 6% of the variance. First orthographic bigram frequency was also 

a significant predictor, accounting for about 3% of LD item variance when entered alone in the 

second step. First phonological syllable frequency remained a marginally significant predictor 

after first orthographic bigram frequency variance was removed, but the opposite was not 

observed. 

For nonwords, average orthographic bigram frequency had a significant effect on naming 

RTs, accounting for 6.6% of the residual item variance, while first phonological syllable 

frequency accounted for about 4%. Average orthographic bigram frequency remained significant 

in the third step, after controlling for first phonological syllable frequency, while first 

phonological syllable frequency became marginally significant after controlling for average 

orthographic bigram frequency. None of the target variables accounted for a significant 

proportion of LD RT variance. 

Given these results, we decided to include only first phonological syllable frequency in 

the analyses for the words and first phonological syllable frequency and average orthographic 

bigram frequency for the nonwords. 
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Stage 2: Task and model comparisons. Again, the effect of the initial phoneme was 

removed from naming RTs before entering the rest of the variables. We then conducted six 

multiple regression analyses, namely 2 types of stimuli × (2 tasks plus model simulation). 

For the words, frequency, length, orthographic neighborhood, and grapho-phonemic 

transparency were entered in the first step and first phonological syllable frequency in the second 

step (see Table 6). Frequency and length had a significant effect in both tasks. Orthographic 

neighborhood and grapho-phonemic transparency were not significant in either task8. Overall, 

these four variables accounted for 39.9% of the residual item variance in naming and 33.3% in 

LD. When first phonological syllable frequency was entered in the second step, it accounted for 

an additional 6% in the LD task.  

Turning to the DRC simulation data, frequency but not length had a significant effect on 

the number or processing cycles in the first step, for both (naming and LD) types of simulations. 

Grapho-phonemic transparency was a significant predictor only for the naming simulation, 

whereas orthographic neighborhood was marginally significant only for the LD. Overall, these 

four variables accounted for 45.4% of the total variance in the model naming “latency”, and 

96.4% of the total variance in the model LD “latency”. When first phonological syllable 

frequency was entered in the second step, it did not account for significant additional variance in 

either of the simulations. We also analyzed the word data including both first phonological 

syllable frequency and average orthographic bigram frequency for a more direct comparison with 

the nonword data analyses. The results for the two sets of human data (naming and LD RTs) 

were almost identical to the reported results including only first phonological syllable frequency. 

                                                           
8
 Even though we used Coltheart’s N in our main analyses (because this measure of neighborhood was decorrelated 

from all other major predictors), we also performed the same set of analyses using OLD20 in its place. The results 

showed no difference between using Coltheart’s N and OLD20: Naming RT: β=.09781, p=.256; LD RT: β=.147, 

p=.106. 
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For the DRC data, we found a significant effect of average orthographic bigram frequency 

(accounting for 25% of the variance).     

 

---Table 6 here--- 

 

For the nonwords, we conducted similar analyses (Table 7), excluding frequency and 

orthographic neighborhood from the predictor variables in the first step and including first 

phonological syllable frequency and average orthographic bigram frequency in the second step. 

Length had a significant effect in both naming and LD, while grapho-phonemic transparency was 

not significant in either task. Together these two variables accounted for 68.6% of the residual 

item variance in naming and 39.1% in LD. In the second step, both first phonological syllable 

frequency and average orthographic bigram frequency had a significant effect in naming. These 

two variables combined accounted for an additional 9% of the residual item variance. None of 

them was a significant predictor of RT in the LD task. 

We only analyzed DRC naming data because the model’s LD latency was identical for all 

nonwords (63 cycles)9. Length and grapho-phonemic transparency both had a significant effect 

accounting for 95.5% of the variance. In addition, when added in the second step, average 

orthographic bigram frequency was also a significant predictor of the model’s response latency. 

Average orthographic bigram frequency and first phonological syllable frequency combined 

accounted for 4.6% of the residual item variance. 

 

                                                           
9
 Given that the maximum number of cycles is reached for all nonwords, it is reasonable that the model latencies 

should be identical across nonword stimuli. 
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---Table 7 here--- 

 

Table 8 summarizes the findings from the comparison of the individual effects between 

human and modeling data. As shown, DRC successfully simulated the frequency effect on RTs 

to known word stimuli, as well as the length effect observed for nonwords. This was expected 

because they reflect aspects of the model that are explicitly designed into it. However, in contrast 

to the participants’ behavior, DRC was not sensitive to length for known words. In addition, even 

though our participants’ responses were overall affected to a greater degree by syllable frequency 

compared to grapho-phonemic transparency, the opposite pattern was observed for the DRC.  

 

---Table 8 here--- 

 

Discussion 

In this study we evaluated the DRC model by conducting a qualitative and quantitative 

comparison of the model’s responses to those of native speakers of Greek. Specifically, after 

selecting stimuli with relatively balanced characteristics (to avoid significant covariance between 

major predictor variables), we conducted multiple regressions to assess the unique variance 

accounted for by each of the variables. We did this separately for the model and human 

responses and we compared the two. 

Behavioral data 

Our behavioral data provide useful insights into the processes of visual word recognition 

and reading aloud in a relatively transparent orthography. Although word frequency was found to 
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be a significant predictor of latency (as expected), its contribution did not eliminate other effects 

(i.e. length and syllabic frequency). The effect of length was also expected, given the range of 

our stimuli (2–5 syllables long). However, this effect was significant for both nonwords and 

familiar words in both tasks (naming and LD), which suggests that proficient readers are 

sensitive to length even in the case of familiar lexical items, consistent with findings with 

multisyllabic words in other languages (e.g., (Barca et al., 2002; Ferrand et al., 2010, 2011; 

Keuleers, Diependaele, & Brysbaert, 2010; Yap & Balota, 2009). One may argue that this 

finding stands in the face of a fundamental assumption of the dual-route theory, according to 

which familiar lexical items are primarily processed via the (faster) lexical route that allows for 

parallel activation of the word’s sublexical parts. However, our modeling data (discussed in the 

next section) speak more directly to this issue of whether length effects can be observed when 

parallel grapho-phonemic conversion is available.  

Despite the robust neighborhood effects reported in the literature for other languages, we 

did not observe a significant effect of neighborhood on RT in either task. This may seem 

counterintuitive, however, as discussed by Protopapas and Kapnoula (2016), the concept of 

neighborhood is problematic for Greek. This is because Greek content words are inflected by 

suffixation that marks different grammatical properties (such as gender and number10) and, as a 

result, different forms of the same word count as neighbors, according to common definitions of 

neighborhood such as Coltheart’s N (Coltheart et al., 1977). Therefore, it may be that in the case 

of Greek (and other morphologically rich languages) this type of neighbors may not act as 

competitors and may instead facilitate activation of the target word. Moreover, Greek has 

relatively long words (token mean 5.4 letters, 2.4 syllables; Protopapas et al., 2012; type mean 

                                                           
10

 For example, ταχυδρόμος (taçiðɾˈomos), ταχυδρόμου (taçiðɾˈomu), ταχυδρόμο (taçiðɾˈomo), and ταχυδρόμε 

(taçiðɾˈomɛ) all correspond to the word postman in nominative, genitive, accusative, and vocative respectively. 
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10.1 letters, versus 7.8 in English, Balota et al., 2007, and 8.4 in French, New, Pallier, Ferrand, 

& Matos, 2001), resulting in much sparser neighborhoods than English, especially if inflectional 

variants are excluded, and, therefore, fewer opportunities for neighborhood effects.   

Turning to sublexical factors, the effect of first syllable frequency has been reported in 

languages with relatively transparent orthographies, such as Spanish (Carreiras et al., 1993) and 

German (Conrad & Jacobs, 2004). Because Greek is also relatively transparent, we expected 

similar results. In addition, by carefully constructing stimuli sets for which our predictor 

variables were largely decorrelated, we could dissociate the effects of first syllable frequency, 

average syllable frequency, and bigram frequency (for words), unaffected by other major 

variables. Our results showed that first syllable frequency was the most robust predictor among 

these sublexical variables. This finding supports the hypothesis that syllable frequency effects 

stem from the interference from partially activated competitor words that share their first syllable 

with the target (Carreiras et al., 1993). In other words, these are phonological cohort effects.  

Focusing on the role of syllable frequency in word recognition, we observed a marginally 

significant effect of first syllable frequency on RT in the word naming task, which was 

significant for nonwords, and a significant effect of first syllable frequency on RT in the LD task 

for words. These findings are in line with the orthographic depth hypothesis (Katz & Frost, 

1992) as they indicate that in conditions of high transparency, and, therefore, highly reliable 

GPC rules, readers may utilize sublexical representations to a high degree. In contrast, in less 

transparent languages, like English, syllables might not be utilized as much (Ziegler et al., 1997; 

related arguments regarding processing unit size have been made also on the basis of length 

effects, e.g., for Italian, Marinelli, et al, 2016, and eye movement patterns, e.g., for German, Rau 

et al., 2016, among others). Furthermore, our results show that phonologically defined syllables 
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may hold a unique status among sublexical representations. That is, our findings suggest that the 

effect of syllable frequency is dissociable from that of bigram frequency, which was only 

observed for nonwords and only in the naming task. These results are in line with the idea that 

syllabic representations are rapidly and automatically activated during visual word recognition 

(Mahé et al., 2014; Perea & Carreiras, 1998) and that the course of activation of these 

representations is directional, consistent with left-to-right syllabic processing of the visual 

stimulus. Consistent with this interpretation, recent neuroimaging data using fMRI for Greek 

listeners responding to the same stimulus set has localized the syllabic frequency effect at left 

inferior frontal cortex (Protopapas et al., 2016), which is typically associated with phonological 

rather than orthographic representations. 

Comparison between behavioral and modeling data 

The Greek DRC model simulated the human pronunciation of all the stimuli (both words 

and nonwords) 100% accurately, although it was overly sensitive to lexicality; nonwords 

averaged more than twice the cycles needed for words, whereas the corresponding increase in 

human naming RTs was only about 30%. The DRC model’s sensitivity to word frequency, as 

well as nonword length and bigram frequency, was in line with the behavioral data. However, in 

contrast to human readers, DRC did not show sensitivity to length when the stimuli were known 

words. Moreover, DRC showed more sensitivity to GPC transparency than to syllabic frequency, 

which was the opposite of the pattern observed in the behavioral responses. These 

inconsistencies may reflect a divergence between the Greek readers and the DRC architecture, 

possibly revealing a fundamental difference in terms of which unit is most relevant for 

processing (i.e., syllable versus grapheme).  
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Frequency information is represented in the model, as “a constant value [...] associated 

with each unit in the lexicon” (Coltheart et al., 2001) that determines the activation level of that 

unit given all other factors are the same. Therefore, it is not surprising that DRC successfully 

simulated the word frequency effect. The model also naturally accounts for the observed length 

effect in nonwords; unknown words can only be “read” via serial grapheme-to-phoneme 

conversion (through the non-lexical route) – as a result, longer nonwords take more time to be 

processed. In contrast, in the case of known words, graphemes are converted to phonemes in 

parallel (through the lexical route); this explains the model’s insensitivity to word length. If the 

length effect for known words was only significant in transparent orthographies, this could be 

viewed as a minor limitation of the model, but length effects with words have also been found in 

English (Perry et al., 2010; Yap & Balota, 2009). A possible solution to this problem may be to 

adjust the parameters that determine the relative strength of the two routes (lexical and non-

lexical). We tested this by running the same analysis on the model responses generated by a 

version of DRC with adjusted parameter settings. As expected, we found that when the non-

lexical route was strengthened length became a significant predictor of response latency (β = .47, 

p < .001); but this occurred at the expense of accuracy (3 naming errors, i.e. 2%). It is an open 

question whether this trade-off between the strength of the non-lexical route and naming 

accuracy is telling us something about how humans read words, or whether it reflects an 

underlying constraint of the specific model. Even though further simulations and model 

comparisons are needed to address this question, this may suggest that the DRC relies too 

heavily on lexical-level processing, compared to Greek readers, who also rely on the mapping of 

sublexical units, such as graphemes and syllables (possibly due to the high transparency of the 

language; see Katz & Frost, 1992). An alternative approach would be to switch to a parallel 
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distributed processing description, which has been shown to simulate length effects in words 

(Chang, Furber, & Welbourne, 2012; see  Protopapas & Outos, 2009, for an earlier model 

specifically targeting Greek).  

With respect to the sublexical variables in the focus of this study, DRC failed to simulate 

the effect of syllable frequency in Greek words, showing instead sensitivity to grapho-phonemic 

transparency (which was, however, absent in the behavioral data). The performance of the DRC 

matched the behavioral results for nonwords more closely, as the model showed sensitivity to 

nonword length and bigram frequency, like humans readers in the naming task. There was also a 

marginally significant effect of the first syllable frequency on DRC latency for the nonwords, but 

it was in the opposite direction of that observed in the behavioral results. We believe this pattern 

of results to be informative as to the limitations of the DRC and our approach to modeling 

reading behavior more generally. Next, we turn to our interpretation of these findings. 

This pattern of inconsistencies may reflect an underlying divergence between the Greek 

readers and the DRC architecture, perhaps in terms of which unit is most relevant for processing 

(e.g. whole word, syllable, or grapheme). That is, the absence of a syllable frequency effect for 

words could be attributed to the fact that in the DRC architecture, reading aloud of known words 

relies predominantly on the lexical route, in which words are processed holistically. As a result, 

DRC processing latency for words is largely determined by frequency (which is a characteristic 

of the word as a whole), but it is not affected much by sublexical characteristics, like syllable 

frequency. In addition, graphemes are explicitly defined as representational units in the model, 

whereas syllables are not, and this may be why the model only shows sensitivity to the former.  

The relatively poor match of the DRC model to Greek reading behavior is also 

exemplified in the rigidity of its responses to pseudowords in the case of ambiguities. As noted 
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by Protopapas and Vlahou (2009), although Greek is mostly predictable in the forward (reading) 

direction, a widespread case of frank ambiguity exists. Specifically, any combination of a 

consonant followed by an unstressed grapheme corresponding to /i/ followed by a vowel (termed 

CiV) can be legally pronounced either with an /i/ phoneme (a two-syllable reading) or with a 

palatal consonant and no /i/ (a one-syllable reading). Protopapas and Nomikou (2009) 

constructed pseudowords containing this ambiguity, manipulating their orthographic overlap to 

existing words and the preponderance of /i/ vs. palatal readings of each CiV combination. They 

found that Greek readers were influenced both by similar individual lexical items and by the 

probabilistic associations when reading these pseudowords. However, when the same items were 

submitted to the Greek DRC, it was found that they were all pronounced according to the 

implemented GPC rule, unaffected by lexical resemblance or probabilistic association. The 

balance between the lexical and sublexical DRC routes is chosen to ensure accurate performance 

on the corpus words and unambiguous nonwords; however, this balance may have precluded the 

model from flexibly exploiting lexical similarity and statistics to simulate the reading behavior of 

Greek skilled readers11. Thus, in this respect as well, it seems that the empirical situation of 

Greek skilled reading may not lend itself to the rigid distinction between lexical and sublexical 

processing and the absolute, hard-coded rules of the GPC route, as currently implemented in the 

DRC. 

                                                           
11

 Despite it being a rule-based model, DRC could in principle exhibit sensitivity to lexical similarity when 

processing nonwords if the lexical route is strengthened. Keep in mind that for a word item to be named all that is 

required is for activation of its lexical entry to reach a given threshold. Critically, this may happen even if the input 

does not match the lexical entry 100%. For example, the nonword “signeficant” may be incorrectly named as 

“significant” if activation for the phonological entry of the word “significant” surpasses a given threshold. 
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In either case, the DRC might conceivably be adjusted to simulate the effects we observe 

in Greek, either by adjusting the balance between lexical and non-lexical processing12, and/or by 

explicitly defining syllable representations (cf. Conrad et al., 2010, for the multiple readout 

model). One problem with such modifications would be that the dynamics of the model might be 

affected in a way that interferes with the successful simulation of other effects (Conrad & Jacobs, 

2004). However, we also see a theoretical problem with this kind of solution. If we explicitly 

define each aspect of our behavioral findings into a model, then we cannot learn much about the 

behavior; the model may in fact exhibit the desired effect, or pattern of effects, in a way that 

closely matches the behavioral data, but that would likely be the result of our explicit 

modification. This goes against the motivation behind using computational modeling in the first 

place. An alternative approach would be to design a model that is sensitive to the characteristics 

of the input in a way that it can learn what kind of representational units are relevant to 

processing (e.g. syllables or bigrams) and how the effects of different kinds of representations 

should be balanced against one another (e.g. see Seidenberg & McClelland, 1989). This might 

allow the model to exhibit flexibility in simulating adult readers with different learning 

experiences in a variety of orthographic systems.  

Turning back to our initial question, raised in the introduction, even though we did not 

directly test the necessity of learning, we believe that our results attest to its potential usefulness. 

Our findings suggest that computational models built to explain a specific set of behavioral 

phenomena (e.g., in a specific language) may have substantial limitations in terms of their 

generalizability. In contrast, incorporating learning as a fundamental aspect in our modeling 

endeavors (i.e. even when learning itself is not the object of the simulation) may help us reach a 

                                                           
12

 Note that the DRC version with adjusted parameter settings mentioned above (i.e. strengthened non-lexical route) 

was still not able to simulate the syllable frequency effect: β = -0.029, p = 0.728. 
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unified theory of visual word recognition that is better able to account for the diverse patterns of 

results observed across languages and populations. 

Conclusion and further directions 

This is the first study to evaluate a computational model of visual word recognition and 

reading aloud with Greek stimuli by directly comparing modeling against behavioral data. Our 

behavioral results showed that visual word recognition in Greek is affected by both lexical and 

sublexical factors; less frequent, longer words with higher frequency first syllable were 

recognized more slowly. DRC was successful in simulating many aspects of the behavioral data, 

but our evaluation also revealed significant limitations of the model. For example, DRC showed 

insensitivity to length and syllabic frequency effects (which were present in the behavioral data). 

Such inconsistencies may reflect underlying differences, for example, in terms of the 

representational units used in processing (e.g. syllable versus graphemes). Certain adjustments 

might lead to improved simulation outcomes (e.g. parameter adjustment and/or explicitly 

defining syllabic representations). However, an alternative approach would be for these effects to 

arise within a system in which they are not explicitly hard-wired. For example, given the 

learning procedure via which GPC rules are acquired in the CDP++ model, it would be 

interesting to see whether a syllabic level of representation would naturally emerge. 
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Table 1 

Descriptive statistics for the stimuli (words and nonwords) versus corpus statistics and 

comparison between words and nonwords via the Kolmogorov-Smirnov (K-S) test for the 

equality of distributions. This information is also presented in Protopapas and Kapnoula  (2016) 

and Protopapas et al. (2016). 

 
Words  Nonwords 

 

K-S test  

(words-nonwords)  
Corpus tokens 

 M SD  M SD  Z p  M SD 

Frequency 0.877 1.887  - -  - -  6.220 3.270 

Length  7.240 1.931  7.307 1.839  0.520 .950  5.431 3.166 

BA 0.020 0.001  0.020 0.001  0.808 .531  0.021 0.004 

SA 12.162 1.054  11.865 1.464  1.097 .180  13.248 1.054 

B1 0.020 0.002  0.021 0.002  0.751 .626  0.021 0.004 

S1 13.388 1.600  13.136 1.667  0.981 .290  13.756 1.273 

ON 2.173 1.501  0.387 1.214  6.062 <.001  5.880 4.830 

GPT 3.454 0.264  3.458 0.258  0.462 .983  3.561 0.497 

Note: Frequency as log number of occurrences; Length in letters; BA = mean log bigram frequency (all bigrams); 

SA = mean log syllable frequency (all syllables); B1 = log frequency of the initial bigram; S1 = log frequency of the 

initial syllable; ON = orthographic neighborhood size; GPT = grapho-phonemic transparency, as mean log token 

sonograph probability. 
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Table 2  

Nonparametric correlation coefficients (Spearman’s ρ) between independent variables for words 

(above the diagonal) and nonwords (below the diagonal). This information is also presented in 

Protopapas and Kapnoula (2016) and Protopapas et al. (2016). 

 Length BA SA B1 S1 ON GPT 

Frequency −.049 .103 .042 −.010 .115 −.002 .002 

Length  .008 .105 −.005 .017 −.007 −.106 

BA .096  .083 .171* .062 .071 .056 

SA .088 .213**  −.034 .073 .029 .054 

B1 −.027 .017 −.087  .332*** −.038 .115 

S1 −.064 −.196* .025 .254**  .026 −.022 

ON −.504*** −.041 −.015 .097 .064  −.018 

GPT .003 .043 −.144 .126 .002 −.032  

Note: Frequency as log number of occurrences; Length in letters; BA = mean log bigram frequency (all bigrams); 

SA = mean log syllable frequency (all syllables); B1 = log frequency of the initial bigram; S1 = log frequency of the 

initial syllable; ON = orthographic neighborhood size; GPT = grapho-phonemic transparency, as mean log token 

sonograph probability; All DFs = 148. *p<.05, **p<.01, ***p<.001 
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Table 3 

Response Times (in ms for humans and processing cycles for the DRC) for words and nonwords 

in the two tasks 

 Naming 

 Humans  DRC 

 M SD  M SD  

Words 547.3 42.5  70.4 3.3  

Nonwords 712.6 87.8  152.1 11  

 Lexical Decision 

 Humans  DRC 

 M SD  M SD  

Words 716.6 85.8  44.4 1.5  

Nonwords 824.1 84.4  63 0  
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Table 4 

Stage 1 regression analysis predicting human latencies for words 

  DV: Naming RT  DV: Lexical Decision RT 

Step Variable β ΔR
2
 p  β ΔR

2
 p 

1 Frequency −.420  < .001  −.502  <.001 

 Length .446  < .001  .223  .001 

 ON −.024  .712  −.105  .124 

 GPT .022  .740  .044  .519 

   .399 < .001   .333 <.001 

         

2 S1 .142 .020 .084  .244 .060 .003 

3 SA .037 .001 .654  .117 .014 .155 

3 B1 .031 .001 .711  .048 .002 .563 

3 BA −.002 .000 .982  −.012 .000 .881 

         

2 SA .039 .002 .631  .118 .014 .149 

3 S1 .141 .020 .086  .244 .059 .003 

3 B1 .105 .011 .200  .181 .033 .027 

3 BA .001 .000 .986  −.007 .000 .931 

         

2 B1 .102 .010 .214  .170 .029 .037 

3 S1 .090 .008 .273  .160 .026 .050 

3 SA .048 .002 .563  .134 .018 .103 

3 BA −.001 .000 .878  −.030 .001 .714 

         

2 BA .002 .000 .981  −.005 .000 .948 

3 S1 .141 .020 .084  .245 .060 .003 

3 SA .039 .002 .632  .118 .014 .149 

3 B1 .102 .010 .215  .171 .029 .036 

Note: DV = dependent variable; Frequency as log number of occurrences; Length in letters; BA = mean log bigram 

frequency (all bigrams); SA = mean log syllable frequency (all syllables); B1 = log frequency of the initial bigram; 

S1 = log frequency of the initial syllable; ON = orthographic neighborhood size; GPT = grapho-phonemic 

transparency, as mean log token sonograph probability; DFs for step 1 = 145; DFs for steps 2-3 = 148. 
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Table 5 

Stage 1 regression analysis predicting human latencies for nonwords 

  DV: Naming RT  DV: Lexical Decision RT 

Step Variable β ΔR
2
 p  β ΔR

2
 p 

1 Length .828  < .001  .622  < .001 

 GPT −.030  .514  −.063  .333 

   .686 < .001   .391 < .001 

         

2 S1 .203 .041 .013  .122 .015 .137 

3 SA .138 .019 .093  −.007 .000 .931 

3 B1 −.118 .014 .151  .017 .000 .835 

3 BA −.222 .049 .006  .118 .014 .151 

         

2 SA .138 019 .092  −005 .000 .951 

3 S1 .202 .041 .013  .122 .015 .136 

3 B1 −.033 .001 .692  .059 .004 .471 

3 BA −.282 .079 .000  .094 .009 .252 

         

2 B1 −.044 .002 .590  .060 .004 .467 

3 S1 .218 .048 .007  .101 .010 .217 

3 SA .134 .018 .101  .000 .000 .999 

3 BA −.256 .066 .002  .093 .009 .260 

         

2 BA −.257 .066 .002  .093 .009 .256 

3 S1 .158 .025 .053  .141 .020 .086 

3 SA .186 .034 .023  −.020 .000 .806 

3 B1 −.042 .002 .613  .059 .003 .477 

Note: DV = dependent variable; Frequency as log number of occurrences; Length in letters; BA = mean log bigram 

frequency (all bigrams); SA = mean log syllable frequency (all syllables); B1 = log frequency of the initial bigram; 

S1 = log frequency of the initial syllable; ON = orthographic neighborhood size; GPT = grapho-phonemic 

transparency, as mean log token sonograph probability; DFs for step 1 = 147; DFs for steps 2-3 = 148. 
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Table 6 

Multiple regression analysis predicting human and DRC latencies for words. 

  Dependent variable 

  Naming RT (humans)  Naming RT (DRC) 

Step Variable β ΔR
2
 p  β ΔR

2
 p  

1 Frequency −.420  < .001  −.649  < .001  

 Length .446  < .001  .029  .634  

 ON −.024  .712  .100  .106  

 GPT .022  .740  −.172  .006  

   .399 < .001   .454 < .001 

2 S1 .142 .020 .084  .010 .000 .902 

  Lexical Decision RT (humans)  Lexical Decision RT (DRC) 

Step Variable β ΔR
2
 p  β ΔR

2
 p  

1 Frequency −.502  < .001  −0.983  < .001  

 Length .223  .001  −0.014  .382  

 ON −.105  .124  .027  .096  

 GPT .044  .519  −0.010  .516  

   .333 < .001   .964 < .001  

2 S1 .244 .060 .003  .093 .009 .257  

Note: Frequency as log number of occurrences; Length in letters; S1 = log frequency of the initial syllable; ON = 

orthographic neighborhood size; GPT = grapho-phonemic transparency, as mean log token sonograph probability; 

DFs for step 1 = 145; DFs for step 2 = 148. 
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Table 7 

Multiple regression analysis predicting human and DRC latencies for nonwords 

  Dependent variable 

  Naming RT (humans)  Naming RT (DRC) 

Step Variable β ΔR
2
 p  β ΔR

2
 p  

1 Length .828  < .001  .973  < .001  

 GPT −.030  .514  .080  < .001  

   .686 < .001   .955 < .001  

2 S1 .159  .050  −.156  .060 

 BA −.226  .005  −.179  .031 

   .090 .001   .046 .032 

  Lexical Decision RT (humans)  Lexical Decision RT (DRC) 

Step Variable β ΔR
2
 p  β ΔR

2
 p  

1 Length .622  .001  

No variation 

 

 GPT −.063  .333   

   .391 < .001   

2 S1 .146  .081   

 BA .122  .144   

   .029 .114   

Note: Frequency as log number of occurrences; Length in letters; BA = mean log bigram frequency (all bigrams); S1 

= log frequency of the initial syllable; GPT = grapho-phonemic transparency, as mean log token sonograph 

probability; All DFs = 147.  
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Table 8 

Direct comparison of effects between behavioral and model data 

 Words 

 Naming task   Lexical decision 

 Humans  DRC  Humans  DRC 

Frequency yes
+
 yes

+
 yes

+
  yes

+
 

Length yes
-
 no yes

-
  no 

ON no no no  marginally
+
 

GPT no yes
-
 no  no 

S1 marginally
+
 no yes

+
  no 

 Nonwords 

 Naming task   Lexical decision 

 Humans  DRC  Humans  DRC 

Frequency - - -  - 

Length yes
+
 yes

+
 yes

+
  - 

ON - - -  - 

GPT no yes
+
 no  - 

S1 yes
+
 marginally

-
 marginally

+
  - 

BA yes
-
 yes

-
 no  - 

Note: Frequency as log number of occurrences; Length in letters; BA = mean log bigram frequency (all bigrams); S1 

= log frequency of the initial syllable; ON = orthographic neighborhood size; GPT = grapho-phonemic transparency, 

as mean log token sonograph probability. 
  

 


