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1. Introduction

The study of oscillations in discrete systems is very important in practice since the
achievement oscillations are a design objective on occasions while sometimes are a serious
drawback. An example of the first situation is the design of electronic oscillators in radio,
TV, communications, in general, and so forth by generating limit cycles in the solutions,
that is, asymptotically periodic steady-state solutions which are independent of the initial
conditions and which are due to the presence of certain nonlinearities in the dynamic
systems like, for instance, saturations. However, very often, such a steady-state solution is
a drawback to be avoided such as in servo-design where the steady-state solution should
asymptotically track a constant or ramp-type forcing terms. The term “oscillatory solu-
tion” is often taken as a synonymous of “periodic solution” in engineering applications.
In a mathematical sense, a solution is periodic if its values are repeated with a period
while an oscillatory solution is that which changes its sign after a finite (nonnecessarily
constant) time interval, [1–5]. In particular, an oscillation theory for functional differ-
ential equations with retarded argument is given in [1] while interval oscillation criteria
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based on the information on a sequence of subintervals are derived in [2]. This paper is
devoted to the study of the conditions for the presence of oscillatory solutions (see, e.g.,
[1–10]) in time-varying linear difference equations and their associate dynamic systems.
The main objectives of this paper are to investigate the conditions of oscillatory solutions
for time-varying difference equations of arbitrary order by generalizing previous detailed
analysis for the second-order case given in detail in [5] linked to the concepts of general-
ized zeros. The oscillations are characterized as strong if the change of sign takes place in
one interval equal to the order of the difference equation or weak if, in general, the sign
of change takes places for any interval of arbitrary finite measures. The oscillation is said
to be strict if the sign change in the solution takes place at each new sample (a solution
value at any discrete-time) of the solution. The joint oscillatory and stable/behaviors of
the solutions [6–8, 11, 12] are investigated. An associate dynamic system is also studied
in terms of oscillatory solutions, and so forth. Throughout the paper, special attention is
devoted to the case when there are parametrical errors and/or unmodeled dynamics. This
happens in maneuvers of missile tracking or in high frequency capacitor tandems.

2. Linear difference equation with uncertainties and unmodeled dynamics

2.1. Nominal linear difference equation. Consider the n0th-order nominal linear differ-
ence equation

n0∑

j=0

β0
j (k)x0(k+ 1− j)= 0, k ∈Nn0−1 := {n0− 1,n0, . . .

}⊆N0 =N∪{0} (2.1)

for all n0 ∈N (the set of natural numbers) subject to initial conditions, x0(i)= xi ∈R for
i∈N0/Nn0 being the set initial conditions, and {β0

j (k)}∞0 for j ∈N0/Nn0+1 being (n0 + 1)

sequences of real numbers with β0
0(k) �= 0, for all k ∈ N0. The values of the solution of

(2.1) are popularly known as “samples” since they are only defined for a running integer
(i.e., discrete) integer. For simplicity, the abbreviated notation [a,a+ b] :=Na/Na+b+1 =
{a,a+ 1, . . . ,a+ b} for any a,b(> a)∈N0 will be used. Equation (2.1) is rewritten as

x0(k+ 1)=−
n0∑

j=1

α0
j (k)x0(k+ 1− j) (2.2)

with {α0
j (k) := β0

j (k)/β0
0(k)}∞0 , for all j ∈ [1,n0]. A discrete nominal linear time-varying

dynamic system of state z0(k) = (x0(k),x0(k− 1), . . . ,x0(k− n0 + 1))T is associated with
(2.2) to yield

z0(k+1)=A0(k)z0(k), k ∈Nn0−1, z0(n0−1
)= (x0(n0−1

)
,x0(n0− 2

)
, . . . ,x0(0)

)T
,

(2.3)

where

A0(k)=
⎡
⎣
−α0

1(k) −α0
2(k) ··· −α0

n0
(k)

In0−1 0n0−1

⎤
⎦ (2.4)
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with I j being the jth identity matrix and 0 j = (0,0,··· ,0)T ∈R j . Note that z0(i) �= 0 for
all i ≥ k and any nonzero z0(k) if and only if A0(k) is nonsingular for all i ≥ k which
holds if and only if α0

n0
(k) �= 0. If general, z0(k + 1) �= 0 for any combination of values of

the coefficients α0
i (k), i∈ [1,n0], if and only if z0(k) /∈ Ker(A0(k)).

2.2. Parametrical errors and unmodeled dynamics. If the order of the difference equa-
tion (2.2) is n > n0 but it is erroneously described as being of n0th-order and, further-
more, the nominal coefficients are subject to measuring errors or disturbances, that is,
α0
j → αj , j ∈ [1,n0], then the nominal (2.2) is replaced with the current nth-order equa-

tion,

x(k+ 1)=−
n0∑

j=1

αj(k)x(k+ 1− j)−
n∑

j=n0+1

αj(k)x(k+ 1− j)

=−
n0∑

j=1

αj(k)x(k+ 1− j) + θTum(k)ϕ(k)= θ̃T(k)z̃(k)

= θT(k)z(k) + θTum(k)ϕ(k)=−
n0∑

j=1

α0
j (k)x(k+ 1− j) +η(k),

(2.5)

where

θ̃T(k)= (θT(k),θTum(k)
)
, z̃T(k)= (zT(k),ϕT(k)

)
,

θT(k)= (−α1(k),−α2(k), . . . ,−αn0 (k)
)
, θ0T (k)= (−α0

1(k),−α0
2(k), . . . ,−α0

n0
(k)
)
,

θTum(k)= (−αn0+1(k),−αn0+2(k), . . . ,−αn(k)
)
, zT(k)= (x(k),x(k−1), . . . ,x

(
k+1−n0

))
,

ϕT(k)= (x(k−n0
)
,x
(
k−n0− 1

)
, . . . ,x(k+ 1−n)

)T
,

η(k)= (θT − θ0T )z(k) + θTum(k)ϕ(k)

=
n0∑

j=1

(
α0
j (k)−αj(k)

)
x(k+ 1− j) + θTum(k)ϕ(k)

= θ̃T(k)z̃(k)− θT(k)z(k),
(2.6)

where θ0(k) is the parameter vector of the nominal equation (2.2), θ(k) is the nominal
parameter vector of the current equation (2.5), θ(k)− θ0(k) is the parametrical error
vector, θum(k) is the parameter vector associated with the unmodeled dynamics, and η(k)
includes the contributions to the solution of the parametrical errors in the coefficients
(αj(k)− α0

j (k)), j ∈ [1,n0], of the nominal equation and the unmodeled dynamics, that
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is, errors associated with an erroneous modeling of the nominal equation order generated
by the exceeding coefficients αj(k), j ∈ [n0 + 1,n]. An equivalent linear dynamic system
to (2.5)-(2.6) is defined by

z̃(k+ 1)= Ã(k)z̃(k)

∀k ∈ [n−1,∞) subject to z̃(n−1)= (x(n−1),x(n−2), . . . ,x(1),x(0)
)T

, where

Ã(k)=
⎡
⎣
−α1(k) −α2(k) ··· −αn(k)

In−1 0n−1

⎤
⎦

=

⎡
⎢⎢⎢⎣

A(k) −αn0+1(k) −αn0+2(k) ··· −αn(k)

In−n0 0n0−1

0n−n0

⎤
⎥⎥⎥⎦ ,

A(k)=A0(k) +

⎡
⎣
α0

1(k)−α1(k) α0
2(k)−α2(k) ··· α0

n0
(k)−αn0 (k)

0(n0−1)xn0

⎤
⎦ .

(2.7)

The subsequent result follows from straightforward calculations.

Lemma 2.1. The dynamic system (2.7) is equivalent to

z(k+ 1)= A(k)z(k) + e01η(k) (2.8)

for k ≥ n0 − 1 through (2.6), where e0i = (0,0, . . .0,1,0, . . .0)T is the ith Euclidean unity
vector in Rn0 , under initial conditions related by z̃(n−1) = (x(n−1),x(n0 +1), . . . ,x(n0),
zT(n0−1))T , z(n0−1)= (x(n0−1),x(n0−2), . . . ,x(0))T .

2.3. Recursive equations. Note from (2.8) that for any N(k)∈ [0,∞),

z̃
(
k+N(k) + 1

)= Ã
(
k,k+N(k)

)
z̃(k)=

( k+N(k)∏

j=k

[
Ã( j)

]
)
z̃(k), ∀k ∈ [n− 1,∞),

(2.9)

z
(
k+N(k) + 1

)= A
(
k,k+N(k)

)
z(k) +η

(
k,k+N(k)

)

=
( k+N(k)∏

j=k

[
A( j)

]
)
z(k) +

k+N(k)∑

j=k

( k+N(k)∏

i= j+1

[
A(i)

]
)
η( j), ∀k ∈ [n0−,∞),

(2.10)
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where

Ã
(
k,k+N(k)

)= (Ãi j(k,k+N(k)
))=

k+N(k)∏

j=k

[
Ã( j)

]= Ã
(
k+N(k)

)
Ã
(
k,k+N(k)− 1

)
,

A
(
k,k+N(k)

)= (Ai j
(
k,k+N(k)

))=
k+N(k)∏

j=k

[
A( j)

]= A
(
k+N(k)

)
A
(
k,k+N(k)− 1

)
,

(2.11)

η
(
k,k+N(k)

)=
k+N(k)∑

j=k

k+N(k)∏

i= j+1

[
A(i)

]
η( j)= A

(
k+N(k)

)
η
(
k,k+N(k)− 1

)
+e01η

(
k+N(k)

)
.

(2.12)

The substitution of (2.4) into (2.11) yields in general the following recursive equations
for the entries of Ã(k,k+N(k)) and A(k,k+N(k)):

Ã1 j
(
k,k+N(k)

)=−
n∑

i=1

αi
(
k+N(k)

)
Ãi j
(
k,k+N(k)− 1

)
,

Ãi+1, j
(
k,k+N(k)

)= Ãi j
(
k,k+N(k)− 1

)
, for i∈ [1,n− 1], j ∈ [1,n],

A1 j
(
k,k+N(k)

)=−
n0∑

i= j

αi
(
k+N(k)

)
Ai j
(
k,k+N(k)− 1

)
,

Ai+1, j
(
k,k+N(k)

)= Ai j
(
k,k+N(k)− 1

)
, for i∈ [1,n0− 1

]
, j ∈ [1,n0

]
.

(2.13)

3. Basic definitions and results

The definitions below classify the oscillations facilitating the subsequent results.

Definitions. Consider intervals of integers [k,k+N] for given k ∈ [n,∞), N ∈ [n+ 1,∞),
and the solutions of (2.5)-(2.6) under initial conditions x(i)= xi, i∈ [0,n− 1].

Definition 3.1. A solution is weakly oscillatory (WO) in [k,k+N] if it has at least two sign
changes in [k,k +N]. If a solution is WO in [k,k +N] for all k ≥ n− 1, then it is globally
weakly oscillatory (GWO).

Definition 3.2. A solution is strongly oscillatory (SO) in [k,k+N] if it is WO within each
subinterval [k + i,k + i+ n] ⊆ [k,k +N], i ∈ [0,N − n]. If a solution is SO in [k,k +N],
for all k ≥ n− 1 and all N ≥ n+ 1, then it is globally strongly oscillatory (GSO).

Definition 3.3. A solution is strictly strongly oscillatory (SSO) in [k,k +N0] for a given
integer N0 ≥ 1 if δ(k + i,k + i + 1) := x(k + i)x(k + i + 1) < 0 for all i ∈ [0,N0 − 1]. If a
solution is SSO in [k,k +N0] for all k ≥ n− 1 and all N0 ≥ 1, then it is globally strictly
strongly oscillatory (GSSO).

Definition 3.4. A solution is oscillatory (O) in [k,k+N], respectively, globally oscillatory
(GO) if it is at least WO in [k,k+N], respectively, GWO.
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The trivial solution is neither WO nor SO. Also, an identically zero solution for all
k ≥ N1, some N1 ≥ 0, is not GO but it might be O (resp., WO, SO, SSO) in intervals
within [n,N1 − 1] if N1 ≥ n + 1. Note also that if a solution is SSO for some integers
k ≥ n, N0 ≥ n+ 1, then it is also SO and WO in [k,k +N] for each N ∈ [n+ 1,N0]. The
subsequent result holds.

Theorem 3.5. The following properties hold for any system (2.5)-(2.6) with n0 ≥ n≥ 1:
(i) if a solution is SSO in [k,k+N] for some integer N ≥ n+ 1 (resp., GSSO), then it is

SO and WO in [k,k+N] (resp., GSO and GWO);
(ii) if a solution is SO in [k,k +N] for some integer N ≥ n+ 1 (resp., GSO), then it is

WO in [k,k+N] (resp., GWO);
(iii) if n0 = n= 1, a solution is SSO in [k,k + 1] if and only if it is SO in [k,k + 2]. It is

GSSO if and only if it is GSO.

The proof of Theorem 3.5 is immediate and it is omitted. A solution is said to be
disconjugate in [k,k +N] when n = 2, [5], if δ(k + i,k + i+ 1) < 0, δ(k + i+ j,k + i+ j +
1) < 0, i ∈ [0,N − 1], j ∈ [1,N − i] provided that x(k + i− 1) = x(k + i + j − 1) = 0 or
x(k + �) = 0, � ∈ [i,N] what cannot occur for any nontrivial solution if N ≥ 2n+ 1 (i.e.,
the solution has at least two generalized zeros, [5]). The concepts of generalized zeros and
disconjugacy might be directly generalized to difference equations of orders higher than
two as follows.

Definitions

Definition 3.6. A solution of (2.5)-(2.6) has a generalized zero in [k,k + N] for some
N ∈N1 if there exists an integer i∈ [k,k+N − 1] such that δ(i, i+ 1)≤ 0.

The generalized zero is weak if δ(i, j) < 0 for some integers i∈ [k,k +N − 1], j(> i)∈
[k+ 1,k+N] and, furthermore, δ(�,� + 1)≤ 0 for � ∈ [i, j− 1].

The generalized zero is strong if δ(i, i+ 1)= δ(i, i− 1)= 0⇒ x(i)= 0.

Definition 3.7. A solution of (2.5)-(2.6) is disconjugate in [k,k+N] if there exist integers
i, j(> i),s(≥ j),r(> s) ∈ [k,k +N] such that δ(i, j) < 0, δ(s,r) < 0 with δ(�,� + 1) ≤ 0 for
� ∈ [i, j − 1] and δ(�,� + 1) ≤ 0 for � ∈ [s,r − 1] (i.e., the solution possesses two weak
generalized zeros in [k,k+N]).

Note that weak generalized zeros in some interval imply changes of sign of the solution
and strong generalized zeros imply zeros of the solution. The property of disconjugacy
implies and is implied by the presence of two weak generalized zeros within the same
interval. The subsequent results rely on the properties of disconjugacy and generalized
zeros.

Proposition 3.8. If a solution of (2.5)-(2.6) is disconjugate and nontrivial in [k,∞) for
k ≥ n− 1, then it is GWO and GO.

Proof. Since the solution is nontrivial, then for all [k + i,k + i+N − 1], i ∈ [0,∞), then
there is �, j ∈ [i− 1, i+N − 2] such that x( j + 1) �= 0, δ(� + 1,� + �′ + 1) < 0 with x( j)= 0
or δ( j,�) �= 0. Since it is disconjugate and nontrivial, δ( j + 1, j + j′) < 0 so that it is SO and
WO in [k,k+n− 1] and the solution is nontrivial. The reasoning is identical on [k+ 1,∞)
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for intervals [k+ i,k+ i+n+ 1] for all i∈ [0,∞) and some j ∈ [i+ 1, i+n− 2] so that the
solution is GSO and then GWO. �

Theorem 3.9. The following properties hold for any solution {x(k)}∞n of (2.5)-(2.6) subject
to initial conditions x(i)= xi, i∈ [0,n− 1]:

(i) it is WO in [k,k +N], for all k ∈Nn if and only if it is disconjugate in [k,k +N],
for all k ∈Nn;

(ii) it is GWO in [k,k +N], for all k ∈Nn if and only if there exists an integer N(k)∈
[k+ 2,N] withN := Supk≥n(N(k)) <∞ such that it is disconjugate in [k,k+N(k)],
for all k ∈Nn;

(iii) it is GSSO if and only if each interval [k,k + 1] has a weak generalized zero, for all
k ∈Nn;

(iv) it is GSSO if and only if it is disconjugate in each interval [k,k+ 2], for all k ∈Nn;

(v) it is GSO if and only if it is disconjugate in each interval [k,k+n], for all k ∈Nn.

Proof. (i) “If part” If the solution is disconjugate in [k,k +N], then there exist integers
i, j(> i), s(≥ j), r(> s) ∈ [k,k +N] implying δ(i, j) < 0, δ(s,r) < 0 with no sign changes
in-between samples (i, j) and in-between samples (s,r) (Definition 3.7) implying that is
WO in∈ [k,k+N] (Definition 3.1). The converse reasoning is similar to prove the “Only
if part.”

(ii) “If part” Assume that for each kσ ≥ n there exists a finite N(kσ) and integers
i, j(> i), s(≥ j), r(> s) ∈ [kσ ,kσ + N(kσ)] such that δ(i, j) < 0, δ(s,r) < 0 with no sign
changes in-between samples (i, j) and in-between samples (s,r). Thus, the solution is
disconjugate in [kσ ,kσ +N(kσ)]. By construction, note that Nn =

⋃∞
σ=1[kσ ,kσ +N(kσ)]=⋃∞

ki∈Nn
[ki,ki +N(ki)], the first union of intervals being countable, the second one being

uncountable, provided that kσ+1 = kσ +N(kσ) + 1 with kσ ∈Nn for each σ ∈N1. Since the
solution has two generalized zeros within each finite subinterval of such unions because it
is disconjugate, it follows that it is GWO and sufficiency has been proved. (“Only if part”)
Proceed by contradiction by assuming that there is an interval [k,∞) without two weak
generalized zeros. Then, the solution cannot be GWO.

(iii) “ If part” δ(k,k+ 1) < 0, for all k ∈Nn⇒ δ(k+ i,k+ i+ 1) < 0 for i= 0,1; [k,k+ 2]
so that the solution has two weak generalized zeros and then two sign changes within
each interval [k,k + 2]. (“Only if part.”) Proceed by contradiction. Assume that there is
an interval [k,k + 1] for some k ∈ Nn such that δ(k,k + 1) ≥ 0. Then the solution has
either a strong zero at k or k+ 1 or two nonzero values of the same sign.

(iv) If the solution is disconjugate in [k,k + 2], it has two sign changes and then two
generalized weak zeros from Definition 3.7 within such an interval. Since the property
holds for all k ∈Nn, the solution is GSSO. The necessity part is proved by contradiction
arguments in a similar way as the “If part” of property (iii) for either δ(k,k + 1) ≥ 0 or
δ(k+ 1,k+ 2)≥ 0.

(v) The proof is similar to that of (iv) by using intervals [k,k + n] for all k ∈Nn and
Definition 3.6. �

Proposition 3.10. A solution of (2.5)-(2.6) with x(i)= xi, i∈ [0,n− 1], which is not dis-
conjugate in [k,k +N] for some k ≥ n, has at most one sign change in [k,k +N] for k ≥ n.
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It has no generalized zeros in [k,k +N] for some k ≥ n if and only if it is sign-constant in
[k,k+N] for k ≥ n.

The proof of Proposition 3.10 is omitted. Note that the results about oscillations, dis-
conjugacy, and generalized zeros might be also discussed from the associate dynamic sys-
tem (2.7) since

δ(i, j)= δ( j, i)= eT1 z( j)zT(i)e1 = eT1 z(i)zT( j)e1 = eT� z( j− � + 1)zT(i− r + 1)er , (3.1)

wherein e� and er any �,r ∈ [1,n]. The following technical result concerning sign changes
and disconjugacy, whose proof is omitted, is stated.

Lemma 3.11. The difference equation (2.5)-(2.6) possesses the following properties.
(i)

S(k− i+ 2,k+ 1) := δ(k− i+ 2,k+ 1) +
n∑

j=1

αj(k)δ(k− j + 1,k− i+ 2)= 0,

S0(k− i+ 2,k+ 1) := S(k− i+ 2,k+ 1)−α�(k)δ(k− � + 1,k− i+ 2)

= 0 if α�(k)= 0,

≤ 0 if α�(k) > 0,

≥ 0 if α�(k) < 0,

(3.2)

for any k ∈Nn−1 and any i,� ∈ [1,n].
(ii) Assume that αj(k)≤ 0, j ∈ [1,n], with (at least) one α�(k) < 0, some � ∈ [1,n], for

all k ∈Nn−1.
Then the difference equation (2.5)-(2.6), and so the dynamic system (2.7), is positive,

[13, 14], so that z(k) > 0, for all k ≥ n (i.e., no component of z(k) is negative and z(k) �=
0, equivalently, z(k) ∈ Rn

+—the first closed orthant in Rn—and at least one component is
positive) for any z(n− 1) > 0. There is no nontrivial globally disconjugate solution, no WO
solution, and no GO solution of (2.5)-(2.6) for any initial conditions z(n− 1)∈Rn

+ and also
for any initial conditions z(n− 1)∈Rn− := {z ∈Rn : (−z)∈Rn

+}.
(iii) Assume that any of the subsequent conditions hold

(1) αj(k) > 0, for all j ∈ [1,n] if x(k+ 1− j) �= 0 and arbitrary otherwise;
(2) αj(k) ≥ 0, for all j ∈ [1,n] with at least one α�(k)(k) > 0 some � = �(k) ∈

[1,n], for all k ∈Nn−1 such that x(k+ 1− �(k)) �= 0.
Then, any nontrivial solution {x(k)}∞0 of (2.5)-(2.6) on [n,∞) subject to initial conditions
x(i+ 1) = xi, i ∈ [0,n− 1], has at least one sign change within each interval [k + � + 1,k +
N], for all k ∈Nn−1, N ≥ n+ � + 1, for all � ∈ [0,∞). Also, any of such nontrivial solutions
has at least three sign changes within each interval [k + � + 1,k +N], for all k ∈Nn−1, N ≥
2n+ � + 1, for all � ∈ [0,∞) so that it is disconjugate.

The following result guarantees that the difference equation (2.5)-(2.6) is WO within
intervals of larger measures than the equation order.
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Theorem 3.12. Assume that there exist natural numbers (k+N(k)) and (k+N(k)+N ′(k))
with Min(N(k)+N ′(k))≥ n, some k ∈Nn such that

{
i, j ∈ [1,n]× [1,n] : αi

(
k+N(k)

)
Ãi j
(
k,k+N(k)− 1

)
> 0
}

∩ {i, j ∈ [1,n]× [1,n] : αi
(
k+N(k)

)
Ãi j
(
k+N(k),k+N(k) +N ′(k)− 1

)
> 0
} �= ∅.

(3.3)

Then, the following properties hold.
(i) Any nontrivial solution of the linear difference equation (2.5)-(2.6) is WO in [k +

N(k),k+N(k) +N ′(k)] if the following conditions hold:
(C1) Ã1�(k,k + N(k)) = −∑n

i=1αi(k + N(k))Ãi�(k,k + N(k)− 1) < 0, some � ∈;
and Ã1�(k+N(k),k+N(k)+N ′(k)) = −∑n

i=1αi(k + N(k) + N ′(k))Ãi�′(k +
N(k),k+N(k) +N ′(k)− 1) < 0, some �′ ∈ [1,n];

(C2) Ã1 j(k,k + N(k)) = −∑n
i=1αi(k + N(k))Ãi�(k,k + N(k)− 1) ≤ 0, for all j( �=

�) ∈ [1,n] such that x(k + N(k) + 1− j) �= 0; and Ã1�(k+N(k),k+N(k)+
N ′(k)) = −∑n

i=1αi(k+N(k)+N ′(k))Ãi�′(k +N(k),k +N(k) +N ′(k)− 1) ≤
0, for all j( �= �)∈ [1,n] such that x(k+N(k) +N ′(k) + 1− j) �= 0.

(ii) Property (i) holds if (C2) is extended to all Ã1 j(k,k +N(k)) for all j( �= �)∈ [1,n],

Ã1 j(k+N(k),k+N(k) +N ′(k)) for all j( �= �′)∈ [1,n].

(iii) Property (i) holds if there exists nonzero Ã1�(k,k+N(k)− 1) and Ã1�′(k+N(k),k+
N(k) +N ′(k)− 1), some �,�′ ∈ [1,n] and the two following constraints hold:

αi
(
k+N(k)

)
>−

∑
(i �= j)∈NZ�(k,k+N(k)−1)αj

(
k+N(k)

)
Ã j�

(
k,k+N(k)− 1

)

Ãi�
(
k,k+N(k)− 1

) (3.4)

for some � ∈ [1,n] and some i∈NZ�(k,k+N(k)− 1) where

[1,n]⊇NZ�
(
k,k+N(k)− 1

)
:

= {i∈ [1,n] : αi
(
k+N(k)

)
Ã1�(k,k+N(k)− 1) �= 0

}
;

αi
(
k+N(k)+N ′(k)

)

>−
∑

(i �= j)∈NZ�(k+N(k),k+N(k)+N ′(k)−1)αj
(
k+N(k)+N ′(k)

)
Ã j�

(
k+N(k),k+N(k)+N ′(k)−1)

Ãi�
(
k+N(k),k+N(k)+N ′(k)−1

)

(3.5)

for some � ∈ [1,n] and some i∈NZ�(k+N(k),k+N(k) +N ′(k)− 1).
(iv) Assume that Min(N(k),N ′(k))≥ n. Then, if property (i) holds for each one of the

intervals [k,k +N(k)], [k +N(k) + 2,k +N(k) +N ′(k) + 3], for all k ∈ Nn, then
any solution of (2.5)-(2.6) is GWO.

Proof. (i) It follows from (2.2), Lemma 3.11(ii), and the recursive identities (2.13) since
the set which is defined in (3.3) is nonempty, Ã1�(k,k +N(k)) < 0 some � ∈ [1,n] and
Ã1�(k+N(k),k+N(k) +N ′(k)− 1) < 0 some � ∈ [1,n]. Thus, (C1)-(C2) imply that there
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are at least two generalized weak zeros in [k,k + N(k) + N ′(k)], one being located in
[k,k + N(k)] and another one in [k + N(k) + 1,k + N(k) + N ′(k)] so that the solution
id WO in [k,k +N(k) +N ′(k)]. The proof of property (ii) is similar since the Ã1�(·) cor-
responding to parameters associated with x(k +N(k) + 1− j) = 0 do not contribute to
the solution. Property (iii) follows immediately from property (i). Property (iv) is direct
since property (i) holds for all k ∈Nn. �

4. Oscillations under unmodeled dynamics

4.1. Conditions of existence of oscillatory solutions. The tests of results about oscilla-
tions of the solutions of the above section require some “a priori” knowledge (consisting
at least of their signs and the whole equation order) on all the time-varying parameters
αi(k) in order to elucidate if the solution oscillates or not. Now, sufficient-type conditions
of oscillation of the solution of the current difference equation of nth-order are related to
those of its nominal part of order n0 with constraints on the unmodeled one. The study
is performed via the companion dynamic system when necessary. Assume that e0i and ei
are the ith unity vectors of Rn0 and Rn. From (2.5) and (2.10)-(2.11), one gets directly
by relating the first components of the associated dynamical system with the solution
sequence of (2.5)-(2.6):

δ
(
k,k+N(k) + 1

)= eT1 z̃
(
k+N(k) + 1

)
z̃T(k)e1 = eT1 Ã

(
k,k+N(k)

)
z̃(k)z̃T(k)e1

= eT01

(
A(k,k+N(k)

)
z(k)zT(k) +η

(
k,k+N(k)

)
zT(k)

)
e01

= eT01A
(
k,k+N(k)

)
z(k)zT(k)e01 + eT01η

(
k,k+N(k)

)
zT(k)e01

≤ eT01A
(
k,k+N(k)

)
z(k)zT(k)e01 +η

(
k,k+N(k)

)∣∣x(k)
∣∣,

(4.1)

where η(k,k + N(k)) ≥ |η1(k,k + N(k))| = |eT1 η(k,k + N(k))| is an available absolute
upper-bound of the first component η1(k,k +N(k)) of η(k,k +N(k)). The problem of
oscillations under unmodeled dynamics is formalized in the subsequent result.

Theorem 4.1. The following two properties hold:
(i) assume that x(k) �= 0 and x(k+N(k) + 1− i) �= 0 for some k ∈Nn and for some i∈

[1,n], which always exists for any nontrivial solution {x(k)}∞0 of (2.5)-(2.6) under
nonidentically zero initial conditions x(i) = xi ∈ R, i ∈ [0,n− 1]. Then, δ(k,k +
N(k)− 1) < 0 if and only if

αi
(
k,k+N(k)

)
> η

(
k+N(k)

)−
n∑

(i �=) j=1

αj
(
k+N(k) + 1

)
x(k+N(k) + 1− j

)

x(k)x
(
k+N(k) + 1− i

) ; (4.2)

(ii) a sufficient condition for (4.2) to hold is

αi
(
k,k+N(k)

)
>
(
n−n0

)
α( j) Max

n0<i≤n
(∣∣x

(
k+N(k)

)− i
∣∣)

−
n∑

(i �=) j=1

αj
(
k+N(k) + 1

)
x
(
k+N(k) + 1− j

)

x(k)x
(
k+N(k) + 1− i

) Sign
(
x(k)

) (4.3)
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for some available known integer constant n≥ n and α( j) defined as

α( j)=
n∑

i=n0+1

∣∣α0
n0+i( j)

∣∣; α̃( j)=
n0∑

i=1

(
∣∣α0

i ( j)
∣∣+

n0∑

i=1

αi( j)

)
. (4.4)

Proof. (i) Follows directly from the expression

δ
(
k,k+N(k) + 1

)≤−
n∑

j=1

αj
(
k+N(k)

)
δ
(
k,k+N(k) + 1− j

)
+
∣∣η
(
k+N(k)

)
x(k)

∣∣ < 0

(4.5)

provided that (4.3) holds. Property (ii) follows directly from property (i). �

Note that (4.3) might be achieved with the knowledge of any n≥ n. Computations of
lower-bounds of the values of α( j) lead to weaker conditions of fulfilment of Theorem
4.1(i) which will yield later weaker oscillation conditions for the difference equation
(2.5)-(2.6). The subsequent result, whose proof is omitted, follows from Theorem 4.1
and Definition 3.1.

Theorem 4.2. Consider sequences of integer numbers Sα := {ki}∞n , SβN := {N(ki)}nSn fulfill-
ing the constraint∞ > nS ≥N(ki) := ki+1− ki ≥ n for some finite integer nS ≥ n. Then,

(i) assume that e01 ∈ Ker(In0 + λ(ki)AT(ki,ki+1)) and λ(ki) > (|x(ki)|η(ki,ki+1))/
(‖AT(ki,ki+1)z(ki)‖2

2) for all ki ∈ Sα with (ki+1 − ki) ∈ SβN, for all i ∈ Nn. Then,
δ(ki,ki+1) < 0 and any nontrivial solution of (2.5)-(2.6) is GWO;

(ii) if

α�
(
ki+1

)
> η

(
ki+1

)−
n∑

(� �=) j=1

αj
(
ki+1

)
x
(
ki+1 + 1− j

)
η
(
ki,ki+1

)

x
(
ki)x

(
ki+1 + 1− �)

Sign
(
x
(
ki
))

(4.6)

then, δ(ki,ki+1 + 1) < 0 and any nontrivial solution of (2.5)-(2.6) is GWO.

4.2. Oscillatory stable solutions. In this subsection combined results are discussed con-
cerning the existence of oscillatory solutions being globally (Lyapunov) stable (i.e., uni-
formly bounded), globally asymptotically stable (i.e., stable and converging asymptoti-
cally to zero) and globally exponentially stable (i.e., globally asymptotically stable with
exponential rate of convergence). Those stability properties imply those parallel ones of
the associate dynamic system (2.7). Note from (2.10) that

z
(
k+N(k) + 1

)=
( k+N(k)∏

i=k

[
A(i)

]
)
z(k) +

k+N(k)∑

j=k

k+N(k)∏

i= j+1

[
A(i)

]
η(k). (4.7)

The following assumptions are then used to discuss stability results.

Assumption 4.3. The nominal equation (2.5) (i.e., η(k) ≡ 0) is globally exponentially
stable.



12 Mathematical Problems in Engineering

Assumption 4.3 holds if and only if {A(k)}∞0 is a convergent sequence of matrices; that
is, there exist (norm-dependent) real constants K ≥ 1 and ρ∈ (0,1) such that ‖A(i, j)‖ ≤
Kρj−i, for all i∈Nn−1, k ∈Ni+1.

Assumption 4.4. The sequence η(k)= θTum(k)ϕ(k)→ 0 as k→∞.

Two typical situations in which Assumption 4.4 holds are θum(k)→ 0 as k→∞ with
{θum(k)}∞0 uniformly bounded and {θum(k)}∞0 being uniformly bounded with ϕ(k)→ 0
as k→∞. The following result holds.

Proposition 4.5. If Assumption 4.3 holds, then the difference equation (2.5)-(2.6) is glob-
ally Lyapunov stable so that its associate dynamic system (2.7)-(2.8) is globally Lyapunov
stable for sufficiently small ‖θum(k)‖, for all k ∈Nk0 , and for some finite k0 ∈Nn−1.

Proof. From (2.10) and Assumption 4.3, one gets

∥∥z
(
k+N(k) + 1

)∥∥≤ K
[
ρN(k)+1

∥∥z(k)
∥∥+

γ
(
k,N(k)

)

1− ρ
Sup

1≤ j≤N(k)+n

(∥∥z
(
k+N(k)− j

)∥∥)
]
.

(4.8)

Since
∑∞

k=0 ρ
k = 1/1− ρ is a convergent series for ρ ∈ (0,1)∩R, then

K
k+N(k)∑

j=k
ρk+N(k)− j = K

N(k)∑

j=0

ρN(k)− j = 1− ρN(k)+1

1− ρ
, (4.9)

where γ(k,N(k)) > 0 is a norm-dependent real constant which depends on the
Supk≤ j≤k+N(k)(‖θum( j)‖). If μ(k,N(k)) := K[ρN(k)+1 + (γ

(
k,N(k))/1− ρ)] ≤ 1, what al-

ways occurs for all N(k) ≥ N∗ and any K ≥ 1, and if γ0 := Sup j≥k(γ(k,N(k))) is suffi-
ciently small, what holds if ‖θum( j)‖ is sufficiently small for j ∈ [k,k+N(k)], then

∥∥z
(
k+N(k) +

)∥∥
2 ≤ μ

(
k,N(k)

)
Sup

k−n≤ j≤k+N(k)

(∥∥z( j)
∥∥

2

)≤ Sup
k−n≤ j≤k+N(k)

(∥∥z( j)
∥∥

2

)

(4.10)

what implies Supk−n≤ j≤k+N(k)+1(‖z( j)‖2) ≤ Supk−n≤ j≤k+N(k)(‖z( j)‖2) for all integer k ≥
k0, some finite integer k0 ≥ n− 1 and all integer N(k) ≥ N∗. As a result, the dynamic
system (2.7)-(2.8) is globally Lyapunov stable, and the solution sequence {x(k)}∞n−1 to the
difference equation (2.5) is uniformly bounded, for any bounded initial conditions z̃(n−
1) ∈ Rn provided that ‖θum( j)‖ is sufficiently small for all k ≥ k0 and Assumption 4.3
holds. �

The proof of the subsequent result is omitted

Proposition 4.6. The following properties hold provided that Assumptions 4.3-4.4 hold:
(i) the solution of the difference equation (2.5)-(2.6) is bounded and tends asymptot-

ically to zero as k →∞. Its associated dynamic system is globally asymptotically
Lyapunov stable;
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(ii) if η(k)→ 0 exponentially as k→∞, then x(k)→ 0 as k→∞ and its associate dy-
namic system is globally exponentially stable.

The main result concerning the existence of stable oscillations is stated.

Theorem 4.7. The subsequent properties hold.
(i) The time-varying difference equation (2.5)-(2.6) is globally asymptotically stable

if Assumption 4.3 holds and, furthermore, for some positive definite monotonically
nondecreasing n0-matrix sequence{P(k)}∞n−1 = {P(i j)(k)}∞n−1, with P(k) being of
columns P(i)(k), and η(k) satisfing the following joint constraints:

AT
(
k,k+N(k)

)
P
(
k+N(k) + 1

)
A
(
k,k+N(k)

)−P(k) < 0, (4.11a)

η
(
k,k+N(k)

)≤−2zT(k)AT
(
k,k+N(k)

)
P
(
k+N(k) + 1

)
(4.11b)

for all integer k ≥ k0, some nonnegative finite integer k0, and some sequence of pos-
itive finite integers {N(k)}∞0 dependent on k;

(ii) δ(k,k + N(k)− 1) < 0 for any combination of parameters αi(k + N(k)− j), j ∈
[0,n− 1], i∈ [1,n] satisfying the set of constraints

−Ã11
(
k,k+N(k)

)=
n∑

i=1

αi
(
k+N(k)

)
Ãi1
(
k,k+N(k)− 1

)= 1
λ(k)

,

−Ã1,i+1
(
k,k+N(k)− i

)=
n∑

j=1

αj
(
k+N(k)− i

)
Ã j,i+1

(
k,k+N(k)− i− 1

)= 0,

i∈ [1,n− 1],

(4.12)

provided that

η
(
k,k+N(k)

)
<
(∥∥AT

(
k,k+N(k)

)
z(k)

∥∥2
2∥∥z(k)

∥∥2
2

)(∥∥AT
(
k,k+N(k)

)
z(k)

∥∥2
2

)

<

∥∥AT
(
k,k+N(k)

)
z(k)

∥∥2
2∣∣x(k)|

(4.13)

since ‖z(k)‖ ≥ |x(k)|. Also, since η(k,k+N(k))≤ γη Supk−na≤ j≤k+N(k)−1−na(‖z( j)‖)

with na :=MinInt(� ≥ n− n0) and γη
{

>0 if n>n0

=0 if n=n0
, a sufficient condition for (4.13)

and (4.14) to hold is

Sup
k−na≤ j≤k+N(k)−1−na

(∥∥z( j)
∥∥)≤ 1

γη

(∥∥AT
(
k,k+N(k)

)
z(k)

∥∥2
2∣∣x(k)

∣∣

)
, (4.14)

Sup
k−na≤ j≤k+N(k)−1−na

(∥∥z( j)
∥∥)≤ 1

γη

(∥∥AT
(
k,k+N(k)

)
z(k)

∥∥2
2∥∥z(k)

∥∥2
2

)
; (4.15)
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(iii) δ(k,k+N(k)− 1) < 0 for any λ(k) > |x(k)|η(k,k+N(k))/‖AT(k,k+N(k))z(k)‖2
2

provided that the set αi(k,k+N(k)), i∈ [1,n], satisfies uniquely the constraints

α
(
k+N(k)

)
:= (α1

(
k+N(k)

)
,α2
(
k+N(k)

)
, . . . ,αn

(
k+N(k)

))

=−λ−1(k+N(k)
)

Ã−T
(
k,k+N(k)

)
e1

(4.16)

provided that Ã(k,k+N(k)) is nonsingular.
If the above constraints for λ(k) and α(k) hold for any k ≥ n− 1 and some se-

quence {N(k)≥ n}∞n−1, then the system (2.7) is GWO.
If, in addition, there is a nondecreasing sequence of symmetric positive defi-

nite n0-matrices {P(k)}∞n−1 (trivially including the particular case of constant pos-
itive definite P(k) = P = PT) such that (4.11a) holds, then any solution sequence
{x(k)}∞n of the difference equation (2.5)-(2.6) is bounded and converges asymptot-
ically to zero for any bounded initial conditions {x(k)}n−1

0 .
If λ(k) > |x(k)|η(k,k+N(k))/‖AT(k,k+N(k))z(k)‖2

2 and, furthermore, there
is a nondecreasing sequence of symmetric positive definite n-matrices {P̃(k)}∞n−1

(trivially including the particular case of constant positive definite P̃(k)= P̃ = P̃T)
such that the subsequent Lyapunov matrix inequality

ÃT
(
k,k+N(k)

)
P̃
(
k+N(k) + 1

)
Ã
(
k,k+N(k)

)− P̃(k) < 0 (4.17)

holds for all integer k ≥ k0, some nonnegative finite integer k0, and some sequence
of positive finite integers {N(k)}∞0 dependent on k, then any solution sequence
{x(k)}∞n of the difference equation (2.5)-(2.6) is bounded and converges asymp-
totically to zero for any bounded initial conditions {x(k)}n−1

0 .

Proof. (i) The tentative Lyapunov function candidate V(k) = zT(k)P(k)z(k) is a Lya-
punov function for the dynamic system (2.7) if (4.10) hold guaranteeing that ‖z(k +
N(k))‖2 < ‖z(k)‖2, for all k ≥ k0, with the sequence ‖z(k + N(k))‖2 being uniformly
bounded and monotonically decreasing (and thus converging asymptotically to zero as
k →∞). Since the sequence {N(k)}∞0 consists of uniformly bounded integer numbers,
z( j) cannot diverge within each interval [k,k +N(k)], for all k ≥ k0 under bounded ini-
tial conditions. Property (i) has been proved.

(ii)-(iii) (Outline). The proof follows since the solution of (2.5)-(2.6) is oscillatory.
Since (4.10) hold, the solution is globally asymptotically stable from property (i). The
proof of property (ii) follows directly. The proof of property (iii) is similar by considering
the associate dynamic system to (2.5)-(2.6) as perfectly modeled (i.e., of dimension n
described by (2.8)-(2.9)) since (4.17) ensures global Lyapunov asymptotic stability. �

Note that (4.15)-(4.16) are feasible if the dynamic system (2.7) is globally Lyapunov
stable.
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5. Examples

Example 5.1 (nth time-varying difference equation under nominal parametrical uncer-
tainties and unmodeled dynamics). Consider the n-order time-varying difference equa-
tion of nominal order n0 ∈ [1,n]:

x(k+ 1)=−
n∑

j=1

αj(k)x(k+ 1− j)=−
n0∑

j=1

α0
j (k)x(k+ 1− j) +η(k) (5.1)

and η(k) =∑n0
j=1(α0

j (k)− αj(k))x(k + 1− j)−∑n
j=n0+1αj(k)x(k + 1− j) is a measurable

unknown sequence describing unmodeled dynamics of order (n− n0) and parametrical
errors. Note that for all integer i∈ [0,n− 1]:

δ(k− i,k+ 1)=−α0
i (k)x2(k− i)−

n0∑

i+1�=i=1

α0
j (k)x(k+ 1− j)x(k− i) +η(k)x(k− i).

(5.2)

Note that for each integer k ≥ n0, there always exists (at least) an integer i(k)∈ [0,n− 1]
such that x(k − i) �= 0 for any everywhere nontrivial solution associated with arbitrary
non identically zero initial conditions x(i)∈R. For such an i(k), δ(k− i(k),k + 1) < 0 so
that the solution possess a weak generalized zero within [k−n,k+ 1] if

α0
i(k)+1(k) >

η(k)−∑n0

i(k) �= j=1α
0
j (k)x(k+ 1− j)

∣∣x
(
k− i(k)

)∣∣ . (5.3)

It is not guaranteed for any nontrivial solution and any k that such an integer i(k) ∈
[0,n0− 1], that is, inside a nominal modeling interval. Note also that the above formula
is still applicable if i(k)∈ [k−n0− 1,k+ 1]. Absolute upper-bounds η(k)≥ |η(k)|might
be computed from

∣∣η(k)
∣∣≤

∣∣∣∣∣

n0∑

j=1

(
αj(k)−α0

j (k)
)
x(k+ 1− j) +

n∑

j=n0+1

αj(k)x(k+ 1− j)
∣∣∣∣ as, for instance,

η1(k)=
(
n0 Max

1≤ j≤n0

(∣∣α̃ j(k)
∣∣)+

(
n−n0

)
Max

n0+1≤ j≤n
(∣∣αj(k)

∣∣)
)

Sup
k≤ j≤k+n−1

(∣∣x( j)
∣∣),

η2(k)=
( n0∑

j=1

∣∣α̃ j(k)
∣∣+

n∑

n0+1

(
n−n0

)∣∣αj(k)
∣∣
)

Sup
k≤ j≤k+n−1

(∣∣x( j)
∣∣),

η3(k)=
(
n0 Max

1≤ j≤n0

(∣∣α̃ j(k)
∣∣) Sup

k≤ j≤k+1−n0

(∣∣x( j)
∣∣)

+
(
n−n0

)
Max

n0+1≤ j≤n
(∣∣αj(k)

∣∣)
)

Sup
k−n0≤ j≤k+1−n

(∣∣x( j)
∣∣),
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η4(k)=
( n0∑

j=1

∣∣α̃ j(k)
∣∣
)

Sup
k≤ j≤k+1−n0

(∣∣x( j)
∣∣)

+

( n∑

n0+1

(
n−n0

)∣∣αj(k)
∣∣
)

Sup
k−n0≤ j≤k+1−n

(∣∣x( j)
∣∣)

(5.4)

provided that the remaining nominal parameters are arbitrary where α̃ j(k) = αj(k)−
α0
j (k), j ∈ [1,n0], are parametrical errors of the modeled part and n ≥ n is a known

upper-bound of the equation order. Thus, at least one sign change in the solution (and
then a generalized weak zero) is guaranteed within the interval [k−n+ 1,k + 1] if any of
the conditions below holds:

α0
i(k)+1(k) >

η�(k)−∑n0

i(k) �= j=1α
0
j (k)x(k+ 1− j)

∣∣x
(
k− i(k)

)∣∣ , some � ∈ [1,4] (5.5)

for at least one i(k)∈ [0,n− 1] and the remaining parameters being arbitrary. If the above
condition holds for some i(k) ∈ [0,n− 1] for all integer k ≥ n, then the solution is GO
and then globally disconjugate. The solution is also GO under the weaker condition that
the integer i(ki) ∈ [0,n− 1] such that x(k− i(ki)) �= 0 is guaranteed only for a sequence
{ki}∞1 with k1 ∈ [n,n+ k1] and 1≤ ki+1− ki ≤ k <∞. On the other hand, if

α0
i(k)+1(k) >

η�(k)−∑n0

i(k) �= j=1α
0
j (k)x(k+ 1− j)

∣∣x
(
k− i(k)

)∣∣ , some � ∈ [1,4], (5.6)

then the stronger condition that the difference equation is GSSO holds:

α0
i+1(k) >

χi+1(k)+η�(k)−∑n0

i �= j=1α
0
j (k)x(k+1− j)

∣∣x
(
k−i)∣∣ , ∀i∈ [0,n− 1] and some � ∈ [1,4]

(5.7)

for all k∈ Nn for any bounded sequences {χi+1(k) ≥ 0}∞n such that
∏n

i=1(x(k+ i) +
g(k+i−1)) �= 0 for all sequences {g(k) ∈ [−η(k),η(k)]}∞n , since this implies that x(k +
1) �= 0 for each nonzero x(k) with δ(k,k + 1) < 0, for all k ∈Nn. Any nontrivial solution
of the nominal difference equation is GO if for some integer i(k) ∈ [0,n− 1] (which al-
ways exists) and all k ∈Nn:

α0
i(k)+1(k) >−

∑n0

i(k) �= j=1α
0
j (k)x(k+ 1− j)

∣∣x(k− i(k)
)∣∣ . (5.8)

Note that if αj(k)≤ 0, j ∈ [1,n], for all k ∈Nn, with at least one αi(k)(k) < 0, for all k ∈Nn,
the associated dynamic system is positive and no solution oscillates for any set of initial
conditions 0≤ z̃(0)∈Rn or 0≥ z̃(0)∈Rn.

Example 5.2 (reparameterization of Example 5.1 with unknown n). Example 5.1 might
be described equivalently as follows through calculating by a difference equation the
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amount x(k):

x(k+ 1)=−
n−1∑

j=0

αj+1(k)x(k− j)=
n−1∑

j=1

(
α1(k)αj(k− 1)−αj+1(k)

)
x(k− j)

+α1(k)αn(k− 1)x(k−n).

(5.9)

Then,

δ(k− 1,k+ 1)=−
n∑

j=1

α(k− 1,k)δ(k− j,k− i), ∀i∈ [1,n], ∀k ∈Nn, (5.10)

where αj(k− 1,k)= αj+1(k + 1)−α1(k)αj(k− 1); αn+1(k + 1)= 0; for all k ∈N0. For any
nontrivial solution, there is an integer i(k) ∈ [1,n], dependent on k, such that
δ(k− i(k),k− i(k)) > 0 so that δ(k− i,k+ 1) < 0 if

αi(k)(k−1,k) >−
∑n

i(k) �= j=1αj(k−1,k)δ
(
k− j,k−i(k)

)

δ
(
k−i(k),k−i(k)

) =−
∑n

i(k) �= j=1αj(k−1,k)x(k− j)

x
(
k−i(k)

)

(5.11)

and the solution possesses at least one generalized weak zero in [k−n,k]. Any solution is
GO if (5.11) holds for nonzero initial conditions and all k ∈Nn. By zeroing αj(k− 1,k),
j ∈ [1,n− 1], it follows that x(k + 1) = α1(k)αn(k− 1)x(k− n) and any solution is then
GSSO if for all k ∈Nn

αj(k+ 1)= α1(k)αj(k− 1), j ∈ [1,n− 1], α1(k)αn(k− 1) < 0. (5.12)

Note that both conditions (5.12) together imply that αn(k) = α1(k)αn−1(k − 1), α1(k +
1)αn(k) < 0. Extending the notation αj(k − �,k) for any integers � ∈ N1, j ∈ [1,n− �],
x(k + 1) might be parameterized as x(k + 1) = −∑n

j=1αj(k− �,k)x(k− �− j + 1). Thus,
(5.12), guaranteeing the presence of weak generalized zeros, may be generalized as

αi(�,k)(k− �,k) >−
∑n

i(�,k) �= j=1αj(k− �,k)x(k− �− j + 1)

x
(
k− i(�,k)

) . (5.13)
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