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Introduction

Ab initio(1) theories can be used to study a broad variety of systems by changing a set of
system-dependent parameters, without reconsidering the internal working methodology of
the theory. In the scope of ab initio approaches for material modelling the Density Func-
tional Theory (DFT) and its Time-Dependent (TD) extension (TDDFT), have attracted
much attention, due to its favorable computational complexity scaling with the system
size.1 Both ab initio theories, DFT and TDDFT, have rapidly become popular along with
the increasing computational capability of computers.(2) Furthermore, nowadays, it is pos-
sible to manufacture relatively small nanodevices containing only several tens or hundreds
of atoms such as nanoflakes, nanodots,2 nanoparticles,3 nanoantennas,4,5 which can be
tackled computationally by means of atomistic, ab initio approaches.6–11 This overlap of
theory and experiment increases the importance of computer simulations and makes the the-
oretical material modelling essential in computer-aided material design.12 DFT is employed
to obtain information about the ground state properties – such as system total energy or
equilibrium geometry – for finite or periodic systems. TDDFT describes the behaviour of
a system influenced by a TD potential. Thus, it is used to calculate properties such as
excitation energies, photoabsorption spectra, induced density, and other time-dependent
properties.

In principle, DFT uses the electronic density as the central quantity to study the elec-
tronic properties of all systems.1 This basic idea behind the DFT approach was first
introduced independently by Llewellyn Thomas13 and Enrico Fermi14 in 1927. In their
semi-classical approach, a statistical model is used to approximate the electron distribution
where the total energy is presented as a functional of the electron density alone. But only
after the advent of the Hohenberg-Kohn (HK) theorems, which prove the one-to-one corre-
spondence between the electron density and the potential that generated it, the DFT was
recognized as an ab initio theory. Since then, DFT has attracted the interest of the scien-
tific community increasing the e�orts to advance the theory that led to the development
of dozens of DFT codes, now available in the market. The SIESTA (Spanish Initiative
for Electronic Simulations with Thousands of Atoms)6,7 code is a GPL (General Public
Licence) DFT package and it is the code-of-choice used throughout the thesis to perform
ground-state calculations.

TDDFT is the extension of DFT to study systems whose Hamiltonian includes time-

(1)From the latin ab[from] + initium[beginning], from the beginning.
(2)The growth in computer power has followed for years the so-called Moore’s law, which states that

the number of transistors in an integrated circuit doubles roughly every two years.
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Introduction

dependent potentials. The Runge-Gross theorems15(3) are the time-dependent equivalent
of the HK theorems and provide a solid ground for the use of the theory. In the linear
response regime, when the time-dependent part of the Hamiltonian can be treated pertur-
batively, TDDFT can be formulated via the density response function formalism. The
density response function obeys a Dyson-like equation derived by the Petersilka, Gossmann
and Gross.16 This equation is used in our TDDFT package MBPT-LCAO (Many Body Per-
turbation Theory with Linear Combination of Atomic Orbitals)17–19 to compute the optical
response. MBPT-LCAO makes use of an optimal basis17,20 to compute the response func-
tion and a clever iterative procedure involving the use of a Generalized Minimal RESidue
(GMRES)17,20 method to calculate the observables (absorption spectrum, structure factor,
induced fields, energy loss probability) of finite and periodic systems. MBPT-LCAO is a
composite code consisting of a block that allows computing the quasiparticle self-energy
within the GW Approximation (GWA),21 a block to solve the Bethe-Salpeter Equation
(BSE),22 and a block to perform TDDFT simulations.17–19 In particular, MBPT-LCAO is
used in tandem with SIESTA – initial DFT calculations provide the information to be used
as input in the following TDDFT calculations. In this thesis we present the results obtained
with the TDDFT block on a variety of finite systems (organic molecules, metallic clusters,
graphene flakes ...) and the work done on the development of the code.

In Chapters 3, 4, 5, 6 the results obtained for the di�erent systems under investigation
are presented. In addition, the most important DFT and TDDFT theoretical aspects and
a thorough overview of the codes employed are included in Chapters 1 and 2, respectively.

In particular, in Chapter 3 a review of the absorption properties of graphene nanoflakes
is presented. Graphene is a relatively novel material first isolated in 200423,24 and since
then, graphene and its derivatives such as nanoribbons and nanodots have been intensively
investigated because of many of their promising properties.25 In this thesis we consider
graphene nanodots of di�erent shapes, and sizes and study their optical properties. Specif-
ically, we show that the edge type – ArmChair (AC) versus ZigZag (ZZ) – and the edge
functionalization play a fundamental role in determining the low-energy features of the
spectra.

In Chapter 4 we study Polycyclic Aromatic Hydrocarbons (PAHs). The vast number of
di�erent shapes and sizes opens the way to a high degree of tunability in terms of optical
properties. PAHs can be viewed as small graphene flakes. In particular, we show that the
optical response of triangular shaped AC PAHs is very sensitive to charge doping as opposed
to triangular ZZ PAHs, which are found to be relatively insensitive to doping. The analysis
of the DFT orbital energies allows to clarify the origin of such insensitivity to doping. The
origin of this behavior turns out to be the presence of edge states in the ZZ PAHs, in fact,
ZZ edges create degenerate molecular levels at the Fermi energy.

In Chapter 5 we consider two metallic nanoclusters that form a plasmonic cavity. Each
icosahedral nanocluster contains 380 sodium atoms. The optical properties are studied
for di�erent plasmonic cavity sizes and for di�erent cluster orientations. Moreover, we
study the e�ects of geometry relaxation while approaching and eventually retracting the
two clusters. We report the jump-to-contact instability while approaching the clusters
and the formation of atom-sized metal contacts while retracting them. We established
the following relation: plastic nanocontact deformation æ metal contact cross-section

(3)These theorems prove the existence of an invertible relation between the electron density and the
time-dependent potential up to an additive time-dependent function

3
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reduction æ abrupt drop of the quantized contact current æ decrease of the intensity of
the corresponding plasmonic mode, highlighting the e�ects of atomic-scale details on the
optical properties of such system. Moreover, we show that structural rearrangements –
for systems of nanometer-scale dimensions like those considered here – involving very few
atoms or even a single atom are reflected in the far-field optical spectrum of the system.

In Chapter 6 we tackle the problem of the definition and identification of collective
excitations in molecules (plasmons). Molecular plasmons have been discussed in the liter-
ature,26–31 however, their definition and identification remains less clear than the plasmonic
excitations in 3D periodic systems. Very often, resonances found in the interacting cross-
section spectrum that are missing in the non-interacting spectrum are labelled as plasmons,
since the plasmonic character, given by a collective electron behaviour, is considered to be
taken into account in the interacting absorption spectrum. In the chapter we try to find
a practical operative definition for molecular plasmons. Our method includes the analysis
in momentum domain of the transition density matrix.32,33 We show that the analysis
based on the character of the non-interacting Kohn-Sham (KS) transition density matrix is
not appropriate for studying the resonant plasmonic character. For this study the Casida’s
approach is used to obtain the optical cross section, the method allows to get information
about the precise resonance energies and eigenvectors.

Finally, in the conclusions chapter the topics addressed and the most relevant results
obtained in this thesis will be summarized.

I would like to underline that the work that I have done, necessary for completing this
doctoral thesis, combining two important aspects involved in scientific computer simula-
tions: test and development. On the one side, I have worked as a user on some ab initio
codes, mainly the DFT SIESTA code and the TDDFT MBPT-LCAO code. On the other
side, I have implemented new features in the MBPT-LCAO source code.
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�(r1, r2, …, rN) = 1/√N!｜�1, �2, …, �N｜

�(�) = �'(�) + i�''(�)

�(�) = ∫r�(r,r',�)r'dr'

VH(r,t) = ∫v(r,r')n(r',t)dr'

Ĥ�=E�

f =
 �V

[n
]/�

n
∑ 

f nm
 =

 N
e

�(�) = 4�/c �(�)

�(�) F = �
2F

|IMAX(�0)| =
 �0 √(�Q'(�0)2  + �Q''(�0)2)

∫n(r)d
r = N�n(

r,�) =
 ∫�(r,r

',�) r'
E0d

r'�(�) = ∫r�(r,r',�)r'dr'
Ĥ�=E�

�(r,r
',�) =

 ∫�0(r,
r’',�

) �(r,
r’',�

)dr''

�(r1, r2, …, rN) = 1/√N!｜�1, �2, …, �N｜
�(�) = �'(�) + i�''(�)

f = �V[n]/�n
VH(r,t) = ∫v(r,r')n(r',t)dr'

V = �E[n]/�n

V 
= 

�E
[n

]/�
n

∫n(r)dr = N

∫n(r)dr = N

F[n] = ⟨�| T + Vee |�⟩

�(t
) =

 1
/2

� ∫
�(�

)e
xp

(i�
t)d

�

P∫�(�')/(�'-�)d�' = i��(�)

1.1 Density Functional Theory
Density Functional Theory (DFT) is a fundamental ab-initio quantum-mechanical theory
widely used in physics and chemistry for analyzing electronic ground-state properties of
multi-electron systems. DFT can be regarded as a dramatic simplification of a wave-
function based formalism.1 The non-relativistic wave-function formalism is based on the
Schrödinger equation. DFT uses the electron density as the fundamental quantity rather
than the electronic wave-function, and this fact greatly facilitates the solution of many-
electron problems. In fact, while the wave-function formalism deals with 3N variables,
with N being the total number of electrons, the DFT approach allows to describe the
interacting electrons by means of a 3-dimensional quantity.1 In this section, for the sake of
didactic clarity, we are going to start by discussing the Schrödinger equation for many-body
systems.

1.1.1 Schrödinger Equation
A great variety of physical phenomena in the microscopic world can be well understood
using the Schrödinger formalism.

All the properties of the electronic structure in matter are governed by the time-
dependent Schrödinger equation. For time-independent interactions, the Schrödinger equa-
tion can be written as

Ĥ�̃ = Etot�̃ (1.1)
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Born-Oppenheimer Approximation

where Etot and �̃ = �̃(r
1

, r
2

, . . . , rN ; R
1

, R
2

, . . . , RM ) are the total energy of the system
and the many-body wavefunction containing information about the N -electrons and the
M -nuclei of the system. Ĥ is the Hamiltonian operator given by

Ĥ = T̂e + Tn ≠ V̂en + V̂nn + V̂ee , (1.2)

T̂e = ≠~2

2

Nÿ

i

Ò2

i

mi
T̂n = ≠~2

2

Mÿ

I

Ò2

I

mI
(1.3)

V̂ne =
Nÿ

i

Mÿ

I

ZIe

|ri ≠ RI | V̂nn =
Mÿ

I<J

ZIZJe2

|RI ≠ RJ | (1.4)

V̂ee =
Nÿ

i<j

e2

|ri ≠ rj | . (1.5)

Here ZI is the number of protons in the nucleus I, RI is the position of the Ith-nucleus
and ri is the position of the ith-electron. mi and mI are the masses of the ith-electron
and of the Ith-nucleus. The first two quantities on the right side of equation 1.2 represent
the kinetic energy of electrons and nuclei respectively. The potential V̂en represents the
electron-nucleus interaction, V̂nn the nucleus-nucleus interaction and V̂ee is the electron-
electron interaction. In the equation above and for the rest of the thesis the atomic units
will be used, i.e. me = ~ = e = 1 and ‘

0

= 1/4fi.

1.1.2 Born-Oppenheimer Approximation
In order to solve the Equation 1.2, we use the Born-Oppenheimer (BO) approximation,34

which consists in considering electrons as moving in a fixed background of positively charged
nuclei. This approximation is based on the fact that nuclei are at least three order of
magnitude heavier than electrons, mI > 1800mi. Thus, within the BO approximation the
total wavefunction can be factorized into an electronic and a nuclear part,

�̃(r, R) = �R(r)‰(R) , (1.6)
Ĥr�R(r) = ER�R(r) , (1.7)
ĤR̨‰(R) = Etot‰(R) , (1.8)

with

ĤR̨ = T̂n + Vnn + ER Ĥr = T̂e + V̂ee + V̂ne. (1.9)

In additions, above we used the abbreviations r = {ri} and R = {Ri}. Note that all the
terms that couple the electron and nucleus dynamics have been dropped in Equations 1.7
and 1.8. The function �R(r) is the electronic part of the total wavefunction which contains
parametrically the nuclei positions R, while ‰(R) is the nuclear wavefunction. Once we
separate the total wavefunction, we can solve the electronic part assuming the electron
to move in the potential created by the positive nuclei at fixed positions and eventually
calculate the nuclear wavefunction ‰(R). The nuclear wavefunction ‰(R) accounts for
rotational and vibrational motion of the nuclei. The BO approximation has some limitations,
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Electron Density

although is valid for most systems of interest, it is not suitable when the electronic potential
energy surface of the ground and excited states are very close, i.e. whenever the En,R
calculated for all R are not well separated. If we insert the BO approximation given by
Equations 1.6, 1.7 and 1.8 in Equation 1.1 we get

5
Tn + Vnn + Ĥr

6
�R(r)‰(R) = �R(r)

5
≠ 1

2Ò2

I + Vnn + ER

6
‰(R)

≠ 1
2

#
Ò2

I�R(r)
$
‰(R) ≠

#
ÒI�R(r)

$#
ÒI‰(R)

$
.

(1.10)

The non-adiabatic correction terms are shown in the last line in 1.10 and they come from the
coupling of the electronic and nuclear wavefunctions due to the nuclear kinetic operator.
Glancing at the last equation we see that, the BO approximation consists of neglecting
the contribution coming from the first-order term ÒI�R(r) and the second-order term
Ò2

I�R(r) on the assumption that, due to the di�erence between the electrons mass and the
nuclei mass, the nuclear wavefunction is more localized than the electronic wavefunction,
i.e. ÒI�R(r) π ÒI‰(R). If we set to 0 the non-adiabatic contribution coming from the
last line of 1.10 we are left with Equation 1.8. In this work we will focus on electronic
degrees of freedom, assuming the validity of the BO approximation. The Schrödinger
equation for electrons within the BO approximation can be re-written as Equation 1.7

1.1.3 Electron Density
Although the BO approximation helps to separate the total wavefunction into nuclear and
electronic wavefunction, the task of solving the Equation 1.7 still remains highly non-trivial
since the many-body wavefunction depends on 3N variables, with N being the total number
of electrons. This multi-dimensional equation is impossible to solve by numerical methods
except for a very small number of electrons.1 However, in many practical calculations, we
can avoid using the full N -electron wavefunction, at least in principle, by introducing the
density matrix. We can define the first and second order density matrix, respectively as

D
1

(rÕ
1

, r
1

) = N

⁄
�ú(rÕ

1

, r
2

, . . . , rN )�(r
1

, r
2

, . . . , rN )dr
2

dr
3

. . . drN (1.11)

and

D
2

(rÕ
1

, rÕ
2

; r
1

, r
2

) =
3

N

2

4 ⁄
�ú(rÕ

1

, rÕ
2

, r
3

, . . . , rN )�(r
1

, r
2

, r
3

, . . . , rN )dr
3

dr
4

. . . drN

= N(N ≠ 1)
2

⁄
�ú(rÕ

1

, rÕ
2

, r
3

, . . . , rN )�(r
1

, r
2

, r
3

, . . . , rN )dr
3

dr
4

. . . drN .

(1.12)

The diagonal part of the first and second order density matrix are used to determine, respec-
tively, the expected values of one- and two- particle operators in the electronic Hamiltonian,
Equation 1.9. Consequently, the quantities D

1

and D
2

of reduced dimensionality are suf-
ficient to determine the electronic energy E

E = È�|Ĥ|�Í = Tr(DH). (1.13)
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In this quest of reducing dimensionality, we shall go one step further by using the Hohenberg-
Kohn (HK) theorems,35 which validate the use of the electron density n(r) = D(r, r) as the
only variable to define the energy of the system. The electron density represents the number
of electrons per unit volume in the quantum ground state. The HK theorems, discussed in
Section 1.1.4, guarantee the possibility to describe a system of N electrons with a scalar
function n(r), which depends only on the 3 Cartesian variables, where we omit the spin
variable. The corresponding electron-density operator is defined as n̂ =

q
i ”(r ≠ ri) and

leads to

n(r) = È�|
ÿ

i

”(r ≠ r̂i) |�Í = N

⁄
|�(r, r

2

, r
3

, . . . , rN )|2dr
2

dr
3

. . . drN . (1.14)

As a matter of fact, electrons are fermions with spin 1/2 and obey the Pauli exclusion
principle.36 Thus, for a system of N independent electrons, the exact total wavefunction
can be written in determinant form

�(r
1

, r
2

, . . . , rN ) = 1Ô
N !

---------

Â
1

(r
1

) Â
2

(r
1

) . . . ÂN (r
1

)
Â

1

(r
2

) Â
2

(r
2

) . . . ÂN (r
2

)
...

... . . . ...
Â

1

(rN ) Â
2

(rN ) . . . ÂN (rN )

---------

= 1Ô
N !

|Â
1

, Â
2

, . . . , ÂN | ,

(1.15)

Âi(r) are a set of orthogonal functions representing single-particle wavefunctions. The
resulting wavefunction �(r

1

, r
2

, . . . , rN ) is anti-symmetric with respect to particle per-
mutations. Inserting Eq. 1.15 in Eq. 1.14 we obtain the density operator in terms of
orthogonal functions Âi

n(r) = 2
N/2ÿ

i

|Âi(r)|2 (1.16)

where the factor 2 has been added added to account for the spin, assuming double oc-
cupancy of the one-electron levels. The possibility of using the electron density as the
main variable for solving many-electron problems is warranted by the Hohenberg and Kohn
theorems,35 which are discussed in Section 1.1.4, and this possibility is behind the suc-
cess of modern DFT. DFT became a popular method for studying many-body problems
substituting in many applications previous methods such as the Hartree-Fock method.37

1.1.4 Hohenberg-Kohn Theorems
The idea of using a 3-dimensional quantity to describe the electron system was first in-
troduced by Llewellyn Thomas13 and Enrico Fermi,38,39 who reformulated the Schrödinger
equation in terms of the electron density. The proposal of using the electron density as the
only quantity for solving many-electron problems was mathematically justified later by the
DFT. The DFT is based on two theorems proved by the Hohenberg and Kohn.35 The HK
theorems state that:

1. The external potential Vext(r) is determined by the electron density n(r) up to a
constant.35
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2. If we consider a trial electron density ñ(r) normalized to the total number of
electrons (

s
ñ(r)dr = N) and such that ñ(r) Ø 0, then

E
0

Æ E[ñ(r)] (1.17)

where E
0

is the true ground-state energy of the system and E[ñ(r)] is the energy
functional of the trial density.35

The first theorem establishes an important relation between the density distribution of
electrons n(r) and the external potential Vext(r) exerted to these electrons. In the BO
approximation, the external potential Vext(r) is given by the Coulomb nucleus-electron
attraction potential Vne(r), see Equation 1.4. To prove this theorem let us consider two
external potentials V (r) and V Õ(r) which di�er by more than a constant. We suppose
these potentials to give the same ground-state electron density but di�erent Hamiltonians
H and H Õ, wavefunctions � and �Õ and total energies E and EÕ. According to the Rayleigh
variational principle any trial wavefunction �Õ will have a greater Hamiltonian expectation
value È�Õ|Ĥ|�ÕÍ than the ground state energy È�|Ĥ|�Í, so that

E
0

= È�| H |�Í < È�Õ| H |�ÕÍ = È�Õ| H Õ |�ÕÍ + È�Õ| H ≠ H Õ |�ÕÍ

= EÕ
0

+
⁄

n(r)(V (r) ≠ V Õ(r))dr
(1.18)

where H = T + Vee + V and H Õ = T + Vee + V Õ. For the ground state energy of H Õ, we
can write a similar equality,

EÕ
0

< E
0

≠
⁄

n(r)(V (r) ≠ V Õ(r))dr . (1.19)

By adding 1.18 and 1.19 we get E
0

+ EÕ
0

< EÕ
0

+ E
0

which is a contradiction. Thus, the
initial assumption was wrong, there cannot be two di�erent external potentials giving the
same ground-state electron density.

This theorem implies that the total energy E
0

is defined by the density, i.e. it is a
functional of the density, so that the expected values of T , Vee and Vne are also functionals
of the density. In particular, we define the so-called universal functional F as

F [n] = T [n] + Vee[n], (1.20)

which is called universal because it does not depend on the particular disposition of the
nuclei in the system.

The second theorem is a variational theorem for the Schrödinger equation asserting that
that the minimization of energy is given by the true wavefunction where the total energy of
a system is E[�] = F [n]+

s
n(r)v(r)dr. From the first HK theorem we already know that

the density implicitly defines a unique Hamiltonian and a unique wavefunction � leading
to the conclusion that the true electron density minimizes the total energy. The variational
principle together with the particle number conservation

⁄
n(r)dr = N , (1.21)
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where N is the total number of electrons leads to the stationary condition

”

5
E[n] ≠ µ

3 ⁄
n(r)dr ≠ N

46
= 0 . (1.22)

The electron density n(r) minimizes the energy E[n] under the constraint that the density
provides the correct number of electrons. The Lagrange multiplier µ represents the chemical
potential. Evaluating the variational derivative of Eq. 1.22 with respect to the density we
get

”

5
E[n] ≠ µ

! s
n(r)dr ≠ N

"6

”n(r) =
”
!
F [n] + Vne[n]

"

”n(r) ≠
”µ

! s
n(r)dr ≠ N

"

”n(r) = 0 (1.23)
`̆

”F [n]
”n(r) + Vne(r) ≠ µ = 0 . (1.24)

Thus, the knowledge of the exact universal functional of the density F [n] would lead to
the exact ground-state electron density by solving Equation 1.24. However, it is di�cult
to find an explicit form for F [n]. Approximate solutions have to be found in order to turn
DFT into a practical tool.

1.1.5 v- and N-Representability
In this section we will enter a bit more in detail and we will clarify the relation between
external nucleus-electron potential Vne[n], electron density n(r) and wavefunction �(r).
However, it is not essential for the understanding of the rest of thesis, result chapters
included.

An electron density is said to be v-representable (VR) if it is associated with an anti-
symmetric ground state wavefunction of a Hamiltonian of the form Ĥ = T̂ + V̂ee +Vext(r),
determined by some external potential Vext(r). The first Hohenberg-Kohn theorem guar-
antees the existence of a given electron density n(r) for a given external potential Vext(r),
however, it requires the density to be v-representable (VR) because the universal functional
of the density F [n] (Eq.1.20) is defined through the ground state wavefunction �. Thus, it
depends explicitly on the ground-state wavefunction � which has an associated density. For
a VR density the first Hohenberg-Kohn theorem ensures a one-to-one mapping between the
ground state wavefunction and the external potential allowing us to determine in principle
all the ground state properties of the system. However, as a side remark, we note that not
always the density is VR.40

Let us now introduce and define the concept of N -representable (NR) density. An NR
density can be obtained from some antisymmetric wavefunction that may not be the ground
state wavefunction for a system described by a given Hamiltonian. The N -representability
condition is weaker than the v-representability condition, thus, easier to fulfill. It is good
then that we can extend the first Hohenberg-Kohn theorem to all the NR densities. Density
functional theory requires only the density to be NR.40 The conditions for a density to be
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NR are the following,40

n(r) Ø 0
⁄

n(r)dr = N

⁄
|Òn(r)|2dr < Œ . (1.25)

There are an infinite number of wavefunctions � that provide the same electron density
n(r), however, thanks to the Levy formulation41 we can select a single ground-state wave
function by using the minimum-energy principle and showing that the first Hohenberg-Kohn
theorem is valid for NR densities. The minimum-energy principle states that

È�
0

| T̂ + V̂ee |�
0

Í +
⁄

Vne(r)n
0

(r)dr Æ È�n0 | T̂ + V̂ee |�n0Í +
⁄

Vne(r)n
0

(r)dr
(1.26)

where �
0

is the ground-state wavefunction and �n0 is a trial wavefunction generating
the ground-state density n

0

. The contribution from the external potential describing the
nucleus-electron interaction is a functional of the density and it is the same in the two
cases. Thus, È�

0

| T̂ + V̂ee |�
0

Í Æ È�n0 | T̂ + V̂ee |�n0Í. È�
0

| T̂ + V̂ee |�
0

Í is the universal
functional F [n

0

] defined in Equation 1.20. This introduces another constraint on the trial
wavefunction �n0 . Namely, the wavefunction �n0 has to provide the ground-state electron
density and at the same time minimize the F operator,

È�n0 |
ÿ

i

”(r ≠ ri) |�n0Í = n
0

(r) (1.27)

È�
0

| T̂ + V̂ee |�
0

Í = Min È�n0 | T̂ + V̂ee |�n0Í (1.28)

Equation 1.28 extends the first Hohenberg-Kohn theorem for cases of degeneration in the
ground state because with the use of 1.28 we are able to pick out one of the degenerate
wavefunctions.

The concept is clear if we re-write the Levy principle as,

E
0

= Min
�

È�| (T̂ + V̂ee + V̂ne) |�Í

= Min
n

5
Min
�æn

È�| (T̂ + V̂ee +
Nÿ

i

v(ri)) |�Í
6

= Min
n

;
Min
�æn

5
È�| (T̂ + V̂ee) |�Í

6
+

⁄
v(r)n(r)

<
(1.29)

where v(ri) =
qN

I
Z

I

|r
i

≠r
I

| .
In order to better understand the relation between the ground-state wavefunction, the

electron density and the external potential we show below in Fig. 1.1 a visual explanation
of the minimization process.40 Each color represents a di�erent density and each of these
colored areas contains all the wavefunctions corresponding the electron density, denoted
as n

1

, n
2

, ..., n
13

in Fig. 1.1. The minimization Min
�æn

È�| (T̂ + V̂ee) |�Í selects a set of
wavefunctions for each particular density. These particular sets are indicated in Fig. 1.1
by dark dots. A further minimization Min

n

)
F [n] +

s
v(r)n(r)

*
will select the right density

among all the dark dots.
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n1

n2

n3

n4

n5

n6

n10

n7

n9

n8
n13

n11

n12

Figure 1.1: Illustration of the Levy principle. Areas with the same color have the same
density and represent the collection of wavefunction sets providing this electron density
n

1

, n
2

, ..., n
13

. The minimization process chooses among all these sets of wavefunctions
the one that minimizes the universal functional. The system wavefunction is then identified
by minimizing the total energy with respect to the density.40

In Fig.1.2 the connection between di�erent sets of wavefunctions, the density and the
external potential is shown. For an N -representable density it is always possible to connect
the density and the external potential, necessary condition for HK theorems to work (section
1.1.4). Moreover, it is also always possible to find a ground state through the minimization-
energy principle.41,42 Thus, a biunivocal relation for the transformation n æ Vext and
� æ n can be found, as illustrated in Fig. 1.2. HK theorems and Levy theorem guarantee
a one-to-one correspondence between the ground-state wave function, the electron density
n(r) and the external potential Vext.

Â1

1

(r)
Â1

2

(r)
...

Â1

N (r)
Â2

1

(r)
Â2

2

(r)
...

Â2

N (r)
...

ÂL
1

(r)
ÂL

2

(r)
...

ÂL
N (r)

n1(r)

n2(r)

...

nL(r)

V 1(r)

V 2(r)

...

V L(r)

Figure 1.2: A two-stage splitting of di�erent sets of wavefunctions Âi(r), the density n(r),
and the external potential Vext used in the minimization procedure.
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1.1.6 Kohn-Sham Equations
The obstacle for solving Equation 1.24 resides in the fact that we do not know the universal
functional F [n] exactly. In particular, the kinetic energy functional has proven to be a
great challenge.43 Therefore, it is necessary to work out an approximation that would
allow a simple, and yet accurate, description of the kinetic energy. In the Kohn-Sham (KS)
approach the system of interacting electrons is mapped onto a system of N non-interacting
electrons, both having the same electron density. Other simpler approximations exist, but
in general, they are not su�ciently accurate.44 For an interacting electron system the
electron density is written as

n(r) =
Nÿ

i

fi

ÿ

‡

|Âi(r, ‡)|2 , (1.30)

and the kinetic energy, being one-electron operator, reads

T = ≠1
2

˜Nÿ

i

fi ÈÂi| Ò2 |ÂiÍ . (1.31)

Here Âi, in this case, are the natural spin orbitals and fi their occupation numbers. The
occupation number is 0 Æ fi Æ 1 due to the Pauli principle. In the KS framework the
kinetic energy is approximated with

Ts = ≠1
2

Nÿ

i

ÈÂi| Ò2 |ÂiÍ , (1.32)

which represents the kinetic energy for a system of non-interacting electrons that is de-
scribed exactly by a single-determinantal wavefunction

�s = 1Ô
N !

|Â
1

, Â
2

, . . . , ÂN | . (1.33)

The associated electron density is

n(r) =
Nÿ

i

ÿ

‡

|Âi(r, ‡)|2 . (1.34)

This corresponds to Equation 1.30 when we set the coe�cients fi = 1 for 0 Æ i Æ N and
equal to 0 otherwise. Henceforward, we should call the one-particle orbitals Âi the Kohn-
Sham orbitals. Within this non-interacting picture the energy functional can be written
as a sum of the external nucleus-electron interaction term Vne, the new non-interacting
kinetic-energy functional Ts, an electrostatic classical functional term VH (Hartree energy)
and the so-called Exchange-Correlation Energy functional Exc[n]. The energy functional
Exc[n] includes the non-classical contributions to the Coulomb energy and the error in
the kinetic energy (T ≠ Ts), and together with the Hartree term should reproduced the
electron-electron interaction term Vee[n].

E[n] = F [n] + Vne (1.35)
F [n] = T [n] + Vee[n] = Ts[n] + VH [n] + Exc[n] (1.36)

Exc[n] = T [n] ≠ Ts[n] ≠ VH [n] + Vee[n] (1.37)
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The Hartree term VH [n] = 1

2

s s n(r)n(rÕ
)

|r≠rÕ| drdrÕ accounts for the electrostatic self-interaction
energy of a classical charge density n(r). Equation 1.24 becomes

µ = ”Ts[n]
”n

+ ”Exc[n]
”n

+ ”EH [n]
”n

+ Vne(r)

= ”Ts[n]
”n

+ Vxc(r) +
⁄

n(rÕ)v(r, rÕ)drÕ + Vne(r)

= ”Ts[n]
”n

+ Veff (r) .

(1.38)

Where v(r, rÕ) = 1

|r≠rÕ| . The e�ective potential Veff (r) is given by the sum of Vxc(r),
VH(r) and Vne(r). The energy minimization problem, given by Eq. 1.38 can also be
re-written in term of the Kohn-Sham (KS) orbitals rather than in terms of electron density.

0 = ≠1
2

”
! qN

i

s
Âú

i (r)Ò2Âi(r)dr
"

”Âú
⁄(r) +

”
s !

Veff (r)n(r)dr
"

”Âú
⁄(r)

≠
”
! q

i

q
j ‘ij

s
Âú

j (r)Âi(r)dr
"

”Âú
⁄(r) = ≠1

2Ò2Â⁄(r) + Veff (r)Â⁄(r) ≠
ÿ

j

‘⁄jÂj(r) .

(1.39)

Eq. 1.39 has been obtained using the constraints

Nÿ

ij

⁄
Âú

i (r)Âj(r)dr ≠ ”ij = 0 (1.40)

that guarantee the orthogonality of the KS orbitals and so, for non-interacting particle
systems, is equivalent to the constraint 1.21. The Hamiltonian Heff = TS + Veff is a
hermitian operator because Veff (r) is a local operator. Consequently, the matrix whose
elements are ‘⁄j is hermitian and can be diagonalized by a unitary transformation which
leaves the determinant defining the total wavefunction (1.33) invariant. Therefore, also
the density (1.34) and Heff [n] remain unchanged leading to the KS equations

3
≠ 1

2Ò2 + Veff (r)
4

Â⁄(r) = Ĥeff Â⁄(r) = ‘⁄Â⁄(r) . (1.41)

This is an eigenvalue equation. By diagonalizing Ĥeff all the eigenenergies ‘⁄ can be
found.

Note that the total energy of the system E is not equal to the sum of the occupied
eigenvalues of Eq. 1.41. This is due to the definition of the functional derivative, see
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Kohn-Sham Equations

appendix F. In particular,

Nÿ

i

‘i =
Nÿ

i

ÿ

‡

⁄
Â(r, ‡)

#
≠ 1

2Ò2 + Veff (r)
$
Â(r, ‡)dr

= Ts[n] +
⁄

Veff (r)n(r)dr

= Ts[n] +
⁄

VH(r)n(r)dr +
⁄

Vxc(r)n(r)dr +
⁄

Vne(r)n(r)dr

= Ts[n] +
⁄ ⁄

”n(rÕ)
|r ≠ rÕ|n(r)drdrÕ +

⁄
”Exc[n]
”n(r) n(r)dr +

⁄
Vne(r)n(r)dr

= Ts[n] + 2EH [n] +
⁄

”Exc[n]
”n(r) n(r)dr + Vne[n] ,

(1.42)

so the total energy defined as E = Ts[n] + EH [n] + Exc[n] + Vne[n] is equal to

E =
Nÿ

i

‘i ≠ EH [n] ≠
⁄

”Exc[n]
”n(r) n(r)dr + Exc[n] . (1.43)

Self-Consistent Procedure
The Kohn-Sham Equations 1.41 are self-consistent equations, i.e. one has to know Ĥeff

to determine n(r). However, in turn, Ĥeff depends on n(r). Such kind of non-linear
problems can be solved iteratively through the following steps:

1. An initial trial density is used to calculate the e�ective potential.

2. The potential is inserted in the Kohn-Sham equations, which will provide a new
estimate for the KS orbitals Â(r) and so a new electron density n(r).

3. The new density is used to calculate the new e�ective potential.

These steps are repeated trying to reach convergence. It usually requires some level of
mixing (either of the density or of the Hamiltonian) to achieve self-consistency. In Fig.1.3
the iterative procedure used in DFT codes is shown.
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� Self-Consistent Field Approach

INITIAL GEOMETRY

GEOMETRY

TRIAL DENSITY

V̂en =
qN

i

qM
I

Z
I

e2

|r
i

≠R
I

| n0(r) =
qN

⁄

q
‡ |Â0

⁄‡(r)|

Ts[n]
EH [n]
Exc[n]

Ĥeff Â⁄ = ‘⁄Â⁄

Âi
⁄

ni(r) =
qN

⁄

q
‡ |Âi

⁄‡(r)|

mixing step

fli
µ‹ ≠ fli≠1

µ‹ < –

n(r), Â⁄, EKS , F̨I , Òij

i = i + 1

no

yes

structural relaxation
or

molecular dynamics

Figure 1.3: Iterative procedure used in DFT codes. F̨I , and Òij stand for forces acting on
nuclei and the stress tensor, respectively.

1.1.7 � Self-Consistent Field Approach
The �SCF (Self-Consistent Field) approach can be used to calculate excitation energies,
ionization energy and electron a�nity without employing the more sophisticated TDDFT.
The di�erence in total energy calculated from two di�erent DFT calculations with di�erent
constraints in the electron density often provides a decent estimate of corresponding excita-
tion energies. This procedure works better for the ionization potential, since it is sometimes
di�cult to bind extra electrons to small molecules with most common DFT functionals.

HOMO-LUMO Excitation Energy
By forcing an electron to be promoted to the first KS orbital, leaving a hole behind is
possible to calculate the HOMO-LUMO excitation energy, see Fig. 1.4(a).
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1.2. Time Dependent Density Functional Theory
(TDDFT)

Electron Affinity
In the same way it is possible to perform a DFT calculation by adding an electron in the
LUMO. The di�erence �SCF gives the electron a�nity (E.A.), see Fig. 1.4(b).

Ionization Potential
A calculation can be made where an electron is removed in the HOMO. The energy di�er-
ence between the pristine and charged system gives the ionization potential (I.P.), see Fig.
1.4(c).

ESCF-GS ESCF

EF

(a) DSCF = ESCF - ESCF-GS

ESCF-GS ESCF

EF

(b) DSCF = E.A. = ESCF -
ESCF-GS

ESCF-GS ESCF

EF

(c) DSCF = I.P. = ESCF -
ESCF-GS

Figure 1.4: �SCF scheme for the calculation of the HOMO-LUMO excitation energy (a),
electron a�nity (b) and ionization potential (c).

1.2 Time Dependent Density Functional Theory
(TDDFT)

DFT is a time-independent theory. Thus, DFT is employed whenever we want to compute
the ground-state properties of a given electron system in which the external potential does
not depend on time. However, when in the system Hamiltonian a time-dependent poten-
tial term is added, then a time-dependent extension of DFT is needed. Time-dependent
fields are involved, for example, whenever we want to calculate photoabsorption spectra,
excitation energies, etc. In this section we shall tackle the question of how to generalize
the Hohenberg-Kohn theorems to time-dependent situations.

Next, we will discuss the Runge-Gross Theorem,15 that extends the validity of the
KS scheme TDDFT approach. Moreover, similarly to DFT, a time-dependent density
functional theory can be formulated so that the problem of interacting electrons moving in
an external time-dependent potential Vext(r, t) can be mapped onto a problem involving
non-interacting particles subjected to a time-dependent e�ective potential Veff (r, t), this
e�ective potential being a function of the time-dependent density n(r,t).
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Runge-Gross Theorems

1.2.1 Runge-Gross Theorems
The TDDFT approach has a formal ground thanks to the Runge-Gross theorems15. Similarly
to the Hohenberg-Kohn theorems (section 1.1.4) they establish a relation between the time-
dependent potential and the electron density.

1. Given a single-particle time-dependent potential expandable in Taylor series at
time t

0

and having fixed an initial wavefunction �(r, t
0

) = �
0

(r), an invertible
relation exists between the potential and the density n(r, t) up to an additive time-
dependent function in the potential.15

2. The action integral can be represented as a function of the density, A[n] = B[n]≠s t1
t0

s
n(r, t)Vext(r, t)drdt where B[n] is a universal function of the density. The

stationary point of action A[n] corresponds to the exact system density.15

The proof to the first theorem consists of taking two di�erent time-dependent potentials V
and V Õ that di�er by more than an additive time-dependent function (V (r, t) ”= V Õ(r, t) +
C(t)) and makes use of the equation of motion so that we can connect the current density
j̨(r, t) with the external potential15

3
iˆ

ˆt

4k+1#̨
j(r, t) ≠ j̨Õ(r, t)

$----
t=t0

= in(r, t
0

)Ò
;3

iˆ

ˆt

4k#
V (r, t) ≠ V Õ(r, t)

$----
t=t0

<
”= 0 .

(1.44)

In Equation 1.44 j and jÕ are the current densities that become di�erent at times later
than t

0

if ( iˆ
ˆt )k[V (r, t) ≠ V Õ(r, t)]|t=t0 is not a constant. By using the continuity equation

it is possible then to go one step further and connect the current density J̨(r, t) with the
density n(r, t) to obtain from Equation 1.44 the following relation

ˆk+2

ˆtk+2

#
n(r, t) ≠ nÕ(r, t)

$----
t=t0

= ≠div
;

n(r, t
0

) · Ò
5

ˆk

ˆtk

#
V (r, t) ≠ V Õ(r, t)

$----
t=t0

6<
.

(1.45)

A reductio ad absurdum proof finally shows that the right side of Equation 1.45 cannot
vanish if the two potentials di�er by more than an additive time-dependent function when
the two densities n(r, t) and nÕ(r, t) become di�erent infinitesimally after t

0

. This theo-
rem proves that the time-dependent potential, up to an additive time-dependent function,
indeed is determined by the electron density. Thus, we can conclude that the energy is a
functional of the time-dependent density E[n(r, t)].

Furthermore, let us consider two time-dependent potentials V (r, t) and V Õ(r, t) where

V Õ(r, t) = V (r, t) + C(t) (1.46)

and C(t) is a time-dependent scalar function. The potentials V (r, t) and V Õ(r, t) provide
the same density (1.45) however, the corresponding wavefunctions will di�er by a time-
dependent phase

�Õ(r, t) = e≠i–(t)�(r, t) , (1.47)

where ˆ–(t)/ˆt = C(t). This additional phase cancels out when calculating the density
n(r, t) and the expectation value of any time-dependent operator.
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Time-Dependent Kohn-Sham Equations

1.2.2 Time-Dependent Kohn-Sham Equations
For time-dependent systems no minimum energy principle is available. Rather, a stationary
action principle will provide the exact density of the system. Following the Runge-Gross
2nd theorem, the action is a unique functional of the density A[n] so that the stationary
points condition can be found using the Euler–Lagrange equation

”A[n]
”n(r, t) = 0 . (1.48)

The proof resides on the fact that the action is defined as

”A =
⁄ t1

t0

È�(t)| i
ˆ

ˆt
≠ Ĥ |�(t)Í (1.49)

where Ĥ = T̂ + V̂ee + V̂ext(t) and V̂ext(t) = V̂ne + V̂ (t). V (t) being the external time-
dependent potential. The actions calculated with two potentials V (t) and V Õ(t) connected
by the equation 1.46 turn out to be the same, as the factor C(t) included in V Õ(t) cancels
out when performing the time derivative on the wavefunction �Õ(r, t) (Equation 1.47).
Thus, the action is a unique functional of the density.

Analogously to the time-independent universal functional, Eq. 1.20 , we can define a
universal functional S[n] as

S[n] =
⁄ t1

t0

È�[n]| iˆ/ˆt ≠ T̂ ≠ V̂ee |�[n]Í dt . (1.50)

In general, two functionals S refer to two di�erent choices for the electron-electron in-
teraction term V̂ee. More specifically, let us define S

0

as the universal functional for
non-interacting particles, i.e. V̂ee = 0, and SV

ee

, the functional for the system with full
electron-electron interaction switched on. The Euler–Lagrange Equation 1.48 for the in-
teracting system becomes

”A[n]
”n(r, t) =

”
s t1

t0

È�(t)| i ˆ
ˆt ≠ T̂ ≠ V̂ee |�(t)Í dt ≠

s t1

t0

s
n(r, t)Vext(r, t)drdt

”n(r, t)

= ”S
0

[n]
”n(r, t) ≠

”
s t1

t0

È�(t)| V̂ee |�(t)Í dt

”n(r, t) +
⁄

v(r, rÕ)n(rÕ, t)drÕ

≠
⁄

v(r, rÕ)n(rÕ, t)drÕ ≠ Vext(r, t)

= ”S
0

[n]
”n(r, t) ≠ Vxc(r, t) ≠

⁄
v(r, rÕ)n(rÕ, t)drÕ ≠ Vext(r, t)

= ”S
0

[n]
”n(r, t) ≠ Veff (r, t) = 0 ,

(1.51)

where

Veff (r, t) =
⁄

v(r, rÕ)n(rÕ, t)drÕ + Vext(r, t) + Vxc(r, t) , (1.52)

Vxc(r, t) = ≠
⁄

v(r, rÕ)n(rÕ, t)drÕ +
”

s t1

t0

È�(t)| V̂ee |�(t)Í dt

”n(r, t) . (1.53)
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1.3. Linear Response Formalism

Here we defined the e�ective potential (Veff ) and the exchange-correlation potential
(Vxc). Finally, we note that Eq. 1.51 is the Euler-Lagrange equation for a system of
independent particles moving in an e�ective potential defined in Eq. 1.52.15 Consequently,
for v-representable density, we can write the time-dependent equivalent of the KS equations,

i
ˆ

ˆt
Âi(r, t) =

5
≠ 1

2Ò2 + Veff (r, t)
6
Âi(r, t) , (1.54)

where Âi are the single-particle orbital wavefunctions. Equation 1.54 is the time-dependent
Kohn-Sham equation. Similarly to what has been done to derive the DFT Kohn-Sham
equations, a fictitious system of non-interacting particles can be defined where the electron-
electron interactions are included through the so-called Hartree potential

VH(r, t) =
⁄

v(r, rÕ)n(rÕ, t)drÕ (1.55)

and the exchange-correlation potential (Vxc), see equation 1.53. The two potentials
sum up with the external time-dependent perturbation to form the one-particle e�ective
potential Veff . The consequences of these theorems will be clear in section 1.3 when
describing a linear response approach to the time-dependent KS equation 1.54.

1.3 Linear Response Formalism
In this thesis we employed the linear response formalism to calculate the optical properties
of di�erent molecules. The response of a system at equilibrium in the linear regime de-
scribes the behavior of the system when it weakly interacts with a time-dependent potential.
As long as the external stimuli magnitude is small enough we can consider the system to
respond linearly to the applied perturbation. The linear response function ‰(r, rÕ, Ê) (in
real-space domain and frequency domain), see appendix A, connects the time-dependent
external perturbing potential Vext(r, t) to induced electron density ”n(r, t), which repre-
sents the change in the electronic density caused by the external perturbation ”Vext(r, t).
The induced density is given by

”n(r, Ê) =
⁄

‰(r, rÕ, Ê)”Vext(rÕ, Ê)drÕ . (1.56)

The response function ‰ is defined as the functional derivative of the time-dependent
density with respect to the external potential, i.e.

‰(r, rÕ, Ê) = ”n[Vext](r, Ê)
”Vext(r, Ê)

----
V

ext

[n0]

, (1.57)

where n
0

is the unperturbed electron density. In this work we are interested to study the
optical response of small finite systems, For such small systems if the spatial extend of
the electron density is smaller than the wave-length of the driving electromagnetic wave,
then the electrical field of the electromagnetic wave can be assumed homogeneous and
the magnetic component is neglected. This is the so-called dipole approximation, in this
approximation the external potentials is written as

Vext = r · E
0

cos(Êt) . (1.58)
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Real and Imaginary Response Function

1.3.1 Real and Imaginary Response Function
The linear response in the time domain is a real quantity, however, its Fourier transform to
the frequency domain is a complex quantity

‰(Ê) = ‰Õ(Ê) + i‰ÕÕ(Ê) , (1.59)

where ‰Õ and ‰ÕÕ are, respectively, the real and imaginary parts. For the sake of clarity, we
dropped the dependence on the spatial argument r as it is not important for the purpose
of the following sections.

In the following sections we will discuss the symmetry properties of the real and imagi-
nary parts of the response function, the relation between them and also how the imaginary
part ‰ÕÕ(Ê) is related to the energy absorbed by the system.

1.3.2 Symmetry of ‰(Ê)
The real and imaginary parts of the response function in the frequency domain have an
even and an odd character, respectively. This can be seen when we write the real and
imaginary parts as

‰Õ(Ê) = 1
2

!
‰(Ê) + ‰ú(Ê)

"
= 1

2

⁄
‰(t)e≠iÊtdt + 1

2

⁄
‰(t)eiÊtdt

= 1
2

⁄ !
‰(t) + ‰(≠t)

"
e≠iÊtdt

(1.60)

‰ÕÕ(Ê) = ≠ i

2
!
‰(Ê) ≠ ‰ú(Ê)

"
= ≠ i

2

⁄
‰(t)e≠iÊtdt + i

2

⁄
‰(t)eiÊtdt

= ≠ i

2

⁄ !
‰(t) ≠ ‰(≠t)

"
e≠iÊtdt ,

(1.61)

where we used the fact that ‰ú(t) = ‰(t), i.e. ‰(t) is a real function. The integrand in
1.60 is invariant under time reversal t æ ≠t while the integrand in 1.61 is not. Therefore,
for Ê æ ≠Ê we have

‰Õ(≠Ê) = ‰Õ(Ê) , (1.62)
‰ÕÕ(≠Ê) = ≠‰ÕÕ(Ê) . (1.63)

The real part ‰Õ(Ê) is an even function in the frequency domain while the imaginary part
‰ÕÕ(Ê) is an odd function.

1.3.3 Energy Absorbed by the System
The imaginary part of the linear response function is connected to the average energy
absorbed by the system. We will calculate the absorption of the system in terms of the
work W done by the system over time in order to show the connection.

The work exerted by an electric field is obtained from the energy absorption rate
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Energy Absorbed by the System

calculated as the variation in time of the total energy, i.e.

dE

dt
= d

dt
È�(t)| Ĥ(t) |�(t)Í

= i È�̇(t)|�̇(t)Í + È�(t)|
5

d
dt

Ĥ(t)
6

|�(t)Í ≠ i È�̇(t)|�̇(t)Í =
=

d
dt

Ĥ(t)
>

.
(1.64)

Here we used the time-dependent Schrödinger equation d

dt |�(t)Í = iĤ |�(t)Í. Defining
Ĥ(t) = Ĥ

0

+ V̂ext(t) and Vext(t) = r · E
0

cos(Êt) we can write

dE

dt
=

⁄
�ú(r, t) ˆ

ˆt
Vext(r, t)�(r, t)dr

=
⁄

n(r, 0)ˆVext(r, t)
ˆt

dr + iÊ

2

⁄
”n(r, t)r · E

0

!
eiÊt ≠ e≠iÊt

"
dr

= 1 + iÊE
0r̂

2

⁄⁄⁄
r‰(r, rÕ, t ≠ tÕ)Vext(rÕ, tÕ)drÕdtÕ!eiÊt ≠ e≠iÊt

"
dr

= 1 + iÊE2

0r̂

4

⁄⁄ 5
r‰(r, rÕ, Ê)eiÊtrÕ + r‰(r, rÕ, ≠Ê)e≠iÊtrÕ

6
drdrÕ!eiÊt ≠ e≠iÊt

"

= 1 + iÊE2

0r̂

4
#
–(Ê)eiÊt + –(≠Ê)e≠iÊt

$!
eiÊt ≠ e≠iÊt

"

= n(r, 0)
⁄ dVext(r, t)

dt
dr ≠ ÊE2

0r̂

2 –ÕÕ(Ê)
#
e≠2iÊt ≠ 1

$

(1.65)

where 1 = n(r, 0)
s

dV
ext

(r,t)

dt dr. – defined as
ss

r‰(r, rÕ, Ê)rÕdrdrÕ is the so-called
polarizability and it is discussed in detail in Section 1.3.7. The average energy absorbed by
the system per unit of time W is given by the integral over T of dE

dt ,

W = 1
T

⁄

T

dE

dt
dt =

⁄
n(r, 0) 1

T

⁄

T

dVext(r, t)
dt

dtdr ≠ ÊE2

0

2
1
T

⁄

T
–ÕÕ(Ê)

#
e≠2iÊt ≠ 1

$
dt

=
⁄

n(r, 0) 1
T

#
Vext(r, T ) ≠ Vext(r, 0)

$
dr ≠ ÊE2

0

2 –ÕÕ(Ê)
5

e≠2iÊT ≠ 1
≠i2ÊT

≠ 1
6

.

(1.66)

For T æ Œ we get

W = ÊE2

0

2 –ÕÕ(Ê) . (1.67)

The term
s

n(r, 0) 1

T

#
Vext(r, T )≠Vext(r, 0)

$
dr is 0 because we assumed Vext(r, t) is bound.

Thus, when T æ Œ, this term goes to zero. Eq. 1.67 shows that the work done by the
field on the system, i.e. the optical absorption, is proportional to the imaginary part of
the polarizability –ÕÕ. Thus, it is legitimate to look at the imaginary part of the response
function and its related quantities when investigating the excitation energies and properties
of excitations.
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Causality and Kramers-Kronig relations

1.3.4 Causality and Kramers-Kronig relations
The Heaviside function in the Kubo formula (Eq. A.14) ensures causality, meaning that
future events cannot influence the past,

‰(t ≠ tÕ) = 0 tÕ > t (1.68)

and

”n(t) =
⁄

‰(t ≠ tÕ)V (tÕ)dtÕ (1.69)

Causality in the time domain leads to the Kramers-Kronig relations in the frequency domain,
and connects the real part to the imaginary part of the linear response function. Let us
start considering the Fourier transform of the linear response ‰(t),

‰(Ê) =
⁄

‰(t)e≠iÊtdt =
⁄

‰(t)‡(t)e≠iÊtdt = 1
2fi

⁄
‰(ÊÕ)‡(Ê ≠ ÊÕ)dÊÕ , (1.70)

where ‡(t) is the Heaviside function. For the last step in Eq. 1.70 we used the convolution
theorem. The Fourier transform of the Heaviside function can be shown to be

‡(Ê ≠ ÊÕ) = fi”(Ê ≠ ÊÕ) ≠ i

Ê ≠ ÊÕ . (1.71)

Consequently

‰(Ê) = 1
2‰(Ê) ≠ i

2fi
P

⁄
‰(ÊÕ)
Ê ≠ ÊÕ dÊÕ , (1.72)

which leads to

P
⁄

+Œ

≠Œ

‰(ÊÕ)
ÊÕ ≠ Ê

dÊÕ = ifi‰(Ê) . (1.73)

“P
s

” denotes the Cauchy principal value integral. From 1.73 and writing ‰ = ‰Õ + i‰ÕÕ

we obtain the Kramers-Kronig relations

‰Õ(Ê) = 1
fi

P
⁄

+Œ

≠Œ

‰ÕÕ(ÊÕ)
ÊÕ ≠ Ê

(1.74)

‰ÕÕ(Ê) = ≠ 1
fi

P
⁄

+Œ

≠Œ

‰Õ(ÊÕ)
ÊÕ ≠ Ê

(1.75)

which connect the imaginary and the real parts of the response function ‰. We can re-write
1.74 and 1.75 multiplying both equations at the numerator and denominator by (ÊÕ + Ê),
and using the symmetric properties of the linear response function that are shown in 1.62
and 1.63 we get

‰Õ(Ê) = 2
fi

P
⁄ Œ

0

‰ÕÕ(ÊÕ)ÊÕ

ÊÕ2 ≠ Ê2

(1.76)

‰ÕÕ(Ê) = ≠2Ê

fi
P

⁄ Œ

0

‰Õ(ÊÕ)
ÊÕ2 ≠ Ê2

. (1.77)
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Non-Interacting and Interacting Response Function

Thanks to these relations the real/imaginary part of the linear response can be calculated
from the imaginary/real part of the linear response. Usually, it is easier to compute the
imaginary part and then obtain the real part using 1.76 rather than the other way around
due to the structure of the function.

1.3.5 Non-Interacting and Interacting Response Function
So far we have dealt with the generic concept of the linear response function. Our goal is
to find the linear response function ‰ for a system of interacting electrons. In practice, in
order to do so, it is convenient to define the so-called non-interacting response function
‰

0

(see appendix A for derivation),

‰
0

(r, rÕ, Ê) = ”n[Veff ](r, Ê)
”Veff (rÕ, Ê)

----
V

eff

[n0]

=
ÿ

n,m

(fm ≠ fn)Âú
m(r)Ân(r)Âú

n(rÕ)Âm(rÕ)
Ê ≠ Emn + i÷

.

(1.78)

Here Âm are the one-particle KS orbitals, Emn is the energy di�erence between the KS
states m and n, i.e. Emn = Em ≠ En. The ÷ constant represents the Half-Width at Half-
Maximum (HWHM) of the Lorentzian peak described by Equation 1.81 and it is the inverse
of the excitation lifetime.45 The occupations of KS levels fm are typically given by the the
Fermi-Dirac (F-D) distribution multiplied by 2, where the 2 arises from spin degeneracy,
which is assumed throughout this thesis.(1) At zero temperature fm can be either 0
or 2. As discussed in the foundations of TDDFT (see section 1.2.2) the non-interacting
response function ‰

0

describes a system of independent particles that generates the same
density ”n as the “real” system constituted of interacting particles, under the e�ects of an
e�ective perturbing potential ”Veff defined in Eq. 1.52, i.e. n[Vext] and Veff [n[Vext]].16

The induced density is

”n(r, Ê) =
⁄

‰
0

(r, rÕ, Ê)”Veff dr . (1.79)

The electron-electron interactions are included in the KS scheme by means of the potential
Veff . Furthermore, from 1.78 we can easily obtain the real ‰Õ

0

and the imaginary ‰ÕÕ
0

part
of the non-interacting response function,

‰Õ
0

(r, rÕ, Ê) =
ÿ

n,m

(fm ≠ fn)Âú
m(r)Ân(r)Âú

n(rÕ)Âm(rÕ) Ê ≠ Emn

(Ê ≠ Emn)2 + ÷2

(1.80)

‰ÕÕ
0

(r, rÕ, Ê) = ≠
ÿ

n,m

(fm ≠ fn)Âú
m(r)Ân(r)Âú

n(rÕ)Âm(rÕ) ÷

(Ê ≠ Emn)2 + ÷2

. (1.81)

We can relate the interacting response (Eq. 1.58) with non-interacting response func-
tion (Eq. 1.78) using the chain rule for variational derivatives and the definition of KS
e�ective potential (Eq. 1.52). Following the procedure from the paper by Petersilka,

(1)The Fermi-Dirac distribution function is 1
1+e(‘

m

≠µ)/kT

, where µ is the chemical potential, k is
Boltzmann constant and T is the temperature.
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Gossmann and Gross16 we get the Dyson-like equation

‰(r, rÕ, Ê) =
⁄

”n(r, Ê)
”Veff (rÕÕ, Ê)

”Veff (rÕÕ, Ê)
”Vext(rÕ, Ê)

----
V

ext

[n0]

drÕÕ

=
⁄

‰
0

(r, rÕ, Ê)
3

”Vext(rÕÕ, Ê)
”Vext(rÕ, Ê) + ”VH(rÕÕ, Ê)

”Vext(rÕ, Ê) + ”Vxc(rÕÕ, Ê)
”Vext(rÕ, Ê)

4
drÕÕ

=‰
0

(r, rÕ, Ê)+
⁄⁄

‰
0

(r, rÕ, Ê)
3

”VH(rÕÕ, Ê)
”n(rÕÕÕ, Ê) + ”Vxc(rÕÕ, Ê)

”n(rÕÕÕ, Ê)

4
”n(rÕÕÕ, Ê)

”Vext(rÕ, Ê)drÕÕdrÕÕÕ

= ‰
0

(r, rÕ, Ê) +
⁄⁄

‰
0

(r, rÕÕ, Ê)fHxc(rÕÕ, rÕÕÕ, Ê)‰(rÕÕÕ, rÕ, Ê)drÕÕdrÕÕÕ .

(1.82)

Here the interaction kernel fHxc = fH +fxc is decomposed into the Hartree and exchange-
correlation kernels

fH(r, rÕ, Ê) = ”VH [n](r, Ê)
”n(rÕ, Ê) =

s
v(r, rÕÕ)n(rÕÕ, Ê)drÕÕ

”n(rÕ, Ê) = v(r, rÕ) (1.83)

fxc(r, rÕ, Ê) = ”Vxc[n](r, Ê)
”n(rÕ, Ê) , (1.84)

with v(r, rÕ) = 1/|r ≠ rÕ|.

1.3.6 Exchange-Correlation Potential and Kernel
When previously in section 1.2.2 we introduced the time-dependent KS equations we defined
a quantity called the e�ective potential (Veff , see Equation 1.52) that is a functional of the
density and it is formed by the Hartree (VH) potential and the exchange-correlation (Vxc)
potential plus the external potential (Vext). Electron-electron interactions and nuclear-
electron interactions are included in Veff (KS) potential.

When introducing the e�ective potential concept we omitted to mention that, in the
general case, Veff depends on the whole history of the density and on the initial interacting
and KS wavefunctions, Â

0,I and Â
0

, respectively,

Vxc[n, Â
0,I , Â

0

](r, t) = Veff [n, Â
0,I , Â

0

](r, t) ≠ Vext(r, t) ≠ VH [n](r, t) . (1.85)

However, for non-degenerate ground states in both interacting and non-interacting systems
the dependence on the wavefunctions drops due to the fact that the wavefunctions are
themselves functionals of the density.46 Runge-Gross theorems (section 1.2.1) ensure a
one-to-one correspondence between the time-dependent external potential and the time-
dependent density change, thus, if the analytic form of the functional Veff [n] was known,
we could, in principle, obtain an exact result for all the time-dependent problems with
Coulomb interactions.46 In particular, the exchange-correlation term Vxc[n] (see equation
1.53) is the problematic term and the real challenge. Thus, for practical purposes an
approximated form of Vxc[n] has to be used.

In linear response theory, as we have seen in Section 1.3.5, the kernel (fHxc) connects
‰

0

with ‰. In particular, in this section, we are interested in the exchange-correlation part
of the kernel (fxc), which is defined as the functional derivative of Veff [n] with respect to
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the density (Equation 1.84), The kernel is a functional only of the ground-state and it is
the linear term in the expansion of the potential in the time domain for a weak perturbing
field46

Vxc[n
0

+ ”n](r, t) = Vxc[n](r) +
⁄⁄

fxc[n
0

](r, rÕ, t ≠ tÕ)”n(rÕ, tÕ)drdtÕ . (1.86)

Physicists and chemists have tried to improve fxc over the years. The crudest ap-
proximation neglects completely the exchange-correlation term. Such approximation is
called Random Phase Approximation (RPA) and it only considers VH . The origin of this
name can be understood considering the equation of motion for the density operator, i.e.
d

dt n̂(t) = ≠i
#
Ĥ, n̂(t)

$
.47

A more complete functional is the Adiabatic Local Density Approximation (ALDA)
that is one of the most common and widely used approximations for fxc. In ALDA the
energy functional E is a functional only of the density at each instant of time. From the
energy is then possible to obtain the potential and kernel thanks to the following relations

Vxc(r) © ”Exc

”n(r) , (1.87)

fxc(r, rÕ) © ”Vxc(r)
”n(rÕ) . (1.88)

In ALDA the fxc kernel becomes local in space and time. The locality in space means that
the potential is a functional only of the density at each point in space. While the locality in
time ignores the dependence on past events, that is, Vxc is only a functional of the density
on time t and not on all previous times tÕ

V adiab
xc [n](t) = V adiab

xc [n(t)] . (1.89)

Thus, finally the ALDA kernel can be written in the time domain in the following form

fxc(r, rÕ, t ≠ tÕ) = ”(r ≠ rÕ)”V LDA
xc [n](t)
”n(rÕ, tÕ) ”(t ≠ tÕ) (1.90)

In the frequency domain fLDA
xc is a simple function depending on the spatial coordinate

r through the electron density n(r) and it is frequency independent. The assumption
of locality in time holds better if we consider a potential that varies slowly with time
(adiabatically).46 The space locality requirement works better for systems with very small
density gradients. In the frequency domain the Hartree-exchange-correlation (Hxc) kernel
becomes

fHxc(r, rÕ) = 1
|r ≠ rÕ| + fLDA

xc (r)”(r ≠ rÕ) . (1.91)

There are many LDA functionals. Some of the most common LDA functionals are the
Perdew-Zunger (PZ)48 and the Perdew-Wang-92 (PW92).49

A more advanced approximation for the potential and kernel is the so-called Generalized
Gradient Approximation (GGA), in which the energy functional depends upon the density
and its gradient in order to account for corrections coming from a spatial inhomogeneity
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of the electron density. Many di�erent functionals belonging to the GGA class have been
developed, some of the most commonly used are the Perdew-Burke-Ernzerhof (PBE),50

Revised Perdew-Burke-Ernzerhof (revPBE),51 Wu-Cohen (WC),52 Revised Perdew-Burke-
Ernzerhof (RPBE)53 and Perdew-Burke-Ernzerhof for solids (PBEsol).54

More advanced approximations include hybrid functionals and meta-GGAs. The for-
mer use an exact exchange functional combined with an approximated form of the correla-
tion term. This is often combined with a spatial cut-o� to decide when the exact-exchange
term sets in, and/or how this exchange interaction is screened. In meta-GGA, the energy
is a functional of the density, its gradient, the gradient of the gradient of the density and
of the kinetic energy.

Within GGA, the calculation of the KS potential is widely discussed in the literature,55–57

however, the TDDFT kernel 1.88 is less commonly discussed58,59 and more di�cult to
implement. In Section 2.3.3 the description of the theoretical implementation of a general
(LDA and GGA) potential and kernel adapted to our iterative TDDFT code is presented. In
this particular thesis, as we will specify in the result sections, at the DFT level both LDA-PZ
and GGA-PBE approximations have been used. However, for the TDDFT calculations we
have used the LDA-PZ kernel. In fact, the di�erences between LDA and GGA kernels for
the system discussed here is minimal as discussed in a recent publication.20

1.3.7 Non-Interacting and Interacting Polarizability
Since ‰

0

and ‰ have been defined we can look in detail at the observables that we can
calculate in TDDFT. In particular, we focus on the polarizability which, as shown in section
1.3.3, characterizes the energy absorption of the system as a function of the frequency of
the incoming external field. The polarizability connects the external electric field with the
induced dipole moment p = –E, where p is the dipole moment, E the electric field and –
the polarizability. The polarizability has the units of Bohr3 in atomic units and it measures
the tendency of a system to get polarized under the action of an external perturbing electric
field. In particular, in our microscopic system the polarizability in the frequency domain
is a complex number whose imaginary part is closely related to the imaginary part of the
linear response.

Dipole Approximation
The dipole approximation can be used whenever the external electric perturbing field Eext

does not vary significantly over the size of the system, i.e. we can assume homogeneous
electric field given by the electrical potential Vext = E

0

r. If we consider an external
oscillating field Eext(t) = E

0

cos(Êextt) then, we can write the electric potential in the
frequency domain as

Vext(r, Ê) = fiE0 · r[”(Ê ≠ Êext) + ”(Ê + Êext)] (1.92)

Thus, Equation 1.56 connecting the induced density with the external potential can be
written as

”n(r, Êext) = fiE
0

⁄
‰(r, rÕ, Êext)rÕdrÕ . (1.93)
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The far-field response is given by the polarizability tensor defined as

–ij(Ê) =
⁄⁄

rÕ
i‰(rÕ, r, Ê)rjdrdrÕ (1.94)

In Equation 1.94 we have introduced the vectorial components for the position vector, the
subscripts i and j indicate the directions of the external electric field and the direction
along which the dipole is calculated. The –ij tensor is symmetric and its elements are
complex numbers. The orientation-averaged polarizability is given by the 1/3 of the tensor
trace

– = 1
3

3ÿ

i=1

(–xx + –yy + –zz) . (1.95)

The average polarizability – becomes meaningful when we want to compare our results with
experimental results obtained for samples with randomly oriented molecules. In experiments
usually the optical cross section is the direct result of the measurement. Together with the
polarizability, we can define the optical cross section. The cross section is connected to the
polarizability by60,61

‡(Ê) = 4fi

c
Ê–(Ê) , (1.96)

where c is the speed of light.
As a simple approximation to 1.94 the so-called non-interacting polarizability –

0

can
be used. It is defined as

–0

ij =
⁄⁄

rÕ
i‰0

(rÕ, r, Ê)rjdrdrÕ . (1.97)

The interacting polarizability is calculated as in 1.94.

f -Sum Rule
The f -sum rule or Thomas-Reiche-Kuhn (TRK) sum rule allows us to connect the imaginary
part of the polarizability (cross section) with the total number of electrons in the calculation.
This is a useful check for optical calculations. Starting from the relation p̂ = i[Ĥ, r̂] and
the fact that

q
n |nÍ Èn| = 1 where |nÍ are all the eigenfunctions of Ĥ, we can write (see

appendix D.2)

≠i È0| [r̂, p̂] |0Í = Ne =
ÿ

n

2(Ên ≠ Ê
0

) | Èn| r̂ |0Í |2 , (1.98)

where Ne is the total number of electrons in the system. If we consider the single-particle
levels Âi then 1.98 becomes

ÿ

i,j

(fi ≠ fj)(Ei ≠ Ej)| ÈÂi| r̂ |ÂjÍ |2 = Ne . (1.99)
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If now we make use of Sokhotski–Plemelj theorem62 that states that

lim
÷æ0

⁄ 1
ÊÕ ≠ Ê + i÷

dÊ = P
⁄ 1

ÊÕ ≠ Ê
dÊ ≠ ifi”(ÊÕ ≠ Ê) , (1.100)

then we can write the polarizability as

–
0

(Ê) =
⁄

S(ÊÕ)
Ê ≠ ÊÕ + i÷

dÊÕ (1.101)

where the so-called spectral function S(ÊÕ) is defined as

S(ÊÕ) =
3ÿ

i

1
3

ÿ

nm

(fn ≠ fm)| ÈÂn| r̂i |ÂmÍ |2”(ÊÕ ≠ Enm) . (1.102)

Finally, we can write
⁄ Œ

0

Im{–
0

(Ê)}ÊdÊ = ≠fi

⁄ Œ

0

⁄
S(ÊÕ)”(Ê ≠ ÊÕ)dÊÕÊdÊ

= ≠fi

⁄ Œ

0

⁄ ÿ

nm

(fn ≠ fm)| ÈÂn| r̂ |ÂmÍ |2”(ÊÕ ≠ Enm)”(ÊÕ ≠ Ê)dÊÕÊdÊ

= ≠fi

3
ÿ

nm

(fn ≠ fm)| ÈÂn| r̂i |ÂmÍ |2Enm.

(1.103)

By comparing 1.99 and 1.103 we conclude
1
fi

⁄ Œ

0

Im{–
0

(Ê)}ÊdÊ = Ne. (1.104)

The f -sum rule provides an easy way to check if the spectrum area is in agreement with the
total number of electrons in the system. Although, here the f-sum rule has been derived
for a nonineracting system its validity is general and holds also for interacting systems.

Oscillator Strength
The oscillator strength is a dimensionless quantity that characterizes the transition intensity
between two states. It is defined as63

fnm = 1
3(fn ≠ fm)Ênm

3ÿ

i=1

| ÈÂn| ri |ÂmÍ |2 . (1.105)

It is possible to define the polarizability in terms of oscillator strengths

–(Ê) =
ÿ

n,m

⁄ 1
Ênm

fnm

Ê ≠ ÊÕ + i÷
dÊÕ . (1.106)

Using 1.105 and 1.104 the f -sum rule becomes simply
ÿ

n,m

fnm = Ne . (1.107)
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Finite Temperature
Most of the TDDFT calculations performed in this thesis the temperature is set to 0. For
non-metallic systems most of the time the temperature dependence can be omitted, i.e.
an electronic level is fully occupied or unoccupied. However, including a finite temperature
in the calculations can be important in certain circumstances, see chapter 4. Considering
a finite temperature allows to account for excitations from and to half-filled levels. In
particular, this is important for molecules with almost degenerate levels around the Fermi
energy. Practically, this consists of inserting a T ”= 0 in the Fermi-Dirac distribution. Thus,
the occupations fm become fractional and can vary from 0 to 2. In Fig. 1.5, the Fermi-
Dirac (F-D) distribution and KS eigenenergies are plotted for a system consisting of a big
graphene nanoflake with ≥1000 Carbon atoms, for T=300K. Including the temperature in
this particular case, as in most of the cases analyzed in this thesis, would lead to negligible
changes in the polarizability.
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Figure 1.5: The molecular levels of the flake C1014H90 are shown as red dots. In blue the
Fermi-Dirac (F-D) distribution is shown. An electron temperature of 300 K is assumed.

1.3.8 Density Change
Equation 1.56 describes the change in electron density due to the external time-dependent
perturbation. In the frequency domain the electron density change is a complex quantity.
The imaginary part is of particular interest because its spatial distribution indicates the parts
of a system that are responsible for the absorption at a given resonant-mode frequency,
see Section 1.3.3. Moreover, the combined information provided by the real and imaginary
parts can be used to describe the real-time evolution of the induced density in real space,
see chapter 1.3.9.

Plotting the density change pattern in real space can point to interesting qualitative
applications as it gives a visual idea about the contribution to the optical absorption of
di�erent parts of molecules or solids such as atomic-size necks (section 5.2.10), impurities,
absorbed atoms, molecule tailoring (section 3.7), dangling bond saturation (section 3.8),
edges (3.5), etc..

Throughout the thesis, in many occasions, the induced density in real-space is plotted
and analyzed in order to characterize or simply visualize a particular resonant mode. This
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tool is of particular interest for the identification of plasmons. As it will be shown the
density change is able to capture the expected pattern typical of collective excitations such
as plasmons and can help to determine the nature of an excitation.

1.3.9 Real Time Density Change
In the previous sections, we have introduced the induced density in the frequency domain
as a straightforward outcome of the linear response theory. The Fourier transform of ”n(Ê)
is

”n(r, t) = 1
2fi

⁄
+Œ

≠Œ
”n(r, Ê)eiÊtdÊ (1.108)

If we consider an external perturbing electric field such as E = E
0

cos(Êt) and making use
of 1.56 and 1.92 we can write

”n(r, t; Ê
0

) = E
0

2

⁄
‰(r, rÕ, Ê)rÕ[”(Ê ≠ Ê

0

) + ”(Ê + Ê
0

)]eiÊtdrÕdÊ

= E
0

#
”nÕ(r, Ê

0

)cos(Ê
0

t) ≠ ”nÕÕ(r, Ê
0

)sin(Ê
0

t)
$

,
(1.109)

where we use the symmetry relations of the real ”nÕ and imaginary ”nÕÕ parts of the density
change, see Section 1.3.1. The indices in n(r, t; Ê

0

) indicate that the density change is a
function of time given a perturbing field of frequency Ê

0

.
The real and imaginary parts of the density change in the frequency domain are (see

Equations 1.80 and 1.81)

”nÕ(Ê) Ã Ê ≠ Ê
0

(Ê ≠ Ê
0

)2 + ÷2

(1.110)

”nÕÕ(Ê) Ã ÷

(Ê ≠ Ê
0

)2 + ÷2

, (1.111)

where Ê
0

corresponds to one of the resonant frequencies of the system. The plots in Fig.
1.6 show the behavior of the real and imaginary parts of the polarizability which in the
frequency domain is the same as the one described by the Equations 1.110 and 1.111.
In particular, Fig. 1.6(a) pictures a system presenting a single excitation while 1.6(b)
represents a three resonance system. When the excitation is isolated (Fig. 1.6(a)) the
imaginary part always shows a maximum when the real part crosses the x-axis. Following
1.109, this leads to a real-time density change that at the resonant frequency is described
exclusively by the imaginary part and, thus, it is out of phase with respect to the exciting
perturbation. However, see Fig 1.6(b), when the resonances are overlapping, depending
on their width, it is possible for the real part to have a value di�erent from 0 at the
resonant frequency (green dotted vertical line). This leads to a more complex density-
change-pattern oscillation in real time, where the overall oscillation does not just follow
the imaginary density change pattern at resonance. In this case, following 1.109, we find
a real part that oscillates in phase with the external perturbing field. An example is shown
in section 5.3. The real part oscillates in phase with the external perturbation while, the
imaginary part is delayed, oscillating out of phase with respect to the electric field.
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Figure 1.6: Example of the real and imaginary polarizability in the frequency domain. (a)
single-resonance system. (b) multi-resonance system.

1.3.10 Electric Current
The electric density change discussed above is intimately connected to the electron current.
In fact, we can compute (calculate) the total charge inside a given volume � as ”Q(r, t) =s

�

”n(r, t)dr and the current flowing through the surface S defining the volume � as I =
dQ/dt. Using the continuity equation the current can be calculated as the surface integral
of the current density flowing through the boundaries of the volume �, i.e. dQ/dt =

s
S j·ds.

Averaged and maximal currents both involve the real and the imaginary parts of the total
charge Q(Ê):

IRMS(Ê
0

) = Ê
0Ô
2


”QÕ(Ê

0

)2 + ”QÕÕ(Ê
0

)2 (1.112)

|Imax(Ê
0

)| = Ê
0


”QÕ(Ê

0

)2 + ”QÕÕ(Ê
0

)2 . (1.113)

IRMS is the Root Mean Square value (RMS) of I while |Imax(Ê
0

)| is the modulus of the
maximal current. The details of the derivation of Equations 1.112 and 1.113 are presented
in Appendix E.

The two quantities are related by
Ô

2 factor, i.e. IRMS = |I
max

|Ô
2

. The choice of the
integration volume � determines a plane through which the flowing current is calculated.
By defining the volume � < �tot where �tot is the total volume of the box/cell where
the molecule is placed we consequently define a plane between the two volumes � and �Õ,
where �Õ = �tot ≠ �. see Fig. 1.7. The current calculated with this method describes the
amount of charge displaced from the volume � to the volume �Õ and vice versa.
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Ω'

Ω

Figure 1.7: The volume � can be specially chosen. For instance, defining the volume
semi-infinite and limited with a plane at a given orientation, we can compute the current
through this plane The calculated current corresponds to the current flowing through the
plane dividing � by �Õ.

This method is particularly useful when we want to calculate the time-dependent current
passing through molecular junctions using a finite model for the electrodes or between
acceptors and donors in molecules or again to calculate the amount of charge transfer. In
sections 5.2.9 and 5.2.7 this method is applied to calculate the current flowing through an
atomic-size neck connecting two metallic nanoparticles at the plasmonic resonance.

1.3.11 Casida’s Equation
Another approach, that I implemented in the MBPT-LCAO code, used to obtain the optical
cross section for a system within the TDDFT framework makes use of the so-called Casida’s
equation,64 (the full derivation can be found in Appendix J)

�FI = Ê2

I FI . (1.114)

This kind of approach consists in solving the eigenvalue Equation 1.114 to obtain the optical
spectrum of the system. The method presented previously in Section 1.3.5, in which we
calculated the polarizability –(Ê) from ‰

0

without computing explicitly ‰, does not provide
any information about the eigenstates of the modes of the perturbed system. Furthermore,
the modes with an even nature (dark modes) are not visible in the polarizability/cross
section spectrum and so cannot be analyzed. It is, in fact, not possible to detect any mode
corresponding to an even distribution of induced density with respect to the direction where
the dipole is calculated. Such modes correspond to optically forbidden transitions. With
the Casida approach we can calculate all the excitations of the system, including the dark
ones. Moreover, we can calculate the eigenvectors of each mode in the KS electron-hole
space. The resulting information can be used, to analyze the nature of the di�erent modes,
see chapter 6.

In Eq. 1.114, FI are the eigenvectors of the system and ÊI represent the energy of the
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modes. The matrix � is defined as

�EF,EÕF Õ = ”EF,EÕF Õ(‘E ≠ ‘F )2

+ 2


(fE ≠ fF )(‘F ≠ ‘E)fHxc

Ò
(f Õ

E ≠ f Õ
F )(‘F Õ ≠ ‘EÕ) .

(1.115)

The indexes E and F label the occupied and unoccupied states respectively. ÊE and ÊF

are the energies of occupied and unoccupied states respectively. fE and fF are the Fermi-
Dirac distributions for occupied and unoccupied levels respectively. When the temperature
is taken to be 0 then f becomes the Heaviside function, see Section 1.3.7. fHxc is the
kernel as introduced in Equation 1.91.

For a system of non-interacting particles the � matrix becomes diagonal and the ele-
ments of the diagonal are the squared energy di�erence of the KS states, i.e. (ÊE ≠ ÊF )2.
Once the eigenvalues ÊI and eigenvectors FI are found via matrix diagonalization, the
cross section can be calculated as

‡(Ê) =
ÿ

I

fI

5
÷

(Ê ≠ ÊI)2 + ÷2

≠ ÷

(Ê + ÊI)2 + ÷2

6
(1.116)

where the oscillator strengths fI are given by

fI = 2
3

3ÿ

i=1

----d
EF
i

ÂS≠1/2

EF,EÕF ÕF EÕF Õ

I

----
2

, (1.117)

with

ÂS≠1/2

EF,EÕF Õ =
3

”EF,EÕF Õ
Ô

‘F ≠ ‘E

4

EF,EÕF Õ
. (1.118)

The dipole, d EF , is given by

d EF
i =

⁄
ÂEú(r)ÂF (r)ridr (1.119)

and
ÿ

EF

d EF
i cI,EF =

ÿ

EF

cI,EF ÈÂE | r |ÂF Í = ÈÂI | r |ÂIÍ , (1.120)

where |ÂIÍ are the natural orbitals. cI,EF are the transition matrix elements defined as

cI,EF =
ÿ

EÕF Õ

ÂS≠1/2

EF,EÕF ÕF EÕF Õ

I . (1.121)

From the matrix elements cI,EF we can extract important information regarding the com-
position of each interacting mode in terms of Kohn-Sham wave functions |ÂÍ participating
in the transition.
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1.3.12 TDDFT Momentum Transfer
The transition matrix elements defined in 1.121 can be used to defined the interacting
transition density „I(r) as

„I(r) =
ÿ

EF

cI,EF ÂE(r)ÂF (r) . (1.122)

The quantity „I(r) contains information about the momentum transfer during the excita-
tion. In order to find the corresponding quantity in momentum space „I(qi) a Fast Fourier
Transform (FFT) has to be performed, see Appendix G. „I(qi) is a discrete quantity and
the fineness of the grid in momentum space is (qi ≠ qi+1

). The function „I(qi) has a
complex behavior with nonzero value for many di�erent values of qi, therefore, it is not
possible to have a single wave of momentum q contributing to „I(r). However, in Chap-
ter 6 we show that it is possible to assign for a particular finite system a wavevector to
each „I(r). The assignment is done by selecting the qi that contributes the most in the
momentum domain. The results of such an analysis on a sodium chain system are shown
in Chapter 6.

1.3.13 Electron Energy Loss Spectroscopy
It is interesting to note that it is possible to analyze electron transitions and extract infor-
mation about the momentum transfer from the TDDFT linear response theory developed
in section 1.2.65

Fluctuation-Dissipation Theorem
The dynamical structural factor66–68 is defined as, see appendix I,

S(q, Ê) = 1
2fi

⁄
Ènq(t)n†

q(0)Í e≠iÊtdt = Z≠1

ÿ

mn

e≠—E
m | ÈÂn| n†

q |ÂmÍ |2”(Ê + Ênm) ,

(1.123)

where Z is the partition function, i.e. Z =
q

i e≠—E
i , with — = 1/KBT . If we invert the

indexes we get68

S(q, Ê) = Z≠1

ÿ

mn

e≠—E
n | ÈÂm| n†

q |ÂnÍ |2”(Ê + Êmn) (1.124)

= Z≠1

ÿ

mn

e≠—E
n | ÈÂn| nq |ÂmÍ |2”(Ê ≠ Ênm) (1.125)

= Z≠1

ÿ

mn

e≠—E
ne+—E

me≠—E
m | ÈÂn| nq |ÂmÍ |2”(Ê ≠ Ênm) (1.126)

= e≠—ÊS(≠q, ≠Ê). (1.127)

Because S(≠q, ≠Ê) = S(q, ≠Ê) we can write the

S(q, Ê) = e≠—ÊS(q, ≠Ê). (1.128)
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which is a way of expressing the detailed balance principle. The detailed balance principle
at thermal equilibrium describes the dynamics of a two-state system and regulate a process
and its inverse. The probability of a given process PA is equal to the probability of the
inverse process P≠1

A .69

Linear Response and Dynamical Structural Factor
Using 1.123 and 1.128 we can then connect the dynamical structural factor with the
imaginary part of the linear response function in the momentum domain, see Appendix H,

Im
)

‰(q, Ê)
*

= Im
; ÿ

n

| È
#
nq(t)n†

q(0)
$
Í
<

= ≠fiZ≠1

ÿ

mn

| ÈÂn| n†
q |ÂmÍ |2

#
”(Ê ≠ Ênm) ≠ ”(Ê + Ênm)

$

= ≠fi[1 ≠ e≠—Ê]S(q, Ê)

(1.129)

In 1.130 we used the linear response function ‰ as in equation A.19 in momentum space,
i.e. ‰(q) =

q
n | ÈÂn| n†

q |Â
0

Í |2. For the temperature T æ 0 we obtain,

≠ 1
fi

Im
)

‰(q, Ê)
*

= S(q, Ê), (1.130)

the fluctuation-dissipation theorem. This theorem connects the fluctuations in thermal
equilibrium described by the dynamical structural factor (S) and the dissipated system
energy which is described by the imaginary part of the response function (‰.) The response
of the system to a small perturbation is equal to the response of the system to statistical
fluctuations at the thermal equilibrium.

1.4 Plasmons
A plasmon can be pictured as a collective electronic oscillation inside a metal. The electrons
in the metal are considered free to move and oscillate in response to an external electric
stimulus. Eventually, if the frequency of the external field matches the plasmon frequency
of the system, a self-sustained mode called plasmon is generated. In our ab-initio approach,
we would like to go even further, and define more precisely what “collective” means and how
plasmon modes could be distinguished from other types of excitations even for small (nano)
objects. In the next sections we are going to have a look at the microscopic approach to
try to find a definition of plasmons in ab-initio TDDFT.

1.4.1 Dielectric Function
In this section we discuss the plasmon dispersion in solids. In order to do so, first, it is
convenient to define the microscopic dielectric function ‘. The dielectric function connects
the e�ective electric potential Vtot – total electric potential – with the external electric
potential Vext.

When subjected to an external scalar potential, an induced density ”n(r, Ê) is created
in the media. The response function connects the external perturbing potential and the
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density change, ”n(r, Ê) =
s

‰(r, rÕ, Ê)Vext(rÕ, Ê)drÕ, and the poles of ‰ correspond to
the electronic excitations of the system. In turn, the created induced density generates an
electric field opposed to the external one and, the corresponding induced potential can be
approximated by

Vind(r, Ê) =
⁄

v(r, rÕ)”n(rÕ, Ê)drÕ. (1.131)

where v(r, rÕ) = fH = 1/|r ≠ rÕ|. Here, for convenience, we restrict ourselves to the
Random Phase Approximation (RPA), i.e. we consider only the Hartree term in the kernel,
see Section 1.3.6. Thus, we can define the e�ective potential as the sum of the external
and the induced potential (Eq. 1.52)

Vtot(r, Ê) = Vext(r, Ê) + Vind(r, Ê) . (1.132)

By combining the equations 1.131, 1.132 and 1.79 we obtain

Vext(r, Ê) = Vtot(r, Ê) ≠
⁄

v(r ≠ rÕ)
⁄

‰
0

(rÕ, rÕÕ, Ê)Vtot(rÕÕ, Ê)drÕdrÕÕ (1.133)

=
⁄ 3

”(r ≠ rÕÕ) ≠
⁄

v(r ≠ rÕ)‰
0

(rÕ, rÕÕ, Ê)drÕ
4

Vtot(rÕÕ, Ê)drÕÕ. (1.134)

The quantity connecting the total potential with the external potential is called dielectric
function

‘(r, rÕ, Ê) = ”(r ≠ rÕ) ≠
⁄

fH(r ≠ rÕÕ)‰
0

(rÕÕ, rÕ, Ê)drÕÕ . (1.135)

In order to understand the origin of resonant frequencies in the interacting absorption
spectrum, we have to relate the non-interacting response function with the interacting
response function in a convenient way. To do so we can write

”n(r, Ê) =
⁄

‰(r, rÕ)Vext(rÕ, Ê)drÕ =
⁄ ⁄

‰(r, rÕ)‘(rÕ, rÕÕ, Ê)Vtot(rÕÕ, Ê)drÕÕdrÕ

=
⁄

‰
0

(r, rÕ)Vtot(rÕ, Ê)drÕ
(1.136)

which leads to

‰
0

(r, rÕ, Ê) =
⁄

‰(r, rÕÕ, Ê)‘(rÕÕ, rÕ, Ê)drÕÕ . (1.137)

Defining the inverse dielectric function ‘≠1 as
⁄

‘≠1(r, rÕÕ, Ê)‘(rÕÕ, rÕ, Ê)drÕÕ = ”(rÕ ≠ r) (1.138)

finally, we obtain

‰(r, rÕ, Ê) =
⁄

‰
0

(r, rÕÕ)‘≠1(rÕÕ, rÕ, Ê)drÕÕ. (1.139)
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The excitation energies in the interacting spectrum are the poles of the interacting linear
response ‰. Equation 1.139 shows that these poles can originate from poles in the non-
interacting response function ‰

0

or from the zeros of the dielectric function ‘. At this point
it is tempting to think that the zeros in the dielectric function are related to plasmonic modes
while, peaks in ‰ that are originating from ‰

0

can be connected to single e-h excitations.
The “new” peaks in the spectrum arising from the zeros of the dielectric function are
due to electron-electron Coulomb interactions that describe the interacting electrons in
the external electric field. However, ‘ itself depends on ‰

0

so that even when we hit the
frequency of a pole of ‰

0

, the related pole in ‰ will undergo a small shift compared to
the initial non-interacting resonant frequency.26 Moreover, if a zero of ‘ is found for a
frequency really close to a pole of ‰

0

then the two excitation types mix if they have the
same symmetry.26 However, this way of describing and analysing the di�erent nature of the
absorption modes seems to be not completely appropriate. First of all, we assumed to be in
the RPA and so we discarded the exchange-correlation term in the kernel defining ‰ from
‰

0

. However, even when using RPA the nature of the peak cannot be easily understood
in terms of the relative shift of the peaks with respect to the non-interacting peaks as we
shall see in chapter 6. Moreover, the information contained in the dielectric function goes
beyond the plasmonic character of the excitations. Excitons or charge-transfer excitations
can give rise to zeros in the dielectric function.

1.4.2 Free Electron Gas
If we consider a 3D gas made of non-interacting particles the Hamiltonian of the system is
given by the kinetic energy

≠Ò2

2 „k(r, Ê) = E„k(r, Ê). (1.140)

The single-particle state becomes

„k(r, Ê) = 1Ô
V

eik·r (1.141)

E(k) = k2

2 , (1.142)

where k is a good quantum number due to the system translational invariance. In such a
system an external excitation can promote an electron from below the Fermi energy (EF )
to above EF . Given 1.142 we can write the di�erence in energy between levels as

�E(k, q) = E(k + q) ≠ E(k) = (k + q)2

2 ≠ k2

2 (1.143)

= k2 + q2 + 2k · q
2 ≠ (k)2

2 = q2

2 + k · q. (1.144)

The defining conditions for electron-hole excitations are |k| Æ |k
F

| and |k + q| Ø |k
F

|.
With this boundary conditions the range of energy allowed becomes,

�E(q) Æ k
F

q + q2

2

�E(q) Ø ≠k
F

q + q2

2 if q Ø 2k
F

(1.145)
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Starting from the definition of the non-interacting dielectric function and using the relation
1.135 with the Hartree kernel it can be shown that that condition the dielectric function
to vanish is

Ê2

p(q) = 4fin
0

+ 3
5k2

F q2 , (1.146)

where Êp is the plasmon frequency of the electron gas, n
0

is the initial density, kF is the
Fermi wavevector and q is the momentum change. When the momentum transferred q = 0
then from 1.146 we obtain the standard classical formula for the plasma frequency, in SI
units

Ê2

plasma = 4fie2n
0

m
. (1.147)

Graphically the results are shown in fig. 1.8,
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Figure 1.8: Dispersion relation for electron excitations of the 3D free electron gas. Allowed
e-h excitations are represented with red filling, and the solid blue curve represents the
plasmon.

The plasmon is clearly visible where no e-h excitations are allowed. Once plasmon and
e-h excitations coexist for a given momentum and energy, then they mix and it is di�cult
to distinguish unambiguously between the two.

The same type of analysis for a 1D system leads to26

Ê2

p(q) = 4
fi

kF K
0

(lq)q2 + v2

F q2 , (1.148)

where K is the zeroth modified Bessel function of second kind and l is a length parameter
modeling the width of the wire.26 An example of a 1D electron gas is given in chapter 6.
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01000100 01101111 00100000 01100101 01101100 
01100101 01100011 01110100 01110010 01101111 
01101110 01110011 00100000 01101000 01100001 
01110110 01100101 00100000 01101101 01100001 
01110011 01110011 00111111 00100000 01001001 
00100000 01100100 01101001 01100100 01101110 
00100111 01110100 00100000 01100101 01110110 
01100101 01101110 00100000 01101011 01101110 
01101111 01110111 00100000 01110100 01101000 
01100101 01111001 00100000 01110111 01100101 
01110010 01100101 00100000 01100011 01100001 
01110100 01101000 01101111 01101100 01101001

2.1 Density Functional Theory
For this work the MBPT-LCAO (Many Body Perturbation Theory with Linear Combina-
tion Atomic Orbitals)17,18,20 code in conjunction with the SIESTA (Spanish Initiative for
Electronic Simulations with Thousands of Atoms)6,7 code have been employed. SIESTA is
a GPL (General Public Licence) DFT package. It is used for calculating the ground-state
properties for periodic and finite systems: energy-momentum dispersion bands for periodic
systems, energy of electronic levels in molecules, total energy of the system, equilibrium ge-
ometry, etc. Whilst, the TDDFT calculations are performed using the MBPT-LCAO code.
MBPT-LCAO is a non-commercialized code, and it can be viewed as a branch of the code
FAST, developed within the NOSSI project funded by the French research agency ANR.
MBPT-LCAO has been developed further mainly in San Sebastian - Donostia and used in
several national and international projects: ORGAVOLT(1) ANR (France), SFB1083 (Ger-
many, Spain), two projects funded by MINECO (Superhybrid 2014-2016, FUNMOLDEV
2017-2019) (Spain), PAMS (FET-EU project, 8 partners from all over europe). The code is
composed of three blocks: GW approximation (GWA) block, Bethe-Salpeter (BSE) block
and the TDDFT block. Although the basic idea foresees the use of the code in conjunction
with SIESTA, by applying many-body perturbation theory, the code enables to calculate the

(1)ORGAVOLT is an international project involving groups from Spain and France focused on deriving
and implementing a software for modeling organic solar cells, and funded by the French Research Agency
under the ANR project.
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corrected band gap, excitation energies, induced density, induced potential field, induced
current, etc. in finite and extended atomistic systems. For this thesis in particular, I worked
with the TDDFT block of the code, which have been used to calculate the polarizability,
the optical cross-section, the density change and the induced current in di�erent finite sys-
tems and molecules. The linear response theory is implemented in MBPT-LCAO using an
iterative approach17 and the so-called Casida’s approach.64 The details regarding the two
implemented methods, as well as some other features characterizing the two approaches,
are discussed throughout this chapter in the next sections.

2.2 SIESTA
SIESTA is a method and a computing code started at the end of the ’90s inspired by the
ab-initio Tight-Binding (TB) technique developed by Sankey and Niklewski70 became a
popular ab-initio code for electronic structure calculations. It is an ab-initio DFT code
designed in order to perform electronic ground-state calculations for periodic and finite
systems. The use of localized basis sets and linear-scaling algorithms provides the user
with a highly e�cient code for electronic structure and molecular dynamics simulations.71

Until recently, SIESTA was distributed free of charge to academic users. Starting with
version 4.0 in spring 2016 the SIESTA package became GPL (General Public Licence) and
also adopted a modern approach for developing of open-source software.72

In this section, as an introduction to the code, we will show two examples of SIESTA
input files and explain the di�erent lines in them. Moreover, two of the most important
parameters that can be tuned in the input file will be discussed more in detail,

• Basis Set Multiplicity (2.2.2)

• Energy Shift (2.2.3)

Although the main goal of the thesis is the calculation and study of the optical properties,
quality of the ground-state SIESTA calculations are of fundamental importance as it is
shown in the following chapters. the chapters where the results will be presented. Thus, a
convergence study of the ground-state calculations has to be performed in order to obtain
reliable optical spectra. In particular, in Section 3.2 a convergence study is presented in
detail for the case of graphene flakes.

2.2.1 SIESTA Input File
In the following section we will describe the most important parameters to set up for a
calculation in the SIESTA input file. SIESTA uses its own Flexible Data Format (FDF) to
define the physical and calculation parameters of the atomistic systems. In Appendix K,
we show two examples of .fdf input files provided with comments. Prescriptions for the dis-
cussed options and many others, can be found in the SIESTA manual.73 In particular, in the
following sections we will describe in more detail the meaning of the PAO.BasisSet (2.2.2)
and PAO.EnergyShift (2.2.3) parameters. Moreover, the di�erent e�ects of PAO.BasisSet
and PAO.EnergyShift parameters are studied in detail in Sections 3.2.1 and 3.2.2.
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2.2.2 Basis Set Multiplicity
SIESTA uses LCAO (Linear Combinations of Atomic Orbitals) for constructing molecular
orbitals (Ân),7

Ân(r) =
ÿ

a

Xn
a fa(r) . (2.1)

The expansion coe�cients Xa
n are determined in a diagonalization procedure. The atomic

orbitals fa(r) are given by a product of radial functions and spherical harmonics. The
eigenfunctions in (2.1) are obtained within DFT.6,74 The size of the basis, i.e. the number
of orbitals per atom included in the calculation can be tuned by the user. However, to
facilitate the use, a parameter sets the number of AO (Atomic Orbital) generated by the
program. Di�erent types of basis sets can be easily chosen by the user: Single-’ (SZ),
Double-’ (DZ), Triple-’ (TZ), Single-’ Polarized (SZP) basis sets, Double-’ Polarized
(DZP) basis sets, Triple-’ Polarized (TZP) basis sets, Triple-’ Double-Polarized (TZDP)
basis sets. However, there is the possibility for the user to define and add manually ad-hoc
orbitals.

The SZ basis set is the minimal basis set available. It has one single radial function
per angular momentum channel, i.e. carbon atom’s valence orbitals 2s2p is described by
4 functions, 1 for the s-type orbital and 3 for the p-type orbitals. By adding a second
function per channel the DZ basis set is obtained, in this case a carbon atom is described
with 8 atomic functions. The default basis set in SIESTA is the DZP basis set, which
adds polarization orbitals, i.e. orbitals with a higher angular momentum component. For
instance, in case of the carbon atom described by a DZP basis 5 d-type extra-orbitals
are added to the DZ basis set. Thus, valence electrons are described with a total of 13
functions per carbon atom when using the DZP basis set.

As we add orbitals, the basis set becomes more accurate. A larger basis set is usually
providing a more accurate, reliable result. A more complete basis set is in principle a more
precise basis set and is able to provide more reliable results. Furthermore, the choice of the
basis set is related to the range of energy that we are interested in. In order to describe
properly high-energy absorption-spectrum features a more complete set is needed, as shown
in Section 3.2.1.

2.2.3 Energy Shift
PAOs in SIESTA are generated by imposing a cuto� radius beyond which the orbitals are
set to 0. Such orbital confinement is controlled by the PAO.EnergyShift parameter rather
than by the value of the cuto� radius itself. Solving the radial part of the Schödinger
equation by adding an energy shift to the energy is equivalent to define a spherical box
with infinite walls, the wavefunction is defined to be zero outside that sphere.6 Usually,
a common energy shift is fixed for all the chemical species avoiding the task to define
di�erent cuto� radii for di�erent atoms and di�erent angular momenta. The energy shift
is given in units of Ry or meV and the default value is 0.02 Ry. The higher is the energy
shift value the more contracted are the generated orbitals. Obviously, the extension of the
orbitals a�ects the outcome of the calculation. More extended orbitals (small energy shift)
provide in principle more accurate results however, it is more computationally costly. Thus,
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it is important to perform convergence studies in order to make sure reasonable values of
the PAO.EnergyShift parameter are used. A convergence study for graphene nanoflakes is
presented in Section 3.2.2.

In Fig. 2.1(a) we show 2p carbon orbitals generated using an energyshift of 50 meV
and 100 meV. In Fig. 2.1(b) the same comparison is done for the polarization orbital with
d-symmetry.
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�
(r
)

r (Å)

50 meV, C-2p-1
100 meV, C-2p-1

(a)
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50 meV, C pol. orb.
100 meV, C pol. orb.

(b)

Figure 2.1: The e�ect of the energy shift parameter on the shape of the radial orbitals.
Smaller energy shift leads to more extended orbitals.

2.3 MBPT-LCAO
Details about the MBPT-LCAO code can be found at http://mbpt-domiprod.wikidot.com
and in the papers by P. Koval et al.,17,18,20 where the methodology employed in the code
is carefully explained.

GWA block, Bethe-Salpeter (BS) block and TDDFT block. The flexibility of the code
structure allows the user to use each block independently. In particular, it is worth to notice
that all electron calculations can be performed, although the code was designed to work
in conjunction with the SIESTA code. In the later case, SIESTA calculations provide the
input data that are used as starting point to perform �SCF, GWA or TDDFT calculations.
In the following sections we present a detailed description of the most important features
of the code.

2.3.1 Product Basis
MBPT-LCAO makes use of an ad-hoc basis set constructed inside the code to represent
the products of atomic orbitals. The eigenstates entering the response function (1.78) are
expressed using a Local Combination Atomic Orbitals (LCAO). Using an LCAO ansatz (Eq.
2.1) in expression 1.78 for the non-interacting response function, we arrive to expressions
similar to that in 2.2. Unfortunately, a product of two atomic functions is generally not
another atomic function and we need an additional basis set to express the response func-
tions. This situation is di�erent in using other basis sets as PW or real space grids. In

43

http://mbpt-domiprod.wikidot.com


Product Basis

this case, it is frequently possible to express the product of two functions using the same
expansion (PW cut-o�) as used for the original functions. In Equation 1.78 for the linear
response of a non-interacting system, the product of eigenfunctions Âú

nÂm leads to a sum
of products of atomic orbitals fú

a fb,

Âú
m(r)Ân(r) =

ÿ

ab

Xm
b Xn

a f bú(r)fa(r) . (2.2)

In order to express the product Âú
m(r)Ân(r) is useful to introduce a set of basis functions

capable to span the space of atomic-orbital products. The set has to be as small as possible
and contain preferably localized functions. There are several options to construct such set
of functions, hereafter product basis.20 The most widely known is probably the auxiliary
functions for Gaussian basis sets.75,76 However, the SIESTA method is based on the so-
called Numerical Atomic Orbitals (NAO), that can be more flexible and economic than
Gaussian basis sets. There are methods to construct the product basis sets for numerical
orbitals.77,78 In our MBPT-LCAO code we use the so-called dominant products.79,80 The
dominant product basis can be very accurate but requires a large number of functions
that becomes prohibitive for large systems. Precisely for this reason, we have recently
implemented the so-called atom-centered basis set. This is a more economical basis set as
compared to the dominant products basis set and it increases the range of applicability and
e�ciency of the code without losing accuracy.

Dominant Products
The dominant products basis set80 is formed by atomic-centered functions, local products,
and by functions that are centered at the midpoint between the two atoms that form each
pair, bilocal products. By construction the set of products of the orbitals belonging to two
atoms contains collinear or nearly collinear elements, thus, a proper strategy consists in
identifying the “dominant products” as special linear combinations in the space of products
of orbitals such that the linear dependencies are minimized. In detail, we define

fa(r)f b(r) =
ÿ

µ

V ab
µ F µ(r) (2.3)

F µ(r) =
ÿ

ab

�µ
abfa(r)f b(r) (2.4)

V≠1 = � , (2.5)

where F µ are the so-called dominant product while V ab
µ , the vertex matrix, connects the

“new” with the “old” basis set. The coe�cients �µ
ab are the elements of the eigenvectors

of the metric in the space of orbital products, here the metric is defined using the Coulomb
interaction,

gaÕbÕ

ab =
⁄

fa(r)f b(r) 1
|r ≠ rÕ|f

aÕ
(rÕ)f bÕ

(rÕ)drdrÕ. (2.6)

Those initial atomic-orbital products associated with the pairs (ab, aÕbÕ) that are orthogonal
with respect to the Coulomb metric will provides null elements gaÕbÕ

ab . The solution of the
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eigenvalue equation

gaÕbÕ

ab �µ
aÕ,bÕ = ⁄µ�µ

a,b (2.7)

allows us to identify the “most important” dominant products. In practice, the eigenvalues
⁄µ are used as indicators to determine the importance of a particular dominant product
F µ(r) to the completeness of the basis {F µ(r)}. By ignoring those eigenvectors corre-
spondent to ⁄µ lower that a chosen eigenvalue threshold we remove non-essential dominant
products. The procedure is applied to each atom-pair individually keeping the operation
count at O(N) scaling where N is the number of atoms in the system. A dominant prod-
uct index µ is connected to orbital indices a and b of one atom (local pairs) or two atoms
(bilocal pair) rather than to all orbital indices in the molecule. The dominant products
here described have been used in TDDFT, Hedin’s GW approximation and for solving the
Bethe-Salpeter equation.17,20–22,81

Atom-Centered Basis Set
The construction of dominant products has the important disadvantage of generating a
large number of functions. This disadvantage stems from the construction procedure which
is repeated independently for each atom pair. It is easy to see that the dominant prod-
ucts F µ(r) can strongly overlap because di�erent atom pairs can have the same or close
centers at which the products have their maximal values. This fact results in a redundant
description of the orbital products by the dominant product basis set when looking from
the perspective of the whole system. In order to correct for this, we use an ansatz for
the auxiliary basis set that is widely known in quantum chemistry,75,76 and also in more
“physics-oriented” proposals.77,78,82 The possibility to work with only atom-centered func-
tions allows to reduce the linear dependencies in a product basis set because atom centers
are separated from each other at least by a bonding distance, which prevents strong over-
laps of the resulting functions. The local dominant products, defined as the dominant
products obtained from the analysis of orbitals products belonging to the same atom, are
taken as the atomic-centered functions Aµ(r). We, thus make the expansion

fa(r)f b(r) = P ab
µ Aµ(r) . (2.8)

The procedure to find the new vertex P ab
µ is based on the proposal of drawing a sphere

around a given atom pair (a,b) with a radius corresponding to the maximal spatial ex-
tension of its orbital products, and consider all the atom centers within that sphere as
contributing to the expansion of products of orbitals in that atom pair. The vertex is
obtained as P ab

µ = T ab,‹ [v‹,µ]≠1 where T ab,‹ =
ss

fa(r)f b(r) 1

|r≠rÕ| A
‹(rÕ)drdrÕ and v‹,µ

is the Coulomb matrix element between the functions A‹(r) and Aµ(r), i.e. v‹,µ =ss
A‹(r) 1

|r≠rÕ| A
µ(rÕ)drdrÕ. Unfortunately, there is a limiting practical reason in using this

strategy, the number of non-zero vertex elements P ab
µ can be an order of magnitude big-

ger that the number of non-zero dominant products vertex elements V ab
µ . This is due to

distant bilocal atom pairs for which we have very few dominant products F µ(r) but many
atom-centered functions Aµ(r) contributing to such pairs.
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A better strategy consists in re-expressing the bilocal dominant products in terms of
functions centered on di�erent atom centers,

F µ(r) = cµ
‹ A‹(r) (2.9)

where

cµ
‹ = Mµ‹Õ

[v‹‹Õ
]≠1. (2.10)

Mµ‹Õ and v‹Õ‹ are the matrix elements of Coulomb operator,

Mµ‹Õ
=

⁄
F µ(r) 1

|r ≠ rÕ|A
‹Õ

(rÕ)drdrÕ (2.11)

v‹‹Õ
=

⁄
A‹(r) 1

|r ≠ rÕ|A
‹Õ

(rÕ)drdrÕ (2.12)

The number of atom centers included in the description of a bilocal dominant product is
defined by choosing those centers inside a sphere of a radius determined by the bilocal
product. The projection 2.9 is useful because it is computationally very fast to pass from
the dominant product set to the atom-centered product set and viceversa, depending on
the quantity that needs to be computed. Actually, we found that it is faster to apply the
non-interacting response in the basis of dominant products and, on the other hand, it is
faster to compute and easier to store the TDDFT kernel in the basis of atom-centered
functions.

2.3.2 Iterative Approach
We can write the non-interacting linear response 1.78 in terms of dominant products using
2.2 and 2.3

‰
0

(r) =
ÿ

µ,‹

F µ(r)‰0

µ‹(Ê)F ‹(rÕ) (2.13)

‰0

µ‹(Ê) =
ÿ

n,m
a,b
c,d

(fm ≠ fn)
!
Xm

a V ab
µ Xn

b

"!
Xn

c V cd
‹ Xm

d

"

Ê ≠ Emn + i÷
. (2.14)

If we assume the interacting response function to be written in the same fashion we can
write the Petersilka-Gossmann-Gross equation 1.82, in matrix form as

‰µ‹(Ê) = ‰0

µ‹(Ê) +
ÿ

µÕ‹Õ

‰0

µµÕ(Ê)fµÕ‹Õ

Hxc‰‹Õ‹(Ê) . (2.15)

or, suppressing the indices we obtain for the response matrix

‰ =
#
1≠ ‰0fHxc

$≠1

‰0 . (2.16)

Consequently, the polarizability tensor becomes

P = d
#
1≠ ‰0fHxc

$≠1

‰0d (2.17)
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where dµ
i =

s
F µ(r)ridr are the dipole moments of the product functions. Apart from

polarizability also the induced density ”n will be computed ”n(Ê) = [1≠‰0(Ê)f ]≠1‰0(Ê)d
so that

[1≠ ‰0(Ê)f ]”n(Ê) = ‰0(Ê)d. (2.18)

The GMRES Method
Instead of solving 2.18 by inverting [1 ≠ ‰0(Ê)f ] a Generalized Minimal RESidue (GM-
RES)83,84 method is used to calculate ”n. An iterative approach17 similar to the Arnoldi
method and optimized for providing directly the polarizability P rather than the density
change ”n(Ê) is adopted. GMRES belongs to the Krylov-type methods83,85 and it is used
to solve linear system of equations of the form AX̨ = b̨. In this method a Krylov-type basis
is iteratively constructed. Starting from the matrix-vector multiplication between A and a
trial initial vector |v

1

Í, it is possible to build up the subspace; after each iteration a new
vector is added to the Krylov space. The first vector |v

1

Í is chosen equal to |bÍ. The new
vectors are computed recursively and orthonormalized using the Gram-Schmidt procedure,

|viÍ = A |vi≠1

Í ≠
i≠1ÿ

j=1

Èvj | A |viÍ
Èvj |vjÍ |vjÍ . (2.19)

The orthonormal basis {v} built in this way is used in the GMRES method to approximately
solve the original system of equations by minimizing the residue |rmÍ = A |XmÍ ≠ b. The
process is iterated until a reasonable value of the residue is found. Then, the approximate
solution is found as |XÍ =

q
i Èvi|xÍ |viÍ. Moreover, in the specific case we are considering

in Eq. 2.19, in order to avoid matrix multiplications, the application of the matrix A
to a vector |zÍ is done sequentially by computing first |zÕÍ = fHxc |zÍ and then A |zÍ =
|zÍ ≠ ‰0(Ê) |zÕÍ. The kernel matrix is computed before the iterative procedure. It can be
easily stored and reused since it is frequency-independent with the standard “adiabatic”
DFT functionals, while the procedure for matrix-vector product ‰0(Ê)z is detailed in the
next section.

Kohn-Sham Response Function, ‰0(Ê)
The iterative procedure outlined above uses a matrix-vector product ‰0(Ê)z in order to
construct a Krylov space and computes the density change ”n(r, Ê) and the polarizability.
The matrix-vector product will be split into a series of matrix-vector and matrix-matrix
operations according to the explicit expression for non-interacting response function 2.14.
Namely, the action of ‰0 to a given vector z is given by

”n0

µ(Ê) =
ÿ

n,m
a,b
c,d

(fm ≠ fn)
!
Xm

a V ab
µ Xn

b

"!
Xn

c V cd
‹ Xm

d

"

Ê ≠ Emn + i÷
d̨‹

j (2.20)

and can be split into the following sequence of operations,

47



TDDFT Kernel and LIBXC Library

q
d V cd

‹ Xm
d = –cm

‹ index m runs over the occupied KS orbitals

q
‹ –cm

‹ d‹
j = —cm

j

q
c Xn

c —cm
j = “nm index n runs over the unoccupied KS orbitals

“nm
j (fm ≠ fn)

!
1

Ê≠E
mn

+i÷
1

Ê+E
mn

+i÷

"
= “̃nm

j

Xn
b “̃nm

j = —̃mb
j

”n0

µ = –mb
µ —̃mb

j .

–cm
‹ is stored in a block-sparse storage that uses O(N2) elements of the random access

memory (RAM). The sequence of matrix operations detailed above enables a relatively
fast calculation of interacting polarizability in plasmonic systems, i.e. in systems that have
many nearly-degenerated transitions. This allows us to perform calculations for system
sizes containing hundreds of atoms, despite the fact that our implementation uses only
OpenMP parallelization, i.e. can use only relatively small number of processors through
the OpenMP parallelization scheme.

2.3.3 TDDFT Kernel and LIBXC Library
The kernel, defined as in Equation 1.88, is necessary in order to solve Equation 1.82 and to
calculate the linear response function ‰. It is interesting to derive the exchange-correlation
kernel fxc starting from the exchange-correlation energy functional ‘xc in Generalized Gra-
dient Approximation (GGA). We shall calculate before the exchange-correlation potential
Vxc defined as ”‘

xc

”n and eventually the exchange-correlation kernel fxc = ”V xc
”n .

Let us consider an exchange-correlation energy functional of the density n and of its
gradient Ǫ̀n. In case of GGA we can generally write

Exc =
⁄

‘xc(n(r), Òn(r))dr (2.21)

where ‘xc is the energy per unit of volume. Using equation F.7 in Appendix F we can write
the potential as

Vxc(r) = ˆ‘xc

ˆn(r) ≠ Ò · ˆ‘xc

ˆÒn(r) . (2.22)

Finally, the exchange-correlation kernel fxc needed in TDDFT can be found by performing
a further functional derivative to the expression 2.22, i.e. fxc = ”Vxc/”n = ”2‘xc/”n2. In
order to calculate the kernel in practice it is convenient to write the potential in an integral
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form, Vxc(r) =
s

Vxc(rÕ)”(r ≠ rÕ)drÕ. Thus, we can write

”Vxc(r) = ”Vxc(r)
”n(r) ”n(r) + ”Vxc(r)

”Òn(r)”Òn(r)

= ”

”n(r)

5
ˆ‘xc

ˆn(r) ≠ Ò · ˆ‘xc

ˆÒn(r)

6
”n(r) + ”

”Òn(r)

5
ˆ‘xc

ˆn(r) ≠ Ò · ˆ‘xc

ˆÒn(r)

6
”Òn(r)

= ˆ2‘xc

ˆn2

”n(r) + ˆ2‘xc

ˆÒnˆn
”Òn(r) ≠ Ò ·

5
ˆ2‘xc

ˆnˆÒn
”n(r) + ˆ2‘xc

ˆÒnˆÒn
”Òn(r)

6

(2.23)

In order to “convert” the variations density of the density gradient ”Ǫ̀n into variations of
the density ”n we use the identity f(x) =

s
f(xÕ)”(x ≠ xÕ)dxÕ,

”Vxc(r) =
⁄

”(r ≠ rÕ)
;

ˆ2‘xc

ˆn2(rÕ)”n(rÕ) + ˆ2‘xc

ˆÒn(rÕ)ˆn(rÕ)”Òn(rÕ)

≠ Ò ·
5

ˆ2‘xc

ˆn(rÕ)ˆÒn(rÕ)”n(rÕ) + ˆ2‘xc

ˆÒn(rÕ)ˆÒn(rÕ)”Òn(rÕ)
6<

drÕ

=
⁄

”(r ≠ rÕ) ˆ2‘xc

ˆn2(rÕ)”n(rÕ)drÕ ≠
⁄

Ò
5

ˆ2‘xc

ˆÒn(rÕ)ˆn(rÕ)”(r ≠ rÕ)
6
”n(rÕ)drÕ

+
⁄ #

Ò”(r ≠ rÕ)
$ ˆ2‘xc

ˆn(rÕ)ˆÒn(rÕ)”n(rÕ)dr

≠
⁄

Ò
;#

Ò”(r ≠ rÕ)
$ ˆ2‘xc

ˆÒn(rÕ)ˆÒn(rÕ)

<
”n(rÕ)drÕ

=
⁄ ;

”(r ≠ rÕ) ˆ2‘xc

ˆn2(rÕ) ≠ ”(r ≠ rÕ)Ò
5

ˆ2‘xc

ˆÒn(rÕ)ˆn(rÕ)

6

≠ Ò
5#

Ò”(r ≠ rÕ)
$ ˆ2‘xc

ˆÒn(rÕ)ˆÒn(rÕ)

6<
”n(rÕ)drÕ .

(2.24)

Using the fact that by definition ”Vxc =
s

”V
xc

”n ”n(r)dr we get

fxc(r ≠ rÕ) = ”(r ≠ rÕ) ˆ2‘xc

ˆn2(rÕ) ≠ ”(r ≠ rÕ)Òi

5
ˆ‘xc

ˆÒin(rÕ)ˆn(rÕ)

6

≠ Òk

5#
Òi”(r ≠ rÕ)

$ ˆ2‘xc

ˆÒkn(rÕ)ˆÒin(rÕ)

6
.

(2.25)

In the last equation the subscripts in Òi and Òk indicate the direction.

LIBXC Outputs
Recently, we have coupled the LIBXC library86 to the MBPT-LCAO code. LIBXC is a
powerful library that allows to access many di�erent types of functionals. In practice, the
library provides several outputs that have to be put together carefully in order to build
the potential and/or the kernel. The di�erent outputs provided by LIBXC in case of GGA
functionals are:
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• ˆ‘
ˆn (first partial derivative of the energy per unit volume in terms of the density).

• ˆ‘
ˆ‡ (first partial derivative of the energy per unit volume in terms of sigma).

• ˆ2‘
ˆnˆn (second partial derivative of the energy per unit volume in terms of the density).

• ˆ‘
ˆnˆ‡ (second partial derivative of the energy per unit volume in terms of the density
and sigma).

• ˆ2‘
ˆ‡ˆ‡ (second partial derivative of the energy per unit volume in terms of the density
and sigma).

Where ‡ is the so-called contracted gradients of the density ‡ = (Òn)2. With the provided
outputs the user has to build up the correct exchange-correlation potential and kernel.
Equation 2.22 becomes

Vxc[n] = ˆ‘xc[n, Òn]
ˆn

≠ 2Ò ·
5

ˆ‘xc[n, Òn]
ˆ‡

Òn

6
. (2.26)

While Equation 2.25 becomes

fxc[n] = ”(r ≠ rÕ)ˆ2‘xc[n, Òn]
ˆn2

≠ 2”(r ≠ rÕ)Ò
5

ˆ‘xc[n, Òn]
ˆ‡ˆn

6
(2.27)

≠ 4Ò
5#

Ò”(r ≠ rÕ)
$ˆ2‘xc[n, Òn]

ˆ‡2

6
. (2.28)

The computation of the matrix elements fµ‹
xc [n] between atomic-orbital-like functions F µ(r)

can be written in terms of integrals involving the gradient of the functions as described in
our paper P. Koval et al.20
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3 | Optical Properties
of Graphene-like Material

Figure 3.1: 3D visualization of the honeycomb lattice structure of a graphene layer.

The recent discovery of graphene in 200423,24 prompted intensive investigations87 mainly
because of the perspectives for many potential applications, Although, we are still far from
the moment when it will become a commercial reality. At first, graphene was produced
by mechanically exfoliating a piece of graphite.23 Nowadays, and depending on the appli-
cation, graphene can be produced in mainly two formats: films and platelets. While films
are mainly manufactured by Chemical Vapour Deposition (CVD) on di�erent substrates,
liquid phase exfoliation techniques are the preferred for making platelets which consists of
micro graphene-flakes in form of powder. The peculiar graphene structure and electronic
configuration provide the material with new unseen properties useful for many possible in-
dustrial applications such as its high electronic mobility which is reported to be higher than
200000 cm2V-1s-1,25 high flexibility, high transparency,88 high mechanical strength, good
thermal conductivity,89 etc., with potential applications in many di�erent fields such as
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plasmonics,90 photonics,91 energy storage,91 flexible electronics,91 aerospace, optical signal
processing,92 etc. Possible applications include the use of graphene for optical waveguides
in nanocircuits capable to confine light to the nanometer scale and transmit optical signals.
Moreover, its transparency makes it a suitable candidate for electrodes in new photovoltaic
cells. The characterization of graphene’s optical properties is based on the analysis of the
material as it interacts with an electric time-dependent field, that represents the light field,
via quantities such as density change, polarizability and cross-section.

Main objective of this work is to study the 0-dimensional homologous of graphene, i.e.
graphene nanoflakes. Graphene nanoflakes have even more versatile properties than an
infinite sheet of graphene. However, to better interpret the electronic and optical properties
of the graphene flakes it is useful to compare them with the infinite graphene.

3.0.1 Graphene Structure
The theory of graphene and its derivatives has anticipated their experimental realization.
The band structure of the graphene’s honey-comb lattice was first analyzed in 1947.93

Graphene is characterized by a honeycomb lattice formed by carbon atoms, Fig. 3.1. The
carbon-carbon distance in graphene is 1.42 Å,94 although the carbon-carbon bond is highly
flexible.95 Due to the hexagonal structure formed by the carbon atoms, graphene shows a
typical linear dispersion at the so-called Dirac points K and K’ (Dirac fermion).96 At the
K point in neutral graphene the Fermi energy (EF) crosses exactly the Dirac point yielding
zero Density Of the States (DOS) at EF. The calculated SIESTA DFT band structure for
an infinite graphene sheet is shown in Fig. 3.2(a). On the y-axis I plot the energy of the KS
bands with subtracted Fermi Energy, while the momentum is displayed along the x-axis.
The symmetry points K, M and � are highlighted on the x-axis and by vertical lines. The
valence and conduction bands meet at the corners of the Brillouin Zone (BZ) (K points)
at the Fermi energy, which has been set to 0 eV. In Fig. 3.2(b), I show in the reciprocal
space the path chosen for the band structure plot of Fig. 3.2(a). b1 and b2 are the unit
vectors in the reciprocal space.
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Figure 3.2: Graphene band structure in panel (a). In panel (b) the red dotted line shows
the path in the Brillouin Zone (BZ) along which the bands in panel (a) are calculated.

The hexagonal lattice provides graphene with a trigonal structure characterized by the
in-plane orbitals forming the ‡ bonds, which connect each carbon atom with its closest
neighboring atom. The ‡ bond is the outcome of a sp2 hybridization, see Fig.3.3, involving
the s, px and py orbitals, xy-plane being parallel to the graphene sheet. The so-called fi
bands are formed by the out-of-plane pz orbitals.95

{2s

2px 2py 2pz

sp2

2pz

Free C atom Graphene

Figure 3.3: Graphene hybridization scheme.

Graphene’s electronic and optical properties are determined by the fi bonding (valence
band) and fiú anti-bonding (conduction band) orbitals. Although the conductivity of the
neutral graphene is quite low due to the zero DOS at the K point (see fig.3.2(a)), it can be
enhanced by tuning the Fermi level via doping the material. Analogously, the control of the
optically active electronic excitations can be reached by doping the material. In nutshell,
by changing the EF of graphene we introduce a range in energy equal to twice the shift
of the EF in which no interband optical transitions are allowed, as shown in Fig.3.4. In a
dispersion plot for energies below 2�EF no interband transitions are allowed, resulting in
the appearance of well-defined low energy electronic excitations (same as in Capture 3.4).
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2ΔEF

EF

Figure 3.4: At the Dirac cone, for doped graphene, the Fermi energy is shifted (in this
case electrons have been added to the system). A minimum amount of energy of twice
the shift of Fermi energy compared to the undoped graphene is needed to allow optically
driven electronic excitations.

The electronic and optical properties of graphene flakes are even more versatile than
these of infinite graphene sheets. Such properties characteristic of graphene nanoflakes are
discussed in the next section.

3.1 Graphene Nanoflakes
As nanotechnology evolved, it became possible to “cut” two-dimensional graphene and pro-
duce one-dimensional (nanoribbons) and zero-dimensional (nanodots) planar structures.97,98

Due advance in technology allowing the fabrication of graphene nanodots94 a new wave
of theoretical studies of nanodots and nanoflakes has been triggered. Remarkably, the
reduction of dimension opens additional ways to control the electronic properties of these
graphene derivatives. For instance, it is experimentally found that the width of nanoribbons
a�ects its magneto-resistance99 and their electron-transfer characteristics.100 Graphene
nanoribbons are currently produced with high accuracy using “on-surface” chemistry tech-
niques,101 a variant of CVD technique. Moreover, it is experimentally confirmed that the
type of edges created by cutting the sheet in di�erent directions determines the resistance
of thin nanoribbons102 and the edge’s functionalization modifies their optical properties.103

Furthermore, zero-dimensional derivatives should exhibit an additional versatility, com-
pared to one-dimensional nanoribbons, due to the multitude of possible shapes. Several
groups actually fabricated 0D graphene islands either via a top-down or bottom-up ap-
proaches.2,94,104–106 There is experimental evidence that the size of graphene nanoislands
can be controlled,107,108 nanoislands can also be chemically functionalized104,109,110 and
electrically doped.111 Graphene nanoislands are also being produced by CVDs methods,
like graphene on Ni(111),112 although it is di�cult to desorb the islands from the surface.
Recently, nanotube transistors have shown size-independent resistance, this result opens
the way to the fabrication of new graphene-based nano-transistors smaller that the actual
silicon-based transistors allowing scaled device technologies.113

In this work we focus on graphene nanoflakes with the goal to theoretically model the
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e�ects of shape, size and, edge functionalization. Nanoflakes can be regarded as poly-
cyclic aromatic hydrocarbons which also received a considerable theoretical attention.60,114

Several authors employed tight-binding (TB) models to characterize energy levels and op-
tical excitation spectra of hexagonal, rectangular and triangular flakes.115–117 Despite their
simplicity, TB models describe the dependence of the low-energy spectra of the graphene
nanoislands on size, shape, type of edges, external mechanical strains, magnetical and
electrical fields.111,118–120 Many first-principles calculations have been performed to char-
acterize graphene nanoislands. DFT and TDDFT have been extensively used to study
all the above mentioned properties of nanoislands.94,121–123 Additionally to the problems
accounted by TB models, first-principles calculations can naturally tackle the problem of
chemical functionalization.123–125 For instance, Zheng and Duley124,125 studied small rect-
angular flakes with B3LYP functional and found that the density of states of these flakes
dramatically changes upon application of external electrical field across zigzag edges and
upon chemical doping with boron and nitrogen. Another comprehensive (molecular dy-
namics, DFT, TDDFT) study121 revealed the thermo-stability properties, size and shape
dependence of transport- and optical gaps of the rectangular, triangular and hexagonal
flakes that contain up to 240 carbon atoms. It is interesting to note that such small flakes
(240 carbon atoms, 2.4 nm edge length) can be already fabricated.105 This fact makes
theory and experiment overlap. However, much larger graphene nanodots (measuring a few
dozens nm) will always be relevant for plasmonic applications due to their better coupling
to external optical fields. Therefore, the advancing of theoretical methods is required in
order to allow for an e�cient ab-initio description of large nanodots.

In this chapter, we perform TDDFT calculations of graphene nanoflakes of considerable
larger sizes, relevant for plasmonic field-enhancement applications.90,111,126 Moreover, we
aim at preserving the ab-initio merits of our theoretical framework, in order to credibly
describe realistic chemical modifications of graphene nanoflakes and nanodots.

In the Section 3.2 we justify the calculational parameters, and then, in Section 3.3
and 3.4 we perform an analysis of the optical spectrum in terms of involved symmetries of
atomic orbitals. The size dependence will be discussed in Section 3.5. In Section 3.6 we
discuss the spatially resolved representation of electronic excitations given by the induced
density change. Finally, in Section 3.7 we analyse the e�ect of graphene tailoring and
graphene passivation. Depending on the way the graphene is cut, graphene flakes can have
two di�erent types of edges: ArmChair (AC) and ZigZag (ZZ). For this study we considered
three di�erent geometries of graphene flakes: HEXagonal (HEX) with AC edges, hexagonal
with ZZ edges, and (nearly) SQuare flakes (SQ) in which are present both AC and ZZ edges.
For the square flakes the length of edges can be equal only approximately. Examples of the
di�erent geometries are shown in Fig.3.5(a), 3.5(b) and 3.5(c) for hexagonal and square
flakes. The flakes in Fig.3.5 are medium/small having a lateral dimension between ≥17 Å
and ≥22 Å. The flake sizes considered in this study go from a minimum of ≥10 Å to a
maximum of ≥60 Å, in lateral dimensions. For hydrogen saturated graphene nanoflakes
ideal geometries are used. Namely, the structures are strictly planar and the carbon-carbon
distance is held fixed to its experimental value 1.42 Å.94 The edges of the flakes are
saturated by hydrogen with a carbon-hydrogen distance of 1.09 Å.124,127
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Figure 3.5: The geometries of the armchair hexagonal C
114

H
30

and zigzag hexagonal
C

150

H
30

are shown in panel (a) and (b), respectively. The geometry of the nearly “square”
flake C

170

H
36

is shown in panel (c). Both types of edges are necessarily present in the
square flakes. VMD is used to produce the pictures of the molecular geometries.128,129

Finally, in section 3.7 we analyze the e�ects of di�erent passivations of the carbon
dangling bond on the absorption properties. In particular, fluorine (F), oxygen (O) and
hydroxyl group (OH) passivation are covered in this study. In this case, atomic relaxation
has to be taken into account in order to provide reasonable values of the bond-length for
the di�erent types of passivation.

3.2 Convergence Studies of Computational Details

In section 2 we have seen how the DFT SIESTA code and the MBPT-LCAO TDDFT
code are thought to work together. The SIESTA calculation provides the necessary inputs,
namely, ground state KS orbitals, that are going to be used in MBPT-LCAO. Because
many parameters either at the DFT stage and at the eventual TDDFT stage can a�ect
the outcome of the calculations a thorough convergence procedure needs to be done in
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order to obtain reliable results. Thus, for this purpose, we compared the optical properties
of graphene flakes up to ≥6-7 nm size of hexagonal shape using a range of values for
di�erent calculational parameters. It is important to know that the convergence study has
to be performed in relation to the quantities that we want to estimate. For instance, the
convergence of DFT eigenenergies can be rather di�erent from the convergence of their
di�erences that are more relevant for TDDFT.

In SIESTA, the spatial support of radial orbitals as well as several other parameters can
be either automatically chosen or controlled manually, see 2.2. In the following paragraphs
we compare the resulting TDDFT absorption spectra with respect to the properties of the
used basis set and we show that is possible obtain reasonable spectrum with a “cheap”
set up. We rely on automatic choice of all parameters except the Basis Set’s Multiplicity6

(Section 2.2.2) and the Spatial extension of atomic orbitals6 (Section 2.2.3).

3.2.1 Basis Set Multiplicity
As described previously in section 2.2, SIESTA makes use of LCAO for constructing molec-
ular orbitals. General applicability of the SIESTA’s basis sets to TDDFT calculations of low
energy optical excitations has been shown by a direct comparison with a plane-wave-based
calculation.17 Here, we question to which extend small, computationally inexpensive basis
sets reproduce the absorption spectra of carbon flakes. The user can choose among Single-’
(SZ), Double-’ (DZ), Triple-’ (TZ), Single-’ Polarized (SZP) basis sets, Double-’ Polar-
ized (DZP), Triple-’ Polarized (TZP) basis sets and Triple-’ Double-Polarized (TZDP)
basis sets, as described in Section 2.2.2. The more complete basis set is the DZP, however,
in order to address very large finite systems a smaller basis is used. Here we discuss the
validity of calculations employing minimal basis set. The analysis on the data collected
helps to define how well the smaller sets reproduce the features of quantities relevant for
the modelling of optical absorption spectrum.

The simplest quantity to analyze is the spectrum of the DFT eigenenergies. It is a
necessary check for a credible simulation of excitation properties because TDDFT calcu-
lations are based on DFT results. The table 3.1 shows the energy di�erence between the
Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Or-
bital (LUMO) for the two basis sets DZP and SZ and for several flakes. In the last column
the di�erences DZP and SZ data are shown. The table shows that although the absolute
HOMO and LUMO levels are a�ected by the multiplicity of the basis set rather strongly,
the energy di�erences are influenced to a lesser extend. Moreover, the influence of the
basis set incompleteness is diminishing with the size of the flake.
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Basis Set Multiplicity

HOMO-LUMO, eV
System DZP SZ |DZP - SZ|

Ar
m

ch
ai

r
C

42

H
18

2.31 2.37 0.06
C

114

H
30

1.45 1.47 0.02
C

222

H
42

1.03 1.06 0.03
C

366

H
54

0.82 0.83 0.01
C

546

H
66

0.68 0.68 0.00
C

762

H
78

0.57 0.58 0.01

Zi
gz

ag

C
54

H
18

1.77 1.79 0.02
C

96

H
24

1.22 1.23 0.01
C

150

H
30

0.87 0.86 0.01
C

216

H
36

0.62 0.61 0.01
C

294

H
42

0.45 0.43 0.02
C

384

H
48

0.32 0.31 0.01
C

486

H
54

0.21 0.21 0.00

Table 3.1: HOMO-LUMO gap calculated with DZP and SZ basis sets. In the last column
the di�erence between HOMO-LUMO gap for DZP and SZ is shown.

Approximately, the optical properties depend on the di�erence of eigenenergies, see ex-
pression for the non-interacting linear response function 1.78. Therefore, one could expect
that also the true optical gaps will be less a�ected by the incompleteness of the used basis
sets. In order to check this conjecture we perform some TDDFT calculations for the first
hexagonal flakes from the table 3.1 using SZ and DZP basis sets and compare the optical
gaps. First, the optical gap is extracted from the polarizability as the energy of the first
peak. The Table 3.2 shows that the maximal di�erence of the optical gaps computed with
SZ and DZP basis sets does not exceed 0.13 eV. This result is a first indication that even
SZ basis set is capable to reproduce the optical properties, at least in a low frequency
range, for the flakes.
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Basis Set Multiplicity

HOMO-LUMO, eV
System DZP SZ |DZP ≠ SZ|

AC
C

42

H
18

2.79 2.92 0.13
C

114

H
30

1.77 1.84 0.07
C

222

H
42

1.30 1.34 0.04

ZZ

C
54

H
18

2.36 2.44 0.08
C

96

H
24

1.67 1.71 0.04
C

150

H
30

1.22 1.23 0.01
C

216

H
36

0.91 0.91 0.00

Table 3.2: Optical gaps from TDDFT calculations with SZ and DZP basis sets.

In a next test, we compare the optical cross section, given by Equation 1.96, computed with
SZ, DZ and DZP basis sets for the C42H18-AC flake, which shows the largest di�erence
for the optical gap (see Table 3.2). The optical cross sections are shown in Figure 3.6.
In Fig.3.6(a) and 3.6(b) the spectrum in a low-frequency range 0–10 eV is qualitatively
similar for all basis sets, i.e., in this energy range we find peaks corresponding to the so-
called fi-plasmon at roughly the same energies and carrying similar spectral weights for
all the basis sets used. At higher frequencies, above 10 eV one also recognizes similar
features, see Figure 3.6(b). Namely, we always observe a ‡ plasmonic resonance around
16 eV, although it is not possible to make a one-to-one correspondence between the peaks
obtained in the calculations using di�erent basis sets. In Figure 3.6(c) the cross section
is plotted by convoluting the spectra with a Lorentzian with a width ‘ = 0.5 eV. This
additional broadening has to be compared with an initial small broadening of 0.073 eV and
can be understood as a model of low-resolution spectra. At low resolution, the spectra in
the low-frequency range are practically coinciding, which is a further prove that the main
features of the spectra are preserved in all cases, with good agreement at low energies. In
the low-frequency range 0-10 eV, the optical cross section is qualitatively similar for all three
basis sets (see Figure 3.6(a)). At frequencies above 30 eV, DZP basis shows resonances
which are totally absent in the calculations with SZ and DZ basis sets. These resonances
are caused by polarization orbitals of d symmetry that are present in DZP basis set and
absent in the other basis sets.
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Spatial Extension of Atomic Orbitals: Energy Shift
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Figure 3.6: Optical absorption cross section of the C42H18-AC flake. Calculations with SZ,
DZ, and DZP basis sets are presented in the frequency ranges 0–10 eV (a) and 0–50 eV
(b). Panel (c) shows the same data presented in panel (b) but convoluted with Lorentzian
of width ‘ = 0.5 eV.

Similarly to the discussed case of C42H18-AC flake, for all studied flakes in the low frequency
range, there is good agreement of the optical spectra computed with di�erent basis sets.
Moreover, the agreement improves for larger flakes. The usage of SZ basis allows us to
perform calculations for very rather flakes, which would be impossible with DZP basis.

3.2.2 Spatial Extension of Atomic Orbitals: Energy Shift
The shape of basis set functions obviously a�ects DFT and TDDFT calculations. The
spatial extend of the basis set functions is an important characteristic of the function’s
shape and can be controlled simultaneously for all orbitals with a single parameter called
energy shift73,130 and described in paragraph 2.2.3. The energy shift is a mismatch of the
eigenenergy in the radial KS equation causing the orbital to cross the x axis prematurely.
The crossing point is used as cuto� radius. Therefore, the larger the energy shift the
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Spatial Extension of Atomic Orbitals: Energy Shift

smaller is the basis function extend. The default value of the energy shift is 0.02 Ry,
which results in rather contacted orbitals while a small energy shift leads to the generation
of more a extended basis set. Larger support orbitals produce in principle more credible
results, although at a higher computational cost. Therefore, it is important to verify to
which extend the contraction of orbitals a�ects the optical properties of graphene flakes.

We performed calculations of the cross section with di�erent energy shifts and basis
multiplicities (SZ, DZP) for the flakes mentioned in the Table 3.6. The spectra of the
smallest flakes are the most a�ected by the energy shift. In Figure 3.7 the cross section
of the most a�ected calculation (SZ C

42

H
18

-AC flake) is shown. By looking at the cross
section we see that the spatial extension of localized orbitals only weakly a�ects the optical
properties of the flakes. According to other calculations not presented here, the extension
of the orbitals a�ects the absorption spectrum of the larger flakes to even a lesser extend.
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Figure 3.7: Dependence of the cross section on the spatial extension of radial orbitals in
the frequency range 0–50 eV. The cross section is calculated with energy shifts 20 meV and
272 meV (SIESTA’s default) for C42H18-AC flake.

The results in Fig.3.7 together with Table 3.6 show that even the minimal basis set
with rather contracted orbitals provides reasonable results in a low frequency range 0–5
eV. In the mid-frequency range 10–30 eV, the use of minimal basis set is sensible if one is
interested in the basic features of absorption spectra. The low frequency range is mostly
important for applications and the calculations with SZ basis with contracted orbitals are
possible for much larger flakes. Therefore, we continue to use SZ basis set with rather
short orbitals in the other calculations in this chapter if not stated otherwise. The usage
of SZ basis allowed us to perform simulations for flakes involving more than 4000 valence
electrons, while the upper limit for the DZP basis set was around 250 valence electrons
(each carbon atom contributes with 4 valence electrons while hydrogen with 1). (1)

(1)In this chapter of the thesis, we used only the basis of so-called dominant products, which is turned
out to be not optimal, as we established in later works.20
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3.3. fi and ‡ Plasmons

3.3 fi and ‡ Plasmons
As mentioned above, the polarizability, equation 1.94, of graphene flakes depends in a
complex manner on the size and on the shape of the flakes. However, before analyzing in
detail the relation between graphene flakes’ size and shape and its optical properties, it is
worth to analyze the origin of the main features, which are present in the optical spectra
of all the calculated flakes. Graphene flakes present two intense broad peaks. The low
frequency peak is the so-called fi plasmon peak.131 It is located in a range of frequencies
between 4.7 and 6.4 eV depending on the size of the flake (see section 3.5). In contrast,
the so-called ‡ plasmon peak131 is found between 17.5 and 18.8 eV, even if also in this case
the size and the shape of the flake determines the exact frequency of the plasmon. The
plasmon peaks are called fi and ‡ due to their angular momentum of orbitals contributing
to the corresponding electronic excitations. fi æ fiú orbital transitions build up the fi
plasmon while ‡ æ ‡ú orbital transitions build up the ‡ plasmon as shown in section 3.4.
There is also a minor contribution to the ‡ peak coming from fi ¡ ‡ transitions. These
excitation peaks are found in the low-energy part of the ‡ peak, see section 3.4. In Fig. 3.8
panel (b) the results obtained for the C1014H78 flake are shown. In panel (b.–) and in panel
(b.—) the optical cross section and the geometry of the flake are presented, respectively.
Moreover, in panel (b.“) a cross section with an additional broadening is plotted. The
additional broadening allows us to better determine in an unambiguous and consistent way
the energy position of the two main peaks for all the flakes considered here, including
the smallest ones. fi and ‡ plasmons are also characteristic of the Electron Energy Loss
Spectroscopy (EELS) of an infinite graphene sheet, as in experiments.131 In Fig. 3.8 a
comparison between EELS data for graphene131 and our calculated absorption spectrum
for the C1014H78 graphene nanoflake is presented. The chosen flake in Fig. 3.8 has a linear
dimension of 50-60 Å, however, the frequency position of the plasmonic peaks is already
converged with respect to the size of the flake, as shown later on in this chapter. The
calculations show good agreement with the experimental results, reproducing the main
optical plasmonic features. In particular, the fi peak frequency position is described with
good accuracy in our calculations, i.e. the calculated value is 4.8 eV while the experimental
value is 4.7 eV.131 However, the calculated position of the ‡ plasmonic peak is o� by
3 eV compared with the experimental value.131 The di�erence in the position of the ‡
can be due, on one hand, to a large momentum transfer which is characteristic of EELS
spectroscopy and, on the other hand, to the incompleteness of the used SZ basis set and
the deficiencies of the used functional (LDA), which a�ect the high frequency features of
the spectra to a larger extend than the low-frequency ones. It is worth noting, that a flake
of only a few nanometers in lateral size already presents features converged to those typical
of infinite graphene.
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3.4. Symmetry of Electronic Transitions:
Interacting and Non-interacting Spectrum
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Figure 3.8: Comparison of the experimental frequencies fi and ‡ plasmonic modes with
the calculated values. In panel (a) the absorption experimental results for graphene layers
are shown.131 In panel (b) the calculated optical cross-section for the flake C1014H78 is
shown together with its geometrical structure. In particular, in panel (b.“) features the
same absorption spectrum shown in Figure (b.–) but with a higher broadening parameter.

3.4 Symmetry of Electronic Transitions:
Interacting and Non-interacting Spectrum

‡ bonds are the result of the sp2 hybridization of the s, px and py orbitals and fi bonds
are formed by pz orbitals. These basics of graphene electronic structure must be reflected
in the optical absorption of graphene flakes, namely, the two main plasmonic peaks seen in
the spectrum (fi and ‡) should be related to symmetry allowed transitions involving molec-
ular orbitals (fi and ‡) with di�erent symmetries. A symmetry analysis is straightforward
for the non-interacting response function (1.97), but it is obscured by the presence of a
TDDFT interaction kernel in the true interacting response function (1.94). However, when
comparing the non-interacting and interacting cross sections, we always observe qualitative
similarities for these cross sections. In order to exemplify this fact, we plot both cross
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3.4. Symmetry of Electronic Transitions:
Interacting and Non-interacting Spectrum

sections for the C
216

H
36

-ZZ flake. In Fig. 3.9(a) we see that the renormalization due to
the TDDFT kernel strongly modifies the low-frequency (0–3 eV) cross section, while in the
range above 5 eV both interacting and non-interacting cross sections are qualitatively sim-
ilar. However, this similarity extends to low frequencies if an enlarged broadening constant
Á is used (see Fig. 3.9(b)), i.e. if we look at the mean position of the fi-peaks, rather than
to their distribution. Therefore, we will perform the symmetry-channel analysis with the
non-interacting response, and later we will directly demonstrate that the presence of the
interaction kernel does not a�ect the conclusions of such analysis.
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Figure 3.9: Interacting and non interacting cross sections for C
216

H
36

-ZZ flake is plotted
with small (‘ = 0.07 eV) and large (‘ = 1 eV) broadening constants, on panels (a) and
(b), respectively.

The symmetry-channel analysis of non-interacting response is straightforward because
we use basis of atomic orbitals. In the framework of LCAO, a KS eigenstate Âi(r) reads
Âi(r) =

q
a Xi

afa(r ≠ Ra), where the sum goes over atomic orbitals fa(r) and the coef-
ficients Xi

a are determined by the diagonalization of the Hamiltonian. The atomic orbitals
are centered on atomic nuclei Ra, and are chosen to carry a certain spherical symmetry
characterized by the orbital la and magnetic ma angular momentum. Using the quantum
numbers la and ma of the atomic orbitals and the magnitudes of the coe�cients Xi

a one
can conditionally nullify some eigenstates Xi

a = 0, according to a rule. Such artificial mod-
ification a�ects the absorption cross section and may give rise to useful conclusions. For
instance, we can confirm the nature of ‡ plasmon resonance by removing all eigenstates
Âi(r) which satisfy an inequality (i)

q
a(Xi

a)2|l
a

=0

< S
tol

. Here S
tol

is a switch-o�
tolerance. A sensible choice of the tolerance does not a�ect the conclusions. The nature
of the fi plasmon resonance is confirmed analogously, using a similar switch o� condition:
(ii)

q
a(Xi

a)2|l
a

=1,m
a

=0

< S
tol

. The orbital angular momentum la = 1 correspond to a
p shaped orbital and the magnetic moment ma = 0 corresponds to the z direction. This is
equivalent to switch o� pz orbitals, which form the fi and fiú molecular orbitals. We used
a small value of tolerance S

tol

= 0.01 for the (i) and (ii) switch o� conditions.
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3.4. Symmetry of Electronic Transitions:
Interacting and Non-interacting Spectrum
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Figure 3.10: Symmetry channel analysis of the non-interacting response. The cross sections
of the small hexagonal flake C

42

H
18

-AC have been artificially altered (see text) to exclude
‡ and fi orbitals on panels (a) and (b), respectively, dashed lines. The unmodified cross
sections are shown by solid (blue) curves.

In Figure 3.10 we show the original and artificially altered non-interacting cross sections
for the small hexagonal flake C

42

H
18

-AC. The results obtained with the switch-o� criteria
(i) and (ii) are presented in Figures 3.10(a) and 3.10(b), respectively. We can see that the
removal of eigenstates according to the condition (i) indeed “wipes out” the cross section
above 10 eV, while the spectrum below 10 eV remains una�ected. This happens because
the ‡ molecular orbitals do necessarily include contributions from s atomic orbitals and we
artificially removed all eigenstates with noticeable weight on the s atomic orbitals. Figure
3.10(a) shows that the low-frequency spectrum features are not given by fi æ ‡ú transitions
nor by ‡ æ ‡ú transitions. The switch-o� criterion (ii) allows to unambiguously clarify
the origin of the low-frequency features. Namely, the artificially altered cross section in
3.10(b) is zero below 10 eV and it is almost entirely reconstructed above 10 eV. Therefore,
we conclude that solely fi æ fiú transitions govern the low-frequency optical response.
Furthermore, the removal of pz atomic orbitals gives rise to a noticeable alteration of the
absorption in the range 10–25 eV. Particularly, between 10 and 15 eV, a departure of the
pz-removed cross section from the original cross section shows the presence of coexisting
fi æ ‡ú and ‡ æ ‡ú transitions. Above 15 eV, the ‡ æ ‡ú transitions solely determine the
absorption cross section. The symmetry-channel analysis of the other flakes AC, ZZ and
SQ flakes from Table 3.3 leads to the same conclusions. This fact validates the designation
of fi and ‡ labels as the low- and high-frequency plasmons, respectively.
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3.5. Dependence on the Flakes’ Size:
Zigzag vs Armchair
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Figure 3.11: Symmetry channel analysis of the interacting response. The cross sections of
the small hexagonal flake C

42

H
18

-AC have been artificially altered (see text) to exclude ‡
and fi orbitals on panels (a) and (b), respectively, solid lines. The unmodified cross sections
are shown by dashed (blue) curves.

The same type of analysis is possible also for the interacting cross section. In Figure 3.11
we present the original and modified interacting cross sections for the flake C

42

H
18

-AC. The
conditional removal of eigenstates erases completely either ‡ or fi plasmons, respectively.
However, in contrast to the non-interacting cross-section case, the removal of ‡ molecular
orbitals visibly alters the low-frequency spectrum. The mathematical origin of this altering
is traced back to the real part of the response function. Namely, the imaginary part of the
interacting response function used to calculate the spectrum depends on the real part of the
non-interacting response function as can be seen from the Dyson-like equation 1.82. The
real part of the non-interacting response function associated to a particular transition is not
fully localized in frequency and therefore, contributes to the interacting response function
in an ample frequency range. However, despite this complication, we can verify again that
the removal of the ‡ states wipes out the high-frequency part of the interacting spectrum,
while the removal of the fi states wipes out the low-frequency part of the interacting
spectra. These facts confirm once more the designation of fi and ‡ labels as the low- and
high-frequency plasmons, respectively.

3.5 Dependence on the Flakes’ Size:
Zigzag vs Armchair

It is interesting to study the size dependence separately for each geometry type of graphene
flakes. Short-ranged orbitals and the minimal basis set (see section 3.2) allow to reach sizes
of flakes containing up to 1014 carbon atoms. The geometry of all flakes is kept planar,
with experimental bond lengths of 1.42 Å, as mentioned in the section 3.1. In Figures
3.12(a), 3.12(b) and 3.12(c) we show high-resolution cross sections for geometry types,
respectively AC, ZZ and SQ. The cross section is computed in a wide frequency range,
0–50 eV, on an equidistant frequency grid of 1024 points. The broadening constant is
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3.5. Dependence on the Flakes’ Size:
Zigzag vs Armchair

connected to the frequency resolution �Ê: ‘ = 1.5 �Ê, �Ê = 0.07324 eV. The spectra
are normalized in these plots for the sake of comparison. Without normalization the area
under cross section curves would be proportional to the number of electrons as the f -sum
rule dictates, see equation 1.104.

The maximal size of hexagonal flakes is 1014 carbon atoms for both AC and ZZ hexag-
onal flakes which correspond to a lateral size of about 60 Å. The number of carbon atoms
in AC flakes is 18N(N ≠ 1) + 6, while for ZZ flakes it is 6 N2, where N is number of
hexagons along the edge of the flakes.

As commented before, in all plots we can see two main groups of peaks. For small
flakes, the single-particle excitations can be resolved in the fi and ‡ plasmon frequency
range. As the flakes get larger, the density of the excitation spectrum increases and the
two peaks become more and more defined. Low-resolution spectra, obtained using a larger
broadening parameter, are presented in Figures 3.12(a), 3.12(b) and 3.12(c) respectively
for AC, ZZ and SQ flakes. A broadening constant ‘ = 1 eV is used in the plots. In the
low-resolution plots, we can clearly identify that the maxima of envelope functions “move”
towards lower frequencies as the flakes grow in size. This trend is true for both – fi and ‡
plasmons – and for all the geometries we considered.
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Figure 3.12: High-resolution optical cross section ‡(Ê). The cross sections for AC, ZZ,
and SQ flakes are collected on panels (a), (b) and (c), respectively. The cross sections are
normalized to enable a qualitative comparison.
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Figure 3.13: Low-resolution optical cross section ‡ (Ê). The cross sections for AC, ZZ,
and SQ flakes are collected on panels (a), (b) and (c), respectively. The cross sections are
normalized to enable a qualitative comparison. A relatively large broadening (‘ = 1 eV)
does not merge fi and ‡ bands, but clearly reveals two envelop functions.

The frequencies of the fi and ‡ resonances can be unambiguously determined from low-
resolution spectra. We collected the frequencies in Table 3.3. For all the data we used a
broadening constant equal to 1 eV. From the data, one can recognize that the frequencies
of neither fi or ‡ plasmonic resonances do strongly depend on flake’s shape or edge’s
type. However, the plasmonic frequencies do depend on the size of flakes. These facts
can be understood from the fact that the observed plasmons in the flakes derive from the
corresponding ones in the infinite graphene layer, i.e., they derive from “bulk” collective
modes. Moreover, it is worth to point out as already described in section 3.3 that the
frequencies of the fi plasmon shown in Table 3.3 for the big flakes are in good agreement
with the experimental value of 4.7 eV131 found for free standing graphene. If we compare
the position of the fi plasmon for the biggest of the AC and ZZ flakes we notice that for
the AC flake the value is closer to the experimentally obtained even though the di�erence
between the two values is minimal. For the SQ flake the same value as in the AC case is
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found.

Shape Formula N
e

fi peak, eV ‡ peak, eV

AC

C
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H
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186 5.82 18.12
C
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H
30

486 5.31 18.08
C

222

H
42

930 5.08 17.91
C

366

H
54

1518 4.95 17.83
C
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H
66

2250 4.85 17.77
C
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H
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3126 4.79 17.75
C
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H
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4146 4.74 17.62

ZZ
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408 5.42 17.99
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30
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1218 5.05 17.77
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4134 4.81 17.54

SQ

C
20

H
12

92 6.33 18.79
C

28

H
14

126 5.93 18.76
C

66

H
22

286 5.49 18.09
C

170

H
36

716 5.13 17.96
C

252

H
44

1052 5.04 17.88
C

350

H
52

1452 4.96 17.82
C

464

H
60

1916 4.89 17.77
C

858

H
82

3514 4.78 17.72
C

1080

H
92

4412 4.74 17.53

Table 3.3: Plasmonic frequencies. One can observe that, for large flakes, with a number
of electrons Ne > 500, the frequencies of neither fi or ‡ plasmonic resonances do strongly
depend on flake’s shape or edge’s type. The size of the flake, however, plays a determinant
role. The number of valence electrons N

e

is indicated in the third column.

In Fig. 3.14(a) and 3.14(b) the frequencies of fi and ‡ plasmons versus the number
of electrons are plotted for the three di�erent types of flakes. The trend of the points
representing the positions of the peaks suggest that the plasmonic frequencies almost
exclusively depend on the size of flakes, although a minor deviation from this observation
is obvious for small flakes. Edges/surface contribution diminishes as the flakes get bigger
and bigger. In Fig. 3.14(b) the last group of points when the flakes contains more than
4000 valence electrons is oddly redshifted. The use of SZ for such high energy range could
a�ect the results, although we could not verify this by comparing to a better calculation.

In conclusion we can say that no clear edge e�ects on fi and ‡ plasmon position are
observed. In all the three cases (AC, ZZ and SQ) the position of the plasmons decreases
smoothly, reaching the measured experimental value of 4.7 eV131 for the fi plasmon. The
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energy of the plasmons seems to be stabilized, so we do not expect very strong shifts even
for larger flakes.
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Figure 3.14: Frequencies of confined plasmons. The data from Table 3.3 suggests an
approximate independence of plasmon frequencies on the details of the geometry, for both
fi and ‡ plasmons (panels (a) and (b), respectively).

3.5.1 Polarization Dependence of Optical Response
So far we have plotted spectra showing the average value of the polarizability or cross
section. Namely, the diagonal component of the polarizability tensor were averaged, i.e.
(–xx + –yy + –zz)/3, see paragraph 1.3.7. Where the subscripts indicate the direction
of the incident light and the direction along which the dipole is measured. Due to the
2D geometry of the flakes we expect di�erences in the optical response depending on the
di�erent polarization direction of the incident light and the direction of the density dipole
created (in-plane and out-of-plane). Measuring experimentally such dependence can be
di�cult as the samples have to be aligned with respect to the electrical field of the incident
light. In our theoretical framework this can be done by analyzing the components of the
polarizability tensor. Due to the symmetry of the flakes the o�-diagonal components of the
polarizability (–xy, –xz, . . . –zy) are negligible for AC, ZZ and SQ flakes. In the case of SQ
flakes, the –xy (and so –yx) component can be di�erent from zero if mirror symmetries
are broken. If z is normal to the flake’s plane, and the flake is flat, then –xz (–zx) and –yz

(–zy) have to be zero by definition – due to reflection symmetry along the flake’s plane.
Thus, the remaining diagonal components (–xx, –yy and –zz) characterize the whole
optical response. The in-plane components Pxx(Ê) and Pyy(Ê) are equal in the hexagonal
AC and ZZ flakes. This is due to the six-fold symmetry of the AC and ZZ flakes. On the
contrary, square and rectangular flakes exhibit di�erent in-plane polarizability components.
SQ flakes present both types of edges reducing the symmetry of the flakes. In Fig. 3.15(a)
the in-plane components Pxx(Ê), Pyy(Ê) for the square flake C

170

H
36

are shown while the
out-of-plane component Pzz(Ê) is shown in Fig. 3.15(b). As explained above, the two
in-plane components Pxx(Ê) and Pyy(Ê) slightly di�er for square flakes, however, both
contribute to the polarizability ‡(Ê) in a fairly similar way.
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Figure 3.15: Diagonal components of the polarizability tensor Pij(Ê) for the square flake
C170H36-SQ. The in-plane components Pxx(Ê) and Pyy(Ê) are shown in panel a), while
in panel b) the out-of-plane component Pzz(Ê) is shown. The out-of-plane response is
non-zero only in the high-frequency range ≥12–25 eV.

In plane components of the polarizability contribute over the whole frequency range,
giving rise to the fi and ‡ plasmons peaks. In contrast, the out-of-plane component
Pzz(Ê) has non-negligible values only in the high frequency range, approximately above
12 eV. Recalling the results of the symmetry-channel analysis from section 3.4 we can
immediately exclude the fi æ fiú transitions to be responsible for the Pzz(Ê) polarizability.
Moreover, we performed the symmetry-channel analysis for the out-of-plane component:
the component has been wiped out completely whether ‡ or fi molecular orbitals were
removed. Therefore, we conclude that solely fi æ ‡ú, ‡ æ fiú transitions are responsible
for the Pzz(Ê) component of the polarizability. The fact that only fi æ ‡ú, ‡ æ fiú

transitions contribute to the Pzz(Ê) polarizability can be understood from the selection
rule for the dipole matrix elements ÈÂi| z |ÂjÍ. The dipole matrix element is zero if the
eigenfunctions Âi possess the same mirror symmetry with respect to the xy plane because
of the odd character of the dipole operator z. The other flakes (AC and ZZ) considered in
this work exhibit a similar behavior, of in-plane versus out-of-plane components, with the
only di�erence that the in-plane component is isotropic.

3.5.2 Optical Gap
In section 3.5 we have shown that plasmons do not strongly depend neither on the shape
nor on the details of edge’s structure. Indeed, the fi and ‡ plasmons are inherent to the
graphene lattice, i.e. they appear in every large-enough carbon flake, and their position
depends solely on the size of the flake. In contrast to this geometry-insensitive behavior,
the optical gap depends strongly on the details of the flake’s geometry. The optical gap
(�opt) is defined as the lowest-frequency dipole-allowed transition, i.e. the optical gap is
the frequency of the lowest energetic peak in the absorption cross section. For this purpose,
the cross sections for AC, ZZ and SQ flakes are analyzed at high resolution, i.e. using a
small imaginary factor ‘. The use of a small ‘ value reflects in the spectra with very sharp
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peaks allowing us to extract the value of the maximum of the first optical peak. The results
are displayed the Table 3.4 and Figure 3.16(a). The dependence of the optical gap on the
number of electrons is smooth. The optical gap decreases monotonically while increasing
the size for all hexagonal flakes. Eventually, the optical gap should converge to 0 eV for big
flakes, approaching the limit of the infinite graphene sheet. Moreover, for di�erent kind of
flakes the optical gap have di�erent dependence on flake’s size. Actually, the optical gap
approaches zero “faster” in ZZ flakes. Furthermore, it is interesting to compare the optical
gap �opt with the so-called KS gap �DF T , which is the lowest-frequency dipole-allowed
transition in the non-interacting picture. For the flakes studied the �DF T corresponds to
the energy di�erence between LUMO and HOMO. From Table 3.4 we see that the KS gap
shows a similar behavior as the TDLDA optical gap. The two series of data, for �opt and
for �DF T , have the similar dependence with the number of electrons in the system.

Kernel Shift
We define the kernel shift (�kernel) as the di�erence between the �opt and the �DF T .
For AC and ZZ flakes the kernel shift depends on the size of the flake as can be seen
from Table 3.4 in 6-th column and in Fig. 3.16(b). As the flakes get bigger and bigger
the promotion of only one electron from the HOMO to the LUMO a�ects the system
to a lesser extend, leading to a more moderate absolute shift between �opt and �DF T .
This is a well-known pathology of local and semi-local exchange-correlation kernel. A more
sophisticated description of long-range exchange is necessary to get a proper renormalization
of delocalized electron-hole pair excitations in very large/infinite systems. However, we
notice that if we look at the ratio R = �kernel/�opt, qualitative di�erences are found
between AC or ZZ flakes, as illustrated in Fig. 3.16(c). The relative kernel shift R increases
linearly with the number of electron ZZ flakes while it remains rather flat for AC flakes. The
nature of the edges seems to play a crucial role in this case. The relative renormalization
due to the kernel, Fig. 3.16(c), which takes into account electron interactions, is bigger
for flakes presenting only zigzag edges. The confinement of the HOMO and LUMO on
the edges of the zigzag flake (the HOMO electron density is plotted in Fig. 3.18(b), the
corresponding LUMO electron density presents a pattern very similar to the HOMO one)
can be traced as the cause of such a di�erence in the dependence of the kernel shift ratio
R versus AC flakes. In armchair flakes, the HOMO as well as the LUMO are well spread all
over the flake, this is shown in Fig. 3.18(a). The separation of the electron charge located
on the edges of the ZZ flakes makes the screening of the other electrons more di�cult
leading to a bigger relative blueshift renormalization. This last conjecture is supported by
the fact that around the optical-gap energy the density change is located mainly on the
edges, see Fig. 3.19(d) and Fig. 3.19(e), and by the fact that, as showed in chapter 6, the
plasmonic resonances are build up out of a linear combination of KS orbitals around the
energy of the resonance at least at low energies. A more direct estimation of the kernel
shift behavior is possible in a simplified calculation of the interacting transition energies
using Laurent expansion of the interacting response formulation.
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Shape Formula N
e

Optical
gap (eV)

DFT gap
(eV)

Kernel
shift (eV)

Relative
Kernel

shift (eV)

AC

C
42

H
18

186 2.916 2.368 0.548 0.188
C

114

H
30

486 1.835 1.472 0.363 0.197
C

222

H
42

930 1.340 1.062 0.278 0.207
C

366

H
54

1518 1.057 0.8311 0.2259 0.2137
C

546

H
66

2250 0.8717 0.6823 0.1894 0.2173
C

762

H
78

3126 0.7432 0.5785 0.1647 0.2216
C

1014

H
90

4146 0.6480 0.5024 0.1456 0.2247

ZZ

C
54

H
18

234 2.437 1.788 0.649 0.266
C

96

H
24

408 1.706 1.227 0.479 0.281
C

150

H
30

630 1.238 0.864 0.374 0.302
C

216

H
36

900 0.9109 0.6131 0.2978 0.3269
C

294

H
42

1218 0.6798 0.4347 0.2451 0.3605
C

384

H
48

1584 0.5086 0.3063 0.2023 0.3978
C

486

H
54

1998 0.3805 0.2140 0.1665 0.4376
C

600

H
60

2460 0.2843 0.1485 0.1358 0.4777
C

726

H
66

2970 0.2139 0.1020 0.1119 0.5231
C

864

H
72

3528 0.2013 0.0694 0.1319 0.6552
C

1014

H
78

4134 0.1185 0.0469 0.0716 0.6042

Table 3.4: The optical gap �opt, the DFT gap �DF T , the kernel shift �kernel and relative
kernel shift �kernel/�opt are shown for AC and ZZ flakes. The number of valence electrons
N

e

is also given.
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Figure 3.16: The optical and KS gaps are shown in panel (a). In panel (b) the kernel
shift (�kernel = �opt ≠ �DF T ) versus the number of electrons in the flake is shown. The
relative kernel shift �kernel/�opt is shown in panel (c).

Optical Gap Dependence on Number of Electrons
The smooth dependence of the optical gap on the number of electrons and the fact that
gap should approach the graphene limit, i.e. zero, as the number of electrons goes to
infinity (Fig.3.16) facilitate analytical fits which are similar to the scaling rules for graphene
nanoribbons.132,133 Indeed, the optical gap of AC flakes obeys a two-parameter power fit
G = (N

e

/N
0

)1/a to a high precision. Here N
e

is the number of (valence) electrons, N
0

and a are the fit parameters. Parameters must be N
0

= 1694.0, a = ≠2.0642 to obtain
the gap in eV, with a maximal deviation from calculated gap 0.006 eV.

In contrast, the optical gap of ZZ flakes does not obey the simple power law to such
a high precision. However, it is possible to suggest a tri-parameter formula which permits
an analytical solution

G = G
0

N1/a
e

e≠Ne/M . (3.1)

The parametric fit formula (3.1) allows to express the parameters G
0

, a and M via three
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calculated points from the table (3.4). For optical gap of AC flakes we choose points
N

e

= 186, N
e

= 1518 and N
e

= 3126, while for ZZ flakes we choose N
e

= 234, N
e

= 1218
and N

e

= 2460. Consequently, we obtain for AC flakes M = 136739.0, a = ≠2.0908 and
G

0

= 35.584 and for ZZ flakes M = 2860.139, a = ≠1.7740 and G
0

= 57.279. The
parameter M for AC flakes is 48 times larger than for ZZ flakes. This ratio tells that
even a simple power law fits the optical gap for AC flakes rather accurately. The maximal
deviation of tri-parameter fit (3.1) for ZZ flakes is 0.03 eV, while for AC flakes it remains
below 0.006 eV. Moreover, the parameter a is close to ≠2 for both AC and ZZ flakes.
This suggests, reasonably, that the optical gap would be inversely proportional to a linear
dimension of the flakes, rather than to their surface dimensions (area). The two-parameter
fitting curve found for AC flakes and the tri-parameter fitting curves found for AC and ZZ
flakes are shown in Fig. 3.17 together with the original data.
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Figure 3.17: Fitting curves are shown together with the original data for hexagonal flakes.

Square flakes show radically di�erent dependence of the optical gap on flake’s size.
Optical and KS gaps for square flakes are collected in Table 3.5. For square flakes, the
optical gap abruptly goes to negligible values already for rather small flakes (66 carbon
atoms in our case). In order to understand this behavior, we track down its origin to
the underlying DFT calculation. The data in the table shows that the DFT gap behaves
qualitatively similar to the true optical gap. In fact, the calculations show that the spectra
of DFT eigenstates appear nearly degenerated at the Fermi energy. The number of the
states at Fermi energy grows with the size of the flake. However, on the contrary of what it
is done in chapter 4 it is not possible to estimate the degeneracy of the Fermi-energy states
by means of Lieb’s theorem134 and using triangular bipartition of honey-comb lattice, as it
is possible for triangular flakes.135

Alternatively, we can explain the gap closure in SQ flakes by a comparison with the band
structure of nano ribbons. The zigzag nano ribbons possess edge states that determine
the closure of their band gaps in the non spin-polarized case.136,137 The band structure
of a nano ribbon can be used to approximate the KS spectrum of SQ flakes if one takes
into account only the k points allowed by the momentum discretization. The valence and
conduction bands of zigzag nano ribbons in momentum space meet when k takes values
between 2fi/3 and fi (2fi/3 < k < fi)137 if the width of the ribbons exceed certain value
(fi is the border of the Brillouin Zone (BZ)). Therefore, we should expect a gap closure
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in the SQ flakes beyond some critical size, when the now discrete k values start to fill
the nano ribbon zero-gap range 2fi/3 < k < fi. In particular, if we take a finite ribbon
made of 3 unit cells we obtain the gap closure. We performed additional DFT calculations
of rectangular flakes in order to characterize the degeneration of Fermi-energy states. As
expected, the calculations indicate that mainly the length of zigzag edge determines the
degeneracy, i.e. as the size of the flake increases the sampling of the BZ adds points in the
zero-gap range 2fi/3 < k < fi. This observation is also supported by the spatial distribution
of the Fermi-energy states, see fig.3.18(b).

Shape Formula N
e

Optical
gap (eV)

DFT gap
(eV)

SQ

C
20

H
12

92 2.50 1.66
C

28

H
14

126 1.51 0.76
C

66

H
22

286 0.05 0.01127
C

170

H
36

716 0.05 0.01764
C

252

H
44

1052 0.17 0.00291
C

350

H
52

1452 0.02 0.00196
C

464

H
60

1916 0.06 0.00195

Table 3.5: Optical and DFT gaps are shown for SQ flakes.

In Figures 3.18(a), 3.18(b) we plot the isosurfaces of the HOMO electron density for
AC, ZZ respectively. While in Figure 3.18(c) the electron density describing the almost
degenerated levels around the Fermi energy is plotted. The electron density is distributed
almost evenly across the area of AC flakes, while it is localized at zigzag edges in ZZ
and SQ flakes. The optical gap of ZZ and SQ flakes depends very di�erently on the size,
although the zigzag edges “attract” the eigenstates close to Fermi energy in both ZZ and
SQ flakes. We think that the di�erence in behavior is caused by the fact that edges in SQ
flakes do not interact due to their small overlap, while in ZZ flakes do interact because
their terminations are always spatially close to each other, independently on the size.
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(a) (b)

(c)

Figure 3.18: Electron density of HOMO levels are plotted for the flakes C
222

H
42

-AC,
C

216

H
36

-ZZ in panels (a) and (b) respectively. In panel (c) the electron density created
by the almost degenerated levels around the Fermi energy is plotted. The plots were done
using the molecular visualization software VMD.128,129

3.6 Induced Density Change
Another approach to characterize the optical absorption consists in the analysis of the
induced density given by Eq.1.56,

”n(r, Ê) Ã
⁄

Ê
win

⁄
‰(r, rÕ, Ê)rÕ

jdrÕdÊ.

The frequency integration is done over a chosen frequency window (Êwin) that can include
an entire group of peaks or just the width of a single peak. ”n is complex valued quantity.
As explained in section 1.3.3 the imaginary part of the polarizability is proportional to the
photo-absorption losses of the system. Thus, the imaginary part of the density change gives
a graphical idea of the areas where photo-absorption takes place. Moreover, the imaginary
part characterizes the resonant oscillating-charge modes in real space. On the other hand,
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the real part of the density change is needed in order to calculate the density change in
time domain as explained in section 1.3.9. However, for our purposes for the rest of the
chapter we focus only on the imaginary part of the density change.

Thanks to the induced density plots it is possible to analyze the spatial distribution of
the electron cloud. This opens the possibility to characterize the di�erent oscillating-charge
modes as well as the contribution of di�erent atoms to the optical polarizability. Figure
3.19 shows the isosurfaces of electronic density change in three frequency ranges 0–2, 2–10
and 10–30 eV for the flake C222H42-AC in panels (a), (b) and (c); for the flake C216H54-ZZ
in panels (d), (e) and (f); for the flake C170H36-SQ in panels (g), (h), (i), (j), (k) and (l),
respectively. The direction of the external electrical field is vertical in-plane in panels (a),
(b), (c), (d), (e), (f), (g), (h), (i). While, in (j), (k) and (i) the field is horizontal. We can
see that the density change is distributed di�erently for the three frequency windows. In
the optical range 0–2 eV, the region dominated by the fi plasmon, the density change of AC
and square flakes (Figures 3.19(a), 3.19(g) and 3.19(j) respectively) is broadly distributed
along the vertical axis, while it resides mainly at the edges (Fig. 3.19(d)) for the ZZ flake.
Interestingly, in a mid-UV band 2–10 eV, the density change is induced on the edges for all
the flakes (Figures 3.19(b), 3.19(e), 3.19(h) and 3.19(k)). This fact can be surprising for
the AC flake. In contrast to the mid-UV band, the density change due to high-frequency
excitations (corresponding to the ‡ plasmon) is distributed evenly among the atoms in
the flakes (Figures 3.19(c), 3.19(c), 3.19(i) and 3.19(l)). However, the carpet-like high-
frequency density changes are qualitatively di�erent from the broad distribution for AC
and SQ flakes in the optical band. Namely, the sign of the density change remains mainly
the same over the upper and lower part of the flake at low frequencies and changes from
carbon-carbon bond length at high frequencies. Loosely speaking, at low frequencies, the
optical response can be represented as a very few dipoles separated by the characteristic
length of the flake, while at high frequencies, the generated dipoles are separated by a
graphene lattice constant.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.19: Imaginary part of density change in graphene flakes. Frequency bands, optical
0–2, mid-UV 2–10 eV and extreme UV are considered for armchair flake in panels (a), (b)
and (c); for zigzag flake on panels (d), (e) and (f); for square flake in panels (g), (h) and
(i), respectively. The isolevel value is set to 10% of the maximum intensity for each plot.
The plots were done using the molecular structure visualization software XCrySDen.138
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3.7. Tailoring and Passivation of Graphene
Nanoflakes

The maps of the density change like those shown in Fig. 3.19 identify the flake’s parts
that are mostly responsible for photo-absorption losses giving a hint on how local physical
and chemical perturbation e.g. adsorbed atoms on the surface, functionalized edges or
an interaction with a tip would a�ect the optical response. Moreover, the spatial map of
density change may be regarded as a tool for constructing new flake’s geometries with
particular optical properties, as it is shown in section 3.7.

3.7 Tailoring and Passivation of Graphene
Nanoflakes

Graphene-flake tailoring can give the possibility to select certain desired optical properties,
designed new flakes can have very di�erent optical absorption. For example, in the optical
range for the rectangular flake (Figures 3.19(i) and 3.19(l)) a significant part of the density
change is located at the corners of the flake. Because the density change is symmetric,
only diagonal components of the polarizability tensor Pij(Ê) are non-zero. However, we can
anticipate that by removing a corner of the flake we can destroy the symmetry of generated
dipoles and the polarizability tensor will acquire significant o�-diagonal components.
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3.8. Chemical modification of graphene flakes
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Figure 3.20: Polarizability components of “tailored” flakes. O�-diagonal and diagonal
components are compared for flakes with one and two removed corners (RC) on panels (a)
and (c). Isosurfaces of corresponding density changes (in the optical range, 0 . . . 2 eV, with
electrical field oriented vertically) are plotted on panels (b) and (d).

In order to check this conjecture, we take the flake C
170

H
36

and remove one or two
corners. The geometries of the flakes with removed corners (RC) C

160

H
34

-RC and C
150

H
32

-
RC are shown in Fig. 3.20, on panels (b) and (d), respectively. The components of the
corresponding polarizability tensors are shown on panels (a) and (c). We can see that the
o�-diagonal component Pxy(Ê) of the flake with one removed corner is not negligible if
compared with its own diagonal component Pxx(Ê).

3.8 Chemical modification of graphene flakes
So far only hydrogen-saturated flakes have been considered although graphene flakes can
covalently bind the other chemical species. Unlike simple tight-binding models, the method
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we employ allows to predict, from first principles, how chemical modifications a�ect its elec-
tronic structure and optical properties. As first example, we substitute the edge-saturating
atoms in zigzag flakes. This choice is motivated by its simplicity and the observation that
edges play an important role for optical absorption of zigzag flakes in the low frequency
range (see figure 3.19). We study the saturations with hydrogen, fluorine and oxygen
atoms and with hydroxyl (OH) groups because these are among the most relevant for
applications.124

3.8.1 Edge Saturation with Single-Atoms
Fluorine and oxygen are the chosen atoms used to saturate the graphene dangling bonds. In
contrast to hydrogen-saturated flakes, we found that geometry relaxation strongly a�ects
the optical spectra of chemically modified flakes and the minimal basis is not always reliable
for this purpose. Consequently, in the calculations presented in this section we used DZP
basis with extended orbitals (energy shift of 100 meV). The flakes relaxed with fluorine
and oxygen show a planar structure as in the case of hydrogenated flakes. The bond
lengths (carbon-terminal atom) are equal to ƒ 1.109, 1.329, 1.222 Å for C

54

H
18

, C
54

F
18

and C
54

O
18

flakes respectively and ƒ 1.110, 1.330, 1.235 Å for C
216

H
36

, C
216

F
36

and
C

216

O
36

flakes respectively. The optical cross section of small C
54

A
18

and large C
216

A
36

flakes are shown in Fig. 3.21(a) and in Fig. 3.21(b) respectively, where the capital letter A
denotes an atom (H, F, O). The optical gap of the fluorinated and oxygenated flakes are
lower than that of the hydrogenated flakes. Whereby, the cross sections of fluorinated and
hydrogenated flakes are qualitatively similar, while the oxygenated flakes show much richer
optical spectra. Hydrogen and fluorine need just one electron to complete the outer shell,
this makes them chemically more similar compared to oxygen, which needs two electrons
to complete the shell. Therefore, in oxygenated flakes oxygen attracts more electrons and
causes a hole doping of the flake. The optical cross section for the small and the large flake
gives evidence that the hole doping (due to perimeter modifications) gets weaker as the
flake size increases. Namely, the strongest low-frequency resonance occurs approximately at
the same frequency in all the large flakes and exhibit approximately the same magnitudes.
The additional resonances of C

216

O
36

(below the strongest resonance) are much weaker
than similar resonances in the C

54

O
18

flake. As can be understood, chemical doping of
edges turned out to be more significant in smaller flakes. The hole doping of C

54

O
18

causes the optical resonances to spread over a larger number of frequencies, although the
magnitude of the resonances gets smaller than that of the hydrogenated and fluorinated
flakes.
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Figure 3.21: Optical cross section of zigzag graphene flakes with chemically alternative
edge terminations. The cross sections of small flakes C

54

A
18

on the panel (a) can be
compared with that of large flakes C

216

A
36

on the panel (b).

A further analysis of optical response is provided by the density change. In Figures
3.22(a), 3.22(b) and 3.22(c) the isosurfaces of density change for C

54

H
18

, C
54

F
18

, C
54

O
18

are shown respectively. The density change is caused by a vertically-polarized (within the
plane of the paper) light. The chosen windows of frequency include the optical gaps (2.45,
2.2, 0.7 eV) for C

54

H
18

, C
54

F
18

, C
54

O
18

, respectively. The density change is distributed
spatially in a similar way for hydrogenated and fluorinated flakes, while for oxygenated
flakes the distribution is qualitatively di�erent. The electron activity of the oxygenated
flake locates mainly on the oxygen atoms. The equivalued surface of the density change
can be approximated as a set of d-type spherical harmonics x2 ≠ y2 with principal axis
oriented along carbon-oxygen bonds. The shape hints a strong localization of electrons
towards oxygen, comparing to a relatively weak attraction by hydrogen and fluorine. As
stated above the qualitative di�erence for the oxygenated flake can be traced to the di�erent
electronic structure of the atom’s outer shell.
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Edge Saturation with Hydroxyl Groups

(a) (b) (c)

Figure 3.22: Density change for chemically modified flakes C
54

A
18

-ZZ. The density change
is caused by a vertically polarized light at the frequency of the first resonance of the cross
section. Panel a), b) and c) show the density change for terminal atoms H, F and O,
respectively.

3.8.2 Edge Saturation with Hydroxyl Groups
A richer behavior is caused by saturating graphene dangling bonds with hydroxyl groups.
The modification of the flake’s edges with hydroxyl groups (OH) is more complex than the
single-atom modifications discussed in section 3.8.1. The geometry optimization calcula-
tions show many di�erent equilibrium geometries in which the hydrogens in the hydroxyl
group can also stick out of the 2D-molecular-plane. Moreover, hydrogen-oxygen bonds of
the hydroxyl groups can be oriented di�erently with respect to the flake plane. In Figure
3.23(a)138 we show four geometries found by relaxing the flake with SIESTA starting from
slightly di�erent initial configurations. The colored enlarged dots indicate hydroxyl groups
which are sticking out of the plane. Although the total energy of the flakes increases with
the number of out-of-plane groups – see Table 3.6 where the total energy for the smaller
flake for 4 di�erent geometries is shown – there is an energy barrier which prevents a re-
laxation to the lowest-energy in-plane geometry. On average the C-O bond length is found
equal to ƒ1.365Å and the O-H bond length equal to ƒ1.000 Å.

Similarly, total energy, the optical cross section also depends on the chosen equilib-
rium geometry configuration. In Fig. 3.23(b) we show the cross sections for the four
considered flakes. The cross section curves are color-coded to create a connection with
the corresponding equilibrium geometries. We see that the symmetric geometries (first two
of Fig. 3.23(a)) lead to the appearance of single strong resonances in the range 0–2.5
eV, while the asymmetric geometries (last two of Fig. 3.23(a)) lead to the appearance of
many weaker resonances. In order to confirm the origin of the resonances, we analyzed
the non-interacting optical response functions. The corresponding non-interacting cross
sections (shown in the Figure 3.23(c)), are qualitatively similar to the true cross sections,
Figure 3.23(b). The analysis of the dipole transitions shows that the strong resonances of
symmetrical arrangements are four-fold degenerated, while the asymmetry (introduced by
hydroxyl groups) removes this degeneracy. The number of optical resonances is increased
due to the symmetry breaking.
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Edge Saturation with Hydroxyl Groups

System Total energy, eV
C

54

OH
18

, Geometry 1 -16478.31
C

54

OH
18

, Geometry 2 -16473.83
C

54

OH
18

, Geometry 3 -16476.73
C

54

OH
18

, Geometry 4 -16477.42

Table 3.6: Total energy of the system for di�erent geometry configurations.

Geometry 1 Geometry 2 Geometry 3 Geometry 4
(a)

 0  0.5  1  1.5  2  2.5  3Energy (eV)

(b)

 0  0.5  1  1.5  2  2.5  3Energy (eV)

(c)

Figure 3.23: Hydroxyl-saturated flake C
54

OH
18

-ZZ. The considered equilibrium geometries
are collected on panel (a). True optical cross section is shown on panel (b), while the non-
interacting cross section is shown on panel (c). Filled colored circles on panel (a) indicate
the out-of-plane OH groups. Spectra on panels (b) and (c) are plotted with the same color
as the colored circles on panel (a).

In Fig. 3.24 the calculated density change for the lowest energy isomer of the hydroxyl-
saturated flake is shown. Hydrogen binds the spare oxygen electron and OH group becomes
chemically similar to hydrogen and fluorine. Similarity between OH group saturated flakes
and hydrogenated and fluorinated flakes are evident in the cross section, Fig.3.21, and in
the density change plot, Fig. 3.22.
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3.9. Conclusions

Figure 3.24: Density change for chemically modified flakes C
54

A
18

-ZZ. The density change
is caused by a vertically in-plane polarized light at the frequency of the first resonances of
the cross section.

In this section we demonstrated that the optical response of graphene flakes is tunable
by chemical modifications. The substitution of edge-saturating hydrogen atoms by fluorine
lowers the energy gap. In contrast, the oxygen passivation leads to a hole doping which
alters optical absorption of small flakes dramatically. In hydroxyl-saturated flakes many
equilibrium geometries can be achieved each of which produces a di�erent optical absorption
spectrum, lifting degeneration and thus, enriching the optical optical spectra.

3.9 Conclusions
The optical absorption of graphene-like nanoflakes has been studied in relation to its shape,
size and chemical doping. We have considered flakes of flat hexagonal and rectangular
shape. Due to the honeycomb structure typical for graphene-like material, hexagonal flakes
can have only one type of edge – ArmChair (AC) or ZigZag (ZZ). In contrast, the rectan-
gular flakes always have both types of edges. The flakes considered in the study contain
a minimum of 42 carbon atoms and up to 1080 carbon atoms. This was possible by em-
ploying the SZ basis set, a least computationally expensive basis set, which is proven to
provide reliable qualitative results as compared with more complete basis sets. We have
shown that the overall features of the absorption spectrum are not a�ected by the use of
this small basis set. Moreover, also the general behavior of well-defined excitation peaks in
relation to the flakes’ size and geometry can be analyzed even employing the minimal SZ
basis set available in SIESTA.

The results show that the low-energy features in the spectrum can be largely a�ected
by the edge’s type, even for relatively large flakes. In particular, the dependence of the
optical gap frequency on the edge type appeared to be evident and it can be traced back
to the edge states typical of the ZZ edge type. The presence of both ZZ and AC edges as
in the case of square flakes leads to closing the optical gap even for very small nanoflakes.
Contrary to the optical gap, the frequency of plasmon excitations almost independent on
size (starting from 500 electrons) and the edge type. Moreover, the capacity to plot and
analyze the induced density allows us to study in which part of the flake the absorption takes
place. Finally, the saturation of the dangling bonds by means of di�erent chemical species
has been proven to be a meaningful way to tailor the optical properties of nanoflakes.
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4 | Tunable Molecular
Plasmons in Polycyclic
Aromatic Hydrocarbons

In the work published by Manjavacas et al.139 we analyzed the e�ect of electronic doping
in Polycyclic Aromatic Hydrocarbons (PAHs). Moreover, in the paper we showed the
validity of the Tight-Binding (TB) method for calculating the absorption spectra and study
the e�ect of electronic doping. The TB results were compared to the more sophisticated
TDDFT results and they were found to be in good agreement. Both approaches succeeded
in capturing the behavior of PAHs under electronic doping. Furthermore, in the manuscript
we showed the plasmonic field enhancement when considering an array of PAH molecules
placed in proximity. In this Chapter we focus on the results for PAHs molecules obtained
with our TDDFT code.

Plasmonics has emerged as a promising path towards nanoscale light circuitry140,141 and
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optical integration,142,143 providing significant subwavelength confinement144 and mecha-
nisms for both spectral and spatial control over light propagation.140,145,146 The remarkable
structural tunability of plasmon resonances, as manifested from their strong dependence on
size, composition, and shape of the supporting nanostructure,147 enables light manipulation
at the nanoscale, but demands exquisite fabrication accuracy.

Traditional plasmonic materials are simple and noble metals, which are molded into
desired geometries by either chemical or lithographic methods. A vast amount of work
has been devoted to producing monodispersive colloids of nanoparticles of these materials
with specific morphologies such as spheres, shells, rods, stars, and simple polyhedra.148

Integration of such nanoparticles into plasmonic systems using chemical self-assembly149

o�ers a scalable strategy for high-yield synthesis of complex plasmonic nanostructures, al-
though control over individual particle positions and interparticle gaps is generally poor and
severely hampers the performance of the whole system. The alternative approach, based on
lithography, provides better control over the relative positions of individual components, but
su�ers from limited spatial resolution ≥10 nm and contamination from resists in electron
and optical lithographies and from spurious atomic species in focused ion-beam milling.

In this Chapter, we demonstrate plasmonic behavior in individual PAHs. Specifically,
we predict highly tunable low-energy plasmonic resonances in PAHs using TDDFT. These
molecules can be regarded as nanometer-sized forms of graphene, from which they inherit
their high electrical tunability. They consist of finite arrangements of aromatic benzene
rings and bear a close resemblance to the so-called graphene quantum dots,150 are readily
available through chemical synthesis106,151–154 and have been extensively investigated in a
variety of settings ranging from possible candidates for primitive forms of life155 to device
materials in electronic and optical applications.152 While the electronic excitations and
fluorescence properties of PAHs are well studied and understood,60,156,157 their collective
low-energy resonances and their dependence on the charge state and edge configuration
have, to our knowledge, not been addressed previously. Using state-of-the-art theoretical
calculations, we show the existence of pronounced collective electronic excitations in small
systems consisting of less than 100 carbon atoms, and we find their frequencies to be
strongly dependent on the charge state of the molecules. This behavior is reminiscent of the
plasmons recently observed in doped graphene.111,158 Furthermore, both the frequencies
and the strengths of these resonances are strongly renormalized with respect to the one-
electron transitions obtained in a noninteracting picture. For these reasons, in what follows
we refer to these excitations as molecular plasmons.

While the existence of plasmons has been extensively demonstrated in atomic-scale
systems such as atomic chains,159 fullerenes,160 and carbon nanotubes,161 we find that the
PAH structures provide a more general strategy for nanoscale plasmonics because their
molecular plasmons exhibit an exceptional structural and electrical tunability, as we show
below. Just like graphene,111,158,162 these carbon-based planar structures sustain plasmons
that can be switched on/o� through electrical doping. However, we find that the electrical
tunability of PAHs is even greater than for graphene. Quite remarkably, we find that
the plasmonic behavior of PAHs can be controlled by the addition or removal of a single
electron. For comparison, raising the Fermi level of an individual sheet of graphene by
1 eV, which is an a�ordable change, requires adding one electron for every 50 carbon
atoms, and thus, adding or removing one electron can be simply achieved through electrical
gating in molecules of that size. A significant advantage with PAHs over graphene is that
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4.1. Calculation Details

their extreme electrical tunability extends through the visible range of the spectrum, thus
emphasizing their potential importance for optoelectronic technologies. This analysis can
be straightforwardly extended to very large and coupled systems, in which PAHs can act
as tunable integrated plasmonic components. The findings enforce interest on chemically-
available structural-imperfection-free molecules for plasmonic devices development.

4.1 Calculation Details
For the ground state DFT calculations the SIESTA method6 is employed. We used the
local-density approximation (LDA)48 for the exchange and correlation energy and a double-
’ polarized (DZP) basis set, see Section 2.2.2. This yielded nearly identical results to
the ones obtained using the generalized gradient approximation (GGA).163 The DZP basis
contains 13 orbitals per C atom and 5 orbitals per H atom. The radii of those orbitals
are determined by an energy shift of 100 meV,6 see Section 2.2.3, and the fineness of the
real-space mesh is equivalent to a plane-wave cuto� of 100 Ry, see Section 2.2.1. In all
PAH molecules here considered, the carbon atoms along the edges are bound to hydrogen
atoms. We take the PAH atomic structures to be planar, with C-C and C-H distances of
0.142 and 0.109 nm, respectively. Note that structural optimized geometries do not show
qualitatively di�erent results, the emergence of low-energy optical transitions upon doping
is a robust e�ect, independent of the fine structural details, and it takes place even after
the e�ect of structural relaxation on the optical spectra of the molecules is considered. In
our theoretical framework we measure the above mentioned properties by changing the net
charge state of the molecules. In particular, in SIESTA via the input-flag NetCharge we can
perform DFT ground-state calculations specifying the net charge of the system. This allows
us to simulate the presence of an external gate enabling the PAHs to gain or lose extra
charge. Negative values of NetCharge correspond to a higher number of electron charges
in the system, while positive values of NetCharge lead to a system where electron charges
are removed. A value of NetCharge equal to -1 means an electron charge has been added
to the system. For the calculations presented in this chapter an electronic temperature
equal to 300K has been chosen. TDDFT calculations including the temperature e�ects
have been introduced in Section 1.3.7.

The KS orbitals and energies obtained with SIESTA are taken as input to calculate the
optical response of the system within TDDFT46 using the MBPT-LCAO.17,81 We disregard
spin-polarization e�ects, which we find to produce marginal energy shifts in the electronic
energies, and therefore, we expect them to contribute negligibly to the optical response.

4.2 Armchair and Zigzag Triangular PAHs
Let us first consider triangular shaped carbon PAHs. Due to the honey-comb lattice struc-
ture typical of graphene-like material the triangular PAHs have either ArmChair (AC) or
ZigZag (ZZ) edges. In Fig. 4.1 and Fig. 4.2 the optical cross section results for AC tri-
angular PAHs of di�erent sizes together with the corresponding geometries are shown. In
particular, the low-energy cross section is compared for AC flakes with di�erent net charge.
In Fig. 4.2 Q indicates the netcharge of the PAH: Q = 0 is the neutral system, Q = ≠1
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4.2. Armchair and Zigzag Triangular PAHs

indicates that one negative electronic-charge is added to the system and Q = 1 stands for
the removal of one electron charge from the system.

The smallest AC flake considered, see Fig. 4.1, is the triphenylene molecule and contains
2 benzene rings along each triangular side. In Figures 4.2(a), 4.2(b) and 4.2(c) we consider
AC triangular PAHs with a higher number of benzene rings along the side, respectively
with 3, 4, 8 benzene rings. In theirs neutral form (charge state Q = 0), no observable
excitation resonances are apparent in the low-energy region of the spectra. However, when
an electron is either added or subtracted from the molecules, new strong features emerge
in the absorption spectrum.

In particular, for triphenylene (Fig. 4.1), this is in agreement with the measured >4 eV
absorption gap.154 A satellite peak is also discernible to the right (left) of the dominant
feature for single electron (hole) doping. Adding a second electron or hole to the molecule
results in an increased plasmon strength and a blue shift in energy, as expected from the
higher concentration of doping charges.126 For the triphenylene molecule in Fig. 4.1 panel
(b) we plot the induced charge distributions corresponding to the di�erent peaks in the
optical cross section. The charge distribution analysis reveals that these modes have a
strong dipolar character, similar to those typically observed in coupled plasmonic systems,
and support our identification of the absorption features in this PAH as molecular plasmons.

Furthermore, in panels (c) and (d) are shown the density change and the optical cross
section for the noninteracting case. Also in this case, new resonances in the cross section
rise when we dope the system. This fact is then independent of the renormalizing kernel
and, thus, it can be understood by analysing the KS levels before and after doping. The
results of this analysis are presented in Section 4.2.1, where we relate the di�erent behavior
of AC and ZZ with their KS level degeneracy at the Fermi energy.

In general, we observed that all the AC triangular PAHs show a similar response under
doping, with the appearance of new low-frequency resonances as the system is electronically
doped. Notable, in AC triangular PAHs, low-frequency resonances can be turned on just
by adding or removing one electron. As expected, the bigger the flake the richer is the
absorption spectrum, with more peaks arising at low frequency once the flake is doped.
Completely di�erent is the behavior of ZZ triangular flakes, see Fig. 4.3. No new low-
frequency resonances arise after doping the flakes when we add (remove) a single electron,
and not even after a second electron is added (removed) from the system we are able to
observe new resonances in this energy window. In order to understand why this happens we
need to look at the energies of the KS orbitals around the Fermi energy (EF ), see Section
4.2.1.
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4.2. Armchair and Zigzag Triangular PAHs
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Figure 4.1: Triphenylene molecule. In panel (a) the interacting optical cross section is
shown while in panel (b) the corresponding induced density is plotted. Panels (c) and (d)
show the noninteracting density change and optical cross section, respectively.
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4.2. Armchair and Zigzag Triangular PAHs
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Figure 4.2: Cross section comparison for AC PAHs having di�erent dimension and with
di�erent net charge. On x-axis the energy in eV in shown. In each plot Q states the net
charge of the system.
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Figure 4.3: Cross section comparison for ZZ PAHs having di�erent dimension and with
di�erent net charge. On x-axis the energy in eV in shown. In each plot Q states the net
charge of the system.

4.2.1 Opening of New Transitions
The interacting absorption spectrum undergoes a strong renormalization which leads to
a spectrum that di�ers significantly from the non-interacting one calculated out of the
Kohn-Sham DFT orbitals. However, the opening of new transitions at low energy can be
tracked using a DFT ground states analysis as we are going to show in this Section.

In Fig. 4.4 we show the Density Of the State (DOS), obtained from the SIESTA DFT
calculation, for some triangular AC and triangular ZZ PAHs. In particular, in Fig. 4.4(a)
the two smallest undoped flakes of each family (AC and ZZ) are analyzed. On the bottom-
x-axis the orbital levels are shown, the HOMO level is highlighted by the vertical green
dashed line. The y-axis indicates the energy of the levels, the 0 represents the Fermi energy
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Opening of New Transitions

(EF ). The Fermi Dirac (F-D) distribution indicated on the top-x-axis is plotted as a green
curve. From Fig. 4.4(a) we note that for the AC PAH the EF lies within the gap while ZZ
PAH have degenerate levels at the Fermi energy. This behavior is the same in all AC and
ZZ PAHs, independent of the size of the PAH.

In Fig. 4.4(b) and Fig. 4.4(c) the DOS of doped PAHs is presented, respectively, for
the AC-4 and the ZZ-4. For the AC-4 we note that the DOS changes once we remove
electrons. On the contrary, the DOS of the ZZ-4 system is unchanged. This behavior
holds for all the AC and ZZ PAHs and even for doping levels as minimal as one electron.
In fact, when we consider for example the AC-4 PAH we see that, even when one single
electron is added (removed) it has to occupy the LUMO (leave a vacancy in the HOMO)
opening the way for new low-energy electronic transitions, i.e. LUMOæLUMO+n (HOMO-
næHOMO) transition. Degenerate partially-occupied electronic levels are now found at the
Fermi energy. By adding (removing) a second electron we observe a less drastic change in
the spectra with the possibility of rising new resonances. In general, for all AC PAHs, the
KS level configuration guarantees the appearance of new resonances in the optical spectrum
after electron doping.

For ZZ flakes the situation is di�erent, ZZ flakes have degenerate orbitals partially
occupied around the EF , before turning on new low-energy transitions all the levels need
to be filled or emptied. This does not happen by adding (removing) only one or two extra
electronic charges to the system, as can be seen in Fig. 4.4(c) where we compare the
pristine ZZ-4 flake with the doped one. Much heavier electron doping is needed to move
the Fermi energy and allow new excitations in the optical cross section.

In general, the optical unresponsiveness of ZZ triangular PAHs to light electronic doping
can be connected to the presence of degenerate edge states at the Fermi energy. Moreover,
we can correlate the size of the flake with the number of degenerate levels. Following Lieb’s
theorem,134 it is the di�erent number of atoms belonging to the two graphene intertwined
hexagonal carbon sublattices (a and b) that define the number of degenerate orbitals.135

In Fig. 4.5 the two sublattices a and b are shown for the AC-4 (left) and a ZZ-4 flake
(right). The ZZ-4 in Fig. 4.5 has an unbalance between the two sublattice sites equal to
3 and indeed 3 degenerate levels at the Fermi energy are found, see Fig. 4.4(a).
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Figure 4.4: In each graph the bottom-x-axis indicates the molecular levels, the vertical
dashed green line defines the HOMO level. The energy in eV of the di�erent levels is
indicated on the y-axis, 0 is Fermi energy (EF ). The top-x-axis shows the Fermi Dirac
(F-D) distribution. In panel (a) a comparison between pristine AC and ZZ flakes for Q = 0
is shown. In panel (b) and (c) the levels of AC-4 and ZZ-4 triangular flakes for pristine and
doped systems are plotted, respectively.

a

a
b

b

AC - 4 ZZ - 4

Figure 4.5: The sublattice sites a (red atoms) and b (green atoms) are shown. For the
AC-4 flake (left) the a and b sites are balanced. While, for the ZZ-4 flake (right) the
unbalance is equal to 3.
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4.3. One Dimensional PAHs

4.3 One Dimensional PAHs
In this section we show the optical response of one-dimensional PAHs. The C-C and C-H
distance is taken, as in the previous case, equal to 0.142 and 0.109 nm, respectively. All
the structure are planar.

One-dimensional PAHs behave similarly to triangular AC PAHs. Doped PAHs show
low-energy resonance peaks that are not present in the undoped systems.
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Figure 4.6: Cross section comparison of one-dimensional PAHs having di�erent dimension
and di�erent net charge. On x-axis the energy in eV in shown. In each plot Q states the
net charge of the system.

4.4 Conclusions
We have shown that PAHs with AC edges can sustain optical excitations at visible and near-
infrared frequencies and that their energies are strongly dependent on the net charge state
of the molecules, to the point that the addition or removal of a single electron can switch
on/o� the existence of such excitations. The mode frequencies are strongly modified when
the e�ect of electron-electron interactions is taken into account via the kernel. However,
we were able to trace back to the KS DOS configuration the reason for such a behavior.
The existence of a gap in the AC pristine PAHs implies that, once doped, new transitions
are available. These new transitions are renormalized by the kernel but still visible in the
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optical response. On the contrary, PAHs with ZZ edges present degenerate KS levels at
the Fermi energy and, thus, for such low level of doping, doped systems do not show any
new low-energy transitions.

The renormalization due to the action of the kernel is interpreted as a signature of
collective electron motion, either in the form of multiply coupled e-h pair excitations or
severe renormalization of individual e-h pairs due to e�cient polarization of other modes.
Because of this incipient collective character, and in analogy to graphene plasmons, we
refer to these doping induced optical resonances as molecular plasmons.

The existence of tunable plasmons in molecule-sized graphene structures has to be
contrasted with the lack of well-defined plasmons in noble-metal nanoparticles of similar
diameter, where nonlocal Landau damping plays a relevant role (i.e., plasmons can directly
decay into e-h pairs). Additionally, our study poses new questions, such as how many
plasmons can be supported by a molecule with a small number of valence electrons, and
how large is the nonlinearity arising from the di�erence between the energy of a two-
plasmon state and twice the energy of one plasmon. These nonlinear e�ects, which are
essentially absent from traditional metallic nanoparticles, could be exploited in nonlinear
optical applications.

Other types of unique plasmonic applications of PAH structures include the optical de-
tection of atoms/molecules that act as charge donors or acceptors. Here, new plasmonic
features would signal the occurrence of a charge transfer reaction. As already demon-
strated for graphene in the infrared,164,165 electrical doping in a gated device could be used
to maintain a certain fraction of molecules deposited on a transparent gate (e.g., ITO)
in a charged state, thus enabling light modulation in the visible through fast electrical
gating technology. The magnitudes of the absorption cross sections of the plasmons are
comparable with the physical cross-section of the molecules, which could therefore be ex-
ploited to produce electrically tunable complete optical absorption166 (perfect absorbers)
in the visible. Finally we note that the plasmon linewidths (which have been fixed to 10
meV in the present calculations to facilitate the visualization of the spectra) are likely to
be even narrower in realistic systems. Such sharp plasmons may also provide large field
enhancements and be used in plasmonic waveguide applications.

PAH molecules can be regarded as nanometer-sized fragments of Graphene, but exhibit
plasmons in the visible rather than in the mid infrared part of the spectrum. An interesting
aspect of the molecular plasmons under investigation is that they require quantum me-
chanics to be properly described, and the interaction with each individual electron of the
molecules is important. The TDDFT method here employed provides an e�cient and rea-
sonably accurate tool to describe many-electron quantum interactions in PAHs molecules.
We believe that our study paves the way for a new area in nanophotonics benefiting from
the unique plasmonic properties of molecular plasmons.
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5 | Plasmonics at the
Atomic-Scale: Near Field
Distribution and Influence
of Quantized Transport at
Interfaces

Collective excitations of conduction electrons at the surface of metallic nanostructures,
commonly referred to as surface plasmons,167,168 provide a means to e�ectively bring light
to the nanometer-scale thanks to the ability of the nanostructures to produce subwave-
length field localization and large electro-magnetic enhancement in the proximity of the
nanostructures,4,5, 169–172 establishing metal nanoantennas and nanoparticles as relevant
building blocks in current nanooptics.29,173 The ability of light to coherently excite surface
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5.1. Atomistic Near-Field Nanoplasmonics: Field
Localization

plasmons in nanostructures174,175 closes the gap between electronics and photonics. Thus,
helping us to understand and control the optical response of nanosystems30 in the search
for nano-architectures that combine the current performance of miniaturized silicon-based
electronics with the fast control and engineering of optical signals.

As nanotechnology reaches a control of nanoarchitectures at scales of the order of the
nanometer and even subnanometer,176–180 nanooptics is called to face new regimes of in-
teraction, where the atomic scale needs to be considered to correctly determine the optical
response of the nanosystem. Optical processes at the atomic scale can be critical in many
branches of nanoscience such as in field-enhanced photochemistry,181–184 in single molecule
spectroscopy,185–189 or in electronics at optical frequencies.177,190–193 Surface plasmons are
central for the development and the high optimization level of many techniques and pro-
cesses, such as vibrational spectroscopies,,185,194,195 field-enhanced spectroscopy,169,195–200

photovoltaics,201,202 active control of nanodevices,111,203 thermotherapies,204 optical sens-
ing,205–207 optical nanoengineering,208 or near-field microscopy.169,188,189,209

Moreover, it has recently been shown that pushing the limits of nanometric plasmonics
down to the realm of the atomic scale, the interaction of metal surfaces in the subnano-
metric proximity drives new optoelectronic phenomena, where an interplay between the
photons, single electron transitions, plasmons, vibrations, and motion of atoms determine
the complex outcome of the optical response, including strong quantum e�ects and nonlin-
earities.172,179,210 Strong nonlocal dynamical screening211 and quantum tunnelling212–215

have been shown to drastically modify the optical response in a metallic subnanometric
gap, establishing the limit of localization and enhancement of the optical fields far below
the predictions from simple classical approaches.170,212,216–220 On the other hand, even if
typical surface plasmon excitations localize in the nanometer scale, recent ab initio calcula-
tions considering realistic nanoparticle structures have shown that the fine atomistic details
of the crystallographic facets and vertices of the metal particle, with the presence of single
atomic protrusions and edges, introduce further nonresonant light localization.170,221 This
is analogue to the macroscopic lightning rod e�ect,144,222 but brought down to the atomic
scale. The work presented in this Chapter covers two subjects related to the exciting lines
of research described in the previous paragraph, namely, a study of the localization of the
local field and the coupling of quantum transport with the far-field response. This work has
resulted in two publications170,223 In particular, in this chapter in Section 5.2223 we tackle,
among other issues, the problem posed by the “miniaturization” of molecular structures
analyzing how structural atomistic details influence the plasmonic response in such nano-
size objects. This is done by simulating a nanocavity formed by two metallic nanoparticles
whose structures are prone to changes due to their proximity.

5.1 Atomistic Near-Field Nanoplasmonics: Field
Localization

In order to study the plasmonic response of nanosystems it is necessary to address the
problem theoretically within the framework of electronic structure methods going beyond
more commonly used classical approaches which fail in describing the atomic-scale features
produced by irregularity at the nanoscale. Classical approaches are often appropriate since
the atomic-scale features are typically hidden in far-field optical spectroscopies. Never-
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Structures and Computational Details

theless, in many physical and chemical processes nanoplasmonic modes are important and
depend on the detailed distribution of the near-fields in confined systems.

In a recently published work170 we have analyzed the evolution of the plasmonic response
together with the distribution of the induced-localized-electric field for a system composed
of two sodium nanoparticles placed in proximity and perturbed with an external electric
field. In this study, the distance between the clusters is changed allowing to analyze the
evolution of the optical plasmonic modes. The results for the optical properties showed
the important role of atomic-scale structure details for nanoclusters placed few Angstrom
apart. The two icosahedral nanoclusters contain 380 sodium atoms each. The single-cluster
structure has been optimized in order to find an equilibrium geometry. Starting from an
initial separation distance between the particles’ inner faces of 20 Å the two clusters are
brought together. The optical cross-section and the induced electric field is computed and
analyzed as a function of the separation distance.

5.1.1 Structures and Computational Details
The single cluster geometry optimization and the DFT ground state calculations for the
dimer were performed with the SIESTA code.6,7 The resulting Kohn-Sham wavefunctions
and energies were used as an input for the MBPT-LCAO TDDFT code.17 A Double–’
Polarized (DZP) basis set was used for all the DFT calculations. The extension of the
basis is given by an energyshift parameter equal to 100 meV. A MeshCutO� of 150 Ry
was used for determining the fineness of the real-space grid used to compute the Hartree
and exchange-correlation contributions to the energy and Hamiltonian. A description of
the detailed meaning of the above mentioned SIESTA parameter can be found in section
2.2. The icosahedral single-cluster structure containing 380 sodium atoms was optimized
starting from a configuration optimized with empirical potentials224 and available at the
Cambridge Cluster Database.225 The relaxation stopped when the forces acting on the
atoms were smaller than 0.03 eV/Å. The obtained structure of the Na380 turned out
to be very similar to the initial one, showing a slightly higher density due to the well–
known underestimation of the sodium lattice parameter by LDA,226 see paragraph 5.2.1.
In particular, the Local Density Approximation Ceperley-Alder (LDA-CA) functional has
been adopted here. The geometry of the clusters in all the cases is the same, only the
mutual position is changed. Once the optimized geometry is found, the two clusters are
placed in proximity and three di�erent configuration (face-to-face, tip-to-face, tip-to-tip)
are considered in the calculations, see Fig. 5.1.

The TDDFT calculations were performed employing the Adiabatic Local Density Ap-
proximation (ALDA), i.e. using the LDA exchange-correlation kernel. In Fig. 5.1 the three
considered configurations are shown. The separation distance (dsep) is defined as the dis-
tance between the two cluster inner facets or atom (for the tip-to-tip configuration). A
nominal size gap of zero value would correspond to the superposition of the atoms forming
the two opposing tips/faces. A change in the separation distance corresponds to a change
in the relative position of the clusters. The geometry of the clusters is not relaxed as the
distance is changed, but it is assumed to correspond to the of the free-standing clusters.
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a)

b)

c)

Figure 5.1: The three studied configurations are shown, starting from the top we find the
tip-to-tip configuration (a), tip-to-face configuration (b) and face-to-face (c) configuration.

5.1.2 Classical Dipole-Dipole Interaction
In this section we want to show the polarizability results obtained with a simple classical
model in which the two clusters are approximated with two polarizable point particles in an
external oscillating electric field. This simple model is able to describe the dispersion of the
main plasmonic modes as long as the dipole-dipole distance is larger that the size of the
dipoles. For low dipole-dipole distance, this model is not applicable anymore. Depending
on the direction of the external field we can have two relevant configurations,

-+ -+

ESystem axis

(a)

-

+

-

+

ESystem axis

(b)

Figure 5.2: Representation of the relevant dipole-dipole configurations in relation with the
external electric field. In panel (a) the direction of the electric field is along the two-cluster
system axis. In panel (b) the electric field is orthogonal to the two-cluster system axis.
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Classical Dipole-Dipole Interaction

In both cases, when the two dipoles are far apart, the dipole-dipole interaction is negli-
gible and each dipole behaves independently from the other. Once they are brought close
enough they interact and the total dipole moment acting on the dipole 1 can be written as
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12
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where r is the distance between the particles along the y coordinate. As we said if Ę
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is negligible the dipoles act independently on each other and the polarizability of each
particle is then given by, where we have assume that the response of the isolated particle
is dominated by a single resonance at Ê
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where “ << 1 and Ê
0

is the natural frequency of the oscillator. Equation 5.1 can be
written for dipole 2,
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Combining 5.6 in 5.1 we get

µ̨
1

= (1 ≠ –T–T )≠1–(T– + 1)Ęext (5.7)

where we used the fact that µ
1

= µ
2

. In our modelled dipole-dipole interaction we observe
a redshift as we decrease the distance between the two dipoles when the two particles
are oriented sequentially, see in Fig. 5.2(a). On the contrary they are blueshifted when
they are parallel, see Fig. 5.2(b). Our ab-initio simulations, as we will show in the next
sections, show the same trend. This is a oversimplified classical model where point particles
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and only dipole-dipole interactions were considered. However, in general, even in more
advanced classical approaches, they have some limitations and the need of a quantum-
correct model213 or a quantum approach170,223 is necessary to correctly describe the system
for intercluster distances below few Angstrom. If we compared the results in Fig. 5.3 with
the ab-initio results obtained for the nonrelaxed two-cluster system described in Section 5.2
we see, in particular, that the classical approach completely misses the tunneling regime.
The results on the absorption spectrum obtained with our ab-initio MBPT-LCAO code are
shown and explained in detail in the next sections.

(a) (b)

Figure 5.3: Simple model for the optical response of two point dipoles. The model is not
applicable when the interparticle distance starts to be comparable to the dipole size, i.e. the
size of the real particle. In panel (a) the electric field is aligned along the line connecting
the point dipoles. In panel (b) the electric field is orthogonal to the line connecting the
point dipoles.

5.1.3 Evolution of the Optical Absorption and Field
Localization with Inter-Cluster Distance

The three dimer configurations shown in Fig. 5.1 have very di�erent optical responses.
In Fig. 5.4 the absorption cross-section and the induced electric field distribution are
plotted. Moreover, in Fig. 5.4 we present the comparison between the ab-initio TDDFT and
TDDFT-LDA simulations within the Jellium Model (JM),210 where the plasmon cavity is
formed by a sharp spherical potential (positive background), Fig. 5.4 (d) and (h) panels. In
the JM only the valence electrons are treated explicitly, and the ionic cores are represented
through an homogeneous positive background potential limited by a spherical boundary
(jellium edge). In the comparison, we used JM spheres of radius 15.57 Å and fixed the
averaged electron density to that of bulk Na (Wigner-Seitz radius rs = 2.12 Å). The
resulting closed-shell JM cluster contains 398 electrons and is similar in size to the Na380
cluster tackled in the atomistic calculations.

For distances above ≥7 Å all the four spectra present a Bonding Dipolar Plasmon (BDP)
at very similar energies, dispersing as the two clusters approach, i.e. the BDP resonance
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redshifts as the two clusters get closer and closer.30,227,228 At such spatial separations no
significant current can flow from one cluster to the other, since the tunnelling probability
for electrons to go from one cluster to the other is small. As we keep approaching the
two clusters we eventually enter in the tunnelling regime, the BDP mode slowly disappears
leaving the way to the Charge Transfer Plasmon (CTP) and modes with higher angular
components, here so-called Quadrupolar Plasmon (QP) mode.

A more intense CTP corresponding to a larger tunnelling current is found for the face-
to-face configuration. Moreover, in this configuration a non-negligible tunneling current is
first observed at larger separation distance due to the larger contact area in the face-to-face
configuration. In the tip-to-tip configuration a smaller separation distance (dsep) is required
for the quenching of the BDP and the appearance of the CTP mode.

In Fig. 5.4 (e), (f), (g) and (h) the induced near-field is shown in the plane orthogonal
to the dimer axis and passing through the center of the nanoparticles for the face-to-face
(e), tip-to-facet (f), tip-to-tip (g), and jellium spherical (h) configurations. The width of
the gap is set in all the cases to dsep = 10 Å, with the incident light in resonance with the
hybridized BDP corresponding to the position marked with a green dot on the spectra to
the left. The Coulomb coupling between induced charges of opposite signs across the gap
leads to a strong localization and enhancement of the near fields in the gap. Overall, the
nanometric near-field distributions obtained in the full atomistic calculations at the BDP
frequency show similar gross features to those in the JM calculations. However, the exact
atomistic structure of the junction determines the details of the near-field distribution,
and in particular the appearance of extremely localized “hot spots”. In the face-to-face
configuration the field is distributed quite homogeneously in the whole cavity as expected.
Less intense atomic-scale hot spots can be also identified at the edges and vertices of the
di�erent facets of the nanocrystal surfaces. These are due to an atomic-scale lightning
rod e�ect. Lightning rod e�ect states that for an electrically charged object the electric
field is higher at the sharpest features of the object. In our case, what we observe is an
atomic-scale lighting rod e�ect where the electric field is enhanced by the sharp features
(edges and tips) of our nanoparticles. In the configurations with the tip, the tip-induced
enhancement produces an extreme localization of the local near-field down to an extension
of a few Angstroms. This extreme confinement of the fields is missing in the spherical JM.
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Figure 5.4: Spectral evolution of the absorption cross section of the plasmonic dimers (a),
(b) and (c) depicted in (e), (f) and (g) compared with the results obtained from jellium
sphere, (d) and (h). The direction of the polarization field is parallel to the dimer axis
and dsep is the interparticle distance (see the text for the precise definition). Separation
distances lower than 1 Å and negative distances represent overlapping clusters and have
been modeled in (a), (b) and (c) by modified geometries in which atomic layers of one
of the clusters are subsequently removed (region A, one layer removed; region B, 2 layers;
region C, 3 layers). Panels (e), (f) and h) show the distribution of the local induced–field
produced in the (y,z) plane containing the axis of the dimer for an energy in resonance
with the BDP and for a separation distance of 10 Å: (e) the gap is formed by a face-to-face
junction, (f) face-to-tip, and (g) tip-to-tip configurations. In (h) the same situation for a
dimer described by the jellium model is displayed.

The evolution of the field confinement in the gap as a function of separation distance,
dsep, and the corresponding change of the localization area A is further illustrated in Fig.
5.5, where the field enhancement is shown in the plane orthogonal to the axis dimer in
the center of the gap between the two particles for each configuration (face-to-face on
the left column, tip-to-face on the middle column, and tip-to-tip on the right column).
When the particles are far away from each other (dsep = 20 Å) a broad spatial profile of
the plasmonic near-field is obtained (top row). For smaller separations, dsep = 10 Å, the
profile of the near field reflects the atomistic structure of the nanoparticle surfaces across
the gap, showing a triangular shape for the face-to-face configuration, a round spot for
the tip-to-tip configuration, and a round spot on top of a triangular background for the
tip-to-face configuration. The tip-to-tip configuration corresponds to the strongest field
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confinement with the smallest spot size reduced to atomic dimensions, i.e. below 1 nm2 for
dsep ¥ 6 Å. For the face-to-face configuration, the spot profile and size change only slightly
when dsep is reduced from 10 to 6 Å, and the tip-to-face configuration is characterized by
an intermediate situation.

Figure 5.5: Local induced-field enhancement at resonance in the midplane of the gap
between two Na380 clusters for our three configurations, face-to-face gap (left column), tip-
to-face (middle column) and tip-to-tip (right column). The incident planewave is polarized
along the dimer axis. From top to bottom each case shows a decreasing separation distance
for each configuration, from dsep = 20 Å (largely separated particles, on the top row) to
dsep = 1 Å (interpenetrating situation on the bottom row). The influence of the atomic
scale features at the nanogaps is directly noticeable.

We can finally conclude by saying that with our first-principles full-atomistic TDDFT
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calculations we have demonstrated that the field localization and enhancement inside the
plasmonic nanogaps can be very di�erent depending on whether the distribution of the
atoms at the gap defines a flat surface, or presents atomic-scale tip-like protrusions. In fact,
we have demonstrated that the distribution of the near-field close to plasmonic nanoparticles
presents subnanometric hot spots that reflect atomic-scale features at the nanoparticle
surface.

It is important to underlight that not only the local field but also the low energy
far-field spectrum is a�ected by the clusters mutual configuration. This is evident if we
compare the TDDFT and JM results. In fact, although the JM detects the presence of
the CTP mode in the absorption spectrum, it fails to capture the dependence of this mode
on the detailed features of the cavity, see Fig 5.4. The reason being that, the CTP mode
involves the polarization of the whole connected dimer, and appears as a consequence of the
tunneling current established across the gap. It appears then clear that while approaching
the clusters the atomic-scale structure might be particularly important for the tunnelling
current to happen.

Further proves of the relation between the CTP mode and the current flowing through
the whole dimer are given and amply explained in Section 5.2 where we explicitly relate the
electron current with the CTP mode dispersion for clusters that are left free to rearrange
their atoms during the approaching and retracting process.

5.2 Metal-Nanocontacts Structure Evolution
Another key aspect to understand the behavior of particles brought in close proximity is
given by the possibility of atoms inside the particles and in particular in the plasmonic cavity
to rearrange. Depending on the plasticity of the material considered the relaxed structures
can vary dramatically from the ideal ones. When two metallic surfaces are approached and
put into contact, the formation of small metal necks or nanojunctions connecting them
is a very likely process229 that has been theoretically predicted229,230 and experimentally
observed.229,231–233 This work comes as a natural continuation of the study described in
section 5.1 where frozen clusters are considered. Here, we perform a deeper exploration on
how the optical response of plasmonic cavities simultaneously correlates with their structural
properties and transport properties,3 going beyond a macroscopic description234 and looking
at the atomic-scale regime where the e�ects of quantum transport at the interface must
be taken into account.235–237 Small metal neck formation and nanojunction structures are
at the root of friction phenomena in metal surfaces238 and give rise to quantized transport
following discontinuous changes in the contact cross-section.229,239–241 Here, we will show
that these rearrangements at the atomic scale also have noticeable influence on the optical
properties of the nanostructures.

In this study we correlate migration or repositioning of atoms in a metal neck, varia-
tion in conductance and change in the optical response. An observation of discontinuous
changes in the plasmonic response of the system accompanying each plastic deformation
event indeed confirms such correlation. This connection between quantized transport and
the evolution of the plasmonic response has also been pointed out in a recent report242

that considers the optical response of a small Na261 nanorod as it is stretched. In order to
address the complex correlation of electronics and optics in subnanometric junctions where
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the majority of the atoms in the system are allowed to adapt to the geometrical bound-
ary conditions, we performed atomistic quantum mechanical calculations of the electronic
structure, the optical response, and the structural evolution of a plasmonic cavity. The
plasmonic cavity in our simulations is formed by two large sodium clusters, containing 380
atoms each of them, in close proximity. While Na is not the most relevant material from
a technological points of view, we think that the properties observed here can be extrap-
olated, with care, to other metallic systems. The use of sodium allows performing larger
calculations, in terms of the number of atoms, as compared to other more technologically
relevant materials like, for example, gold. This increases the relevance of our results, since
the number of atoms involved in the structural reorganizations of the neck is indeed a small
percentage of those contained in the system.

Our approach consists in tracing the energetics, the geometry and the optical response
of the two metallic clusters which gradually get closer while allowing atoms to rearrange.
Eventually, the two particles are retracted until complete separation. For each approaching
and retracting step the geometry is optimized. Structural relaxations, using forces obtained
from DFT SIESTA calculations, are performed.

5.2.1 System Configuration and Computational
Details

Fig. 5.6 shows the single cluster optimized structure. The cluster contains 380 Sodium
atoms with a lateral dimension of ≥24 Å. The structural relaxation is performed first for an
isolated cluster. After the clusters were brought together and each cluster was allowed to
relax in response to the presence of its neighbor. Most distant atoms in the cluster dimer
were kept at fixed positions to simulate attachment to a bulky substrate All the structural
relaxations were performed using standard DFT as implemented in the SIESTA code.6,7

The starting icosahedral geometry has been obtained, as in the case described in section 5.1,
from a configuration optimized with empirical potential224 and available at the Cambridge
Cluster Database (CCD).225 However, in this case the Perdew-Burke-Erzenhorf density
functional (GGA-PBE) was used.243 We also used norm-conserving pseudopotentials244 to
e�ectively describe the core electrons and to perform the geometry relaxation calculations
for the single-cluster structure as well as for all the other configurations including the
two-clusters-system evolution. We used the DZP basis set of numerical atomic orbitals
generated using an energy shift of 100 meV. The fineness of the real-space grid used to
compute the Hartree and exchange-correlation contributions to the energy and Hamiltonian
corresponds to a plane-wave cut-o� of 130 Ry. Structural relaxations were stopped when
forces acting on all atoms were smaller than 0.02 eV/Å.
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≈23.7 Å

Figure 5.6: Optimized geometry of the icosahedral Na380 cluster.

LDA vs GGA Relaxed Structure
The LDA-CA and the GGA-PBE DFT functionals can provide quite di�erent results in
terms of equilibrium geometry of the dimer. However, for the single-cluster case the relaxed
structure obtained using GGA-PBE is very similar to the one calculated with the LDA-CA
potential and it is characterized by the presence of planar facets, sharp edges and single-
atom vertices.

22
.3

5 
Å

23
.5

4 
Å

Figure 5.7: The single-cluster relaxed structure is shown. Purple atoms refer to the geome-
try optimized using LDA-CA functional. Red atoms correspond to the geometry optimized
using GGA-PBE functional. The top facets of the two structure are aligned.

In Fig. 5.7 we compare the resulting structures obtained for the single Na
380

cluster
using the above mentioned functionals. The structure obtained with the GGA-PBE (red
atoms) functional shows a slightly lower density than the one calculated with LDA-CA
(purple atoms) functional. The higher sodium density found with GGA translates in a
smaller interlayer distance, about 10%. This 10% corresponds to an average elongation
per bond of ≥0.17 Å. The di�erence is due to the well-known underestimation of the Na
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lattice parameter by LDA.226 The overall linear dimension of the cluster is 22.35 Å for LDA
and 23.54 Å for GGA, see Fig. 5.7. The di�erence in cluster size a�ects obviously the
optical frequencies of the plasmonic modes for the single cluster and for the two-cluster
system. In Section 5.1 and following the LDA functional was consistently used in the DFT
and TDDFT calculations. The underestimation of the volume with LDA gives rise to a
large redshift on the resonance energies, nevertheless, the spectrum features are preserved.
Thus, for the study presented in section 5.1 the use of the LDA functional in SIESTA
does not change the overall conclusions. The real need for the use of a more sophisticated
functional lies in the necessity of having reliable geometries at a DFT level once the two
cluster interact strongly. This greater importance of the functional choice in the DFT
calculations (versus the choice of functional for TDDFT kernel) is also verified in our study
of the silver clusters.20

Once the single cluster optimized geometry is found, the two clusters are placed in a
mirror-like geometry 16 Å apart and we decrease the distance between them in small steps of
0.2 Å, as shown in Fig. 5.8 panel a), and, eventually the two clusters are again moved apart,
Fig. 5.8 panel b). We monitor the interparticle distance using the Nominal Gap Size (NGS),
defined as the distance between the two cluster inner facets if the system would remain
unrelaxed. Thus, a nominal size gap of zero value would correspond to the superposition
of the atoms forming the two opposing facets in the absence of relaxation. The distance
between the outer facets of the two clusters is chosen as calculational parameter. The atoms
belonging to the outer facets, Fig. 5.9(a), are not allowed to move during the relaxation
steps allowing us to define unambiguously the displacement applied to the system, and in
turn the nominal gap size (NGS), Fig. 5.9(b).

Deformation steps of 0.2 Å during the approach/retraction events were chosen as a
compromise between computational convenience and a su�ciently small deformation in
each step, so that we always keep the system reasonably close to a local minimum config-
uration. Importantly, this deformation is distributed uniformly along the whole structure,
translating into a rather small (<0.5%) modification of the bond lengths. The system
is then allowed to relax so that the excess of energy created by the deformation can be
dissipated and the system evolves into the closest local energy minimum. This procedure
is similar to that followed in other ab initio DFT studies of the formation and evolution
of metal junctions and nanocontacts245,246 and mimics a situation in which the system is
slowly deformed at low temperature. The heat transport away from the (nanosized) contact
region is supposed to be su�ciently e�cient to keep the cavity cold in spite of the work
being done in the system. This is a reasonable assumption for instance in STM cavities at
cryogenic temperatures.
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≈16 Å ≈26.1 Å

≈23.5 Å a) b)

Figure 5.8: Example of two configurations, while approaching and retracting the two clus-
ters. The distance at the bottom indicates the value of the nominal gap size.

(a)

}
Controlled distance

(b)

Figure 5.9: In panel (a) we show the atoms in the outer facets of both clusters (the atoms
in the facet of the upper cluster have been highlighted in yellow) that are kept fixed during
the relaxation process. In panel (b) the external facet distance used to determine the
Nominal Gap Size (NGS) is used.

Before computing the polarizability, for each relaxed structure, a DFT ground-state
calculation has to be performed employing the LDA functional – in order to ensure consis-
tency with the following TDDFT-ALDA calculation. ALDA has proven to provide accurate
results for the optical properties of sodium clusters.247–252 Fig. 5.10 the steps followed in
this work is summarized.
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GGA-PBE single-cluster geometry optimization

GGA-PBE two-cluster-system geometry optimization

LDA-CA DFT calculation

TDDFT-ALDA calculation

New geometry
NGS = NGS ± 0.2Å

Figure 5.10: Calculation process. NGS = Nominal Gap Size.

5.2.2 Total Energy: Jump-to-Contact Instability and
Junction Creation

DFT relaxation calculations provide us with the relaxed geometry and the system total
energy. System total energy results are shown in Fig. 5.11, together with some of the most
emblematic system configurations. Red data in Fig. 5.11 describe the evolution of the
total energy of the system as we approach the two clusters. The initial intercluster distance
of 16 Å is large enough to avoid direct interaction between the nanoparticles. The cavity
between the clusters is initially symmetric with the two clusters opposing planar facets.
When we start approaching the clusters, the total energy remains essentially constant until
a NGS of 7.5 Å. From this separation the total energy starts to slowly decrease until a
NGS of 6.3 Å. The next step in the approaching process is characterized by a big drop in
energy due to the so-called jump-to-contact. The two clusters are now in contact nullifying
practically the actual interparticle gap that drops down to about 3.2 Å and remain fairly
constant closing to 3.0 Å as the two clusters get closer together. The abrupt reduction of
the energy at the jump-to-contact point is mostly due to the reduction of the surface energy
of both clusters (two facets disappear). However, this happens at the expense of a large
elastic deformation of the clusters. By further approaching the two clusters, we reduce
the elastic deformation of the system, and correspondingly, the total energy decreases.
Eventually the system su�ers some reorganizations which are also reflected (although they
are somewhat less obvious than the jump-to-contact). For example, the stacking of the
atomic layers at the interface, initially imposed by the mirror symmetry of our starting
geometry, gets optimized as we push the two clusters together. Later, the particles start to
deform to try to reduce further their surface area by increasing the contact cross-section.
Although the jump-to-contact e�ect is a quite general behavior which is routinely taken
into account in the interpretation of data from scanning probe microscopies, the details of
the jump-to-contact process strongly depend on the size and shape of the facets and the
e�ective elastic constants of the systems being brought into contact. This can be seen in
Fig. 5.12 which compare the total energy for the face-to-face with the tip-to-tip case. In
the tip-to-tip case, we do not observe any jump-to-contact instability. This is due to the
small surfaces associated with the tip apex. Bringing the two tips together causes a very
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small reduction on the surface of the system, and, thus, it does not compensate for a large
elastic deformation. The tip-to-tip configuration in shown in the inset in Fig. 5.12.

Once the two clusters are clumped together at a nominal size gap of ≥3.5 Å, comparable
to the interlayer distance in bulk sodium, we start pulling them apart (blue circles in Fig.
5.11). During the retraction process the whole structure evolves creating and thinning a
neck that connects the two clusters until a monatomic chain is formed and, eventually,
until a complete separation of the clusters is achieved (point m in Fig. 5.11). In agreement
with previous studies, the evolution of the contact structure takes place via an alternation
of elastic and plastic deformation events.229,233,241,245,246,253 The contact is elongated
until the accumulated elastic energy is su�cient to produce atomic rearrangements, mainly
driven by the atoms in the neck area. During these plastic events the energy of the system
decreases abruptly. Thus, there is a one-to-one correspondence between the discontinuities
of total energy in Fig. 5.11 and the changes in the configuration of the metal neck. It is
striking to note the dramatic contrast between the distance at which the jump-to-contact
takes place and the clusters “touch” for the first time during the approaching process (close
to point a in Fig. 5.11) and the distance at which they finally detach (indicated by a vertical
green dashed line). A nominal gap distance of 32.3 Å is needed to separate completely
the clusters. The results shown in Fig. 5.11 underline that the geometry of the system
strongly departs from the idealized situation in which two clusters simply change their
relative position. It is interesting to note that the final geometry of the two clusters once
they separate is very di�erent from the initial one. The symmetric face-to-face configuration
(panel a in Fig. 5.11) is substituted by an asymmetric tip-to-tip like configuration (panel
m in Fig. 5.11). The system total energy after the clusters detached is considerably higher
than the initial one. Moreover, once the monoatomic neck is formed at 29.3 Å by increasing
the NGS the monoatomic neck gets stretched and breaks only at 32.3 Å. This elongation
of 2.8 Å is distributed among the few atoms in the monoatomic neck.

In summary, the total energy results show how strong is the atomic reorganization
while approaching and retracting. In particular, while approaching, the two clusters jump
to contact leading the two inner faces of the clusters to clump together. The retracting
event is characterized by many small discontinuities in the total energy due to atomic
reorganization a�ecting mainly the neck region.
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Figure 5.11: Total energy of a plasmonic cavity formed by two Na380 clusters as a function
of the NGS between them during approaching and retracting. Red circles represent the
approaching process, while blue circles indicate the retracting process. Latin letters indicate
the correspondence between some of the total energy points in the graph and the dimer
configurations shown in the panels below.
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Figure 5.12: Comparison total energy versus distance for the tip-to-tip (t2t) and facet-to-
facet (f2f) configurations. The t2t curve does not show any jump-to-contact as the two
clusters are approached. In the insets the f2f and t2t geometries are shown.

5.2.3 Analysis of Forces and Stresses
In our calculations, during approaching and retracting, the atoms on the external facets
are not allowed to relax, thus, the forces acting in these atoms will be di�erent from zero
in general. The sum of the forces, along the axis direction, acting on the atoms belonging
to the external facets while the two clusters are approaching are shown in Fig. 5.13. The
data in blue represent the total force acting on one of the facet, as shown in inset panel of
Fig. 5.13.
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Figure 5.13: The forces analysis acting on one of the external facet is shown. The atoms
belonging to the facet are not allowed to relax. After the jump-to-contact instability the
force acting on the facet increasing considerably and pushes the external facets of the two
clusters inwards. In the inset the colored arrows indicate the direction of the force acting
on the facet.
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Before the jump-to-contact, the forces on the two external faces are small. After the
jump-to-contact the forces acting on the fixed atoms increase suddenly changing sign. The
origin of the change of sign is not clear from our analysis. The evolution total energy in
Fig. 5.11 does not show any energy barrier that could explain the change in sign. Before
the jump-to-contact instability the total force points outwards pushing the two clusters
apart from each other however, the intensity of this force is really small and within the
chosen threshold value used for the SIESTA geometry optimization calculations. After the
jump-to-contact the force is pushing inward the external facets. The two clusters elongate
resulting in an important force acting on the clusters. The increases of the forces on the
external faces of the two clusters after the jump-to-contact indicates a large stretching.
The increase in the total energy of the system due to this stretching is compensated by
the decrease in energy due the decrease of the total surface of the dimer once the two
inner facets of the clusters come into contact. This is also the reason why no jump-to-
contact can be observed when the tip-to-tip configuration is considered. The sharpness of
the tips does not allow a favorable configuration as in the case of the facet-to-facet dimer
configuration.

5.2.4 Optical Properties of a Forming Plasmonic
Cavity

The optical absorption of the forming plasmonic cavity has been calculated while the clusters
where approaching. To explore the role of atomic relaxation while creating the plasmonic
cavity we compare the optical spectrum with the case of unrelaxed clusters. In Fig. 5.14
panel a, the polarizability for the unrelaxed case is shown, no relaxation of the clusters is
allowed and only the distance between the clusters is modified. In Fig. 5.14 panel b the
reported optical absorption takes into account the relaxation of the atoms following the
atomic-scale restructuring shown in Fig. 5.11 (red dots). The resonant plasmonic modes of
the forming cavity, as obtained from the calculated polarizability of the system, are displayed
as a function of the NGS in both situations. For the unrelaxed case the NGS correspond to
the actual distance between the clusters’ inner facets. The component of the polarizability
parallel to the dimer axis in response to a field in the same direction is considered here,
that we take hereafter as z. In both cases, and depending on the separation, we can
identify three distinct resonances170,212–214,219,220,234 as introduced previously in section
5.1. A single intense so-called BDP resonance around 3 eV dominates the response at large
intercluster distances when the two clusters interact weakly. At distances above ≥15 Å
the energy of the resonant mode converge to that of the single cluster BDP mode, with
the two clusters behaving basically as isolated entities. The BDP shows an induced charge
distribution characterized by a capacitive coupling of charges of opposite sign at both sides
of the cavity, as schematically depicted in the right drawing of the top panel in Fig. 5.14.
In this regime two dipoles appear in the clusters and interact with each other. When both
clusters are in contact, so that free charges can e�ciently move across the junction, we
enter a conductive coupling regime characterized by the so-called Charge Transfer Plasmon
(CTP)234 and the associated high-energy Charge Transfer Plasmon (CTP’) modes. The
conducting link of the CTP through the junction of the clusters produces a screening of the
charges in the cavity and thus, redistributes the induced charge density to produce a net
dipole that extends to the whole dimer structure, as depicted in the top-left scheme in Fig.
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5.14 (see also Fig. 5.18). As the distance between the clusters decreases the BDP mode
slightly disperses towards lower frequency. The BDP resonance red-shifts and the Coulomb
interactions among the clusters increase. This shift is due to the strong interaction of the
parallel induced dipoles along the dimer axis, which hybridize254 lowering the energy of the
resulting optically active mode. In this capacitive (weak interaction) regime both unrelaxed
and relaxed cases show the same dependence on the interparticle distance. The BDP mode
is present until the clusters are brought to a distance of about 6.1 Å. At this point, for the
unrelaxed dimer (see Fig. 5.14a), the BDP mode is quenched and higher energy modes start
gaining intensity. If the clusters are approached further we observe a smooth transition from
the capacitive to the conductive coupling regime. For separation distances right below 6 Å
the electron tunnelling current at relevant frequencies gradually starts flowing, giving rise
to the progressive emergence of the CTP resonance.170,210,213,220 This transition region
is frequently referred to as the quantum tunnelling regime of plasmonic cavities.214 At
a distance comparable to the sodium interlayer distance, ≥3.0 Å, the clusters become
chemically bonded and a clear contact is established. Under those conditions, a substantial
current can be established and the CTP appears fully developed. The situation shown
in Fig. 5.14b for the relaxed dimer is strikingly di�erent. The relaxed dimer undergoes
a jump-to-contact instability (see red dots in Fig. 5.11) that dramatically modifies the
evolution of the optical spectrum. The transition regime, found between 6 and 3 Å for
the unrelaxed dimer, has almost completely disappeared in the relaxed case. There are
no stable geometries for those intermediate gap sizes, and thus, the resistive tunnelling
(transition) regime cannot be clearly identified in the optical response in this case.
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Figure 5.14: Evolution of the imaginary part of the polarizability of a Na380 dimer (external
field applied along the dimer axis) as the clusters approach, plotted as a function of the
NGS and photon energy. Both unrelaxed (a) and relaxed (b) geometries of the cluster dimer
are considered. The dark dots indicate the position of the maximum of the peak in the
polarizability for those distances for which the optical response has been computed. The
arrow lines indicate the contact point for the two cases, that is, the distance at which the
clusters merge into one single larger object. In the top panel the schematic representation
of the induced charge of the modes that dominate the optical response before contact
(bonding dipolar plasmon mode, BDP) and after contact (charge transfer plasmon mode,
CTP) is shown.
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Our results indicate that the e�ect of the jump-to-contact must be considered when
exploring and interpreting the optical response of metallic particles in close proximity, par-
ticularly when large atomic-scale reconfigurations can be expected. Importantly, this phe-
nomenon can hinder the appearance of a smooth transition between the capacitive and
charge-transfer regimes in the optical response of plasmonic cavities. Finally, below 2 Å of
nominal gap size the conductive coupling regime of the junction is fully developed in both
the unrelaxed and relaxed cases, with the CTP and the CTP’ resonances converging to
similar values of energy, around 2.25 and 3.3 eV, respectively. This underlines the fact that
the details of atom rearrangements at the cluster interface might not be so important in
the determination of the optical response once the two clusters are fully chemically bonded.

5.2.5 Nanocontact Formation: Optics Driven by
Individual Atoms

Fig. 5.15 shows the optical polarizability of the junction during the retraction process.
Surprisingly, as the two clusters retract the CTP and CTP’ modes dominate the spectrum
for most separation distances, all the way to nominal interparticle distances of several
tens of Angstroms. This is in clear contrast with the results obtained in the previous
section (approaching situation), and it is a result of the structural evolution of the junction,
characterized by the formation of a thin conducting neck among the clusters [as shown in
the panels (d)–(l) of Fig. 5.11]. As the clusters get separated, the neck gets longer and
thinner. As a consequence, the charge transfer modes disperse towards lower energies (due
to the overall elongation of the system). Moreover, as the neck’s cross-section is reduced,
the intensity of the CTP’ mode increases at the expense of the lower-energy CTP resonance,
consistent with calculations of stretched clusters.242 As the current flowing across the neck
diminishes, the CTP’ mode converges toward the BDP mode while the CTP mode tends
to disappear.

While the polarizability of the approaching situation in Fig. 5.14 only shows a clear
discontinuity associated with the jump-to-contact instability of the cavity, the retracting
situation shows a completely di�erent behavior as a function of the separation distance.
During retraction the optical spectrum is characterized by the appearance of many discon-
tinuities both in the spectral position and in the intensity of the resonances.

A careful inspection of Fig. 5.11 reveals that these discontinuities happen at exactly the
same nominal distances where jumps in the total energy are detected. Some of the most
visible jumps are highlighted with arrows of di�erent colors and marked with Greek letters
in Fig. 5.15a, and the corresponding polarizability is plotted in detail in Fig. 5.15b, which
extract the spectral lines from the contour plot in Fig. 5.11. Each panel shows spectra
corresponding to distances before and after one of the jumps, identified in the contour
plot of Fig. 5.15a with the corresponding colored dots and arrows. Consecutive curves
correspond to configurations in which the interparticle distance is changed by 0.2 Å. In each
panel there are several, almost indistinguishable, spectra of the same color. This highlights
that noticeable changes in the spectrum are indeed linked to the plastic deformation events
in the neck, and not to the small rearrangements during elastic deformation. At each jump
we observe clear changes in the intensities, widths, and positions of the resonance peaks.
The jumps a�ect primarily the low energy resonance, CTP, although they are also visible in
the CTP’ mode. They are owing to the atomic reorganization in the neck region and they
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are specially visible for distances above ≥20 Å due to the small cross-section of the neck.
Remarkably, for such thin necks, even single atom movements produce visible changes in
the optical response of the system, clearly associated with the quantized nature of the
conductance through the junction neck – paragraph 5.21. The jump at 29.3 Å indicates
the formation of a well-ordered monatomic neck, that is, the clusters are connected by a
single row of atoms. The formation of such structures has been observed for many metals,
for example, in the case of Au, for which these monatomic wires have even been visualized
by electron microscopy.229,231–233,255,256
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Figure 5.15: (a) Evolution of the resonances in the polarizability of a plasmonic junction
as a function of the NGS and energy, as the clusters forming the junction move apart
(i.e., move toward larger NGS). The dots indicate the positions of the peak maxima in
the polarizability for the considered configurations. Panels in (b) show the spectral lines
of the polarizability at distances before and after each of the jumps highlighted in panel
(a) by means of Greek letters and colored arrows and dots. The colors of the lines of the
spectra correspond to the colors of those arrows and dots, thus, indicating whether a given
spectrum corresponds to a configuration before or after the jump. (c) Imaginary part of
the induced charge density distribution around the junction for the three selected distances
in (a) and (b), before (top) and after (bottom) the spectral jumps.
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Modes Splitting after Cluster Separation

5.2.6 Modes Splitting after Cluster Separation
Once the two clusters totally separate, breaking the neck, the final system structure di�er
considerably from the initial one. The initial face-to-face mirror symmetric configuration
is replaced by an asymmetric tip-to-tip configuration (see panel m in Fig. 5.11). With
the rupture of the connecting neck, the CTP and CTP’ modes that dominated the optical
response of the system during the whole retraction process disappear as no charge transfer
can exist between the two clusters. Two new modes appear in the spectrum. The lower
energy resonance found at ≥2.6 eV has a density change pattern that recalls the BDP
mode with the largest charge accumulations around the central gap as shown in Fig. 5.16
panel (a). However, the resonance appears red-shifted compared to the BDP mode which
is found at ≥3.1 eV, see Fig. 5.14. The higher energy resonance arising at ≥3.2 eV has
a more complex charge distribution, corresponding to a higher order mode showing charge
accumulations both in the tips inside the cavity and in the facets of the clusters, see Fig.
5.16 pane; (b).
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Figure 5.16: Imaginary part of the induced charge density distribution for the frequencies of
the two plasmon resonances found after breaking the connecting neck and final separation
of the clusters.

5.2.7 Electronic Current
In Chapter 1 in the paragraph 1.3.10 we described how the electronic current in a finite
object can be calculated starting from the density change. Since we are dealing with a finite
object we can use the continuity equation and an integration region like the one shown in
Fig. 5.17 to define the current that flows across a chosen plane. In particular, starting
from the density change, the maximum current flowing through the gap can be computed
from equation E.11, here repeated,

|Imax(Ê
0

)| = Ê
0


”QÕ(Ê

0

)2 + ”QÕÕ(Ê
0

)2. (5.8)
Where ”QÕ and ”QÕÕ are, respectively, the real and imaginary part of the total charge
calculated inside the volume defined in Fig. 5.17. ”Q(Ê) is calculated by integrating the
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density change ”n(r, Ê) over this real space volume.
By changing the integration volume we can obtain a map of the maximum current

passing through the di�erent planes dividing the dimer system. Such results are shown
in Fig. 5.18 where we explore the real space distribution of the induced charge together
with the correspondent current for the CTP and CTP’ modes for a nominal gap size of 6.1
Å, right after the jump-to-contact instability. The isosurfaces in the density change plots
correspond to ≥10% of the maximum value of the induced density. The corresponding
electron current plots (graph to the right of each charge density plot) show the modulus of
the current flowing through (x,y) planes (i.e., perpendicular to the dimer axis) as a function
of z, the coordinate along the dimer axis. It is important to stress that such current maps
do not refer to a given instant of time as we work in frequency domain. The density
charge associated with the CTP forms a dipolar pattern over the whole system having a
single node placed at the center of the system, as shown in Fig. 5.18. Thus, the charge
accumulation does not take place in the cavity interfaces but, rather, extends to the whole
system. Correspondingly, the current associated with the CTP resonance has its maximum
at the gap center. On the other hand, the CTP’ mode presents two dipolar patterns on
each cluster with nodes of the induced charge density in the center of the system as well
as in the middle of each cluster. The charge distribution in this case is somewhat similar
to what one can expect for the BDP mode. However, the current reveals a key piece of
information to rule out this interpretation. In the case of the CTP’ resonance the maxima
of the current are found both in the center of the system as well as within each cluster.
This is indeed confirming that there is charge transfer among both clusters also in this
high energy mode. Thus, the observed induced density pattern is better interpreted as the
second optically active mode of a metal rod.

Moreover, during retraction it becomes relevant to follow the current flowing through
the forming neck connecting the two clusters – paragraph 5.2.9. Due to the neck size,
small atomic movement in the neck section can give rise to considerable variations in the
current and eventually to changes in the polarizability.
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Figure 5.17: Chosen volume to calculate the current passing through the neck.
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Figure 5.18: The imaginary part of the induced density and the corresponding modulus of
the electron current are shown. The modulus of maximum of the current, |Imax|, represents
the current flowing through each cross sectional [i.e., (x,y)] plane along the dimer axis.
An external electric field of magnitude of 1 x 10-9 atomic units is assumed here with a
polarization parallel to the junction main axis. The nominal gap size is 6.1 Å, corresponding
to the jump-to-contact configuration in the relaxed case.

5.2.8 Neck Cross-section
Before analysing the current flowing through the neck is important to define a way to e�ec-
tively measure the neck cross-section. In order to do so we decided to use the distribution of
the ground-state electron density fl(r). The density is computed in an (x,y) plane passing
through the middle of the junction and the neck cross-section Acs is obtained as the area
in which the electron density is larger than a given threshold value flth (see Fig. 5.19). In
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other words, we use the integral,

Acs =
⁄ ⁄

f(r)dxdy

where f(r) = 1 if |fl(r)| > flth

where f(r) = 0 if |fl(r)| < flth.

In practice, in our discretized 2D plane the points for which |fl(r)| > flth are counted and
the number is compared to the total number of points in the surface. The value of flth

is arbitrary and was chosen here so that the radius of an isolated Na atom is 2.88 Å, a
reasonable value if compared to the Na bulk density (characterized by a Wigner-Seitz radius
rs ≥ 2.12Å) and we take into account the spillage of charge towards vacuum in a finite
object. In any case, the specific value of the cross-section assigned to a particular neck
structure is irrelevant (as far as reasonable), the importance of this method is the ability
to continuously monitor the cross-section change as the structure evolves, see Fig. 5.20
in section 5.2.9. In Fig. 5.19 we can clearly see the three atoms forming the neck. The
cross-section tool is particularly useful when the neck is composed of many atoms arranged
in a complex manner.

Figure 5.19: The neck section is calculated by analyzing the electron density in a (x, y)
plane cutting the center of the neck. The right panel shows the 2D electron density
distribution in that plane (red dashed line). The red solid curve represents the isocontour
corresponding to a 0.00169 e/Å3 threshold density. The cross-section is defined as the area
of the region limited by such isocontour. We can clearly see that the neck cross-section is
formed in this case by three Na atoms.

5.2.9 Current Quantization
During the retraction process when the nominal gap size is around 23 Å the intensity of the
CTP resonance su�ers an abrupt decrease, becoming broader between 27 and 29.3 Å, see
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Fig. 5.15. Afterward, simultaneously to the monatomic neck formation, the CTP resonance
gets sharper with a consequent regain in intensity. This evolution is due to a combination
of several e�ects, the most important being the quantization of electron transport in the
metal neck. Such quantization is a well-known e�ect due to the small cross-section of the
contact, comparable to the electron wavelength.257 As a result of the lateral confinement,
the electronic energy levels in a thin metal nanowire or neck get quantized and, at a given
energy, only a discrete number of bands (or “channels” using the standard terminology in
quantum transport) can contribute to the electron transport. Thus, under a small, static
bias, if the electron injection from the electrodes (in our case the clusters) is e�cient and
the neck structure is su�ciently long and ordered, we can expect each channel at the Fermi
level to contribute to the transport with a quantum of conductance G

0

= 2e2/h,257 with
h the Planck’s constant and e the electron charge. In the presence of defects or strong
scattering in the connections to the electrodes, the transmission probability of the channels
gets reduced.257

To establish a more direct connection between the computed current as a function
of the gap separation within the junction and the well-known quantization of transport in
metal nanocontacts, in Fig. 5.20 we show the current flowing through the neck for the CTP
while retracting (left axis of the graph) plotted in relationship with the neck cross-section
(right axis of the graph). As can be seen, there is an almost perfect correlation between
the changes in the current and the evolution of the neck cross-section. Such correlation
has been already well established in the case of low-frequency driving-fields being applied
to the necks. It has been observed in the formation of metal nanocontacts in Scanning
Tunnelling Microscopy (STM) and break-junctions experiments and corroborated by many
calculations.229 Here we show this correlation at the optical frequencies.

With these ideas at hand, we can easily explain the observed behaviors. The abrupt
jump in the intensity of the CTP peak around 23 Å (– jump) is caused by the sudden
reduction of the neck’s cross-section, as can be clearly seen in Fig. 5.15c and in Fig.
5.20. As expected, the reduction of the cross-section reduces the number of conduction
channels and, therefore, the electric current flowing through the junction (this is confirmed
in Fig. 5.21, discussed later in detail). The resonance peak also shifts to slightly lower
energies. The origin of the intensity jump at ≥27 Å (— jump) is also similar: a cross-
section reduction that translates onto a sudden decrease of the current as can be seen in
Fig. 5.15c and Fig. 5.21. After this jump at 27 Å, the neck develops into a less ordered
structure, creating a region of high scattering that hampers the electron transport between
the clusters. As a consequence the CTP resonance broadens. Finally, once the relatively
defect-free monatomic wire is formed, the transport through the neck becomes completely
ballistic, i.e. all the electrons that are injected to the monatomic wire get across the
junction, and the peak in the polarizability becomes more defined again.

These quantization e�ects can also be observed in the shape of the distributions of
induced charge density as the neck evolves during retraction. In panel (c) of Fig. 5.15
the imaginary part of the induced density associated with the CTP mode is plotted for
those configurations immediately before and after the –, —, and “ jumps (indicated by the
colored arrows in the polarizability plot). Although the density change has a quite complex
distribution, it is possible to follow the evolution of the patterns toward simpler schemes
of charge oscillation after each jump. The induced density presents a complex distribution
and nodal structure, with a decreasing number of nodes as the cross-section of the neck
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gets thinner, a fact that reflects the larger number of open conduction channels for the
wider structures. Subtle changes in the structure that have a direct translation in the
optical response can also be observed in these density plots. For example, in the case of
the “ jump, Fig. 5.15, the three-atoms-long monatomic wire becomes more straight and
the connections to the cluster more symmetric. This slightly increases the current flowing
through the structure and produces the aforementioned changes in the plasmonic response.

To fully account for the connection between high-frequency electron transport and
optical response of the plasmonic junction, we have calculated the current through the
junction as a function of the nominal gap size. In Fig. 5.21 the results for the modulus
of the current passing through a plane cutting the center of the junction are shown –
calculated as described in section 5.2.7 and in appendix E. Here we present the current
computed at the frequencies of the main resonances of the polarizability: BDP, CTP and
CTP’.

The current during the approach process is shown by red solid circles, corresponding
first to the BDP mode and, later, to the CTP mode once the clusters are in contact. The
current for the BDP mode is negligible until the jump-to-contact event takes place. Once
the clusters are connected the current can flow through the whole system and therefore
its value increases dramatically. The current calculated for the CTP resonance increases
almost linearly as we decrease the NGS.

The values of the current across the junction at the energies of the CTP and CTP’ reso-
nances, while retracting the clusters and the neck is getting thinner, are plotted, respectively,
in blue and yellow. The current related to the CTP resonance decreases monotonously as
we elongate the system. As commented above, its evolution is characterized by abrupt
jumps whenever the neck su�ers a plastic deformation. The current eventually reaches
a plateau associated with the formation of a well-defined monatomic neck. Interestingly,
once the monatomic neck is formed, a further neck stretching does not a�ect considerably
the current. This can be expected since the conductance of such small necks mostly de-
pends on the cross-section, which is fixed for the monatomic wire. The current associated
with the CTP’ mode follows the same trends than that of the CTP, although it shows a
less pronounced dependence on the overall elongation of the system. Obviously, once the
clusters separate, the current transfer from one cluster to the other is negligible.

The arrows in Fig. 5.21 indicate the position of the jumps shown in Fig. 5.15a. Except
for the last jump at 29.3 Å, the other two jumps observed in the polarizability (Fig. 5.15)
and in the total energy (Fig. 5.11) show a clearly correlated sudden change in the current.
This points toward a remarkable e�ect of a few atoms (or even a single atom), whose motion
influences the overall optical response of the whole system (containing 760 atoms in our
case). This observation can be of utmost importance in the control and manipulation of
optical signal in subnanometric junctions, which are clearly a�ected by this type of physical
processes at the atomic scale.
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Figure 5.20: The figure shows the one-to-one correspondence between the jumps in the
current for the CTP mode and the cross-section of the metal neck. An external electric
field of 1 x 10≠9 atomic units is assumed with a polarization parallel to the junction main
axis.
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Figure 5.21: Modulus of the current flowing through a plasmonic junction as a function of
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yellow). The current is computed at the resonance frequency of the di�erent modes of
the cavity, as indicated by the labels and described in the text. Black arrows indicate the
position at which the spectral jumps in Fig. 5.15 occur.
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5.2.10 Quantum Transport Revealed by Optics
The results in Fig. 5.21 and Fig. 5.20 together with the optical response results shown
in Fig. 5.18 and in Fig. 5.15 allow us to establish a correlation between the changes in
the current and the evolution of the neck cross-section at optical frequencies. Atomic-
scale structural reorganizations are crucial to determine the optical properties of plasmonic
cavities. Besides the importance of jump-to-contact events, that can almost completely
eliminate any signature of the plasmonic tunnelling regime, the e�ects are particularly
dramatic when a metal nanocontact is formed across the cavity. This is due to the strong
dependence of the plasmonic response of the system on the quantized current flowing
through the connecting neck.

The mechanical response of atom-sized necks is characterized by sudden rearrangements
of the atomic structure, which frequently involve just a few atoms in the thinner part of
the contact. Since the electron transport through thin metal nanocontacts is quantized,
the corresponding changes of the current flowing across the junction are necessarily discon-
tinuous. Our calculations demonstrate that this common observation under small applied
Direct Current (DC) biases can be extrapolated to the optical frequencies of plasmon reso-
nances in a cavity, at least for the short ballistic contacts considered here. These jumps in
the current translate onto abrupt changes in the plasmonic response of the system. Thus,
the discontinuous evolution of the spectral position, width, and intensity of the CTP mode
observed in our simulations is a direct consequence of the transport quantization in the
connecting neck. Finally, more disordered structures translate into broader and dimmer
CTP resonances.

We can unambiguously establish the following cause-e�ect relationships: plastic de-
formation of the neck during elongation æ cross-section reduction æ abrupt drop of the
current æ decrease of the intensity of the CTP mode.

5.2.11 Conductance at Optical Frequencies
In the previous paragraph we analyzed the current however, for the low energy CTP mode,
it was also possible to define the conductance. The conductance is defined as the ratio
between the current flowing across and the bias applied to a particular structure. The
conductance is frequently used to characterize the DC transport properties of nanowires.
For wires of atom-sized cross-sections the DC conductance can be quantized, i.e. it appears
in multiples of the quantum of conductance G

0

(G
0

= 2e2/h with h Planck’s constant
and e the electron charge).257 Thus, in principle, it is also possible to calculate the neck
conductance at optical frequencies from the knowledge of the current passing through the
neck, Eq. 5.8, and the total potential drop between the two clusters. The total potential
is Vtot(r; Ê

0

) = Vind(r; Ê
0

) + Vext(r; Ê
0

) where

Vind(r; Ê
0

) =
⁄

”n(rÕ; Ê
0

)
|r ≠ rÕ| drÕ. (5.9)

and

Vext(r; Ê
0

) = E
0

(Ê
0

) · r. (5.10)

Here we do not consider the contribution coming from the exchange-correlation potential
(Vxc). Vxc negative contribution is supposed to be small compare to Vext and leads to a
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higher conductance. The total potential in real space and frequency domain is a complex
number as well as the density change and the current. Thus, the result in this case will be
a complex number reflecting the capacitive component of the impedance of the system.

In order to extract the potential drop across the junction in a meaningful way it is
necessary a constant potential inside each cluster. This condition is met for configurations
having a monatomic neck and at low frequencies. When the neck becomes wider and the
energy of the mode increases is not possible anymore to define a potential drop restricted
to the neck, i.e., the mismatch between the transmission through the neck and the clusters
themselves is not su�ciently large that the potential drop localizes mainly along the neck.
In particular, the imaginary part of the potential strongly varies inside the clusters. Due
to this behavior of the imaginary part of the potential profile it is not possible to define
a voltage drop for wide contacts. Thus, we focus on configurations formed by clusters
connected by monatomic chains. In such cases the voltage drop is extracted from the total
voltage of a real-space 3D-point-grid. The number of points in real space with the same
voltage are counted and plotted. The result is shown in Fig. 5.22. On the x-axis we have
the value of the total potential and on the y-axis the recurrence of this value for all the
grid points. In particular, in Fig. 5.22(a) the results for the real part of the total potential
V Õ

tot = V Õ
ind + Vext are shown, while in Fig. 5.22(b) the results imaginary part V ÕÕ

tot = V ÕÕ
ind

are plotted. For the example in Fig. 5.22 – 29.3Å NGS – for both real and imaginary part
is possible to determine the voltage drop which is given by the di�erence of the voltage
between the two main peaks in each histogram. The peak are so sharp and well defined
because the voltage is constant inside each cluster as can be seen in Fig. 5.23. For the
two-cluster system with bigger neck the peaks of the imaginary part get broaden making
impossible to define a potential drop. Interestingly, for the real part even for relative big
necks is still possible to define a potential drop.
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Figure 5.22: Voltage Analysis. In panel (a) the real part of the total potential is plotted,
while in panel (b) we plot the imaginary part of the total potential. On the x-axis the value
of the total potential is shown while on the y-axis the recurrence of this value valuated for
all the grid points.

In Fig. 5.23(a) and 5.23(b) the real and imaginary parts of the total electrostatic
potential calculated along the path in panel 5.23(c) are plotted. In particular, Fig. 5.23(a)
corresponds to the system with a NGS of 31.3 Å while Fig. 5.23(b) is for a system with
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a NGS of 34.1 Å. As can be clearly seen, a bias drop across the monatomic chain can
be meaningfully defined for these geometries. The computed conductances for these two
cases are:

G(ÊCTP) = (4.52 + i2.21)x10≠5S, d = 31.3Å

G(ÊCTP) = (4.13 + i2.35)x10≠5S, d = 34.1Å.

The corresponding moduli |G(ÊCTP)| of the conductance are, respectively, 5.03 x 10-5 S
(0.65 G0) for d = 31.3 Å and 4.75 x 10-5 S (0.61 G0) for d = 34.1 Å, where G0 = 7.75 x
10-5 S is the quantum of conductance.
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Figure 5.23: In panels (a) and (b) we can find the real and imaginary parts of the total
electrostatic potential (Vtot = Vext + Vind) when a external field of 1 a.u. is applied along
the dimer axis. Panel (a) corresponds to a the dimer system at a NGS of 31.3 Å while in
panel (b) the NGS is 34.1 Å. The profiles are calculated along the line shown in panel (c)
and for the CTP resonance frequency.
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5.3 Real Time Plasmonic Mode Evolution
The real-space density-change distributions shown through all the previous sections corre-
spond to the imaginary component of the complex density change, which can be directly
related to the imaginary part of the polarizability and, thus, to the optical absorption.
Therefore, although they can serve to characterize the resonant mode at a particular fre-
quency, they may not give a complete picture of the time evolution of the oscillating charge
in the system. The real and imaginary are related through the Kramers-Kroenig relation as
explained in paragraph 1.3.4. For this, both the real and imaginary part of the polarizability
are necessary. In real space and real time the calculated density change is a real quantity.
In order to obtain the density change in real time a Fourier transform of ”n(Ê) has to be
performed,

”n(t) = 1
2fi

⁄
”n(Ê)eiÊtdÊ. (5.11)

If we consider a sinusoidal external electric field

E = E
0

cos(Êrest) (5.12)

the density change in real time become

”n(r, t; Êres) = ”nÕ(r, Êres)cos(Êres) + ”nÕÕ(r, Êres)sin(Êres) (5.13)

where Êres is the resonance frequency. In Eq. 5.13 the density in real time depends on
both real and imaginary part of the density change in frequency domain. In order to further
understand how real and imaginary part play a role in determining the real-time density
change is worth it to analyze the shape of the real and imaginary curve of the cross-section
spectrum. For a spectral function made of a single excitation the corresponding imaginary
part of the cross-section spectrum has a maximum of the Lorentzian peak that coincides
with a zero in the real part of the cross-section spectrum, Fig. 5.24(a) – Equations 1.80
and 1.81. However, when dealing with a system having multiple resonances and especially
at low frequencies the resulting cross-section spectrum can have a more complex shape
due to the proximity of the di�erent resonances. Depending on the broadening factor,
peaks in the imaginary of the cross section can merge while in the real part the shape of
the curve can change considerable. In particular, even at resonance the real part can be
di�erent from zero and have a non-negligible intensity as compared to the imaginary part,
Fig. 5.24(b). Thus, for some systems the real part of ”n(Ê) can contribute strongly to the
real-time density-change evolution.

This is the case for the CTP low energy mode seen in the polarizability once the mono-
atomic neck is formed, that shows a large real part of the induced charge density even at
resonance. In Fig. 5.25 the density change real-time evolution of the CTP mode shows the
“interaction” between real and imaginary part of the density change in frequency domain.
The black arrows indicate the time direction while the green arrows indicate the direction
and intensity of the external electric field in each step. At t = 0 and t = fi/Êres the
distribution is solely the real part ”nÕ(r, Êres), while at t = fi/2Êres it is given by the
imaginary part ”nÕÕ(r, Êres). At resonance the imaginary part represents the out-of-phase
(resonant) component of the total density change while the real part of the density change
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oscillates in phase with the external electric driving field. The sequence of images shown
in Fig. 5.24 describes the evolution in time of the CTP mode across the cavity when there
is a monatomic wire connecting the clusters. At t = fi/2Êres we find the imaginary part of
the induced charge, that characterizes the mode resonant at that frequency. As expected,
the dipole pattern extents over the whole system with the presence of a node in the center
of the junction indicating the expected charge transfer among the clusters. In contrast, the
real part, found at t = 0 and t = fi/Êres, presents a pattern formed by dipoles placed on
each cluster which resembles a BDP mode.

From a physical point of view what we see here is quite transparent. The monatomic
wire across the junction represents a bottleneck for electron conduction as compared to
the facile movement of charges within each of the clusters. As a consequence, electrons
can easily move across each of the clusters and react fast to the applied external field.
However, when they reach the gap in the center of the system they accumulate there, since
the movement of charge across that gap is limited by the monatomic chain, which provides
just a single channel for electron conduction.
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Figure 5.24: Example of the real and imaginary parts typical of the polarizability function.
Real and imaginary part are related by the Kramers-Kroenig relation, see paragraph 1.3.4.
In panel (a) an example involving a single excitation is shown. In panel (b) a 3-resonance
system is shown. The real part is a�ected by the presence of many resonances close in
energy.
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Figure 5.25: Real time evolution of the density change, for the CTP mode. The two clusters
are connected by a small monatomic chain in this case
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5.4 Conclusions
In summary, in Section 5.1 we provided new insights into the limits of plasmonic localization
where first-principles full-atomistic TDDFT calculations were used to demonstrate that the
field localization and enhancement inside the plasmonic nanogaps can be very di�erent
depending on whether the distribution of the atoms at the gap defines a flat surface, or
presents atomic-scale tip-like protrusions. We showed that, due to the features of the field
enhancement at the atomic scale, a description of the plasmonic response based on smooth
interface profiles that does not account for the atomistic structural details, either classical
or quantum, might not be able to address this atomic-scale near-field regime. Such sensi-
tivity to the atomic details of a structure could explain the lack of reproducibility between
apparently similar experiments,258 but could also provide a root for further optimization of
morphologies. The resolution in optics depends on atomic-scale features at the nanopar-
ticle(s) surface and it has important consequences for the limits of optical resolution in
field-enhanced spectroscopies259,260 and microscopies.189,261

In Section 5.2 we analyzed the e�ects on the optical properties of atomic reorganization
during the approaching process and the retracting process for the same two-cluster system.
We showed that the internal atomic reorganization meanly at the plasmon cavity is of
fundamental importance to predict the optical behavior. In particular, during the two
processes we observed

• Jump-to-contact instability during the approach process.
• Nanocontact formation during the retraction process.

Both e�ects a�ect the optical properties. But whereas the former clearly influences the
optical properties, de facto making the tunneling region observed in section 5.1 to disap-
pear, the latter shows us the less trivial relation between discontinuous neck-cross-section
reduction, jumps in the neck current and jumps in the optical properties. Thus showing
that the far field response also depends on the atomic configuration when, the rearrange-
ment involves atoms in the junction of the dimer. In this case, even a small rearrangement
of one atom can lead to a considerable change in current flowing through the whole dimer
and, thus, a�ect the absorption spectrum. This is due to the particular structure of such
tiny necks, in which the current quantization e�ects are reflected in the plasmonic response
of the system.

A similar connection between quantized transport and the evolution of the plasmonic
response has also been pointed out recently.242 In spite of the smaller scale of the systems
treated, discontinuities in the computed DC transport across the junction are related to the
intensities of the plasmonic peaks. In our work, the discontinuity of AC quantum transport is
revealed in the optical fingerprint of both a snap-to-contact situation in a forming plasmonic
junction, as well as during retraction in a nanojunction connected by atom-sized metal
contacts. The correlation is clearly demonstrated, showing that remarkably, optics follows
the atoms. This is important in the design of subnanometric-scale optical modulators that
rely in slight changes of the optical response against tiny configurational modifications. In
our case we have analyzed relatively small icosahedral sodium clusters, however, we expect
to find a similar behavior for other materials suitable for electronic applications, such as
gold. The e�ect of a single atom in the optical properties of a nanoscopic object as the one
reported here, which can be probably extended to somewhat larger objects, has important
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consequences in optical engineering, molecular electronics, and photochemistry, where the
optical response can now be tailored by a few atoms.

The present study is particularly relevant in light of recent progress in fabrication and
processing techniques. As the dimensions of nanoscale architectures are progressively re-
duced, we are facing a regime where the actual distribution of the atoms in a system
matters.262 The fact that optics might follow the atoms is of utmost importance in optical
engineering and optoelectronics, targeting optical modulators or electroactive control of
optical signals, where instabilities and modifications of the performance can be attributed
to atomic-scale features.263
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6 | Plasmon Identification
in Molecules

For solids, plasmons are defined as charge oscillations that appear whenever the real part
of the dielectric function is zero, and the imaginary part is su�ciently small that a clear
resonance peak is observed. However, when we consider finite objects like molecules the
usual definition is not easy to apply. The peaks observed in the spectrum of finite systems
can be thought as single electron-hole (e-h) excitations and collective excitations. The
former can be pictured within the classical point particle concept as a result of a chaotic,
uncorrelated motion of electrons, while the latter can be pictured as a results of a correlated
motion of a group of electrons, resulting in a motion of their center of mass.264 Some
of the latter should be plasmons, corresponding to “classical” charge oscillations. How
can we distinguish between these two di�erent kinds of absorption peaks? Some authors
have associated peaks appearing in the interacting cross section and absent in the non-
interacting one with plasmonic peaks. However, this identification is risky since the e�ect
of the interacting kernel in the response function can give rise to strong modifications of the
position and spatial distribution of electron-hole transitions with respect to those obtained
from the KS response. Moreover, the induced real-space density and induced potential
distribution showing the typical multipolar pattern are plotted as further justification of the
plasmonic character for such excitations. However, a better definition, able also to quantify
the nature of the di�erent resonances in the interacting absorption spectrum, is needed.

In this chapter, we show that the non-interacting absorption spectrum is not the cor-
rect quantity to be compared with the full optical spectrum, particularly in order to address
the “plasmonic” character of the observed excitations. Recently, several authors addressed
the identification of plasmonic excitations in molecules to find a way to define and identify
plasmons in molecules.26–28 Bernadotte et al.26 exploited the fact that the peaks renormal-
ization due to the Coulomb interaction between electrons is di�erent for peaks of di�erent
nature and used this fact to track excitations with collective character. More recently,
Bursi et al.27 and Casanova et al.28 suggested the classification of electronic transitions
by means of some ad hoc quantities to make the classification more clear and feasible.
However, as we will show in this chapter a clear way to define plasmons in molecules has
not been found yet. We show this by testing the mentioned proposals in the case of a
sodium chains.

In particular, in this chapter we have tried to go through di�erent proposed methods in
order to understand and define the origin of the peaks observed in the interacting response.
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Framework

We have considered a system consisting of a Sodium chain for simplicity and we have
compared our findings with the results available in the literature.26–28 Furthermore, in the
quest for a better identification criterion, we have calculated the momentum transfer for
each excitation and we have used these results to show that plasmon resonances are present
in a Sodium chain and are in good agreement with the theoretical predictions obtained for
a 1D electron gas model. Even if the adopted system is simple, the analysis of the results
can be considered as having a more general validity and indeed shows the presence of
plasmonic-like excitations. Unfortunately, the momentum analysis, although useful for the
characterization of the optical excitations, is cumbersome and a better analysis method is
yet to be found.

6.0.1 Dielectric Function in the Dominant Product
Framework

Before introducing the methodology used to identify “plasmonic” resonances in molecules,
it is useful to define the dielectric function in our framework. In Section 1.4.1 we introduced
the concept of dielectric function ‘ which for bulk systems is connected to the concept of
plasmons. For bulk systems the zeros of the real part of the dielectric function give the
frequency of the plasmonic resonance. Here we show that this idea cannot be applied to
find the plasmonic mode frequencies in finite systems. We can write the dielectric function
‘ as

‘µ‹(Ê) =
⁄⁄

F µ(r)‘(r, rÕ, Ê)F ‹(rÕ)drdrÕ , (6.1)

where F ’s are dominant products and µ and ‹ are the dominant product indices. Within
RPA we can now substitute Equation 1.135 in 6.1 and obtain

‘µ‹(Ê) =
⁄⁄

F µ(r)
5
”(r ≠ rÕ) ≠

⁄
KH(r ≠ rÕÕ)F µÕ

(rÕÕ)‰0

µÕ,‹Õ(Ê)F ‹Õ
(rÕ)drÕÕ

6
F ‹(rÕ)drdrÕ

=
⁄⁄

F µ(r)”(r ≠ rÕ)F ‹(rÕ)drdrÕ

≠
⁄ ⁄ ⁄

F µ(r)KH(r ≠ rÕÕ)F µÕ
(rÕÕ)‰0

µÕ,‹Õ(Ê)F ‹Õ
(rÕ)F ‹(rÕ)drdrÕdrÕÕ .

(6.2)

We finally write
‘µ‹(Ê) = Sµ‹ ≠ KµµÕ

H ‰0

µÕ‹Õ(Ê)S‹Õ‹

where Sµ‹ =
s

F µF ‹dr is the overlap matrix between product functions.
The dielectric function depends on the linear response function and on the finite pa-

rameter ÷ introduced in Eq. 1.78. This dependence does not allow to identify plasmons
in molecules. In Fig. 6.1 the dipole integral calculated from the eigenvalues obtained by
diagonalizing the ‘µ‹(Ê) matrix defined in Eq. 6.0.1, and the polarizability are plotted. The
results shown in Fig. 6.1 were obtained for the benzene molecule, however, the observed
trend is general and valid for all finite systems. The parameter ÷ determines whether or
not the curve representing the real part of the dielectric function crosses the x axis. Conse-
quently, unless the “real” value of ÷, which is connected to the life-time of the excitation,
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for each excitation is known, it becomes impossible to identify plasmons in our system. For
bulk systems this is not a problem because the width of the peak, and so the behavior of
the real part of the dielectric function is given by the whole bunch of excitations and not
anymore by ÷.

-400

-200

0

200

400

600

0 5 10 15 20 25 30 35

In
te
ns
ity
(a
.u
.)

� (eV)

Polarizability
Dielectric function

Figure 6.1: The imaginary part of the polarizability (blue curve) and the real dielectric
function (red curve) for Benzene are shown.

6.1 System: 1D Sodium Chain
In the previous section we have shown the inadequacy of the dielectric function to identify
plasmons in molecules. Here, we are going to show an alternative approach to the problem.
As proof of concept we consider a simple system consisting of a sodium chain of 20 atoms
with interatomic distance of 3.2 Å. This system was first analyzed by Bernadotte et al.26

allowing us to directly compare our results to theirs.

6.1.1 Calculation Details
The SIESTA ground state calculation was performed using a DZP basis set with an en-
ergyshift of 100 meV. The Random Phase Approximation (RPA) is used as the kernel for
the TDDFT calculation, i.e. the TDDFT kernel in Eq. 1.82 is given by the Hartree kernel
excluding the exchange-correlation part. This was selected in order to simplify as much as
possible the kernel and keeping in mind that the Hartree part of the kernel is accountable
for creating plasmonic excitations.47 Furthermore, the Hartree part of the kernel is mostly
responsible for the peak renormalization producing a strong blueshift in the spectrum while,
the exchange-correlation term usually produces a minor redshift.

6.1.2 Low Energy Resonant Modes
The sodium-chain optical cross-section spectrum is shown in Fig. 6.2. The resonances
visible above 4 eV are given by the out-of-axis components of the polarizability (–xx and
–zz). However, for the 1D chain and for the purpose of this work the most interesting
peaks are observed at low energy, where a series of peaks are found at 0.584 eV, at 1.466
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eV, at 2.142 eV, at 2.712 eV and at 3.181 eV, see Fig. 6.2(b). The low-energy peak at
0.584 eV is found to be very close to the first high-intensity peak presented by Bernadotte
et al.26 who proved the peak to have a plasmonic nature.

For our study we have decided to consider the peak at 0.584 eV and the other two
resonances at 0.513 eV and 0.576 eV presenting very low oscillator strength, see Section
1.3.7 for the definition of oscillator strength. The High Intensity (HI) resonance at 0.584
eV has an associated oscillation strength, of 5.661. While, the resonances at 0.513 eV
and 0.576 eV show respectively an oscillator strength of 0.034, and 0.019, and thus are
not visible in Fig. 6.2(b). Our aim is to show the di�erent character of these resonances
lying very close in energy to each other in order to mark the line between plasmonic and
non-plasmonic resonances.

Let us start by analyzing the imaginary part of the density change shown in Fig. 6.3,
calculated according to Eq. 1.56. Obviously, the isovalue chosen for the plots of the three
electronic density plots in Fig. 6.3 is very di�erent, due to their very di�erent oscillator
strength. However, at this point we are not interested in the intensity of the resonance,
but rather in the pattern depicted by the induced density. The three plots for the three
di�erent resonances present very di�erent density distributions. The HI resonance at 0.584
eV shows a dipolar pattern distributed along the whole molecule. Such pattern of the
induced electron density is the one expected for a low energy plasmon resonance. The
other two maps of the induced densities (0.513 eV, 0.576 eV) have a completely di�erent
pattern characterized by more rapid oscillations in the sign of the density change that are
not expected at these low energies, although they could appear for high energy plasmon
peaks. This first analysis on the induced density indeed highlights some di�erences among
the three resonances considered here. In the following Sections we will consider the same
resonances and perform a more detailed analysis of their features.
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Figure 6.2: Cross section for the 20 atoms sodium chain. Panel (a), from 0.45 eV to 5 eV.
Panel (b), from 0.45 eV to 3.5 eV.
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(a)
0.513
eV, 1E-5
e/bohr3

(b)
0.576
eV, 1E-5
e/bohr3

(c)
0.584
eV, 5E-4
e/bohr3

Figure 6.3: The imaginary part of the density change for three di�erent resonances for the
system Na20 is plotted. At the bottom we indicate the energy at which each resonance is
found. The isovalue chosen for the plot in panel (c) is 5E-4 e/bohr3, the isovalue chosen
for the other two plots is set to 1E-5 e/bohr3 (50 times smaller).

6.2 Eigenvectors Analysis
The notion of a plasmon as a collective electronic mode can lead to the idea that plasmon
peaks should be composed by many electron-hole transitions. In contrast, non-plasmonic
excitations are thought as having a larger weight on a particular electron-hole transition. To
exploit this intuitive idea we decided to analyze the eigenvectors of the interacting response,
as given by the Casida’s formulation (section 1.3.11) in terms of KS e-h excitations. Notice
that KS excitations correspond to the Casida’s eigenvectors in the absence of the interaction
kernel. The hope is that the resulting expansion would indicate the plasmonic nature of
the di�erent transitions. From Casida’s equation, see Section 1.3.11, we can define the
interacting transition density „I(r) as

„I(r) =
ÿ

EF

cI
EF ÂE(r)ÂF (r) (6.3)

where ÂE(r) and ÂF (r) are the KS wavefunctions (E and F indicate respectively unoccu-
pied and occupied orbitals) and the coe�cients cI ’s are given by

cI
EF =

ÿ

EÕF Õ

S̃≠1/2

EF,EÕF ÕF EÕF Õ

I . (6.4)

The matrix S is defined in Eq. 1.118. cI
EF ’s are the expansion coe�cients connecting

non-interacting and interacting transition eigenvectors. FI ’s are the Casida eigenvectors
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and form an orthonormal basis set, see again Section 1.3.11. Thus, the optical cross section
1.96 (‡) can be written as follows,

‡ =2
3

3ÿ

i=1

⁄
|„I(r)ri|2dr

◊
5

1
ÊI ≠ Ê + i÷

≠ 1
ÊI + Ê + i÷

6 (6.5)

If we combine equations 6.3, 6.4 and 6.5 we obtain,

‡ =2
3

3ÿ

i=1

⁄ ----
ÿ

EF,EÕF Õ

S≠1/2

EF,EÕF ÕF EÕF Õ

I ÂE(r)ÂF (r)ri

----
2

dr (6.6)

◊
5

1
ÊI ≠ Ê + i÷

≠ 1
ÊI + Ê + i÷

6
(6.7)

For the non-interacting system the FI matrix built out of the Casida’s eigenvectors (F EF,EÕF Õ

I )
is diagonal and the cross section becomes,

‡ =2
3

ÿ

i;EF

(fE ≠ fF )(‘F ≠ ‘E)
⁄ --ÂE(r)ÂF (r)ri

--2dr (6.8)

◊
5

1
ÊI ≠ Ê + i÷

≠ 1
ÊI + Ê + i÷

6
. (6.9)

When the kernel is switched on in the Casida’s equation, the resulting eigenvectors F EF
I

mix the Kohn-Sham states

„I(r) =
#
S≠1/2F

$I

EF
ÂE(r)ÂF (r) (6.10)

In Fig. 6.4 we show the results of the expansion of „I(r) in terms of the KS electron-hole
transitions for the sodium chain. The three resonances, 0.513 eV, 0.576 eV and 0.584
eV, were analyzed. In Fig. 6.4 the x-axis goes from channel 1 up to channel 900. Each
channel indicates a di�erent Kohn-Sham transition. The x-axis is ordered according to
increasing energy. Thus, the channel number 1 correspond to the HOMO-LUMO DFT
transition. The total number (900) is given by the number of the occupied states times
the number of the unoccupied states. The y-axis indicates the modulus of the coe�cients
cI

EF . Fig. 6.4(a), Fig. 6.4(b) and Fig. 6.4(c) do not show any important variation in the
distribution pattern, no qualitative di�erence is visible in the expansion distribution over the
900 transition states. The fact that the excitation at 0.584 eV has a high oscillator strength
is not reflected in the way this interacting excitation is expanded in terms of Kohn-Sham
electron-hole pairs.

However, if we only consider the first 30 Kohn-Sham transitions, see Fig.6.5, we no-
tice a clear di�erence in the distribution of the coe�cients. In this range, the HI peak
presents one transition channel that dominates the expansion, (HOMO-LUMO transition).
The plasmonic resonance at 0.584 eV is dominated by the transition 1, while the other
two resonances have the strongest components at the 4, 5 and 6 KS transitions. In the
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same plot the density distribution (ÂE(r)ÂF (r)) associated with the transitions 1, 4, 5
and 6 is presented above each transition. In particular, the density associated with the
transition 1 (ÂHOMO(r)ÂLUMO(r)), shown in detail in Fig. 6.6, shows a dipolar distri-
bution similar to the one showed in the density change (Fig. 6.3). The results show that
the plasmonic resonance at 0.584 eV, well visible in the cross section (Fig. 6.2(a)), has
a dominant contribution from the HOMO-LUMO Kohn-Sham transition. To explain this
fact we consider a particle in a 1D box. The particle wavefunction is Ã cos(knx) where
kn = nfi/L and L is the length of the box. The resulting transition wavefunction calcu-
lated multiplying two wavefunctions having the quantum n di�ering by 1 is proportional
to cos( 2n+1

L fix) + cos(≠ fi
L x), see Fig.6.7, and shows a clear dipolar electron distribution.

Thus, for a monoatomic chain as in the case of sodium 20, the main plasmonic reso-
nance can be expected to have a strong (probably dominant) contribution coming from
the HOMO-LUMO KS transition. These results show that the information provided by
the expansion of the Casida’s eigenvectors does not give us any clear information about
the plasmonic nature of the peak. Moreover, the initial intuition of a plasmon made out
of many Kohn-Sham transitions does not hold necessarily, even in the simple situation of
sodium chain.
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Figure 6.4: Interacting resonance expansion in terms of Kohn-Sham transitions. The 900
transitions between occupied and unoccupied KS levels are indicated in the x-axis. In panel
(a), (b) and (c) we show the results respectively for the modes at frequency 0.513 eV,
0.576 eV, 0.584 eV.
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Figure 6.5: Expansion coe�cients, in terms of the first 30 KS excitations, for the optical
transitions obtained using Casida’s equation at 0.513 eV, 0.576 eV and 0.584 eV.

HOMO level LUMO level
HOMO - LUMO 

x =

Figure 6.6: HOMO and LUMO KS wavefunctions and the associated HOMO- LUMO
transition.

150



Transition Density: Real-Space Map
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Figure 6.7: Density change associated with the lowest energy e-h transition in a simple
particle in a 1D box model, cos((2n + 1)fi/L) + cos(≠fi/L)

In Fig. 6.8 we present the same analysis for three other di�erent resonances, at the
energies 1.439 eV, 1.441 eV and 1.466 eV. The three resonances have an oscillator strength
respectively <10-3, equal to 0.003 and 0.460. The peak at 1.466 eV can be seen in the
cross section in Fig. 6.2. The three di�erent frequencies have very di�erent expansion
coe�cients as shown in Fig. 6.8 however, no general rule can be extracted in order to
di�erentiate the nature of the three oscillations. Even in this case the resonance with the
largest oscillator strength has strong contributions only from a few KS transitions.
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1.466 eV, HI peak

Figure 6.8: Expansion coe�cients, in terms of the first 30 KS excitations, for the optical
transitions obtained using Casida’s equation at 1.439 eV, 1.441 eV and 1.466 eV.

6.2.1 Transition Density: Real-Space Map
Fig. 6.9 shows the real-space representation of Casida’s interacting transition density „I for
some resonances Is. For all the plots an isovalue of the density equal to 5·10≠5e/Å3 is used.
Many resonant frequencies are considered, some at low energy, less than 1 eV, and some
at higher energy, around 1.5 eV. Only two of the twelve modes show a distribution pattern
that we could describe as “plasmonic”, in the sense that they correspond to relatively
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long wavelength oscillations of the density that extent over the whole structure. The
two “plasmonic” modes detected in Fig. 6.2 and shown in Fig. 6.9(c) and Fig. 6.9(i)
have, respectively, one and three nodes. The resonance at 1.466 eV shows a low oscillator
strength (0.456 eV) due to the small total dipole. The patterns corresponding to the other
transitions cannot be classified as “plasmonic” according to the description above.

(a)
0.513 eV

(b)
0.576 eV

(c)
0.584 eV

(d)
0.644 eV

(e)
0.727 eV

(f)
0.758 eV

(g)
1.439 eV

(h)
1.441 eV

(i)
1.466 eV

(j)
1.475 eV

(k)
1.501 eV

(l)
1.530 eV

Figure 6.9: The interacting transition density „I defined in Eq. 6.10 is plotted in real-space
for several transitions in a Na20 chain. The energy of the modes is indicated at the bottom
of each plot.

Recently, Casanova et al.28 used the so-called Transition Inverse Participation Ratio
(TIPR). The TIPR labelled as · is defined as

· =
3 n

occÿ

i=1

⁄4

i

4≠1

(6.11)
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⁄i corresponding to transition occupation numbers and are calculated by applying the
Single Value Decomposition (SVD) procedure to the transition density matrix T .28 The
transition inverse participation ratio is defined in the natural transition orbital. Using
SVD, the transition matrix can be re-written as T = U�V † where ⁄i are the diagonal
elements of the matrix �. For each excitation we calculate a · . In particular, the value
· varies from 1 to the number of occupied states. A value of · close to 1 features single
e-h transition while, higher values of · would indicate higher plasmonic character for that
excitation.

In our framework, we can perform the SVD procedure on the C matrix, which elements
are cI,EF =

q
EÕF Õ

ÂS≠1/2

EF,EÕF ÕF EÕF Õ

I . The results for the transition inverse participation
ratio · that we calculated for the Sodium chain are shown in Table 6.1. The numbers in
blue are the two plasmonic frequency analyzed previously. We cannot see any significant
variation of · for the di�erent excitations. Actually, the excitation at 0.584 eV, which we
saw to have a plasmonic character, has a · of 1.006. In our case, for our system consisting
of a Sodium chain, the transition inverse participation ratio does not help to characterize
the nature of the excitations. In our analysis of the Casida’s eigenvectors presented in
Section 6.2 we found that the high intensity excitation at 0.584 eV is given mainly by the
HOMO-LUMO KS transition. Thus, it is not surprising to find a · value of 1 for that
excitation. In fact, the SVD procedure projects the problem in a new basis set – the so-
called natural orbital’s basis set. This new basis set is smaller than the KS e-h transition
basis set. However, it does not seem to be able to identify plasmons in molecules, at least
in our sodium chain. Moreover, it is interesting to notice that the excitation at 1.466 eV
in Table 6.1 has a tau value of 2.996. This value is very close to what is observed in Fig.
6.8.

Frequency
(eV) ·

0.513 1.938
0.576 2.113
0.584 1.006
0.664 1.756
0.727 2.359
0.758 1.624
1.439 2.421
1.441 2.574
1.466 2.996
1.475 1.887
1.501 1.428
1.530 2.286

Table 6.1: Results for · transition inverse part ratio.
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6.3 Comparison to the Dispersion of Electronic
Structure in the Infinite Na Chain

A further analysis can be made by comparing the electronic excitations in an infinite 1D
chain. Optical fields carry a very small momentum. For this reason, optical excitations
are frequently described as “vertical excitations”, meaning that in a bulk system, where
electron momentum is well defined, they must take place only between states characterized
by the same crystalline momentum (or Bloch wavevector). In a finite system things become
slightly more complicated. Scattering at the surfaces mixes states with di�erent momenta
(for example, k and ≠k in a 1D chain as the one considered here) and selection rules
inspired by the optical vertical transitions might be relaxed. In any case, it frequently
becomes di�cult to assign a momentum to the resulting quantized electronic states. Under
these conditions, it becomes interesting to analyze the infinite system, and consider how
its electronic structure should be modified when the boundaries, and the corresponding
quantization, of a finite object are taken into account. We start by comparing the band
structure calculated for an infinite Na chain with the “band structure” for the Na20 chain.
For the finite system the momentum is assigned to each Kohn-Sham orbitals by performing
a Fast Fourier Transform (FFT), see Appendix G, of the wavefunction. The results in Fig.
6.10 show the band structure of a sodium infinite chain with the band structure calculated
from the 20 atoms sodium chain. In particular in Fig. 6.10(b) the first Brillouin Zone (BZ)
is considered. The Fermi energy is set to 0 eV. For long chains the bands will converge
to the infinite chain limit. The agreement is good, allowing us to calculate a momentum
transfer for each excitation.
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(a) (b)

Figure 6.10: Comparison between the band structure for an infinite sodium chain (red line)
and The Fourier transform of the levels of a Na20 chain (colormap).

6.4 Momentum-Transfer Analysis of the Electronic
Excitations in a Finite Sodium Chain

The band structure obtained for the finite Sodium chain is in good agreement with the one
of an infinite Sodium chain. In the same manner, we can associate a momentum exchange
for each excitation by Fourier transforming the real-space functions „I . This procedure
provides information about the momentum transferred during the electronic excitation.
Such kind of analysis for a given excitation provides a function of momentum. In Fig.
6.11 we show the Fourier transform of „I for the transition at 0.584 eV. Although many
momenta contribute to this function, it is possible to extract the momentum exchange with
the maximum contribution. In Fig. 6.11 on the x-axis is indicated the momentum transfer
q. The dashed line indicates the value of the momentum transfer with the higher intensity,
which for this transition is equal to 0.032 bohr≠1.
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Figure 6.11: FFT of the function „HI . The main contribution is given by the momentum
equal to 0.032 bohr-1.

The same analysis was done for all the excitations. In Fig. 6.12 a map of the Fourier
transform of „I for the excitations up to 3 eV is shown. These data show clearly the 1D
electron gas plasmon as described in section 1.4.2, the peaks that we will see to have a
plasmonic character are indicated with red dots. We can go one step further and extract
the q component contributing the most at each „I(q) and assign it to each „I . The
resulting analysis is shown in Fig. 6.13 as red dots. The light blue dots, instead, represent
the KS e-h continuum. Finally, the blue curve is calculated using Eq. 1.148 for a Fermi
momentum (KF ) equal to 0.496 bohr-1. The value 0.496 bohr-1 for KF was extracted
from the momentum analysis of the KS eigenfunction corresponding to the HOMO level
for the Na20 system. We can see the good agreement between the group of red dots
departing from the origin and entering in the e-h continuum, and the blue theoretical
curve. Unfortunately, once the group of red dots enter the e-h continuum region is not
possible anymore to follow the plasmon dispersion due to the coupling of the “plasmonic”
excitations with the e-h excitations. The “plasmonic” modes inside the e-h region cannot
be distinguished from the non-plasmonic e-h excitations. This result is a clear mark of the
“plasmonic” nature of the low energy excitation peaks present in the cross-section plot,
see Fig. 6.2. Note that there is another group of peaks around 4.5 eV that disperses
from q = 0 towards the e-h continuum region. This, most likely, indicates the presence of
another high-energy plasmon mode arising from high-energy features of the sodium band
structure and that cannot be described solely by the 1D electron gas theory.
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Figure 6.12: Map of the Fourier transform of the „I functions up to 3 eV. Color code
indicates the modulus of the Fourier transform.
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Figure 6.13: The light blue dots represent the electron-hole continuum of an infinite Na
chain, while the red dots indicate the electronic excitations in a finite 20 atom Na chain as
a function of the momentum transfer assigned to each transition The blue curve represents
the theoretical plasmon curve as described in Equation 1.148 for a value of the Fermi
momentum equal to 0.496 bohr-1.

A study to calculate the momentum transfer for each excitation of the Na chain has
already been done by the Bernadotte et al.26 In that work they assign the momentum
transfer by visual a inspection of the TDDFT transition density. In our study we calculated
the plasmon dispersion for the Na20 in a more systematic way by defining a procedure
based on the application of the Fourier transform on the interacting transition density
„I(r) calculated within the Casida’s framework. The momentum transfer is then chosen
by selecting the momentum component with the most weight.
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6.5 Coulombic Restoring Force Ratio
A collective electronic oscillation, such as a plasmon, implies a considerable charge dis-
placement. Thus, we expect the coulomb kernel (K) connecting the non-interacting (‰

0

)
and the interacting response functions (‰) (‰ = (‰≠1

0

≠ K)≠1) to contribute di�erently in
the case of plasmon modes. With this idea in mind we decided to study in more depth the
existing relation between the “plasmonic” modes and kernel renormalization.

In the Casida’s formulation, the kernel contribution can be easily separated. As we
show in 6.14 we can split the Casida’s matrix into two terms, the first term on the right
side (highlighted by the dark green line) is the non-interacting “Kohn-Sham” contribution
while the second term on the right side (highlighted by the yellow line) contains the kernel
and accounts for the electronic interactions. The dynamic screening introduced by the
kernel plays an important role in the collective electronic motion unlike in the case of single
electron-hole excitations.26 Di�erent non-interacting transitions respond di�erently as the
kernel is adiabatically switched on, and plasmon-like excitations are strongly renormalized by
the kernel.26 With the above mentioned considerations it seems then possible to quantify a
plasmonicity of di�erent excitations by calculating what we called the Coulombic Restoring
Force ratio (RCRF ). The quantity RCRF is given by the ratio between the interacting
expectation value and non-interacting expectation value of a given excitation. The two
expectation values are taken for the Casida’s states |S≠1/2FIÍ. High values of the CRF
ratio correspond to excitations that undergo a strong renormalization.

�EF (Ê) = ”EF,EÕF Õ(‘E ≠ ‘F )
�nonint

+ 2


(fE ≠ fF )(‘F ≠ ‘E)KEF,EÕF Õ(Ê)


(fEÕ ≠ fF Õ)(‘F Õ ≠ ‘EÕ)

�int

ÈS≠1/2FI | �nonint |S≠1/2FIÍ/ÈS≠1/2FI | �int |S≠1/2FIÍ = RCRF

Figure 6.14

The results obtained are shown in Fig. 6.15(a). The excitations addressed as “plasmonic”
excitations from the analysis on the momentum transfer performed in Section 6.4 and
having a high oscillator strength, have also a high RCRF . However, we also note that
some low intensity peaks in the cross-section can possess high RCRF . This is due to
the fact that the cross-section by definition is proportional to the dipolar component of
the induced density distribution. It is in fact possible to have a “plasmonic” excitation
with multiple nodes and so a weak associated dipole moment. Note that the high energy
resonances found above 4 eV are excited by fields perpendicular to the chain axis.

In section 6.4 we discussed the impossibility of detecting “plasmonic” resonances once
they enter the e-h continuum, this fact is evident in Fig. 6.13. However, if we take the
results from Fig. 6.4 and we filter out those resonances with low RCRF we are able, at least
partially, to determine the energy of the “plasmonic” resonances even when they couple
with the e-h continuum, see Fig. 6.15(b).
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We also note that we see what it looks like a splitting of the plasmonic mode inside the
e-h continuum. One branch is indeed following the theoretical curve for the 1D electron
gas plasmon (blue curve) while the other branch does not disperse and reaches a plateau
value around 3.5 eV. The reason of this “plasmonic” splitting is unknown.

The two studies performed, on the momentum transfer on one side, see Section 6.4,
and on the RCRF ratio on the other, together provide a way to gain information about the
“plasmonic” character of the resonances, even after they penetrate the e-h continuum.
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Figure 6.15: In panel (a) the cross section (blue line) is plotted together with the value of
the RCRF ratio (red dots) for each energy eigenvalue. In panel (a) the plasmon dispersion
is plotted in the momentum energy plane. The red dots indicate the Na20 chain electronic
excitations with high oscillator strength value. The light blue dots indicate the e-h contin-
uum while the blue line represents the theoretical plasmon curve as described in Equation
1.148 for a value of the Fermi momentum equal to 0.496 bohr-1.

In a recent publication, Bursi et al.27 introduced what they called plasmonicity index,
which is a very similar quantity to the CRF ratio just introduced. The idea behind was the
same, to measure Coulomb energy related to the modes induced density. Their findings for
a system consisting of a sodium chain are very similar to the ones presented in Fig. 6.15(a).
However, although our results on the CRF ratio seem to be qualitatively and quantitatively
able to define the level of plasmonicity of a system excitation, it was not possible to find
transitions with a low CRF ratio and a large oscillator strength. No single e-h excitation
has a large enough oscillator strength to be clearly visible in the polarizability/cross section
spectrum. More complex systems will have more unpredictable behavior and the study
presented here, analysing several characteristic of excitations, becomes even more relevant.

6.6 Conclusions
In this chapter we tested several definitions of plasmonicity character of molecular reso-
nances. For this purpose we considered a simple Sodium chain containing 20 atoms and we
calculated the optical properties employing the Casida’s approach (Section 1.3.11). The
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eigenvectors obtained by solving the Casida’s equation (1.114) contain information about
the KS transitions involved in each optical excitation.

Firstly, we looked at the number of KS transitions involved. Our initial idea was based
on the notion of plasmons as a collective participation of single-electron transition. In
particular, a high number of KS states involved in a given excitation would be a mark of
high plasmonicity for that excitation. This kind of analysis proved not to be adequate, and
we showed that the basis set given by KS orbitals cannot be used as a mean to measure
the collectiveness of an excitation.

The second step consisted in analyzing the momentum transferred in each excitation.
Although our system is a finite object, we proved that it is possible by means of the
Fourier transform to gather information about the momentum exchanged associated with
the excitations. In particular, in the Fourier transform of a given excitation we picked the
momentum with higher weight and we assigned it to that excitation. At least in the sodium
chain we studied, the results confirmed the existence of plasmonic modes. It was possible,
in fact, to observe the theoretically expected 1D plasmon mode typical of a 1D free electron
gas system.

Finally, in Section 6.5 we presented the Coulombic Restoring Force ratio (RCRF )
as calculated in Eq. 6.14. The larger the value of RCRF the higher is the Coulomb
interaction for an excitation, which leads to a high renormalization of that excitation, typical
of plasmonic modes.26 The results support the findings obtained with the momentum
transfer analysis. Indeed, plasmonic modes possess high values of RCRF . The results from
the analysis on the momentum transfer and the RCRF made possible to follow the 1D
plasmonic mode well within the e-h continuum. In particular, a splitting of the plasmonic
mode inside the e-h continuum was observed.

This study showed that in finite systems is not trivial to characterize the nature of an
excitation. In fact, the definition of plasmons for bulk systems does not hold anymore and
a deeper analysis is needed to have a better understanding of the nature of the excitations.
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7 | Conclusions

In this PhD thesis we applied ab initio Density Functional Theory (DFT) and Linear
Response Time-Dependent Density Functional Theory (LR-TDDFT) to study the ground-
state and optical properties of some selected finite systems and molecules. The SIESTA
(Spanish Initiative for Electronic Simulations with Thousands of Atoms)6,7 code has been
the DFT code used for calculating the ground-state properties of the systems. The optical
properties were calculated using the MBPT-LCAO (Many Body Perturbation Theory -
Linear Combination Atomic Orbitals)17–19 code. MBPT-LCAO is a non-commercialized
many-body perturbation-theory code that we develop in our research group in Donostia -
San Sebastian and featuring e�cient algorithms such as

• the generation of an e�cient and accurate product basis set,

• e�cient procedure to apply the noninteracting linear response matrix on a vector.

• Iterative method to obtain interacting TDDFT spectra.

It is designed to work in tandem with SIESTA – the SIESTA ground-state calculations
provide the input to be used in the MBPT-LCAO code. The code has been used to
calculate the optical properties of a large variety of systems, be able to treat systems
containing thousands of atoms.

In particular, in Chapter 3 of this thesis we analyzed the optical properties of graphene
nanoflakes. The study of the optical properties comprehended the analysis of the polar-
izability, optical cross section and induced density. We considered square and hexagonal
graphene nanoflakes because, while the former possess both ZigZag (ZZ) and ArmChair
(AC) edges, the latter can be designed to have only ZZ or only AC edges. This gave us
the possibility to relate the optical behavior with the presence of a specific type of edge.
The sizes of the flakes considered vary from a minimum of ≥10 Å (≥40 Carbon atoms)
to a maximum of ≥60 Å (>1000 atoms), in lateral dimensions. The flakes were saturated
with Hydrogen atoms.

For all the flakes, two main peaks were observed in the polarizability spectrum. These
peaks are related to the fi and ‡ plasmons characteristic of infinite graphene. The origin
of the peaks was explained and their energy position was monitored for the three di�erent
geometries (square, hexagonal ZZ and hexagonal AC) and for many flake sizes.

The main position of the fi and ‡ plasmons was found to be basically independent
of the geometry considered and, thus, of the type of edge of the flake. However, both
plasmons redshifted as we increased the size of the flakes. For systems containing ≥1000
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carbon atoms the position in frequency of the plasmons seems to have converged within
tens of meV. Thus, we do not expect an important shift in the plasmon peak positions by
further increasing the flake size. In fact, the optical spectrum of the flake ZZ C1014H78 is in
good agreement with the experimental results from Geim et al.,131 specially for the lower
energy plasmon, i.e. fi plasmon, which was found in our polarizability spectra at about 4.8
eV.

The optical gap, i.e. the first optically active excitation, is another interesting quantity
we monitored in our work. To perform the study we used the ALDA kernel which shows
limitations in describing the optical gap. Square flakes with more that ≥30 carbon atoms
have zero optical gap. The reason behind the absence of optical gap in square flakes has
been related to the band structure of ZZ graphene nanoribbons. For ZZ and AC hexagonal
flakes the optical gap is finite and decreases rapidly as the flakes get bigger. As we increased
the size, the optical gap is redshifted and eventually, for very big flakes, approaches the
zero limit, typical for graphene. For ZZ flakes the HOMO-LUMO gap and the optical
gap approach zero faster than in AC flakes. Most likely this is due to the presence of ZZ
edges. Moreover, DFT HOMO-LUMO gap energy and TDDFT optical gap energy have
been compared to understand the role of the interaction kernel, ZZ flakes showed a stronger
electron screening.

The plots of the induced density for the three geometries and for three di�erent selected
energy windows helped us once more to underline the di�erent behavior of the two types
of edges. For certain energy ranges in ZZ flakes the density change is concentrated on the
edge atoms. In the last part of Chapter 3 we investigated the e�ects of the edges in the
low-energy regime by changing the saturating atoms in ZZ flakes. We functionalized the
edges with oxygen, fluorine and hydroxyl group.

In Chapter 4 we focused on the tunability of low-energy resonances by changing the
total net charge in triangular Polycyclic Aromatic Hydrocarbons (PAHs). PAH molecules
are made of aromatic benzene rings and can be regarded as nanoflakes of graphene. They
bear a close resemblance to the so-called graphene quantum dots.150 The fact that these
molecules can be chemically synthesized and are defect-free makes the PAHs potentially
attractive for nanodevices. Our calculations showed that even the addition or removal of a
single electronic charge can cause the rising of new resonances at visible and near-infrared
frequencies in the optical cross section. In particular, this is true for AC triangular flakes
where a finite HOMO-LUMO gap exists. The degenerate KS orbitals at the Fermi energy
prevent ZZ PAHs from behaving in the same way, and therefore no new resonances were
found after doping the material. In order to complete this study a finite temperature had
to be considered in the TDDFT calculations. In fact, the low-energy features visible in the
spectra after doping are connected to the partially filled KS levels at the Fermi energy as
has been proved in Chapter 4.

In Chapter 5 our e�orts were focused on analyzing the plasmonic cavity formed by two
icosahedral sodium nanoclusters. Each cluster contained 380 sodium atoms arranged to
minimize the total energy of the isolated particles. In the first study170 we left the two
cluster geometries untouched and we played with the intercluster distance that separated
the two particles. At distances greater than ≥15 Å we can consider the two clusters to
be decoupled. Each cluster’s polarizability was not heavily influenced by the presence of
the other cluster. As we decreases the interparticle distance the two clusters started to
interact. We analyzed in detail the evolution of the dimer plasmonic modes in relation
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to the interparticle distance and for di�erent cluster-cluster orientations: face-to-face, tip-
to-face and tip-to-tip configurations. We also studied the cavity by plotting the induced
field real-space distribution at the plasmonic mode frequencies. The analysis has shown
the presence of three major plasmonic modes:

• The Bonding Dipolar Plasmon (BDP)

• The Charge Transfer Plasmon (CTP)

• The high-energy Charge Transfer Plasmon (CTP’)

The first one is the characteristic mode of the isolated cluster renormalized by the presence
of the neighboring particle. It is visible while we are in the so-called capacity regime,
when the clusters are placed far apart, and it redshifts as we decrease the intercluster
distance. In this regime no current flows between the two clusters. As we decreased the
intercluster distance, we eventually entered in the so-called tunnelling regime, the BDP
mode slowly disappears and the CTP along with the CTP’ become visible. A more intense
CTP corresponding to a larger tunnelling current is found for the face-to-face configuration.
The CTP mode blueshifted as we keep decreasing the interparticle distance. At the BDP
plasmon frequencies, inside the nanocavity a strong localized and enhanced electric field
is present, due to the Coulomb coupling between induced charges across the gap. With
our first-principles full-atomistic TDDFT approach we showed that the plasmonic field in
the cavity can be very dependent on the interparticle distance but also on the mutual
orientation of the two objects, for such small interparticle distances the atomistic structure
of the junction determines the details of the near-field distribution.

In a following study again described in detail in Chapter 5 we considered the same
system consisting of two sodium clusters but, this time we included the possibility for the
atoms to rearrange while we change the interparticle distance. To monitor the distance
between the clusters we defined the so-called Nominal Gap Size (NGS), which was defined
as the distance between the two cluster inner facets if the system would remain unrelaxed.
Starting from a NGS of 16 Å we approached the two clusters in steps of 0.2 Å and at each
step we performed a SIESTA calculation aimed at optimizing the dimer structure – each
cluster geometry is relaxed in response to the presence of its neighbor.

We obtained a plasmonic mode dispersion very di�erent to that where each cluster
was kept frozen. In particular, the so-called jump-to-contact instability alters the optical
response at small separations dramatically. Around a NGS of 6 Å the attraction between
the two flat surfaces in the cavity was strong enough to get them to contact, resulting in a
consequent elongation of each cluster. We then kept pushing the two clusters one against
the other, almost to the point to form a single roundish big sodium cluster. At a NGS of
about 3.5 Å we started the retracting process. Due to the plasticity of our sodium clusters
during the retracting process we showed the formation of a nanocontact. A neck connecting
the two clusters is formed and becomes thinner and thinner as the distance between the
NGS increases as to the point of becoming of monoatomic cross-section. Finally, as we
reached a NGS of ≥32 Å the two clusters separate completely.

During the approach and retraction processes we monitored the total energy of the
system and the optical response. The jump-to-contact instability led to an abrupt passage
from the capacity regime to the resistive regime as such, the total energy of the system
changed quickly and the BDP mode suddenly was quenched while both CTP and CTP’
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modes appear. The jump-to-contact process wipes out the transition tunnelling regime
found theoretically when the clusters were not allowed to relax. The resistive regime
characterized by the presence of intense CTP and CTP’ modes is characterized by current
flowing through the entire dimer.

A less trivial relation between jump in the total energy and discontinuity in the optical
cross section is also observed during the retraction process. The contact formation process
was not a continuous process, instead it was made by a series of discontinuous processes.
In order to investigate further this fact, we calculated the geometrical cross-section of the
neck and the current passing through the neck for di�erent NGS. In the analysis presented
in Chapter 5 we could associate the neck-cross-section reduction with jumps in the neck
current and jumps in the optical properties. We showed that single-atomic reorganization
played an important role, even in the far field – the current quantization in the junction
region for such small necks reflects in the plasmonic response of the system.

Our study has clearly demonstrated that optics follows the atoms. This is important
in the design of subnanometric-scale optical modulators that rely in changes of the optical
response against tiny configurational modifications. Our analysis was done for small icosa-
hedron sodium clusters, however, we expect to find a similar behavior for other materials,
suitable for electronic applications, such as gold.265

In Chapter 6 we asked ourselves whether it is possible to find an operational definition
for plasmons in finite systems within the DFT/ TDDFT framework. For bulk systems,
plasmons are defined as the frequency at which we have zeros in the macroscopic dielectric
function. In finite systems is not possible to define a macroscopic dielectric function and
so we need to find another way to identify plasmons. For the current study we considered
a system consisting of a sodium chain. Owing to the simplicity of the Na

20

chain we could
perform several types of analysis suggested by di�erent authors.26–28 The reason to use
this system is that it is a simple 1D system and that we could find a publication of a similar
study26 giving us the possibility to readily compare our results to theirs. In order to tackle
the problem of the origin of plasmons in molecules we employed the Casida’s approach, that
provides information about the KS transitions contributing to a given excitation. More-
over, an FFT analysis on Casida’s eigenvectors has been performed. From the analysis we
were able to define a momentum transfer for a given excitation in a finite system. The
analysis on the results have shown the presence of the expected 1D electron gas plasmon.
A supporting analysis on the so-called transition density „I clarified the di�erence in elec-
tron density real-space distribution between electron-hole (e-h) excitations and plasmonic
transitions. In order to enable the detection of plasmons without the need of analyzing the
real-space or momentum distribution of „I , we defined a single quantity called Coulombic
Restoring Force ratio (RCRF ). RCRF measures the Coulomb matrix elements of the dif-
ferent Casida’s eigenvectors. Indeed, all the plasmonic resonances spotted in the previous
analysis showed a strong RCRF value.
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A | Linear Response Theory

Using the results from Appendix B we can write,

fl̂I(t) = fl̂
0

≠ i

⁄ t

≠Œ

#
Ĥ

1,I(tÕ), fl̂I(t)
$
dt. (A.1)

This equation has to be solved iteratively. However, since the perturbation H
1,I is chosen

to be small we can restrict ourselves to the first order in the perturbation. This means
that equation A.1 in Schrödinger representation becomes

fl̂S(t) ¥ fl̂
0

≠ i

⁄ t

≠Œ
UH0

#
Ĥ

1,I(tÕ), fl̂
0

$
dt U†

H0
. (A.2)

The integration limits goes from Œ to t. tÕ < t where t is observation time ensuring
causality. Only times tÕ before the observation time t a�ect our observation. The ensemble
average of the expectation value for a given operator Ô is written as

ÈÔÍ =
ÿ

i

pi È�i| Ô |ÂiÍ =
ÿ

i,j,k

pi È�i|njÍ Ènj | Ô |nkÍ Ènk|�iÍ

=
ÿ

j,k

Ènk| fl̂ |njÍ Ènj | Ô |nkÍ =
ÿ

j,k

flkjOjk = Tr(fl O),
(A.3)

where we used the Complete OrthoNormal System (CONS) {|nÍ} and the definition of
density operator fl̂ =

q
i pi |�iÍ È�i|. Where È�i| Ô |ÂiÍ is the expectation value for the

operator Ô in the pure state |�iÍ. Consequently, it is possible to obtain the expectation
value È. . .Í of the operator Ô at a given time using A.2 and A.3

ÈÔÍt = Tr(fl(t) Ô) = ÈÔÍ
0

≠ i

⁄ t

≠Œ
Tr

3
UH0

#
Ĥ

1,I(tÕ), fl̂
0

$
U†

H0
Ô

4
dtÕ

= ÈÔÍ
0

≠ i

⁄ t

≠Œ
Tr

3
fl̂

0

#
ÔI , Ĥ

1,I(tÕ)
$4

dtÕ.

(A.4)

where we used twice the cyclic properties for matrix trace, Tr(ABCD) = Tr(BCDA).
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A.1. Eigenstate Time-Evolution

A.1 Eigenstate Time-Evolution
A state in Interaction representation is defined as

|�I(t)Í def= ei ˆH0,S

t |�S(t)Í = U†
H0

|�S(t)Í (A.5)

so that the Schrödinger equation i ˆ
ˆt |�S(t)Í = ĤS |�S(t)Í = (Ĥ

0

+ Ĥ
1,S(t)) |�S(t)Í can

be re-written as

i
ˆ

ˆt

!
UH0 |�I(t)Í

"
= ĤS |�S(t)Í = (Ĥ

0

+ Ĥ
1,S(t)) UH0 |�I(t)Í

UH0Ĥ
0

|�I(t)Í + i UH0
ˆ

ˆt
|�I(t)Í = Ĥ

0

UH0 |�I(t)Í + Ĥ
1,S(t) UH0 |�I(t)Í

i
ˆ

ˆt
|�I(t)Í = Ĥ

1,I(t) |�I(t)Í

(A.6)

where Ĥ
1,I(t) = U†

H0
Ĥ

1,S UH0 . We can integrate with respect to t and we get

|�I(t)Í = |�
0

Í ≠ i

⁄ t

≠Œ
Ĥ

1,I(tÕ) |�I(tÕ)Í dtÕ (A.7)

where |�
0

Í = |�I(t = ≠Œ)Í. For small H
1,I(t) we can stop at the first order in the

expansion

|�I(t)Í ¥ |�
0

Í ≠ i

⁄ t

≠Œ
Ĥ

1,I(tÕ) |�
0

Í dtÕ. (A.8)

Thus, the expectation value of an observable Ô(t) at any time t can be written as

ÈÔIÍt =
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0

| + i
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0

| Ĥ
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(A.9)

A.2 Kubo Formula
Let us consider the time-dependent perturbing part of the Hamiltonian represented in
Interacting picture Ĥ

1,I(t) to be functional of Â(t) and depending on the field F (t)

Ĥ
1

(t) = Â(t)F (t). (A.10)
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A.2. Kubo Formula

Then we get

� ÈÔ(t)Í = ÈÔÍt ≠ ÈÔÍ
0

= ≠i

⁄ t

≠Œ
F (tÕ)Tr

3
fl̂

0
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ÔI , ÂI(tÕ)

$4
dt

= ≠i
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F (tÕ) È

#
ÔI , ÂI(tÕ)
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(A.11)

Of our interest is the case in which Ĥ
1

(t) depends on the density fl, Ĥ
1

(t) =
s

fl(r, t)„(r, t)dr.
In this case

� Èfl̂(r, t)Í = ≠i

⁄ t

≠Œ
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(A.12)

where the integral is extended to +Œ but the ◊(t ≠ tÕ) is introduced

◊(t ≠ tÕ) =
;

1 , tÕ < t
0 , tÕ Ø t .

(A.13)

In A.12 the change in density due to the perturbation depends linearly on the potential
„. The formula connects the external perturbation and the response of the system and it
depends only on the unperturbed system. From equation A.12 we can define

‰(r, t; rÕ, tÕ) = (≠i)◊(t ≠ tÕ) È
#
fl̂I(r, t), fl̂I(rÕ, tÕ)

$
Í
0

. (A.14)

This result is known as Kubo formula. ‰ defined as in equation A.14 is also called retarded
Green function, or retarded response function, or retarded propagator or correlation
function. For a time-independent H

0

we have time invariance and we can write

‰(r, t; rÕ, tÕ) = ‰(r, rÕ, t ≠ tÕ) æ ‰(r, t). (A.15)

Using A.12, A.14, A.15 and by Fourier transforming equation A.12 we obtain,

� Èfl̂(r, t)Í = 1
2fi

⁄
� Èfl̂(r, Ê)Í eiÊtdÊ

= 1
4fi2

⁄ Œ

≠Œ

⁄ ⁄ ⁄
‰(r, rÕ, Ê)eiÊ(t≠tÕ

)„(rÕ, ÊÕ)eiÊÕtÕ
drÕdÊdÊÕdtÕ

= 1
2fi

⁄ ⁄
‰(r, rÕ, Ê)„(rÕ, Ê)drÕeiÊtdÊ

(A.16)

obtaining

� Èfl̂(r, Ê)Í =
⁄

‰(r, rÕ, Ê)„(rÕ, Ê)drÕ. (A.17)

In particular we can obtain a more explicit version of the linear response function in fre-
quency domain. If we use the complete set of eigenstates of the Hamiltonian Ĥ, e.i.
Ĥ |nÍ = En |nÍ and fact that

fl̂I(r, t) = U†
H0

fl̂I(r, 0) UH0 = ei ˆH0,S

tfl̂I(rÕ, 0)e≠i ˆH0,S

t (A.18)
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A.3. Non-Interacting Response Function (‰
0

),
Lehmann Representation

we can write

‰(r, rÕ, Ê) = lim
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6

(A.19)

where the factor e≠÷t and the limit lim÷æ0

are introduced. ÷ is taken positive and real.
This is equivalent to consider the Hamiltonian H = H

0

+ e≠÷|t|H
1

. In this case for t ± Œ
the system is described by the non-interacting Hamiltonian H

0

. Starting from t = ≠Œ the
perturbation is switched on and will increase until t = 0, while, for times following t = 0
the oscillation will decay. The limit for ÷ æ 0 means in the perturbation to be turned on
infinitely slowly (adiabatically), in this case any purposeful result has to be independent
of the factor ÷.266 The perturbative adiabatic approach is a mathematical trick employed
to follow the development of the H

0

eigenstates as the perturbative Hamiltonian term H
1

is switched-on so to obtain reliable interacting eigenstates.266 However, it can be shown
that the TDDFT linear response theory is valid also for sudden switched-on potential,
nevertheless the factor e≠÷t is necessary in order to perform the integration in frequency
domain and it does not come from a potential adiabatically switched-on.267 In equation
A.19 the ÷ factor appears as imaginary infinitesimals at the denominator in the response
function. We can finally define the oscillator strength as

Fi = È�n| fl̂S(rÕ) |�
0

Í . (A.20)

A.3 Non-Interacting Response Function (‰0),
Lehmann Representation

It is useful to introduce the so-called non-interacting response function ‰
0

(r, rÕ, t) which
describes the linear response of a system of independent particles. In this approximation
we can extract a concise form for the response functions depending on the system orbital
wavefunctions. In order to do that, it is convenient to use the second-quantization formal-
ism in equation A.19. In second quantization the creation and annihilation operators are
introduced

ai |�nÍ =


fi |�n,≠iÍ a†
i |�nÍ =


fi + 1 |�n,+iÍ , (A.21)
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A.3. Non-Interacting Response Function (‰
0

),
Lehmann Representation

where fi is the occupation of the ith-level. Moreover, the density is defined in term of
creation (Â†) and annihilation (Â) field operators

fl̂S(r) = Â†(r)Â(r) Â(r) =
ÿ

i

„i(r)ai Â†(r) =
ÿ

i

„ú
i (r)a†

i , (A.22)

where a† and a are the creation and annihilation operators respectively and „i(r) are single-
particle wave functions. We can re-write the oscillator strength terms (equation A.20) as

È�n| Â†(r)Â(r) |�
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ÿ
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È�n| „ú
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(A.23)
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| Â†(r)Â(r) |�nÍ =
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
fj


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0,≠j+k|�nÍ (A.24)

Substituting the terms A.23 and A.24 in equation A.19 we obtain the so-called Lehmann
representation267

‰
0

(r, rÕ, Ê) =
ÿ

j,k
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(A.25)
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B | Von Neumann Equation

Starting from the Schrödinger equation,

i
ˆ

ˆt
|�S(t)Í = ĤS |�S(t)Í i

ˆ

ˆt
È�S(t)| = ≠ È�S(t)| ĤS (B.1)

being ĤS = Ĥ†
S . If we evolve the density operator defined as fl̂(t) =

qN
i=1

pi |�S(t)Í È�S(t)|
we find the Von Neumann equation,
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53
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6
=

5
ĤS , fl̂S(t)

6 (B.2)

Equation B.2 is defined in Schrödinger representation. However, we can re-write it in
Interaction representation. In this representation we assume the Hamiltonian can be split
into a time-independent part ĤS

0

(e.i. ˆtĤ0,St = 0) and a time-dependent part H
1,S(t).

A state in Interaction representation is defined as

|�I(t)Í def= ei ˆH0,S

t |�S(t)Í = U†
H0

|�S(t)Í (B.3)

If we re-write equation B.2 in Interaction representation we get

i
d
dt

fl̂I(t) = i

5
iH

0,S U†
H0

fl̂S(t) UH0 + U†
H0

d
dt

fl̂S(t) UH0 ≠ i U†
H0

fl̂S(t) UH0H
0,S

6

= ≠H
0,S U†

H0
fl̂S(t) UH0 + U†

H0

5
Ĥ

0,S + Ĥ
1,S , fl̂S(t)

6
UH0

+ U†
H0

fl̂S(t) UH0H
0,S = U†

H0

5
Ĥ

1,S , fl̂S(t)
6

UH0

=
5
Ĥ

1,I , fl̂I(t)
6

(B.4)
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C | Residue Theorem

The residue theorem or Cauchy’s residue Theorem is employed to calculate the complex
line integral an integrand of the form f(z) = g(z)/(z ≠ z

0

)n where g(z) is an analytic
function. The Residue (Res) is defined as the coe�cient a≠1

of the Laurent series. The
residue theorem reads

j

c
f(z)dz = 2fii

kÿ

i=1

Res(f, ak). (C.1)
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D | Important Relations

D.1 Commutators

D.1.1 [r̂, p̂] = i

With the momentum operator in position space defined as p̂ = ≠iÒ the commutator
becomes

[r̂, p̂]f(r) = ≠ir̂Òf(r) + iÒ(r̂f(r))
= ≠ir̂Òf(r) + i(Òr̂)f(r) + ir̂(Òf(r)) = i(Òr̂)f(r) = i

(D.1)

D.1.2 i[Ĥ, r̂] = p̂

For an Hamiltonian whose potential part does not depend on momentum Ĥ = p2

2

+V (r, t)
and using D.1 then

i[Ĥ, r̂] = i

2
!
p̂[p̂, r̂] + [p̂, r̂]p̂

"
= p̂. (D.2)

The same result can be calculated starting from the Heisemberg equation d

ˆO
dt = i[Ĥ, Ô]

substituting with the observable Ô with r̂ and using the Ehrenfest’s theorem dÈr̂Í
dt = Èp̂Í.
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D.2. f -sum (TRK) rule

D.2 f -sum (TRK) rule
The derivation f -sum rule or Thomas-Reiche-Kuhn (TRK) rule uses the relations D.1 and
D.2.

≠i È0| [r̂, p̂] |0Í = È0|0Í = Ne

= ≠i
! ÿ

n

È0| r̂ |nÍ Èn| p̂ |0Í ≠
ÿ

m

È0| p̂ |mÍ Èm| r̂ |0Í
"

= ≠i
! ÿ

n

È0| r̂ |nÍ Èn| i[Ĥ, r̂] |0Í ≠
ÿ

m

È0| i[Ĥ, r̂] |mÍ Èm| r̂ |0Í
"

=
ÿ

n

È0| r̂ |nÍ Èn| Ĥr̂ ≠ r̂Ĥ |0Í ≠
ÿ

m

È0| Ĥr̂ ≠ r̂Ĥ |mÍ Èm| r̂ |0Í

=
ÿ

n

(En ≠ E
0

) È0| r̂ |nÍ Èn| r̂ |0Í ≠
ÿ

m

(Em ≠ E
0

) È0| r̂ |mÍ Èm| r̂ |0Í

=
ÿ

n

2(En ≠ E
0

) | Èn| r̂ |0Í |2.

(D.3)

In the derivation we used the fact the fact that
q

n |nÍ Èn| twice, where |nÍ are the eigen-
functions of Ĥ as well as |0Í. Ne is the normalization condition of the ground state |0Í
and is equal to the total number of electrons in the system.
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E | Electric Current

From equation 1.109 we can calculate the total amount of charge displaced ”Q within a
given volume in real space �. Thus, we can write

”Q(t, Ê
0

) = E
0

cos(Ê
0

t)
⁄

�

nÕ(r, Ê
0

)dr ≠ iE
0

sin(Ê
0

t)
⁄

�

nÕÕ(r, Ê
0

)dr (E.1)

= E
0

#
”QÕ(Ê

0

)cos(Ê
0

t) ≠ i”QÕÕ(Ê
0

)sin(Ê
0

t)
$
. (E.2)

The current is defined as the time derivative of the total amount of charge I = dQ/dt,

”I(t, Ê
0

) = ≠Ê
0

”QÕ(Ê
0

)sin(Ê
0

t) ≠ iÊ
0

”QÕÕ(Ê
0

)cos(Ê
0

t). (E.3)

The average current over a period T can be calculated by means of the Root Mean Square
(RMS),

IRMS(Ê
0

) = 1
T

⁄

T
”I(Ê

0

)2dt = 1
T

⁄

T
”I(Ê

0

)2dt (E.4)

= 1
T

Ê2

0

5
”QÕ(Ê

0

)2

⁄

T
sin2(Ê

0

t)dt + ”QÕÕ(Ê
0

)2

⁄

T
cos2(Ê

0

t)dt (E.5)

+ 2”QÕ(Ê
0

)”QÕÕ(Ê
0

)
⁄

T
sin(Ê

0

t)cos(Ê
0

t)dt

6
. (E.6)

⁄

T
sin2(Ê

0

t)dt = t

2 ≠ sin(2Ê
0

t)
4Ê

0

----
T

0

= T

2 (E.7)
⁄

T
cos2(Ê

0

t)dt = t

2 ≠ sin(2Ê
0

t)
4Ê

0

----
T

0

= T

2 (E.8)
⁄

T
sin(Ê

0

t)cos(Ê
0

t)dt = ≠cos2(Ê
0

t)
2Ê

0

----
T

0

= 0 (E.9)

so that

IRMS(Ê
0

) = Ê
0Ô
2


”QÕ(Ê

0

)2 + ”QÕÕ(Ê
0

)2. (E.10)

While the modulus of the maximal current flowing through the system is given by the
relation IRMS = | I

max

|Ô
2

|Imax(Ê
0

)| = Ê
0


”QÕ(Ê

0

)2 + ”QÕÕ(Ê
0

)2. (E.11)
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Alternatively, one can arrive to the same conclusion calculating the current in frequency
domain.

I(Ê) =
⁄ 5

dQ(t)
dt

6
e≠iÊtdt =

⁄ d
dt

5
1

2fi

⁄
Q(ÊÕ)eiÊÕtdÊÕ

6
e≠iÊtdt

= i

2fi

⁄⁄
ÊÕQ(ÊÕ)e≠it(Ê≠ÊÕ

)dÊÕdt =
⁄

ÊÕQ(ÊÕ)”(Ê ≠ ÊÕ)dÊÕ = iÊQ(Ê).
(E.12)

Thus,

|I(Ê)| = Ê”Q(Ê). (E.13)

Equation E.13 shows that the modulus of the current in frequency domain is equivalent to
the modulus of the maximum current in time domain, Equation E.11.
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F | Functional Derivatives

When dealing with functional is important to have clear the concept of functional deriva-
tives. The approximated form for the potential in DFT is the functional derivative of the
energy functional over the density and the kernel in TDDFT is in again the functional
derivative of the potential respect with the density. Let us consider a functional F of a
function „ where „ is a function of the variable r. The functional derivative ”F [„]

”„(r)

is defined
through the relation

”F [„] =
⁄

”F [„]
”„(r) ”„(r)dr. (F.1)

Thus, the functional variation ”F is given by the sum of local changes over the whole range
of r values. If we defined the function variation ”„ to be localized at a given point point,
i.e. ”„(r) = ‘”(r ≠ rÕ) we can write

F [„(r) + ‘”(r ≠ rÕ)] ≠ F [„(r)] =
⁄

”F [„]
”„(r) ‘”(r ≠ rÕ)dr = ”F [„]

”„(rÕ)‘. (F.2)

So for small variation of the ”„ we obtain

”F [„(r)]
”„(rÕ) = lim

‘æ0

”F [„(r) + ‘”(r ≠ rÕ)] ≠ ”F [„(r)]
‘

=
5

dF

d‘

6

‘=0

. (F.3)

Relation F.3 is important for practical the evaluation of functional derivative. For example,
if we consider F [„] =

s
„(r)ndr by using F.3 we can easily obtain

”F [„]
”„(r) = n[„(r)]n≠1. (F.4)

More generally, if we consider a generic functional F which is functional of a function
„ and its derivative Ò„,

F [„] =
⁄

f(„(r), Ò„(r))dr (F.5)
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we can write the variation in the functional using Taylor expansion as

”F [„] = ”F [„]
”„

”„ + ”F [„]
”Ò„

”Ò„ =
⁄ 5

ˆf

ˆ„
”„ + ˆf

ˆÒ„
”Ò„

6
dr

=
⁄

ˆf

ˆ„
”„ dr + ˆf

ˆÒ„
”„

----
+Œ

≠Œ
≠

⁄
Ò · ˆf

ˆÒ„
”„ dr =

⁄ 5
ˆf

ˆ„
≠ Ò · ˆf

ˆÒ„

6
”„dr.

(F.6)

Where we used the integration for parts and the fact that ”„(≠Œ) = ”„(Œ) = 0. The
functional derivative with respect to the „ function is obtained by comparing equation F.6
with equation F.1,

”F

”„(r) = ˆf

ˆ„
≠ Ò · ˆf

ˆÒ„
. (F.7)
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G | Fast Fourier Transform
(FFT)

In the MBPT-LCAO code the FFTW library268,269 is used to calculate the Fourier transform
of functions in a 3D real-space grid. It is important to know how the function distributed in
real-space grid characterized by a given �r defining the finess of the grid is related to the
Fourier Transform algorithm used in the FFTW subroutine. Let’s consider a 1D continuous
function f(r) (the extension to the 3D case is trivial) and its Fourier transform F (k),

F (k) =
⁄

f(r)e≠irkdr (G.1)

Equation G.1 can be discretized in the following way,

Fk =
ÿ

r

fre≠irk�r (G.2)

The Fast Fourier Transform (FFT) calculated as in FFTW library reads268,269

Fm =
N≠1ÿ

n=0

fne≠i 2fi

N

nm (G.3)

No information about the real-space or reciprocal-space grid is delivered. The input function
fn is characterize by being discretized with N points with n going from 0 to N ≠ 1. In the
same way the output Fm is a N dimension 1D array. The m index runs from 0 to N ≠ 1.

In order to compare equation G.3 with equation G.2 the continuous variable r and k are
re-writing so that rn = r

0

+n�r and km = m�k. r
0

is the o�set of my real-space function
and �r and �k are the increments for the continuous variables r and k respectively. We
can then write equation G.2 as,

F (km) =
N≠1ÿ

n=0

f(rn)e≠i(r0+n�r)(m�k)�r (G.4)

=
N≠1ÿ

n=0

f(rn)e≠i(nm�r�k+r0m�k)�r (G.5)
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Comparing equation G.3 and equation G.5 and extracting the nm term we get,

�r�k = 2fi

N
(G.6)

Thus we get,

F (km) =
N≠1ÿ

n=0

f(rn)e≠i 2fi

N

(nm+r0m 1
�r

)�r

=
#
e≠i 2fi

N

r0m 1
�r �r

$5 N≠1ÿ

n=0

f(rn)e≠i 2fi

N

nm

6 (G.7)

The relation G.6 connecting �r with �k is important when converting the output coming
from FFTW subroutine to momentum domain corresponding to our input function in real
space in order to have the right discretization of the grid in momentum domain. Moreover,
it tells you which support in real space (N�r) is needed to have the wanted grid in
reciprocal domain.
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H | Linear Response Function
in Momentum Domain

In space domain and in first quantization the density operator is defined as

n(r) =
ÿ

i

”(r ≠ ri). (H.1)

The same operator in momentum space reads

nk =
⁄ ÿ

i

”(r ≠ ri)e≠ik·rdr. (H.2)

In second quantization n(r) = Â†(r)Â(r) where Â(r) is the field operator defined as in
equation A.22. The field operator can be re-written in momentum domain as67

Â(r) = 1Ô
V

ÿ

k
eik·rak, Â†(r) = 1Ô

V

ÿ

k
e≠ik·ra†

k, (H.3)

ak = 1Ô
V

⁄
Â(r)e≠ik·rdr. (H.4)

ak is the annihilation operator which destroys a particle of momentum q. Thus, we can
write the density operator as

n(r) =
ÿ

k,kÕ

a†
kakÕei(kÕ≠k)·r, (H.5)

and its Fourier transform is

nq = 1
V

⁄ ÿ

k,kÕ

a†
kakÕei(kÕ≠k)·re≠iq·rdr = 1

V

ÿ

k,kÕ

a†
kakÕ

⁄
ei(kÕ≠k≠q)·rdr

=
ÿ

k,kÕ

a†
kakÕ”(kÕ ≠ k ≠ q) =

ÿ

k
a†

kak+q.
(H.6)

The Hermitian conjugate of nq becomes

n†
q =

ÿ

k
a†

k+qak = n≠q. (H.7)
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Physically, the operator nq acts on the ket destroying a particle with wavevector k + q,
ak+q, and creating another particle with k, ak. Where q is momentum exchanged. The
operator n†

q works similarly, destroying a particle with momentum k, ak, and creating a
particle of momentum k + q, ak+q.

We can now use the operator nq and n†
q to write the linear response function,

‰(q, ≠q, t) = ‰(q, t) = (≠i)◊(t) È
#
nq(t), n†

q(0)
$
Í
0

. (H.8)

Where q represents the momentum transferred during the interaction between projectile
and target.
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I | Inelastic Scattering

Let us consider a projectile (electron) hitting a target (specimen). We can calculate the
probability of interchange of energy and momentum between the projectile and target. In
this case the electron approaching with energy Ei and momentum ki is scattered. The
final energy and momentum of the outgoing electron is Ef and kf , respectively. If we
consider the initial ground state of the target |0Í and the final excited state as |nÍ we can
write the state of the whole system before and after the event as |kiÍ ¢ |0Í = |0, kiÍ and
|kf Í ¢ |nÍ = |n, kf Í, respectively. The Hamiltonian describing the interaction between the
incoming electron and all the electrons in the target is H Õ(r) =

q
i V (r ≠ ri) being the

target a collection of points charges with density n(r) =
q

i ”(r ≠ ri). The Fermi golden
rule tells us that the ratio (probability per unit of time) of an event where the electron
exchange momentum kf ≠ ki and energy Ên ≠ Ê

0

= Ên0

with the target is

R = 2fi
ÿ

n

| Èn, kf | H Õ(r) |0, kiÍ |2”(Ê + Ên0

). (I.1)

H Õ(r) can be written as 1

(2fi)

3

s
H Õ(k)eik·rdk where

H Õ(k) =
⁄ ÿ

i

V (r ≠ ri)e≠ik·rdr =
ÿ

i

e≠ikr
i

⁄
V (r ≠ ri)e≠ik·(r≠r

i

)dr = n(k)V (k)

(I.2)

where
q

i e≠ikr
i = n(k) =

s q
i ”(r ≠ ri)e≠ik·rdr. Thus we can write

Èn, kf | H Õ(r) |0, kiÍ = 1
(2fi)3

⁄
Èn, kf | n(k)V (k) |0, kiÍ eik·rdk (I.3)

= 1
(2fi)3

⁄⁄
eik

f

·r Èn| n(k)V (k) |0Í e≠ik
i

·reik·rdrdk (I.4)

=
⁄

Èn| n(k)V (k) |0Í ”(ki ≠ kf ≠ k)dk (I.5)

= V (≠q) Èn| n(≠q) |0Í = V (q) Èn| n†(q) |0Í . (I.6)

We used q = kf ≠ ki and the that fact that V (≠q) = V (q) and n(≠q) = n†(q). q
represents the momentum transferred. The ratio R can be re-written as

R(q, Ê) = 2fi|V (q)|2
ÿ

n

| Èn| n†(q) |0Í |2”(Ê + Ên0

) = 2fi|V (q)|2S(q, Ê) (I.7)
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where S(q, Ê) =
q

n | Èn| n†(q) |0Í |2”(Ê + Ên0

) is the dynamical structure factor. If we
introduced the Coulomb interaction V (r ≠ ri) = 1

|r≠r
i

| we find

R(q, Ê) = 2fi|V (q)|2
ÿ

n

| Èn| n†(q) |0Í |2”(Ê + Ên0

) = 32fi3

1
q4

S(q, Ê) (I.8)

with V (q) = 4fi/q2. Using the inverse procedure used in appendix A we can correlate the
dynamical structure factor with the density-density correlation function

S(q, Ê) =
ÿ

n

È0| n(q) |nÍ Èn| n†(q) |0Í ”(Ê + Ên0

) (I.9)

= 1
2fi

⁄
È0| n(q, t)n†(q, 0) |0Í e≠iÊtdt (I.10)

where

S(q, t) = È0| n(q, t)n†(q, 0) |0Í = È0|
ÿ

i

e≠iq·r
i

(t)

ÿ

j

eiq·r
j

(0) |0Í (I.11)

= È0|
ÿ

i,j

e≠iq·(r
i

(t)≠r
j

(0)) |0Í (I.12)
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J | Derivation of Casida’s Equa-
tion

From Petersilka-Gossmann-Gross16 equation we can write

‰ = ‰
0

+ ‰
0

K‰ (J.1)

and
”n

”Vext
= ”n

”V
0

+ ”n

”V
0

K
”n

”Vext
, (J.2)

where the Kernel K = ”Vext/”n. Let us express the ‰
0

(r, rÕ, Ê) in the e-h basis

‰
0

(r, rÕ, Ê) =
ÿ

nm,nÕmÕ

‰nm,nÕmÕ

0

(Ê)Ân(r)Âm(r)ÂnÕ(rÕ)ÂmÕ(rÕ) , (J.3)

where

‰nm,nÕmÕ

0

= ”nnÕ”mmÕ

5
fn ≠ fm

Ê ≠ (En ≠ Em)

6
(J.4)

and

‰nm,nÕmÕ

0

=
5

fn ≠ fm

Ê ≠ (Em ≠ En) ≠ fn ≠ fm

Ê + (Em ≠ En)

6
. (J.5)

At this points we can write the density as

”n(r, Ê) =
ÿ

ij

ÂiÂj”nij(Ê) , (J.6)

”nij(Ê) =
5

fi ≠ fj

Ê ≠ (Ej ≠ Ei)
≠ fi ≠ fj

Ê + (Ej ≠ Ei)

6
Kijkl”nkl(Ê) , (J.7)

”nij(Ê) = (fi ≠ fj)[(Ej ≠ Ei) + Ê] ≠ (fi ≠ fj)[Ê ≠ (Ej ≠ Ei)]
Ê2 + (Ej ≠ Ei)2

Kijkl”nkl(Ê) , (J.8)

184



”nij(Ê) = (Ej ≠ Ei)(fi ≠ fj) + (Ej ≠ Ei)(fi ≠ fj)
Ê2 ≠ (Ej ≠ Ei)2

Kijkl”nkl(Ê) , (J.9)

[Ê2 ≠ (Ej ≠ Ei)2]”nij(Ê) = 2(Ej ≠ Ei)(fi ≠ fj)Kijkl”nkl(Ê) . (J.10)

If j > i the Ej ≠ Ei > 0 and fi ≠ fj > 0. Finally we can rearrange J.10 and to obtain the
so-called Casida’s equation64

#
(Ej ≠ Ei)2”ik”jl(Ê) ≠ 2(Ej ≠ Ei)(fi ≠ fj)Kijkl

$
”nkl(Ê) = Ê2”nij(Ê) . (J.11)
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K | SIESTA Input File

In Fig. K.1 and Fig. K.2 I show an example of a SIESTA input file for a finite and a periodic
system, respectively. In Fig. K.1 the first two lines contain the name of the system and
its nickname used to name the output files, respectively. Afterwards, the number of atoms
(NumberOfAtoms) and the number of atomic species (NumberOfSpecies) in the system
are specified. The parameter PAO.EnergyShift (PseudoAtomic Orbital Energy Shift) de-
finea the orbital spatial extension. This specifies the shift of the energy of the orbitals due to
the confinement to a finite-range The default value is 272 meV. An energyshift of 100 meV
as the one indicated in Fig.K.1 generates more extended orbitals. PAO.BasisSet is used
to choose the basis set multiplicity. The defines the number of Pseudo-Atomic Orbitals
(PAO) for the atomic species involved in the calculation. In this example the minimum ba-
sis set Single-’ (SZ) is chosen. More details about PAO.EnergyShift and PAO.BasisSet
are found in Sections 2.2.2 and 2.2.3. Furthermore, in Chapter 3 a convergence study
with respect to PAO.BasisSet and PAO.EnergyShift is shown for graphene flakes. The
MeshCutO� is an energy value that defines the fineness of the 3D real space grid. The
default value is 100 Ry = 50 Hartree and corresponds to a distance between points of
0.628 bohr = 0.332 Å. A wave function Â(r) in a 3D real-space grid that can be seen
as given by a combination of plane waves C(q), Â(r) =

q
q

cutoff

C(q)eir·q. The qcutoff

determines the fineness of the 3D real-space grid through the relation �r = 2fi/qcutoff .
For a plane wave qcutoff =


2Ecutoff . XC.functional and XC.authors define the ap-

proximation for the Exchange-Correlation (XC) functional. The next group of parame-
ters determines the conditions to reach convergence in the Self-Consistent Field (�SCF)
cycle. MD.TypeOfRun, MD.NumCGsteps and UseSaveData together with the Geom-
etryConstraints block define the geometry optimization procedure. In particular, with
the GeometryConstraints block is possible to fix the position of any atom in any of the
three directions. In the block ChemicalSpeciesLabel the species and the labels for each
specie are indicated. Finally, the AtomicCoordinatesAndAtomicSpecies block contains
the geometry of the system. The flag AtomicCoordinatesFormat specifies the units for
the positions of the atoms. The logical flag COOP.Write if set to “.true.” enables the
generation of the SystemLabel.fullBZ.WFSX and SystemLabel.HSX . These files are nec-
essary to generate COOP/COHP curves, (projected) densities of states, etc., with the
utility Util/COOP/mprop. WriteDenchar is used to generate SystemLabel.PLD and Sys-
temLabel.DIM . Those files are needed to run the Denchar utility which generate 2D and
3D valence charge densities and/or wavefunctions in real space. WFS.Band.min and
WFS.Band.max define the lowest and highest orbital index of the wavefunction to be
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written in SystemLabel.bands.WFSX .
The input file shown in Fig. K.2 is for calculating the ground-state properties and

band structure of a graphene sheet. In the input file for a periodic-system we need to
define the periodic lattice, thus, we have to specify the lattice constant (LatticeConstant)
and the block LatticeVectors that contains the three lattice vectors in units of the lattice
constant. The logical flag WriteBands, if sets to “.true.”, writes the electronic bands
of the system, i.e. the eigenenergies as a function of the k vector. BandLinesScale
specifies the way the coordinates for the k vectors are given, if sets to pi/a the Cartesian
coordinates are given in units of fi/a, where a is the lattice constant. The alternative
option is ReciprocalLatticeVectors, in this case the coordinates for the k vectors are given
in reciprocal-lattice-vector coordinates. SolutionMethod defines the method to solve of
the Kohn-Sham Hamiltonian. The next block called kgrid_Monkhorst_Pack contains
the information about the real-space supercell. The reciprocal unit cell is defined by the
real-space supercell and defines the k-sampling grid. The fourth column contains the grid
displacement for each grid coordinate. Finally, the Bandlines block defines the number of
points and the directions in k-space along which the energy bands are calculated.
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SystemName                 Na10_chain
SystemLabel                Na10_chain
NumberOfAtoms              10
NumberOfSpecies            1
   
PAO.EnergyShift            100 meV
PAO.BasisSize              SZ
MeshCutOff                 100 Ry

XC.functional     GGA
XC.authors        PBE
   
DM.Tolerance               1e-5
DM.MixingWeight            0.08
MaxSCFIterations           150
DM.NumberPulay             4
   
MD.TypeOfRun CG
MD.NumCGsteps 200
UseSaveData true

%block GeometryConstraints
  position from 1 to 5   0.0  0.0  1.0
  position from 1 to 5   1.0  0.0  0.0
%endblock GeometryConstraints

%block ChemicalSpeciesLabel
1  11  Na     # Species index, atomic number, species label                   
%endblock ChemicalSpeciesLabel

AtomicCoordinatesFormat  Ang  
%block AtomicCoordinatesAndAtomicSpecies
    0.00000000   0.000000000    0.00000000   1       
    0.00000000   -3.20000000    0.00000000   1 
    0.00000000    3.20000000    0.00000000   1       
    0.00000000   -6.40000000    0.00000000   1       
    0.00000000    6.40000000    0.00000000   1 
    0.00000000   -9.60000000    0.00000000   1       
    0.00000000    9.60000000    0.00000000   1       
    0.00000000  -12.80000000    0.00000000   1       
    0.00000000   12.80000000    0.00000000   1       
    0.00000000  -16.00000000    0.00000000   1       
%endblock AtomicCoordinatesAndAtomicSpecies
   
### Exports .WFSX, .HSX
COOP.Write               .true.
### Exports .DIM and .PLD files
WriteDenchar             .true.
### WFS.Band.Min     10
### WFS.Band.Max     11

Figure K.1: SIESTA .fdf format input file for a linear “molecule” composed of 10 Na atoms.
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SystemName          graphene
SystemLabel         graphene
NumberOfAtoms       2
NumberOfSpecies     1

PAO.EnergyShift         50 meV

DM.Tolerance    1e-5
DM.MixingWeight 0.10
MaxSCFIterations 150

%block ChemicalSpeciesLabel
 1  6  C      # Species index, atomic number, species label
%endblock ChemicalSpeciesLabel

LatticeConstant       2.4595 Ang

%block LatticeVectors
  0.8660    0.5    0.0
  0.8660   -0.5    0.0
  0.0       0.0    10.0
%endblock LatticeVectors

WriteBands          true
BandLinesScale      pi/a
SolutionMethod      diagon

%block kgrid_Monkhorst_Pack
  10   0   0    0.5
  0   10   0    0.5
  0   0   1    0.5
%endblock kgrid_Monkhorst_Pack

%block BandLines
1   1.1547     0.6666   0.000    K
30  0.0      0.000    0.000    \Gamma
30  1.1547   0.000    0.000    M
30  1.1547     0.6666   0.000    K
%endblock BandLines

AtomicCoordinatesFormat  Ang
%block AtomicCoordinatesAndAtomicSpecies
     -1.420       0.000      0.000      1
      0.000       0.000      0.000      1
%endblock AtomicCoordinatesAndAtomicSpecies

### Exports .WFSX, .HSX
COOP.Write               .true.

Figure K.2: SIESTA .fdf format input file for the graphene periodic system.
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Resumen (Summary in Spanish)

El desarrollo de este proyecto de tesis está basado en el estudio de las propiedades ópticas
de nano-estructuras de interés físico por medio de teorías ab initio. Las teorías ab initio
nos permiten estudiar una amplia gama de sistemas cambiando solamente unos parámetros
que dependen del sistema sin tener que reconsiderar la metodología de trabajo de la teoría.

En particular, se ha usado la Teoría del Funcional de la Densidad (DFT) para obtener
información sobre la estructura electrónica de los materiales estudiados. Mientras que
la Teoría del Funcional de la Densidad Tiempo-Dependiente (TDDFT) nos ha permitido
estudiar en detalle como los electrones de dichos materiales se comportan cuando son
sometidos a un campo eléctrico. Las dos teorías ab initio, DFT y TDDFT han crecido
en popularidad debido a la mayor potencia de los ordenadores y su favorable complejidad
computacional, es decir, a que el coste computacional aumenta siguiendo potencias de
exponentes relativamente bajos del número de átomo en el sistema.

En este proyecto hemos empleado el método y código DFT SIESTA (Spanish Initiative
for Electronic Simulations with Thousands of Atoms). SIESTA es un método y código DFT
de licencia GPL que se empezó a desarrollar en los años noventa y que todavía tiene una
comunidad de desarrolladores que siguen ampliando y mejorando el código. Con SIESTA
hemos calculado las propiedades electrónicas de estado del estado de base de los sistemas.
Estas propiedades incluyen las curvas de dispersión energía-momento, las energías de los
niveles electrónicos, la energía total, la densidad electrónica, la geometría de equilibrio, etc.

La propiedades ópticas que han sido el objeto principal de esta investigación han sido
calculadas y estudiadas por medio del código MBPT-LCAO (Many Body Perturbation
Theory with Linear Combination Atomic Orbitals), un código que todavía no se distribuye
al público en general y que está en desarrollo, siendo su principal desarrollador el Dr. Peter
Koval. A pesar de que el código MBPT-LCAO está diseñado para trabajar en conjunto
con SIESTA, es decir que los ficheros de salida de un cálculo DFT de SIESTA son leídos
por MBPT-LCAO como ficheros de entrada para el cálculo TDDFT, es posible usarlo por
separado. El código, por medio de la teoría de pertubaciones de muchos-cuerpos y TDDFT,
permite calcular el gap de energía, las energías de excitaciones, la densidad inducida, el
potencial eléctrico inducido, la corriente inducida, etc.

Específicamente, en este trabajo me he centrado en el cálculo y estudio de la polariz-
abilidad, de la sección óptica, de la densidad electrónica inducida y de la corriente inducida,
para sistemas finitos y moléculas. En esta tesis el código MBPT-LCAO ha sido utilizado
para calcular sistemas que contienen más de mil átomos.

A continuación expongo el resumen de las diferentes partes que componen esta tesis.
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En la introducción de esta tesis se hace un resumen del trabajo realizado.
En el capítulo uno se revisa la teoría relativa al DFT y TDDFT, donde se exponen

las ideas fundamentales de las teorías y se introducen y deducen las ecuaciones usadas
para calcular las propiedades de interés. En la parte relacionada con la DFT se introduce
el concepto de que la densidad electrónica determina completamente las propiedades del
estado fundamental de cualquier sistema electrónico, así como las ecuacioned Kohn-Sham
(KS) que nos permiten estudiar las propiedades electrónicas de sistemas con muchos elec-
trones. En el apartado de TDDFT se presenta la función de respuesta lineal y su relación
con la polarizabilidad, la cual nos da información sobre como el sistema físico interactúa y
responde a una perturbación eléctrica.

En el capítulo dos se presenta una visión en conjunto de los dos códigos. En una primera
parte se describe el código SIESTA enseñando unos ejemplos de fichero de entrada para
hacer los cálculos.

Después el código TFDDT MBPT-LCAO es analizado, en este caso nos centramos en
las características técnicas que permiten obtener una alta eficiencia computacional. Además
se describen los métodos de cálculo de la función de respuesta lineal usados para calcular
las propiedades ópticas. La función de respuesta lineal puede ser calculada en el código a
través de un proceso iterativo o siguiendo el método de Casida. Al mismo tiempo, el código
incluye algoritmos eficientes que permiten la generación de una base auxiliar para expandir
los productos de orbitales atómico y el cálculo de la respuesta lineal para partículas no
interactuantes por medio de un proceso eficiente.

En el capítulo 3 hemos analizado la propiedades ópticas de nanoláminas de grafeno. Este
nuevo material aislado por primera vez en el año 2004 tiene propiedades con potenciales
aplicaciones industriales en muchas areas tecnológicas. El principal método utilizado hoy
en día para la producción de la monocapa de grafeno es la deposiciÒ química en fase vapor
(CVD), mientras que la producción de nanoláminas en forma de polvo se realiza con técnicas
de exfoliación en fase líquida. Los átomos de carbono en el grafeno forman un retículo
hexagonal y es esta particular estructura con su configuración electrónica la que proporciona
al grafeno propiedades únicas que inclyuen alta movilidad electrónica, alta flexibilidad, alta
transparencia, excelentes propiedades mecánicas, buena conductividad térmica, etc. Es
evidente que este material es muy prometedor y es por esto que se investiga el grafeno en
muchos campos tan diversos como en plasmónica, fotónica, electrónica, almacenamiento
de energía, electrónica flexible, ingeniería aeroespacial, tratamiento de señales ópticas, etc.

El estudio de las propiedades ópticas que aquí presentamos incluye el análisis de la
polarizabilidad, la seción óptica y la densidad inducida. Hemos considerado láminas de
grafeno de dimensiones nanométricas (nanolaminas) de forma rectangular y hexagonal.
Las nanoláminas hexagonales tienen dos tipos de borde, ZigZag (ZZ) y ArmChair (AC),
mientras que las laminas rectangulares tienes los dos tipos de bordes.

Esto nos ha permitido relacionar el comportamiento óptico con la presencia de un tipo
u otro de borde. El tamaño lateral de las nanoláminas varía desde un mínimo de ≥10
Å (≥40 átomos) hasta un máximo de ≥60 Å. Las nanoláminas han sido saturadas con
átomos de hidrógeno.

Todos los espectros de polarizabilidad de las nanoláminas de grafeno presentan dos
picos principales. Estos dos picos representan los plasmones fi y ‡, plasmones típicos de
los planos infinitos de grafeno. En el capítulo se explica el origen físico de estos picos y
se monitoriza su dependencia en relación a las tres geometrías (rectangular, exagonal ZZ
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y exagonal AC) y a sus tamaños.
La posicíon principal de los picos fi y ‡ es independiente de la geometría y en conse-

cuencia del tipo de borde que caracteriza la nanolámina. En general, los picos fi y ‡ están
sujetos a un corrimiento al rojo amedida que se aumenta el tamaño de las nanoláminas.
La posición del los picos para las nanoláminas ZZ C1014H78 concuerda con los valores ex-
perimentales de Geim et al.,131 especialmente para el pico que aparece a menor frecuencia,
i.e. el plasmon fi, el cual se encuentra a 4.8 eV.

En nuestro análisis de la respuesta óptica de las láminas de grafeno hemos investigado
también el gap óptico. El gap óptico es definido como la frecuencia a la cual se encuentra la
primera resonancia en el espectro óptico. En las laminas rectangulares el gap óptico es cero
para láminas uqe contienen más de ≥30 átomos de carbono. La razón de esta ausencia del
gap óptico se ha podido relacionar con la estructura de bandas en nanocintas de grafeno
con borde ZZ. La situación es diferente para las láminas hexagonales. El gap óptico para
las láminas es finito y disminuye cuando el tamaño de las láminas aumenta. Los resultados
demuestran una diminución más rápida del gap con el tamaño en las láminas con bordes
ZZ.

Para completar el estudio de las láminas de grafeno analizamos la densidad electrónica
inducida en las laminas en tres rangos de energía. Esto nos ayudó una vez más a enfatizar
el comportamiento diferente de los tipos de bordes. En particular, para las láminas ZZ en
ciertos rangos de energía la densidad electrónica inducida está concentrada en los átomos
de borde.

Al final del capítulo 3 investigamos los efectos con diferentes tipos de átomos de borde.
Los efectos en el espectro óptico a baja energía fueron analizados substituyendo el hidrógeno
con oxígeno, flúor y con el grupo hidroxilo.

En el capítulo 4 describimos la respuesta óptica a baja energía en hidrocarburos aromáti-
cos policíclicos (PAHs) triangulares. Los PAHs están formados de anillos aromáticos de
benceno y pueden ser considerados como láminas de grafeno. Estas moléculas pueden ser
sintetizadas químicamente y sin defectos, esto hace que los PAHs sean potencialmente
atractivos para la fabricación de dispositivos tecnológicos de tamaño nanométrico. Los
cálculos mostraron que la adición o sustracción de solamente un electrón en el sistema de
los PAHs triangulares con borde AC permitía la aparición de nuevos picos a baja energía en
el espectro óptico. Por el contrario, los PAHs triangulares con borde ZZ no mostraron este
comportamiento. Esto se debe a los estados degenerados que se encuentran en la energía
de Fermi en los sistemas con bordes ZZ. En PAHs triangulares con borde AC el gap finito
entre el HOMO y LUMO permite la creación de nuevas transiciones ópticas cuando al sis-
tema se le añade o se le quita uno o más electrones. Para hacer los cálculos necesarios para
llevar acabo este estudio tuvimos que incluir la temperatura en los cálculos de TDDFT.
De hecho, los picos generados por el doping del sistema son debidos a que los niveles de
Kohn-Sham están parcialmente ocupados alrededor de la energía de Fermi.

En el capítulo 5 analizamos la formación de una cavidad plasmónica formada por dos
partículas nanométricas icosaédricas de sodio. Cada partícula contiene 380 átomos de sodio.
La respuesta óptica es analizada para diferentes distancias entre las partículas. En un primer
estudio no consideramos las relajaciones estructurales a medida que la distancia entre las
partículas cambia. Las resonancias plasmónicas del sistema fueron monitorizadas para cada
distancia entre las partículas. La distancia inicial entre las facetas más cercanas de ambas
partículas se fijó en 15 Å, a esta distancia las dos partículas no interactúan y se pueden
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considerar que están aisladas. Cuando se disminuye la distancia entre las dos partículas
empiezan a interactuar. Los efectos son visibles en el espectro óptico. El análisis incluye
los efectos de la orientación entre las partículas. Se han considerado tres orientaciones:
face-to-face, tip-to-face y tip-to-tip. Además, se estudió la intensidad y localización del
campo eléctrico inducido a la energía de la resonancia plasmónica en función del tamaño
y la geometría de la cavidad.

El análisis ha mostrado tres resonancias plasmónicas principales: el Bonding Dipolar
Plasmon (BDP), el Charge Transfer Plasmon (CTP) y el high-energy Charge Transfer
Plasmon (CTP’). La primera (BDP) es el modo de resonancia característico de la partícula
aislada renormalizado por la presencia de la otra partícula. Esta resonancia se encuentra
en el régimen capacitivo. A medida que se van acercando las partículas, la resonancia BDP
sufre un corrimiento al rojo progresivo. Durante este proceso no hay ninguna corriente que
fluye desde una partícula a la otra.

Disminuyendo la distancia entre las partículas aún más entramos en el régimen túnel, la
resonancia BDP lentamente desaparece y aparecen dos nuevas resonancias, CTP y CTP’.
La configuración face-to-face muestra una resonancia CTP más marcada, debido a una
mayor corriente túnel que fluye entre las dos partículas. Cuando seguimos acercando las
partículas la posición de la resonancia CTP sufre un corrimiento al azul. En la frecuencia
de resonancia plasmónica BDP, el acoplamiento Coulombiano entre las cargas inducidas
en la cavidad produce un campo eléctrico fuerte y localizado. Sin embargo, en el regimen
túnel el campo es totalmente apantallado por la corriente que fluye a través de la cavidad
plasmónica.

Las simulaciones atomísticas TDDFT realizadas mostraron como el campo plasmónico
dentro de la cavidad puede depender de la distancia entre las partículas pero también
de la orientación entre las dos partículas, de hecho, para distancias muy pequeñas entre
partículas los detalles a nivel átomico de la estructura de la cavidad determinan la intensidad
y localización del campo eléctrico de campo cercano.

En el estudio que sigue, explicado en detalle en el capítulo 5 consideramos el mismo
sistema compuesto de dos partículas de sodio, pero esta vez permitimos a los átomos del
sistema que se reorganicen a la vez que cambiamos la distancia entre las partículas.

En este caso, como distancia de referencia entre las partículas se ha tomado el Nominal
Gap Size (NGS), que está definido como la distancia entre las caras internas de las dos
partículas en el caso de que las partículas no estuviesen relajadas. Empezamos con un
valor del NGS de 16 Å y en intervalos de 0.2 Å, empezamos a juntar las partículas, y por
cada posición, hacemos un cálculo DFT con SIESTA para optimizar la geometría de la
estructura del dímero. Cada partícula se relaja en respuesta a la presencia de la otra. Las
estructuras obtenida son muy diferentes cuando se considera la relajación. Las partículas
son muy elásticas y se deforman con facilidad. En particular, observamos la inestabilidad del
salto a contacto (jump-to-contact instability) durante el acercamiento de las partículas.
Alrededor de un valor de NGS de 6 Å la atracción entre las partículas es suficiente para
que las dos partículas entren en contacto, resultando en un estiramiento de sus estructuras.
Seguimos acercando las partículas una a la otra hasta llegar al punto de formar una única
gran nanopartícula.

A una distancia de 3.5 Å empezamos el proceso de alejamiento de las partículas. Debido
a la plasticidad de las particulas de sodio durante este proceso describimos la formación
de un nanocontacto, ya que observamos la formación de un cuello que conecta las dos
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partículas. Si seguimos alejando las dos partículas el cuello se vuelve cada vez mas fino
hasta llegar a tener una sección monoatómica.

Finalmente, para un valor del NGS de 32 Å las dos partículas se separan por completo.
Durante los proceso de acercamiento y alejamiento monitorizamos la energía total del

sistema. En el punto en el cual ocurre el salto a contacto de las partículas, observamos
un cambio repentino de la energía que indica la transición entre el régimen capacitivo y
el régimen resistivo. Consecuentemente, la respuesta óptica cambia y observamos como el
modo BDP desaparece y aparecen los dos modos CTP y CTP’. El salto a contacto elimina
el régimen túnel que aparencía en el cálculo sin relajación estructual, siendo un régimen de
transición entre el régimen capacitivo y el resistivo.

El régimen resistivo está caracterizado por la presencia de una corriente que fluye entre
las dos partículas.

Además, durante el proceso de alejamiento observamos que los saltos en la energía
total están relacionados con cambios discontinuos en la geometría del sistema y en par-
ticular en el contacto entre las dos partículas. Para llegar a esta conclusión medimos la
sección geométrica del cuello que conecta a las partículas. Observamos que la respuesta
óptica presenta dicosntinuidades exactamnete en aquellas distancias en las que la sección
geométrica del cuello cambia de moso discontinuo. Finalmente, medimos la corriente que
circula a través del cuello y conseguimos relacionar los cambios en la estructura atómica
con la energía total del sistema, la sección geométrica del cuello, la respuesta óptica y la
corriente de electrones calculada. Mostramos que la reorganicación, incluso la de un solo
átomo, juega un papel muy importante a la hora de determinar la respuesta óptica del
sistema. Nuestro estudio demuestra claramente que la respuesta óptica viene determinada
por la posición de cada uno de los átomos que componen el sistema. Esta observación es de
particular importancia en el diseño de dispositivos de tamaño subnanométrico. Aunque el
análisis fue desarrollado para partículas de sodio esperamos un comportamiento muy similar
en otros metales como el oro que puedan ser más adecuados para aplicaciones electrónicas.

En el capítulo 6 nos preguntamos si es posible posible definir que es un plasmón en
un sistema finito. En sistemas periódicos, los plasmones se definen como las frecuencia
a la cuales la función dieléctrica macroscópica es cero. Por otro lado, en sistemas finitos
esta misma definición no es posible por lo cual hay que buscar otro modo para definir los
plasmones en estos sistema.

En este estudio consideramos un sistema formado por una cadena unidimensional de 20
átomos de sodio. Debido a la simplicidad de este sistema hemos podido hacer diferentes
tipos de análisis siguiendo sugerencias encontradas en la literatura, así como proponer
nuestro propio criterio para medir el carácter plasmónico de una determinada excitación.
Además, este sistema nos ha permitido comparar y contrastar los resultados obtenidos
directamente con artículos publicados en la bibliografía.

En este apartado los resultados se obtuvieron usando el método Casida, el cual nos da
la posibilidad de obtener información relacionada con las transiciones de Kohn-Sham que
contribuyen a una excitación óptica específica. Además, el análisis en el espacio de Fourier
de los autovectores de Casida calculados nos ha permitido definir el momento transferido
durante la excitación óptica en nuestro sistema finito. Los análisis mostraron la presencia
de plasmones típicos de un gas de electrones unidimensional. El análisis de la densidad
electrónica de transición en el espacio real ha clarificado la diferencia en la densidad entre
una excitación electrón-hueco (e-h) u una transición plasmónica.

217



BIBLIOGRAPHY

Finalmente, para poder identificar plasmones sin la necesidad de hacer un análisis en
el espacio de momento definimos un parámetro llamado ratio de fuerza restauradora de
Coulomb (RCRF ). El RCRF calcula, para cada resonacia, el ratio entre la parte de partícu-
las independientes y la parte que depende de la interacción entre los electrones de la matriz
de Casida. Nuestros cálculos muestran como el RCRF sirve para determinar de forma efi-
caz aquellas resonancias con un marcado carácter plasmónico, que habían sido identificadas
previamente mediante el análisis delmomento transferido.

Finalmente, en el capítulo 7 resumimos los resultados más importantes obtenidos en
este trabajo de tesis doctoral.
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