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ABSTRACT Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here, we
describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D)
in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in
2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients
and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.
G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family
members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports
cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 con-
trols from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association
with disease (P = 0.117), despite an overall higher prevalence in patients (OR = 1.32; 95% CI = 0.93–
1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 pro-
bands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense
variants, and although three of them were exclusively observed in MS patients, segregation does not
support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune
system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its
activation cascade have been shown to present increased activity or expression in MS patients compared to
controls; further studies are needed to clarify whether PLG is involved in MS susceptibility.
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Multiple sclerosis (MS) is a chronic inflammatory demyelinating and
neurodegenerative disease of the central nervous system. A genetic
contribution to disease susceptibility has been demonstrated in family
and twin studies (Ebers et al. 1986; Sadovnick 1993; Fagnani et al. 2015),
and the first pathogenic mutation forMS has been recently identified in
NR1H3 (Wang et al. 2016). In addition, a large number genetic risk
factors, related primarily to the immune system, have already been
identified through association studies (Beecham et al. 2013; Sawcer
et al. 2011). However, with the exception of HLA-DRB1, all associated
variants have a minor effect on overall disease susceptibility. The iden-
tification of genetic components of major effect on disease development
is paramount for the generation of physiologically relevant cellular and
animal models of human disease, and the generation of treatment
strategies that address the underlying biological mechanisms responsi-
ble for the onset of MS.

MATERIALS AND METHODS

Participants
A total of 2160 MS patients and 886 unrelated healthy controls from
Canada, which includes 1857multi-incident families, collected through
the Canadian Collaborative Project on the Genetic Susceptibility to
Multiple Sclerosis (CCPGSMS), were included in this study (Sadovnick
et al. 1998). Five independent European cohorts consisting of 2391 MS
patients and 672 healthy controls from France, 4288 patients and
4018 controls from Spain, 3733 patients and 2722 controls from Ger-
many, 1006 patients and 504 controls from Belgium, and 925 patients
from Austria, were used for replication. All patients were diagnosed

with MS according to published criteria (Poser et al. 1983; McDonald
et al. 2001; Polman et al. 2005), and the demographics for each cohort
are presented in Table 1. The ethical review board at each institution
approved the study, and all participants provided written informed
consent.

Exome sequencing
We performed exome sequencing in three patients diagnosed with MS
(pedigree A; II-1, II-4, and III-1) from a multi-incident family (Figure
1). Exonic regions were enriched using an Ion AmpliSeq exome kit
(57.7 Mb), and sequenced in an Ion Proton sequencer (Life Technol-
ogies, Carlsbad, CA) with a minimum average coverage of 50 reads per
base, and an average read length of 150 bases. The Ion Torrent Server
v4 was used to map reads to NCBI Build 37.1 reference genome using
the Torrent Mapping Alignment Program (TMAP), and to identify
variants differing from the reference. Sequences with a mapping Phred
quality score under 20, fewer than five reads, or over 95% strand bias
were excluded from further analysis.

Sequencing, genotyping, and statistical analysis
Sanger sequencing was used to genotype amplicons containing exome
variants of interest, and all 19 coding exons, and exon–intron bound-
aries, of plasminogen (PLG, NM_000301.3) by polymerase chain re-
action (PCR) as previously described (Sadovnick et al. 2013). Nine
tagging SNPs (tSNPs) spanning a 61 kb region encompassing the
PLG locus were selected based onHapMap data (version 3, release 27)
using Haploview software (Barrett et al. 2005). Selected tSNPs captured
over 92% of the polymorphic variation in the region [minor allele
frequency (MAF) . 5%, and r2 . 0.8] in Caucasian population stan-
dards. Genotyping of variants was performed using a combination
of TaqMan probes and Sequenom MassArray iPLEX as previously
described (Traboulsee et al. 2014; Nishioka et al. 2010). Genotyping
success rate was over 99.4% for all variants, and without deviation from
Hardy-Weinberg equilibrium expectation (p-value . 0.005). Statisti-
cal association was determined using logistic regression analysis ad-
justed for age and gender, in addition, the combined cohort analysis
was adjusted for site. Genotypes were dichotomized as presence vs.
absence of the minor allele (dominant model). The combined dataset
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was obtained by pooling samples from all populations. Segregation was
quantified using nonparametric and parametric linkage analysis. Non-
parametric linkage analysis was performed using SimWalk2 software
(version 2.91), and NPL-All statistic (Sobel et al. 2001). Two-point
parametric logarithm of odds (LOD) scores were obtained with
MLINK, assuming a dominant model, with a fully penetrant disease,
and without phenocopies (Ott 1989). All MS patients were treated as
affected, noncarrier individuals as healthy, and unaffected mutation
carriers were treated as having an unknown disease status. The delete-
rious allele was defined with a 0.0001 frequency, and the marker-allele
frequency was determined empirically from genotyped individuals.

Haplotype analysis
Microsatellite markers spanning the PLG locus between D6S1633 and
D6S297 were chosen to define the disease-carrying haplotype (Supple-
mental Material, Table S1). All family members from those families
identified with the PLG p.G420D mutation were genotyped. One
primer for each pair was labeled with a fluorescent tag, and PCR reac-
tions were performed under standard conditions. PCR products were
run on an ABI 3730xl (Life Technologies, Carlsbad, CA), and analyzed
using GeneMapper 4.0. Marker sizes were normalized to those report-
ed in the CEPH database and manually phased within each family.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS
To identify genes and variants of major effect on MS susceptibility,
we applied exome sequencing analysis to a multi-incident family
consisting of 12 individuals over three generations, with DNA
available for nine family members, including six diagnosed with
MS (Figure 1A). Exome analysis of II-1, II-4, and III-1, identified
47479, 46545, and 46580 variants, respectively. Of those, 25 mis-
sense variants with a MAF below 1% from public and proprietary
databases of variants were identified in all three individuals (Table
S2). Segregation in additional familymembers identified 10 variants
shared among at least five of the six family members diagnosed with
MS for whom DNA was available, and no more than one of the two
unaffected blood relatives. Three of these variants were subse-
quently excluded as they were identified at a frequency over 1%
in 366 ethnically matched controls (Table S2). The seven remaining
variants were genotyped in a multi-ethnic cohort consisting of

2160 MS patients and 886 unrelated healthy controls from Canada.
Three variants [TGFBI, p.V608L (ss1467426521); SPINK13, p.C72R
(ss1467426567); OR1E1, p.D96Y (ss1467426912)] appear to be pri-
vate as they were not observed in any of the other samples genotyped
in this study, and have not been described in public databases of
variants (Abecasis et al. 2012; Exome Aggregation Consortium et al.
2015). ARHGAP10, p.T518K (rs375188932), with a reported MAF
of 5 · 1025 in the ExAC database, was also not observed in any
additional samples. Segregation of these four variants within the
exome sequenced family is provided in Figure S1. Of the remainder,
SPATA18 p.P286L (rs150116592) was identified in two MS pa-
tients, UNC45B p.R776Q (rs34242925) was identified in one patient
and one control, and PLG p.G420D (rs139071351) in 12 MS pa-
tients and one control.

Segregation for variants identified in SPATA18 and UNC45B did
not support cosegregation with disease in additional families, and
were excluded from further analysis (Figure S1). Segregation of PLG
p.G420D identified the variant in 26 out of 30 family members di-
agnosed with MS (87%), 14 parents of MS patients (including eight
obligate carriers) not known to suffer from MS, and 12 out of
30 family members not diagnosed with disease (Figure 1, B–M).
To quantifiably assess segregation, we performed nonparametric
and parametric linkage analysis for PLG p.G420D. The more con-
servative nonparametric score resulted in a LOD score of 1.29,
whereas parametric linkage analysis resulted in a maximum LOD
score of 5.48 (u = 0.05), despite a penetrance estimate of 50%.
Additional support for a role in disease susceptibility is provided
by the level of conservation for the glycine residue in mammals,
indicating the importance of this amino acid for protein function
(Figure 2). Haplotype analysis of PLG p.G420D carriers between
D6S1633 and D6S297 did not identify a shared haplotype among
families (Table S1), thus suggesting that PLG p.G420D is a muta-
tional hotspot that has independently arisen in each family rather
than being inherited from a common ancestor.

Clinical details were available for 17 PLG p.G420D carriers, five
males and 12 females (Table S3). The disease course observed in these
carriers was predominantly consistent with relapsing-remitting MS, or
secondary progressive MS, with only two patients presenting primary
progressive MS. On average, the age at onset of disease was 35.1 years
(SD 6 9.1), with a disease duration of 19.9 years (SD 6 10.4). Dis-
ease severity was overall relatively moderate, with an average expanded
disability status scale (EDSS) score of 3.92 (SD 6 2.9) and a
median of 2.75.

n Table 1 Logistic regression analysis for PLG p.G420D (rs139071351) and risk of MS

Group Gender M(%)
Age

(mean 6 SD)
Age at onset
(mean 6 SD)

Genotypes
(GA/GG) P-Value OR (95% CI)

Canada Controls 51.0 67.1 6 9.8 1/880 0.046 10.19 (1.04–267.89)
MS patients 26.9 46.7 6 11.7 31.0 6 9.7 12/2091

France Controls 39.1 39.3 6 13.1 4/668 0.049 2.69 (1.00–9.37)
MS patients 30.0 49.1 6 11.4 30.5 6 9.7 32/2359

Spain Controls 40.5 42.8 6 12.8 34/3984 0.475 1.20 (0.73–1.96)
MS patients 34.8 44.5 6 11.5 30.9 6 9.8 42/4246

Germany Controls 40.3 41.3 6 16.8 11/2711 0.476 1.31 (0.63–2.84)
MS patients 29.2 40.5 6 11.3 30.8 6 10.3 21/3712

Belgium Controls 47.2 56.2 6 14.7 5/499 0.747 0.81 (0.23–3.04)
MS patients 34.0 48.3 6 13.1 33.3 6 10.9 6/1000

Austria MS patients 29.8 49.2 6 12.1 28.7 6 9.1 7/918 NA NA
Combined Controls 41.8 44.3 6 15.9 55/8742 0.117 1.32 (0.93–1.87)

MS patients 31.0 45.1 6 12.1 30.9 6 9.9 120/14326

M, male; OR, odds ratio; CI, confidence interval; NA, not applicable.
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Association analysis of PLG p.G420D was performed in Cauca-
sian samples from Canada already genotyped for the identification
of additional PLG p.G420D families. This subset consists of 2103
MS patients and 881 controls, and resulted in a marginally signif-
icant association with disease risk (P = 0.046), and an odds ratio
(OR) of 10.19 (Table 1). In order to validate this association we
genotyped PLG p.G420D in five independent cohorts from Europe
consisting of 12343 MS patients and 7916 healthy controls. Logis-
tic regression analysis corrected for age and gender identified a
similarly marginal association with disease in the French cohort
(P = 0.049; OR = 2.69), whereas no association was observed for
any additional cohort (Table 1). Although the combined dataset did
not result in a significant association with disease risk (P = 0.117),
with the exception of Belgium which is the smallest set, all cohorts
resulted in OR greater than 1, indicating a higher prevalence of PLG
p.G420D in MS patients than controls.

To assess whether common variants in PLG lead to an increased
susceptibility to develop MS, we identified nine tSNPs spanning the
entire PLG loci, and genotyped them in 2103 MS patients and
881 controls from Canada (Table S4). Association analysis failed
to identify a significant association between any of the tSNPs and
susceptibility to MS (P . 0.05). Since common variants in PLG do
not appear to have an effect on MS disease risk, we assessed for the
presence of additional rare PLG substitutions inMS patients. To this
end, we sequenced all PLG-coding exons in 293 familial probands
from Canada, which identified 11 silent and 11 missense variants
(Supplementary Table S5). Of those, nine missense variants with a
MAF below 1% in at least two of three publicly available databases
(1000G, ExAC, or ESP) were genotyped in cases and controls from
Canada (Abecasis et al. 2012; Exome Aggregation Consortium et al.
2015; Exome Sequencing Project 2014). This analysis identified
six variants (p.K38E, p.R89K, p.R261H, p.R490Q, p.A494V, and

Figure 1 Simplified pedigrees for families presenting the PLG p.G420D variant. Males are represented by squares and females by circles, the
proband is indicated with an arrow head. Patients diagnosed with MS have black filled symbols, and carriers of unknown clinical phenotype have
gray filled symbols. Heterozygote carriers (M) and wild-type (wt) genotypes are indicated. An asterisk indicates an inferred carrier. Pedigree A was
used for exome analysis, and, with the exception of pedigree E, which is of Asian descent, all families are of Caucasian ancestry.
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p.R523W) at similar frequencies in MS patients and controls; whereas
p.T200A (rs149145958), p.T500M (rs140970354) and p.A507V
(rs372603134) were identified only in eight, two and one MS pa-
tient, respectively (Table 2). Despite all three variants being pre-
dicted likely damaging to protein function with a phred-scaled
CADD score of 29.3, 14.4, and 18.9 for p.T200A, p.T500M, and
p.A507V, respectively (Kircher et al. 2014), and two of them being
evolutionarily conserved (Figure 2), segregation and parametric
linkage analysis, which resulted in negative LOD scores, does not
support a role for these variants in disease pathogenicity (Figure S2).

DISCUSSION
Exome sequencing analysis in amulti-incident family suffering from
MS has nominated PLG p.G420D as a putative new risk factor for
MS. Although four private missense variants cannot be conclusively
excluded as a potential cause of disease in this kindred, and copy
number changes were not evaluated, the identification of PLG
p.G420D in 12 additionalMS patients, and one control fromCanada,
suggests a role for PLG in MS susceptibility. Genotyping of ad-
ditional family members from multi-incident families with PLG
p.G420D resulted in positive cosegregation of the variant and disease,
albeit with 50% reduced penetrance (Figure 1). Additional support
for pathogenicity was sought from a large case-control cohort of
MS patients from Europe, and, although most populations present
a higher prevalence of PLG p.G420D in MS patients than controls, a
nominally significant difference was observed only in the French
cohort (Table 1). A possible Acadian origin of PLG p.G420D was
considered due to the marginal associations in the French and

Canadian population; however, the wide geographical distribution
of variant carriers from Canada, and the lack of a shared ancestral
haplotype (Table S1), do not support this hypothesis. Association
analysis for PLG p.G420D in the entire cohort resulted in a non-
significant p-value of 0.117, and an OR of 1.32. Despite the overall
lack of association observed, it is possible that carriers of the
PLG p.G420D variant have an increased risk of developing MS, as
suggested by the OR and initially observed familial segregation pat-
tern. In contrast, common PLG tagging variants genotyped in this
study were clearly not associated with MS risk in the Canadian
population (Table S4). This data corroborates previously described
genome wide association studies that did not nominate common
variants in PLG as a risk factor for MS (Beecham et al. 2013;
Sawcer et al. 2011).

Sequencing of PLG in MS patients from Canada led to the identi-
fication of nine rare missense variants (Table 2). Six of these were
subsequently identified at a similar frequency in MS patients and con-
trols, suggesting they are not likely to have an effect on MS risk. In-
terestingly one of these variants (p.K38E, rs73015965) has been
described as the cause of PLG deficiency type I when identified in
homozygous or compound heterozygous form (Tefs et al. 2006). Sim-
ilarly, p.R523W (rs4252129) has been associated with decreased plasma
PLG levels (Ma et al. 2014). Severe PLG deficiency type I has been
causally linked to ligneous conjunctivitis, a rare chronic inflammatory
disease of mainly mucous membranes. Although there is no indication
that heterozygous carriers are at an increased risk of developing disease
(Tefs et al. 2006), PLG dysregulation could lead to an increased sus-
ceptibility to inflammatory and autoimmune diseases. In our study,

Figure 2 PLG variants and cross-species conservation. Protein orthologs were aligned via ClustalO. Amino acid positions for PLG variants are
highlighted in black. Protein orthologs with amino acid positions differing from those of the human sequence are indicated in gray. RefSeq
accession numbers: Homo sapiens NP_000292.1, Macaca mulatta NP_001036540.1, Mus musculus NP_032903.3, Rattus norvegicus
NP_445943.1, Canis lupus familiaris NP_001273889.1, Sus scrofa NP_001038055.1, Bos taurus NP_776376.1, Myotis davidii ELK34830.1, Tarsius
syrichta XP_008066085.1, Gallus gallus XP_419618.2, and Danio rerio AAH59801.1.

n Table 2 Case-control frequency for rare missense PLG variants identified in MS patients

dbSNP IDa Chromosome and Position Nucleotide Change Protein Change
Minor Allele Frequency

ExACb Controls (n) MS (n)

rs73015965 6:161127501 A/G p.K38E 0.003 0.006 (10) 0.007 (28)
rs143079629 6:161128812 G/A p.R89K 0.007 0.010 (16) 0.010 (44)
rs149145958 6:161135876 A/G p.T200A 0.001 0 0.002 (8)
rs4252187 6:161137790 G/A p.R261H 0.003 0.007 (12) 0.005 (24)
rs140537724 6:161152807 G/A p.R490Q 0.001 0.002 (3) 0.002 (9)
rs4252128 6:161152819 C/A p.A494V 0.008 0.005 (8) 0.005 (20)
rs140970354 6:161152837 C/T p.T500M 0.0002 0 0.0005 (2)
rs372603134 6:161152858 C/T p.A507V 0.0001 0 0.0002 (1)
rs4252129 6:161152905 C/T p.R523W 0.007 0.012 (19) 0.013 (56)
a
dbSNP Build 138.

b
The Exome Aggregation Consortium (ExAC) database.
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three additional variants (p.T200A, p.T500M, and p.A507V) not
known to cause hypoplasminogenemia, were observed exclusively in
MS patients. Although the allelic frequencies and segregation for rare
missense PLG variants do not initially support a role in disease suscep-
tibility, genotyping in additional MS patients is warranted to fully de-
fine these preliminary findings. PLG p.T200A seems of particular
interest, as it was identified in eight MS patients and no controls (Table
2), it is evolutionary conserved (Figure 2), and a threonine to proline
substitution at the same position has been identified in a patient with
severe type I PLG deficiency (Tefs et al. 2006).

PLG is a plausible biological candidate for MS susceptibility as it is
involved in the inflammatory response, blood-brain barrier (BBB) per-
meability, neuronal viability, and myelin degradation (Syrovets et al.
2012; Yao and Tsirka 2011; Chen and Strickland 1997; Cuzner and
Opdenakker 1999). PLG has been shown to play a role in the immune
response, with plasmin deficiency, the active form of PLG, resulting in a
compromised inflammatory response in mouse brain (Hultman et al.
2014). Microglia and astrocytes are the primary mediators of inflam-
mation in the central nervous system, and fibrin has been shown to
activate their immune response by stimulating the production of in-
flammatory mediators, including proinflammatory cytokines and re-
active oxygen species, as well as act as a chemoattractant for immune
cells (Syrovets et al. 2012; Hultman et al. 2014).

Genetic variants in PLG may also have an effect on brain inflam-
mation by altering the BBB permeability. Plasmin alters BBB perme-
ability by inducing morphological changes in brain astrocytes and
endothelial cells through the reorganization of the actin cytoskeleton
and the redistribution of tight junction proteins (Niego and Medcalf
2014; Yao and Tsirka 2011). In addition to its effects on the inflamma-
tory response and BBB permeability, plasmin has also been shown to
affect neuronal viability, including sprouting, plasticity, and extracellu-
lar matrix-related neuronal death (Chen and Strickland 1997;
Nakagami et al. 2000; Wu et al. 2000).

Plasmin activates highly active matrix metalloproteinases (MMPs)
which are recognized as key proteases in the demyelination process.
Synthetic inhibitors of MMPs have been found to ameliorate clin-
ical symptoms and pathological signs in experimental autoimmune
encephalomyelitis (EAE) animal models (Cuzner and Opdenakker
1999); minocycline, which has several immunomodulating activ-
ities including the inhibition of MMP-9, has been used success-
fully in clinical trials as an add-on therapy for MS patients (Metz
et al. 2009).

Despite the existence of extended families with a high incidence of
MS (Fagnani et al. 2015; Sadovnick 1993), only one rare pathogenic
mutations has been reported (Wang et al. 2016). In this study, the
implementation of exome sequencing analysis in a multi-incident MS
family nominated PLG p.G420D as a potential susceptibility risk for
MS. Additional support was provided by 10 additional multi-incident
MS families in which the variant segregates with disease, albeit with
reduced penetrance. Disappointingly, genotyping of PLG p.G420D in a
large European case-control cohort failed to identify a significant asso-
ciationwithMS, thus not supporting a role for PLG p.G420D in disease.
Despite this lack of association, dysregulation of the PLG/plasmin ac-
tivation cascade is a plausible pathomechanism of MS, which, in con-
junction with the positive segregation of PLG p.G420D in families
(Figure 1), the overall higher incidence of PLG p.G420D carriers in
European MS patients (Table 1), and the identification of additional
rare PLG substitutions in MS patients not observed in controls (Table
2), warrants further genetic and functional characterization of PLG
in order to elucidate its potential role on MS susceptibility and
pathogenesis.
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