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Laburpena 

 

Atlantikoko hegalaburra (AHL) (Thunnus thynnus), hegalmotz edo zimarroi bezala ere 

ezaguna, atun familiako espezieen artean haundiena da eta, bere eragin ekonomikoaren 

ondorioz, azken hamarkadetan arrantza industria garrantzitsuen bitartez ustiatu da (Fromentin 

and Powers 2005). Beita biziko euskal arrantza flotarentzat garrantzi handiko espeziea izan da 

hogeigarren mendearen erdialdetik gaur egunera arte. Mundu mailan ere gero eta preziatuagoa 

da AHLa: azkenaldian jasandako arrantza-ahaleginaren gorakada da horren adierazle. 2006an 

buruturiko populazio ebaluazioak erakutsi zuen, ordea, bai mendebaldeko hegalabur 

populazioak (Mexikoko golkoan erruten dutenak), bai ekialdekoak (Mediterraneoan erruten 

dutenak) gain ustiatuta zeudela. Horren harira, atunaren kontserbazioaz arduratzen den 

erakundeak (ICCAT-Atlantikoko Atunen Kontserbaziorako Nazioarteko Batzordea) 

berreskuratze plan bat martxan jarri zuen 2007an. Ekialdeko populazioaren egoeraren gainean 

ziurgabetasuna dago oraindik (Fromentin et al. 2014), baina aholkularitza zientifikoan 

oinarrituriko kudeaketa gauzatua dago gaur egun. Kudeaketa horren bi ardatz nagusiak arrantza 

kuota zientifikoen ezarketa eta Atlantiko osoko ikerketa programaren bitartez (GBYP) 

sustatutako ikerketak dira.  

Tesi honen ardatza Bizkaiko golkoko hegalaburra da, izan ere, eremu hori espezieko 

jubenilentzako (nahiz eta helduen presentzia ere esanguratsua izan) elikatze gune garrantzitsua 

baita (Cort 1990). Bizkaiko golkoak AHLren habitat osoaren zati erlatiboki txikia irudikatzen 

du (Arrizabalaga et al. 2015), baina, hala ere, ipar-ekialdera udan burutzen duten migrazio 

trofikoko elikatze eremu garrantzitsuena da jubenilentzat (Goñi and Arrizabalaga 2010a). 

Ikerketa eremua (43-47°N eta 2-6°W) Bizkaiko golkoko hego-ekialdean beita biziko euskal 

arrantza flotak ekainetik urrira bitartean burutzen dituen jardueren bitartez mugatu da (Uranga 

et al. 2017). AHL urtero ziklikoki burutzen dituen migrazio trofikoen ondoren ikerketa 

eremutik ez mugitzeko ohitura du, eta bertan geratzen da uda osoan zehar (Arregui I. 2015). 

Espezie horren portaera eta etengabeko presentzia ikusirik, 1940ko hamarkadan beita biziko 

arrantza flota garatu zen eta, harrezkero, udako atun arrantza kanpainak gogorki errotuta daude 

Bizkaiko golkoan (Santiago J 2016).  

AHLren populazio kudeaketan, esfortzu unitateko harrapaketa kopuruan (EUHK) 

oinarrituriko indizeak erabili ohi dira (ICCAT 2016b) ugaritasun erlatiboak lortzeko. Bizkaiko 

golkoko beita biziko euskal arrantza flotak AHLrentzako ugaritasun indizea garatzeko orain 

arteko datu kopuru handiena ekarri du (Santiago J 2016). Ekarpen garrantzitsua izan arren, 
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arrantzaren bidez lorturiko harrapaketan oinarrituriko datu serie horiek zenbait eragozpen 

analitiko aurkezten dituzte (diseinu zientifikoaren falta, korrelaziozko behaketak, ez-zorizko 

laginketa edo harrapaketa aldakorrak) (Maunder et al. 2006) eta, horretaz gain, azken urteetan 

hainbat eragozpen operazional antzeman dira (2012 eta 2015ean, adibidez, espainiar beita 

biziko arrantza flotak zegokion arrantza kuotaren %100 saldu zuen). Eragozpen horiek 

EUHKren datu serieak ahultzen dituzte eta, ondorioz, indize horren bitartez burututako 

ugaritasun ebaluaketen zehaztasun eta sendotasuna mugatuta geratzen da. 

Gaur egun, Bizkaiko golkoko EUHK estandarizatua erabiltzen da Atlantiko ekialde 

osoko atun jubenilen populazioaren ugaritasun indizea kalkulatzeko (Itoh et al. 2012; 

Rodríguez-Marín et al. 2003). Indize horren erabilerak harrapaketa konstantea ontzat ematen 

du (Gulland 1983), baina hori errealitatean ez da hala izaten; izan ere, ingurugiro efektuek 

arrainaren distribuzio espaziala alda dezakete eta, arrainaren portaerari dagokionez ere, hainbat 

faktorek (arrainaren distribuzio bertikala, janariaren eskuragarritasuna, elikadura ohiturak, 

urdail betetze maila...) aldaketa eragin dezakete. Faktore aldakor horiek EUHK estandarizatua 

lortzeko prozesuan modu egokian sartzea zaila da eta, gainera, urtetik urtera faktore 

desberdinek efektu desberdina eragiten dute prozesuan, eta aldakortasun horrek zehaztasun 

galera dakar ugaritasun indizeak kalkulatzeko orduan (Glass 2000).  

Arrantzaren bidez lorturiko harrapaketetan oinarrituriko datuek dakartzaten zehaztasun 

galerak saihestu beharrak bultzatuta, arrantzetan oinarritzen ez diren ugaritasun indizeak garatu 

beharra ikusi zen. Zentzu horretan, sistema akustikoak dira arrantza ekosistemak ikertzeko 

tresna zientifiko egokienak (Koslow 2009), arrantzetan oinarritu gabe modu independentean 

uretan aurkitzen diren espezie desberdinak antzemateko eta ezaugarritzeko gaitasuna erakutsi 

baitute. Bizkaiko golkoan arrantza ontzi gehienek erdi-mailako luzera ahalmena  duen 90 kHz-

eko MAQ sonar omni-direkzionala (360 gradutan neurtzeko prestatutako sonarra) erabiltzen 

dute AHL bilatzeko lanetarako. Sonarraren konfigurazioari dagokionez, luzera ahalmena tartea 

itsasoaren eta patroiaren nahien araberakoa den arren, orokorrean 100-300m arteko distantziak 

erabiltzen dituzte; horizontalarekiko inklinazioari dagokionez, 5-8ºan ezartzen da; eta sonar 

elektro uhinaren zabalera bertikal zein horizontalak 5ºan finkatzen dira. Arrantzaleek AHL 

detektatzeko espreski erabiltzen badute ere, sonar hau analogikoa eta ez-zientifikoa da. Irudiak 

ez dira grabatzen, sonar pantailan aurkeztutako informazio eta xehetasun guztiak irudiak 

pantailatik desagertu bezain azkar galdu egiten dira, lantzeko aukerarik eman gabe. Galera 

handia da hori; izan ere, ekipamendu hau euskal flotaren ontzi gehienek erabiltzen dute. 

Ekipamendu egokia berebiziko informazio iturria izan daitekeela ikusi da. 
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Hori dela eta, gure proposamena urtero arrantza ontzi kopuru esanguratsu batean, MAQ 

sonarraren bitartez irudiak grabatu eta orain arte ustiatu gabeko informazio iturri aberats hori 

baliatzeko metodologia sortzea da. Irudiak, bai Bizkaiko golkoan burutzen diren udako atun 

arrantza kanpainetan, bai atuna detektatzeko bereziki planeaturiko behaketa kanpaina 

akustikoetan grabatuko dira. Irudiak grabatzeko sistema merkea, arina, eta instalatzeko erraza 

da; eta, gainera, ez du arrantza ontziaren lanetan oztoporik eragiten. Zenbait garraiobidetako 

“kaxa beltz” ak bezala, irudiak modu autonomoan grabatzeko diseinatua dago. Datuak lortzeko 

prozesuan, garrantzitsuena arrantzaleen kolaborazioa lortzea da. Azken hamarkadetan zientzia 

eta arrantza gerturatzeko ahaleginak egin dira eta bi arloen arteko komunikazioa landu da 

(Lopez et al. 2014); gaur egun, informazio eta datuen elkar-trukaketa handiagoa daukagula 

esan daiteke. 

Behin irudiak eskuratuta, prozesatzeko sistema bat diseinatu da. Bertan, arrantza 

operazioak simulatu eta berorietan atun bankuak detektatzeko metodologia bat proposatu da. 

Metodologian bi pausu nagusi nabari dira. Lehendabizikoan, sailkapen gainbegiratuaren 

bitartez arrantza ontzietan grabaturiko sonar irudietan AHLren presentzia edo absentzia 

detektatzea izan da helburua (tesiko lehen kapitulua). Bigarrenean, berriz, behin AHL bankuak 

morfologikoki detektatzeko gaitasuna balioztatu ondoren, sailkapen ez-gainbegiratua erabiliz, 

laginketa sistematikoa betetzen duen kanpaina akustiko-zientifiko bateko zein ohiko atun-

arrantza egun oso bateko irudietan AHL bankuak modu fidagarrian zenbatu eta neurtzeko 

metodologia eta beharrezko programak sortzea da (tesiko bigarren kapitulua).  

Helburu orokor horiek gauzatzeko bidean, lehen pausua sonar irudiak prozesatu eta 

beraietatik ezaugarri neurgarriak ateratzeko aplikazio bat sortzea izan da. Programa Java 

software-aren bitartez garatu da, hiru pausu hauekin: aurre-prozesaketa, segmentazioa eta 

ezaugarri morfologikoen erauzketa. Aurre-prozesaketan, garrantzirik ez duten sonar irudiko 

zati desberdinak ezabatzen dira. Sonarreko pantailak ikusarazten duen irudiak bi zati desberdin 

ditu; batetik, sonarra konfiguratzeko menu bat dauka eskuin aldean eta, bestetik, datu 

akustikoak erakusten dituen ekograma. Lehenengo ariketa, menuari dagokion zatia eta 

ekogramaren beheko zirkulu erdia ezabatzea da. Behin irudiko eremu horiek ezabatuta, 

gainerako zatian (ekogramaren goiko zirkulu erdia) zentratzen gara eta garbiketa iragazkiak 

aplikatzen dira zarata eta sonarrak sartutako beste elementu batzuk kentzeko (ilarak, 

kurtsorearen gurutzea, itsasontziaren ikurra eta luzera ahalmen tarteen markak) (Uranga et al. 

2017). Behin sonar ekogramaren erantzun akustikoa garbi daukagula, segmentazioari ekiten 

zaio. Irudiko pixel guztiak analizatzen dira, zehazteko zeintzuk diren irudiko hondoaren zati 

(beltz kolorekoak) eta zeintzuk erakusten duten atun taldeari dagokion erantzun akustikoa 
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(koloretakoak). Atuna izateko pixel hautagaiak bereizi ditugunean, 8ko auzokidetasun erregela 

aplikatzen da irudian eta pixel bakoitza pixel-talde bakar bati esleitzen zaio (pixel-talde hauek 

blob bezala ezagunak dira irudi tratamenduaren komunitatean). 100 pixel baino gehiagoko 

blob-ak baztertu egiten dira. Blob bakoitzarekin irudi berri bat sortuko da eta horietako bakoitza 

atuna izateko hautagai bilakatzen da. Azkenik, blob bakoitzarentzako 20 ezaugarri morfologiko 

ateratzen dira. 

Lehen ikerketa honetarako erreferentziazko datu basea AHLren presentzia duten 1.397 

irudik eta beste 1.398 ausentziazkok osatzen dute. Irudien aukeraketa behatzaile zientifikoen 

oharrak jarraituz gauzatu da eta aukeratutako irudiak errealitatean behatu daitekeen kasuistika 

osoaren (atun bankuak, beste espezieetako bankuak, uhin zaratak, gainazal zarata, beste ontziek 

eragindako zarata, etab.) erakusgarri izatea espero da. Hasierako datu baseari aurreko pausuan 

deskribatutako irudi prozesaketa aplikatu ondoren, erreferentziazko datu basea sortzen duten 

atun presentziazko 1.497 blob eta ausentziazko 21.004 atera dira hasierako irudietatik. 

Ikertutako bi kasu posibleen artean 1/14ko ratioa dago, mota honetako datu baseak 

“desorekatu” bezala izendatzen dira, eta prozesaketa berezia eskatzen dute. Datu base hori, 

sailkapen gainbegiratua erabiliz, “atun” edo “ez-atun” bezala etiketatu da, eta jarraian bere 

portaera neurtu da.  

Sorturiko datu basearen ezaugarrien portaera aztertu da jarraian, etiketek adierazitako 

bi klaseak sailkapen algoritmoen  bitartez (ezaugarri morfologikoak erabiliz) sailkatzeko 

ahalmena neurtzeko asmoz. Horretarako, datu meatzaritza azterketak egin dira: lehendabizi, 

erreferentziazko datu base desorekatuari bi iragazki aplikatu zaizkio; ondoren, ezaugarri 

morfologikoen azterketa burutu da eta, azkenik, sailkapen algoritmoen alderaketa azterketa 

egin da.  

Ezaugarrien portaera neurtzeko lehendabiziko iragazkia azpilaginketan oinarritzen da 

eta absentziazko gehiegizko kasuak gutxitzen ditu (Witten et al. 2016). Bigarren iragazkia, 

berriz, goitiko laginketan oinarritua dago eta presentziazko kasu murritzak gehitzen ditu 

(Chawla, Bowyer et al. 2002). Ondorioz, metodologia neurtzeko garaian hiru datu base erabili 

dira.   

Hurrengo pausuan, irudi prozesaketan ateratako 20 ezaugarri morfologikoak 

erabiltzearen onurak aztertu dira (bai ezaugarri kopurua, bai horietatik zein den egokiena). 

Onura horiek aztertzeko ezaugarriak aukeratzeko lau iragazki aplikatu dira: ChiSquared, 

InfoGain, Support Vector Machine (SVM) eta Stepwise (Witten, Frank et al. 2016). Iragazki 

bakoitzaren bitartez ezaugarri kopuru txikiagoko datu base murriztuak lortu dira eta horietako 

bakoitza Random Forest (RF) sailkapen algoritmoa (Breiman 2001) erabiliz prozesatu da. 
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Datu baseak prozesatzeko metodoa 5 aldiz errepikatutako binakako balidazio gurutzatuan 

(5x2cv) oinarritzen da. Metodo honekin, itzuli bakoitzean, datu basea zorizko bi zati 

berdinetan banatzen da, non bata trebatzeko datu basea izango den eta bestea, berriz, 

azterketa burutzeko datu basea. Emaitzak ebaluatzeko Kappa (Wood 2007), T-test eta 

zehaztasuna neurtzeko azterketa estatistikoak aplikatu dira. 

Azkenik, ezaugarri kopuru egokiena erabaki ondoren, bost sailkapen algoritmo aplikatu 

dira aurretiaz iragazitako hiru datu baseetan, eta elkarren artean alderatu: RF (Breiman 2001), 

SVM (Cortes and Vapnik 1995; Burges 1998), Multilayer Perceptron (MLP) (Bishop 1995; 

Haykin and Network 2004), Iterative Dichotomiser 3 (J48 in WEKA) (Quinlan 1996) eta 

Instance-Based learner with fixed neighborhood (IBK) (Aha, Kibler et al. 1991) sailkapen 

algoritmoak. Bakoitzarekin lortutako emaitzak ebaluatzeko sentsibilitate, espezifizitate, Kappa 

eta AUC indizeak kalkulatu dira. Indizeak prozesatzeko 30 aldiz errepikatutako hamarnakako 

balidazio gurutzatuan oinarrituriko metodoa aplikatu da (30x10cv). Horrela, sailkapenaren 

gain-doikuntza bermatzen da eta emaitza egonkorragoak lortzen dira (Kohavi 1995). 

Lehen kapituluko emaitzei dagokienez, azken pausuan gauzatutako algoritmoen arteko 

alderaketa azterketak erakutsi du tesi honetan ezaugarri morfologikoak darabiltzan 

metodologia jarraituz aplikatutako algoritmo guztiek sonar irudietan AHL egoki sailkatzeko 

gaitasuna dutela. Emaitzak balioztatzeko aztertutako datu base desberdinen artean emaitza  

hoberena lortu duena goitiko laginketan oinarrituriko iragazkia izan da. Sailkapen algoritmoen 

artean, berriz, RF algoritmoak erakutsi du zehaztasun handiena. Aurkeztutako metodologiaren 

bitartez lortutako emaitzek portaera orokor ona erakutsi dute eta sailkapen modelo morfologiko 

bat erabiliz (SMM) sonar irudiak “atun” edo “ez-atun” kasu bezala sailkatzeko egokia dela 

baieztatu da.  

Bigarren kapituluari dagokionez, lehendabiziko ekarpena aurreko kapituluan (Uranga 

et al. 2017) balioztatutako atun bankuak morfologia ezaugarrien bitartez SMM a eguneratzea 

izan da. SMM berriari 2015. urtean Bizkaiko golkoan garatutako kanpaina akustikoan 

grabatutako 1.273 irudi gainbegiratu gehitu zaizkio. SMM berrituaren bitartez, sailkapen ez 

gainbegiratua erabiliz, 2015eko laginketa sistematikoa betetzen duen kanpaina akustiko-

zientifiko bateko egun oso bateko sonar irudiak “atun” edo “ez-atun” bezala etiketatu dira. 

Random Forest (RF) motako algoritmoa erabili da (Breiman 2001) eta, aztertutako egunean 

segundo bateko frekuentziarekin 11.52 ordu grabatu zirenez, sortu dugun datu base etiketatuak 

41.496 erregistro ditu. 

SMM arekin, denbora tarte osoko (datu basea) denbora instante (erregistro bat 

segundoko) bakoitzerako etiketa bat lortu dugu. Baina gure helburua  “atun” bezala 
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etiketaturiko erregistroak atun banku bakarretan elkartzea da, eta horretarako informazio 

gehiagoren beharra dago. Sonar irudiek ekogramaz gain beste informazio mota bat ere 

eskaintzen dute:  itsas ontziaren kokapena (latitudea eta longitudea), abiadura, sonarraren 

luzera ahalmen tartea eta sonarra konfigurazio-irabazi desberdinen informazioa. Irudietatik 

informazio hori atera ahal izateko Karaktereen Antzemate Optikoan KAO (ingelesezko OCR,  

Optical Character Recognition) oinarrituriko aplikazio berri bat garatu da. Horren bitartez, 

irudietako balore alfanumerikoak karaktere digitaletara eraldatzen dira. Horretarako, 

ondorengo pausuak bete behar dira: irudiko eremu interesgarrien aukeraketa, irudiaren aurre-

prozesaketa, eremu interesgarrien segmentazio bertikal eta horizontala, ezaugarrien erauzketa, 

karaktereen antzematea eta emaitzen balioztatzea (Uranga 2013). 

KAO aplikazio berriarekin lortutako informazioa eta aurretik ateratako ezaugarri 

morfologiko eta  “atun” edo “ez-atun” etiketak datu base berri batean batzen dira. Datu base 

berrian oinarritzen da ondoren garatu den atun bankuak zenbatu eta neurtzeko metodologia. 

Metodologia berriaren azken emaitzak atun banku kopuru estimatua, kokapena eta neurriak 

(metro karratuetan) dira. Emaitzen egokitasuna neurtzeko, behatzaile zientifikoek hartutako 

oharretan ageri diren atun banku errealen kopuru, kokapen eta neurriak hartzen dira kontuan. 

Orotara, 34 atun banku behatu dira aztertutako egunean zehar, horietatik 21 sonar bitartez eta 

beste 13ak ekosonda bitartez. 

Bankuak zenbatzeko metodologia garatzeko garaian arrantzaleen arrantza portaera 

simulatu da. Arrantza operazioetan abiadura jaitsi egiten da, eta tokian bertan denbora tarte bat 

izaten da beita bizia uretara botatzen eta kaina bidez atunak arrantzatzen. Ondorioz, abiadura, 

denbora eta geo-lokalizazioa izan dira gure datu baseko “atun” etiketak banku bakarretan 

batzeko irizpideak. Irizpide egokiena aukeratzeko optimizazio testak burutu dira eta, emaitzen 

arabera, detekzioen arteko denbora izan da bankuak batzeko irizpide egokiena. Irizpide horren 

bitartez, estimatutako banku kopuruaren eta estimatu/behatutakoaren arteko asmatze tasa 

handiena lortu da. 

Emaitzak balioztatzeko, aukeratutako irizpidearekin, atun bankuak estimatu dira eta 

behatutako bankuekin alderatu dira. Alderatzeko, konfusio matrize bat sortu da banku estimatu 

eta behatuekin. Bertatik egiazko kasu positiboak (EP), gezurrezko kasu positiboak (GP), 

egiazko kasu negatiboak (EN) eta gezurrezko kasu negatiboak (GN) kalkulatu dira. Beraien 

bitartez sentsibilitate, espezifizitate, iragarpen positibo eta zehaztasun indizeak kalkulatu dira 

(1, 0.99, 0.75 eta 0.99ko balioekin) eta emaitza orokor egokiak lortu dira. Gure metodologiaren 

bitartez AHL talde kopuru zehatza estimatu da (34) eta horietako 23, egiazko kasu positiboak 

(EP) izan dira, %68 zuzen, orokorrean.  
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Bankuen tamainaren neurriak estimatzeko garaian metodologia berri bat ezarri da. 

Neurriak sonar irudietako atun banku bezala sailkaturiko blob-etatik atera dira eta, patroi 

bakoitzak arrantzaren beharren arabera sonarraren luzera ahalmen tartea aldatzen duenez, 

eskala faktore bat aplikatzen zaie. Sonarraren konfigurazio-irabazi desberdinek aldakortasuna 

sartzen dute neurrien kalkuluan ere, eta hori saihesteko modelo matematikoak erabili dira. 

Modelo lineal arrunta eta modelo gehigarri orokortua MGO (ingelesezko GAM, Generalized 

Additive Models) erabili ditugu atun bankuen gainazal estimatuetan konfigurazio-irabaziek 

daukaten eragina zuzentzeko eta bietan egokiena aukeratzeko Akaike informazio irizpidea AII 

(ingelesezko AIC, Akaike Information Criterion) indizearen emaitzetan oinarritu gara 

(Chambers and Hastie 1991). Estimatutako eta behatutako gainazalen balioen antzekotasunak 

metodologia hau neurketa erlatiboak burutzeko balioztatu du. 

Laburbilduz, tesi honetan aurkeztutako aplikazio eta metodologia berriek erakutsi dute 

teknika eta tresna berriak erabil daitezkeela AHL bezalako espezie pelagikoak monitorizatu eta 

kudeatzeko, arrantza datuak erabili gabe. Lan honetan, luzera ahalmen ertaineko sonar irudiak 

landuz AHL behatzeko modu berri bat aurkeztu da. Aurkezten diren atun banku zenbaketa eta 

neurketa emaitzek, bai udako atun arrantza kanpainetako, bai laginketa sistematikoa betetzen 

duen kanpaina akustiko-zientifiko bateko irudiak lantzeko gaitasuna erakutsi dute. Testuinguru 

honetan buruturiko lanek eta lortutako emaitzek, ondorengo urteetan jorratuko diren  kanpaina 

akustikoak eta beraietan hartuko diren behaketak gordetzeko modua  estandarizatzeko bidean, 

informazio baliagarria ekarri dutela uste da. Metodologia honen puntu indartsuenetako bat 

post-prozesaketa lanen arintzea da, udako atun arrantza kanpaina oso batean zein kanpaina 

akustikoetan  grabaturiko irudiek datu kantitate oso handia sortzen  baitute eta horiek lantzeko 

egin beharreko esfortzua oso haundia baita. Aurkezturiko metodologia honen bitartez ez da 

denbora tarte osoa analizatu behar eta automatikoki atuna aurkitzeko probabilitate handia 

dagoen guneetan jartzen da fokua. Aplikabideei dagokienez, metodologiak erakutsitako 

moldagarritasunak (ohiko atun arrantza kanpainetan zein kanpaina zientifiko akustikoetan 

probatu da), metodologia beste espezie pelagiko (hegaluzea, adibidez), arrantza eremu 

(Tropikoko arrantza eremua) edota ekipo akustiko (frekuentzia altuko sonar desberdinak) 

desberdinetan (Brehmer et al. 2006) probatzera bultzatzen gaitu. 

Ondorioz, erlatiboki den eta arrantza flota bateko zati esanguratsuan modu estentsiboan 

aplikatu daitekeen metodologia aurkeztu da. Modu honetan, arrantza ontzietako sonar 

komertzialak ekosistema pelagikoen behatoki bilakatzen dira eta orain arte ustiatu gabeko datu 

motekin lan egiteko aukera zabaltzen da. Arrantza datuen menpekotasunik gabe, irudi 

prozesaketa teknika berriek sortzen duten informazio iturri aberatsa eta datu meatzaritzak 
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eskaintzen duen indar analitikoa baliatuz, gaur egungo AHL ugaritasun ebaluaketak hobetzeko 

bidean lehendabiziko urratsak eman dira. 
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Argazkia: Pittar  arrantza ontzia, Luis Barrankotik. 2016. 
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General introduction 

 

In this introductory chapter, once the context in which the PhD thesis has been 

explained, the aspects that justify and motivate the realization of this PhD thesis are described. 

In addition, the state of the art is revised in order to establish the correct objectives, which guide 

development of the methodology to test the initial hypothesis.  

 

 

Context of this research work 

 

This PhD dissertation is a composition of both artificial intelligence and applied 

research activities at fisheries acoustics focused on detecting tuna at sonar imagery. It has been 

developed at AZTI-Tecnalia and the University of the Basque Country, thanks to the support 

of the Basque Government through PhD grant 0033-2011 to Jon Uranga and grant GV 

351NPVA00062 to AZTI-Tecnalia. The main activities of the artificial intelligence are focused 

at image processing, optical character recognition and at the data mining for classification of 

images. The research carried out at fisheries acoustics area was englobed by the automated 

acquisition of sonar imagery onboard fishing vessels at the Bay of Biscay during the tuna 

fishing campaigns, the acquisition of discriminatory knowledge through sonar images of tuna 

and other species with the help of skipper and the development of an aggregation algorithm 

based on a binary tuna database in which tuna presence is detected, counted and sized.  

Results from this research have been published in journals and conference proceedings and 

they lay the structural basis to improve the monitoring of the Atlantic bluefin tuna abundance. 

The research activities described in this thesis have been conducted at AZTI, a technology 

centre located in Pasaia (Basque Country, Spain) expert in marine and food research, 

committed to social and economic development of the fisheries, marine and food sector, as 

well as to the study of the marine environment and natural resources in the context of 

sustainable development. It performs strategic and applied research, providing comprehensive 

and innovative solutions to customers and generating new knowledge. 

AZTI’s vision is to be a scientific and technological organization: excellent and dynamic 

that generates value through the creation of innovative knowledge, technologies, products and 

services; At the marine research division, scientific knowledge is provided on the functioning 

of ocean and coastal systems to attain a sustainable management of their goods and services. 
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The objective is to achieve a sustainable fishing activity by an economically competitive fleet, 

with responsible fishing practices. This division is composed of four areas: Marine ecosystems 

Functioning, Sustainable Fisheries Management, Marine and coastal Environmental 

Management and Efficient use of Resources (Aquaculture and Marine technologies) 

This dissertation work was produced at the Tuna Research group, which is part of the 

Sustainable Fisheries Management area. It has a strong background and expertise in fisheries 

data collection, fisheries biology and ecology, fish population dynamics, fishery stock 

assessment, ecosystem modeling, as well as expertise in mathematics, computer science, 

statistics and data management. AZTI contributes to the generation of scientific advice as 

participants of the scientific committees of tFRMOs (ICCAT, IOTC).  Similarly, among other 

research and monitoring activities, AZTI also runs international observer programs for 

European Purse Seiners fisheries in the Indian and Atlantic Oceans, tagging programs and 

biological research programs.   
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Motivation 

The Atlantic bluefin tuna (Thunnus Thynnus) is a species of the genus Thunnus which 

gathers some of the most economically important, but also intensively exploited fish on the 

planet. It is the target species of this work and in the Bay of Biscay (BoB) it is one of the main 

targets for the live bait Basque tuna fishery. Regarding morphological characteristics this genus 

is divided in two subgenera: temperate Thunnus and tropical Neothunnus (Díaz-Arce et al. 

2016). The temperate Thunnus subgenera is comprised by the albacore (Thunnus alalunga) and 

the Atlantic (Thunnus thynnus), Pacific (Thunnus orientalis) and Southern (Thunnus maccoyii) 

bluefin tunas. Also, the bigeye tuna (Thunnus obesus) has been included into the subgenus 

Thunnus due to its adaptation to cooler waters (Collette et al., 2001). The Tropical Neothunnus 

subgenera, it is composed by blackfin (Thunnus atlanticus), longtail (Thunnus tonggol) and 

yellowfin (Thunnus albacares) tunas. 

Morphologically it has the following characteristics: the back is dark blue while lower 

sides and belly are silvery white; it has 39 vertebrates; 12/14 dorsal spines and 15/15 dorsal 

soft rays; the first dorsal fin is yellow and the second one is darker; the anal fin is yellow and 

black and the median caudal keel is black; and another singular characteristic is the shortness 

of their pectoral fins and the presence of the swim bladder.  

Regarding physical features, Atlantic bluefin tuna (ABT) is a very powerful fusiform 

fish, with a large triangular head (Figure 1). This shape, their strength, swimming speed and 

their slippery skin provide excellent hydrodynamics, which are valuable characteristics to carry 

out long ocean migrations. Another special characteristic comes from their combative 

character, all fishermen show respect when they confront to fish a school of big ABTs because 

its danger. The scientific name also refers to it, since the Latin Thunnus comes from the Greek 

verb “thynno” which means “to rush” (Iñigo 2009).  

ABT are at the top of their food chain, they visit waters of the Bay of Biscay in the 

summer months when the water is warmer. It is a historic feeding ground for them. After 

summer tuna return to more southerly latitudes. Tunas tend not to move from the study area 

after trophic migrations performed during consecutive summer cycles and they use to reside in 

the area during this period (Arregui I. 2015). As their presence was confirmed at the Bay of 

Biscay waters, since the early 1950s, a live baitboat fishery was developed (Santiago J 2016) 

and consequently, tuna fishing campaigns currently still remain strongly rooted in the Bay of 

Biscay.  
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Fig 1 

              Drawing of an Atlantic bluefin Tuna (ABT) (1). 

 

According to ICCAT, the ABT distribution area is composed of two separate 

populations or "stocks" (BARD 1998; Fromentin and Fonteneau 2001). Their spawning areas 

are in the Gulf of Mexico and in the Mediterranean Sea for the western and eastern stocks 

respectively (Figure 2). Moreover, both stocks mix substantially through the Atlantic (Block et 

al. 2005; Rooker et al. 2014). Compared to other tuna species it has the widest geographical 

distribution and the highest tolerance to extreme environmental conditions (Arrizabalaga et al. 

2015).  

Regarding commercialization, fresh tuna is found in the local market during the spring 

and summer and but it can also be commercialized in various formats (frozen, canned, salting 

product, etc.). At the international level, the greatest part of the catch is exported to Japanese 

sushi-sashimi market, where the meat from this species of tuna is highly esteemed and the high 

price paid for it made ABT exploitation much more profitable than before (Fromentin and 

Ravier 2005). Due to these advantageous conditions, the equipment of tuna fishery 

experimented an improvement, causing fishing strategies and efficiency improvements 

(Liorzou 2001). 

(1) (Photograph from National Geographic: http://ngm.nationalgeographic.com/2014/03/bluefin-tuna/img/bluefin-tuna-outside.jpg). 
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Fig 2 

Spatial distribution. Map of the spatial distribution of Atlantic bluefin tuna (blue), main 

migration routes (black arrows) and main spawning grounds (dark grey) deduced from current and 

historical fisheries data as well as traditional and electronic tagging information. The vertical dashed 

line depicts the stock delimitation between the two current ICCAT management units (Fromentin and 

Powers 2005).  
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This species has been exploited for several centuries (Fromentin and Powers 2005). 

First fishing for ABT occurred in the Mediterranean since ancient times when hand lines and 

beach seines were mainly used (Desse and Desse-Berset 1994). In the nineteenth century beach 

seines were replaced by traps (Doumenge 1998)and in the twentieth century the hand line 

fishery targeting juveniles of ABT and albacore tuna at the BoB arose (Bard 1981) and it is 

still the current technique used by the live baitboats. 

Therefore, such an outstanding species with heavy economic and socio-cultural 

influence should be strictly monitored by scientific and governmental institutions to promote 

its sustainable exploitation. In this sense, due to its economic importance and the lack of fishery 

controls the latest stock assessments carried out by ICCAT stablished that both eastern and 

western stocks had been undergoing heavy overfishing for over a decade (ICCAT 2016b) and 

currently they are under recovery plans.  

Nowadays no direct assessment for the ABT at the Bay of Biscay (BoB) is stablished 

as the standard official methodology for population monitorization, as is done to asses other 

important species of the BoB such as anchovy (Boyra et al. 2013). Due to the large distribution 

area and high mobility of the ABT scientific surveys systematically covering the whole 

distribution area are scarce, and current abundance assessments are based on the catch per unit 

effort (CPUE) indices. The CPUE index of abundance is based on a fundamental relationship 

widely used in quantitative fisheries analysis which comply the following formula (Maunder 

et al. 2006): 

 

CPUEt = q . Nt                             (Equation 1) 

 

Where CPUEt represent the catch per unit effort at time t, q is the portion of the stock 

captured by one unit of effort (often called the catchability coefficient) and N is abundance at 

time t.  

CPUE standardization (Maunder and Punt 2004), attempts to standardize effort data to 

ensure that q can be assumed to be constant, but  several factors, such as change in the 

efficiency of the fleet, food availability, feeding behavior, stomach repletion (Arreguín-

Sánchez 1996; Stoner 2004) or the environment affects to its variability.  

Our goal is to develop a fisheries independent methodology based on acoustic 

detections, where the abundance index is not dependent on ABT-fishing. Thereby we propose 

a detection per unit effort (DPUE) index of abundance that avoids the effect of some factors 

affecting the catchability that are difficult to standardize. The willingness to eat and stomach 
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repletion of tunas cannot affect the number of acoustic detections (the rest of the effects are 

further discussed in following chapters). The proposed index assumes that, acoustic detections 

are proportional to the product of survey effort and abundance: 

 

DPUEt = q . Nt                             (Equation 2) 

 

Where DPUEt are the acoustic based detections per unit effort at time t, q is the portion 

of the stock detected by one unit of effort (here called detectability coefficient), Et is the effort 

expended at time and N is abundance at time t.  

In this sense, we found answers at the tuna searching methodology used by the Basque 

live bait fishing fleet, which was observed during boarding on fishing vessels by scientific 

observers. It can be said that the Basque fleet has “eyes”, because during recent years (1970 

onward) sonars have been used to search for tuna (Santiago J 2016). During the summer tuna 

fishing seasons (from May to September) fishing vessel focus their effort at tuna and all of 

them use the same tactic. This fact was corroborated onboard by scientists during last years 

and was the main point that ignited the investigation in this line. Regarding the skipper’s tactic, 

at first instance, they tend to use radio communication with other fishing vessels, fishermen 

visual detection, seabirds tracking, etc. while no acoustics are at their disposal. Then, when a 

tuna school first appears by sonar at medium ranges, they direct towards it and try to confirm 

the detection with the vertical echo sounder and in positive case, they start the fishing operation.  

Thus, in the same way the fleet was capable of detecting schools by sonar, we launched 

this study to detect the tuna by processing data recorded by medium range sonars (MRS). To 

do that, we developed an innovative methodology to acquire sonar imagery onboard fishing 

vessels during fishing campaigns, process them at the end of the season and detect tuna schools. 

By doing so we want to install sonar imagery data acquisition devices at the mayor part of the 

fleet and take advantage of the experience based knowledge and the effort of the Basque fleet 

(sampled area is directly conditioned by the tracks performed by the fishing fleet at searching 

the tuna). It is indeed a way to boost the collaboration between science and fisheries community 

through an innovative and economic solution to face the non-addressed problem of the direct 

assessment based on acoustics for ABT. We believe this teamwork is essential to broaden the 

range of solutions and to respond to the specific objectives of this thesis. 
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State of the art 

 

In the scientific literature, several studies have been carried out during the last decades 

on the fisheries acoustics field. Acoustics has been the main tool to explore new fisheries 

independent methods to monitor the different fish and aquatic resources. Petitgas et al. (Petitgas 

et al. 2009) presented how to measure stock abundance of many groundfish and small pelagics. 

They tried to find out what type of assessment does fishery-independent data measured at sea 

lead to and how could such assessments be useful alongside or instead of existing methods. 

Presented methodologies were focused at single-species stock assessments and management 

strategies using only fishery-independent information from research surveys. Methodologies 

were classified in three categories: monitoring procedures based on indicators of stock 

attributes, assessment models, and simulation evaluation tools.  The general objective was to 

tackle for ecosystem monitoring and fish stock assessment. In this framework Koslow (2009) 

established that no research tool is likely to prove as effective as acoustics for sustainable 

management of fisheries. 

At the Bay of Biscay where the bluefin tuna fishing ground is relatively limited (most 

catches occur within a 2ºx2º box), the scientific acoustic survey might be a good alternative to 

monitor the ABT presence by designing acoustic based abundance indices which could replace 

currently performed fishery dependent abundance indices (Goñi et al. 2010). According to 

historic evolution of fisheries acoustics, abundance estimations were first explored by acoustic 

methods in the 1950s. First studies were focused in counting individual echoes (Tungate 1958; 

Mitson and Wood 1962). First steps were taken by Dragesund and Olsen  who integrated the 

echo amplitude, but at that time the methodology was imprecise and the target strength of fish 

uncertain (1965). Scherbino and Truskanov (1966) established that the correct approach was 

to integrate the intensity and this remains as the fundamental principle of fish abundance 

estimation. Theoretical and experimental studies carried out in 1970s and 1980s improved the 

understanding of acoustics and calibration methodologies were set (Foote et al. 2005). 

Vertically deployed echosounders were first calibrated by standardized methods (Simmonds 

and MacLennan 2008) and used to calculate biomass and target strength measurements of 

single fish. Split beam echo sounders were used to estimate school densities, dimensions and 

species discrimination for different species and fishing techniques (Boyra et al. 2013; Josse et 

al. 1999). To explore wider distribution areas, devices with broader scopes and larger field 

ranges were used. Mayer et al. (Mayer, Li et al. 2002) studied limitations of spatial coverage 
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using the traditional single-beam echosounders. According to them, for fisheries acoustics, 

compared to single-beam, the newly developed multibeam sonar technology, provides larger 

coverage while maintaining high spatial resolution necessary for schools characterization. 

However, the large volume of data generated by these systems presents serious challenges for 

analysis and interpretation. Calibration of this kind of sonar devices was also addressed by 

Cochrane (2003). According to Gerlotto (2000) multibeam sonar data could be used to estimate 

fish density and biomass. Combination of echosounder and omni-sonars provided a solution 

and experiments to explore its utility at stock assessments were run for several species  (Misund 

et al. 1996; Misund and Coetzee 2000; Stockwell et al. 2012). In this sense Trygonis (2016) 

demonstrated that horizontal sonars are powerful tools for studying the spatiotemporal 

distribution of large pelagic schools in the vicinity of drifting FADs.  

Fish behavior and vessel avoidance is a theme discussed by various authors.  Brehmer 

et al. (Brehmer et al. 2007) studied and analyzed the fish behavior surrounding platforms and 

fish aggregating devices (FAD). An autonomous sonar buoy prototype equipped with an omni-

sonar and video cameras were used to observe behavior of tuna around FADs and drifting 

objects. This kind of studies are the key to understand behavior patterns of several species and 

for a proper interpretation of acoustic data related to them. For the herring, Vabø et al. (2002) 

studied the significance of vessel avoidance behavior during acoustic surveys in Northern 

Norway. For sardines and anchovies Soria et al. (Soria, Fréon et al. 1996) analyzed vessel 

influence at the school behavior using a multi-beam sonar and biomass estimates by echo-

sounder. Uncertainties in abundance estimates and acoustic density lost were studied. Other 

species such as Sardinella Aurita were analyzed by Gerlotto and Fréon (1992), their vessel 

avoidance was very limited in comparison to herring schools. In addition to the Sardinella 

Aurita Gerlotto et al. (2004) studied also the three-dimensional structure and avoidance 

behavior of anchovy in Central Southern Chile. Structures showed to keep a consistent shape 

and regarding avoidance, while the vertical axis variance was very limited no movements along 

the horizontal axis were observed. Finally, regarding mackerel,  specific swimming depths and 

non-random migration directions were observed by SIMRAD 24-36 kHz sonar  (Godø et al. 

2004).  

Due to the ability of the tunas to migrate over large distances well before an acoustic 

boat could cover the survey area, not many acoustic direct surveys were used to estimate 

abundance indices of tunas. To monitor recruitment of age one southern bluefin tuna (Thunnus 

maccoyii) an acoustic sonar monitoring survey was conducted. The acoustic monitoring was 
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followed by the trolling monitoring survey from which thresholds for counting tuna schools 

were established.  

Alternative studies (tagging campaigns, aerial surveys, larval surveys and commercial 

fleet data) have been carried out in order to improve understanding of abundance patterns 

necessary for sustainable management of the ABT and other species, but few direct surveys 

are being conducted specifically for the ABT, generally due to spatial coverage and economic 

drawbacks.  

Acoustic tagging studies were carried out for southern bluefin tuna (Thunnus maccoyii) 

by Hobday (2009) in order to study factors inducing inter-annual variability on abundance 

index estimates of this species with wide distribution areas. Swimming behavior of fish during 

the acoustic survey, inter-annual variation in the inshore-offshore fraction, residence time and 

the juvenile migration percentage should be considered when included in estimating an 

abundance index for southern bluefin tuna.   

Another way of addressing the problem is to use airplanes to provide broad distribution 

coverage.  Patchiness, mobility of the fish and their vessel avoidance behavior are sources of 

errors in quantitative acoustic surveys and consequently an aerial/acoustic strategy is suggested 

for this case. Aerial surveys were conducted along 20 days to study the abundance and behavior 

of bluefin tuna over the Great Bahama Bank region of the Straits of Florida (Lutcavage, Kraus 

et al. 1998). Aerial/acoustic strategies were also proposed to perform stock assessment of other 

pelagic fish, the Sardinops ocellata (Cram and Hampton 1976). Synchronous aerial 

observations and vessel measurements were carried out at the Southeast Atlantic. Their 

combination provided data for a direct estimate of stock size.  

Other authors explored alternative methodologies to cover larger areas. Garcia et al. 

(García, Alemany et al. 2005) focused the research at early life stages. Preliminary results of 

tuna larval surveys were conducted and data on bluefin and other tuna species larval catches 

are reported from the Balearic Sea, the Levantine Sea and the Sicilian coasts. The comparative 

analysis of the bluefin spawning in different areas were used to better understand spawning 

strategy, larval ecology and identifying population characteristics of bluefin. 

The use of commercial fishing fleet and their acoustic data for major coverage and stock 

assessment is another alternative. Misund and Melvin (Melvin et al. 2001; Misund 1997) 

pointed out that the use of echosounders and sonar data from commercial fisheries should be 

promoted as the way of quantifying fish behavior and distribution.   Brehmer et al. (Brehmer, 

Lafont et al. 2006) conducted a total of 11 surveys in collaboration with local fisheries, in five 

regions (Ivory Coast, Venezuela, Senegal, France and Chile), targeting aggregative small 
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pelagic fish. The project surveyed three populations of the clupeid (Sardinella Aurita) in 

continental shelf waters of Senegal, Venezuela and the Ivory Coast. A complete method for 

continuous data acquisition from aboard a research vessel or commercial boat, with automated 

data extraction by picture analysis and a data processing method was presented. Aligned with 

these studies, Dalen (Dalen and Karp 2007) published a collective report of researches 

published by the International Council for the Exploration of the Sea (ICES), where acoustic 

data acquisition from fishing vessels is promoted in order to cover major coverage and provide 

a valuable source of information for fishery management.  

Regarding abundance index based stock assessments, works about ABT population 

evaluation are frequently published by the ICCAT. Latest CPUE evaluations emerged 

inaccuracies at tracking biomass changes and the last report (ICCAT 2016a) presented by the 

ICCAT  is showing substantial increasing trend over the last years and large fluctuations. Major 

increases are visible in the Japanese and Mediterranean (Spanish and Morocco) CPUE 

indicators, which can be related to the recovery plan (ICCAT 2016b) established for this 

species and the sale of most of the Spanish baitboat quota un the las years. These issues lead 

ICCAT to highlight the importance of developing fishery independent indices, particularly in 

light of the difficulty updating the indices used in the assessment with capture data provided 

by tuna fishery. In this sense, for other species (Boyra et al. 2013) inter-annual campaigns has 

been carried out during last decade to evaluate population changes for small pelagic (Engraulis 

encrasicholus) and for the tuna, the first acoustic campaigns are being launched by Goñi at the 

BoB (2016). 

The field of Artificial Intelligence research (AI) research is adaptive and adjustable, and can 

provide solutions to almost all the areas of knowledge (Holland 1992) and therefore, we can 

find, for example, applications in biology and ecology. In this work, we have explored several 

options such as digital image processing, data mining and optical character recognition 

applications to detect, count and size bluefin tunas throughout sonar imagery. Image processing 

can be applied to unimaginable cases, for acoustic based images, sonar images have been 

analysed by Reid and Simmonds (1993) demonstrating its validity to identify schools and to 

render an image with the positions of tuna schools. From data recorded by multibeam long-

range sonar Trygonis (2009) designed a system for identifying and tracking fish schools, 

innovative processing algorithms were designed to increase the certainty at fish schools 

detection. The main data mining techniques used to detect or discriminate species throughout 

different data sources are the supervised and unsupervised classification tasks. While for tuna 

is difficult to find automatic image processing tasks, for other species and biological studies, 
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the artificial intelligence has been proven to be useful (Bachiller et al. 2012; Fernandes et al. 

2009; Irigoien et al. 2009) to classify the zooplankton and can provide rapid, accurate, species-

level classification of bioacoustics data, as done by Armitage (2010) where animal 

vocalizations from field recordings are classified. In other species, such as Atlantic salmon 

(Salmo salar), multivariate data analysis was used to discriminate between farmed and wild 

Atlantic salmon (Aursand et al. 2009). Regarding Optical Character Recognition (OCR) 

technique, historically has been used to scan documents and to become digital images from 

which to extract the alphanumerical information. and it has been applied in fields such as 

invoice imaging, legal industry, banking, health care industry, etc. Regarding ecological or 

fisheries tracking applications, (Brehmer et al. 2006) presented a complete method for 

continuous data acquisition from aboard a research vessel using automated data extraction 

methods of image and data processing.  

In summary, it can be noted in literature that acoustics are pointed as the main tool with 

the capacity of processing fish and aquatic resources independently and with high accuracy. 

Therefore, the use of sonar imagery is believed to be an efficient way to address the problem. 

Several fish behaviour studies were carried out for fish aggregating devices (FAD) of tropical 

tuna and other species all over the world, but for Eastern Atlantic stock, no relevant studies are 

available. Several studies regarding issues associated to large spatial areas are available and 

they all agreed that the use of omni-directional sonars to increase coverage is most appropriate 

way to address the problem. Concerning alternatives to the currently used CPUE for population 

evaluations, several studies pointed the necessity of developing independent evaluation 

methods based in acoustic and in the way of improving accuracy, the combined use of scientific 

echosounder and sonar (scientific or not-scientific) is promoted. In this sense, the present work 

is aligned with the objectives of the acoustic community. As regards, Artificial Intelligence 

(AI) applications in fisheries acoustics, a lack of approaches focused in the tuna is observed at 

the literature, but nevertheless the adaptability of AI techniques and studies carried out in a 

variety of species and conditions are showing that they can be a very interesting tool. Therefore, 

with the aim of getting a DPUE index based on acoustic detections of the bluefin tuna at the 

BoB, an AI methodology to detect, count and size bluefin tuna schools results to be the best 

solution. 
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Objectives and hypothesis 

 

In summary, the estimation of bluefin tuna abundance in the Bay of Biscay using fishery 

independent methods remains challenging, but new technologies, datasets and approaches 

provide new opportunities to address the challenge.  

To detect the presence-absence of bluefin tuna at MRS imagery recorded on fishing vessels 

the following objectives were pursued: 

 

• To validate a data acquisition system for medium range sonar whose functioning does 

not compromise the activity of fishermen.  

• To develop an automated image analysis program for medium range sonar imagery 

recorded onboard Basque fleet vessels, with the aim to extract measurable 

morphometric characteristics for tuna schools. 

• To study the potential of data mining and supervised classification algorithms to detect 

in a semi-automated way the presence-absence of bluefin tuna in sonar imagery.  

• To raise the question about the capability of the methodology to track abundance of 

juvenile bluefin tuna in the Bay of Biscay and if possible, in which way it could be 

performed.  

 

For counting and dimensioning bluefin tuna schools the following objectives were 

pursued:  

 

• To label MRS imagery recorded on an acoustic survey for ABT detection by an 

morphometric classification model and test its appropriateness for subsequent steps of 

the counting and sizing methodology. 

• To check the appropriateness of using a novel optical character recognition (OCR) 

application to extract vessel behavior (location/speed) and sonar setup (range, gain) 

parameters. 

• To design a methodology to count the number of school’s and quantify their size, 

through sonar imagery, image classification models and OCR data. 

• To address how a new “detections per unit effort” (DPUE) series could replace the 

current “captures per unit effort” (CPUE) series for the bluefin tuna population 

evaluations. 
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Considering the limitations explained at the state of the art, the current thesis develops several 

techniques with the aim of complying the following hypothesis:  

 

“Automated analysis of raw medium range sonar imagery recorded onboard fishing vessels 

allows to automatically detect, count and size bluefin tuna schools in commercial tuna fishing 

campaigns and scientific acoustic surveys, as a way to improve resource monitoring, scientific 

advice and ultimately, fishery management of this important resource” 
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Thesis structure 

 

The PhD dissertation is arranged as follows:  

 

• General Introduction: The purpose of this section is to introduce the context of this research 

work. The motivation of the study and an up-to-date state of the art are explained to establish 

the objectives of the presented thesis.  

  

To achieve the objectives defined above the following text has been structured in two chapters 

based on scientific publications: 

 

• Chapter I: At the first contribution, a methodology for the automated analysis of commercial 

medium-range sonar signals for detecting presence/absence of bluefin tuna (Thunnus thynnus) 

in the Bay of Biscay is presented. For each sonar image, we extracted measurable regions and 

analyzed their characteristics. A classification model was built by supervised classification and 

evaluated its performance by data mining. The discriminatory capacity of sonar images to 

detect presence and absence was evaluated by statistic indices and results demonstrated that 

the methodology performed well with commercial sonar imagery, and has the potential to 

automatically analyze high volumes of data at a very low cost.  

 

• Chapter II: Once the capacity to detect the presence and absence by the classification model 

was proved by the results of the first contribution, we measured its performance using a full 

day sonar imagery in a non-supervised way. To do so, we processed the imagery with the same 

application as in the first paper, we updated the classification model and labelled each time 

instance of the day as “Tuna” or “No-Tuna”. Extra data (vessel velocity, geolocation, sonar 

range, tilt and gains) was provided by an OCR application designed to extract interesting 

character information from sonar images. All data at our disposal was fused in a new dataset 

and a methodology was designed to count and size unique bluefin tuna schools in a non-

supervised way. Results were validated comparing matching ratios between estimated 

detections with observations annotated by scientific observers during acoustic surveys. 

Detected schools could serve in the near future to build a new DPUE index for the Bay of 

Biscay that could replace the currently used CPUE index in ABT stock assessments.  
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• General discussion and conclusions: this section discusses the main findings and future lines 

of research are identified. It also lists the main conclusions drawn from the presented 

contributions. In addition, the answer to the working hypothesis, i.e. the Thesis, is given. 
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Detecting the presence-absence of bluefin tuna by 

automated analysis of medium-range sonars on 

fishing vessels 
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1.1 Abstract 

 

This study presents a methodology for the automated analysis of commercial medium-range 

sonar signals for detecting presence/absence of bluefin tuna (Thunnus thynnus) in the Bay of 

Biscay. The approach uses image processing techniques to analyze sonar screenshots. For each 

sonar image, we extracted measurable regions and analyzed their characteristics. Scientific data 

was used to classify each region into a class (“tuna” or “no-tuna”) and build a dataset to train 

and evaluate classification models by using supervised learning. The methodology performed 

well when validated with commercial sonar screenshots, and has the potential to automatically 

analyze high volumes of data at a low cost. This represents a first milestone towards the 

development of acoustic, fishery-independent indices of abundance for bluefin tuna in the Bay 

of Biscay. Future research lines and additional alternatives to inform stock assessments are also 

discussed. 

 

Keywords: Sonar, image analysis, supervised classification, bluefin tuna, abundance. 
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1.2 Introduction 

The Atlantic bluefin tuna (Thunnus thynnus) is an emblematic species exploited for 

several centuries that has supported economically important industrial fisheries (Fromentin and 

Powers 2005). The International Commission for the Conservation of Atlantic Tunas (ICCAT) 

manages two Atlantic bluefin tuna stocks, the western stock that spawns in the Gulf of Mexico, 

and the eastern stock that spawns in the Mediterranean. Both stocks have been overfished in 

recent decades (ICCAT. 2013) and currently they are under recovery plans. Furthermore, the 

scientific community has warned about the large uncertainty surrounding the eastern stock 

status (Fromentin et al. 2014), which is being addressed with a set of research programs under 

the Atlantic-wide Research Programme for bluefin Tuna (GBYP) promoted by ICCAT. In 

order to be able to quantify the effects of the implemented recovery plan, it is of outmost 

importance to be able to monitor changes in abundance and stock status through accurate 

indicators.  

Fisheries independent scientific surveys are used to monitor the stock abundance of 

many groundfish and small pelagics (Petitgas et al. 2009). Absolute and relative stock 

abundance estimates are useful to inform management of exploited fish stocks. Many of the 

uncertainties associated with our ability to estimate fish stock abundances can be linked directly 

to limitations in the spatial coverage of our sampling systems (Mayer et al. 2002). For example, 

in the case of scientific acoustic surveys, highly precise narrow vertical beam acoustic 

equipment might fail to detect aggregations if these are sparsely distributed or if fish are 

aggregated in the unsampled surface. In such situations, the use of commercial fishing vessels 

and their acoustic equipment allows for substantial increase in the spatial coverage. In fact, 

major progress has been made in the use of this information as the basis for stock assessment 

(Brehmer et al. 2006; Dalen and Karp 2007; Melvin et al. 2001; Misund 1997), as well as to 

analyze fish behavior (Brehmer et al. 2007), vessel avoidance (Gerlotto and Fréon 1992) and 

fish distribution (Melvin et al. 2002). 

In tuna stock assessments, time series of standardized catch per unit effort (CPUE) 

indices are used as proxies for relative abundance. However, these series, based on fishery data, 

have known analytical challenges, such as lack of scientific design, correlated observations, 

non-random sampling or variable catchability (Maunder et al. 2006), and do not necessarily 

reflect trends in population abundance. In the case of bluefin tuna, the drastic reduction in 

fishing opportunities as part of the recovery plan has affected the CPUE indices, and the 
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Standing Committee on Research and Statistics (SCRS) of ICCAT has recommended urgently 

developing fisheries independent indices of abundance (ICCAT 2016b). 

There are very few fishery-independent surveys for tuna, and other highly mobile 

species with wide distributional ranges, because the cost associated with research vessels 

covering the whole distribution area is prohibitive. Moreover, it is not possible to account for 

the uncertainty associated with this type of surveying (e.g. double counting). Therefore, some 

fishery independent surveys for tuna have focused on early life stages (larvae) or spawners 

whose distributional range is much more concise and spatially limited to spawning areas 

(García et al. 2005). When the focus has been on juveniles and adults (with high migration 

capabilities) airplanes have been used instead of research vessels to provide broad distribution 

coverage in reasonable timeframes and with reasonable costs (Antonio Di Natale and Justel-

Rubio 2014; Lutcavage et al. 1998), estimating the approximate horizontal shape of the visible 

portion of schools (Weber et al. 2013). Some sonar and echosounder-based acoustic surveys 

have also been implemented to monitor southern bluefin tuna recruitment (Itoh and Tsuji 

2004), together with trolling transects surveys (Itoh et al. 2012). 

The standardized CPUE of the Bay of Biscay baitboat fleet is used as the only 

abundance index for the juvenile fraction of the entire eastern stock (Rodríguez-Marín et al. 

2003; Santiago J 2016). Catchability by baitboats can be affected by several factors including 

food availability, feeding behavior and stomach repletion (Arreguín-Sánchez 1996; Stoner 

2004).  These variables are difficult to incorporate during the CPUE standardization process. 

Consequently, inter-annual variability could induce bias in the abundance indices (e.g. a large 

tuna biomass could yield a low baitboat CPUE if plenty of food is available in the environment 

and tunas are not attracted by the bait). However, Bay of Biscay baitboats use Omni-mode 

Medium Range Sonars (MRS) to search for tuna, and omni-directional sonars have proven to 

be useful tools for characterizing large pelagic schools (Arreguín-Sánchez 1996; Miquel et al. 

2006; Stoner 2004; Trygonis et al. 2016). Thus, the information obtained by these sonars could 

provide data about the number and size of tuna schools in the search area, independent of food 

availability and feeding behavior. These sonars are analog and non-scientific, used only for 

display, and all the information collected is lost as soon as it disappears from the screen. Thus, 

our approach is to record sonar screen shots in a large number of fishing vessels during the 

tuna fishing campaigns and design an automated methodology for analyzing these images as a 

way to utilize the data currently wasted. The automated processing of images has been proven 

to be useful in biological studies and it is a fast-evolving area of research (Bachiller et al. 2012; 

Fernandes et al. 2009; Irigoien et al. 2009). 
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In summary, the estimation of bluefin tuna abundance in the Bay of Biscay using fishery 

independent methods remains challenging, but new technologies, datasets and approaches 

provide new opportunities to address the challenge. The main objective of this study is to 

develop an automated image analysis procedure for detecting presence-absence of bluefin tuna 

in commercial sonar images, plus a validation of the procedure based on data mining. The 

utility of the procedure to track abundance of juvenile bluefin tuna in the Bay of Biscay is also 

discussed. This constitutes a first milestone towards the longer-term objective of developing 

new fishery independent indices of abundance for Atlantic bluefin tuna based on acoustics. 

 

 

1.3 Materials and Methods 

 

The research presented in this manuscript involved no endangered or protected species. 

No experimentation with animals was performed and no specific field permits were required 

as the scientific observations were conducted on commercial fishing activities regulated by the 

International Commission for the Conservation of Atlantic Tunas (ICCAT). No other ethical 

issues applied to the present research project.  

The study area is delimited by the activity of the baitboat fleet in the southeast corner 

of the Bay of Biscay, between 43-47°N and 2-6°W, from June to October (Fig 1-1). The Bay 

of Biscay represents a relatively small fraction of the total bluefin tuna habitat in the Atlantic 

(Arrizabalaga et al. 2015). However, it is the most important known feeding area for juveniles 

during their feeding migration to the Northeast Atlantic around summer (Goñi and 

Arrizabalaga 2010a).  

Pole and line fishing with live bait is the traditional fishing technique used by the 

Basque fleet fishing for bluefin tuna in the Bay of Biscay since the early 1950s. Live bait 

(mainly small horse mackerel, sardine, mackerel and anchovy) is caught with a small purse 

seine and kept in water tanks onboard. Tuna schools can be spotted visually at large distances 

and then detected acoustically by sonar, once the school is within the detection range of the 

sonars. When the boat is close to the tuna school, live bait is thrown into the water to keep the 

tuna next to the boat, while the boat sprays water so that it is not seen by the tuna. At this point, 

baited hooks are used to catch the tuna.    
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Fig 1- 1 

The study area. A) Atlantic bluefin tuna distribution based on ICCAT catch data for the period 2000-

2013 (ICCAT 2016b). B) The study area, bluefin tuna fishing locations based on logbook data (Santiago 

J 2016) and scientific surveys conducted in 2009 and 2011. 
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In this study we created a reference dataset of sonar images with known categories 

(“tuna” or “no tuna”, based on tuna presence and absence data observed by scientists) to 

validate an image analysis and classification procedure. This dataset was used to test the 

methodology developed in this study which consists of several steps: 1) Image acquisition and 

categorization based on scientific data, 2) Features extraction, 3) Training dataset elaboration 

and 4) Model training and evaluation. 

 

1.3.1 Image acquisition and categorization based on scientific data 

 

The images processed in this study were obtained from the commercial sonar MAQ 

90 kHz. This omni-directional MRS is used by the majority of the Bay of Biscay baitboat fleet. 

The searching range of the sonar varies with sea conditions and skipper preferences but, in 

general, range settings of 100-300 m are used when searching for tuna, with a slight tilt of 

minus 5-7º off the horizontal and narrow vertical and horizontal beam widths (5º).  

The screen dumps were acquired using an image acquisition device composed of 

400MHz video splitter, an external VGA Capture Device and a laptop with a script for 

continuous data acquisition. The images selected for this study correspond to six different trips 

from two scientific tuna surveys conducted in summer 2009 and 2011. The scientific surveys 

were conducted using a baitboat that behaved similar to the rest of the commercial baitboat 

fleet. Thus, the area searched during the scientific surveys significantly overlapped the fishing 

area used by the commercial fleet (Fig 1-1). The main activities conducted by the scientists 

during the surveys were characterization of the vessel activities, recording of MAQ sonar 

screenshots and SIMRAD EK 60 signal, tuna tagging and biological sampling (length 

measurements as well as collection of genetic tissue). The presence of bluefin tuna in the sonar 

was validated when bluefin tuna was the only specie caught during fishing operations. Presence 

of bluefin tuna was annotated in the scientific logbooks, and this information was used to 

classify the images under “tuna” and “no tuna” categories. For this study, the reference dataset 

was built by selecting a balanced set of images, with 1397 images of bluefin tuna presence and 

1398 images of bluefin tuna absence. Bluefin tuna absence was defined as lack of tuna echo in 

the image and lack of tuna catch. With the aim to include the main types of images recorded, 

the reference dataset included images with different background colors as well as images with 

and without surface noise (Fig 1-2). 
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Fig 1- 2 

Main types of images recorded. Typical cases of echograms: tuna, black background (a); no tuna, 

noise (b); tuna, blue background (c) and no tuna (d). 

 

 

1.3.2 Features extraction 

 

  The image processing application was developed with a Java software and it consisted 

of three steps: (i) pre-processing, (ii) segmentation and (iii) extraction of characteristics. 

(i) Pre-processing 

 



59 

 

The pre-processing phase removed the non-relevant parts of the sonar screen image. The screen 

of the MAQ sonar has two main regions, the echogram display circle and the menu panel (Fig 

1-2). The menu panel provides user information on the operation and system control settings 

whereas the echogram represents the acoustic data. During the pre-processing we divided the 

sonar screen into these two basic regions and then focused on the echogram. In the echogram, 

we worked with the upper half of the circle, as the tuna schools are not clearly detected in the 

lower half due to the vessel’s wake. Furthermore, the schools were observed to appear first in 

the upper part of the echogram because the vessels move faster than the fish. The sonar display 

was set up in such a way that the forward observations were located at the top of the screen. 

Additionally, the echogram was cleaned of noise and sonar display lines and marks, such as 

cursor crosses, vessel tracks or range circumferences were removed from the echogram (Fig 1-

3). 

 

(ii) Segmentation 

 

In the segmentation phase, the selected part of the echogram was partitioned into sub-images 

or blobs. First, the zero-valued (i.e., black) pixels were considered background and removed; 

whereas the non-zero (i.e., colored) pixels were grouped, using the 8-adjacency rule, into blobs. 

Then, in order to reduce the size of the training dataset, the blobs containing less than 100 

pixels were removed. We believe that this decision is conservative since the smallest tuna 

school observed by expert judgement in the reference dataset contained 415 pixels, and so it 

does not restrict the utility of the classification algorithm developed.  
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Fig 1- 3 

Image pre-processing phase. Sequential steps of the features extraction procedure: (a) original 

image, (b) image pre-processing, and (c) segmentation of the operative part of the echogram into 

“blobs”. 
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(iii) Extraction of characteristics 

 

The remaining blobs were considered tuna candidates and were subject to a characteristics 

extraction process. For each one, 20 morphologic characteristics were measured related to area, 

perimeter, position, smallest rectangle containing the blob, best ellipse fitting the blob, aspect 

ratio, circularity, solidity, greatest distance between any pair of pixels of the blob (known as 

Feret or Feret’s diameter), the projections of Feret's diameter on the axes, the angle of Feret's 

diameter with respect to the horizontal axis and the minimum value of the Feret's diameter. 

Finally, the blobs were labeled with two possible categories: “tuna” and “no-tuna”, according 

to scientific observations. 

 

1.3.3 Training dataset elaboration 

 

Based on the reference images, a training dataset of blobs was created to train automatic 

classification programs and to test their efficiency before they were used to classify new 

unsupervised images (e.g. those collected onboard commercial fishing vessels without an 

observer onboard). The training dataset included the categories “tuna” (presence) and “no-

tuna” (absence), and is available as S1 Dataset. 

S1 Dataset. Complete training dataset of tuna and no-tuna blobs. “Blob_ID” is a unique 

blob identifier (as a concatenation of survey, year, time and blob number); “Area” and 

“Perimeter” of the blob are in number of pixels; “BX” and “BY” refer to the upper left corner 

coordinates of the smallest rectangle housing the blob; width and height refer to the dimensions 

(in pixels) of such rectangle; “X”, “Y”,  “Major”, “Minor” and “Angle” refer to the coordinates 

of the centroid, the size of the principal and secondary axes, as well as the angle (with respect 

to the horizontal axis) of the best fitting ellipse; “Circularity” is proportional to the ratio 

between the area and the squared perimeter, with a value of 1 representing a perfect circle and 

a value of 0 representing an increasingly elongated shape; Feret’s diameter, or “Feret” is the 

longest distance between any two points along the selection boundary, also known as maximum 

caliper; “FeretAngle” is the angle (0-180 degrees) of the Feret’s diameter and “MinFeret” is 

the minimum caliper diameter; “FeretX” and “FeretY” refer to the starting coordinates of the 

Feret diameter; “Aspect Ratio” (AR) is the ratio between the primary and secondary axes of 

the fitted ellipse; “Roundness” is the inverse of AR; “Solidity” is the ratio between the area 

and the convex area of the blob; and “Class” refers to the “tuna” or “no-tuna” category.              
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From the 1397 presence and 1398 absence images in the reference images, after the 

features extraction, we obtained 22501 blobs for constructing the training dataset: 1497 were 

positive examples (presence) and 21004 were negative examples (absence), as shown in Table 

1-1. The resulting ratio between positive/negative instances was 1/14.03, which shows that we 

had an unbalanced training dataset, due to the fact that images with tuna blobs also contained 

many other blobs that were not tuna. Subsampling and oversampling methods are available to 

manage unbalanced datasets (Zarauz et al. 2008). For this purpose we applied a Synthetic 

Minority Oversampling Technique (Chawla et al. 2002) to oversample the minority cases and 

a Spread Sample filter (Witten et al. 2016) to subsample the majority instances with the Weka 

software (Hall et al. 2009). 

As a result, we constructed three training datasets: a complete dataset (TOTAL) with 22501 

instances; (ii) an oversampled dataset (SMOTE) with 23998 instances; and (iii) a subsampled 

dataset (SPREAD) with 11999 instances, with 20 morphological characteristics in each one 

(Table 1-1). 

 

Table 1- 1 

Presence/absence ratios. Ratios between presence and absence cases for the three databases: 

the original database (TOTAL), a subsampled database (SMOTE) and an oversampled 

database (SPREAD). 

 

 Tuna No Tuna Ratio 

TOTAL 1497 21004 14.03 

SMOTE 2994 21004 7.02 

SPREAD 1497 10502 7.01 

                                            

 

1.3.4 Model training and evaluation 

 

A first experiment was performed to evaluate the merits of using only some of the 20 

characteristics available in the dataset. We compared the classification performance of the 

reduced datasets containing a subset of characteristics with the performance of the dataset 

containing the whole set of characteristics. The subset of characteristics in the reduced datasets 

were selected using four attribute selection filters: ChiSquared, InfoGain, Support Vector 

Machine (SVM) and Stepwise (Witten et al. 2016). The Stepwise method provided an optimum 
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number of characteristics (13 in our case), while the rest of the attribute selection filters were 

applied at fixed numbers of characteristics (ranging between 3 and 19 in steps of 2). In each 

case, the attribute selection filter selected the most powerful combination of characteristics. On 

the reduced datasets, we applied the “five replications of two-fold cross-validation” 

methodology (5x2cv). With this methodology, in each of the five replications, the available 

data were randomly partitioned into two equal sized datasets, a training dataset and a testing 

dataset, so that each data point had a chance of being validated. Using the Random Forest (RF) 

classification algorithm (Breiman 2001), a classification model was generated with each 

training dataset and validated on the testing dataset (Dietterich 1998). To compare their relative 

performance, the Kappa (Wood 2007) and Accuracy values of the reduced datasets were 

compared to those of the complete dataset. A corrected resampled t-test was also performed to 

test the null hypothesis of whether the classification with the reduced dataset yielded the same 

accuracy as when using the complete dataset. This experiment was run under R (RCore 2013), 

making calls to Weka software. BioSeqClass (Witten et al. 2016) and MASS (Venables and 

Ripley 2013) packages were used for this purpose. 

 Once the optimum number of characteristics was determined, five classification 

methods were applied to each of the three different datasets (TOTAL, SMOTE and SPREAD): 

RF (Breiman 2001), SVM (Burges 1998; Cortes and Vapnik 1995), Multilayer Perceptron 

(MLP) (Bishop 1995; Haykin and Network 2004), Iterative Dichotomiser 3 (J48 in WEKA) 

(Quinlan 1996) and Instance-Based learner with fixed neighborhood (IBK) (Aha et al. 1991). 

RF, MLP, IBK and J48 classifications were applied using Weka software and the SVM was 

applied using R software.  

 To evaluate the effectiveness and efficiency of classification methods we estimated the 

average validation indices for sensitivity, specificity, Kappa and Area Under the Curve (AUC). 

These validation indices are calculated using a confusion matrix which evaluates the predictive 

accuracy of presence-absence models on a set of test data for which the true values are known. 

The confusion matrix is defined by the true positive rate (TP, presence was correctly predicted 

by the model), the true negative rate (TN, absence was correctly predicted by the model), the 

false negative rate (FN, the model incorrectly predicted absence) and the false positive rate 

(FP, the model incorrectly predicted presence).  

 Sensitivity and specificity were calculated by the caret R package (Kuhn 2008), as 

follows:  
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Sensitivity = 

TP

TP FN   (Equation 1) 

 

 

Specificity =  
TN

FP TN
  (Equation 2) 

 

 

 Sensitivity measures the efficiency of the algorithm in correctly classifying positive 

cases, and specificity measures the efficiency of the algorithm in correctly classifying negative 

cases.  

 Kappa and AUC, both are calculated by the PresenceAbsence R package (Freeman and 

Moisen 2008). Kappa is a measure of agreement between the classifications and the true 

classes. It's calculated as the difference between the relative observed agreements ( op ) and 

the relative agreements expected by chance ( ep  ) divided by the maximum possible 

agreement: It is known as the "chance-corrected proportion of agreement” (Wood 2007) and it 

is calculated as follows:  

 

1

o e

e

p p
Kappa

p



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  (Equation 3) 

 

 AUC, is a common evaluation metric for binary classification problems and represents 

the area under the receiver operating characteristic (ROC) curve (Fawcett 2006). ROC graphs 

are two-dimensional graphs in which the TP rate is plotted on the Y axis and the FP rate is 

plotted on the X axis. It ranges between 0 and 1. When the classifier is very good, the TP rate 

will increase quickly and the area under the curve will be close to 1. If the classifier has a 

random behavior, the TP rate will increase linearly with the FP rate and the area under the 

curve will be close to 0.5.The scale most commonly used for model evaluation implies that a 

model with an AUC value of 0.95 or higher is excellent; between 0.85 and 0.95 is good; 

between 0.75 and 0.85 is acceptable; and below 0.75 is poor (Fawcett 2006). 

 The validation indices (Kappa, Sensitivity, Specificity and AUC) were computed after 

executing 30 runs of the classification algorithm with 10-fold cross-validation in order to avoid 

overfitting and to achieve stable results (Kohavi 1995). 
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1.4 Results 

 In the first experiment, the characteristics that were most consistently selected by the 

different attribute selection filters were Area, Major and Minor (Fig 1-4), which are correlated, 

suggesting that the size of the blob is most informative about the tuna or no-tuna category. 

However, both Kappa and accuracy values increased as the number of characteristics increased. 

The trends for both Kappa and accuracy were similar: highest gains occurred for reduced 

number of characteristics (up until 9), but classification performance continued to gradually 

improve afterwards, albeit at lower rates. Overall, none of the reduced datasets (including only 

a subset of the characteristics) improved the performance of the complete dataset. According 

to statistical t-tests, a similar performance was achieved only when a high number of 

characteristics were included in the reduced dataset (17 or 19 characteristics, depending on the 

attribute selection method, Fig 1-5). Thus, since our main goal was to achieve the best 

classification performance, and computing time was not a limiting factor, we decided to use 

the complete dataset (with 20 characteristics) instead of a reduced dataset. 

Regarding the bluefin tuna classification study, with the original dataset (TOTAL), 

acceptable results were obtained for all algorithms (Fig 1-6). AUC values were between 0.87 

and 0.97 with a difference in performance between algorithms of around 10%, such as between 

SVM and MLP. Sensitivity estimates varied between 0.73 and 0.79, indicating that all 

algorithms classify positive (“tuna”) instances with similar efficiency. For specificity, all 

algorithms obtained very high results (> 0.95) with minor differences between them. 

Consequently, most negative (“no tuna”) instances were correctly recognized. Kappa values 

also ranged from 0.74 to 0.79, thus evidencing good ratios between true positives and true 

negatives. 

For both SPREAD and SMOTE, due to the use of more balanced datasets, the results 

generally improved for all the indices. This was not the case for the specificity, which showed 

lowest variation between datasets, and were high (> 0.95) in all instances. 

With the SPREAD dataset, the performance of the different algorithms (as measured 

by AUC and sensitivity) improved with respect to the TOTAL dataset. AUC estimates ranged 

between 0.90 and 0.98 and were higher than with the TOTAL dataset in all instances. 

Sensitivity values varied from 0.82 to 0.86 and the lowest value was higher than any of the 

ones obtained with the TOTAL dataset. Although highest specificity and Kappa were scored 

by SVM, highest sensitivity and AUC values were scored by the RF. 
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Finally, the SMOTE dataset obtained the best general accuracy, especially in terms of 

sensitivity, Kappa and AUC, since scores for these three indices where higher than those 

obtained with the TOTAL and SPREAD datasets, in all cases. AUC, Kappa and sensitivity 

values varied from 0.91 to 0.99, 0.83 to 0.87, and 0.84 to 0.90 respectively. SVM showed the 

best specificity, but RF was the algorithm showing best AUC, sensitivity and Kappa scores. 

 

 

 

Fig 1- 4 

Appearance frequency. Frequency with which the blob characteristics were selected by the different 

attribute selection filters during the experiment to evaluate the merits of using reduced datasets. 
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Fig 1- 5 

Comparison between the complete dataset and the reduced datasets. Values for Kappa, Accuracy 

and P_Value (obtained from a corrected resampled t-test) are shown. 
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Fig 1- 6 

Experiment results. Specificity, sensitivity, AUC and Kappa values for the three datasets: TOTAL, a 

complete dataset with 22501 instances; SPREAD, an oversampled dataset with 23998 instances; and 

SMOTE, a subsampled dataset with 11999 instances. The Y axis represents the classification method 

used: Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), J 48 and 

IBK. 
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1.5 Discussion 

 A semi-automated image processing and a supervised classification validation method 

have been developed and applied to detect the presence/absence of bluefin tuna in sonars that 

are routinely used by the fishing vessels targeting this species. The results of the classification 

validation tests show that all algorithms have good classification efficiency. Among the three 

datasets used in the experiment, the TOTAL dataset obtained a good overall performance, but 

balanced datasets SPREAD and SMOTE subsequently improved the general performance. The 

RF algorithm applied to the SMOTE dataset provided the highest accuracy among the tested 

algorithms. Nevertheless, although different machine learning algorithms were compared, the 

main objective of the experiment was not to select the best algorithm. The overall good 

performance in classifying “tuna” and “no tuna” cases allowed us to validate the proposed 

methodology. The particular algorithms can be selected on a case by case basis, considering 

additional constraints (e.g. computing time) in particular future applications. In fact, MLP and 

SVM require substantially larger calculation time, which can be an additional consideration to 

guide selection in specific applications such as the processing of massive amounts of data (e.g. 

obtained from monitoring programs in the whole fleet throughout the whole fishing season), 

or when the speed of the analysis is critical (e.g. for near real time monitoring of resource 

abundance and distribution). 

On one hand, the results of this work indicate that the designed methodology has an 

appreciable morphologic discriminatory capacity with the processed images. On the other 

hand, it should be taken into account that the ratio of positives and negatives in the set of images 

used in this experiment may not be representative of the ratio in the commercial fishing trips 

conducted by the baitboat fleet in the Bay of Biscay (where a higher percentage of negative 

cases is expected). This will have to be taken into account when the model is applied to datasets 

obtained e.g. during an entire fishing campaign by estimating the real presence/absence ratios 

and using algorithms that properly deal with uncompensated datasets. In addition, in such an 

extensive application of the model, the classification will have to be semi-supervised. Although 

a decrease in efficiency of the classification might be expected, the generalization of the model 

will likely increase since a larger variety of situations will be encountered (Chapelle et al. 

2009). 

In order to enhance the strengths of this methodology, several future research lines are 

being developed. First, following (Brehmer et al. 2006), a flexible Optical Character 

Recognition (OCR) method to extract metadata from sonar screens (sonar signal range, tilt, 
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gains, speed, heading, as well as additional information) is being developed so that extra 

information can be introduced to guide classification on an image by image basis. This will 

also allow providing standardized tuna school sizes, since they can be specially affected by the 

gain settings. And second, tools for temporal tracking of schools should be used to identify the 

same school in a set of sequenced images. This is a necessary step in order to be able to quantify 

the total number of schools observed as well as to characterize their size. Additionally, these 

sonar observations could be paired with additional bluefin tuna presence/absence data from 

logbooks and/or scientific observers, as they become available, to allow a continuous 

improvement of the reference dataset used to train the algorithms. 

A third research line will consist in combining the MRS data with scientific 

echosounder data (Miquel et al. 2006). The main purpose of extracting the number and size of 

schools from MRS screenshots is to provide an index of abundance of bluefin tuna; for 

instance, something of the type of a sonar mapping (Smith 1970). It is clear, though, that the 

data obtained from MRS images might not be as precise as those from standard acoustic-trawl 

surveys, based on echo integration (Dragesund and Olsen 1965) of data recorded by calibrated 

scientific echosounders (Simmonds and MacLennan 2008). However, currently, there are no 

ongoing acoustic surveys estimating the abundance of Atlantic bluefin tuna in the Bay of 

Biscay nor anywhere else, due to the large spatial distribution and high mobility of this species. 

In addition, typical single-vessel acoustic-trawl surveys have spatial-temporal limitations that 

could be overcome by an extensive implementation of this methodology (Mayer et al. 2002). 

Taking this into account, we plan to combine the extensive sonar mapping based on this 

methodology with the density distribution of the schools measured by a scientific echosounder. 

This would allow us to overcome the inherent uncertainty of the analog sonar images and also 

the sampling limitation of the standard, single vessel scientific echosounder acoustics. In 

practical terms, the low cost of the data acquisition device and the automation of the process 

would allow it to be applied extensively (in many vessels and through large periods of time) 

while carrying scientific echosounders in one or a few of the vessels. Additionally, the side-

scan sonars increase the volume sampled near the surface and thus may constitute an adequate 

sampler of near-surface distribution species as the bluefin tuna while feeding in the Bay of 

Biscay. Side scan sonars have been successfully used for fishery work in other areas in the past 

(Hewitt 1976; Melvin 2016; O’Driscoll and McClatchie 1998), and allow in-season decisions 

on the spatial and temporal sub-allocation of the total allowable catch (Melvin et al. 2001). 

The morphological differences between the tuna and no-tuna blobs allow for their 

discrimination. In fact, tuna blobs were generally larger, more elongated and showed a more 
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horizontal alignment. Some of these characteristics are ecologically meaningful, and the 

measurements obtained in the different blobs can inform e.g. about the size and shape of the 

bluefin tuna schools aggregated in the Bay of Biscay during the summer feeding season (Fig 

1-7). Bauer et al (Bauer et al. 2015) classified the size of tuna schools based on the surface 

disturbance observed by airplanes. Similarly, the measurements of the area of the blobs 

classified as “tuna” could be used to provide estimates of the size of the different schools in 

the future.  

The Standing Committee on Research and Statistics of ICCAT has recurrently 

highlighted the need for developing fishery independent indices of abundance, given the 

problems associated with existing CPUEs and their inability to accurately track biomass 

changes, especially in recent years after the implementation of the recovery plan (ICCAT 

2016b). Our study can be considered a first milestone towards getting more accurate indices of 

abundance for juvenile bluefin tuna in the Bay of Biscay, and this can be pursued in two ways: 

(i) On one hand, the automated procedure presented in our study could be applied to MRS 

images recorded onboard commercial fishing vessels during their commercial operations. The 

bluefin tuna detections per unit of effort (DPUE, in number of schools per time unit) could be 

standardized, just in a similar way to the CPUE observations of the commercial fleet (Santiago 

J 2016), currently used in the bluefin tuna assessment model. The signal of inter annual 

variability in bluefin tuna abundance can be isolated by removing the variability in DPUE due 

to other variables like month, area, or skipper skill, and this time series of standardized DPUE 

could be used as an index of relative abundance to tune the stock assessment models. Compared 

to the standardized CPUE that is currently used, the standardized DPUE index would have the 

advantage that the detections by the sonar, unlike the catch, would be independent from factors 

affecting the bluefin catchability by baitboats, such as the availability of tuna forage in the 

environment. It would, therefore, in principle better reflect the real abundance of bluefin tuna 

in the Bay of Biscay, compared to the standardized CPUE that is based on what the baitboat 

fleet was able to finally catch. However, the variability of factors affecting detection of bluefin 

tuna by the sonars would need to be considered in the DPUE standardization process. Since 

vessels could use different sonar settings at different times, it is important to standardize DPUE 

observations to standard sonar range, tilt, and gain values. 
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Fig 1- 7 

Density plots of the measured characteristics for tuna and no-tuna blobs. Only ecologically 

meaningful characteristics, related to size and shape of the schools, are plotted. “Angle” refers to the 

angle (0-180º) between the X axis of the image and the primary axis of the best fitted ellipse to the blob 

contour;  “circularity” is proportional to the ratio between the area and the squared perimeter, with a 

value of 1 representing a perfect circle and a value of 0 representing an increasingly elongated shape; 

Aspect Ratio (AR) is the ratio between the primary and secondary axes of the fitted ellipse., The area 

that a single pixel represents ranges between 0.69 m2 and 0.92 m2 (depending on the gain setting of the 

sonar). 
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 (ii) On the other hand, transect based systematic surveys covering the Bay of Biscay 

onboard commercial baitboats equipped with MRS could be designed and conducted yearly to 

quantitatively estimate the bluefin tuna school density (in number of schools per area unit). 

Such a time series could be used as a relative index of abundance to tune stock assessment 

models. Given the relatively high mobility of tunas (compared to small pelagics or demersal 

resources), ideally the systematic surveys would involve several commercial boats equipped 

with MRS so that the whole area of distribution can be searched in few days. This is 

advantageous compared to when a single boat prospects all the area (which is often the case 

when scientific acoustic equipment is used to estimate total biomass), because the probabilities 

of immigration, emigration and double counting schools are diminished. Bluefin tuna 

concentrate in a relatively small area while feeding during summer in the Bay of Biscay (Fig 

1-1), which provides a unique opportunity to conduct systematic abundance surveys on this 

widely distributed species (Arrizabalaga et al. 2015). 

The relatively non-expensive methodology presented in this study can also be adjusted 

to other tuna and non-tuna pelagic fisheries by adapting the analyses to the specific type of 

sonar, output signal and display (see also (Brehmer et al. 2006)). This provides an interesting 

alternative to standard acoustic-trawl surveys, especially when targeting species of high 

mobility and/or near surface distribution. It thus provides an opportunity to use commercial 

fishing vessels as observatories of the pelagic ecosystem, and commercial sonars as tools to 

track changes in abundance of commercial species (Brehmer et al. 2006; Dalen and Karp 

2007).  
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2.1 Abstract 

 

 

A methodology for automated counting and sizing bluefin tuna schools using medium 

range sonars onboard baitboats operating in the Bay of Biscay is presented. An image 

analysis program, an morphometric classification model for Atlantic bluefin tuna 

school detection and an optical character recognition application are used to obtain 

morphometric data of observed bluefin tuna schools and operational data related to the 

baitboats and their sonar settings. With these data, a novel methodology for counting 

and sizing bluefin tuna schools is developed, based basically on automatic detection of 

bluefin tuna in consecutive sonar images and aggregation of these into unique schools. 

Validation of counting results is conducted by contrasting the number of estimated 

schools with the observed ones. The bluefin tuna school area estimates, standardized 

for the effects of variable sonar gain and range settings, are comparable to the real areas 

of the observed schools. This methodology is independent of variables, such as food 

availability, feeding behavior or stomach repletion, that bias the abundance index based 

on catch per unit of effort. Thus, an index based on sonar detections per unit of effort 

is proposed as an alternative. Moreover, this methodology can be implemented during 

systematic acoustic surveys to monitor bluefin tuna abundance in the Bay of Biscay, 

measured as number of tuna schools and their relative size, in a fisheries independent 

manner. 

 

Keywords: Sonar, image analysis, OCR, unsupervised classification, bluefin tuna, 

counting and sizing, monitoring. 
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2.2 Introduction 

The Atlantic bluefin tuna (Thunnus thynnus) is the largest tuna species and due to its 

economic value, it has been exploited for several centuries by important industrial fisheries 

(Fromentin and Powers 2005.) Based on the stock assessment carried out in 2006, the 

International Commission for the Conservation of Atlantic Tunas (ICCAT), which is 

responsible for the conservation of tunas in the Atlantic Ocean and its adjacent seas, established 

that both the eastern and western stocks, spawning in the Mediterranean and Gulf of Mexico 

respectively, had experienced heavy overfishing for over a decade (ICCAT 2016b) and are 

currently under recovery plans. The eastern stock status is uncertain (Fromentin et al. 2014) 

but new knowledge is being gathered through research programs (e.g. the Atlantic-wide 

Research Programme for bluefin Tuna (GBYP)), and current management follows the 

scientific advice ).  

Our study is focused at the bluefin tuna of the Bay of Biscay which is a summer feeding 

ground for juvenile bluefin tuna (Cort 1990). The Bay of Biscay represents a relatively small 

fraction of the total bluefin tuna habitat in the Atlantic (Arrizabalaga et al. 2015). However, it 

is the most important known feeding area for juveniles during their trophic migration to the 

Northeast Atlantic during summer (Goñi and Arrizabalaga 2010b).   The study area  (43-47°N 

and 2-6°W) is delimited by the activity of the baitboat fleet in the southeast corner of the Bay 

of Biscay, from June to October (Uranga et al. 2017). Tunas show a strong fidelity to this 

feeding area and tend to reside in it during the summer (Arregui I. 2015). Consequently, tuna 

summer fishing campaigns are strongly rooted in the Bay of Biscay since the late 1940s, when 

a baitboat fishery was developed (Santiago J 2016).   

In tuna stock assessments, time series of standardized catch per unit effort (ICCAT 2016b) 

indices are used as proxies for relative abundance. The baitboat fishery in the Bay of Biscay 

has provided one of the longest (since 1952) abundance indices for juvenile bluefin tunas 

(Santiago J 2016). In fact, during decades, the standardized CPUE of the Bay of Biscay baitboat 

fleet has been the only abundance index available for the juvenile fraction of the entire eastern 

stock, and has been assumed to represent the whole (east Atlantic and Mediterranean) juvenile 

population trend (ICCAT 2014). However, the problems of using fishery data in this context 

are well known and include the lack of scientific design, correlated observations, non-random 

sampling or variable catchability (García et al. 2005). In fact, the use of standardized CPUE 

series as a proxy for abundance relies on the assumption of constant catchability (Mayer et al. 

2002), while the fact is that catchability can be influenced by many circumstances, e.g. 
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environmental effects altering fish distribution or the detectability by fishermen, fish 

behaviour, changes in fishing practice, etc. Consequently, standardized CPUEs can be biased 

if these effects are not properly taken into account during the standardization process (Glass 

2000). In the case of fisheries using baited gears such as the baitboats, catchability is directly 

influenced by the availability of food in the environment, feeding behavior of the fish and their 

stomach repletion (Antonio Di Natale M 2014; Brehmer et al. 2006; Stoner 2004). These 

variables are difficult to incorporate during the CPUE standardization process, which might 

lead to biased abundance indices (e.g. a large tuna biomass could yield a low baitboat CPUE 

in a given year if plenty of food is available in the environment and tunas are not attracted by 

the bait). On top of these analytical challenges, the baitboat fleet transferred their quota to other 

fleets operating in the Mediterranean, thus stopped their fishing operations targeting bluefin 

tuna during most of the 2012-2015 period. The changes in fishing practices derived by the 

implementation of the bluefin tuna recovery plan also affected the reliability of other 

abundance indices for the adult fraction of the population (ICCAT 2016a).  

In this situation where the available fishery dependent indices of abundance became 

uncertain or were discontinued, there is a clear need to develop fishery-independent abundance 

indices for bluefin tuna (ICCAT 2016a). In the Bay of Biscay, acoustics were identified as the 

most feasible tool to develop a fishery-independent abundance index for bluefin tuna (Goñi et 

al. 2010). Acoustic systems are the most powerful scientific tools for ecosystem approach to 

fisheries (Koslow 2009). They have the capacity to characterize and identify targets in the water 

column or on the benthos for habitat mapping. Fishery acoustic techniques are well known and 

used routinely by fisheries scientists for biomass assessment (Foote et al. 2005; Simmonds and 

MacLennan 2008). Historically, vertically deployed echosounders were calibrated by 

standardized methods (Foote et al. 2005; Simmonds and MacLennan 2008) and used to 

calculate biomass of specific schools by echo integration and target strength measurement of 

isolated fish. Split beam echosounders were used to estimate school densities, species 

discrimination and individual or school dimension estimates for different species and fishing 

techniques (Boyra et al. 2013; Josse et al. 1999). However, these studies generally have very 

specific scopes and vessels have too short field ranges to tackle wide distribution areas. During 

the last decades studies using echosounders combined with omnidirectional sonars were 

conducted for several species to explore its utility for stock assessment  (Misund et al. 1996; 

Misund and Coetzee 2000; Stockwell et al. 2012). In this sense, (Cochrane et al. 2003; Gerlotto 

et al. 2000; Trygonis et al. 2016) used omnidirectional sonars for tuna school characterization, 

probing their efficiency.  
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In the Bay of Biscay most baitboats use the commercial MAQ omnidirectional mode 

Medium Range Sonar (MRS) to search for tuna. These sonars are analog and non-scientific, 

used only for display, all the information collected being lost as soon as it is deleted from the 

screen. Thus, our approach is to, in collaboration with the fishing fleet, record sonar screen 

shots in a large number of fishing vessels during the tuna fishing campaigns or during acoustic 

surveys for tuna detection and design an automated methodology for analyzing these images, 

as a way to utilize the data currently wasted. In a previous study, (Uranga et al. 2017) developed 

a classification model that was able to detect bluefin tuna presence on sonar images. The 

performance of this model was considered to be very satisfactory (Kappa, sensitivity, 

specificity and area under the ROC indices obtained 0.87, 0.90, 0.99, 0.99 values respectively), 

and this development was considered to be an important milestone towards a new fisheries 

independent abundance index of bluefin tuna in the Bay of Biscay. However, detecting 

presence of bluefin tuna on sonar images that are analyzed independently is not sufficient to 

provide a useful index of abundance. In fact, the same tuna school is generally visualized in 

different sonar images, that provide repetitive measures of its size. Thus, it is necessary to link 

the information provided by consecutive images, so as to be able to estimate the number of 

tuna schools and their dimensions.  

The specific objective of this paper is to validate a method for counting and sizing bluefin 

tuna schools in an automated way in the Bay of Biscay. This specific objective contributes to 

the more general objective to develop a fisheries independent index of abundance. We propose 

practical ways to achieve this.  

 

 

2.3 Materials and Methods 

 

The research presented in this manuscript involved no endangered nor protected 

species. No experimentation with animals was performed and no specific field permits were 

required as the scientific observations were conducted during commercial fishing activities 

regulated by the International Commission for the Conservation of Atlantic Tunas (ICCAT). 

No other ethical issues applied to the present research project. 

The study area is the Bay of Biscay. The sampling strategy for an acoustic survey was 

defined by (Goñi N. 2016),  focusing on the area of highest Bluefin tuna catches (delimited 

between 43-45°N and 2-3°W) according to the baitboat fleet catch records during the years 
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2000-2011. Within the study area, an acoustic systematic sampling survey was performed (Fig 

2-1). The zig-zag transects were preferred to parallel transects because they optimize cruise 

time, due to the absence of inter-transects. A route with 36 waypoints was designed, to cover 

the whole study area by acoustic sampling during 10 consecutive days. In the present study, 

we analyzed a full day of continuous data recording, between waypoints 22 and 26, in order to 

evaluate the appropriateness of the presented methodology. 

 

Fig 2- 1 

Study area. Acoustic systematic zigzag sampling survey (Goñi N. 2016). The day analyzed 

in the present study is indicated by a solid line. 

 

A reference dataset of detected schools was created by annotations taken by scientists 

during the survey. The main activities conducted by the scientists during the surveys were 

characterization of the vessel activities, accurate annotation of tuna school detections (initial 

and final time as well as location), recording of MAQ sonar screenshots and SIMRAD EK 60 
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signal, tuna tagging and biological sampling (length measurements as well as collection of 

tissues)(Goñi et al. 2010).  

The images processed in this study were obtained from the commercial sonar MAQ 90 kHz. 

This omnidirectional MRS is used by most the Bay of Biscay baitboats. The searching range 

was set constant at 320 m during the whole survey with a tilt of minus 5-8° off the horizontal 

and vertical and horizontal beam widths of 5°. The screen dumps were acquired using an 

autonomous image acquisition device (Uranga et al. 2017). 

With this data compilation, a ground truth (GT) of observed tuna schools (presence/absence) 

was generated and considered as the reference set of detections along the analyzed day. The 

bluefin tuna presence data were obtained from observations registered by the commercial sonar 

and/or the scientific echosounders that were annotated by scientists. The resulting positive GT 

for the analyzed day was composed of 34 “presence” bluefin tuna schools. Every time lapse 

between two consecutive presence occurrences was classified as “absence” of bluefin tuna 

schools. Hence, the negative GT for the analyzed day was composed of 35 bluefin tuna absence 

time lapses (Table 2-1). 

 

Table 2- 1 

Presence/absence cases description. Presence and absence cases during the analyzed day. 

The device through which the detections were recorded, the number of observed detections 

and their corresponding time interval (in seconds) are indicated. 

 

 

 

 

 

 

 

 

 

The proposed methodology to conduct the automated assessment of tuna abundance 

using sonar images involves two main steps: bluefin tuna school counting and bluefin tuna 

school sizing. 

 

 

Cases Device Nº observed detections Time 

PRESENCE SONAR 34 6381 

ABSENCE - 35 35115 
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2.3.1  School counting 

 

The process for counting bluefin tuna schools consists of several steps. The first step 

was to extract the morphometric characteristics of the bluefin tuna schools as proposed by 

(Uranga et al. 2017) and train the morphometric classification model (MCM). Then, the 

updated MCM was applied over the whole image dataset to assign the “Tuna” and “No-tuna” 

labels to the sub images or blobs.   Once we had the tuna detections, the next step was to group 

them into unique schools. For this, additional data, obtained through optical character 

recognition (OCR) (Bunke and Wang 1997), was added to the data set. Finally, based on 

observed vessel behavior patterns, aggregation criteria were selected, and the counting 

procedure was validated performing several parameter optimization tests. 

 

2.3.2  Morphometric Classification Model update  

 

Sonar images were first processed by the methodology proposed by (Uranga et al. 

2017), to obtain 20 morphometric characteristics per blob. The MCM used for labelling the 

imagery was built combining the one used by (Uranga et al. 2017), which contains 2795 images 

from 2009 and 2011 opportunistic acoustic surveys conducted in the Bay of Biscay (BoB), with 

additional 1273 supervised images from the 2015 acoustic survey. Using the resultant MCM 

and the Random Forest (RF) classification algorithm (Breiman 2001), one-day sonar imagery 

was labelled as “Tuna” or “No-Tuna”. The studied day consists of 11.52 hours of continuous 

recording with a frequency of 1 screen dump per second, 41495 instances as a whole.    

 

2.3.3  Aggregation of series of tuna detections into schools 

 

In general, each time the vessel found a tuna school, this was recorded in several 

consecutive images, and thus a large amount of “tuna” labels were generated by the MCM. 

These contiguous “tuna” labels need to be aggregated into a single actual school that originated 

them using some aggregation criteria. This was guided by observed vessel behavior patterns 

characterized by the scientific crew during the acoustic survey of 2015 and several tuna fishing 

campaigns on-board fishing vessels of the BoB Basque fleet (Uranga et al. 2017) (shown in 

Table 2-2).  

Operationally the skippers tend to use all the tools they have at their disposal, from 

tactics such as radio communication with other fishing vessels, fishermen’s visual detection, 

seabirds tracking, etc. to more advanced technologies, such as echosounders and sonars. This 
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is the common order of a fishing event: they usually detect the tuna school first by sonar at 

medium ranges; then, they head towards it, try to confirm the detection with the vertical 

echosounder, and in positive case, they start the fishing operation. When this happens, the mean 

route speed of 10 knots is rapidly reduced to 2 knots or less. This behavior can vary depending 

on skippers’ opinion regarding the appropriateness of conducting a fishing operation or not. 

The duration of the stops with successful fishing is generally larger than 5 minutes.  

Based on this knowledge, it was considered important to obtain time, space (geo-

location) and vessel speed variables from the sonar screen dumps. Following (Brehmer et al. 

2006), an OCR application was developed in order to automatically distinguish the different 

alphanumeric characters that appear at certain regions of interest on the sonar images. Several 

steps were undertaken during this process: selection of areas of interest within an image, 

preprocessing of images, segmentation of the areas of interest, extraction of characteristics, 

recognition of characters and validation of results. The data extracted (Fig 2-2) were: location 

(latitude and longitude), vessel speed, sonar beam range, gains and time. Due to observed  noise 

in the imagery obtained, in order to clean data from outliers, OCR results were filtered by a 

Loess function using the R stats package (Team 2014).  

 

 

 

 

Fig 2- 2 
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Sample sonar binarized image. Regions of interest (ROI) are enclosed by red rectangles to 

show the extracted data: geographic situation (latitude and longitude), vessels speed, sonar 

beam range (ED) and sonar gains (GG: general gain; GC: near gain; GL: far gain).  

 

Table 2- 2 

Characterization of vessel behavior patterns. Fishing operation typology, duration and vessel speed, 

based on observed data from (Uranga et al. 2017). 

 

 

 

Fishing operation typology Duration (minutes) Vessel speed (knots) 

Route - > 9 

Stop + feeding < 5 5 - 7 

Stop + fishing > 5 3 - 5 

 

 

To count the schools, a moving average (with a window of 20 seconds) was applied 

through the whole time-span to aggregate the series of “Tuna” labels obtained by the MCM 

into percentages of tuna presence within each time window. Only percentages higher than 50% 

were kept and the local maxima were extracted.  As expected, the number of local maxima was 

much higher than the observed number of schools (843 local maxima against 34 observed 

schools). In order to aggregate these local minima into unique schools, three aggregation 

criteria were considered: based on time, based on spatial proximity and based on speed 

reductions of the vessel. Three parameter optimization tests were run in order to set optimum 

time, spatial proximity and vessel speed parameters to aggregate local maxima into actual tuna 

schools. The possible values for time and vessel speed where informed by knowledge 

summarized in table 2-2. For the spatial proximity criterion, we relied on previous work from 

(Itoh et al. 2012), who assumed fishing events within 2 km belonged to the same unique school. 

Finally, the time value ranged from 0 to 5 minutes, the spatial proximity varied from 0 to 2 km, 

and the vessel speed varied from 0.5 to 20 knots (Fig 2-3).  
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Fig 2- 3 

Parameter optimization tests. In the first parameter optimization test (a), the time value 

ranges from 0 to 5 minutes, in 20 steps; in the second parameter optimization test (b), the 

spatial proximity ranges from 0 to 2 km, in 20 steps; and in the third parameter optimization 

test (c), the vessel speed ranges from 0 to 10 knots, in 20 steps.  The observed number of 

schools is shown in blue; the estimated number of schools is shown in green, and the number 

of estimated schools matching the observed ones is shown in red. 
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Since the objective was to count bluefin tuna schools and calculate their size, the best 

performance was considered as the one that satisfied the following performance statistics:  

 

• x (1st performance statistic): Similarity between the number of schools estimated and the 

number of observed schools (z) at the GT.  

 

• y (2nd performance statistic): Similarity between the number of estimated schools that are 

overlapped with GT schools and the number of observed schools (z) at the GT. 

 

 

These performance statistics were integrated in the following equation: 

 

𝑤 = min
𝑖=1_𝑛

{∆𝑥𝑖 − 𝑥𝑚𝑖𝑛 +  ∆𝑦𝑖 − 𝑦𝑚𝑖𝑛}, given:   (Eq 1) 

 

 ∆𝑥𝑖 = (𝑥𝑖 − 𝑧)2   

      

∆𝑦𝑖 = (𝑦𝑖 − 𝑧)2            

      

𝑥𝑚𝑖𝑛 = min
𝑖=1_𝑛

{(𝑥𝑖 − 𝑧𝑖)
2}  

      

𝑦𝑚𝑖𝑛 = min
𝑖=1_𝑛

{(𝑦𝑖 − 𝑧𝑖)2}                   

 

Where ∆𝑥𝑖 was the squared difference between the number of schools estimated in each 

step (i) and the number of schools of the GT (z); ∆𝑦𝑖 was the squared difference between the 

number of schools overlapping with the GT in each step (i) and the number of schools of the 

GT (z); 𝑥𝑚𝑖𝑛 and 𝑦𝑚𝑖𝑛 were the minimum squared difference between 𝑥𝑖  and 𝑦𝑖, with z. The 

step that best fits the criteria of equation 1 is named as w. It can be noted that, in equation 1, 

equal weight is given to both performance statistics, x and y. The overlap between estimated 

schools and the GT was calculated using the IRanges R package (Lawrence M 2013). Then, 

the results of the three parameter optimization tests were compared to choose the best 

aggregating criterion. 
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2.3.4 Validation of the school counting results 

 

Once the most adequate aggregating criterion and the optimum parameter values were 

defined, the estimated number of schools was obtained for the analyzed day. Due to the 

unbalanced time span between positive and negative cases (Table 2-1), the validation was 

performed in two different ways: by presence/absence blocks and by time (considering the time 

range that each block covered over the analyzed day). For each of the two ways, four different 

tuna aggregation options were considered: (A) based on time or space criterion; (B) based on 

vessel speed; based on the A | B logical condition; based on the A & B logical condition. The 

logical conditions were calculated using the union and intersect functions with IRanges R 

package (Lawrence M 2013). 

In order to evaluate the eight possible results sets, their effectiveness and efficiency, we 

built a confusion matrix for each case. Using the confusion matrix, we evaluated the predictive 

accuracy of binary models on a set of predicted data for which the true observed values were 

known. They were composed by: the true positive rate (TP), where schools estimated as 

positive and overlapping with positive GT´s were considered as correct positive predictions; 

the true negative rate (TN), where  schools estimated as negative and overlapping with the 

negative GT´s were considered as correct negative predictions; the false positive rate (FP), 

were schools estimated as positive and not overlapping with positive GT´s were considered as 

incorrect positive predictions; and the false negative rate (FN), where schools estimated as 

negative and not overlapping with negative GT´s were considered as  incorrect negative 

predictions. Based on these parameters, the validation indices, namely sensitivity, specificity, 

precision and accuracy, were estimated. For all four validation indices, the best value is 1, 

whereas the worst is 0. 

The Sensitivity (SN), also called true positive rate (TPR) or recall (REC), was 

calculated as the number of correct positive predictions divided by the total number of 

positives.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (Eq 2) 

  

The Specificity (SP), also called true negative rate (TNR), was calculated as the number 

of correct negative predictions divided by the total number of negatives.  

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (Eq 3) 
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The Precision (PREC), also called positive predictive value (PPV), was calculated as 

the number of correct positive predictions divided by the total number of positive predictions.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (Eq 4) 

 

The Accuracy (ACC) was calculated as the number of correct predictions divided by 

the total number of the dataset.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
  (Eq 5) 

 

 

2.4 School sizing  

 

To provide a step forward towards estimating the abundance of tuna, a procedure was 

included to measure the size of the schools. The schools were directly dimensioned on the sonar 

screen by measuring the area of the blobs classified as tuna. The area estimates were corrected 

with a scaling factor due to the possible different ranges used by the skipper, plus a correction 

of the effect of the gain settings and school area dimensions. 

The MAQ sonar allows three kinds of gains to be configured by the skipper: the general 

gain (GG) ranges from 0 to 28 and adjusts general echo response of the sonar cleaning from 

excessive noise; the near gain (NG) ranges from 0 to 14 and is used to avoid Surface noise; and 

the far gain (FG) ranges from 0 to 60 and compensates echo response attenuation in large 

distances due to absorption losses. As skippers set the sonar configuration following their own 

preferences, an image processing procedure was applied (Uranga et al. 2017) to set the images 

dimensions to the same scale, regardless of the applied gain settings. 

In order to study the effect of gains on the estimated area, we set up a gain calibration 

experiment onboard a tuna fishing vessel (F/V Luis Barranko) in Hondarribia harbour, the 29th 

of August 2013. A rod was used to place the standard target, a tungsten carbide sphere of 38.1 

mm of diameter, into the water. The target was deployed 8 m apart from the vessel and the 

range was confirmed at the sonar display. The tilt was set at minus 8º which is commonly used 

by the skippers. To allocate the target at the exact depth we seek for the maximum response of 

the target at the sonar display using the mean values of the GG. At this stage, images with 
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different gain combinations were recorded: for GG, we tested a range of values from 6 (the 

minimum value in which the target could be observed) to 18 (above 16, noise was prevailing) 

in steps of 2; for NG we tested a range from 2 to 14 in steps of 2, and for FG we used steps of 

30 because we observed that it had no effect at the distances we were testing. For each 

combination, the initial recording-time and the final recording time were annotated. 

Consequently, a dataset of 648 instances with the area of the target (in pixels) and gain 

combinations was built.       

In order to infer the relationship between the gain setting and the area displayed in the 

sonar, the measured area was modelled as a function of GG, assuming a lognormal error 

distribution. Both linear and non-linear models were tested, using the Mgcv 1.7.22 package 

(Wood 2012) in R (Team 2014). Final model selection was based on AIC, following (Chambers 

and Hastie 1991). The deviance explained by the model was estimated as: 1- (residual 

deviance) / (null deviance) 

In order to transform areas in pixels to areas in m2, we took the sonar beam range that was 

set fixed at 320 m and we counted 385 pixels in the recorded sonar image. From that 

relationship, and assuming the pixels are square, the scaling factor of a pixel is 0.69 m2. To 

obtain the areas, we multiplied the number of pixels of the area estimated by the image 

processing proposed by (Uranga et al. 2017), times the pixel scaling factor.  

 

 

2.5 Results  

 

For the time criterion, the results provided by equation 1 showed that a value of 210 

seconds obtained the best performance. With this value, a total number of 34 schools were 

estimated, from which 23 overlapped with the GT, obtaining a positive match of 68% (Fig 2-

3). The estimated optimum value for the spatial criteria was 900 meters, with which 34 schools 

were estimated and 18 of them overlapped with the GT getting a 53% of positive matches. 

Given that it performed better, we decided to use the time criteria set at 210 seconds and discard 

the spatial criteria to group images with tuna detections into schools. For the vessel speed 

criteria, based on equation 1, a value of 6 knots obtained the best results: 34 schools were 

estimated and 21 of them overlapped the GT, obtaining a 62 % of positive matches (Fig 2-3). 

Regarding validation results for the two sets of results, per blocks and per their correspondence 

in time, it should be noted that in the last case results are analyzed considering the real time 
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each block is represented, thus producing significantly different performance indices. In 

general, the performance statistics per time are better than per blocks, but these are not directly 

comparable, since they mean different things (Table 2-3). In general, results using time criteria 

(A) performed better than using vessel speed criteria (B), both per blocks and per time, except 

for precision when the evaluation was conducted per time (i.e. 0.80 for B vs 0.75 for A). 

Regarding results obtained by A | B and A & B, overall, the greatest improvement was obtained 

by A & B obtaining values of 1 for sensitivity, specificity and accuracy when evaluated per 

time. It is also remarkable that A | B results (i.e. precision 0.81; accuracy, 0.96) improved the 

precision value (0.63) of A & B and equaled the accuracy performance of B. Still, considering 

the four performance statistics, the best combination of values was obtained by A (per time). 

Per blocks, A got 23 true positive cases (the highest estimate that is equal or lower than the 

true number of schools, 34), overlapping with 68% of the cases from positive GT, and 100% 

of the negative GT (0 false negatives and 35 true negatives). For these reasons, we decided to 

select criteria A. 

 

Table 2- 3 

Result of the final experiment: true positive, false negative, false positive, true negative, 

kappa, sensitivity, specificity, accuracy and precision values are shown for each method (A: 

detections grouped into single schools if they are within 210 seconds; B: detections grouped 

into single schools if the speed is below 6 knots; A | B and A & B), per blocks and time 

respectively. 

 
Per blocks tp fn fp tn sensitivity specificity precision accuracy 

A 23 0 11 35 1,00 0,76 0,68 0,84 

B 20 1 14 34 0,95 0,71 0,59 0,78 

A | B 36 8 18 47 0,82 0,72 0,67 0,76 

A & B 7 0 7 15 1,00 0,68 0,50 0,76 

         

Per time tp fn fp tn sensitivity specificity precision accuracy 

A 973 0 330 40193 1,00 0,99 0,75 0,99 

B 6204 49 1512 33731 0,99 0,96 0,80 0,96 

A | B 6831 220 1638 32807 0,97 0,95 0,81 0,96 

A & B 346 0 204 40946 1,00 1,00 0,63 1,00 
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Fig 2- 4 

 

Gain model. Response of log (Area) as a function of GG. The X axis represents General Gain 

values used at the experiment. 

 

Regarding the area calibration experiment, due to the short distance at which the target 

was placed (undetectable in far distance), NG and FG settings showed no reaction to the 

experiment and produced non-valuable data. Regarding different GG settings, the area values 

showed significant variations. A nonlinear model was selected for modelling the area as a 

function of GG. It showed a lower AIC compared to a linear model (250.92 and 294.41, 

respectively) and normally distributed residuals. The area increased with the GG, but reached 

a plateau for GG values beyond 16, as shown in fig 2-4. The final area estimates of the bluefin 

tuna schools estimated with the sizing methodology ranged from 319.7 m2 to 13290 m2, with 

a mean of 4484 m2. Although the overall shape of the distribution of the predicted areas was 

similar to the one of observed areas, with the mode below 3000 m2 in both cases, the 

methodology slightly underestimated areas below 5000 m2 and overestimated areas between 

5000 m2 and 15000 m2 (Fig 2-5).  
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Fig 2- 5 

Estimated vs observed school size distribution. Areas distribution from A results from time 

set and areas from the GT. 

 

 

2.6 Discussion and conclusions 

 

The previously validated MCM (Uranga et al. 2017) as good morphological classifier 

for commercial fishing campaigns of bluefin tuna in the BoB have been updated with new 

images from a scientific acoustic systematic sampling survey and applied to detect bluefin tuna 

schools.  The obtained counting results demonstrated that the methodology can integrate data 

from a variety of surveys during multiple years, and it can be used to detect bluefin tuna schools 

for different data sources. MCM from 2009-2011 (Uranga et al. 2017) was built on data where 

the ratio between presence and absence images was of 1/14.03 while in the current approach 

we had a 1/43 ratio. Due to the greater unbalance between positive and negative observations, 

as well as the addition of extra variability in the reference set (potentially including other 

species such as albacore, anchovy or cetaceans, non-controlled noise, etc.), a decrease in 

efficiency was expected, but the good performance of the non-supervised classification 

(Chapelle et al. 2009) motivates the exploration of new unsupervised approaches over 

extensive sonar imagery in the future, In this sense, the wider the application of this 



101 

 

methodology, the larger the number of images to be processed, so further research on efficient 

image processing methods are encouraged.  

The sonar images were obtained thanks to the collaboration of the fishing community 

and the “black box” mode in which the acquisition device was designed. Key information to 

develop the counting and sizing methodology, such as geolocation, speed and sonar setup 

(range and gain) can be extracted by OCR using the imagery itself and avoiding the need of 

auxiliary data acquisition devices (e.g. GPS) or extra people onboard. This fact plays an 

important role when data acquisition is carried out during fishing operations where any 

disruption affecting skippers fishing operations routine can affect the data exchange between 

fishermen and scientists. It should be highlighted the importance of strengthening the 

relationship between scientific and fisheries communities in order to extend faithful 

collaborations.  

Regarding the utility of the data extracted by OCR, vessel speed, for example, did not 

stand out as the best aggregation criterion at the performed parameter optimization tests. 

Nevertheless, it could be useful for future studies were both, data extracted by OCR and labels 

obtained by the MCM, could work together towards improved methodologies for detecting 

tuna schools. In addition, spatial coordinates are essential for spatial representations and future 

geostatistical work (Doray et al. 2008), and range and gain values are essential to standardize 

the school dimensions. Thus, the OCR application developed is considered an essential part of 

the counting and sizing approach.  

When aggregating the series of tuna detections into schools, the estimated optimum 

parameter values were similar to the values observed during scientific and commercial fishing 

campaigns. In this regard, it is believed that our methodology represents correctly the baitboat 

fishing activity targeting bluefin tuna and thus it is appropriate for bluefin tuna school counting.  

The best validation results were obtained when using time criteria (A) to group tuna detections 

into schools. However, there is not a big gap between time vs vessel speed (B) criteria and 

further studies may examine how they could complement each other to improve the detection 

ratios. In general, our counting approach yielded very high sensitivity and accuracy scores. The 

case A, the one that best performed, predicted the exact number of schools (34), and 23 of them 

where within the 34 reference set of schools. This highlights the need to continue improving 

the methodology and decrease the number of FP cases. Doing so would decrease the differences 

between observed and predicted school size distributions even more.   

For automatic detection and counting of bluefin schools we have set optimum parameter values 

(i.e. 210 seconds) to group detections into single schools. However, in some circumstances 
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(e.g. during postprocessing of acoustic surveys) it might not be necessary nor ideal to stick to 

this value. Instead, analysts might want to consider other alternatives. Still, the classifying the 

images in an automatic way using the MCM model might help focus on the areas where the 

probability to find tuna schools is higher, thus saving considerable time and effort during post-

processing of data collected during acoustic surveys.  

Using combined criteria provided estimates of number of schools far from the number 

of schools observed at the GT. With A | B, as many as 54 schools were estimated and with A 

& B, only 14. The idea of combining A and B criteria was to test whether the information from 

the vessel behavior could improve the detection made only based on the MCM. The A | B 

criteria was intended as a greedier condition for estimating numbers of schools in the hope that 

it may not miss a school. And the A & B criteria as a more conservative one, i.e., the one that, 

by checking two conditions, may never point to a wrong school. In this sense, A | B was 

successful, because all the schools in the GT were detected (plus several other false positives). 

This could be useful in the future as a pre-filtering step before expert validation.  

In order to understand the improvements of the performance statistics when the analysis 

is conducted per time (compared to per blocks), it must be borne in mind that the confusion 

matrices are modified since, essentially, the number of observations in the GT is different, 

affecting the proportions of TP, FP, TN and FN. In addition, the number of instances was much 

larger (Table 2-3) in the time set (41496) than in the blocks set (69), leading to a general 

improvement of performance statistics. Moreover, the mean time ranges for positive cases in 

A & B were shorter (132 seconds) than negative ones (1057 seconds), and this improved the 

specificity, precision and accuracy scores. Also, between A and B it was observed that time 

ranges in B were larger than in A and this affected the number of FPs and thereby to the increase 

of precision.  

Regarding the area estimations shown at fig 2-5, it is observed that the estimated areas 

and the GT areas are quite similar. Thus, it can be concluded that our approach was able to 

exactly match the real number of bluefin schools and provide a reasonably good 

characterization of their size. Obtained areas are given in m2, they are scaled based on the sonar 

display range and corrected according to the gain model (Fig 2-4). Estimates from commercial 

MRS imagery are probably not as precise as those from standard acoustic-trawl surveys, which 

are echo integrated (Dragesund and Olsen 1965) and are recorded by calibrated scientific echo 

sounders (Simmonds and MacLennan 2008). Thus, looking ahead, area estimates obtained by 

MRS can be used to estimate 2D horizontal relative size of schools and in order to improve 

accuracy of school size and posterior biomass estimates, they could be combined with scientific 
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echosounder data (Miquel et al. 2006). Also side scan sonars, which increase the volume 

sampled near the surface and have been used for assessment of fishery resources in other areas 

(Hewitt 1976; Melvin 2016; O’Driscoll and McClatchie 1998) can be adequate samplers for 

the bluefin tuna while feeding in the Bay of Biscay. Due to the large spatial distribution areas 

and high mobility of this species, no acoustic surveys were performed during the last decades 

for the bluefin tuna in the Eastern Atlantic. But since 2015, a systematic acoustic survey to 

count bluefin tuna schools and estimate their size using MRS and scientific acoustic devices is 

being conducted in the Bay of Biscay (Goñi N. 2016). This kind of surveys are valuable to start 

building an inter-annual series of number of schools and to investigate the density distribution 

of the schools measured by scientific echosounder. To cover the whole distribution area we 

plan an extensive implementation of this methodology (Mayer et al. 2002). Thanks to the low 

cost of the automated data acquisition device and the collaboration of the Basque tuna fishing 

fleet, we can apply our methodology in several baitboats throughout the summer tuna fishing 

campaigns, from June to October. The automatic analysis of the data collected during such 

fishing campaigns or acoustic scientific surveys, would allow to map the schools and their size 

as shown in fig 2-6. In this representation of the spatial distribution of the schools of the GT 

and the estimated schools after applying the methodology developed in this study (based on 

time criteria, A) we can see that although we can have a generally realistic distribution of the 

school spatial distribution, there are some areas (e.g. most northern areas) with bluefin schools 

that go undetected. Likewise, the size of the largest school seems to be underestimated. Future 

improvements of this methodology might allow to have more precision on the exact location 

and size of every school.  
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Fig 2- 6 

Spatial representation. Estimated schools and observed schools (GT). The schools were 

estimated aggregating detections according to the time criteria. The represented size of the 

schools is proportional to the estimated size. 

 

Development of fishery independent abundance indices is a strongly pursued goal for 

the Standing Committee on Research and Statistics of ICCAT. Latest CPUE evaluations 

underlined the difficulties to accurately track biomass changes (ICCAT 2016b). In this sense, 

our study is aligned with this objective and it is being applied to two research lines.  

The first one is focused on the monitoring of commercial fishing activities. The 

automated acquisition methodology presented in this study is being installed onboard 

commercial fishing vessels to continuously record their commercial operations. The procedure 

presented in our study will be further tested by pairing results with annotations taken by 

scientific observers boarded on fishing vessel thanks to collaboration of the Basque fleet. All 
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the counting results collected would constitute the input data to generate a new bluefin tuna 

detection per unit of effort (DPUE) index, in number of schools detected per time unit, for their 

use as inputs in bluefin tuna stock assessment models. This standardized DPUE index would 

be independent from factors affecting bluefin tuna catchability (and thus the CPUE index), like 

food availability, feeding behavior and stomach repletion (Arreguín-Sánchez 1996; Stoner 

2004). On the other hand, factors concerning detection of bluefin tuna by the sonars would 

need to be considered in the DPUE standardization process, that could be conducted using 

methodologies similar to the ones used for standardizing CPUE observations (Santiago J 2016). 

Our proposed methodology already considers a way to standardize school size for different 

sonar settings (such as range scale and gain) used by different vessels/skippers at different 

times. However, the detectability of tuna schools might be affected by these and other variables 

(e.g. time, area, weather conditions) that need to be considered.  

 The second research line is focused on systematic scientific surveys covering the Bay 

of Biscay onboard commercial baitboats equipped with MRS with predefined sonar settings. 

The analysis on the survey data presented in this study is the first step for establishing annual 

surveys to quantitatively estimate the bluefin tuna school density (in number of schools per 

area unit). Time series of registered schools could be used as a relative index of abundance to 

feed bluefin tuna stock assessment models. Thanks to the high fidelity of tuna in  Bay of Biscay 

and that they generally concentrate in a relatively small area while feeding during summer in 

the Bay of Biscay (Arrizabalaga et al. 2015)  we have a privileged opportunity  for conducting 

systematic abundance surveys on this otherwise widely distributed species. 

In conclusion, we present a new way to observe bluefin tuna in the Bay of Biscay based 

on sonar imagery. Counting and sizing results presented are proving the capability of the 

methodology to be applied both during commercial operations and systematic acoustic surveys. 

The use of commercial sonars as observatories of the pelagic ecosystem, in combination with 

new methodologies based on image processing and data-mining algorithms have shown their 

potential to work towards fisheries independent techniques and with the final aim of improving 

the current evaluation methods for bluefin tuna abundance. Furthermore, the adaptability 

shown by the methodology makes it suitable to extrapolate its application to other tuna 

(including tropical) and non-tuna pelagic fisheries, and to different acoustic devices (Brehmer 

et al. 2006).  
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General discussion  

 

New knowledge, methodology and original applications developed at the present 

research work are presented with the aim of addressing the challenge of estimating bluefin tuna 

abundance in the Bay of Biscay using fishery independent methods. Keeping in mind progress 

and limitations cited at the state of the art in fisheries acoustics and artificial intelligence fields 

in relation to ABT and after the development of the present work, the following final reflections 

emerge.  

The way in which sonar imagery onboard fishing vessels is acquired is a key step 

because if it is not correctly done, sonar imagery can be lost or incorrectly registered, and all 

the subsequent steps of the presented study are not applicable. In this respect, the design of a 

device that guarantees the continuous recording without external human control is necessary. 

The system we designed works as a “black box” and controls a series of possible issues, such 

as planned or accidental cuts of electric power caused by vessel maintenance or other external 

causes. In these cases, the image acquisition device has been configured to restart automatically 

so as to avoid major data loses. Moreover, a Java executable program is automatically launched 

to record images and control its correct evolution. A safe location for the recording system is 

also important in order to protect the device from external climatic conditions or inadequate 

manipulation by onboard crew. In conclusion, the acquisition device that we use (Uranga et al. 

2017) records images correctly in an autonomous way, controls several issues and does not 

disturb fishing operations at any moment, which is an important requirement set by skippers in 

general.  

Based on the results shown in chapters 1 and 2, the generic image analysis program 

developed shows potential to correctly process images recorded by MRS and to use the 

extracted features to detect ABT presence and absence throughout the sonar imagery. 

Optimized programs would allow to shorten processing times, and this would represent a more 

useful tool to analyse future MRS data. The processing program could also be displayed in a 

more “user-friendly” mode to allow introducing, on a case by case basis, the specific sonar 

characteristics of interest (model, image size, regions of interest, filtering options, etc.). This 

would enhance the feasibility to adapt the current work to other sonars used in other fisheries 

or other data sources in general.  

Image analysis methodology is related to data volume issues originated from the large 

number of images subject to be pre-processed as first instance, and from sub-images generated 

by the image processing programs at the segmentation step. With the first image processing 
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program three to four days were necessary to process one day imagery and this was the main 

reason for analysing a single day imagery in the 2nd chapter of this thesis. In order to lighten 

the segmentation tasks from which morphometric characteristics are generated, blobs smaller 

than 100 pixels were removed to filter the noise, thus only larger blobs were considered tuna 

candidates and were subject to a characteristics extraction process. Currently, the image 

processing program has been optimized and we can process one day imagery in less than a day, 

so in the near future this methodology could be applied to data recorded over the whole acoustic 

survey or the whole tuna fishing campaign, allowing the initiation of new abundance indices 

of ABT in the BoB.  

The analytical power of data mining tools allowed to evaluate different filters to 

equilibrate unbalanced databases, alternative attribute selection algorithms to select the set of 

morphometric characteristics that best discriminate tuna schools, and competing classification 

algorithms to identify tuna morphologically in sonar imagery. In chapter 1, it was concluded 

that using all available (twenty) morphometric characteristics, an oversampling filter (SMOTE) 

and the Random Forest classification algorithm was the best choice to detect ABT in MRS 

imagery. These tools have given correct solution to our necessities but other additional options 

are not discarded and can be considered in different future applications. New techniques and 

algorithms to improve the potential of current classification algorithms could we explored. 

Deep Learning algorithms (Abadi et al. 2016) have shown to perform very well at computer 

vision, image processing, audio processing, etc. so it could be an interesting research line to 

consider.   

The classification power of the MCM developed in this study has shown to be very 

efficient over ABT images in the BoB. Indeed, the good performance indicators obtained when 

detecting ABT schools in MRS imagery leads us to consider its potential applicability in sonar 

imagery of other bluefin tuna fisheries, as well as other pelagic tuna and non-tuna fisheries by 

adapting the analyses to the specific type of sonar used.  

The Basque baitboat fleet also targets albacore tuna (Thunnus alalunga) in the BoB and 

adjacent waters, using the same MRS sonars. Thus, classification of this species is considered 

to be affordable. The MCM would need to be refitted and the optimum parameter values to 

count tuna schools re-estimated, but no other major adjustments are envisaged. Compared to 

ABFT residing mostly within the BoB, albacore tuna shows a larger spatial distribution in 

offshore areas of the northeast Atlantic. Although the position of the catch would already be a 

very good proxy for species identification, both species have an overlap area. Thus, it would 

be useful to be able to automatically discriminate between these two, and ideally other (e.g. 
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anchovy) pelagic species that share the habitat. This multispecies identification represents a 

new, challenging research line that might request including additional characteristics in the 

classification models. Based on two fishing trips conducted during summer 2016, it was 

observed that albacore tuna revealed a light red tone surrounded by a fine green borderline 

while ABT showed a strong red response. The strongest acoustic response is observed for the 

adult ABT schools, that seem to be easiest to discriminate on MRS images. But some small 

juvenile ABFT schools can be confounded with large albacore tuna. Thus, although the species 

discrimination is not straightforward, including colour characteristics when training supervised 

datasets to generate new MCM may allow to distinguish different tuna species. Thus, for 

further upcoming classification challenges, a multi-species supervised data experiment must 

be performed, where ABT, albacore tuna, anchovy and BoB typical noise would be the possible 

cases. Supervised images for all of them have been gathered during the last years, so the species 

discriminatory capacity of current and/or improved methodologies can be checked.    

Regarding the capacity to analyze most commercially exploited tropical tuna species 

such as yellowfin tuna (Thunnus albacares), bigeye (Thunnus obesus) and skipjack 

(Katsuwonus pelamis), some issues should be considered. Two different fishing modes are used 

in the tropical tuna purse seine fishery: fishing operations on free swimming schools and 

fishing operations on FADs (Fish Aggregating Devices). Most purse seiners are equipped with 

modern long-range sonars that are used to detect and follow tuna schools during free school 

fishing operations. The frequency of these sonars is similar to the MRS studied on this thesis, 

and the echogram displayed at the screens of these purse seiners also shows similarities to those 

of MRS, which can ease the adaptation of our methodology to this fishing mode. On the other 

hand, acoustic data provided by echosounders deployed at FADs derive from different 

frequency sonars which, moreover, apply temporal filters before transmission to limit energy 

consumption. These factors produce lower quality acoustic data and applicability to this kind 

of data is supposed to be more challenging.   

To be able to address the tuna counting and sizing problem in an unsupervised way, 

apart from “tuna” and “no-tuna” labels provided by the MCM, extra data related to the vessel 

(speed, location, gain, range, etc.) is necessary and therefore the OCR application is used to 

automatically distinguish the different alphanumeric characters that appear at certain regions 

of interest throughout the sonar images (Uranga 2013). The OCR application involves several 

steps: selection of areas of interest where parameters subject to be useful are located are 

defined, preprocessing of images, segmentation of the areas of interest, extraction of 

characteristics, recognition of characters and validation of results. The OCR application can 
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extract characters from any region of interest in the image and the training dataset could be 

adapted to any kind of sonar image. This means that this application could be adapted to extract 

data from other acoustic devices or to analyze images from other fisheries.  

According to area estimates presented in chapter 2, it is observed that the estimated 

areas are similar to those of the GT. This shows that when processing MRS images with our 

methodology, a good characterization of the school size can be obtained. However, taking into 

account that MRS are not scientific sonars and thus are less accurate, the estimated areas can 

be used mainly to characterize the 2D shape of ABT schools. Another future research line 

consists in combining the MRS data with scientific echosounder or sonar data. This way, we 

would sum the capacity of the present methodology to analyze large areas with the accuracy 

improvements regarding schools size, density and distribution provided by scientific 

echosounders or horizontally deployed scientific sonars.   

 To validate our results in chapters 1 and 2, we used observed tuna schools annotated 

by scientific observers who used a new standardized template to record bluefin tuna presence. 

These annotations constitute the reference dataset of observed bluefin tuna schools and serve 

for selecting tuna sonar images both for supervised classification and for validation of counting 

and sizing methodology. The final aim of the templates is to record all tuna detections and all 

their initial and final time as accurately as possible. Although the methodology developed here 

is autonomous, in the sense that no auxiliary data sources (logbooks, observers, etc.) are needed 

for it to be applied, the reference datasets generated this way can continue to be fed by 

additional scientific observations in the future. This enlarged reference dataset will allow to 

improve the methodology developed in this study.  

In conclusion, the automated analysis of MRS imagery based in the present 

methodology allows to detect, count and size ABT schools in the BoB. This can help address 

current challenges to obtain accurate abundance indices for ABT in the BoB. A series of 

acoustic detections per unit effort (DPUE) could represent a good alternative to the currently 

used catch per unit effort (CPUE), since the latter might be biased due to food availability, 

stomach repletion or feeding behavior. Currently we have just started to collect data and we 

have just established the methodologic basis for an extensive application. To obtain meaningful 

results we must keep on acquiring and processing sonar data continuously along several years 

with the objective of composing a meaningful DPUE series of data.  

On the other hand, fisheries independent indices of abundance can also be generated using 

this methodology. Beyond its use in 2015 by Goñi et al. (2016), where one vessels covered 

the study area in about 10 days, an acoustic surveys research with two research vessels was 
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also performed by  by Monstad et al. (1992) on blue whiting (Micromesistius poutassou) in 

the spawning area. For future surveys at the BoB, the fact that most of the fleet uses the MAQ 

MRS allows to additional survey configurations using several boats at a time, allowing to 

cover the area very quickly (e.g. in two days using 5 boats). This might also allow to conduct 

several surveys along the summer (e.g. one per month), instead of just one in selected dates, 

to account for temporal variability in ABFT presence and detectability in the BoB. 
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Argazkia: Begizko atun behaketa. Barranko.2016. 
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Conclusions  

 

Using methodologies and applications described at chapter 1 and chapter 2, raw medium 

range sonar imagery is recorded onboard fishing vessels and processed to detect, count and size 

tuna schools. The specific results obtained on this thesis dissertation allowed to validate the 

following hypothesis: 

 

“Automated analysis of raw medium range sonar imagery recorded onboard fishing vessels 

allows to automatically detect, count and size bluefin tuna schools in commercial tuna fishing 

campaigns and scientific acoustic surveys, as a way to improve resource monitoring, scientific 

advice and ultimately, fishery management of this important resource” 

 

The following is a series of conclusions directly related to each of the stages followed in 

the development of the methodologies and applications presented in this document.  

 

Regarding detection of the presence-absence of bluefin tuna at MRS imagery recorded on 

fishing vessels: 

 

• Electronic data acquisition from the Basque fishing fleet is possible due to the 

collaboration between scientists and fishermen. The data acquisition devise is designed 

to act as a “black box” that avoids compromising the activity of fishermen during 

regular operations. This point helps fishermen to collaborate, share their expertise and 

allow to extract data from their acoustic devices in an extensive way.  

• The semi-automated image processing application applied to the MRS imagery, 

provides characteristics of blobs, producing useful labelled databases prior to the 

morphologic supervised classification step.  

• In the comparative study performed between balanced datasets (applying oversampling 

and subsampling techniques) and original unbalanced dataset we obtain higher 

accuracy using oversampling techniques (SMOTE). This reflects that the use of filters 

is justified in databases derived from tuna presence/absence sonar imagery analysis. 

• The supervised classification results obtained using attribute selection algorithms 

suggest that no subset of characteristics can improve the classification results of the 

principal dataset with the whole set of 20 morphological characteristics.  
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• Morphological features assigned to tuna and no-tuna blobs after the supervised 

classification show differences. Tuna blobs are generally larger, more elongated and 

show a more horizontal alignment. 

• The comparative study among five classification algorithms and three databases show 

that the best performance is obtained by the Random forest algorithm.  

• The methodology can integrate new data from a variety of sources (commercial fishing 

campaigns and scientific acoustic systematic sampling surveys) and it can be used to 

detect bluefin tuna schools in both data sources.  

 

Regarding counting and dimensioning bluefin tuna schools:  

 

• Key information to develop the counting and sizing methodology, such as geolocation, 

speed and sonar setup (range and gain) can be extracted by OCR using the imagery 

itself and avoiding the need of auxiliary data acquisition devices (e.g. GPS). This fact 

plays an important role when data acquisition is carried out during fishing operations 

where any disruption affecting skippers fishing operation routine can affect   the data 

exchange between fishermen and scientists. 

• A good characterization of fishing operations through scientific observers is important 

so as to guide and validate the results. The aggregation criteria provided by the 

parameter optimization tests and used at the tuna school counting process were similar 

to those characterized by observers during scientific and commercial fishing 

campaigns. Consequently, the methodology represents correctly the baitboat fishing 

activity and thus it is appropriate for ABT school counting. 

• Applying our method, the exact number of schools (34) are predicted and 23 of them 

are within the 34 reference set of schools. This should be further investigated in future 

with the aim of improving the methodology and decrease the number of FP cases. 

• Counting results demonstrate that the presented methodology performs well with hardly 

unbalanced databases (1/43 ratio between presence and absence blobs) and 

consequently an unsupervised approach over sonar imagery in an extensive way can be 

addressed to count the number of schools in large datasets. 

• The school sizing methodology allows to estimate the true dimensions of the school 

with relatively high accuracy. Still, the proportion of small schools is slightly 

underestimated and the proportion of medium-large size schools is overestimated.  
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• Estimated areas are standardized according to the gain model and the scale correction 

applied based on the sonar range, which are subject to be changed by skippers. These 

corrections serve to obtain measurable school size estimates in m2.  

 

• The present methodology classifies the images in an automatic way using the MCM 

model and focuses on the areas where the probability to find measurable tuna schools 

is higher.  

• The tuna detection, counting and sizing methodology developed in this PhD thesis 

allows to monitor inter-annual changes of bluefin tuna abundance in at least two 

different ways: The first one relies on commercial fishing campaigns, from where an 

index of acoustic detections per unit effort (DPUE) can be elaborated. The second way 

is based on an annual scientific acoustic survey to sample bluefin tuna presence at the 

BoB. 

• Both applications represent an improvement compared to the status quo, where CPUE 

is used, that is affected by several tuna-feeding and fleet dependent dynamics, specially 

during the last years when the series have been interrupted due to quota transfers to 

other fleets. 

• Development of fishery independent abundance indices is an important goal for the 

Standing Committee on Research and Statistics of the International Commission for the 

Conservation of Atlantic Tunas (ICCAT). Latest CPUE evaluations underlined the 

difficulties to accurately track biomass changes (ICCAT 2016b). Currently, no 

abundance indices are available for the juvenile fraction of the stock in the eastern 

Atlantic Ocean. Our study contributes towards a fisheries independent index of 

abundance of the bluefin tuna in the main juvenile feeding area in the Atlantic. As such, 

it represents an important milestone towards better monitoring of this fraction of the 

population, and towards a better stock assessment and management of the east Atlantic 

Ocean and Mediterranean stock.  
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Ondorioak 

 

Deskribatutako metodologiaren eta aplikazioaren bitartez, beita biziko arrantza ontzietan 

jasotako sonar irudietan Atlantikoko hegalaburra (AHL) detektatu, zenbatu eta neurtu da. Tesi 

honen garapenean zehar lortu diren emaitzek ondorengo hipotesiaren balioztatzea ahalbidetu 

dute: 

 

“Atlantikoko hegalabur taldeak, luzera ahalmen ertaineko sonar irudien analisi 

automatikoaren bitartez detektatu, zenbatu eta neurtu daitezke, horiek arrantzatzeko kanpaina 

komertzialetan zein neurtzeko kanpaina akustiko zientifikoetan grabaturiko irudiak erabilita. 

Horrela, aholkularitza zientifikoaren eta arrantza baliabide honen ikuskapena eta kudeaketa 

hobetu daitezke” 

 

Jarraian, dokumentu honetan azaltzen diren metodologiaren eta aplikazioaren garapenean 

zehar ateratako ondorioak erakusten dira. Batzuk, luzera ahalmen ertaineko sonar irudietan 

AHLaren presentzia/ausentzia detektatzeari dagozkio; besteak, AHL taldeen kontaketa eta 

neurketari.  

 

Luzera ahalmen ertaineko sonar irudietan AHLaren presentzia/ausentzia detektatzeari 

dagozkion ondorioak: 

 

• Euskal arrantza flotaren datuak zientzia eta arrantza komunitateen lankidetzari esker 

jaso dira. Arrantzaleen ohiko jarduna ez oztopatzeko helburuarekin, datuak jasotzeko 

erabilitako tresneria “kaxa beltz” modura funtzionatzeko diseinatu da. Datuak jasotzeko 

modu honek arrantzaleen laguntza erraztu eta tesi honetarako zein etorkizuneko 

proiektu berrietarako datu bilketa ahalbidetu du. 

• Sonar irudi prozesaketaren bitartez lortutako blob-ei esleituriko hogei ezaugarri 

morfologikoekin osaturiko datu-baseak hurrengo pausuan aztertutako sailkapen 

gainbegiraturako egokiak direla baieztatu da. 

• Goi eta behe laginketa iragazki bitartez orekatutako datu-baseen eta datu base 

originalaren artean egindako azterketek erakutsi dute zehaztasun handiagoa lortzen dela 

goitiko laginketa (SMOTE) aplikatzen duen iragazkiaren bitartez. Ondorioz, AHLaren 

sonar irudien irudi analisitik eratorritako datu-baseetan iragazki honen erabilera 

bidezkotzen da. 
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• Datu-base originala eta ezaugarrien aukeraketa algoritmoek sortutako datu-base 

murriztuak alderatzeko, sailkapen gainbegiratuak lortutako emaitzak aztertu dira. 

Emaitza horien arabera, datu base egokiena 20 ezaugarri morfologikoz osaturiko datu 

base originala da. 

• “Atun” eta “Ez-Atun” bezala sailkatutako blob-en ezaugarri morfologikoek 

desberdintasunak erakutsi dituzte. AHL blob-ak handiagoak eta zapalagoak dira, eta 

ardatz horizontalarekiko lerrokatzeko joera erakutsi dute. 

• Bost sailkapen algoritmoen eta hiru datu-base desberdinen artean burututako azterketak 

erakutsi du emaitza onenak Random Forest sailkapen algoritmoaren bitartez eta goitiko 

laginketa (SMOTE) iragazkia erabiliz lortzen direla. 

• Aurkeztutako metodologiak sonar irudietan zehar “Atun” eta “Ez-Atun” kasuak 

bereizteko gaitasuna erakutsi du, bai eta arrantza kanpaina komertzialetan eta 

akustikoetan jasotako irudiak lantzekoa ere.  

 

AHL taldeen kontaketa eta neurketari dagozkion ondorioak: 

 

• KAO aplikazioaren bitartez geo-lokalizazioa, abiadura, sonarraren konfigurazioari 

buruzko balioak, luzera ahalmena eta denbora atera daitezke. Beroriek dira kontaketa 

eta neurketa metodologia garatzeko oinarrizko informazioa. KAO aplikazioa erabiliz 

aparteko ekipamendu gehigarrien (GPSa, adibidez) erabilera ekidin egiten da, eta 

horrek arrantzaleen eta zientzialarien arteko datu trukea bermatzeko helburuarekin bat 

egiten du.  

• Behatzaile zientifikoen bitartez burututako arrantza operazioen ezaugarritzea 

garrantzitsua izan da metodologia garatzeko eta emaitzak balioztatzeko garaian. 

AHLaren detekzioak taldekatzeko erabilitako balioak eta behatzaile zientifikoek  

arrantza ontzietan jaso zituztenak antzekoak direla ikusi da. Ondorioz, metodologiak 

zuzen ezaugarritzen ditu arrantza operazioak eta egokia da AHLaren zenbaketa 

gauzatzeko. 

• Gure metodologiaren bitartez AHL talde kopuru zehatza estimatu da (34) eta horietako 

23 egiazko kasu positiboak (EP) izan dira. Aurrerantzean landu beharreko gaia da hau, 

eta gezurrezko kasu positiboak (GP) gutxitu behar lirateke. 

• Ikerketa honetako datu-base desorekatuan (1/43 presentzia/ausentzia ratioa) lortutako 

kontaketa emaitzek, metodologia hau jarraituz, AHL taldeen kontaketa modu zabalean 

aztertzeko eta atun taldeak kontatzeko gaitasuna erakutsi dute.  
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• Atun taldeen neurketa erlatiboki modu zehatzean burutu daiteke. Dena den, orain arteko 

emaitzek behe-estimazio arina erakutsi dute AHL talde txikietan eta talde ertain-handiei 

dagozkien neurriek goitiko estimazioa erakutsi dute. 

• Sonar konfigurazio-irabazi desberdinek AHL taldeen neurrietan duten eragina MGO 

modeloen bitartez estandarizatua izan da. Sonarraren luzera ahalmen aldaketak 

kontrolatzeko, berriz, eskala faktoreak kalkulatu dira. Neurri horien aplikazioak AHL 

taldeen neurriak m2-tan kalkulatzea ahalbidetzen du. 

• Metodologia honen bitartez, SMMa erabili daiteke luzera ahalmen ertaineko sonar 

irudiak modu automatikoan analizatzeko eta, horrela, ikerketaren fokua AHL taldeak 

egoteko probabilitate handiagoa dagoen eremuetan ezartzen da. 

• Tesi honetan garatutako metodologiaren bitartez, AHLaren detekzio, zenbaketa eta 

neurketak bi modutan sar daitezke espezie honen urteroko monitorizazio prozesuan. 

Batean, arrantza kanpainetako datuak erabiliz esfortzu unitateko detekzio kopuruan 

(EUDK) oinarrituriko indizea garatzen da, detekzioak metodo akustikoen bitartez 

lortuta. Bigarren modua urtero Bizkaiko Golkoan AHLaren presentzia lagintzeko 

gauzaturiko kanpaina akustikoetan jasotako datuetan oinarritzen da. 

• Bi aukera berri hauek aurrerapausoa dira gaur egungo egoerarekin alderatuta; izan ere, 

gaur egun AHLaren ugaritasuna neurtzeko EUHK indizea erabiltzen da.  Indize hori 

AHLaren gosearen eta arrantza flotarekiko menpekoa denez, ezin izan dira jaso azken 

urteetako harrapaketa datu serieak, arrantza flotak bere kuota saldu egin duelako.  

• ICCATen arabera, arrantza datuekiko independentea den AHLarentzako indizearen 

lorpena helburu garrantzitsua da. Azkenengo EUHK ebaluaketek biomasa aldaketak 

jarraitzeko zailtasunak azalarazi dituzte (ICCAT 2016b). Gaur egun ez dago ugaritasun 

indizerik eskuragarri Ekialdeko Ozeano Atlantikoko AHL jubenilaren 

populazioarentzako. Gure ikerketak arrantza datuekiko independentea den ugaritasun 

indize bat eskuratzean du funtsa, eta indize hori Atlantiko osoko AHLarentzako elikatze 

eremu garrantzitsuenean estimatutako detekzioekin eraikitzen da. Ondorioz, gure 

ikerketa garrantzizko lehen mugarria da ikerketa eremu honetako AHLaren populazioa 

monitorizatzeko. Ekarpen garrantzitsua da Ozeano Atlantikoko zein Mediterranioko 

populazioaren ebaluazio eta kudeaketa egokiagoa lortzeko bidean ere. 

 

 

 

 

Ondorioak 



128 

 

 



129 

 

 



130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Argazkia: Zimarroia gerturatzen. Barranko.2016. 

 

 

 

 

 



131 

 

Bibliography 

 

Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; 

Dean, J.; Devin, M. Tensorflow: Large-scale machine learning on heterogeneous 

distributed systems. arXiv preprint arXiv:160304467; 2016 

Aha, D.W.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Machine learning. 

6:37-66; 1991 

Antonio Di Natale M, J.-R.A. ICCAT Atlantic-wide Research Programme for Bluefin Tuna 

(GBYP) activity report for 2013 (extension of Phase 3 and first part of Phase 4). . 2014 

Antonio Di Natale, M.; Justel-Rubio, A. ICCAT Atlantic-wide Research Programme for 

Bluefin Tuna (GBYP) activity report for 2013 (extension of Phase 3 and first part of 

Phase 4). Collect Vol Sci Pap ICCAT. 70:459-498; 2014 

Armitage, D.W.; Ober, H.K. A comparison of supervised learning techniques in the 

classification of bat echolocation calls. Ecological Informatics. 5:465-473; 2010 

Arregui I., G.B., Goñi N., Arrizabalaga H., Lam C.H., Fraile I., Santiago J. and Lutcavage M.  

. Movements and geographic distribution of juvenile bluefin tunas in the North Atlantic, 

described through electronic tags. 2015 

Arreguín-Sánchez, F. Catchability: a key parameter for fish stock assessment. Reviews in Fish 

Biology and Fisheries. 6:221-242; 1996 

Arrizabalaga, H.; Dufour, F.; Kell, L.; Merino, G.; Ibaibarriaga, L.; Chust, G.; Irigoien, X.; 

Santiago, J.; Murua, H.; Fraile, I. Global habitat preferences of commercially valuable 

tuna. Deep Sea Research Part II: Topical Studies in Oceanography. 113:102-112; 2015 
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