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1 INTRODUCTION 2

«Nothing in life is to be feared, it is
only to be understood. Now is the
time to understand more, so that we
may fear less.»

Marie Skłodowska Curie

1 Introduction

The discovery of the formation of the Two-Dimensional Electron Gas (2DEG) at the
heterointerface of two insulating oxides (the LAO/STO system) in 2004 opened a
new research path in the field of surface phenomena [1]. Over the past couple of
years great effort has been devoted to determining the exact origin of this LAO/STO
interface of conducting nature, which still today remains unclear and controversial,
motivated by the remarkable properties of the LAO/STO interface – magnetic,
metallic or superconducting behaviour [2, 3, 4].

Among the many formation mechanisms proposed [3], the theory that stands out
is that of the polar catastrophe, which states that the driving force for the formation of
the electron gas is the polar discontinuity at the interface. Interestingly, since the
magnitude of this polar mismatch can be manipulated, the conduting nature of the
interface can conviniently be switched on and off. One of the many possible ways of
doing so is by using ferroelectric materials where the spontaneous polarization can
be used as the source of a 2DEG [5, 6]. However, a ferroelectric thin film has
alternative mechanisms to screen the polar discontinuity at the interface other than
surface charge accumulation: It can break into ferroelectric domains and cancel the
need of a 2DEG to compensate for the polar catastrophe.

Therefore, formation of the 2DEG and ferroelectric domains in ferroelectric thin
films have always been considered as mutually exclusive polarity-screening agents
and have had the possibility of their coexistence overlooked. Nevertheless, backed by
discussions with Matthew Dawber’s experimental team1 and published papers [5],
this thesis will explore whether a coexistence region of both mechanisms is actually
achievable from a theoretical point of view.

1Private Communications.
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The objective of the thesis is thus to prove that a coexistence region of surface
charge of quasi-two-dimensional nature and domains in ferroelectric thin films
actually exists. In order to do so, we will combine the theory for the stabilization of a
monodomain phase with a 2DEG in ferroelectrics [5] and the electrostatics of a
polydomain ferroelectric system [25] to obtain a phenomelogical Landau-type model.
The model will be both analytically – within a few approximations – and numerically
solved and the transition from the polydomain state without a 2DEG to the
monodomain phase with a 2DEG analysed. Coexistence will be proved if the
transition between the two phases is smooth.

The coexistence of a two-dimensional electron gas and a domain pattern structure
in ferroelectric thin films would suggest the emergence of quasi-one-dimensional
carrier densities with promising future applications and vast phenomenology yet to
be both studied and understood.

2 2DEG and Ferroelectricity:
State of Art and the Coexistence Hypothesis

Over the last few years, a particular family of oxides has received an enormous
amount of attention: perovskites. Perovskites are a form of inorganic crystals whose
general formula can be expressed by ABX3, A and B being cations – A atoms are
larger than B atoms – and X, an anion. The ideal cubic unit cell above perovskite’s
Curie temperature consists of A cations at the edges of the cube (0, 0, 0), B cations at
the centre of the cell (1/2, 1/2, 1/2) and the X anions – most frecquently oxygen – at
face centered positions (1/2, 1/2, 0) (figure 1). Below Curie temperature, symmetry of
the perovskite unit cell is lowered to orthorhombic, tetragonal or trigonal.

Because of their multifunctionality, perovskites stand out as crystallographic hosts
for a large range of interesting properties [7] (such as superconductivity [8],
ferroelectricity [5] and even magnetic behaviour) and promising technological
applications (field effect devices [9], solar cells [10], sensors and detectors for
instance). In particular, perovskites are here introduced since they represent the
material scenario in which the high carrier mobility [1] (∼ 104 cm2 V−1 s−1)
two-dimensional electron gas subjected to analysis in this thesis is formed.
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Figure 1: Perovskite crystal structure [10]

2.1 The Two-Dimensional Electron Gas (2DEG)

The discovery of the Two-Dimensional Electron Gas (2DEG) at the interface between
two prototypical insulating oxides was first made by Ohtomo and colaborators in 2002,
when authors grew an idealized structure of layers of LaTi3+O3 perovskite embedded
in SrTi4+O3 . By means of an atomic-scale electron beam, they reported [11]:

‘[...] We hace observed the spatial distribution of the extra electron on titanium
sites. This distribution results in metallic conductivity, even though the

superlattice structure is based on two insulators.’

Further research carried out on the LAO/STO (LaAlO3/SrTiO3) system suggested
that polar discontinuities at the interface could indeed originate unsual charge states
and non-trivial electronic structure at the heterointerface, exhibiting metallic
behaviour of quasi-two-dimensional nature. It was then in the pioneering work
published in 2004 when Ohtomo and Hwang showed that «an unusual, non-bulk like
charge state is formed at this [LAO/STO] polar interface » [1]. The 2DEG had been found.
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Prospective applications of this highly mobile carrier density at the
heterointerface of two perovskite insulators led to a great number of topical reviews
[2, 3, 4] and publised research [12, 13], serving these publications as an indication of
the big impact the breakthrough had. Nevertheless, although systems giving rise to
the 2DEG – either superlattices or film-over-substrate systems – are being extensively
studied because of their remarkable properties and technological potential as stated
before, the exact origin of this new interphase phenomena remains yet to be fully
understood since it is believed that more than one mechanism plays a role in
determining the interesting conducting behaviour.

2DEG formation mechanisms proposed so far can be categorised in those based
on the intrinsic polar nature of the structure – such as the electronic reconstruction
phenomenon and surface charge accumulation via redox screening [3] – and those
based on extrinsic effects and material deffects – such as dopping through trapped
oxygen vacancies in the surface of the substrate. However, the only proposed model in
agreement with all experiments and which is able to account for both conducting and
insulating interfaces is that of the electronic reconstruction [12]. This thesis will thus
assume the electronic reconstruction mechanism as the base of the 2DEG formation.

It will be shown that polar interfaces can induce intrinsic interface dopping and
therefore, be the driving force for the formation of the two-dimensional electron gas.
These interface polar discontinuities are not uncommon and can naturally arise in
layered oxide structures as ferroelectric titanes or in artificially produced thin film
heterostructures. Simple electrostatic arguments enable us to show that net charge at
a polar interface leads to an energetically unstable electrostatic potential upon
growing sample thickness, a phenomenon referred to as the polar catastrophe (figure
2). This polar mismatch at the interface will invoke screening via surface charge
accumulation.

2.1.1 Polar Interfaces:
The Polar Catastrophe and Electronic Reconstruction

The net surface charge characterizing a polar interface can be understood in terms of
the formal charges of the alternating AO and BO2 planes in which the ABO3 perovskite
structure is divided along the [001] crystallographic direction [14]. The oxygen has
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formal valence O2− while A and B cations may take formal charge values

A4+B2+ A3+B3+ A2+B4+ or A1+B5+,

making the ABO3 structure neutral. Depending on the compound, each of these (001)
planes will either be polar (such is the case for LaAlO3, composed of LaO and AlO2

alternating layers, +1 and −1 charge per surface unit for each of them) or neutral (as
for SrTiO3, with SrO and TiO3 alternating neutral planes).

Figure 2: Left panel: The polar catastrophe in the LAO/STO system explained in
terms of the atomic layers in the [001] crystallographic direction taken as charged
planes. Right panel: The system is stabilized by transferring half an electron from the
surface layer to the interface. From [3].

It is the growth of a particular family of planes over another compound with
different formal polarization in the [001] crystallographic direction what leads to a
polar discontinuity at the boundary between these two materials. If there is no
redistribution of charges at the interface, the electrostatic potential across the
perovskite film will diverge with thickness, a phenomenon referred to as the polar
catastrophe. Deposition of LaTiO3 over SrTiO3 is equivalent to joining capacitors in
series. The electrostatic potential across each capacitor is then added, resulting in a
divergent potential with the number of capacitors joined, that is, with the LAO film
thickness. In the pursuit of system-energy minimization, some form charge
compensation may occur at the interface, balancing the diverging electrostatic
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potential and giving rise to the 2DEG by means of an electronic reconstruction.

The polar nature of the LAO/STO interface lies in a charge imbalance (also
referred to as chemical charge) of ±e/2 per surface unit, the sign depending on the
lattice plane at the interface termination. For a LAO film grown over a STO substrate,
interface can either be n-type for a TiO2/LaO heterointerface or p-type if it is
SrO/AlO2. It is however the n-type interface the one showing the novel conducting
properties, while the p-type interface is found to be insulating.

In the absence of electronic reconstructions, this chemical charge at the interface
per surface unit, σ = e/2, gives rise to a non-decaying electric field across the LAO
film in the [001] direction,

ELAO =
σ

ε
where ε = ε0(1 + χLAO), (2.1)

and where linear dielectric response for the LAO film,

PLAO = ε0χLAOELAO (2.2)

is assumed. The electronic reconstruction concept refers to the process by which this
electric field across the LAO film induces an electronic transfer. This transfer will take
electronic carriers from surface valence band to the conduction band at the interface
once the magnitude of the electrostatic potential across the film is equal to the band
gap ∆. Electrons then are energetic enough to perform an interband transition. The
reconstruction will thus take place when a certain critical thickness dc of the film
layered over the substrate is achieved. Beyond this thickness, carrier density reaches
equilibrium and the conductivity linked to highly-mobile carriers can be measured at
the interface if this is an n-type interface.

2.2 Ferroelectrics

Pyroelectricity is the phenomenon in which temperature variation leads to a change
in the polarization of the material, inducing a non-zero electric field along the
sample. Crystals whose most stable structure is nonpyroelectric above the Curie
temperature TC and pyroelectric below it are called ferroelectrics.
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The stable non-polar phase above the Curie temperature is called paraelectric
phase, while below the Curie temperature the material will be polar and possess a
spontaneous polarization – hence the name ferroelectric in analogy with ferromagnetic
materials, which have a net magnetic moment. This polarization can be reversed
through the application of an electric field [24]. In fact, the criterion for
ferroelectricity is actually the reversibility of the spontaneous polarization in an
attainable applied electric field rather than its mere existence [15].

The transition from the unpolarized to the pyroelectric polarized state can either
be first order if the polarization ~P acquires a nonzero value right below TC, or second
(or higher) order if ~P grows continuosly from zero as temperature drops below TC.
For a continuous ferroelectric transition below the Curie temperature, the crystal
sample will continuously distort to a polarized state yielding an anomalously large
dielectric constant near TC. This will reflect the vanishing of the restoring force
opposing the lattice distortion from the unpolarized to the polarized phase, giving
rise to a zero-frequency optical mode known as soft mode. This soft mode’s
polarization vector will describe the distortion and will be adressed later on as the
parameter of order when the Landau-type model for the 2DEG formation in
ferroelectrics is presented.

What is the motivation behind working with ferroelectric materials to achieve
heterointerface conduction phenomena? Ferroelectric materials offer the opportunity
of manipulating the electrostatic boundary conditions of the system through their
spontaneous polarization. Therefore, these materials can be used as the source for the
2DEG-invoking polar discontinuity.

Ferroelectric polarization can indeed be employed to control the polarization
mismatch at the interface and switch on and off the electron gas, an idea which is
already being exploited. Aguado-Puente et al. showed by first-principle calculations
that «a monodomain ferroeletric phase with a 2DEG can be stabilized in a PbTiO3 film
layered over a SrTiO3 substrate » [5]. The system has gathered a lot of attention and
motivated further research [6]. However, the main challenge ferroelectric materials
pose is that although its switchable polarization may lead to the formation of the
2DEG, it is by no means the single alternative the material possesses to counteract the
energetically unstable electrostatic build-up: the ferroelectric material can also break
into polarization domains.
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2.2.1 Ferroelectric screening mechanisms:
Domains and the Kittel-Mitsui-Furuichi (KMF) formula

A ferroelectric material may choose an alternative route to avoid the polarization
mismatch at the interface between the film and the sustrate. In the absence of an
external macroscopic electric field, the stable configuration of the ferroelectric thin
film will be determined by the thickness d of the sample. Although single-domain
states are found energetically favorable for thick enough films [5], bound charges on
the surface – originated by the spontenous ferroelectric polarization – may render this
configuration unstable. In fact, these charges are responsible for the depolarazing
electric field, which is opposed to the spontaneous polarization of the sample and has
a high energetic cost. The system may then break into polarization domains and give
rise to complex domain patterns to counter the energy related to the depolarizing
electric field.

Ferroelectric equilibrium domain patterns correspond to system energy minima
when the sample harmonizes its intrinsic properties and external conditions.
Successful treatments of equilibrium domain structures in ferromagnets [17, 18] led
to research in domain patterns in ferroelectric samples in thermodynamic
equilibrium. The models presented in this thesis will be focusing on the so-called
180◦ domains: each domain contains antiparallel orientation of the uniaxial
spontenous polarization vector as shown in figure 3, the domain width being w.

If the ferroelectric sample splits into domains to minimize the electrostatic energy
due to the depolarazing field, there is an additional contribution to the total energy
of the system: the domain wall energy, which will be proportional to the density of
domains formed and the film thickness. Thus, the system must find the equilibrium
between the energetic cost of the depolarazing electric field and domain wall
formation, consequently evolving towards a ferroelectric polydomain state or
remaining in the monodomain phase. Nevertheless, paraelectric configuration might
also be a stable phase of the system.

The depolarizing field can be neglected for thick enough films since it rapidly
decays with thickness. Therefore, the monodomain phase is to be expected as the
stable configuration of the system in the thick film limit. Thin films, where the
depolarizing field is no longer negligible, are expected to be broken into the
multidomain state.
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First proposed by Kittel for magnetic systems [18] and then extended for
ferroelectrics by Mitsui and Furuichi when discussing domain patterns in Rochelle
salt crystals [19], the Kittel-Mitsui-Furuichi (KMF) law establishes the relation
between the ferroelectric domain width or domain pattern period w and the sample
thickness d by balancing the energy contributions of the domain walls and the
depolarazing field. It theoretically predicts that ferroelectric domain width w grows
with the square root of the sample thickness,

w ∝
√

d (2.3)

This simple result is obtained by minimizing the total energy of the system: the
electrostatic energy due to the depolarizing field and the energy cost related to the
formation of domain walls in the polydomain ferroelectric state.

UTotal = Udep + UW (2.4)

Figure 3: Schematic configuration of the ferroelectric 180◦ domain pattern.

The electrostatic energy related to the depolarizing field can be computed by first
determining the spatial field distribution for the periodic configuration shown in
figure 3. In order to perform the calculations, the literary reference followed [25]
suggests assuming the sample is behaving as a hard ferroelectric, its dielectric
response being linear,

Pz(x, y, z) = ±PS + ε0(κc − 1)Ez(x, y, z) (2.5)

Px = ε0(κa − 1)Ex(x, y, z) (2.6)

Py = ε0(κa − 1)Ey(x, y, z) (2.7)
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The electrostatic potential is obtained by solving the Laplace and Poisson
equations for all three regions in space - I, II and III -, where I and III are vacuum.

The spatial density of the depolarizing field electrostatic energy is then given by
the familiar relation:

Φdep =
1
2
~E(~D− ~Ps) =

1
2

ε0κijEiEj (2.8)

which is computed for the 180◦ domain pattern configuration. The electrostatic
energy per unit volume for a system as shown in figure 3 is finally given by the
convergent series [25],

Udep =
8P2

s
π3ε0

w
d

∞

∑
n=1

1
n3 sin2

(nπ

2

) 1

1 +
√

κaκc coth
(

nπ
2

√
κa
κc

d
w

) (2.9)

The parameters κa and κc are the components of the dielectric tensor in the transversal
and longitudinal directions. This last expression correspondingly simplifies to the
electrostatic energy for a regular capacitor for thick enough ferroelectric films (x =

d/w� 1) when the monodomain phase is expected,

lim
w�d

Udep →
P2

s
2ε0κc

(2.10)

The second contribution to the total energy (2.4), the energy due to the formation
of domain walls, is directly proportional to ferroelectric domain density: the larger
the number of domains formed, the larger the amount of walls. Therefore, the cost
of domain wall formation decreases with the domain pattern period and it can be
expressed as (in units per volume),

UW = 2
Σ
T

=
Σ
w

(2.11)

where Σ is wall energy per unit surface and w is half the domain pattern period or
simply the domain width. Minimization of the total energy density (2.4) with respect
to domain width w with film thickness d fixed leads to the classical square-root Kittel-
Mitsui-Furuichi law (2.3).
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2.3 Screening Mechanism Competition and the Analysis of the Coexistence

The equilibrium configuration of a system is always attained by lowering its energy
in the pursuit of a more stable state. The formation of the two-dimensional electron
gas at polar interfaces and the multidomain state in the ferroelectric bulk material are
both mechanisms that allow the system to lower its energy by screening energetically
unstable electrostatic potentials.

However, even though ferroelectrics have extensively been studied with regards to
their usefulness in tuning the interface polarity and potentially induce the 2DEG,
both 2DEG formation and ferroelectric domains have always been regarded as
mutually exclusive screening agents, consequently neglecting the possibility of both
mechanisms coexisting2.

Figure 4: Ferroelectric thin film energy density for the monodomain (black) and
polydomain state (red) obtained from [5].

2In April 2017, while this thesis was being written, a manuscript was published in arxiv.org

suggesting the coexistence of ferroelectric domains and surface charge accumulation as screening agents
for the first time [20].

arxiv.org
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Since the equilibrium configuration of the system will depend on film thickness d,
the sample will transition from polydomain to monodomain phase as d grows.
Figure 4, obtained from Aguado-Puente’s ab-initio studies on the PTO/STO system
[5], shows a comparison between the energy density for both monodomain and
polydomain phases, emphasizing the theoretical predictions made above: it will be
energetically more favourable for the system to be broken into domains in the thin
film limit whereas the monodomain phase stabilized by a 2DEG is the most favorable
scenario above a certain critical thickness.

As the plot 4 suggests, each phase – monodomain or polydomain – prevails for a
particular range of thickness d values and a crossover between the two phases is to be
expected. However, Aguado-Puente’s model, which will be introduced in subsequent
sections, considers the formation of the 2DEG and ferroelectric domains as
independent screening mechanisms. Therefore, if his model were to be reformulated
by simultaneously considering the formation of the 2DEG and ferroelectric domains,
would the crossover between polydomain and monodomain phases still be a sharp
transtion or a coexistence of the two-screening mechanisms is to be expected?

Discussion with Matthew Dawber and the experimental data obtained by his
team3 reinforced the possibility of both aforementioned screening mechanisms
coexisting. Based on that, the hypothesis this thesis presents is that the crossover
between the two phases and prevalence of one of the mechanisms over the other,
depending on the ferroelectric film thickness, might actually be a coexistence region:
ferroelectric domains witness the formation of the 2DEG and altogether evolve (that
is, domain pattern period increases while surface charge accumulates) with film
thickness until domain width w diverges giving way to the monodomain stable phase
with a 2DEG.

Schematic representations of the core idea of the thesis are presented in figures 5
and 6. As intends to be shown, there will be a range of film thicknesses for which the
2DEG will combine with ferroelectric domains to minimize system energy, forming
complex quasi-one-dimensional carrier structures, namely 1DEG stripes that would
cover the ferroelectric sample.

3Private Communications.
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Figure 5: Schematic representation of the studied system in the coexistence region: the
ferroelectric thin film is split into domains and two-dimensional electron (2DEG) and
hole (2DHG) gases appear at the surface and interface of the film depending on the
orientation of the polarization in the domain.

Figure 6: Left picture shows the ferroelectric film in the 180◦ polydomain state, each
colored box representing a domain of opposite polarization perpendicular to the OXY
plane. No 2DEG has formed yet since film thickness is below critical thickness. Right
picture shows the system in the coexistence region with d > dc
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3 2DEG and Ferroelectric Domain Coexistence: A Model

The model presented in this thesis aims to connect the two seemingly mutually
exclusive polarity compensation mechanisms, ferroelectric domains and 2DEG, by
joining two different models: the aforementioned model accounting for the formation
of a 2DEG in ferroelectrics [5] and the Kittel-Mitsui-Furuichi theory and electrostatics
of ferroelectric domains [18, 19, 25] in ferroelectric thin films.

3.1 Formation of 2DEG at ferroelectric interfaces

The formation of the 2DEG at ferroelectric interfaces is approached through a
phenomenological model originally presented in Ref.[5] in which only the transition
from paraelectric phase to ferroelectric monodomain phase with a 2DEG is taken into
consideration. The model will encompass several energetic contributions and the free
energy per unit volume for the ferroelectric thin film of thickness d can be formulated
as follows4:

GG = U0 +
σ∆
d

+
σ2

2gd
+

1
2ε0

(σ− P)2 (3.1)

The first term, U0 is the free energy of the bulk ferroelectric at zero field. The second
and the third terms account for the energy needed for carriers to make an interband
transition from top of the valence band at the surface of the ferroelectric to the bottom
of the conduction band at the interface – the process described by the electronic
reconstruction as a result of the polar catastrophe. The last term is the electrostatic
energy due to the depolarizing field in the ferroelectric monodomain phase.

To express the free energy of the bulk ferroelectric at zero field U0, Landau theory
(LT) for phase transitions is employed. Landau theory is the analysis of the
equilibrium behaviour of the system near a phase transition based solely in
symmetry considerations. The phase transition is characterized in terms of an order
parameter, which must be zero above the critical temperature for the high-symmetry
disordered phase – paraelectric phase in the context of ferroelectrics – and must
continuously change to a finite value when the symmetry is lowered – ferroelectric
polarized phase in perovskites.

4The subscript «G »in GG stands for «Gas ».
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The order parameter chosen to account for the paraelectric-to-ferroelectric phase
transition in ABO3 perovskites, the foundation materials of our analysis, will describe
the distortion of the unit cell during the transition: the oxygen cage displacement with
respect to the cations. However, since this soft mode marks the transtion to a polar
configuration, it will be natural to take the polarization density associated with the
mode as the order parameter,

Pη =
1
Ω

Z∗ηη (3.2)

Ω being the unit-cell volume and Z∗η being the effective charge associated with the
soft mode. The Landau expansion of the bulk ferroelectric free energy per unit
volume in terms of the order parameter will have a double-well shape from which the
phenomenology – different equilibrium configurations – described by (3.1) is derived,

U0 =
A
2
(T − Tc)P2

η +
B
4

P4
η + O(P6

η ) (3.3)

However, the total polarization P of the material must take into account the
arbitrary electrostatic boundary conditions. Therefore, the total polarization will be
the sum of the polarization originated in the distortive phase transition, due to the
soft mode and that due to the presence of a finite electric field5,

P = Pη + Pe = Pη + ε0χ∞E (3.4)

where ε∞ = χ∞ + 1 is the background electronic contribution to the permitivity of the
ferroelectric. The Landau expansion for the bulk ferroelectric free energy in arbitrary
boundary conditions – where now both the distortive phase transition and background
electronic contribution are being taken into account – can finally be expressed as,

U =
1

2ε0χη

(1
4

P4
η

P2
s
− 1

2
P2

η

)
+

1
2ε0χη

P2
e (3.5)

The parameters A and B in (3.3) have been substituted by characteristic
magnitudes in the material: Ps is the spontaneous polarization of the ferroelectric in
absence of the depolarizing field, ε0χη constitutes the contribution of the soft mode
associated with the phase transition to the polarizability around Ps and the last term
takes into account extra polarization due to electrons and other phonons.

5Once again, linear dielectric response of the material being assumed.
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The model presented in (3.1) is completed by accounting for the energy needed to
create free carrier accumulation. The second term in eq. (3.1) refers to the energetic
cost (in volume units) of transferring charge across the band gap, which will simply
be taken to be the band gap of the bulk ferroelectric. The third term comes into play if
a finite density of states is considered and is related to the filling of both valence and
conduction bands – valence band with holes and conduction band with electrons. The
density of states written in eq. (3.1) is actualy the reduced density of states combining
both the density of electron and hole states (ge and gh),

g =
gegh

(ge + gh)
(3.6)

each of which has been taken as a constant, as we would for a two-dimensional
system.

By rearrenging the terms in eq. (3.1) and introducing the information contained in
eq. (3.5), the model is formulated so that it quantifies the formation of electron-hole
pairs separated by the electric field across the ferroelectric film,

GG =
1

2ε0χη

(1
4

P4
η

P2
s
− 1

2
P2

η

)
+

1
2ε0ε∞

(Pη − σ)2 +
∆σ

d
+

σ2

2gd
(3.7)

At fixed ferroelectric film thickness d, the parameters in charge of system energy
minimization will be σ, the accumulated free surface charge (2DEG) and Pη , the
polarization appearing as a consequence of the phase transition. This first model is
plotted in figure 4 as the red curve.

3.2 Ferroelectric domains:
Kittel-Mitsui-Furuichi electrostatics

Ferroelectric domains represent an alternative stabilizing means for the system to
find its equilibrium configuration. This mechanism competes with the formation of
the 2DEG since a polydomain configuration may lead to zero net polarization at
surface and interfaces, cancelling any chances of electronic reconstruction and
formation of the 2DEG taking place.

In order to model the energy of a ferroelectric thin film broken into domains we
will again assume a 180◦ domain pattern as previously shown in figure 3. The energy
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per unit volume of the system will be the sum of the bulk ferroelectric free energy
already presented in the previous section eq. (3.3), the energy cost of creating domain
walls (2.11) and the electrostatic energy associated to the depolarizing field in the
periodic pattern (2.9). Thus, the energy density in the Kittel-Mutsui-Furuichi theory
is6:

GD = U0(PS) +
Σ
w

+ Udep (3.8)

where the only variable determining the configuration of the system at fixed film
thickness d is the domain pattern period w for Pη has been taken as PS, the ferroelectric
phase well established.

3.3 A model for the coexistence: The α model

Coexistence of the 2DEG and ferroelectric domains will be explored through a Landau
theory based phenomenological model that merges both mutually exclusive limits
introduced in previous sections: eq. (3.7) and eq. (3.8),

G = G(Pη , σ, w) −→ GG ∪ GD. (3.9)

The model, which will be referenced as the α-model, will combine each of the distinct
contributions to the energy of the system discussed in the two previous sections. The
parameters for its minimization at fixed film thickness will be the polarization Pη

related to the soft mode η, free surface charge σ linked to the 2DEG and ferroelectric
domain width w. The energy function 3.9 will incorporate the bulk ferroelectric free
energy per unit volume,

U0(Pη) =
1

2ε0χη

(1
4

P4
η

P2
s
− 1

2
P2

η

)
(3.10)

the energy cost for promoting electrons across the band gap and filling the bands with
finite density of states,

U2DEG(σ) =
∆σ

d
+

σ2

2gd
(3.11)

and the contribution from domain wall energy,

UW(w) =
Σ
w

(3.12)

6The subscript «D»in GD stands for «Domain».
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In addition to these separate contributions, there is one term left to be added to
the energy cost function: the electrostatic energy of the system. Formulation of this
term, however, is not as straightforward as the rest of the individual contributions in
the model. Each of these former contributions belongs to either the theory of the
formation of the 2DEG (3.7) or creation of ferroelectric domains (3.8). They only
account for the phenomenon they describe and for which they have been introduced:
either the free bulk energy, the formation of domain walls or promotion of carriers
across bands.

Therefore, each of them is simply added as a separate contribution to the energy
G in (3.9). Nevertheless, the electrostatic energy term in the α-model must take into
account the whole picture (as its schematic representation shows in figures 5 and 6),
the full equilibrium state of the system, and must reflect both the existence of the
180◦ domain pattern as well as the 2DEG at the surface or interface of the film.

The electrostatic energy term we are looking for must link two limits. On the one
hand, the electrostatics of a capacitor where its surface charge is partially screened by
the accomulation of free carriers, the 2DEG – this would be the analog of the system
we are dealing with in the monodomain phase limit, x = d/w � 1. On the other
hand, KMF electrostatics, where the electrostatic energy must diverge with
decreasing the film thickness and domain width w follows the KMF square root law
(2.3).

The electrostatic energy expression given in (2.9) can be modified to meet both
the capacitor limit and KMF electrostatics by simply considering that the formation
of the 2DEG would screen the spontaneous polarization reducing its value. Since the
expression was computed for a ferroelectric system broken into domains, it already
reproduces the KMF square root law by construction. The effect of the electron gas is
introduced by sustracting σ to the polarization of the ferroelectric film. The convergent
series could thus be rewritten as:

U(dep)
elec =

8(P− σ)2

π3ε0

w
d

∞

∑
n=1

1
n3 sin2

(nπ

2

) 1

1 +
√

κaκc coth
(

nπ
2

√
κa
κc

d
w

) (3.13)

In the limit of ferroelectric domain width w much greater than film thickness d
(x = d/w� 1), the series converges towards eq. (2.10), where the surface charge term
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has now been substituted by (P − σ) to account for the electron gas at the surface7.
We have caoutiously written P, the total polarization of the system, instead of Pη to
account for both the soft-mode polarization and the background electronic
contributions, and to cautiously introduce the effect of background permitivity.

Expression (3.13), although rigurously correct in all its complexity, can nevertheless
be sustituted by the following, simpler term that will easen the analytical resolution
of the α-model and will be tested as a simplifiying substitution for (3.13):

U(α)
elec =

(Pη − σ)2

2ε0

[
εα

∞ +
( d

βw

)α]−1/α
(3.14)

where ε∞ is the background permitivity and β takes the form:

β =
2× 8.416

π3(1 +
√

κcκa)
(3.15)

The expression contains α as a parameter. It indicates the slope of the function at
the origin (when x = d/w → 0) and controls its smoothness. The analysis of the
derivative at the origin leads to the conclusion that the slope of the function when
x → 0 will take a non-zero value if α = 1 and zero if α takes any other value.

Condition α > 0 must be satisfied for expression eq. (3.14) to make sense;
otherwise, neither the capacitor limit nor Kittel-Mitsui-Furuichi electrostatics would
be reproduced. Besides, in the large domain width limit (x = d/w � 1) very few
domain walls are expected, if any. Therefore, a Taylor expansion of eq. (3.14) around
the origin will show that α regulates the corrections to the capacitor electrostatic
energy 2.10.

Depending on the value of α, this Taylor expansions around x → 0 yield:

lim
x→0

U(α)
elec(x) ∼

(Pη − σ)2

2ε0ε∞

[
1− d

ε∞βw

]
for α = 1 (3.16)

lim
x→0

U(α)
elec(x) ∼

(Pη − σ)2

2ε0ε∞

[
1−

( d
ε∞βw

)2]
for α = 2 (3.17)

7The electron gas forming at the surface or heterointerface of the system when the monodomain phase
is stable will depend on the direction of the depolarizing field it has to counteract.
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The correction to the capacitor electrostatic energy in each of the expressions will
have different physical interpretations. The correction for α = 1 suggests that the
electrostatic energy is lowered at the origin due to the remaining domain walls. The
correction for α = 2 surprisingly suggests that the scarce domain walls yet coexisting
do see and weakly interact with each other. Higher values of α lead to smaller
corrections which were not considered to give further physical insight. Moreover,
computations made for higher values of α (3, 4, 5... ) showed eq. (3.14) was no longer
comparable to the expression found in literature, eq. (3.13), and disagreement
between these functions lead to consider α = 1 and α = 2 only.

Figures 7 and 8 show a comparison between the most general electrostatic
expression (3.13), the simplifying electrostatic term built for the α model (3.14) (for
α = 1 and α = 2) and its limit when KMF electrostatics dominate (x = d/w� 1),

U(KMF)
elec =

(Pη − σ)2

2ε0
β

w
d

(3.18)

Both plots show that the proposed electrostatic term, U(α)
elec , correctly goes towards

the Kittel limit and the main disagreement between eq. (3.13) and eq. (3.14) is
obtained in the monodomain region (x = d/w → 0), where the electrostatic term in
the α model behaves differently depending on the value α itself takes. Function (3.13)
has a non-zero slope at the origin, suggesting the correct value for α is 1. However,
eq. (3.14) most correctly reproduces (3.13) if α is taken as 2. Discussion on which
value of α to choose will be followed in subsequent sections. In order to obtain the
plots in figures 7 and 8, Pη was again assumed to take its saturation value PS.

The full model subjected to analysis in this thesis is finally presented,

G =
1

2ε0χη

(1
4

P4
η

P2
s
− 1

2
P2

η

)
+

σ∆
d

+
σ2

2gd
+

Σ
w

+
(Pη − σ)2

2ε0

[
εα

∞ +
( d

βw

)α]−1/α
(3.19)

Expression (3.19) will be used to find the equilibrium surface/interface charge σ as
well as domain width w in the ferroelectric thin film. Coexistence of ferroelectric
domains and 2DEG will be proved if a smooth transition between the polydomain
configuration (finite w) and monodomain configuration (divergent w) is observed
while σ being nonzero, in opposition to the sharp transition predicted by published
works [5, 6]. It is important to remark that a finite density of states (DOS) g must be
considered, since the coexistence will critically depend on it.
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Figure 7: Comparison of the electrostatic energy term due to the depolarazing field for
a 180◦ domain pattern plotted against x (d/w). In red, expression given by eq. (3.13),
the dashed line corresponds to the electrostatic energy term in the α model (α = 1)
and the black solid line is the electrostatic energy in the Kittel limit.
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Figure 8: Comparison of the electrostatic energy term due to the depolarazing field
for a 180◦ domain pattern plotted against x (d/w) as in figure 7. The dashed line
corresponds now to the α model with α = 2.
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4 Model Resolution

In order to solve the model presented in eq. (3.19), parameters characterizing the
equilibrium configuration of the system (Pη , w and σ) must be found and physical
interpretation to the outcome be given. Therefore, the procedure to be followed is
clear: we must solve a global optimization problem. Finding the global minimum for
the α-model will be attempted from both analytical and numerical approaches.

4.1 Analytical Resolution: An approximation

The α-model can be analytically solved as long as certain approximations are made.
These simplifications are listed below:

a) The polarization Pη will be assumed to take its saturation value Ps, indicating that
the system is far from the region where the phase transition takes place and the

ferroelectric phase is well stabilized.
b) Film thickness d will be taken larger than domain width (x = d/w� 1), so that

the analytical resolution is performed for values of d where the Kittel-Mitsui-Furuichi
part (U(KMF)

elec ) is dominant and thus becomes the electrostatic contribution.

Under these considerations, the model simplifies to

G(w, σ) = U0(Ps) +
σ∆
d

+
σ2

2gd
+

Σ
w

+
(Ps − σ)2

2ε0
β

w
d

(4.1)

where the ambiguity in what value to choose for α dissapears due to the second
condition (b) listed above. For fixed ferroelectric film thickness, the equilibrium
configuration of the system can be obtained by minimizing eq. (4.1) with respect to
its variables, w and σ,

∂G
∂w

= 0 and
∂G
∂σ

= 0 (4.2)

which yield a system of two coupled algebraic equations. Algebraic manipulation
leads to the explicit formula to compute equilibrium carrier density, given by the
expression,

σ = g
(√2βΣd

ε0
− ∆

)
(4.3)
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Under the constraint that σ ≥ 0, a critical thickness below which free carriers
forming the 2DEG are unable to perfom an interband transition can be computed.
The electronic reconstruction process will only take place once the film has reached a
thickness exceeding the critical value,

dc =
ε0∆2

2βΣ
(4.4)

The KMF law (as expressed in eq. (2.3)) can explicitly be formulated as:

w2 =
Σ
γ

d where γ =
P2

s
2ε0

β (4.5)

The length value at which the ferroelectric domain width w equals film thickness
(w = d) is called Kittel’s length, lk = Σ/γ. This parameter will help us check the range
of validity of the analytical solutions obtained from the simplifications made to the
model. Solutions are expected to be valid when d � w; that is, the behaviour
depicted by the curves obtained (figure 9) will only provide us with physically
acceptable solutions when they are below the function w = d.

Minimization of eq. (4.1) finally leads to

σ = g∆
(√ d

dc
− 1
)

(4.6)

w =

√
lkd[

1− g∆
Ps

(√
d
dc
− 1
)] (4.7)

As eq. (4.7) establishes, domain width w no longer follows the classical KMF square
root law. In contrast, domain width does grow with increasing film thickness but its
dependence with d is more complex than that predicted by the KMF law. The value at
which w diverges will be labelled as dp,

dp = dc

( Ps

g∆
+ 1
)2

(4.8)

The divergence of domain width w must be physically interpreted as the
stabilisation of the system in the monodomain phase, where the domain pattern
period goes to infinity (w→ ∞).
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Free surface carrier density σ will be zero below critical thickness dc and will grow
proportional to the square root of the film thickness above dc until it manages to
screen the spontenous polarization PS in the ferroelectric film, the screening of PS

indeed being very effective. Once the system has become stable and the sponteous
polarization is screened, σ saturates, indicating that the accumulation of surface charge
has stopped. This saturation takes place once the monodomain phase is stable at dp.
The behaviour of σ can thus be summarized by,

σ =


PS if d ≥ dp

g∆
(√

d
dc
− 1
)

if dc < d < dp

0 if d ≤ dc

(4.9)

Analytical functions given by eq. (4.9) and eq. (4.7) have been depicted in figure 9.
The behaviour shown there is valid for x = d/w � 1. The maximum validity
thickness dv will indicate that above it, the outcome obtained from the aproximated
version of the α-model is no longer credible.

When eq. (4.7) exceeds the function given by the condition to compute lk (w = d),
the analytical resolution ceases to be reliable. The thickness dv is thus defined by the
trascendent equation,

d2
v

[
1− g∆

P

(√dv

dc
− 1
)]2

= lkdv (4.10)

Nevetheless, since typical Kittel lengths lk are about an order of magnitude
smaller compared to the expecting values for the diverging limit dv (characteristic
lenght for PTO is ∼ 0.11nm [20]), it can be estimated that dv is indeed a value around
dp: the trascendent equation yields the same condition for the divergence of w used
to compute dp, [

1− g∆
P

(√dv

dc
− 1
)]

=

√
lk

dv
≈ 0 (4.11)

This proves the approximation is valid in almost all range of interest, the coexistence
region, and will break for both thin film limit and thick film limit.
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Figure 9: Upper panel: In red, ferroelectric domain width plotted against film
thickness for the analytical resolution of the model. Dashed line corresponds to KMF
law. Inset plot: Critical thickness at which the 2DEG begins to form. For a band gap
of e∆ = 3.6 eV, dc ∼ 65 nm. Lower panel: Evolution of surface charge density (2DEG)
with film thickness. The electron gas is non-existent up to the critical thickness and
then grows until it saturates, coincident with the spontaneous ferroelectric polarisation
which intends to screen.
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4.2 Numerical Resolution

We resort to optimization algorithms in order to obtain numerical resolution of the
full coexistence model (3.19) without making any approximations as those required
by the analytical resolution in the previous section.

Discussion in section 3.3 revealed the difficulty in choosing the correct
electrostatic term accounting for both screening mechanisms – 2DEG and ferroelectric
domains. The α-containing electrostatic term, U(α)

elec, served as a simplification of the
general formulation shown in eq. (3.13). However, the simplified electrostatic term
required α itself to be determined. As both α = 1 and α = 2 are reasonable choices,
numerical computations were carried out considering the model with three different
electrostatic terms: equation (3.13) and equation (3.14) with α = 1 and α = 2, being
these values of α the ones allowing for the best recreation of eq. (3.13).

Numerical computations were performed by using the Scipy Open Source Scientific
Library [21]. Two different approaches were tested: root-finding methods to solve the
system of coupled algebraic equations obtained when the function G = G(Pη , σ, w) is
differentiated with respect to its variables,

∂Pη G = 0 ∂σG = 0 ∂wG = 0 (4.12)

and global optimization methods, where finding the global minimum of
G = G(Pη , σ, w) is directly attempted.

None of the root-finding algorithms tested turned out to be satisfactory. When
turning to brute force global optimization methods – those scaning the whole
solution space – it was found the methods were unable to find the global minimum
because, although the position of this minimum changed with growing film
thickness, it was located in a flat valley. The algorithms would at first converge to
spurious solutions.

Therefore, contour plots of the model G as a function of Pη and w were made for
different thicknesses to delimit the location of the minimum. In order to do so, the
number of variables of the cost function G was reduced by introducing the σ that
would minimize the α-model as solved for σ in (4.12). Then, instead of allowing the
algorithms to work by brute force, their search was restricted to regions of the solution
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space were solutions were expected to be found. This information was passed to the
algorithm employed, making it easier for it to find the correct solution.

4.2.1 Differential Evolution: An Algorithm for Global Optimization

Numerical solutions shown in this work were obtained by Differential Evolution, the
algorithm used as the numerical solver for the α-model without any approximations
being made. The algorithm due to Rainer Storn and Kenneth Price [22] is part of the
so-called evolutionary computation, a group of global optimization methods inspired
by the theory of biological evolution: the population – vectors in the solution space –
is subjected to selection and mutation processes to gradually increase its fitness to the
cost function, the function to be minimized 3.19.

The algorithm consists of three phases that run iteratively improving the
candidate solution in each generation: mutation, crossover and selection. The first
initiallized generation G consists of D-dimensional NP ~x target vectors which can
either be randomly chosen or introduced as a preliminary guess.

If the algorithm is first run for the thin film limit ( d � dc), a clever preliminary
choice as the initial guess is to entail variables to stick to KMF law (4.5). In the
coexistence α-model (3.19), the dimension of each candidate vector belonging to a
particular generation is D = 3, the components of which are the variables Pη , σ and
w. As suggested by Storn and Price [26], the dimension of each population – the
number of parents, NP – was chosen to be ten times the dimension of each vector.

Once the initial target generation is either conviniently or randomnly chosen, the
mutation phase takes place. During this phase, new candidate vectors ~v are created as
a combination of randomly chosen target vectors,

~vi,G+1 = ~xr1,G + F× (~xr2,G −~xr3,G) F ∈ [0, 2] (4.13)

where the subscript r stands for random. The weighting factor F controls the
amplification of the differential variation between target vectors from the former
generation and this way, the mutant generation vectors ~vi,G+1 are born.
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The crossover phase is then run to increase diversity among candidate solutions
by creating a new trial vector generation. This is obtained by mixing the components
from vectors in the initial target generation and vectors from the mutant generation,

(umn)i,G+1 =

(vmn)i,G+1, if k ≤ CR

(xmn)i,G, if k > CR
(4.14)

where k is a random number such that k ∈ [0, 1]. CR is the crossover constant and
is also constrained to take values between 0 and 1.

Finally, the selection process consists of determining which of the vectors in the
former generations (target or crossed generation) provides a better fitting to the cost
function (3.19) and therefore, should become a member of the following generation.
In order to do so, the greedy criterion is used. If a trial generation vector, ~ui,G+1, is
selected as a better candidate in comparison to the target generation vector ~xi,G,
leading to a smaller cost function value, it will become part of the new target
generation; otherwise, ~xi,G is kept. As it is usual for iterative methods, the algorithm
will be running until convergence is achieved; that is, until the computed difference
of two solution for the minimum of G is below a certain threshold.

Convergence and physically acceptable solutions for the cost function given by
eq. (3.19) were obtained by taking the DE parameters as

F = 0.2 CR = 0.9 NP = 30. (4.15)

The algorithm required to know the bound values of each of the variables. It was
found that working with the inverse of ferroelectric domain width k = 1/w (which
might as well be understood as ferroelectric domain frecquency) led to convergency
faster than w itself as the variable. This is because in the monodomain limit
(x = d/w � 1), when w is expected to diverge, its inverse k will go to zero.
Therefore, the transition to the monodomain limit and the thickness at which it
becomes stable are clearly visible.

Solutions provided by the DE algorithm were also required to simultaneously
satisfy a threshold settled by the three non-linear algebraic equations derived from
(3.19) that minimize G,
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1
2ε0χη

(P3
η

P2
s
− Pη

)
=

(σ− Pη)

ε0

[
εα

∞ +
( d

βw

)α]−1/α
(4.16)

∆
d
+

σ

gd
=

(Pη − σ)

2ε0

[
εα

∞ +
( d

βw

)α]−1/α
(4.17)

Σ
w2 =

(Pη − σ)2

2ε0

[
εα

∞ +
( d

βw

)α]−(1+α)/α( d
βw

)α 1
w

(4.18)

There is a subtlety to be taken into consideration when asking the solutions to
satisfy the threshold settled by the three equations above, and that is that equation
(4.17) will not make sense for d < dc since the 2DEG has not formed yet and thus
σ = 0. This equation must only be established as a condition to be satisfied when
d ≥ dc.
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Figure 10: Inverse of domain width w plotted against film thickness. Inset plot: Region
were w diverges and from which values of dp are computed.
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As stated before, the coexistence of both screening mechanisms will critically
depend on the finite density of states. If g → ∞ had been considered as a plausible
approximation, neither the analytical resolution for σ and w – equations 4.6 and 4.7 –
nor the numerical resolution would be showing a coexistence region between dc and
dp. Instead, σ would have been pinned from the beginning, independent of thickness
d, an outcome that contradicts the theory exposing the existence of a critical thickness
dc.

4.3 Case Study: the PTO/STO system

Practical application of the optimization algorithm was made for a prototypical
ferroelectric material: a ferroelectric thin film of lead titanate (PbTiO3) embedded
over a strontium titanate (SrTiO3) perovskite substrate as schematically shown in
figure 5 – the PTO/STO system. PbTiO3 is a ferroelectric perovskite-type compound
with high Curie temperature (∼ 500◦C) and a fairly high tetragonal distortion, where
Pη will almost always take its PS saturation value. This was confirmed by the
numerical resolution. Material parameters for the system were taken from [5], where
authors obtained them from first principle calculations,

PS (C/m2) Σ (mJ/m2) χη κc κa ε∞ ge/e2 (m−2J−1) gh/e2 (m−2J−1)

0.78 0.13 26 35 185 7 1.2× 1037 2.5× 1037

Table 1: Parameter values used in the numerical resolution, from [5]

As for the film band gap ∆, the experimental value was used, e∆ = 3.6 eV. The
numerical outcome is shown in figure 11.
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Figure 11: Upper panel: Ferroelectric domain width w plotted against film thickness
w as given by numerical resolution (PTO/STO case). Blue points correspond to the α-
model where U(dep)

elec was used as the electrostatic term. Green points correspond to the

α-model with U(α=1)
elec and red points correspond to U(α=2)

elec . The black solid line is the
KMF law. Lower panel: Free surface carrier density σ plotted against film thickness.
The thickness dc marks the formation of the 2DEG. The x-axis is shared by both plots.
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5 Discussion

Both numerical and analytical resolution of the α-model (Figures 9 and 11) confirm
there is a smooth transition between the ferroelectric polydomain state without free
surface carriers and the monodomain phase stabilized by means of the formation of a
2DEG. The coexistence region for both competing screening mechanisms is bounded
between the critical thickness dc and the divergence thickness dp. The range of
thickness values where coexistence is theoretically predicted was numerically
estimated by computing the values for dc and dp in a system consisting of a lead
titanate thin film embedded over an insulating substrate of SrTiO3 (PTO/STO
system).

As explained in the previous section, numerical resolution of the α-model (3.19)
was performed for three different electrostatic terms: expression (3.13) and expression
(3.14) with α = 1 and α = 2. For each of the electrostatic terms modifying the model,
the critical thickness dc remained invariant and coincident with the analytical result.

Analytical UDep α = 1 α = 2

dc (nm) 65.3 65.3 65.3 65.4

Table 2: Different critical thickness dc values for each electrostatic term tested.

The numerical resolution of the model was expected to be coincident with the
analytical approximated resolution in the neighbourhood of the critical thickness dc,
since this region was within the range of validity of the latter. In fact, the
approximations made in section 3.1 erased the need to determine the values taken by
α simplifying the electrostatic term in the α-model. Therefore, the difference between
each of the G cost functions, depending on the electrostatic term used, is minute in
the region where the 2DEG begins to form and hence the resemblance in dc values
shown in table 2.

The period of the 180◦ stripe domain structure will monotonically increase while
obeying the classical Kittel-Mitsui-Furuichi square root law (4.5) up until dc. Above
the critical thickness, the law is no longer followed and surface charge accumulation
begins. The formation of the 2DEG is therefore marked by the separation of w from
the classical prediction (w ∝

√
d ), having larger ferroelectric domains as film

thickness grows. Domain width w will then continue increasing until it diverges.
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Disagreement between the cost functions employed is revealed in the
monodomain limit, where dissimilar values of the divergency thickness dp are
obtained. As shown in figure 4.2.1, the analytical prediction of dp exceeds the values
numerically obtained. However, as argued in section 4.1, the validity of the analytical
approximation was restricted by dv, a thickness value close to dp which marks the
limit in which ferroelectric domain width w is no longer below the function w = d.
Discrepancy between the analytical and numerical resolution was therefore expected
in the monodomain limit, where the analytical resolution might show non-credible
behaviour. The analytical outcome is indeed stating that it takes thicker ferroelectric
films to achieve a well-stabilized monodomain phase while the numerical solution
shows that thinner films do enable the monodomain stable phase.

Values obtained for the divergence thickness dp depending on the electrostatic term
chosen are both listed below and graphically shown for visual comparison,

Analytical UDep α = 1 α = 2

dp (nm) 272.7 252.3 266.1 249.7

Table 3: Different divergence thickness dp values for each electrostatic term tested.
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Figure 12: Different values obtained for dp, depending on the electrostatic term chosen
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«Once you have eliminated the
impossible, whatever remains,
however improbable, must be the
truth. »

Sir Arthur Conan Doyle

6 Conclusions

We have used a simple phenomenological Landau-type model to show the
coexistence of the two-dimensional electron gas (2DEG) and ferroelectric domains in
a ferroelectric thin film as stabilization mechanisms for the equilibrium configuration
of the system.

The α-model, name given to the model accounting for the coexistence, has been
built as a combination of two different models: one demonstrating that it is possible
to stabilize a monodomain phase with an out-of-plane polarization in a ferroelectric
thin film over an insulating substrate via 2DEG formation taken from [5] and a
second one exposing the energetic cost of ferroelectric domain creation in 180◦

pattern structure. Both former models regard each screening mechanism as mutually
exclusive and predict sharp transitions from the polydomain regime to the
monodomain one.

The model accounting for the coexistence of the two screening mechanisms has
been both analytically (under certain approximations) and numerically solved. In
contrast to published research [5, 6], a smooth transition from the ferroelectric
polydomain regime to the monodomain phase has been found.

Resolutions place the coexistence region between the critical thickness dc – as
theoretically requested by the electronic reconstruction phenomenon to kick start
formation of the electron gas – and the divergence thickness dp – where the
monodomain phase is fully stabilized, domain width w has diverged and
consequently, no ferroelectric domains can be found. As a consequence, it is shown
that the classical KMF law is no longer satisfied when the formation of the 2DEG
begins.
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6.1 Future Work

Ongoing technological advances to control thin film growth on the atomic scale
enable the fabrication of high-quality oxide interfaces and oxide mutilayers, which
constitute sufficiently strong motivation to research further in order to both
experimentally confirm the coexistence of the 2DEG and ferroelectric domains in thin
films and to extend the coexistence hypothesis to more complex systems. Besides
improving the coexistence α-model itself by incorporating new experimental
subtleties, adapting the proposed theoretical model from a ferroelectric PTO thin film
to a PTO/STO supperlattice system can then be regarded as the next step in research:
to explore whether coexistence is feasible in such systems.

Previous works [13] show that insulator to metal transitions can take place at
interfaces in LAO/STO oxide superlattice systems with increasing layer thickness. If
we were to include ferroelectricity in a superlattice PTO/STO structure, the existence
of the depolarizing field would not solely be constrained to the PTO layers but it
would also appear in the STO layers. STO will present a spontaneous polarization
due to the strain conditions imposed by the geometry formed when creating such
multilayered configuration. The α-model should then accordingly be modified to
account for the screening of the field via the formation of the 2DEG and ferroelectric
domains as well as the screening necessary to stabilize the STO layers. In addition to
this, modification of eq. (3.13) should also be made to reflect the new geometry.

As the previous paragraph suggests, because of the many exciting novel
phenomena awaiting to be explored, the analysis of the 2DEG formation and the
various ways to manipulate it as well as the coexistence of the various
system-stabilization mechanisms and the structures they give rise to represent a
developing and promising field in both science and technology still in its early stages.
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