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Introduction

The computation of eigenvalues is unavoidably iterative. This is a conse-
quence of their definition −and how this leads to compute them as roots
of the characteristic polynomial− and Abel’s famous proof that there is no
algebraic formula for the roots of a general polynomial of degree greater
than four. The QR algorithm is one of the most important methods for
computing both eigenvalues and eigenvectors and for the general, nonsym-
metric eigenvalue problem it is the king. This work builds up to the ultimate
algorithm, the shifted Hessenberg QR algorithm, by starting with simpler
ones.

The first chapter is a brief summary of already familiar concepts that are
mentioned and used throughout the work. Its goal is to make the dissertation
self-contained.

The second chapter develops both the power and inverse power meth-
ods. The convergence of the power iteration is studied in terms of subspace
convergence and the implementation details of both methods are taken care
of.

The third chapter establishes the convergence of the QR algorithm by
linking the shifted QR routine with the inverse power method and the un-
shifted QR algorithm with the power method. Then, in order to solve a
practical problem inherent to the QR iteration, it introduces the Hessenberg
form of a matrix and demonstrates how to reduce any matrix to Hessenberg
form.

(This is not the only way to prove the convergence of the QR iteration.
Wilkinson in [7] connects the QR method with simultaneous iteration. Then
Buurema in [6] gives a geometric proof of QR’s convergence with and without
shifts using simultaneous iteration and Krylov subspace ideas. And Francis
and Kublanovskaya had ideas of their own that will be developed later on
this introduction.)

Fourth and fifth chapters implement two different versions of the QR
algorithm: the explicitly shifted QR routine and the implicitly shifted QR
routine. Both methods reduce any given matrix to a Schur form. While the
first algorithm reduces a matrix to a complex Schur form, the second one
reduces it to a real Schur form.

Finally, appendix A contains the MATLAB implementations of all the
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algorithms given in the work and appendix B analyzes the precision and
accuracy of both implementations of the QR algorithm.

Regarded by some as ‘one of the jewels in the crown of matrix computa-
tion’ the QR algorithm was a ‘genuinely new contribution to the field of
numerical analysis and not a refinement of ideas given by Newton, Gauss,
Hadamard, or Schur.’ In any case, if we ‘have seen further than others, it is
by standing upon the shoulders of giants’. And those giants happen to be an
English man and a Russian woman. The QR iteration was simultaneously
developed in the late 50’s and early 60’s by John Francis in England and
Vera Kublanovskaya in the Soviet Union, but it is the firsts work that has
had more influence simply because he dealt with the implementation and
applications of the method.

John G. F. Francis was born in London in 1934 and in October 1961
−the time of the publication of his papers on the then called ‘the QR
transformation’− he was working for the National Research and Develop-
ment Corporation (NRDC). He started to work there in 1954 and although
he entered Christ’s College at Cambridge University in 1955 to study math,
he did not complete a degree and returned to NRDC in 1956. He left this
job in 1961 and dropped all connections with numerical analysis.

Francis developed the whole QR algorithm on his own, apart from the
influence of different papers, such as Rutishauser’s [11]. He did not collab-
orate with anybody: the ideas, theorems and implementation of QR were
all his. On the one hand, his knowledge of Fike’s [12] and Wilkinson’s work
on the stability of the unitary matrix transformation helped John shift the
emphasis from the Gaussian elimination-based LR algorithm of Rutishauser
to the use of orthogonal Householder and Givens eliminations in QR. These
make the algorithm accurate and backward stable. On the other hand, his
awareness of the power of inverse interation for finding eigenvalues accu-
rately from approximations inspired him to apply shifts to QR; and the
development of the Implicit Q Theorem paves the way to obtain complex
conjugate eigenvalue pairs of real matrices in real arithmetic. These ensure
the fast convergence of the method.

The first of his papers, [8], starts by proving the convergence of the lower
triangle entries of the unshifted explicit QR iterates Ak to zero, assuming
that A is nonsingular and has eigenvalues of distinct moduli. Then proceeds
to establish the invariance of normalcy, symmetry and Hermitianness of a
matrix during QR iterations. He accounts for the computational saving that
means first reducing the matrix A to Hessenberg form −it reduces each step
from O(n3) to O(n2)−, proposes elimination methods for achieving such
form, and emphasizes in both the convergence of the algorithm to the Schur
form of A and the rate of convergence of the iterates’ subdiagonal entries
akij as (|λi/λj |)k.

The second paper [9] deals with the implementation of the algorithm.
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First of all, the Implicit Q Theorem is established thus helping modify the
QR algorithm from its explicit factorization to the implicit one. It is noted
that complex conjugate shifts of explicit QR can be performed simultane-
ously in one implicit double real step. Bulge chasing is introduced: it creates
a bulge that protrudes from the Hessenberg form and then chases it down
the diagonal until re-establishing the Hessenberg form. The near singularity
of A − αI when α is close to an eigenvalue helps him deflate the last row
of A to save some computations. Implementation of Givens rotations and
Householder eliminations are discussed for ensuring backward stability and
it even details a close precursor of what nowadays is known as the Wilkinson
shift.

Vera Nikolaevna Kublanovskaya, on the other hand, was born on 21
November 1920 in Vologda Oblast, Russia and passed away in February 21,
2012. In 1945, after surviving the siege of Leningrad she was accepted to
study mathematics at Leningrad State University. She joined the Leningrad
branch of the Steklov Mathematical Institute of the USSR Academy of Sci-
ences after graduating in 1948 and worked there at least until 2009.

Kublanovskaya started to develop her version of the QR method inspired
by [11]. She presented a matrix A = L ·Q where L is a lower triangular ma-
trix and Q is orthogonal −she proposed constructing the last one by using
elementary rotations or reflections. Her algorithm factors A = A1 = L1 ·Q1,
then multiplies A2 = Q1 · L1 and factors A2 = Q2 · L2 etc. Her first paper
explains the basics of this factorization and reverse-order multiplication for
nonsingular matrices A with real and distinct modulus eigenvalues; and in-
troduces the linear convergence of the diagonal entries of the matrix Lk to
the eigenvalues of such matrices. The second paper proves that the conver-
gence happens at least linearly and improves it by introducing simple shifts.
Finally, in a third paper, Kublanovskaya indicates how the LQ method can
be adapted to find the singular values of A, that is, the eigenvalues of the
product AA∗ or A∗A, without explicitly computing the matrix products.

Neither Kublanovskaya nor her colleagues implemented her method dur-
ing this time or later. She was not involved in further investigations of the
QR itself, but some of her work can be regarded as an extension of the
underlying ideas of the QR method.





Chapter 1

Previous concepts

1.1 Notation and basic results

The goal of this dissertation is to comprehend how every available linear
algebra software library computes the eigenvalues and eigenvectors of any
given matrix A. Throughout the work the nature of the topic we will be
treating will ask for either complex or real matrices. So at the start of every
chapter we will indicate whether we work with A ∈ Cn×n or A ∈ Rn×n, that
is, A ∈ Fn×n where F = C or F = R. For this chapter, let F = C.

Scalars will be appointed with greek letters as λ or µ, vectors with lower
case letters −x, y, etc.− and matrices with upper case letters −A, B, etc.−.
At will designate the transpose of a matrix, i.e., if

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 then At =

a11 · · · an1
...

. . .
...

a1n · · · ann

 .
A∗ indicates the conjugate transpose of a matrix, that is,

A∗ =

a11 · · · an1
...

. . .
...

a1n · · · ann

 ,
where z is the conjugate of the complex number z. Notice that if A is a real
matrix, At = A∗.

A complex matrix U is unitary if

UU∗ = U∗U = I,

and these kind of matrices hold another interesting equivalence:

• U is unitary.

• The rows −and columns− of U form an orthonormal basis of Fn×n.

1



2 1.1. Notation and basic results

Unitary matrices are usually called orthogonal when they are real.

Now, the first thing we ought to do is define the eigenvalues and eigen-
vectors:

Definition 1.1.1. Let A be of order n. The pair (λ, x) is called an eigenpair
or right eigenpair of A if

• x 6= 0, and

• Ax = λx.

The scalar λ is called an eigenvalue and the vector x is called an eigenvector.
On the other hand, the pair (λ, y) is called a left eigenpair if

• y 6= 0, and

• y∗A = y∗λ.

Real matrices may have complex eigenvalues and eigenvectors: take for
example [

0 −1
1 0

]
.

Its eigenvalues are i and −i, and its eigenvectors

[
i
1

]
and

[
−i
1

]
.

Notice that if (λ, x) is an eigenpair, then (λ, τx) is also an eigenpair.
Thus in order to eliminate this trivial nonuniqueness we might require, for
example, x∗x = 1. Nevertheless, this does not eliminate the nonuniqueness
of the eigenvectors, e.g., there may be many unitary vectors. That is why
in some contexts −precisely in §2.1.1−, we may refer to the linear subspace
spanned by an eigenvector.

Definition 1.1.2. Let V be a vector space over a field K, and S a set
of vectors. Then the subspace spanned by S is the set of all finite linear
combinations of elements of S, i.e.,

〈S〉 =

{
k∑
i=1

λivi : k ∈ N, vi ∈ S and λi ∈ K

}
.

If S = {v1, ..., vn}, we may write 〈S〉 = 〈v1, ..., vn〉. In this work, depending
on the context, K = R or K = C and V = Rn or V = Cn.

Secondly, as it will be proved later, the QR algorithm computes the
eigenvalues of any given matrix by reducing it to its Schur form.
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Theorem 1.1.1 (Schur). Let A be of order n. Then there is a unitary
matrix U such that

U∗AU = T

where T is upper triangular. By appropriate choice of U , the eigenvalues
of A, which are the diagonal elements of T may be made to appear in any
order.

Proof. Theorem 1.12 of [1].

Actually, the QR iteration can be implemented in two different ways: the
first one reduces the given matrix to the complex Schur form −a complex
upper triangular matrix with both the real and complex eigenvalues in the
diagonal−, and the real Schur form −a real block upper triangular matrix
where the blocks of order one contain the real eigenvalues and the ones of
order two contain the complex conjugate eigenvalues. Chapters 4 and 5 are
devoted to the complex and real Schur forms, respectively. A proof of the
less known real Schur form will be provided in Chapter 5.

Thirdly, we must talk about the reliability of the algorithms. The rou-
tines given troughout the dissertation are designed so that they are either
backwards stable−Definition 1.1.3−, or stable in the usual sense−Definition
1.1.4. These definitions make the algorithms accurate and their output re-
liable.

Definition 1.1.3. An algorithm f̃ : X −→ Y for a problem f : X −→ Y is
said to be backwards stable if for all x ∈ X there exists x̃ ∈ X such that

‖x̃− x‖
‖x‖

= O(εM )

and

f̃(x) = f(x̃).

In our case, if we are working with complex matrices, then X = Y = Cn×n,
but X = Y = Rn×n if real matrices are considered.

Definition 1.1.4. Let the sequence A1, A2, ..., Am be generated by the re-
cursion

Ak+1 = fl[RkAkSk], for every k = 1, ...,m− 1 (1.1)

where Rk and Sk are unitary matrices generated from Ak. fl denotes
floating-point computation with rounding unit εM and includes any errors
made in generating and applying Rk and Sk. Set

P = Rm−1 · · ·R1 and Q = S1 · · ·Sm−1.



4 1.1. Notation and basic results

Then we say that the sequence (1.1) is stable in the usual sense if there is a
matrix E and a slowly growing function γM such that

‖E‖2
‖A‖2

= γM εM

and

Am = P (A1 + E)Q.

A couple of words must be said about vector and matrix norms too. We
will mainly use the 2-norm, ‖·‖2, of either a vector or a matrix and the
Frobenius norm, ‖·‖F , of a matrix. We will just give the definitions and
main properties of them. Further information can be found in [17] and [18].

Definition 1.1.5. (i) For every vector x ∈ Cn, the vectorial norm ‖·‖2 is
defined as

‖x‖2 =

√√√√ n∑
i=1

|xi|2.

(ii) For every matrix A ∈ Cn×m, ‖·‖2 is the matrix norm induced by the
norm `2, i.e.,

‖A‖2 = max
‖x‖2=1

‖Ax‖2 .

(iii) For every matrix A ∈ Cn×m, the matrix norm ‖·‖F is defined as

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

|aij |2.

And a little list of properties that will be used throughout the work:

Proposition 1.1.2. Let A ∈ Cn×m and x ∈ Cn. Then:

(i) ‖x‖22 = x∗x.

(ii) For every x ∈ Cn
‖x‖2 = ‖x∗‖2 .

For every A ∈ Cn×m

‖A‖F = ‖A∗‖F and ‖A‖2 = ‖A∗‖2 .

(iii) Matrix norms ‖·‖2 and ‖·‖F are unitarily invariant. That is for every
A ∈ Cn×m if U ∈ Cr×n −or Cm×s− is unitary then

‖UA‖2 = ‖AU‖2 = ‖A‖2 and ‖UA‖F = ‖AU‖F = ‖A‖F .
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(iv) Matrix norms ‖·‖2 and ‖·‖F are consistent, i.e., for every A ∈ Cn×m
and B ∈ Cm×s

‖AB‖2 ≤ ‖A‖2 ‖B‖2 and ‖AB‖F ≤ ‖A‖F ‖B‖F .

(v) All the norms defined in a vectorial space V of finite dimension are
equivalent. That is, if µ and ν are two norms defined in V , then there
exist a, b ∈ R such that

a ≤ µ(x)

ν(x)
≤ b for all x ∈ V.

In our case, ‖·‖2 and ‖·‖F are norms defined in the vectorial space
Cn×m. Thus there exist c, d ∈ R, such that

c ≤
‖A‖2
‖A‖F

≤ d for all A ∈ Cn×m.

Proof. Check [17].

Finally, a note regarding conditioning. In the field of numerical analysis
the condition number of a function measures how much the output value of
the function can change for a small change in the input argument. In other
words, it measures how sensitive the output of a function is to changes
on the input. A problem is said to be well-conditioned if its condition
number is small and ill-conditioned if its condition number is high. Sadly,
we do not have neither the time nor the space to study the conditioning
of the Schur decomposition through the QR routine. A proper analysis
of the QR iteration should consider and take into account the condition
number. At least when studying the precision of the algorithm; to check,
for example, whether those matrices with worst backwards error have the
highest condition number or not.





Chapter 2

The power and inverse power
methods

2.1 The power method

The power method is based on a simple idea. Let A be a complex nonde-
fective matrix and (λi, xi) a complete set of eigenpairs. All xi are linearly
independent, so if u0 ∈ Cn then

u0 = γ1x1 + · · ·+ γnxn (2.1)

uniquely. As Axi = λixi, then Akxi = λki xi, thus

Aku0 = γ1λ
k
1x1 + · · ·+ γnλ

k
nxn.

Assuming that both γ1 and λk1 are not zero

1

γ1λk1
Aku0 = x1 +

n∑
j=2

γj
γ1

(
λj
λ1

)k
xk. (2.2)

Now, if |λ1| > |λj | ∀j ∈ {2, ..., n}, i.e., λ1 is a dominant eigenvalue, the sum-
mation on the right part of (2.2) will approach to 0 as k →∞. Therefore the
left part of the equality will become an increasingly accurate approximation
to the dominant eigenvector x1.

Notice that, for now, we do not know how to compute eigenvalues using
this method. We can summarize this superficial knowledge of the power

7



8 2.1. The power method

iteration in Algorithm 1:

Input : matrix A, number of iterations n.
Output: approximate eigenpair (λ, x)

1 PowerMethod (A,n)
2 Select starting unitary vector u0
3 for k ∈ {1, ..., n} do
4 u1 ← Au0
5 u0 ← u1/ ‖u1‖
6 end
7 return u0
8 end

Algorithm 1: Initial approach to the power method.

2.1.1 The convergence of the power method: subspace con-
vergence

Truth is, when computing eigenvectors we are not interested in the vector
per se, but rather in the linear subspace spanned by that eigenvector. Take
for example the following matrix and starting vector:

A =

[
0 −1
−1 0

]
and u0 =

[
1
1

]
.

Note that u0 is an eigenvector of A, consequently any multiple of that vector
will be an eigenvector too. Now let us look at the first four iterations of the
power method:

Au0 =

[
−1
−1

]
, A2u0 =

[
1
1

]
, A3u0 =

[
−1
−1

]
and A4u0 =

[
1
1

]
.

The sequence of eigenvectors produced by the power method seems not to
converge to u0, however, it converges to 〈u0〉, the linear subspace spanned by
u0. As a result, we will have to study the convergence of the power method in
terms of subspace convergence. This can be achieved by identifying the set
of subspaces of dimension d with a quotient space of matrices and defining
the quotient topology on it. For this purpose the Grassmanian, the set of
linear subspaces of the vector space Cn of given dimension d, will be needed.
That is,

Grd(Cn) = {S ≤ Cn : dimS = d}.
First, we start by establishing a connection between linear subspaces and

matrices:

Definition 2.1.1. Let S be a subspace of Cn of dimension d and {x1, ..., xd}
a basis for it. Then

X =
[
x1 · · · xd

]
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is a base-matrix of S.

It is clear that if X ∈ Cn×d and rank(X) = d, then X spans a subspace
of dimension d, but distinct matrices may create the same subspace:

Lemma 2.1.1. Let X1, X2 ∈ Cn×d. X1 and X2 generate the same subspace
if and only if rank(X1) = rank(X2) = d and there exists P ∈ Cd×d invertible
such that

X1 = X2 · P.

Unfortunately, we lack the space to develop properly the topology of
Grd(Cn) and prove every result needed to establish correctly the convergence
of subspaces. A decorous proof can be found in the notes to the course
Advanced Numerical Methods imparted by Ion Zaballa at UPV/EHU, on
pages 216 through 226 of [16].

The results that are fundamental to understand and establish the con-
vergence of the power iteration are the ones that follow.

Theorem 2.1.2. Let {Sk}k=0,1,... ⊂ GrdCn be a sequence of subspaces and

let S ∈ Grd(C). Let Q ∈ M̃n,d(C) be an orthonormal base-matrix of S and,

for all k ∈ {0, 1, ...}, let Qk ∈ M̃n,d(C) be an orthonormal base-matrix of
Sk. Then

Sk → S ⇐⇒ ∀ k ∈ {0, 1, ...} ∃Zk ∈ Cd×d unitary such that QkZk → Q.

Proof. Theorem 1.5.2 of [15].

Theorem 2.1.3. Let X ∈ Cn×d and let A ∈ Cn×n be a matrix such that
rank(AkX) = d for all k ∈ {0, 1, 2, ...}. Then if the sequence of sub-
spaces {〈AkX〉} converges, it does so to a subspace S ∈ Grd(Cn) that is
A-invariant.

Proof. Theorem 10.4 of [16].

And the convergence of the power method to an eigenvector is a conse-
quence of this last two results:

Corollary 2.1.4. Let A ∈ Cn×n and let q ∈ Cn be a unitary vector. If the

sequence of subspaces

〈
Akq

‖Akq‖2

〉
converges to a nonzero subspace < y >,

then y is a unitary eigenvector of A.

Proof. Let us assume that 〈Akq〉 −→ 〈y〉, then by Theorem 2.1.3, 〈y〉 is
A-invariant, i.e.,

Ay ∈ 〈y〉 ⇐⇒ Ay = αy;

which means that y is an eigenvector of A. Now,

〈Akq〉 −→ 〈y〉 ⇐⇒ ∃αk where αkA
kq −→ y,
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and as ‖·‖2 is a continuous function, then∥∥∥αkAkq∥∥∥
2
−→ ‖y‖2

and

|αk|
∥∥∥Akq∥∥∥

2
−→ ‖y‖2 .

We can deduct that
〈|αk|Akq〉
|αk| ‖Akq‖2

−→ 〈y〉
‖y‖2

,

and finally, 〈
Akq

‖Akq‖2

〉
−→

〈
y

‖y‖2

〉
= 〈y′〉

where y′ is a unitary eigenvector.

That is, if the power method converges, it does so to a unitary eigenvec-
tor. The following theorem provides a sufficient and necessary condition for

the convergence of

〈
Akq

‖Akq‖2

〉
for general matrices A and vectors q.

Theorem 2.1.5. Let q0 ∈ Cn be a unitary vector, let A ∈ Cn×n be a
diagonalizable matrix and let λ1, ..., λn be its eigenvalues. Let {v1, ..., vn} be
a basis of unitary eigenvectors of A such that Avi = λivi for all i ∈ {1, ..., n}
and write q0 in the following way

q0 = α1v1 + · · ·+ αnvn. (2.3)

Let qk =
Akq0
‖Akq0‖

and assume also that

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| . (2.4)

Then, 〈qk〉 −→ 〈v1〉 if and only if α1 6= 0. Moreover, if
{
〈qk〉

}
converges,

then for all k ∈ {0, 1, 2, ...} there exist zk ∈ C such that |zk| = 1 and

‖zkqk − v1‖2 = O
( ∣∣∣∣λ2λ1

∣∣∣∣k ).
Proof. Firstly, let us prove that the convergence of the power method only
happens when α1 in (2.3) is nonzero.

=⇒) Let us assume that 〈qj〉 → 〈v1〉. Then by Theorem 2.1.2 there exist
βj ∈ C such that βjqj → v1. Now, let P be the projection of 〈v1〉 along
〈v2, ..., vn〉. (This projection is called the spectral projection along the
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eigensubspace 〈v1〉.) Then, P (βjqj)→ Pv1 = v1. Here, since qj is the

jth iterate through the power method, qj = Ajq0
‖Ajq0‖2

and by (2.3)

Ajq0
‖Ajq0‖2

=
1

‖Ajq0‖2

(
α1A

jv1 + · · ·+ αnA
jvn

)
=

1

‖Ajq0‖2

(
α1λ

j
1v1 + · · ·+ αnλ

j
nvn

)
.

Thus,

P (βjqj) =
βj

‖Ajq0‖2
P (Ajq0) =

βj
‖Ajq0‖2

P

(
α1λ

j
1v1 + · · ·+ αnλ

j
nvn

)
=

βj
‖Ajq0‖2

α1λ
j
1v1.

That is,
βj

‖Ajq0‖2
α1λ

j
1v1 → v1 and since v1 6= 0, then α1 6= 0.

⇐=) First,

〈qj〉 =

〈
Ajq0
‖Ajq0‖

〉
and by Corollary 2.1.4 if this subspace converges then it does so to a
subspace generated by an eigenvalue, that is,〈

Ajq0
‖Ajq0‖2

〉
−→ 〈y〉 where y is an eigenvalue of A.

Secondly, using the decomposition (2.3) and since λi is an eigenvalue
of A for every i ∈ {1, ..., n},

Ajq0 = α1λ
j
1v1 + · · ·+ αnvλ

j
nvn =⇒

Ajq0
‖Ajq0‖2

=
α1λ

j
1

‖Ajq0‖2
v1 + · · ·+ αnλ

j
n

‖Ajq0‖2
vn = α′1λ

j
1v1 + · · ·+ α′nλ

j
nvj .

By hypothesis, α1 6= 0 then α′1 6= 0, and λ1 6= 0, thus

Ajq0

α′1λ
j
1 ‖Ajq0‖2

= v1 +

n∑
i=2

α′i
α′1

λji
λj1
vi. (2.5)

Here, following hypothesis (2.4),
|λi|
|λ1|

< 1 for all i ∈ {1, ..., n}, thus

|λi|j

|λ1|j
−−−→
j→∞

0. Then as j tends to infinity,

Ajq0

α′1λ
j
1 ‖Ajq0‖2

−→ v1

and by Theorem 2.1.2, 〈qj〉 → 〈v1〉.
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Assuming that A is nondefective and has a dominant eigenvalue, a nec-
essary and sufficient condition for the power method to converge has been
settled and now it is time to study the convergence rate of the power itera-

tion. In (2.5) set qj =
Ajq0
‖Ajq0‖2

, βj =
1

α′1λ
j
1

and xj =
n∑
i=2

α′i
α′1

λji
λj1
vi; then

βjqj = v1 + xj .

Let us now obtain a bound for the norm of xj :

‖xj‖2 ≤
∣∣∣∣α2

α1

∣∣∣∣ ∣∣∣∣λ2λ1
∣∣∣∣j ‖v2‖2 +

∣∣∣∣α3

α1

∣∣∣∣ ∣∣∣∣λ3λ1
∣∣∣∣j ‖v3‖2 + · · ·+

∣∣∣∣αnα1

∣∣∣∣ ∣∣∣∣λnλ1
∣∣∣∣j ‖vn‖2 .

vi is unitary by hypothesis, thus

‖xj‖2 ≤
∣∣∣∣α2

α1

∣∣∣∣ ∣∣∣∣λ2λ1
∣∣∣∣j +

∣∣∣∣α3

α1

∣∣∣∣ ∣∣∣∣λ3λ1
∣∣∣∣j + · · ·+

∣∣∣∣αnα1

∣∣∣∣ ∣∣∣∣λnλ1
∣∣∣∣j =

∣∣∣∣λ2λ1
∣∣∣∣j ( ∣∣∣∣α2

α1

∣∣∣∣+

∣∣∣∣α3

α1

∣∣∣∣ ∣∣∣∣λ3λ2
∣∣∣∣j + · · ·+

∣∣∣∣αnα1

∣∣∣∣ ∣∣∣∣λnλ2
∣∣∣∣j ).

Here, ∣∣∣∣α2

α1

∣∣∣∣+

∣∣∣∣α3

α1

∣∣∣∣ ∣∣∣∣λ3λ2
∣∣∣∣j + · · ·+

∣∣∣∣αnα1

∣∣∣∣ ∣∣∣∣λnλ2
∣∣∣∣j

is a nonincreasing sequence, so it can be bounded by, for example,

K =

∣∣∣∣α2

α1

∣∣∣∣+

∣∣∣∣α3

α1

∣∣∣∣ ∣∣∣∣λ3λ2
∣∣∣∣0 + · · ·+

∣∣∣∣αnα1

∣∣∣∣ ∣∣∣∣λnλ2
∣∣∣∣0 =

∣∣∣∣α2

α1

∣∣∣∣+

∣∣∣∣α3

α1

∣∣∣∣+ · · ·+
∣∣∣∣αnα1

∣∣∣∣ .
Which means that

‖xj‖2 ≤ K
∣∣∣∣λ2λ1
∣∣∣∣j .

On the other hand, since βjqj = v1 + xj and lim
j→∞

xj = 0

lim
j→∞

βjqj = v1.

Due to ‖·‖2 being a continuous function and ‖qj‖2 = ‖v1‖2 = 1,

lim
j→∞

|βj | = 1.

What is more,

||βj | − 1| ≤

∣∣∣∣∣∣ 1∣∣∣α′1λj1∣∣∣ − 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∥∥Ajq0∥∥2∣∣∣α1λ

j
1

∣∣∣ − 1

∣∣∣∣∣∣ =
1∣∣∣α1λ
j
1

∣∣∣
∣∣∣∥∥Ajq0∥∥2 − ∣∣∣α1λ

j
1

∣∣∣∣∣∣ =
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1∣∣∣α1λ
j
1

∣∣∣
∣∣∣∥∥Ajq0∥∥2 − ∥∥∥α1λ

j
1v1

∥∥∥
2

∣∣∣ ≤ 1∣∣∣α1λ
j
1

∣∣∣
∥∥∥Ajq0 − α1λ

j
1v1

∥∥∥
2

= ‖xj‖2 .

That is, for all j ∈ {0, 1, 2, ...}

1− ‖xj‖2 ≤ |βj | ≤ 1 + ‖xj‖2 ,

and since xj −→ 0, there exists J ∈ N such that for all j > J , 1−‖xj‖2 > 0.

From now on we will assume that j > J . Let zj =
βj
|βj | then |zj | = 1, and

zjqj =
1

|βj |
(v1 + xj) ≤

1

1− ‖xj‖2
(v1 + xj) =

v1
1− ‖xj‖2

+
xj

1− ‖xj‖2
=

1− ‖xj‖2 + ‖xj‖2
1− ‖xj‖2

v1 +
xj

1− ‖xj‖2
=

(
1 +

‖xj‖2
1− ‖xj‖2

)
v1 +

1

1− ‖xj‖2
xj .

Thus,

zjqj − v1 =
‖xj‖2 v1 + xj

1− ‖xj‖2
and since v1 is unitary

‖zjqj − v1‖2 ≤
2 ‖xj‖2

1− ‖xj‖2
.

Now, xj −→ 0 so there exists J ′ ∈ N such that 1− ‖xj‖2 ≥
1
2 for all j > J ′.

Hence,

‖zjqj − v1‖2 ≤ 4 ‖xj‖2 .

Finally, for all j > max{J, J ′, 0},

‖zjqj − v1‖2 ≤ 4K

∣∣∣∣λ2λ1
∣∣∣∣j .

Conditions |λ1| > |λ2| and α1 6= 0 seem rather restrictive, but they
actually are not. Almost every complex random matrix has a dominant
eigenvalue. And although real matrices tend to have a dominant eigenvalue,
if that eigenvalue is complex then the power iteration does not converge
−real arithmetic can not approach complex numbers−.

The second restriction, α1 6= 0, is discussed in §2.1.3.
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2.1.2 Convergence criteria, optimal residuals and the Rayleigh
quotient

Now that we know the requisites for the power method to converge, when
do we stop to iterate? Computing the residual

rk = Auk − µkuk

is a way of measuring how far our current approximation is from the real
eigenpair and although it does not give us a direct estimate of the er-
ror it does provide the following −the iteration subscripts are dropped for
generality−:

Theorem 2.1.6. Let r = Au− µu. Then there exists a matrix

E =
ru∗

‖u‖22
(2.6)

such that
‖E‖p
‖A‖p

=
‖r‖2

‖A‖p ‖u‖2
, p = 2,F (2.7)

and

(A− E)u = µu (2.8)

Proof. We just need to verify (2.7) and (2.8) using (2.6). First,

(A− E)u = µu ⇐⇒

(
A− ru∗

‖u‖22

)
u = µu ⇐⇒ Au− r u

∗u

‖u‖22
= µu

Au− r
‖u‖22
‖u‖22

= µu ⇐⇒ r = Au− µu.

And for (2.7):

‖E‖p
‖A‖p

=

∥∥∥ ru∗

‖u‖22

∥∥∥
p

‖A‖p
=
‖ru∗‖p
‖A‖p ‖u‖

2
2

. (2.9)

At this point we need to introduce dual norms, which are defined for any
norm as follows:

‖x‖′ = sup
‖y‖=1

|y∗x| .

More specifically, the dual norm of the 2-norm is the 2-norm itself:

‖x‖′2 = sup
‖y‖2=1

|y∗x| ≤ sup
‖y‖2=1

‖y‖2 ‖x‖2 = ‖x‖2 .
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(The Cauchy-Schwarz inequality has been used to separate the inner product
y∗x.) And the reciprocal:

‖x‖′2 = sup
‖y‖2=1

|y∗x| = sup
‖y‖2=1

∣∣∣∣∣
n∑
i=1

yixi

∣∣∣∣∣ ≥
∣∣∣∣∣
n∑
i=1

xixi
‖x‖2

∣∣∣∣∣ =
1

‖x‖2

∣∣∣∣∣
n∑
i=1

xixi

∣∣∣∣∣ =
‖x‖22
‖x‖2

= ‖x‖2 .

(A specific unitary vector y = x
‖x‖2

has been chosen in the inequality.) Thus,

we have proven that ‖x‖2 = ‖x‖′2 ∀x ∈ Cn. Now come back to (2.9). We
have to study ‖ru∗‖p where p = 2, F . So

‖ru∗‖2F =

n∑
i=1

n∑
j=1

|riuj |2 =

n∑
i=1

n∑
j=1

|ri|2 |uj |2 =

n∑
i=1

|ri|2
n∑
j=1

|uj |2 = ‖r‖22 ‖u‖
2
2

=⇒ ‖ru∗‖F = ‖r‖2 ‖u‖2 .
And using the dual norm:

‖ru∗‖2 = sup
‖z‖=1

‖ru∗z‖2 = sup
‖z‖=1

|u∗z| ‖r‖2 = sup
‖z‖=1

|z∗u| ‖r‖2 = ‖r‖2 ‖u‖2 .

Hence
‖E‖p
‖A‖p

=
‖r‖2 ‖u‖2
‖A‖p ‖u‖

2
2

=
‖r‖2

‖A‖p ‖u‖2

The theorem states that if the residual is small, then the pair (µ, u) is an
exact eigenpair of the nearby matrix A − E. It also suggests to stop when
the 2-norm or Frobenus norm −it does not matter which as both of them are
unitarily invariant and equivalent− of A − E is relatively small comparing
to the norm of A and it gives a computationally cheaper way to compute
this quotient. The reason to stop the algorithm following this criteria has to
do with backwards stability −see Definition 1.1.3. In our case x̃ = A − E,
x = A, f̃ will be the eigenpair the power method computes and f the exact
eigenpair of A. Hence, if we stop iterating when the relative error of A−E
with regard to A is of the order of the machine epsilon, the power iteration
algorithm will be backwards stable. We may stop when that relative error
is less than the machine epsilon times a reasonable quantity.

In computing the residual r = Au − µu we naturally take u to be the
k-th iterate of the starting vector u0. We will choose µ in such a way that
minimizes the residual in some norm, 2-norm in our case, as we are mainly
working with it.

Theorem 2.1.7. Let u 6= 0 and for any µ set rµ = Au − µu. Then ‖rµ‖2
is minimized when

µ =
u∗Au

u∗u
in which case rµ⊥u.
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Proof. Let us assume ‖u‖2 = 1 −in our case the power iteration makes u to
be unitary at every step−, let [u U ] be unitary and set[
u∗

U∗

]
A
[
u U

]
=

[
u∗Au u∗AU
U∗Au U∗AU

]
=

[
ν h∗

g B

]
=⇒

[
u∗

U∗

]
A =

[
ν h∗

g B

] [
u∗

U∗

]
.

Then, [
u∗

U∗

]
Au− µ

[
u∗

U∗

]
u =

[
ν h∗

g B

] [
u∗

U∗

]
u− µ

[
u∗

U∗

]
u =⇒[

u∗

U∗

]
(Au− µu) =

[
ν h∗

g B

] [
1
U∗u

]
− µ

[
1
U∗u

]
.

U∗u = 0 due to
[
u U

]
being unitary, thus[

u∗

U∗

]
rµ =

[
ν h∗

g B

] [
1
0

]
− µ

[
1
0

]
=

[
ν
g

]
−
[
µ
0

]
=

[
ν − µ
g

]
.

Then ∥∥∥∥[u∗U∗
]
rµ

∥∥∥∥2
2

=

∥∥∥∥ν − µg
∥∥∥∥2
2

,

thus, as [u U ] is unitary and ‖·‖2 is unitarily invariant,

‖rµ‖22 = |ν − µ|2 + ‖g‖2 ,

which will be minimized when µ = ν = u∗Au.
Secondly, let us prove rµ and u are orthogonal, that is, let us compute

their inner product and see that it is zero. For this purpose, let us recall
that the scalar product of rµ and µ is r∗µµ:

rµ · u = r∗µu = (Au− µu)∗ u = (Au)∗ u− (µu)∗ u = u∗A∗u− µu∗u.

[u U ] is a unitary matrix, thus ‖u‖22 = u∗u = 1 and

u∗A∗u− µu∗u = u∗A∗u− µ = u∗A∗u− (u∗Au) = u∗A∗u− (u∗Au)∗ =

u∗A∗u− u∗A∗u = 0.

The quantity u∗Au/u∗u is an example of a Rayleigh quotient and pro-
vides a highly accurate approximation to the corresponding eigenvalue of
A− E. It is usually generalized this way:

Definition 2.1.2. Let u and v be vectors with v∗u 6= 0. Then the quantity

v∗Au

v∗u

is called a Rayleigh quotient.
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2.1.3 Implementation details

We know both the circumstances that make the power method converge
and the appropriate criteria to stop the algorithm. Therefore it is time to
implement it and give some technical details.

Computation and normalization

If we were to ingenuously implement the power method we could compute,
for every step k, Aku0 which runs in O(kn3). Instead, calculating uk+1 =
Auk runs in much cheaper O(n2). If the matrices we are working with have
structured elements and sparsity, the computational cost can be dropped
even more.

The approximation of the eigenvector will be normalized in every step
in order to avoid overflow and underflow.

Choice of starting vector

If we rewrite the expansion (2.1) as u0 = γ1x1 +X2c2 where

X2 =
[
x2 · · · xn

]
and c2 =

γ2...
γn

 ,
then the ratio ‖c2‖ / |γ1| gives a measure of how far is the starting vector
from the real eigenvector. It is important for u0 to have the smallest posible
quotient, which is minimized by the eigenvector. We may use an approxi-
mation of the eigenvector if we have it at hand. Sometimes the structure of
the problem may dictate the choice of u0. It is advisable to avoid patterned
starting vectors: highly structured problems may have such eigenvectors
and if that eigenvector is not the dominant one, γ1 will be zero and so the
method will not converge.

Otherwise, taking a random u0 (usually a vector of random normal de-
viates) is good enough. For a random vector u of order n to have γ1 = 0
means that x1 and u are orthogonal. The orthogonal complement of the
vector u is a space of dimension n− 1 and thus the probability of a random
vector of order n to be in a subspace of dimension n − 1 is 0. Hence, the
probability of a vector of random normal deviates to be perpendicular to x1
is zero.

Shift and spectral enhancement

If A is a nondefective matrix and the eigenvalues of A satisfy |λ1| > |λ2| ≥
... ≥ |λn|, then the power method almost always converges to the biggest
eigenvalue at a rate of |λ2| / |λ1|; but if this quotient is near one convergence
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will be slow. Sometimes this can be resolved by working with the matrix
A − κI, whose eigenvalues are λ1 − κ, ..., λn − κ. For example, let A have
eigenvalues 1, 0 and −0.99. In this case the ratio will be 0.99, but if we take
κ = −0.5, the eigenvalues will shift to 1.5, 0.5 and −0.49 and thus the ratio
will improve to 1/3.

The shifting of a matrix is an example of spectral enhancement. The
next section of this chapter discusses a much more powerful one: the shift-
and-invert operation.

The shifted power method

Input : matrix A, shift κ, convergence criterion ε, nonzero starting
vector x and maximum number of iterations n.

Output: approximate eigenpair (µ, x)
1 PowerMethod (A, κ, ε, x, n)
2 Anorm← 1/ ‖A‖F
3 xnorm← 1/ ‖x‖2
4 x← x · xnorm
5 for i ∈ {1, ..., n} do
6 y ← Ax
7 µ← x∗y
8 r ← y − µx
9 x← y − κx

10 xnorm← 1/ ‖x‖2
11 x← x · xnorm
12 if ‖r‖2 ·Anorm ≤ ε then
13 return (µ, x)
14 end

15 end
16 error

17 end

Algorithm 2: The shifted power method

The MATLAB implementation of Algorithm 2 is in A.1.1. A couple of
remarks to the algorithm above:

• Intermediate parameters y = Ax, xnorm and Anorm are used to
avoid some computations. Furthermore, floating-point divisions are
expensive so both xnorm and Anorm are the inverse of the norm of
the matrices x and A.

• The code returns an error after a maximum number of iterations is
reached so that the algorithm stops if it does not converge.
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• The convergence test given in Theorem 2.1.6 is based on the eigenpair
(µ, x) but Algorithm 2 returns (µ, x̃) were x̃ is the next iteration of
x. Strictly speaking we can’t assure x̃ is the eigenvector of a nearby
matrix A − E, but since it is the result of an extra iteration it will
almost always be a better approximation of the real eigenvector.

2.2 The inverse power method

The main flaw of the power iteration, the fact that it only computes the dom-
inant eigenvalue, can be overcome by finding a proper spectral enhancement.
The traditional one for doing so is called the shift-and-invert enhancement
and applying it to the power iteration results in the inverse power method.

2.2.1 Shift-and-invert enhancement and the Rayleigh quo-
tient method

Let A have eigenvalues λ1, ..., λn and let us assume λ1 is simple. If we have
an approximation κ of the eigenvalue λ1, then the eigenvalues of the matrix
(A− κI)−1 are

µ1 =
1

λ1 − κ
, ..., µn =

1

λn − κ

from where we can conclude that µ1 → ∞ as κ → λ1. Therefore we can
transform any eigenvalue into a dominant one and the dominance can be as
large as we want. As a result, the inverse power method is nothing but the
power method applied to the enhanced matrix A− κI.

Let us see why the Rayleigh quotient defined in Definition 2.1.2 can be
used to provide a better approximation to the eigenvalue than a random
shift κ. Let qj be the unitary approximation to the dominant eigenvector of
A computed in the jth iteration of the power method. If qj were to be an
exact eigenvector of A then

Aqj = λqj =⇒ q∗jAqj = λq∗j qj = λ,

and q∗jAqj would be an exact eigenvalue. Thus if qj is an approximate
eigenvector of A then, due to the continuity of the matrix multiplication,
q∗jAqj would be an approximate eigenvalue of A. Consequently, replacing
κ with µ at every iteration will improve the convergence. This method is
referred to as the Rayleigh quotient method and provided A is hermitian,
using it can enhance the convergence of the power iteration to be, at least,
quadratic.
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2.2.2 Implementation details

Due to the nature of the shift-and-invert enhancement, the residual can be
computed almost for free. Let

y = (A− κI)−1 x, x̂ =
y

‖y‖2
and w =

x

‖y‖2
= (A− κI)x̂.

Then, by taking
ρ = x̂∗ (A− κI) x̂ = x̂∗w

the residual can be written as

r = (A− κI)x̂− λx̂ = (A− κI) x̂− x̂∗ (A− κI) x̂x̂ = w − ρx̂.

The Rayleigh quotient shift con be computed as µ = κ+ ρ because

µ = κ+ ρ = κ+ x̂∗(A− κI)x̂ = κ+ x̂∗Ax̂− κ = x̂∗Ax̂.

Hence the algorithm can be presented as:

Input : matrix A, shift κ, convergence criterion ε, nonzero starting
vector x and maximum number of iterations n.

Output: approximate eigenpair (µ, x)

1 InversePowerMethod (A, κ, ε, x, n)
2 Anorm← 1/ ‖A‖F
3 for i← 1 to n do
4 y ← (A− κI)−1x (solve the system (A− κI) y = x)
5 ynorm← 1/ ‖y‖2
6 x̂← y · ynorm
7 w ← x · ynorm
8 ρ← x̂∗w
9 µ← κ+ ρ

10 r ← w − ρx̂
11 x← x̂
12 κ← µ
13 if ‖r‖2 ·Anorm ≤ ε then
14 return (µ, x)
15 end

16 end
17 error

18 end

Algorithm 3: The inverse power method

The major work on this algorithm consists on solving the system on
row 3 and some care must be taken so as not to increase too much the
running time. It is usually solved using LU decomposition with Gaussian
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elimination and partial pivoting, which runs in O(n3). Again, depending
on the matrices we are working with solving the system could be cheaper.
They can be structured, for example.

The MATLAB code is in A.1.2.





Chapter 3

First steps towards an
efficient QR algorithm

3.1 Introduction

Let us start by saying that

unless otherwise indicated, in this chapter A will be a complex matrix of
order n.

The QR algorithm reduces a matrix A to triangular Schur form by uni-
tary similarity transformations. Most discussions of it start by showing the
following naive approach:

Input : matrix A
Output: triangular matrix T

1 naiveqr (A)
2 A0 ← A
3 k ← 0
4 while not convergence do
5 Choose shift κk
6 Factor Ak − κkI = QkRk, where Qk is unitary and Rk is upper

triangular (QR factorization)
7 Ak+1 = RkQk + κkI
8 k ← k + 1

9 end
10 return Ak
11 end

Algorithm 4: First approach to the QR algorithm

This routine is simplistic and far removed from the versions of QR used
in practice. However, it usually presented for two reasons: the sake of
historical accuracy −Kublanovskaya’s version works this way and so does

23
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Rutishauser’s precursory LR algorithm− and its usefulness to relate the
shifted version of QR with the shifted inverse power method and the un-
shifted version with the power method. Before anything else, let us prove
the following results:

Lemma 3.1.1. For every step k of the QR method, matrices Ak+1 and Ak
are unitarily similar.

Proof. In line 6 of Algorithm (4) a QR factorization of Ak is computed:
Ak − κkI = QkRk, with Qk unitary and Rk upper triangular. Then, Rk =
Q∗k(Ak − κkI) and plugging this on line 7 of Algorithm 4:

Ak+1 = RkQk−κkI = Q∗k(Ak−κkI)Qk+κkI = Q∗kAkQk−κkI+κkI = Q∗kAkQk

Noticing that we have defined A0 = A on line 2 of algorithm (4) leads
to this corollary:

Corollary 3.1.2. For every step k, the matrix Ak computed by the QR
algorithm is unitarily similar to the initial matrix A.

Lemma 3.1.3. Hermitian matrices remain unchanged under a QR step,
that is, if A is hermitian then so is Ak for every k.

Proof. We know from Lemma 3.1.1 that Ak+1 = Q∗kAkQk, from which using
Corollary 3.1.2 we infer

Ak = Q∗k · · ·Q∗0AQ0 · · ·Qk.

Then
A∗k = (Q∗k · · ·Q∗0AQ0 · · ·Qk)∗ = Q∗k · · ·Q∗0A∗Q0 · · ·Qk

and if A is hermitian, A∗ = A, so

A∗k = Q∗k · · ·Q∗0AQ0 · · ·Qk = Ak.

3.2 The shifted QR algorithm and the inverse power
method

The above-mentioned connection between the shifted QR and the inverse
power method is in reality an accesory to prove that this method approaches
a deflation to the Schur form, which is what makes this algorithm worth
considering for the computation of eigenvalues and eigenvectors. To see the
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intuition behind this, let (λ, q) be a left eigenpair of the matrix A and let
Q =

[
Q∗ q

]
be unitary. Then

Q∗AQ =

[
Q∗∗AQ∗ Q∗∗Aq
q∗AQ∗ q∗Aq

]
=

[
B̂ ĥ
ĝ∗ µ̂

]
(3.1)

where ĝ∗ = q∗AQ∗ = λq∗Q∗ = 0 and µ̂ = q∗Aq = λq∗q = λ due to Q being
unitary. Thus,

Q∗AQ =

[
B̂ ĥ
ĝ∗ µ̂

]
=

[
B̂ ĥ
0 λ

]
.

Our search has been reduced to the matrix B̂. (In these cases it is said that
the problem has been deflated.)

In practice, though, this procedure does not make much sense, since
eigenvalues and eigenvectors of A, B̂, etc. are required, which are exactly the
ones this project looks for. Nevertheless, by choosing q to be an approximate
of an eigenvector, ĝ∗ in (3.1) will be small as ‖ĝ‖2 is the norm of the residual
q∗A − µ̂q∗. Let us prove this. Let rµ̂ = q∗A − µ̂q∗. Following the proof of
Theorem 2.1.7 −where (µ̂, q∗) is a left eigenpair instead of a right one−,
‖rµ̂‖2 = |q∗Aq − µ̂|2 + ‖ĝ‖2. Thus, if we choose µ̂ = q∗Aq then ‖rµ̂‖ = ‖ĝ‖.

The following theorem specifies which q does the algorithm implicitly
choose by linking it to the inverse power method and as a result making the
procedure worth considering for the computation of both eigenvalues and
eigenvectors.

Theorem 3.2.1. The QR method chooses q to be a vector produced by the
inverse power method with shift κ applied to the vector en, where en is the
nth canonical vector. What is more, if A is partitioned in the form

A =

[
B h
g∗ µ

]
(3.2)

it suggests the starting shift κ = µ.

Proof. Rewrite the QR factorization of A− κI:

A− κI =
[
Q∗ q

] [R∗
r∗

]
=⇒

[
Q∗∗
q∗

]
(A− κI) =

[
R∗
r∗

]
.

R is upper triangular so, r∗ = rnne
∗
n. Therefore

q∗(A− κI) = rnne
∗
n =⇒ q∗ = rnne

∗
n(A− κI)−1,

which means that the last column of the Q matrix calculated by the QR
algorithm is the result of the inverse power method with shift κ applied to
the vector en.

Now, partition A in the form (3.2). Then, following Theorem 2.1.7, in
which we proved that the residual rν = Au−νu is minimized when ν = u∗Au

u∗u
for some u 6= 0. The starting vector en implies that ν = e∗nAen = µ.
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3.2.1 Convergence of the shifted QR algorithm

We now know that the shifted QR method approaches the deflation to a
Schur form of a given complex matrix A. Furthermore, the reason for this
is that the shifted QR routine can be related to the inverse power method,
which was explained in §2.2. However, at which rate does the problem
converge?

Theorem 3.2.2. The convergence of the shifted QR algorithm is locally
quadratic.

Proof. If A is partitioned in the form (3.2), the QR algorithm will converge
to a deflated matrix if ĝ in (3.1) converges to zero. Lets obtain a bound of
the norm of ĝ using ‖g‖2. Partition Ak − κkI = QR in the form

Ak − κkI =

[
Bk − κkI hk

g∗k µk − κk

]
=

[
P f
e∗ π

] [
S r
0 ρ

]
= QR

and Ak+1 − κkI = RQ in

Ak+1 − κkI =

[
Bk+1 − κkI hk+1

g∗k+1 µk+1 − κk

]
=

[
S r
0 ρ

] [
P f
e∗ π

]
= RQ.

Let us now drop the subscripts to simplify the notation:

A− κI =

[
B − κI h
g∗ µ− κ

]
=

[
P f
e∗ π

] [
S r
0 ρ

]
= QR (3.3)

and

Â− κI =

[
B̂ − κI ĥ
ĝ∗ µ̂− κ

]
=

[
S r
0 ρ

] [
P f
e∗ π

]
= RQ. (3.4)

Notice in (3.4) that

ĝ∗ = ρe∗ =⇒ ‖ĝ‖2 ≤ |ρ| ‖e‖2 (3.5)

so further information on the absolut value of ρ and the norm of e is needed
to bound that of ĝ. First, since Q is unitary, the norms of its rows and
columns must be one, i.e., ‖e‖22 + π2 = 1 = ‖f‖22 + π2, and so

‖e‖2 = ‖f‖2 . (3.6)

Now, from (3.3) and assuming S is nonsingular, we have

g∗ = e∗S =⇒ g∗S−1 = e∗ =⇒ e =
(
g∗S−1

)∗
=⇒

‖e‖2 =
∥∥(g∗S−1)∗∥∥

2
=
∥∥(S−1)∗g

∥∥
2
≤
∥∥S−1∥∥

2
‖g‖2 = σ ‖g‖2 .

(Remember that ‖·‖2 is consistent and that ‖A‖2 = ‖A∗‖2 for every A ∈
Cn×n.) Briefly,

‖e‖2 ≤ σ ‖g‖2 . (3.7)
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On the other hand, to obtain a bound on ρ, rewrite (3.3) using the fact
that Q is unitary [

P ∗ e
f∗ π

] [
B − κI h
g∗ µ− κ

]
=

[
S r
0 ρ

]
and find that ρ = f∗h + π(µ − κ). Using (3.6), (3.7), and that |π| ≤ 1 due
to |π| ≤ 1; we conclude

‖ρ‖2 = ‖f∗h+ π(µ− κ)‖2 ≤ ‖f‖2 ‖h‖2+|π| |µ− κ| ≤ ‖e‖2 ‖h‖2+|µ− κ| =⇒

‖ρ‖2 ≤ σ ‖g‖2 ‖h‖2 + |µ− κ| . (3.8)

Finally, substituting (3.7) and (3.8) in (3.5)

‖ĝ‖ ≤ σ ‖g‖2
(
σ ‖g‖2 ‖h‖2 + |µ− κ|

)
= σ2 ‖g‖22 ‖h‖2 + σ ‖g‖2 |µ− κ| =⇒

‖ĝ‖ ≤ σ2 ‖g‖22 ‖h‖2 + σ ‖g‖2 |µ− κ| . (3.9)

Restoring the iteration subscripts, the result is

‖gk+1‖2 ≤ σ
2
k ‖gk‖

2
2 ‖hk‖2 + σk ‖gk‖2 |µk − κk|

where some addends can be simplified. First, remembering that all the
iterations of QR are unitarily similar to the initial matrix A −as was proved
in Corollary 3.1.2− and looking on (3.2):

‖hk‖22 ≤ ‖hk‖
2
2 + |µ|2 = ‖Aken‖22 ≤ ‖Ak‖

2
2 ‖en‖

2
2 = ‖Ak‖22 = ‖A‖22 .

Then ∃ η > 0 where ‖hk‖2 ≤ η and

‖gk+1‖2 ≤ σ
2
kη ‖gk‖

2
2 + σk ‖gk‖2 |µk − κk| .

This expressions suggests, apart from the one seen in Theorem 3.2.1, another
reason to choose µk = κk as the appropriate shift on every iteration: it gives
an upper bound for the norm of gk+1 on terms of the square of ‖gk‖2.
Therefore,

‖gk+1‖2 ≤ σ
2
kη ‖gk‖

2 .

Finally, σk =
∥∥S−1k ∥∥2 can be proved to be smaller than a constant σ for

small enough values of gk. (It is not an easy task to prove this property
rigorously. Let us just say that it is based on the important fact that the
factors Q and R of the QR factorization of a matrix A depend continuously
on the elements of A.) So, letting σk ≤ σ for all k leads to

‖gk+1‖ ≤ σ2η ‖gk‖2 . (3.10)
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Remark 3.2.1. The convergence of the shifted QR method is said to be lo-
cally quadratic and not simply quadratic because the condition

∥∥S−1k ∥∥2 ≤ σ
only holds for small enough values of gk. Therefore the convergence analysis
is not global. What is more, it does not exist a theoretical result ensuring
the global convergence of the QR algorithm for any given matrix A. Experi-
ence has shown that the method at first consumes some iterations in which
the convergence is very slow or it seems to not converge, and later starts to
converge very fast. Subsequent eigenvalues need fewer and fewer iterations
to converge. This has to do with the relation between the QR algorithm
and the power method, which is the subject of the next section.

Remark 3.2.2. We mentioned that it does not exist any result ensuring
the global convergence of the QR algorithm. [13] and [14] treat this matter
meticulously.

Example 3.2.1. (i) Once quadratic convergence is reached, the conflu-
ence is very fast. For example substitute σ2η = 1 and ‖g0‖ = 10−1 in
(3.10):

‖g1‖2 ≤ 10−2

‖g2‖2 ≤ 10−4

‖g3‖2 ≤ 10−8

‖g4‖2 ≤ 10−16

Four iterations are enough to reduce the error by a factor correspond-
ing to the double-precision rounding unit.

(ii) If A0 is Hermitian then so is every Ak −check Theorem 3.1.3− and
thus, in (3.3), hk = gk which means η = ‖gk‖2 and our bound has
been improved to

‖gk+1‖2 ≤ σ
2 ‖gk‖32 .

This type of convergence is even faster. Take σ2 = 1 and ‖g0‖ = 10−1:

‖g1‖2 ≤ 10−3

‖g2‖2 ≤ 10−9

‖g3‖2 ≤ 10−27

In three iterations the error has been reduced way below the double-
precision rounding unit.
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3.3 The unshifted QR algorithm and the power
method

The connection of the QR algorithm with the inverse power method ex-
plains why the convergence to a particular eigenvalue is quick. But the
method, however more slowly, produces approximations to the other eigen-
values. This is due to the relation between the QR routine and the power
method.

As it has been shown in Lemma 3.1.1, each step of the QR routine
consists of a unitary similarity transformation Ak+1 = Q∗kAQk. At the end
of the process we will need a single transformation that will move A = A0 to
Ak+1. This can be achieved by accumulating the transformations, in other
words, setting

Q̆k = Q0 · · ·Qk (3.11)

then

Q̆∗kA0Q̆k = Ak+1.

And this matrix Q̆k has more applications:

Theorem 3.3.1. Let Q0, ..., Qk and R0, ..., Rk be the orthogonal and trian-
gular matrices generated by the QR algorithm with shifts κ0, ..., κk starting
with the matrix A. Let

Q̆k = Q0 · · ·Qk and R̆k = Rk · · ·R0.

Then

Q̆kR̆k = (A− κkI) · · · (A− κ0I). (3.12)

Proof. We will proceed by induction over k.

• k=0.
The QR routine characterizes A1 as A1 = R0Q0 + κ0I where Q0 is
unitary. So

R0 = (A1 − κ0I)Q∗0 = Q∗0(A− κ0I)Q0Q
∗
0 = Q∗0(A− κ0I).

That is,

Q̆0R̆0 = Q0R0 = (A− κ0I).

• Induction hypothesis.

Assume Q̆k−1R̆k−1 = (A− κk−1I) · · · (A− κ0I) it is true.

• The general −kth− case.
By the QR routine characterization Ak+1 is Ak+1 = RkQk−κkI, thus

Rk = (Ak+1 − κkI)Q∗k = Q̆∗k(A− κkI)Q̆kQ
∗
k.
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Notice (3.11), then

Rk = (A− κkI)Q∗k = Q̆∗k(A− κkI)Q̆k−1.

Postmultiply R̆k−1:

R̆k = RkR̆k−1 = Q̆∗k(A− κkI)Q̆k−1R̆k−1.

By the induction hypothesis:

R̆k = Q̆∗k(A− κkI)(A− κk−1I) · · · (A− κ0I).

That is,

Q̆kR̆k = (A− κkI) · · · (A− κ0I).

It is from this result that we derive the relationship between the unshifted
QR algorithm and the power method. The unshifted QR algorithm uses
shifts κk = 0, so by (3.12)

Q̆kR̆k = Ak.

Remembering that R̆k is upper triangular, R̆ke1 = r̆
(k)
11 e1. Therefore

Q̆kR̆ke1 = r̆
(k)
11 Q̆ke1 = Ake1,

which means that the first column of Q̆k is the normalized result of applying
k iterations of the power method to e1. Here, assuming that the conditions
for the convergence of the power method are met −check Theorem 2.1.5−,

the vectors q̆
(k)
1 approach the dominant eigenvector of A. To see this, let

Q̆k =
[
q̆
(k)
1 Q̆

(k)
∗

]
. Then Ak −the kth iterate of A through the unshifted

QR algorithm− is

Ak = Q̆∗kAQ̆k =

[(
q̆
(k)
1

)∗(
Q̆

(k)
∗
)∗
]
A
[
q̆
(k)
1 Q̆

(k)
∗

]
=

[(
q̆
(k)
1

)∗
Aq̆

(k)
1

(
q̆
(k)
1

)∗
AQ̆

(k)
∗(

Q̆
(k)
∗
)∗
Aq̆

(k)
1

(
Q̆

(k)
∗
)∗
AQ̆

(k)
∗

]
,

that is,

Ak =

[(
q̆
(k)
1

)∗
Aq̆

(k)
1

(
q̆
(k)
1

)∗
AQ̆

(k)
∗(

Q̆
(k)
∗
)∗
Aq̆

(k)
1

(
Q̆

(k)
∗
)∗
AQ̆

(k)
∗

]
=

[
µk h∗k
gk Bk

]
.

This is the same process as that of the beginning of §3.2, but with right

eigenvectors and eigenvalues instead of left ones. We know that q̆
(k)
1 ap-

proximates the dominant eigenvector of A, then gk → 0 and the Rayleigh

quotient
(
q̆
(k)
1

)∗
Aq̆

(k)
1 = µk → λ1 where λ1 is the dominant eigenvalue of A.
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3.3.1 Convergence of the unshifted QR algorithm

As is often fashion in mathematics, the convergence of the unshifted QR
routine can be proved as a special case of a more general result: under the
right circumstances the unshifted QR algorithm actually triangularizes A.

Remark 3.3.1. From now on some special notation will be used sometimes.
Let A be a matrix of order n, then |A| does not refer to its determinant but
to a matrix where its elements are the elements of A in absolute value. That
is,

|A| =

|a11| · · · |a1n|...
. . .

...
|an1| · · · |ann|

 .
Theorem 3.3.2. Let X−1AX = Λ = diag(λ1, ..., λn) where

|λ1| > · · · > |λn| . (3.13)

Suppose that X−1 has an LU factorization X−1 = LU , where L is unit
lower triangular, and let X = QR be the QR factorization of X. If Ak has
the QR factorization Ak = Q̆kR̆k, then there are diagonal matrices Dk with
|Dk| = I such that Q̆kDk −→ Q.

Proof. By hypothesis,

X−1AX = Λ =⇒ Ak = XΛkX−1 = QRΛkLU = QR(ΛkLΛ−k)(ΛkU).

Due to L being lower triangular, for all i > j,

(ΛkLΛ−k)i,j = `ij

(
λi
λj

)k
.

Thus by (3.13), ΛkLΛ−k −→ I. Now, write (ΛkLΛ−k) = I + Ek where
Ek −→ 0. Hence,

Ak = QR(ΛkLΛ−k)(ΛkU) = QR(I + Ek)(Λ
kU) = Q(I +REkR

−1)(RΛkU).

Letting Q̂kR̂k be the QR decomposition of I +REkR
−1,

Ak = (QQ̂k)(R̂kRΛkU);

and since I + REkR
−1 −→ I, by the continuity of the elements of the QR

factorization, both R̂k −→ I and Q̂k −→ I. Define δ1, ..., δn to be the
diagonal elements of R̂kRΛkU and

Dk = diag

(
δ1
|δ1|

, ...,
δn
|δn|

)
.
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As a consequence, the triangular factor (the one on the right) in the decom-
position

Ak = (QQ̂kD
−1
k )(DkR̂kRΛkU)

has positive diagonal elements, and by the uniqueness of the QR decom-
position Q̆k = QQ̂kD

−1
k . Finally,

Q̆kDk = QQ̂k −→ Q

Corollary 3.3.3. Under the conditions of Theorem 3.3.2 the unshifted QR
algorithm produces a sequence of matrices converging to a triangular matrix.

Proof. The columns of the Q-factor of X are the Schur vectors of A corre-
sponding to the eigenvalues in the order (3.13). Therefore, with its columns
suitably scaled the matrix Q̆k converges to the orthogonal part of the Schur
decomposition of A. Then the QR iterates Ak = Q̆∗kAQ̆k must converge to
the triangular factor of the Schur decomposition of A.

3.4 Making the QR iteration practical: the Hes-
senberg form

Let us look back to the implementation written in Algorithm 4 and calculate
its time complexity. The most expensive computation inside the iteration
is the QR decomposition in line 4, which runs in O(n3). Since at least one
iteration per eigenvalue is needed, the operation count of finding all the
eigenvalues is, at the very least, O(n4).

The solution to this problem is to somehow compute the QR decomposi-
tion in a cheaper way. In §4.4 and §5.4 we will see that the QR decomposition
of upper Hessenberg matrices can be done in O(n2). These matrices have
the following form (for dimension n = 5):

X X X X X
X X X X X
0 X X X X
0 0 X X X
0 0 0 X X

 .
(In this representation, called Wilkinson diagram, the zeros stand for a zero
element and the crosses for elements that may be nonzero.) Computing the
QR decomposition in O(n2) brings down the total operation count of the
QR method to O(n3). The important fact is that any matrix can be reduced
to upper Hessenberg form. Here is the way to do it.
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3.4.1 Householder transformations

The mentioned reduction is accomplished by a class of transformations called
Householder transformations or elementary reflectors. Such a transforma-
tion is a matrix of the form

H = I − uu∗ where ‖u‖2 =
√

2

or
H = I − 2uu∗ with ‖u‖2 = 1.

They can be cheaply applied to any matrix A:

HA = (I − uu∗)A = A− u(u∗A),

AH = A(I − uu∗) = A− (Au)u∗.

Lemma 3.4.1. A Householder transformation is Hermitian and unitary.

Proof. Let H = I −uu∗ be an elementary reflector. Then, on the one hand,

H∗ = (I − uu∗)∗ = I∗ − (uu∗)∗ = I − uu∗ = H,

which makes H Hermitian. On the other hand,

HH∗ = H∗H = H2 = (I − uu∗)(I − uu∗) = I − uu∗ − uu∗ + uu∗uu∗ =

I − 2uu∗ + ‖u‖22 uu
∗ = I − 2uu∗ + 2uu∗ = I,

so H is unitary.

Householder transformations will be used in this work to introduce zeros
in any vector:

Theorem 3.4.2. Let a 6= 0 be a vector and let

u =
ρ a
‖a‖2

+ e1√
1 + ρ a1

‖a‖2

where |ρ| = 1, a1 is the first element of the vector a, and ρa1 > 0. Then

Ha = (I − uu∗)a = −νe1,

where ν ∈ C.

Proof. Let z = ρ a
‖a‖2

, then ‖z‖2 = |ρ| ‖a‖2‖a‖2
= 1. Set z1 = ρ a1

‖a‖2
−z1 is the

first element of the vector z. Thus we have to prove that if

u =
z + e1√
1 + z1

, (3.14)
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then

H

(
‖a‖2
ρ

z

)
= (I − uu∗)

(
‖a‖2
ρ

z

)
= −νe1 for some ν ∈ C.

Which can be written as

‖a‖2
ρ

Hz =
‖a‖2
ρ

(I − uu∗)z = −νe1.

Taking (3.14) we deduce that

u∗ =
z∗ + e∗1√

1 + z1
.

Hence,

uu∗ =
1

1 + z1
(z + e1)(z

∗ + e∗1) =
1

1 + z1
(zz∗ + ze∗1 + e1z

∗ + e1e
∗
1).

Now,

(I − uu∗)z = z − 1

1 + z1
(zz∗z + ze∗1z + e1z

∗z + e1e
∗
1z).

By setting c = 1
1+z1

and noticing that

ze∗1z = z1z and e1e
∗
1z =


z1
0
...
0

 ,
then

(I − uu∗)z = z − c ‖z‖22 z − cz1z − c ‖z‖
2
2 e1 − c


z1
0
...
0

 .
Here z is unitary and

z =

z1...
zn

 ,
so

(I − uu∗)z =

z1...
zn

−
cz1...
czn

−
 cz21

...
cz1zn

−

c
0
...
0

−

cz1
0
...
0

 .



Chapter 3. First steps towards an efficient QR algorithm 35

That is,

(I − uu∗)z =


z1 − cz1 − cz21 − c− cz1

z2 − cz2 − cz1z2
...

zn − czn − cz1zn

 .

Here, for rows 2 through n,

zi − czi − cz1zi = zi − czi(1 + z1),

and since c = 1
1+z1

,

zi − czi − cz1zi = zi − zi = 0.

And for the first row:

z1 − cz1 − cz21 − c− cz1 = z1 − c− cz1 − cz1(1 + z1) = z1 − c− cz1 − z1 =

= −c− cz1 = −c(1 + z1) = −1

That is,

(I − uu∗)z =


−1
0
...
0

 .

Finally, by setting ν =
‖a‖2
ρ ,

‖a‖2
ρ

Hz =
‖a‖2
ρ

(I − uu∗)z = −νe1.

This result suggests the following O(m) −where m is the length of the
vector a− running-time algorithm to generate Householder transformations.
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Its MATLAB implementation can be found in A.2.1.

Input : vector a.
Output: vector u and contant ν.

1 housegen (a)
2 u← a
3 ν ← ‖a‖2
4 if ν = 0 then

5 u1 ←
√

2
6 return

7 end
8 if u1 6= 0 then

9 ρ← u1
|u1|

10 end
11 else
12 ρ← 1
13 end
14 u1 ← 1 + u1
15 u← u√

u1

16 ν ← −ρν
17 end

Algorithm 5: Generation of a Householder transformation

3.4.2 Reduction to Hessenberg form

Theorem 3.4.2 shows how to use elementary reflectors to introduce zeros in
a vector. By accumulating these transformations any matrix can be reduced
to upper Hessenberg form.

Theorem 3.4.3. Let A be a matrix of order n. Then there exist a unitary
matrix H such that

H∗AH = U

where U is in upper Hessenberg form.

Proof. Partition A in the form

A =

[
α11 a∗12
a21 A22

]
and let Ĥ1 be a Householder transformation such that

Ĥ1a21 = ν1e1.

By setting H1 = diag(1, Ĥ1), then

H1AH1 =

[
α11 a∗12Ĥ1

Ĥ1a21 Ĥ1A22Ĥ1

]
=

[
α11 a∗12Ĥ1

ν1e1 Ĥ1A22Ĥ1

]
.
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We have made zero the elements in positions (k, 1) for k = 3, 4, ..., n.
For the general step, let us assume that we have generated k−1 reflectors

such that

Hk−1 · · ·H1AH1 · · ·Hk−1 =

A11 a1k A∗1,k+1

0 αkk a∗k,k+1

0 ak+1,k Ak+1,k+1


where A11 is a Hessenberg matrix of order k−1. Now create a transformation
such that

Ĥkak+1,k = νke1.

And again, by setting Hk = diag(Ik, Ĥk),

HkHk−1 · · ·H1AH1 · · ·Hk−1Hk =

A11 a1k A∗1,k+1Ĥk

0 αkk a∗k,k+1Ĥk

0 νke1 ĤkAk+1,k+1Ĥk

 .
For achieving the reduction to upper Hessenberg form of a matrix of

order n, n − 2 of the Householder transformations built above are needed.
Once they are generated,

Hn−2 · · ·H1AH1 · · ·Hn−2 = U

will hold, where U is in upper Hessenberg form. Setting H = H1 · · ·Hn−2,
taking into account that every elementary reflector is Hermitian then H∗ =
(H1 · · ·Hn−2)

∗ = H∗n−2 · · ·H∗1 = Hn−2 · · ·H1 it can be concluded that

H∗AH = U.

This result can be packed into a neat algorithm −Algorithm 6− that
reduces a matrix A to its upper Hessenberg form.

The routine performs both on the first and second loop multiplications
of vectors and matrices, which run on O(n2). Both loops iterate from 1 to
n− 2 so the total running time is O(n3). The MATLAB implementation of
Algorithm 6 can be found in A.2.1.

This algorithm is backwards stable. Let Ĥk be the exact Householder
transformation generated from the computed Ak and let Q̂ = Ĥ1 · · · Ĥn−2.
Then there is a matrix E satisfying

‖E‖2
‖A‖2

= γnεM

such that the computed Hessenberg matrix H satisfies

H = Q̂∗(A+ E)Q̂.
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In this case γn is a slowly growing function of n. Thus, the computed
Hessenberg form is the exact Hessenberg form of A + E where ‖E‖2 is of
the order of the rounding unit compared to ‖A‖2.

Input : matrix A of order n.
Output: reduced matrix H and transformation matrix Q.

1 hessreduce (A)
2 H ← A
3 Q← I
4 for k ∈ {1, ..., n− 2} do
5 /* Generate the Householder transformation that

annihilates the k-th column */

6 [u,Hk+1,k]← housegen(H{k+1,...,n},k)

7 Q{k+1,...,n},k ← u

8 /* Multiply the transformation on the left */

9 v ← u∗ ·H{k+1,...,n},{k+1,...,n}
10 H{k+1,...,n},{k+1,...,n} ← H{k+1,...,n},{k+1,...,n} − u · v
11 H{k+2,...,n},k ← 0

12 /* Multiply the transformation on the right */

13 v ← H{1,...,n},{k+1,...,n} · u
14 H{1,...,n},{k+1,...,n} ← H{1,...,n},{k+1,...,n} − v · u∗

15 end
16 /* Accumulate the transformations on matrix Q */

17 for k ∈ {n− 2, ..., 1} do
18 u← Q{k+1,...,n},k
19 v ← u∗ ·Q{k+1,...n},{k+1,...,n}
20 Q{k+1,...n},{k+1,...,n} ← Q{k+1,...n},{k+1,...,n} − u · v
21 Q{1,...,n},k ← ek
22 end

23 end

Algorithm 6: Reduction to upper Hessenberg form

3.4.3 Invariance of the Hessenberg form under a QR step

It will later be implemented a O(n3) running time QR routine using the
Hessenberg form. But does the QR iteration preserve this form?

Theorem 3.4.4. Hessenberg form is preserved by QR iteration.

Proof. Let A be an invertible matrix. Hence, its QR decomposition can be
computed using the Gram-Schmidt process. If A =

[
a1 · · · an

]
then its
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QR decomposition has the factors

Q =
[
e1 · · · en

]
and R =


e∗1a1 · · · · · · e∗1an

0
. . .

...
...

. . .
. . .

...
0 · · · 0 e∗nan


where

u1 = a1 =⇒ e1 =
u1
‖u1‖

u2 = a2 −
u∗1a2
u∗1u1

u2 =⇒ e2 =
u2
‖u2‖

...

uk = ak −
k−1∑
j=1

u∗jak

u∗juj
uj =⇒ ek =

uk
‖uk‖

.

Then the decomposition of Ai − κiI will lead to an upper Hessenberg Q,
since the jth column of Q is a linear combination of the leading j columns
of Ai − κiI. The RQ product will be upper Hessenberg too, as R is upper
triangular. Adding κiI does not cause losing the upper Hessenberg form.





Chapter 4

The explicitly shifted QR
algorithm

4.1 Introduction

Once the foundations of an O(n3) implementation of the QR algorithm have
been laid, it is time to address the technicalities that make it possible. The
goal of the QR routine is to compute the Schur triangulation of any given
matrix A. Nevertheless, there exist two different Schur decompositions: the
complex form and the real form. This chapter explains the technical details
of the explicitly shifted QR algorithm, which computes the complex Schur
form. Hence,

in this chapter A will be a complex matrix of order n.

4.2 Negligible elements and deflation

If the QR routine is applied to an upper Hessenberg form matrix H, then,
from what has been learned in §3.2, hn,n−1 is expected to rapidly converge
to zero. Simultaneously, from §3.3 other subdiagonal elements hi+1,i may
tend to zero and if some of those can be regarded as negligible the problem
deflates and computations are saved. The criteria we will use to select
negligible subdiagonals is the following:

Lemma 4.2.1. Let hi+1,i be a subdiagonal element of an upper Hessenberg
form matrix H. If

|hi+1,i| ≤ εM ‖A‖F where εM is the machine epsilon, (4.1)

then setting hi+1,i = 0 is, normwise, equivalent to making a relative pertur-
bation in A of the size of the rounding unit.

41
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Proof. To simplify the discussion let us assume that the current value Â
of A has been calculated without error. Then there exists an orthogonal
matrix Q such that Â = Q∗AQ. Setting hi+1,i = 0 means replacing Â by
Ã = Â− hi+1,iei+1e

∗
i . Now,

Ã = Â− hi+1,iei+1e
∗
i = Q∗AQ−Q∗Qhi+1,iei+1e

∗
iQ
∗Q,

and by taking E = Qhi+1,iei+1e
∗
iQ
∗

Ã = Q∗AQ−Q∗EQ = Q∗(A− E)Q.

Now, as was showed in Proposition 1.1.2 the Frobenius norm is unitarily
invariant, thus

‖Q∗(A− E)Q‖F = ‖A− E‖F ≤ ‖A‖F + ‖E‖F .

Here, looking at the definition of E, E = Qhi+1,iei+1e
∗
iQ
∗, so

‖E‖F = ‖Qhi+1,iei+1e
∗
iQ
∗‖F = ‖hi+1,iei+1e

∗
i ‖F = |hi+1,i| ‖ei+1e

∗
i ‖F = |hi+1,i| .

Hence,
‖A‖F + ‖E‖F ≤ ‖A‖F + |hi+1,i| ,

and by (4.1)

‖A‖F + ‖E‖F ≤ ‖A‖F + εM ‖A‖F =⇒ ‖E‖F ≤ εM ‖A‖F =⇒

‖E‖F
‖A‖F

≤ εM , (4.2)

which means that the perturbation matrix E is of the size of the rounding
unit compared to A.

When applying the QR algorithm to a Hessenberg matrix, subdiagonal
elements tend to converge to zero starting from the element (n, n − 1) and
proceeding upward on the subdiagonal. That is the reason why algorithms
that find negligible elements implement a backsearch. In any case, subdiag-
onal elements in other positions may deflate too, in which case the routine is
to be implemented between those rows. In the case of the following Wilkin-
son diagram, 

X X X X X X X X X
X X X X X X X X X
0 X X X X X X X X

0 0 0 X X X X X X
0 0 0 X X X X X X
0 0 0 0 X X X X X

0 0 0 0 0 0 X X X
0 0 0 0 0 0 0 X X
0 0 0 0 0 0 0 0 X


,
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the problem must be deflated twice: first, between rows four and seven and
then between rows one and four.

Algorithm 7 searches, starting from the southeast and going up the sub-
diagonal and in O(n) time, deflation rows in an upper Hessenberg matrix. If
it returns indices i1 and i2, where i1 < i2, then the matrix is to be deflated
between those rows. Else, it will return i1 = i2 = 1 and the matrix is de-
flated and thus the complex Schur form has been computed. The MATLAB
implementation can be consulted in A.3.1.

Input : upper Hessenberg matrix H, index `.
Output: indices i1, i2.

1 backsearch (H, `)
2 i1 ← `
3 i2 ← `
4 while i1 > 1 do
5 if hi1,i1−1 is negligible then
6 hi1,i1−1 ← 0
7 if i1 = i2 then
8 i2 ← i1 − 1
9 i1 ← i1 − 1

10 end
11 else
12 return
13 end

14 end
15 else
16 i1 ← i1 − 1
17 end

18 end

19 end

Algorithm 7: Algorithm that finds deflation rows in a Hessenberg
matrix.

4.3 The Wilkinson shift

After selecting the range [i1, i2] into which to perform the QR step, its time
to choose a shift. Theorem 3.2.1 settles a shift for which the QR algorithm
obtains quadratic convergence, but if we operate on a real matrix H with
complex eigenvalues the algorithm will not converge, as complex eigenvalues
cannot be approximated by real shifts. We can jump this ditch using the
Wilkinson shift, which is nothing but the eigenvalue of the matrix

W =

[
hi2−1,i2−1 hi2−1,i2
hi2,i2−1 hi2,i2

]
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nearest to hi2,i2 . Furthermore, as the method converges, element hi2,i2−1 will
approach to 0. Hence, the submatrix W will be close to upper triangular,
so its eigenvalues will be converging to the diagonal elements. Thus, the
nearest eigenvalue to hi2,i2 will be itself. Consequently, the Wilkinson shift
will approach the Rayleigh quotient shift as hi2,i2−1 → 0, maintaining the
quadratic convergence.

This 2×2 eigenvalue problem is solved by applying the usual root formula
to the characteristic polynomial of the matrix. Let the last matrix be

W =

[
a b
c d

]
.

Then by taking the shifted matrix

W − dI =

[
a− d b
c 0

]
the problem has been simplified: no longer is the eigenvalue nearest to d
wanted, computing the smallest eigenvalue of W − dI is now the goal. To
see why, let (λ, x) be an eigenpair of W − dI. Then,

(W − dI)x = λx =⇒Wx− dx = λx =⇒Wx = (λ+ d)x.

In other words, the eigenvalues of W can be written as κ = λ+ d, where λ
is an eigenvalue of W − dI and d is southeastest element of W . As a result,
the eigenvalue of W closest to d is the smallest eigenvalue, in absolute value,
of W − dI plus d. Now, take the characteristic polynomial

pW−dI(λ) = λ2 − (a− d)λ− bc

and set p = a−d
2 and q = bc. Then,

pW−dI(λ) = λ2 − 2pλ− q.

Its roots are

λ = p±
√
p2 + q = p± r.

Notice that r is the square root of p2 + q, so if this sum happens to be
very small then there is danger of underflow when applying the square root.
To avoid this, the largest root is computed first and then the smallest is
deduced using the relation λminλmax = −q. The largest root is determined
using |λ|2 = |p± r|2 = |p|2 ± 2 · Re (pr) + |r|2 −line 10 of Algorithm 8−.
All of the above can be neatly resumed in the following routine −whose
MATLAB code is in A.3.2−:
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Input : elements a, b, c and d of the matrix B.
Output: eigenvalue of B nearest to d.

1 wilkshift (a, b, c, d)
2 κ← d
3 s← |a|+ |b|+ |c|+ |d|
4 if s = 0 then
5 return
6 end

7 q ← ( bs) · (
c
s)

8 if q 6= 0 then

9 p← 0.5 ·
(
(as )− (ds )

)
10 r ←

√
p2 + q

11 if Re(p) · Re(r) + Im(p) · Im(r) < 0 then
12 r ← −r
13 end
14 κ← κ− s ·

( q
p+r

)
15 end

16 end

Algorithm 8: Computation of the Wilkinson shift

Notice the scaling factor s in line 3 of Algorithm 8. It is cancelled in
line 14 and it is introduced so that the product bc does not overflow. There
may also be scaling factors cheaper to compute, e.g., s = Re(a) + Im(a) +
Re(b) + Im(b). The algorithm runs in constant time O(1).

4.4 Implicit QR factorization and RQ product

The goal of the QR routine is to introduce zeros in the subdiagonal of an
upper Hessenberg matrix. Although we already know how to introduce those
zeros by using Householder transformations, it is more efficient to do so in
a different way.

Definition 4.4.1. A plane rotation −or Givens rotation− is a matrix of
the form

P =

[
c s
−s c

]
where |c|2 + |s|2 = 1.

Remark 4.4.1. The transformation is called a rotation because in the real
case it rotates 2-vectors clockwise through the angle θ = arccos(c).

Lemma 4.4.1. Plane rotations can introduce zeros in a 2-vector.
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Proof. Let a 6= 0 and let

[
a
b

]
be a 2-vector. Set

ν =

√
|a|2 + |b|2, c =

|a|
ν
, and s =

a

|a|
b

ν
.

Then[
c s
−s c

] [
a
b

]
=

[ |a|
ν

ab
|a|ν

− ab
|a|ν

|a|
ν

][
a
b

]
=

 a|a|
ν + a|b|2

ν|a|

− |a|
2b
|a|ν + |a|b

ν

 =

[
a(|a|2+|b|2)

ν|a|
0

]
=

[
νa/ |a|

0

]
.

That is, [
c s
−s c

] [
a
b

]
=

[
νa/ |a|

0

]
. (4.3)

Zeros can be introduced anywhere in a matrix in a similar way.

Definition 4.4.2. A plane rotation in the (i, j)-plane is a matrix of the
form

Pij =



i j

1 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
...

0 · · · 1 0 · · · 0 0 · · · 0
i 0 · · · 0 c · · · s 0 · · · 0

...
...

...
. . .

...
...

...
j 0 · · · 0 −s · · · c 0 · · · 0

0 · · · 0 0 · · · 0 1 · · · 0
...

...
...

...
...

. . .
...

0 · · · 0 0 · · · 0 0 · · · 1


.

That is, a rotation in the (i, j)-plane is an identity matrix in which a plane
rotation has been introduced in the submatrix corresponding to rows and
columns i and j.

Remark 4.4.2. Let us see the effect of premultiplication and postmultipli-
cation by Pij :

• Let

Y = PijX.

If X and Y are partitioned by rows

y∗i = cx∗i + sx∗j ,



Chapter 4. The explicitly shifted QR algorithm 47

y∗j = cx∗j − sx∗i ,

y∗k = x∗k ∀ k 6= i, k.

Expressly, premultiplication by a rotation in the (i, j)-plane combines
rows i and j and leaves other intact.

• Let

Y = XP ∗ij .

Then if X and Y are partitioned by columns

yi = cxi + sxj ,

yj = −sxi + cxj ,

yk = xk ∀ k 6= i, j.

In other words, postmultiplication by a rotation in the (i, j)-plane
alters only columns i and j.

To sum up, Algorithm 9 generates a Givens rotation satisfying (4.3) in
O(1) time. If b = 0, then it returns the identity rotation, and if a = 0,
exchanges the two elements of the vector. The scalar τ is nothing but a
scaling factor to avoid both overflow and underflow; and it could be replaced
by, for example, τ = |Re(a)| + |Im(a)| + |Re(b)| + |Im(b)| −this version of
τ saves computations. c and s, too, could be defined in a different way in
Lemma 4.4.1, but the version given makes the final value of c real, which
saves some work in practice. The MATLAB code of Algorithm 9 can be
found in A.3.3.

On the other hand, Algorithm 10 is a simple routine combining the only
two vectors that are involved in the application of a rotation generated by
Algorithm 9. Its MATLAB code can be found in A.3.3. It works in O(n)
and can be used in different ways:

PX ≡ rotapp(c, s,Xi,{1,...,n}, Xj,{1,...,n}),

P ∗X ≡ rotapp(c,−s,Xi,{1,...,n}, Xj,{1,...,n}),

XP ≡ rotapp(c,−s,Xi,{1,...,n}, Xj,{1,...,n}),

XP ∗ ≡ rotapp(c, s,Xi,{1,...,n}, Xj,{1,...,n}).
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Input : scalars a and b.
Output: overwritten scalars a and b, and scalars c and s defining the

plane rotation.
1 rotgen (a, b)
2 if b = 0 then
3 c← 1
4 s← 0
5 return

6 end
7 if a = 0 then
8 c← 0
9 s← 1

10 a← b
11 b← 0

12 end
13 µ← a/ |a|
14 τ ← |a|+ |b|

15 ν ← τ ·
√
|a/τ |2 + |b/τ |2

16 c← |a| /ν
17 s← ν · b/ν
18 a← ν · µ
19 b← 0

20 end

Algorithm 9: Generation of a plane rotation

Input : scalars c and s, vectors x and y.
Output: overwritten vectors x and y.

1 rotapp (c, s, x, y)
2 t← c · x+ s · y
3 y ← c · y − s · x
4 x← t

5 end

Algorithm 10: Application of a plane rotation

Finally, it is time to put together all the pieces developed previously
into an algorithm that reduces an upper Hessenberg matrix to its complex
Schur form. If the upper triangular form of any given matrix A is what we
want, then it has to be used alongside hessreduce −Algorithm 6. Provided
a deflation strategy is used, then it is stable in the usual sense −Definition
1.1.4. This implementation returns an error when a maximum iteration
count is exceeded, so that it will not run forever if convergence does not
happen. Real-life implementations, on the contrary, try ad hoc shifts to
push the algorithm into convergence.
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There is no theoretical result assuring the global convergence of the al-
gorithm −check Remark 3.2.2−, but tipically hqr takes several iterations to
deflate to the first eigenvalue, then some less to deflate to the second one,
and so on. Eventually the subdiagonals of H become small enough so that
quadratic convergence is achieved. If at some point i1 > 1 further computa-
tions are saved. Assuming at most k iterations are needed to compute each
eigenvalue and that i1 = 1 then we get an upper bound to the operation
count of kn3, i.e., hqr runs, at most, in O(n3). The MATLAB code is in
A.3.3.

Remark 4.4.3. As a follow up to Remark 3.2.2, we can now give an example
of a matrix that fails to converge under QR iteration:

Y =

0 0 1
1 0 0
0 1 0

 .
Feel free to try it in the implementation given above. Practical algorithms
use exceptional shifts for the matrices that do not converge. That is why, if
you try to compute the eigenvalues of Y with, for example, the commands
MATLAB, LAPACK or Wolfram Mathematica have implemented it will
converge.
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Input : upper Hessenberg matrix H, upper bound for iterations
maxiter.

Output: real Schur form overwritten in H, transformation matrix Q.
1 hqr (H,maxiter)
2 i1 ← 1
3 i2 ← n
4 iter ← 0
5 c← {0, n..., 0}
6 s← {0, n..., 0}
7 while true do
8 iter ← iter + 1
9 if iter > maxiter then

10 error
11 end
12 oldi2 ← i2
13 {i1, i2} ← backsearch(H, i2)
14 if i2 = 1 then
15 return
16 end
17 if i2 6= oldi2 then
18 iter ← 0
19 end
20 κ← wilkshift(hi2−1,i2−1, hi2−1,i2 , hi2,i2−1, hi2,i2)
21 hi1,i1 ← hi1,i1 − κ
22 for i ∈ {i1, ..., i2 − 1} do
23 {hi,i, hi+1,i, ci, si} ← rotgen(hi,i, hi+1,i)
24 hi+1,i+1 ← hi+1,i+1 − κ
25 {Hi,{i+1,...,n}, Hi+1,{i+1,...,n}} ←

rotapp(ci, si, Hi,{i+1,...,n}, Hi+1,{i+1,...,n})

26 end
27 for i ∈ {i1, ..., i2 − 1} do
28 {H{1,...,i+1},i, H{1,...,i+1},i+1} ←

rotapp(ci, si, H{1,...,i+1},i, H{1,...,i+1},i+1)

29 {Q{1,...,n},i, Q{1,...,n},i+1} ←
rotapp(ci, si, Q{1,...,n},i, Q{1,...,n},i+1)

30 hi,i ← hi,i + κ

31 end
32 hi2,i2 ← hi2,i2 + κ

33 end

34 end

Algorithm 11: Schur form of an upper Hessenberg matrix
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4.5 Eigenvectors of the complex Schur form

Now that we know how to compute the complex Schur decomposition of a
general complex matrix A, and thus its eigenvalues, it is time to compute
the inseparable companion of the eigenvalues: the eigenvectors. If A =
QTQ∗ is the complex Schur decomposition of A and Y is the matrix of right
eigenvectors of T , then the matrix of right eigenvectors of A is QY . Let us
see why. Let (λi, xi) be an eigenpair of A for all i = 1, ..., n. Thus, due to
Q∗A = TQ∗,

Axi = λixi =⇒ Q∗Axi = Q∗xiλi for every i ∈ {1, ..., n}.

Hence, by setting X =
[
x1 · · · xn

]
and Λ = diag(λ1, ..., λn),

Q∗AX = Q∗XΛ =⇒ TQ∗X = Q∗XΛ.

Taking Q∗X = Y ,
TY = Y Λ,

thus Y contains the right eigenvectors of T in columns. Since we set Q∗X =
Y , then X = QY which is what we wanted to prove. This means that if
Y is the matrix of right eigenvectors of T then QY is the matrix of right
eigenvectors of A.

Because of this, we can use the Schur decompositions eigenvectors to
compute those of A. Let T be the Schur decomposition of A and partition
it the following way:

T =

T11 t1k T1,k+1

0 τkk t∗k,k+1

0 0 Tk+1,k+1

 .
If τkk is a simple eigenvalue of T , then−(T11 − τkkI)−1t1k

1
0


is an eigenvector of T , that is,T11 t1k T1,k+1

0 τkk t∗k,k+1

0 0 Tk+1,k+1

−(T11 − τkkI)−1t1k
1
0

 = τkk

−(T11 − τkkI)−1t1k
1
0

 .
Lets prove it. First, realize thatT11 t1k T1,k+1

0 τkk t∗k,k+1

0 0 Tk+1,k+1

−(T11 − τkkI)−1t1k
1
0

 = τkk

−(T11 − τkkI)−1t1k
1
0


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if and only ifT11 t1k T1,k+1

0 τkk t∗k,k+1

0 0 Tk+1,k+1

−(T11 − τkkI)−1t1k
1
0

−τkk
−(T11 − τkkI)−1t1k

1
0

 = 0.

Now, −T11(T11 − τkkI)−1t1k + t1k
τkk
0

−
−τkk(T11 − τkkI)−1t1k

τkk
0

 =

−T11(T11 − τkkI)−1t1k + t1k + τkk(T11 − τkkI)−1t1k
0
0

 =

−(T11 − τkkI)(T11 − τkkI)−1t1k + t1k
0
0

 =

−t1k + t1k
0
0

 = 0

On to the main argument, writing the kth eigenvector in the formx(k)1

1
0


the first row can be obtained by solving the upper triangular system

(T11 − τkkI)x
(k)
1 = −t1k, (4.4)

and by writing this system in the more general form (T − µI)x = b an

algorithm to compute x
(k)
1 can be derived more easily. Partitioning the last

equality as [
T∗ − µI t∗

0 τ − µ

] [
x∗
ξ

]
=

[
b∗
β

]
(4.5)

and looking to the second row gives (τ − µ)ξ = β, and so

ξ =
β

τ − µ
.

From the first row of (4.5) we infer that

(T∗ − µI)x∗ + ξt∗ = b∗ =⇒ (T∗ − µI)x∗ = b∗ − ξt∗,
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which is a triangular system of order one less than the original, which can be
further reduced by recursively applying the same procedure. All this gives
the following algorithm to solve original system (4.4):

1 x← b
2 for j ∈ {n, n− 1, ..., 1} do
3 xj ← xj/(Tjj − µ)
4 x{1,...,j−1} ← x{1,...,j−1} − xj · T{1,...,j−1},j
5 end

This is, grosso modo, how the eigenvectors of a complex Schur form will
be computed. Two details have to be taken care of though. The first one:
the shift µ applied in (4.5) will be a diagonal element of the matrix T ; then,
if the matrix has multiple eigenvalues, some diagonal element of T11 may be
equal to τkk and the algorithm will try to divide by zero. This is avoided
by substituting values of τ − µ smaller than µ · εM by this quantity. It
seems inappropriate to substitute an essentially zero value by an arbitrary
number, but as seen in Lemma 4.2.1, this replacement corresponds to a small
perturbation in A.

The second problem is that the values of an eigenvector can be of widely
varying size. Thus, computing them may result in overflow. Since eigenvec-
tors are defined up to scalar factor, we will normalize them when there is
danger of overflowing. This normalization, at the same time, can provoke
the underflow of other elements. However, as it has been seen in Lemma
4.2.1, setting them to zero is equivalent to a small perturbation in A.

Algorithm 12 implements in O(n3) the computation of the eigenvectors
of a triangular matrix A. The MATLAB code can be found in A.3.4. Some
comments about it:

• Numbers smallnum and bignum are considered to avoid underflow
and overflow, respectively. The first one is usually taken as n

εM
w where

w is a number just above the underflow point. In a similar way, the
second one is chosen as εM

n v where v is a number near the overflow
point.

• The algorithm is stable in the sense that each eigenvector satisfies

(T + Ei)xi = tiixi where
‖Ei‖
‖T‖

≤ γεM (4.6)

for some constant γ. The matrix Ei is different for every eigenvector
thus the eigenvalue-eigenvector decomposition may not be stable in
the usual sense.
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Input : upper triangular matrix T
Output: matrix X containing, in columns, the normalized right

eigenvectors of T .
1 righteigvec (T )
2 n← size(T )
3 smallnum← a small number above the underflow point
4 bignum← a number near the overflow point
5 for k ∈ {n, n− 1, ..., 1} do
6 X{1,...,k−1},k ← −T{1,...,k−1},k
7 xk,k ← 1
8 X{k+1,...,n},k ← 0

9 dmin← max{εM · |tk,k| , smallnum}
10 for j ∈ {k − 1, ..., 1} do
11 d← tj,j − tk,k
12 if |d| ≤ dmin then
13 d← dmin
14 end
15 if |xj,k| /bignum ≥ |d| then
16 s← |d| / |xj,k|
17 X{1,..,k},k ← s ·X{1,...,k},k
18 end
19 xj,k ← xj,k/d
20 X{1,...,j−1},k ← X{1,...,j−1},k − xj,k · T{1,...,j−1},j
21 end
22 X{1,...,k},k ← X{1,...,k},k/

∥∥X{1,...,k},k∥∥2
23 end

24 end

Algorithm 12: Right eigenvectors of an upper triangular matrix



Chapter 5

The implicitly shifted QR
algorithm

5.1 Introduction

The previous chapter describes a variant of the QR algorithm that computes
the complex Schur form of any given complex matrix. All the same, complex
arithmetic is much more expensive than real arithmetic and thus should be
avoided when possible. The Hessenberg reduction of a real matrix happens
in real arithmetic, therefore only the reduction to Schur form has to be
altered to avoid complex arithmetic. The implicitly shifted QR routine is
an adaptation of the previous algorithm that computes the real Schur form
of any matrix as such decomposition always exists. But first, a note:

From now on A will be a real matrix of order n.

Now, on to the main point.

Theorem 5.1.1 (Real Schur form). Let A be of order n. Then there is an
orthogonal matrix U such that T = U tAU is block upper triangular of the
form

T = U tAU =


T11 T12 T13 · · · T1k
0 T22 T23 · · · T2k
0 0 T33 · · · T3k
...

...
...

. . .
...

0 0 0 · · · Tkk

 . (5.1)

The diagonal blocks of T are of order one or two. The block of order one
contain the real eigenvalues of A. The blocks of order two contain the pairs
of complex conjugate eigenvalues of A. The blocks can be made to appear in
any order.

55
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Proof. Let (λ, x) be a complex eigenpair where

λ = µ+ iν and x = y + iz.

Firstly, note the following two equalities:

x+ x = y + iz + y − iz = 2y =⇒ y =
x+ x

2

x− x = y + iz − y + iz = 2iz =⇒ z =
i(x− x)

2
.

Then by using these identities and the fact that if Ax = λx then Ax = λx,

Ay = A

(
x+ x

2

)
=
Ax

2
+
Ax

2
=
λx

2
+
λx

2
=
x(µ+ iν)

2
+
x(µ− iν)

2
=

µx

2
+
µx

2
+
iνx

2
− iνx

2
= µ

(
x+ x

2

)
− ν
(
i(x− x)

2

)
= µy − νz

and

Az = A

(
i(x− x)

2

)
=
iAx

2
− iAx

2
=
iλx

2
− iλx

2
=
ix(µ− iν)

2
− ix(µ+ iν)

2
=

µ

(
i(x− x)

2

)
+ ν

(
x+ x

2

)
= νy + µz.

That is, Ay = µy − νz and Az = νy + µz; or more compactly

A
[
y z

]
=
[
y z

] [ µ ν
−ν µ

]
=
[
y z

]
L.

(Note that the eigenvalues of L are λ and λ:∣∣∣∣µ− υ ν
−ν µ− υ

∣∣∣∣ = (υ − µ)2 + ν2 = υ2 − 2µυ + µ2 + ν2 =⇒

υ =
2µ±

√
4µ2 − 4µ2 − 4ν2

2
=

2µ± 2iν

2
= µ± iν =⇒ υ = λ or υ = λ.)

Now let
[
y z

]
=
[
Q1 Q2

] [R
0

]
be the QR decomposition of

[
y z

]
,

then
[
y z

]
= Q1R. It can be proved −Theorem 1.3 of [1]− that if a

complex vector is an eigenvector of a matrix then its imaginary and real
parts are independent; thus y and z are independent, R is nonsingular and
so Q1 =

[
y z

]
R−1. Hence,

AQ1 = A
[
y z

]
R−1 =

[
y z

]
LR−1 = Q1RLR

−1.
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Now,[
Qt1
Qt2

]
A
[
Q1 Q2

]
=

[
Qt1AQ1 Qt1QA2

Qt2AQ1 Qt2AQ2

]
=

[
Qt1Q1RLR

−1 Qt1AQ2

Qt2Q1RLR
−1 Qt2AQ2

]
and remembering that the columns and rows of the Q-factor of a QR de-
composition form an orthonormal basis[

Qt1
Qt2

]
A
[
Q1 Q2

]
=

[
RLR−1 Qt1AQ2

0 Qt2AQ2

]
,

and thus the deflation is completed. RLR−1 is similar to L so its eigenvalues
are λ and λ. Following the notation given in (5.1) we have proved that

U t1AU1 =

[
T11 Qt1AQ2

0 Qt2AQ1

]
.

Therefore, to complete the proof and reach the matrix given in (5.1), the
matrix Qt2AQ1 has to be deflated by blocks. This is achieved by repeating
the process above for the complex eigenpairs, and the process seen at the
beginning of §3.2 −but with right eigenpairs instead of left eigenpairs− for
the real eigenpairs.

A single step of the implicitly shifted QR algorithm does three things:
look for almost zero −or negligible− elements and 2×2 blocks and deflate
the problem if any are found, compute the double shift and chase the bulge.
The next three sections explain and implement each of those parts.

5.2 Negligible 2×2 blocks and deflation

The convergence of the shifted QR algorithm, once it is asymptotic, depends
on the eigenvalues of the matrix that define the shift, i.e.,[

hn−1,n−1 hn−1,n
hn,n−1 hnn

]
.

If those eigenvalues are complex and nondefective hn−1,n−2 converges quadra-
tically to zero, and if they are real and nondefective, both hn−1,n−2 and
hn,n−1 converge quadratically to zero. Else, elements hn−1,n−2 or hn,n−1
may slowly converge to zero and so deflation of both simple elements and
2× 2 blocks must be allowed. Algorithm 13 is a generalization of Algorithm
7 that allows the deflation of those blocks and simple elements. Negligible
elements are detected with the same criteria as in (4.1). The MATLAB
implementation is in A.4.1.
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Input : Hessenberg matrix H, index `.
Output: indices i1 and i2 such that one of following condition holds:

(i) 1 ≤ i1 < i2 ≤ ` and the matrix deflates at rows i1 and i2.

(ii) 1 = i1 = i2 and the matrix is deflated.

1 backsearch2 (H, `)
2 i1 ← `
3 i2 ← `
4 while i1 > 1 do
5 if Hi1,i1−1 is negligible or i2 = 2 then
6 if i2 6= 2 then
7 Hi1,i1−1 ← 0
8 end
9 if i1 = i2 − 1 or i2 = 2 then

10 /* Process the 2× 2 block */

11 if i2 6= 2 then
12 i1 ← i1 − 1
13 i2 ← i1 − 1

14 end
15 else
16 i1 ← 1
17 i2 ← 1

18 end

19 end
20 else if i1 = i2 then
21 i1 ← i1 − 1
22 i2 ← i1 − 1

23 end
24 else
25 return
26 end

27 end
28 else
29 i1 ← i1 − 1
30 end

31 end

32 end

Algorithm 13: Finding deflation rows in a real upper Hessenberg
matrix.
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5.3 The double shift

The key to perform the QR routine in real arithmetic is a happy little idea.
Let κ be a complex Wilkinson shift, then its conjugate κ is also a candidate
for a shift. Assume two steps of the QR algorithm are applied, one with
shift κ and the second with shift κ, resulting in the matrix Ĥ. By Theorem
3.3.1 if

Q̆R̆ = (H − κI)(H − κI)

is the QR factorization of (H − κI)(H − κI), then Ĥ = Q̆HQ̆. But

(H − κI)(H − κI) = H2 − (κ+ κ)H + κκI = H2 − 2 Re(κ)H + |κ| I,

which is real; and as H is real then so must be Q̆ and Ĥ. This method is
referred to as the Francis double shift strategy.

So now the plan is to compute H2 − 2 Re(κ)H + |κ| I, then calculate its
Q-factor Q̆ and produce Ĥ = Q̆HQ̆. But this is not practical at all, as the
first two operations run in O(n3). Fortunately, Francis itself provided a sling
for this broken arm by demonstrating a property of the upper Hessenberg
matrices.

5.3.1 Implicit Q theorem

The reduction of a matrix A to upper Hessenberg form is not unique −check
Lemma 5.3.1. Nonetheless, there is some limit to this nonuniqueness and
that is what the implicit Q theorem proves. But first, some hypothesis must
be provided in order to prove the result.

Lemma 5.3.1. Let H = QtAQ be a unitary reduction of A to Hessenberg
form. Then there exists another reduction to Hessenberg form Ĥ = Q̂tAQ̂
that only differs on the rescaling of the elements of Ĥ and the scaling of the
columns of Q̂ by a modulus of factor one. Thus the rescalling does not make
essential difference and the reduction is said to be determined up to column
scaling of Q.

Proof. Let D be a matrix of order n with |D| = I −remember Remark
3.3.1. Defining Q̂ = QD, the columns of Q̂ are nothing but the columns of
Q rescaled by a factor of modulus one. Now

Ĥ = Q̂tAQ̂ = DQtAQD = DHD,

which means that ĥij = diihijdjj . Therefore Ĥ is also upper Hessenberg
and its elements are the elements of H rescaled.

Definition 5.3.1. Let H be upper Hessenberg of order n. Then H is
unreduced if hi+1,i 6= 0 ∀i ∈ {1, ..., n− 1}.
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Theorem 5.3.2 (Implicit Q theorem). Let A be of order n and let H =
QtAQ be a unitary reduction of A to upper Hessenberg form. If H is unre-
duced then up to column scaling of Q the matrices Q and H are uniquely
determined by the first column of Q.

Proof. By hypothesis,

H = QtAQ =⇒ QH = AQ,

then by partitioning Q =
[
q1 ... qn

]
and taking into account that H is

upper Hessenberg
Aq1 = h11q1 + h21q2. (5.2)

So by premultiplying (5.2) by qt1 and remembering that the columns of the
Q-factor form a orthonormal basis, then

h11 = qt1Aq1.

Now that the north westest element of H is known,

h21q2 = Aq1 − h11q1,

where the right part of the equality must be nonzero since it was hypothe-
sized that h21 6= 0. ‖q1‖2 = 1 thus by taking h21 = ‖Aq1 − h11q1‖2 then

q2 =
Aq1 − h11q1
‖Aq1 − h11q1‖2

.

For the general case, assuming that q1, ..., qk have been defined and with
them the elements of the respective columns of H

Aqk = h1kq1 + · · ·+ hkkqk + hk+1,kqk+1.

By orthonormality of the columns of Q,

hik = qtiAqk, for all i ∈ {1, ..., k}

and
hk+1,kqk+1 = Aqk − h1kq1 − · · · − hkkqk.

SinceH is unreduced then hk+1,k 6= 0 and so must beAqk−h1kq1−· · ·−hkkqk,
hence by taking

hk+1,k = ‖Aqk − h1kq1 − · · · − hkkqk‖2
qk+1 is determined up to a modulus of factor one.

Lastly, from the last column of (5.2)

hin = qtiAqn, for all i ∈ {1, ..., n}.
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5.3.2 Implementation of the double shift

Let us go back to the plan defined at the beginning of this section: compute
C = H2 − 2 Re(κ)H + |κ| I, calculate its Q-factor Q̆ and produce Ĥ =
Q̆HQ̆. The implicit Q theorem, provided the first column of the matrix C,
paves the path to an efficient implementation of the Francis double shift.
Remembering the proof of Theorem 3.4.4, the first column of the Q-factor
Q̆ is nothing but the first column of C divided by its norm. Therefore to
compute Q̆ and produce Ĥ = Q̆HQ̆ we only need the first column of C. Let
us see how to calculate it without explicitly computing C itself.

We do not need to compute κ itself to know Re (κ) and |κ|, because κ
and κ are the eigenvalues of the matrix[

hn−1,n−1 hn−1,n
hn,n−1 hn,n

]
,

therefore the roots of the characteristic polynomial

x2 − (hn−1,n−1 + hn,n)x+ (hn−1,n−1hn,n − hn−1,nhn,n−1);

from where

x2 − (hn−1,n−1 + hn,n)x+ (hn−1,n−1hn,n − hn−1,nhn,n−1) = (x− κ)(x− κ),

and

x2−(hn−1,n−1+hn,n)x+(hn−1,n−1hn,n−hn−1,nhn,n−1) = x2−(κ+κ)x−κκ.

Hence,

t = 2 Re (κ) = κ+ κ = hn−1,n−1 + hn,n = tr

[
hn−1,n−1 hn−1,n
hn,n−1 hn,n

]
(5.3)

and

d = |κ|2 = κκ = hn−1,n−1hn,n − hn−1,nhn,n−1 = det

[
hn−1,n−1 hn−1,n
hn,n−1 hn,n

]
.

(5.4)
Now, as H is upper Hessenberg only the first three components of the first
column of H2 are non zero:h11 h12

h21 h22
0 h32

[h11
h21

]
=

 h211 + h12h21
h21(h11 + h22)

h21h32

 .
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Then the first three components of the first column of C are

c1c2
c3

 =

h211 + h12h21 − th11 + d
h21(h11 + h22)− th21

h21h32

 .
Insert (5.3) and (5.4) and develop the sums:

c =

c1c2
c3

 =

h211 + h12h21 − (hn−1,n−1 + hnn)h11 + (hn−1,n−1hnn − hn−1,nhn,n−1)
h21(h11 + h22)− (hn−1,n−1 + hnn)h21

h21h32

 =

h211 + h12h21 − hn−1,n−1h11 − hnnh11 + hn−1,n−1hnn − hn−1,nhn,n−2
h21(h11 + h22 − hn−2,n−1 + hnn + h11 − h11)

h21h32

 =

h21
(

(h211 − hn−1,n−1h11 − hnnh11 + hn−1,n−1hnn − hn−1,nhn,n−2) + h12

)
h21[(h22 − h11)− (hnn − h11)− (hn−1,n−1 − h11)]

h21h32

 =

h21

[(hnn − h11)(hn−1,n−1 − h11)− hn−1,nhn,n−2] + h12
(h22 − h11)− (hnn − h11)− (hn−1,n−1 − h11)

h32

 .
That is,

c =

c1c2
c3

 = h21

[(hnn − h11)(hn−1,n−1 − h11)− hn−1,nhn,n−2] + h12
(h22 − h11)− (hnn − h11)− (hn−1,n−1 − h11)

h32

 .
Two proportional vectors determine the same Householder transformation
so h21 can be ignored in the definition of c, hence the working Algorithm
(14) ignores it. (The same goes for the norm of the first column of C that
must have been dividing c.) Input elements are scaled to avoid underflow or
overflow on the computation of the element c1. The last row computes the
Householder transformation as that is what we set out for. The MATLAB
implementation is in A.4.2.
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Input : elements h11, h12, h21, h22, h32, hn1n1 , hn1n, hnn1 , hnn.
Output: vector u.

1 startqr2step (h11, h12, h21, h22, h32, hn1n1 , hn1n, hnn1 , hnn)
2 s← 1/max{|h11|,|h12|,|h21|,|h22|,|h32|,|hn1n1 |,|hn1n|,|hnn1 |,|hnn|}
3 h11 ← sh11
4 h12 ← sh12
5 h21 ← sh21
6 h22 ← sh22
7 h32 ← sh32
8 hn1n1 ← shn1n1

9 hn1n ← shn1n

10 hnn1 ← shnn1

11 hnn ← shnn
12 p← hnn − h11
13 q ← hn1n1 − h11
14 r ← h22 − h11

15 c←

(pq−hnn1hn1n)/h21 + h12
r − p− q
h32


16 {u, ν} ← housegen(c)

17 end

Algorithm 14: The start of an implicit QR double shift

5.4 Bulge chasing

The use of the implicit double shift creates a protrusion in the matrix.
Let R0 denote the Householder transformation corresponding to the vector
returned by Algorithm 14. Premultiplication by R0 acts only on the first
three rows and postmultiplication on the first three columns. Figure 5.1
illustrates this transformation for a matrix of dimension n = 5.

H =


X X X X X
X X X X X
0 X X X X
0 0 X X X
0 0 0 X X

 R0HR0====⇒


X X X X X
X X X X X
X X X X X
X X X X X
0 0 0 X X

 = H0

Figure 5.1: Effect of the Householder transformation corresponding to the
vector u returned by Algorithm 14.

This matrix has to be converted back to Hessenberg form and that is
achieved by chasing the bulge down the diagonal. Following with the ex-



64 5.4. Bulge chasing

ample started in Figure 5.1, first an elementary reflector R1 is applied.
This Householder transformation affects rows and columns two through four.
Check Figure 5.2.

H0 =


X X X X X
X X X X X
X X X X X
X X X X X
0 0 0 X X

 R1H0R1=====⇒


X X X X X
X X X X X
0 X X X X
0 X X X X
0 X X X X

 = H1

Figure 5.2: First step of the bulge chasing.

Now, in Figure 5.3, an elementary reflector that eliminates the unwanted
zeros on the second column is applied.

H1 =


X X X X X
X X X X X
0 X X X X
0 X X X X
0 X X X X

 R2H1R2=====⇒


X X X X X
X X X X X
0 X X X X
0 0 X X X
0 0 X X X

 = H2

Figure 5.3

This last element can be annihilated by either a Householder transfor-
mation or a plane rotation R3. This is because plane rotations can only
introduce one zero at a time. In the previous steps we wanted to introduce
more than one zero so the application of Givens rotations was out of the pic-
ture. Note that plane rotations are not simetric matrices, then if a Givens
rotation is applied instead of a Householder transformation, the matrix that
it is postmultiplied has to be the transpose of the one premultiplied.

H2 =


X X X X X
X X X X X
0 X X X X
0 0 X X X
0 0 X X X

 R3H2Rt
3=====⇒


X X X X X
X X X X X
0 X X X X
0 0 X X X
0 0 0 X X

 = H3

Algorithm 15 implements this process. It takes a Hessenberg matrix H,
the vector u resulting from Algorithm 14, and indices i1 and i2 −between
which the routine is applied in the matrix H. The result is overwritten
in H and transformations are accumulated in Q. The algorithm runs in
O(n2(i2 − i1)) and the MATLAB code is in A.4.3.
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Input : Hessenberg matrix H, vector u, indices i1 and i2.
Output: matrix H and matrix Q.

1 qr2step (H,u, i1, i2)
2 Q← I
3 for i ∈ {i1, ..., i2 − 1} do
4 j ← max{i1 − 1, i1}
5 v ← ut ·H{i,...,i+2},{j,...,n}
6 H{i,...,i+2},{j,...,n} ← H{i,...,i+2},{j,...,n} − uv
7 iu← min{i+ 3, i2}
8 v ← H{1,...,iu},{i,...,i+2} · u
9 H{1,...,iu},{i,...,i+2} ← H{1,...,iu},{i,...,i+2} − vut

10 v ← Q{1,...,n},{i,...,i+2} − vut

11 Q{1,...,n},{i,...,i+2} ← Q{1,...,n},{i,...,i+2} − vut

12 if i 6= i2 − 2 then
13 {u, ν} ← housegen(H{i+1,...,i+3},{i})

14 end
15 if i 6= i1 then
16 Hi+1,j ← 0
17 Hi+2,j ← 0

18 end

19 end
20 {Hi2−1,i2−2, Hi2,i2−2, c, s} ← rotgen(Hi2−1,i2−2, Hi2,i2−2)
21 {H{i2−1},{i2−1,...,n}, H{i2},{i2−1,...,n}} ←

rotapp(c, s,H{i2−1},{i2−1,...,n}, H{i2},{i2−1,...,n})

22 {H{1,...,i2},{i2−1}, H{1,...,i2},{i2}} ←
rotapp(c, s,H{1,...,i2},{i2−1}, H{1,...,i2},{i2})

23 {Q{1,...,n},{i2−1}, Q{1,...,n},{i2}} ←
rotapp(c, s,Q{1,...,n},{i2−1}, Q{1,...,n},{i2})

24 end

Algorithm 15: The doubly shifted QR step.

5.5 A working implementation of the implicitly
shifted QR algorithm

Algorithm 16 computes the real Schur form of any given Hessenberg matrix.
The MATLAB implementation can be found in A.4.4.

Remark 5.5.1. To follow up on Remark 3.2.2 and Remark 4.4.3, the im-
plicit QR algorithm does not converge for the matrix

Y =

0 0 1
1 0 0
0 1 0

 .
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Feel free to try it in the present implementation of the implicitly shifted
QR iteration. Again, real-life implementations use ad-hoc shifts every few
iterations if the routine fails to converge.

Input : real upper Hessenberg matrix H, maximum number of
iterations maxiter.

Output: real Schur form T , transformation matrix Q
1 hqr2
2 i1 ← 1
3 i2 ← n
4 iter ← 0
5 while true do
6 if iter > itermax then
7 error
8 end
9 oldi2 ← i2

10 {i1, i2} ← backsearch2(H, i2)
11 if i2 = 1 then
12 return
13 end
14 if i2 = oldi2 then
15 iter ← iter + 1
16 end
17 else
18 iter ← 0
19 end
20 u← startqr2step(hi1,i1 , hi1,i1+1, hi1+1,i1 , hi1+1,i1+1, hi1+2,i1+1,

hi2−1,i2−1, hi2−1,i2 , hi2,i2−1, hi2,i2 , )
21 {H,Q} ← qr2step(H,u, i1, i2)

22 end

23 end

Algorithm 16: Real Schur form of a real upper Hessenberg matrix.

Some observations about it:

• Assuming the real Schur forms needs k iterations to compute an eigen-
value and that i1 = 1 throughout the reduction, then it consumes 2kn3

floating point multiplications and 2kn3 floating point additions to com-
pute all of them. On the other hand, assuming that calculating each
eigenvalue takes k′ iterations, the complex Schur form will need 12k′n3

floating point multiplications plus 8k′n3 floating point additions. The
Real Schur form is cheaper to compute.

• The double shift algorithm is numerically −and backwards− stable in
the usual sense, very much like the single shift algorithm.
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• Although both routines are backwards stable they do not esentially
calculate the same matrices. While the eigenvalues of the real Schur
form occur in conjugate pairs, those of the complex form can drift away
from conjugacy. What is more, if the eigenvalue is ill conditioned, the
conjugate eigenvalues can drift far away from conjugacy.

5.6 Eigenvectors of the real Schur form

As in §4.5, if A = QTQ∗ is the real Schur decomposition of A and Y is the
matrix of right eigenvectors of T , then the matrix of right eigenvectors of A is
QY . We might want to use Algorithm 12 to compute the right eigenvectors
of the real Schur form T , but this form, as opposed to the complex Schur
one, has 2 × 2 blocks on the diagonal. Therefore Algorithm 12 has to be
modified. This section contains the theoretical background we developed to
obtain a generalization of Algorithm 12.

In order to do this, we have to consider two distinct cases: the case of a
real eigenvalue and the case of complex conjugate eigenvalues. Let us start
with the first one. There are two cases to consider if the eigenvalue we are
going to compute is simple: the eigenvalue located just above in the diagonal
is also simple or the eigenvalues above are complex conjugate. Let us begin
with the first case. Suppose T has the formT11 t12 t13

0 τ22 τ23
0 0 τ33

 ,
where neither τ22 nor τ33 is an eigenvalue of T11. Then we seek the eigen-
vector corresponding to λ = τ33 in the formx1ξ2

1

 .
Thus we have the equationT11 t12 t13

0 τ22 τ23
0 0 τ33

x1ξ2
1

 =

x1ξ2
1

λ. (5.5)

(The reason for putting λ on the right of the eigenvector will become clear on
the case of complex conjugate eigenvalues.) The second row of (5.5) yields

τ22ξ2 + τ23 = ξ2λ =⇒ ξ2 =
τ23

λ− τ22
.

And the first row

T11x1 + t12ξ2 + t13 = x1λ =⇒ (T11 − λI)x1 = −t12ξ2 − t13,
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hence we may obtain x1 by solving the 2×2 system (T11−λI)x1 = −t12ξ2−t13
and ξ2 by the usual back-substitution.

Let us now assume that T has the form

T =

T11 T12 t13
0 T22 t23
0 0 τ33

 ,
where τ33 is not an eigenvalue of neither T11 or T22, and T11 and T22 do not
share any eigenvalue. Thus, we seek eigenvectors of the formx1x2

1

 ,
that is, T11 T12 t13

0 T22 t23
0 0 τ33

x1x2
1

 =

x1x2
1

λ, (5.6)

where λ = τ33. From the second row we deduce that

T22x2 + t23 = λx2 =⇒ (T22 − λI)x2 = −t23.

Notice that (T22 − λI) is not singular due to τ33 not being an eigenvalue of
T22. Now, from the first row of (5.6),

T11x1 + T12x2 + t13 = λx1 =⇒ (T11 − λI)x1 = −T12x2 − t13,

where (T11 − λI) is not singular because τ33 is not an eigenvalue of T11.
Therefore, we may obtain both x1 and x2 solving linear systems.

For the case of complex conjugate eigenvalues, we split the study into two
cases: the eigenvalue above is simple or the eigenvalues above are complex
conjugate. For the first one, let us assume that T has the form

T =

T11 t12 T13
0 τ22 t∗23
0 0 T33

 ,
where τ22 is not an eigenvalue of neither T11 and T33, and T33 and T11 do
not share any eigenvalue. Thus, instead of looking for an eigenvector, we
look for an eigenbasis: a matrix of two columns of the formX1

x∗2
X3

 .
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The linear subspace spanned by the columns of this matrix contains the
real and complex parts of the eigenvectors of T33 −remember that the 2× 2
blocks located in the diagonal of a real Schur form contain complex conjugate
eigenvalues. Now, in the same way that we have generalized an eigenvector
we have to generalize the eigenvalue. This will be achieved by taking a
matrix L of order two. Thus, the eigenvalue problem has been generalized
to T11 t12 T13

0 τ22 t∗23
0 0 T33

X1

x∗2
X3

 =

X1

x∗2
X3

L. (5.7)

From the third row of (5.7) we deduce

T33X3 = X3L =⇒ L = X−13 T33X3,

i.e., L and T33 are similar and thus they have the same eigenvalues. The
second row yields

τ22x
∗
2 + T33X3 = x∗2L =⇒ x∗2(L− τ22I) = t∗23X3,

where (L− τ22I) is not singular because, by hypothesis, τ22 is not an eigen-
value of T33 and thus it is not an eigenvalue of L. The first row of (5.7)
yields

T11X1 + t12x
∗
2 + T13X3 = X1L =⇒ T11X1 −X1L = −T13X3 − t12x∗2,

which is a solvable Sylvester’s equation due to T11 and L having no com-
mon eigenvalues −check Theorem 1.16 on [1]. (Algorithm 1.1 on [1] gives an
implementation that solves Sylvester’s equations, but we will use the com-
mand sylvester available on MATLAB.) Therefore we may obtain X3 by
solving a 2× 2 system and X1 by solving a Sylvester’s equation.

On the other hand, if the eigenvalues just above happen to be complex
conjugate then T has the form

T =

T11 T12 T13
0 T22 T23
0 0 T33

 ,
where T11 and T33 do not share any eigenvalues and neither do T22 and T33.
So, we seek an eigenbasis of the formX1

X2

X3

 ,
where X3 is nonsingular, i.e.,T11 T12 T13

0 T22 T23
0 0 T33

X1

X2

X3

 =

X1

X2

X3

L. (5.8)
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Take X3 arbitrary but nonsingular. The third row yields

T33X3 = X3L =⇒ L = X−13 T33X3.

(Notice that L and T33 are similar and thus they share eigenvalues.) From
the second row of (5.8),

T22X2 + T33X3 = X2L =⇒ T22X2 −X2L = −T33X3,

is a solvable Sylvester’s equation for X2 because T22 and T33 do not share
eigenvalues. And from the first row,

T11X1 + T12X2 + T13X3 = X1L =⇒ T11X1 −X1L = −T12X2 − T13X3,

another solvable Sylvester’s equation for X1, due to T11 and T33 not having
common eigenvalues.

Now, looking back at (5.7) and (5.8), what about X3? How may we chose
it? A natural choice will be X3 = I, which is a generalization of ξ3 = 1 and
allows to form L without any computations. But chosing X3 =

[
y3 z3

]
,

where x3 = y3 + iz3 is the right eigenvector of T33, turns out to be more
convenient. Arguing as in Theorem 5.1.1, let

L =

[
µ ν
−ν µ

]
,

where µ ± iν are the eigenvalues of T33. Now, by partitioning X =
[
y z

]
,

then

TX = XL or T
[
y z

]
=
[
y z

] [ µ ν
−ν µ

]
.

This means that y± iz are the right eigenvectors of T corresponding to the
eigenvalues µ± iν. Thus this choice generates the real and imaginary parts
of the desired eigenvector.

In conclussion, the algorithm that computes the right eigenvectors of
a real Schur form T has to walk the diagonal starting from the southeast
and finishing in the northeastest element. For each element of the diagonal
it must be checked whether it is a simple eigenvalue or a 2 × 2 block and
compute accordingly. We are not done though. When implementing the
algorithm to compute the eigenbases of a real Schur matrix T some special
cases have to be considered. They are discussed below.

The first one: all the eigenvectors and eigenbases have been calculated
and the only remaining eigenvector corresponds to a simple eigenvalue. Par-
tition T the following way, [

τ11 t∗12
0 T22

]
,
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for which we seek an eigenvector of the form[
ξ1
x2

]
.

That is, [
τ11 t∗12
0 T22

] [
ξ1
x2

]
=

[
ξ1
x2

]
λ.

The second row yields

T22x2 = x2λ =⇒ T22x2 − x2λ = 0

which is a Sylvester’s equation with the solution x2 = 0. Following with the
first row

τ11ξ1 + t∗12x2 = ξ1λ =⇒ τ11ξ1 = ξ1λ,

thus we may take any ξ1 6= 0. Then e1 is an eigenvector of T corresponding
to the eigenvalue τ11.

The second one: all the eigenvectors and eigenbases have been computed
and the only remaining eigenbasis corresponds to two complex conjugate
eigenvalues. Partitioning T in the form[

T11 T12
0 T22

]
,

where T11 is the 2× 2 block containing the remaining eigenvalues. We seek
an eigenbasis of the form [

X1

X2

]
,

thus [
T11 T12
0 T22

] [
X1

X2

]
=

[
X1

X2

]
L.

The second row yields

T22X2 = X2L =⇒ T22X2 −X2L = 0,

which is a Sylvester’s equation with the solution X2 = 0. Therefore the first
row gives

T11X1 + T22X2 = X1L =⇒ L = X−11 T11X1.

We will select X1 following the result developed earlier in this section: it
will contain, in columns, the real and imaginary parts of the eigenvectors of
T11.

The third and last one: all the eigenvectors and eigenbases have been
computed, except for an eigenvector corresponding to a simple eigenvalue
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and an eigenbasis corresponding to a 2 × 2 block. Now, partitioning T in
the form τ11 t∗12 t∗13

0 T22 T23
0 0 T33


we seek an eigenbasis of the form  ξ1X2

X3

 ,
i.e., τ11 t∗12 t∗13

0 T22 T23
0 0 T33

 ξ1X2

X3

 =

 ξ1X2

X3

L.
The third row yields

T33X3 = X3L =⇒ T33X3 −X3L = 0,

which is a Sylvester’s equation with solution X3 = 0. Thus the second row
yields

T22X2 = X2L =⇒ L = X−12 T22X2,

and we will choose X2 as usual: it will contain, in columns, the real and
imaginary parts of the eigenvectors of T22. Now, on the first row

τ11ξ1 + t∗12X2 = ξ1L =⇒ ξ1(L− τ11I) = T ∗12X2,

which is a linear system.

We now have the knowledge to implement a working algorithm that
computes the eigenbases of a real Schur form. The routine we created does
not fit in a single page, so it has been divided in Algorithm 17, Algorithm 18
and Algorithm 19. The MATLAB implementation is far from being perfect.
It does take into account most of the computational aspects of the problem
and thus computes correctly the eigenbases of most matrices −as it will be
shown in Appendix B. Anyway, it overlooks both possible underflow and
overflows, so for some specific matrices the imaginary part of some complex
eigenvalues may underflow. An example of such a matrix is A = PDP−1

where P is any nonsingular matrix of order six and

D =



3 1 0 0 0 0
0 3 0 0 0 0
0 0 3 100εM 0 0
0 0 −100εM 3 0 0
0 0 0 0 2 0
0 0 0 0 0 3

 .
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Calculating the relative error of the eigenbases results in an error, as MAT-
LAB tries to divide 0/0.

This algorithm is stable in the same sense as (4.6).
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Input : complex Schur form matrix T of order n.
Output: matrix Y containing, in columns, the normalized right

eigenvectors of T .
1 hqr2 (T )
2 j ← n
3 while j 6= 0 do
4 if j = 1 then
5 y11 ← 1
6 j ← j − 1

7 end
8 else if t21 6= 0 and j = 2 then
9 y{1,2},{1,2} ← I

10 j ← j − 2

11 end
12 if tj,j−1 = 0 and j > 1 then
13 if j = 2 then
14 λ← tj,j
15 yjj ← 1
16 yj−1,j ← tj−1,j/(λ− tj−1,j−1)
17 y{1,...,j},j ← y{1,...,j},j/

∥∥y{1,...,j},j∥∥
18 j ← j − 1

19 end
20 else if tj−1,j−2 = 0 and j > 2 then
21 λ← tjj
22 yjj ← 1
23 yj−1,j ← tj−1,j/(λ− tj−1,j−1)
24 Solve the system (t{1,...,j−2},{1,...,j−2} − λI)x1 =

−t{1,..,j−2},j−1 · yj−1,j − t{1,...,j−2},j
25 y{1,...,j−2},j ← x1
26 y{1,...,j},j ← y{1,...,j},j/

∥∥y{1,...,j},j∥∥
27 j ← j − 1

28 end
29 else if j ≥ 3 then
30 λ← tjj
31 yjj ← 1
32 Solve the system

(t{j−2,j−1},{j−2,j−1} − λI)x2 = −t{j−2,j−1},j
33 y{j−2,j−1},j ← x2
34 if j > 3 then
35 Solve the system (t{1,...,j−3},{1,...,j−3} − λI)x1 =

−t{1,...,j−3},{j−2,j−1}y{j−2,j−1},j − t{1,...,j−3},j
36 y{1,...,j−3},j ← x1
37 end
38 y{1,...,j},j ← y{1,...,j},j/

∥∥y{1,...,j},j∥∥
39 j ← j − 1

40 end

41 end

42 end

43 end

Algorithm 17: Eigenbases of a real Schur form.
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Input : complex Schur form matrix T of order n.
Output: matrix Y containing, in columns, the normalized right

eigenvectors of T .
1 hqr2 (T )
2 while j 6= 0 do
3 /* The current eigenvalues are complex conjugates */

4 else
5 if j = 3 then
6 y11 ← 1
7 Z ←matrix of right eigenvectors of t{j−1,j},{j−1,j}
8 L← Z−1 · t{j−1,j},{j−1,j} · Z
9 y{2,...,j},{2,...,j} ←

[
Re(Z{1,...,n},1) Im(Z{1,...,n},1)

]
10 y{1,...,n},{j−1,j} ← y{1,...,n},{j−1,j}/

∥∥y{1,...,n},{j−1,j}∥∥
11 j ← j − 3

12 end
13 else if tj−2,j−3 = 0 and j > 3 then
14 y{j−1,j},{j−1,j} ← I

15 L← t{j−1,j},{j−1,j}
16 Solve the system x∗2(L− tj−2,j−2I) = (tj−2,{j−1,j})

∗I

17 yj−2,{j−1,j} ← x2
18 Solve Sylvester’s equation

t{1,...,j−3},{1,...,j−3}X1 −X1L =

−t{1,...,j−3},{j−1,j}I − t{1,...,j−3},j−2x∗2
19 y{1,...,j−3},{j−1,j} ← X1

20 y{1,...,j},{j−1,j} ← y{1,...,j},{j−1,j}/
∥∥y{1,...,j},{j−1,j}∥∥

21 j ← j − 2

22 end

23 end

24 end

25 end

Algorithm 18: Eigenbases of a real Schur form, part 2.
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Input : complex Schur form matrix T of order n.
Output: matrix Y containing, in columns, the normalized right

eigenvectors of T .
1 hqr2 (T )
2 while j 6= 0 do
3 else
4 else if j ≥ 4 then
5 if j > 4 then
6 y{j−1,j},{j−1,j} ← I

7 L← t{j−1,j},{j−1,j}
8 Solve Sylvester’s equation

t{j−3,j−2},{j−3,j−2}X2 −X2L = −t{j−3,j−2},{j−1,j}I
9 y{j−3,j−2},{j−1,j} ← X2

10 Solve Sylvester’s equation
t{1,...,j−4},{1,...,j−4}X3 −X3L =

−t{1,...,j−4},{j−3,j−2}X2 − t{1,...,j−4},{j−1,j}
11 y{1,...,j−4},{j−1,j} ← X3

12 end
13 else
14 y{3,4},{3,4} ← I

15 Solve Sylvester’s equation
t{1,2},{1,2}X4 −X4t{3,4},{3,4} = −t{1,2},{3,4}

16 y{1,2},{3.4} ← X4

17 end
18 y{1,...,j},{j−1,j} ← y{1,...,j},{j−1,j}/

∥∥y{1,...,j},{j−1,j}∥∥
19 j ← j − 2

20 end

21 end

22 end

23 end

Algorithm 19: Eigenbases of a real Schur form, part 3.
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Implementation in MATLAB

As the title says, this appendix contains all MATLAB implementations of
the algorithms described on the work. The code has been ordered in the same
structure of chapters, sections and subsections as above. It has also been up-
loaded to the following GitHub repository: https://github.com/gorkaerana/Bachelors-
degree-dissertation.

A.1 The power and inverse power methods

A.1.1 The power method

PowerMethod function

1 function [ lambda, z ] = PowerMethod ( A, kappa,
epsilon, x, MaxIter )

2 %GORKA ERA A ROBLES - This function is an
implementation of the shifted

3 %power method.
4 % It follows the ideas developed in 2.1.
5
6 Anorm = 1/norm(A,’fro’);
7 xnorm = 1/norm(x);
8 x = x*xnorm;
9

10 for i = 1:MaxIter
11 y = A*x;
12 mu = (x’)*y;
13 r = y - mu*x;
14 x = y - kappa*x;
15 xnorm = 1/norm(x);
16 x = x*xnorm;
17 if (norm(r)*Anorm < epsilon)

77
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18 lambda = mu;
19 z = x;
20 return
21 end
22 end
23
24 error(’Maximum number of iterations exceeded; increase

options MaxIter.’);
25
26 end

A.1.2 The inverse power method

InversePowerMethod function

1 function [ lambda, z ] = InversePowerMethod ( A, kappa
, epsilon, x, MaxIter )

2 %GORKA ERA A ROBLES - This function is an
implementation of the inverse

3 %power iteration using the Rayleigh quotient method.
4 % It follows the ideas developed in 2.2.
5
6 [m,˜] = size(A);
7
8 Anorm = 1/norm(A,’fro’);
9

10 for i = 1:MaxIter
11 y = (A - kappa*eye(m))\x;
12 ynorm = 1/norm(y);
13 x1 = y*ynorm;
14 w = x*ynorm;
15 ro = (x1’)*w;
16 mu = kappa + ro;
17 r = w - ro*x1;
18 x = x1;
19 kappa = mu;
20 if (norm(r)*Anorm <= epsilon)
21 lambda = mu;
22 z = x;
23 return
24 end
25 end
26
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27 error(’Maximum number of iterations exceeded; increase
option MaxIter.’)

28
29 end

A.2 First steps towards an efficient QR algorithm

A.2.1 Making the QR iteration practical: the Hessenberg
form

Housegen function

1 function [ u,nu ] = housegen( a )
2 %GORKA ERA A ROBLES - This function computes a vector

u that generates a
3 %Householder reflection H = I - uu* satisfying Ha =

nu e1.
4 % It follows the ideas developed in 3.4.1.
5 % Accumulating this transformations any matrix can

be reduced to upper
6 % Hessenberg form.
7
8 u = a;
9 nu = norm(a);

10 if ( nu==0 )
11 u(1) = sqrt(2);
12 return
13 end
14 if ( u(1)˜=0 )
15 rho = (u(1)’)/norm(u(1));
16 else
17 rho = 1;
18 end
19
20 u = (rho/nu)*u;
21 u(1) = 1 + u(1);
22 u = u/sqrt(u(1));
23 nu = -(rho’)*nu;
24
25 end

Hessreduce function
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1 function [ H,Q ] = hessreduce( A )
2 %GORKA ERA A ROBLES - This algorithm reduces a matrix

A of order n to upper
3 %Hessenberg form by Householder transformations.
4 % It follows the ideas developed in 3.4.2.
5
6 [n,˜] = size(A);
7 H = A;
8 Q = eye(n);
9

10 for k = 1:n-2
11 % Householder transformation "for each column/row"
12 [u,H(k+1,k)] = housegen(H(k+1:n,k));
13 Q(k+1:n,k) = u;
14
15 % Multiply transformations on left
16 v = (u’)*H(k+1:n,k+1:n);
17 H(k+1:n,k+1:n) = H(k+1:n,k+1:n) - u*v;
18 H(k+2:n,k) = 0;
19
20 % Multiply transformations on right
21 v = H(1:n,k+1:n)*u;
22 H(1:n,k+1:n) = H(1:n,k+1:n) - v*(u’);
23
24 end
25
26 % Accumulate transformations on matrix Q
27 I = eye(n);
28 for k = n-2:-1:1
29 u = Q(k+1:n,k);
30 v = (u’)*Q(k+1:n,k+1:n);
31 Q(k+1:n,k+1:n) = Q(k+1:n,k+1:n) - u*v;
32 Q(:,k) = I(:,k);
33 end

A.3 The explicitly shifted QR algorithm

A.3.1 Negligible elements and deflation

Backsearch function

1 function [ i1,i2 ] = backsearch( H,z )
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2 %GORKA ERA A ROBLES - This function finds deflating
rows on a complex Schur

3 %form matrix.
4 % It is based on the ideas developed in 4.2.
5 % Input: Hessenberg matrix H of order n; index z (1

< z <= n)
6 % Output: indices i1 and i2 (i1, i2 <= z) holding

one of the following
7 % conditions:
8 % 1) 1 <= i1 < i2 <= z, deflate at rows i1 and

i2.
9 % 2) 1 = i2 = i2, matrix is completely deflated

10
11 i1 = z;
12 i2 = z;
13 normH = norm(H,’fro’);
14
15 while (i1 > 1)
16
17 if (abs(H(i1,i1-1)) < eps*normH)
18 H(i1,i1-1) = 0;
19 if (i1 == i2)
20 i2 = i1 - 1;
21 i1 = i1 - 1;
22 else
23 return
24 end
25 else
26 i1 = i1 - 1;
27 end
28
29 end
30
31 end

A.3.2 The Wilkinson shift

Wilkshift function

1 function [ kappa ] = wilkshift( a,b,c,d )
2 %GORKA ERA A ROBLES - This function computes the

Wilkinson shift of a
3 %submatrix of order 2.
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4 % It is based on the ideas of 4.3.
5 % Input: matrix B = ( a b )
6 % ( c d )
7 % Output: shift kappa, nearest eigenvalue to d
8
9 kappa = d;

10 s = abs(a) + abs(b) + abs(c) + abs(d);
11
12 if (s == 0)
13 return
14 end
15
16 q = (b/s)*(c/s);
17
18 if (q ˜= 0)
19 p = 0.5*((a/s) - (d/s));
20 r = sqrt(p*p + q);
21 if ( (real(p)*real(r) + imag(p)*imag(r)) < 0 )
22 r = -r;
23 end
24 kappa = kappa - s*(q/(p+r));
25 end
26
27 end

A.3.3 Implicit QR factorization and RQ product

Rotgen function

1 function [ a,b,c,s ] = rotgen( a,b )
2 %GORKA ERA A ROBLES - This function generates a Givens

rotation from
3 %elements a and b. It is implemented in complex

arithmetic.
4 % It follows the ideas developed in 4.4.
5 % Input: quantities a, b where (c s ) (a) = (nu*a/

abs(a))
6 % (-s’ c’) (b) (

0 )
7 % Output: constants c and s; overwrites a with its

final version and b with
8 % zero
9



Appendix A. Implementation in MATLAB 83

10 if ( b==0 )
11 c = 1;
12 s = 0;
13 return
14 end
15 if ( a==0 )
16 c = 0;
17 s = 1;
18 a = b;
19 b = 0;
20 return
21 end
22
23 mu = a/abs(a);
24 tau = abs(real(a)) + abs(imag(a)) + abs(real(b)) + abs

(imag(b));
25 nu = tau*sqrt(abs(a/tau)ˆ2 + abs(b/tau)ˆ2);
26 c = abs(a)/nu;
27 s = mu*(b’)/nu;
28 a = nu*mu;
29 b = 0;
30
31 end

Rotapp function

1 function [ x,y ] = rotapp( c,s,x,y )
2 %GORKA ERA A ROBLES - This function takes a plane

rotation defined by c and
3 %s (the scalars returned by rotgen) and applies it to

the vectors x and y.
4 % P (xˆt). It is implemented in complex arithmetic.
5 % (yˆt)
6 % It follows the ideas developed in 4.4.
7 % Input: rotation matrix P = (c s ); vectors x and

y
8 % (-s’ c’)
9 % Output: x and y overwritten with P (xˆt)

10 % (yˆt)
11
12 t = c*x + s*y;
13 y = c*y - (s’)*x;
14 x = t;
15
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16 end

hqr function

1 function [ H,Q ] = hqr( H,Q,maxiter )
2 %GORKA ERA A ROBLES - This routine overwrites H with a

unitary similar
3 %triangular matrix whose diagonals are the eigenvalues

of H (the real Schur
4 %form). Transformations are stored in Q.
5 % It follows the ideas developed in 4.4.
6 % Input: upper Hessenberg matrix H; number of

maximum iterations maxiter
7 % Output: Schur form overwritten in H; similarity

transformation Q
8
9 [n,˜] = size(H);

10 i2 = n;
11 iter = 0;
12 c = zeros(1,n);
13 s = zeros(1,n);
14
15 while 1
16 iter = iter + 1;
17
18 if (iter > maxiter) % Throws an error if maxiter

is exceeded
19 error(’Maximum number of iterations exceeded;

increase option maxiter.’)
20 end
21
22 oldi2 = i2;
23 [i1,i2] = backsearch(H,i2); % Check subdiagonal

for near ceros, deflating points
24
25 if ( i2==1 ) % End the function if H is upper

triangular
26 return
27 end
28 if ( i2˜=oldi2 ) % Set iteration number to zero if

there is another deflating row
29 iter = 0;
30 end
31
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32 % Compute Wilkinson shift
33 kappa = wilkshift( H(i2-1,i2-1),H(i2-1,i2),H(i2,i2

-1),H(i2,i2) );
34
35 H(i1,i1) = H(i1,i1) - kappa; % Apply shift to the

element of the diagonal that is left out of the
loop

36 for j = i1:i2-1 % Loop reducing the matrix to
triangular form

37 [ H(j,j),H(j+1,j),c(j),s(j) ] = rotgen( H(j,j)
,H(j+1,j) ); % Apply rotation so that the
subdiagonal is set to zero

38 H(j+1,j+1) = H(j+1,j+1) - kappa; % Apply shift
to diagonal

39 [ H(j,j+1:n),H(j+1,j+1:n) ] = rotapp( c(j),s(j
),H(j,j+1:n),H(j+1,j+1:n) ); % Modify the
involved rows

40 end
41
42 for k = i1:i2-1 % Loop applying the back

multiplication
43 [ H(1:k+1,k),H(1:k+1,k+1) ] = rotapp( c(k),

conj(s(k)),H(1:k+1,k),H(1:k+1,k+1) );
44 [ Q(1:n,k),Q(1:n,k+1) ] = rotapp( c(k),conj(s(

k)),Q(1:n,k),Q(1:n,k+1) ); % Accumulate
transformations

45 H(k,k) = H(k,k) + kappa;
46 end
47 H(i2,i2) = H(i2,i2) + kappa; %
48
49 end

A.3.4 Eigenvectors of the complex Schur form

Righteigvec function

1 function [ X ] = righteigvec( T )
2 %GORKA ERA A ROBLES - This routine computes, given an

upper triangular
3 %matrix T, its right eigenvectors. They are stored in

the matrix X by
4 %columns. They are normalized to have Frobenius norm

one.
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5 % It follows the ideas developed in 4.5.
6 % Input: upper triangular matrix T
7 % Output: upper triangular matrix X of the right

eigenvectors of T
8
9 [n,˜] = size(T);

10 smallnum = (n/eps)*realmin;
11 bignum = (eps/n)*realmax;
12 X = zeros(n);
13
14 for k =n:-1:1
15 X(1:k-1,k) = -T(1:k-1,k);
16 X(k,k) = 1;
17 X(k+1:n,k) = 0;
18 dmin = max(eps*abs(T(k,k)),smallnum);
19 for j = k-1:-1:1
20 d = T(j,j) - T(k,k);
21 if ( abs(d) <= dmin )
22 d = dmin;
23 end
24 if ( abs(X(j,k))/bignum >= abs(d) )
25 s = abs(d)/abs(X(j,k));
26 X(1:k,k) = s*X(1:k,k);
27 end
28 X(j,k) = X(j,k)/d;
29 X(1:j-1,k) = X(1:j-1,k) - X(j,k)*T(1:j-1,j);
30 end
31 X(1:k,k) = X(1:k,k)/norm(X(1:k,k),’fro’);
32 end

A.4 The implicitly shifted QR algorithm

A.4.1 Negligible 2×2 blocks and deflation

Backsearch2 function

1 function [ H,Q,i1,i2 ] = backsearch2( H,Q,z )
2 %GORKA ERA A ROBLES - This function finds for

deflating rows on a real
3 %Schur form matrix.
4 % It is based on the ideas developed in 5.2.
5
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6 normH = norm(H,’fro’);
7 i1 = z;
8 i2 = z;
9

10 while i1>1
11
12 if ( abs(H(i1,i1-1)) > eps*normH && i2 ˜= 2 )
13 i1 = i1 - 1; % Reduce i1
14 else
15 if i2 ˜= 2
16 H(i1,i1-1) = 0; % Deflate
17 end
18
19 % Check if it is a 1x1 or 2x2 block
20 if ( i1 == i2 - 1 || i2 == 2 )
21
22 % If it is a 2x2 block process it
23 [H,Q] = blockprocess(H,Q,i2);
24
25 if i2 ˜= 2 % If it is a complex block go

to row i1-1
26 i2 = i1 - 1;
27 i1 = i1 - 1;
28
29 else % If i2==2 then we have reached the

firs 2x2 block
30 i1 = 1;
31 i2 = 1;
32 end
33
34 % If not, it is not a 2x2 block, it is a 1x1.

Go to row i1-1 or
35 % break the loop.
36 elseif i1 == i2
37 i2 = i1 - 1;
38 i1 = i1 - 1;
39 else % Break the loop and finish the

function
40 break
41 end
42 end
43 end
44
45 end
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A.4.2 The double shift

Startqr2step function

1 function [ u ] = startqr2step( h11, h12, h21, h22, h32
, hn1n1, hn1n, hnn1, hnn )

2 %GORKA ERA A ROBLES - This function returns the
elements of the first

3 %column of Hˆ2 - 2*Re(kappa)*H + |kappa|*I.
4 % It is based on the ideas developed in 5.3.2.
5 % Once it has computed the first three elements, it

creates a vector u
6 % that generates a Householder reflection so that

the bulge chasing can
7 % be applied to the rest of the matrix.
8
9 elements = [h11, h12, h21, h22, h32, hn1n1, hn1n, hnn1

, hnn];
10 s = 1/max(abs(elements));
11 elements = s*elements;
12 p = elements(9) - elements(1);
13 q = elements(6) - elements(1);
14 r = elements(4) - elements(1);
15 c = [(p*q - elements(8)*elements(7))/elements(3) +

elements(2); (r-p-q); elements(5)];
16 [u,˜] = housegen(c);
17
18 end

A.4.3 Bulge chasing

Qr2step function

1 function [ H,Q ] = qr2step( H,Q,u,i1,i2 )
2 %GORKA ERA A ROBLES - This function, apllies the bulge

chasing to a matrix
3 %H. It takes the vector u generated by startqr2step

and the deflation rows
4 %given by backsearch2.
5 % It follows the ideas developed in 5.4.
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6
7 [n,˜] = size(H);
8
9 for i = i1:i2-2

10
11 j = max([i-1,i1]);
12 v = transpose(u)*H(i:i+2,j:n);
13 H(i:i+2,j:n) = H(i:i+2,j:n) - u*v;
14 iu = min([i+3,i2]);
15 v = H(1:iu,i:i+2)*u;
16 H(1:iu,i:i+2) = H(1:iu,i:i+2) - v*transpose(u);
17 v = Q(1:n,i:i+2)*u;
18 Q(1:n,i:i+2) = Q(1:n,i:i+2) - v*transpose(u);
19
20 if ( i ˜= (i2-2) )
21 [u,˜] = housegen(H(i+1:i+3,i));
22 end
23 if ( i ˜= i1 )
24 H(i+1,j) = 0;
25 H(i+2,j) = 0;
26 end
27
28 end
29
30 if ( i2 > 2 )
31 [H(i2-1,i2-2),H(i2,i2-2),c,s] = rotgen(H(i2-1,i2

-2),H(i2,i2-2));
32 [H(i2-1,i2-1:n),H(i2,i2-1:n)] = rotapp(c,s,H(i2-1,

i2-1:n),H(i2,i2-1:n));
33 [H(1:i2,i2-1),H(1:i2,i2)] = rotapp(c,s,H(1:i2,i2

-1),H(1:i2,i2));
34 [Q(1:n,i2-1),Q(1:n,i2)] = rotapp(c,s,Q(1:n,i2-1),Q

(1:n,i2));
35 end
36
37 end

A.4.4 A working implementation of the implicitly shifted
QR algorithm

hqr2 function

1 function [ H,Q ] = hqr2( H,Q,maxiter )
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2 %GORKA ERA A ROBLES - This function applies the
implicitly shifted QR

3 %iteration to an upper Hessenberg form matrix H and
applies the

4 %transformations to the matrix Q.
5 % It follows the ideas developed in 5.5.
6
7 [n,˜] = size(H);
8 i2 = n;
9 iter = 0;

10
11 while i2 > 1
12
13 if ( iter > maxiter ) % Return an error if the

routine does not converge.
14 error(’Maximum number of iterations exceeded;

increase option maxiter.’)
15 end
16
17 oldi2 = i2;
18 [H,Q,i1,i2] = backsearch2(H,Q,i2); % Find

deflation rows.
19
20
21 if ( i2 == oldi2 ) % If it does not converge, sum

one to the counter.
22 iter = iter + 1;
23 else % If it does converge set the counter to 0.
24 iter = 0;
25 end
26
27 % Apply the bulge chasing if the matrix hast not

been completely
28 % deflated.
29 if ( i2 > 1 )
30 u = startqr2step(H(i1,i1),H(i1,i1+1),H(i1+1,i1

),H(i1+1,i1+1),H(i1+2,i1+1),H(i2-1,i2-1),H(
i2-1,i2),H(i2,i2-1),H(i2,i2));

31 [H,Q]= qr2step(H,Q,u,i1,i2);
32 end
33
34
35 end
36
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37 end

A.4.5 Eigenvectors of the real Schur form

eigenbasis function

1 function [ Y ] = eigenbasis( T )
2 %GORKA ERA A ROBLES - This function computes the

eigenbases of a real Schur
3 %form matrix T.
4 % The implementation follows the computations

developed in section 5.6 of
5 % the dissertation.
6
7 [n,˜] = size(T);
8 j = n;
9 Y = zeros(n);

10
11 while ( j ˜= 0 )
12
13 if ( j == 1 ) % Base case number 1: the first

eigenvalues is simple
14 Y(1,1) = 1;
15 j = j - 1;
16
17 elseif ( T(2,1) ˜= 0 && j == 2 ) % Base case

number 2: the first two eigenvalues are complex
conjugate

18 [L,˜] = complexschur(T(1:2,1:2));
19 L = [real(L(1,1)),imag(L(1,1));-imag(L(1,1)),

real(L(1,1))];
20 Y(1:2,1:2) = L;
21 % Y(1:2,1:2) = eye(2);
22 j = j - 2;
23
24 elseif ( T(j,j-1) == 0 && j > 1 ) % The current

eigenvalue is simple
25
26 if ( j == 2 )
27 lambda = T(j,j);
28 Y(j,j) = 1;
29 Y(j-1,j) = T(j-1,j)/(lambda - T(j-1,j-1));
30 Y(1:j,j) = Y(1:j,j)/norm(Y(1:j,j),’fro’);
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31 j = j - 1;
32
33 elseif ( T(j-1,j-2) == 0 && j > 2 ) % The

eigenvalue above is simple
34 lambda = T(j,j);
35 Y(j,j) = 1;
36 Y(j-1,j) = T(j-1,j)/(lambda - T(j-1,j-1));
37 Y(1:j-2,j) = (T(1:j-2,1:j-2)-lambda*eye(j

-2))\(-T(1:j-2,j-1)*Y(j-1,j)-T(1:j-2,j)
);

38 Y(1:j,j) = Y(1:j,j)/norm(Y(1:j,j),’fro’);
39 j = j - 1;
40
41 elseif ( j >= 3 ) % The eigenvalues above are

complex conjugate
42 lambda = T(j,j);
43 Y(j,j) = 1;
44 Y(j-2:j-1,j) = (T(j-2:j-1,j-2:j-1)-lambda*

eye(2))\(-T(j-2:j-1,j));
45 if ( j > 3 )
46 Y(1:j-3,j) = (T(1:j-3,1:j-3)-lambda*

eye(j-3))\(-T(1:j-3,j-2:j-1)*Y(j-2:
j-1,j)-T(1:j-3,j));

47 end
48 Y(1:j,j) = Y(1:j,j)/norm(Y(1:j,j),’fro’);
49 j = j - 1;
50
51 end
52
53 else % The current eigenvalues are complex

conjugates
54
55 if ( j == 3 ) % Base case: the one above is

the last simple eigenvalue
56 Y(1,1) = 1;
57 [L,Z] = complexschur(T(j-1:j,j-1:j));
58 X3 = righteigvec(L);
59 X3 = Z*X3;
60 L = [real(L(1,1)),imag(L(1,1));-imag(L

(1,1)),real(L(1,1))];
61 Y(2:j,2:j) = [real(X3(:,1)),imag(X3(:,1))

];
62 Y(1,2:j) = T(1,2:j)*Y(2:j,2:j)/(L-T(1,1)*

eye(2));
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63 Y(:,j-1:j) = Y(:,j-1:j)/norm(Y(:,j-1:j),’
fro’);

64 j = j - 3;
65
66 elseif ( T(j-2,j-3) == 0 && j > 3 ) % The

eigenvalue above is simple
67 [L,Q1] = complexschur(T(j-1:j,j-1:j));
68 X3 = righteigvec(L);
69 X3 = Q1*X3;
70 X3 = [real(X3(:,1)),imag(X3(:,1))]; % The

definitive X3
71 Y(j-1:j,j-1:j) = X3;
72 L = [real(L(1,1)),imag(L(1,1));-imag(L

(1,1)),real(L(1,1))]; % Instead of
computing X3ˆ(-1)*T33*X3, we follow
theoretical results

73 Y(j-2,j-1:j) = (T(j-2,j-1:j)*X3)/(L - T(j
-2,j-2)*eye(2));

74 x2 = Y(j-2,j-1:j);
75 Y(1:j-3,j-1:j) = sylvester(T(1:j-3,1:j-3)

,-L,-T(1:j-3,j-1:j)*X3-T(1:j-3,j-2)*x2)
;

76 Y(:,j-1:j) = Y(:,j-1:j)/norm(Y(:,j-1:j),’
fro’);

77 j = j - 2;
78
79 elseif ( j >= 4 ) % The eigenvalues above are

complex conjugates
80 if ( j > 4 )
81 [L,Q1] = complexschur(T(j-1:j,j-1:j));
82 X3 = righteigvec(L);
83 X3 = Q1*X3;
84 X3 = [real(X3(:,1)),imag(X3(:,1))]; %

The definitive X3
85 Y(j-1:j,j-1:j) = X3;
86 L = [real(L(1,1)),imag(L(1,1));-imag(L

(1,1)),real(L(1,1))]; % Instead of
computing X3ˆ(-1)*T33*X3, we follow
theoretical results

87 Y(j-3:j-2,j-1:j) = sylvester(T(j-3:j
-2,j-3:j-2),-L,-T(j-3:j-2,j-1:j)*X3
);

88 X2 = Y(j-3:j-2,j-1:j);
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89 Y(1:j-4,j-1:j) = sylvester(T(1:j-4,1:j
-4),-L,-T(1:j-4,j-3:j-2)*X2-T(1:j
-4,j-1:j)*X3);

90 else % Base case: both eigenvalues above
are complex conjugates

91 Y(3:4,3:4) = eye(2);
92 Y(1:2,3:4) = sylvester(T(1:2,1:2),-T

(3:4,3:4),-T(1:2,3:4));
93 end
94 Y(:,j-1:j) = Y(:,j-1:j)/norm(Y(:,j-1:j),’

fro’);
95 j = j - 2;
96
97 end
98
99 end

100
101 end
102
103 end



Appendix B

Precision and accuracy
analysis

Once the theoretical and technical details have been settled, it is time to
check whether the implementations are accurate or not. Since this work is
centered in the two variants of the QR algorithm, we will only check the
implementation of the essentials: the Hessenberg reduction, the explicit QR
algorithm and its pertinent eigenvectors, and the implicit QR iteration and
its eigenvectors.

This addendum has the same composition as Appendix A: the tests have
been ordered following the same structure of chapters, sections and subsec-
tions as the dissertation. Unless it is otherwise indicated, each analysis
contains a brief explanation, a MATLAB script with the numerical simula-
tions, and a graphic of those simulations. All the scripts can be found in the
GitHub repository above mentioned: https://github.com/gorkaerana/Bachelors-
degree-dissertation.

B.1 First steps towards an efficient QR algorithm

B.1.1 Making the QR iteration practical: the Hessenberg
form

This subsection tests the accuracy of the Hessenberg reduction, which is
explained in §3.4 and its implementation can be found in A.2.1. Let A be a
matrix of order n and T = Q∗AQ its Hessenberg reduction. The following
analysis tests if

‖A−QTQ∗‖
‖A‖

≤ γεM (B.1)

for some reasonable constant γ. Running the following script

Hessenberg reduction test

95

https://github.com/gorkaerana/Bachelors-degree-dissertation
https://github.com/gorkaerana/Bachelors-degree-dissertation
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1 % Script that computes the backwards error of
calculating the upper

2 % Hessenbger form of a matrix.
3
4 sim = 1000;
5 for j = 1:sim
6 n = randi([5,30]);
7 A = exp(randn(n)*1i + randn(n));
8 [H,Q] = hessreduce(A);
9 semilogy(j,norm(A - Q*H*Q’)/norm(A),’.’);

10 hold on
11 end
12 axis([1 sim eps 10ˆ(-14)])
13 ylabel(’\epsilon_M < y < 10ˆ{-14}’)

returns Figure B.1 −notice that the axis Y is in logarithmic scale and that
Y = 0 corresponds to εM :

Figure B.1: Backwards error of the Hessenberg reduction.

That is, since in MATLAB εM = 2.2204·10−16, for every complex matrix
A, the backwards error of computing the Hessenberg reduction through the
hessreduce function satisfies

‖A−QTQ∗‖
‖A‖

≤ 50 · εM .

But are the matrices Q above unitary? Let us see:

Script to check if the matrices Q of the Hessenberg are unitary

1 % Script that computes how far is the transformation
matrix Q from the
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2 % reduction to Hessenberg form from being unitary.
3
4 sim = 1000;
5 for j = 1:sim
6 n = randi([5,30]);
7 A = exp(randn(n)*1i + randn(n));
8 [H,Q] = hessreduce(A);
9 semilogy(j,norm(eye(n) - Q*Q’),’.’);

10 semilogy(j,norm(eye(n) - Q’*Q),’o’);
11 hold on
12 end
13 axis([1 sim eps 10ˆ(-14)])
14 ylabel(’\epsilon_M < y < 10ˆ{-14}’)

Figure B.2: Unitariness of the matrices Q.

Since

‖I −QQ∗‖ ≤ 50 · εM and ‖I −Q∗Q‖ ≤ 50 · εM ,

we can say that they are.

B.2 The explicitly shifted QR algorithm

Now let us check on the explicitly shited QR algorithm −explained in §4
and implemented in MATLAB in A.3−. The following script

Complex Schur reduction test

1 % Script that computes the backwards error from
calculating the complex

2 % Schur form of a matrix.
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3
4 sim = 1000;
5 for j = 1:sim
6 n = randi([5,30]);
7 A = exp(randn(n)*1i + randn(n));
8 [T,Q] = complexschur(A);
9 semilogy(j,norm(A - Q*T*Q’)/norm(A),’.’);

10 hold on
11 end
12 axis([1 sim eps 10ˆ(-14)])
13 ylabel(’\epsilon_M < y < 10ˆ{-14}’)

computes the error (B.1), where A is our matrix, and T = Q∗AQ is Schur
form of A. Figure B.3 shows the computations.

Figure B.3: Backwards error of the Schur reduction.

In this case, for every complex matrix A,

‖A−QTQ∗‖
‖A‖

≤ 80 · εM .

As in the section above, are the matrices Q unitary?

Unitariness of the matrices Q of the Schur reduction

1 % Script that computes how far is the transformation
matrix Q from the

2 % reduction to complex Schur form from being unitary.
3
4 sim = 1000;
5 for j = 1:sim
6 n = randi([5,30]);
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7 A = exp(randn(n)*1i + randn(n));
8 [T,Q] = complexschur(A);
9 semilogy(j,norm(eye(n) - Q*Q’)/norm(A),’.’);

10 semilogy(j,norm(eye(n) - Q’*Q)/norm(A),’o’)
11 hold on
12 end
13 axis([1 sim eps 10ˆ(-14)])
14 ylabel(’\epsilon_M < y < 10ˆ{-14}’)

Figure B.4: Unitariness of the matrices Q of the Schur reduction.

As Figure B.4 shows, in this case, for every complex matrix A

‖A−QQ∗‖ ≤ 10 · εM and ‖A−Q∗Q‖ ≤ 10 · εM .

Now, since the Schur reduction algorithm works properly, let us see if the
eigenvalues are computed correctly. The Schur decomposition of a matrix
is not unique so the vector of the eigenvalues computed by MATLAB and
the vector obtained by this implementation will not display the eigenvalues
in the same order. Thus, instead of comparing each eigenvalue, we will
compare the norms of the eigenvalue vectors to check if the computations
are correct. This is what the following script does.

Eigenvalue comparison: MATLAB vs. our implementation

1 % Script that computes the backwards error calculating
the eigenvalues

2 % using the explicitly shifted QR iteration.
3
4 sim = 1000;
5 for j = 1:sim
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6 n = randi([5,30]);
7 A = exp(randn(n)*1i + randn(n));
8 [T,Q] = complexschur(A);
9 eigenval = abs(eig(A));

10 semilogy(j,norm(eigenval - abs(diag(T)))/norm(
eigenval),’.’);

11 hold on
12 end
13 axis([1 sim eps 10ˆ(-14)])
14 ylabel(’\epsilon_M < y < 10ˆ{-14}’)

And the result is displayed by Figure B.5.

Figure B.5: Eigenvalue comparison chart.

In this case, for every matrix A, if v is its eigenvalue vector computed by
MATLAB and v′ the one calculated by the implementation this dissertation
presents, then

‖v − v′‖
‖v‖

≤ 80 · εM .

B.2.1 Eigenvectors of the complex Schur form

For the eigenvectors we will not use the usual test (B.1), but rather one given
by Stewart in [1], on page 104. We know that both the Hessenberg reduction
and the Schur form reduction work properly. Let A be a complex matrix
and T = Q∗AQ its complex Schur form. Then, as it was shown in §4.5, if
X is the matrix of right eigenvectors of T , QX will be the matrix of right
eigenvectors of A. Hence, the analysis of the accuracy of the eigenvectors
will be done over the residuals ri = Txi − Tiixi, i.e.,
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‖ri‖
‖T‖ ‖xi‖

≤ γεM .

Running the script

Norms of the residual ri = Txi − tiixi
1 % Script that computes the backwards error of the

eigenvectors of a complex
2 % Schur form.
3
4 sim = 250;
5 c = 1;
6 for j = 1:sim
7 n = randi([5,30]);
8 A = exp(randn(n)*1i + randn(n));
9 [T,Q] = complexschur(A);

10 X = righteigvec(T);
11 for i = 1:n
12 semilogy(c,norm(T*X(:,i) - T(i,i)*X(:,i))/(

norm(T)*norm(X(:,i))),’.’);
13 hold on
14 c = c + 1;
15 end
16
17 end

displays Figure B.6:

Figure B.6: Norms of the residual ri = Txi − tiixi.

The eigenvectors computed are extraordinarily precise: for every com-
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plex matrix A, the eigenvectors of its Schur form T fulfill

‖ri‖
‖T‖ ‖xi‖

≤ εM .

B.3 The implicitly shifted QR algorithm

Finally, the implicitly shifted QR iteration, developed in §5 and implemented
in A.4.

Reduction to real Schur form

1 % Script that computes the backwards error of
compouting the real Schur

2 % form using the implicitly shifted QR algorithm.
3
4 sim = 1000;
5
6 for j = 1:sim
7
8 n = randi([5 30]);
9 A = randn(n);

10 [T,Q] = realschur(A);
11 nn = norm(A - Q*T*Q’)/norm(A);
12 semilogy(j,nn,’.’);
13 hold on
14
15 end
16
17 hold off

This script returns Figure B.7
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Figure B.7

which shows, as usual, that the relative error

‖A−QTQ∗‖
‖A‖

is of a size comparable to the machine epsilon.

As for how close the transformation matrices Q from being unitary, run
the following script which shows Figure B.8.

Unitariness of the transformation matrix Q

1 % Script that shows how close are the transformation
matrices Q to being unitary.

2
3 sim = 1000;
4
5 for j = 1:sim
6
7 n = randi([5 30]);
8 A = randn(n);
9 [˜,Q] = realschur(A);

10 semilogy(j,norm(eye(n) - Q*Q’)/norm(A),’.’);
11 semilogy(j,norm(eye(n) - Q’*Q)/norm(A),’o’);
12 hold on
13
14 end
15
16 hold off
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Figure B.8

Again, the implementation returns a unitary matrix Q.

B.3.1 Eigenvectors of the real Schur form

As for the eigenbases of the real Schur form, we designed the next script:

Norms of the residual ri = Txi − tiixi
1 % Script that computes the backwards error of the

eigenvectors of a real
2 % Schur form matrix.
3
4 simulations = 500;
5 counter = 1;
6 bad = 0;
7
8 for k = 1 : simulations
9 n = randi([5 10]);

10 A = randn(n);
11 [T,˜] = realschur(A);
12
13 Y = eigenbasis(T);
14
15 % subdiagonal is a vector representing the

elements of the subdiagonal: 1
16 % if it is nonzero, 0 if it is zero
17 subdiagonal = not(not(diag(T,-1)));
18
19 for j = 1:(n-1)
20
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21 if ( j ˜= 1 && j ˜= (n-1) )
22 if ( subdiagonal(j+1) == 1 ) % The

subdiagonal is in between two complex
conjugate eigenvalues

23 continue % subdiagonal(j-1) == 1 &&
24 elseif ( subdiagonal(j) == 1 )
25 L = Yˆ(-1)*T*Y;
26 a = norm(T*Y(:,j:j+1)-Y(:,j:j+1)*L(j:j

+1,j:j+1))/(norm(T)*norm(Y(:,j:j+1)
));

27 else % Simple eigenvalue
28 L = Yˆ(-1)*T*Y;
29 a = norm(T*Y(:,j+1)-Y(:,j+1)*L(j+1,j

+1))/(norm(T)*norm(Y(:,j+1)));
30 end
31
32 elseif ( j == 1 )
33 if ( subdiagonal(1) == 1 ) % Complex

eigenvalue
34 L = Yˆ(-1)*T*Y;
35 a = norm(T*Y(:,1:2)-Y(:,1:2)*L

(1:2,1:2))/(norm(T)*norm(Y(:,1:2)))
;

36 else % Simple eigenvalue
37 L = Yˆ(-1)*T*Y;
38 a = norm(T*Y(:,1)-Y(:,1)*L(1,1))/(norm

(T)*norm(Y(:,1)));
39 end
40
41 elseif ( j == (n-1) )
42 if ( subdiagonal(n-1) == 1 ) % Complex

eigenvalue
43 L = Yˆ(-1)*T*Y;
44 a = norm(T*Y(:,n-1:n)-Y(:,n-1:n)*L(n

-1:n,n-1:n))/(norm(T)*norm(Y(:,n-1:
n)));

45 else % Simple eigenvalue
46 L = Yˆ(-1)*T*Y;
47 a = norm(T*Y(:,n)-Y(:,n)*L(n,n))/(norm

(T)*norm(Y(:,n)));
48 end
49
50 end
51
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52 if (a > 10ˆ(-13))
53 bad = bad + 1;
54 disp(A);
55 return
56 end
57
58 semilogy(counter,a,’.’)
59 hold on
60 counter = counter + 1;
61
62 end
63
64 end
65
66 ylabel(’10ˆ{-18} < y < 10ˆ{-15}’)
67 axis([1 counter 10ˆ(-18) 10ˆ(-15)])
68
69 hold off

This program computes the relative error −with the same criteria used
for the eigenvectors of the complex Schur form− of either the eigenbases or
the eigenvectors, depending on the size of the block. Figure B.9 shows the
output.

Figure B.9: Relative error of eigenbases and eigenvectors

Since for nearly every eigenbasis and eigenvector

‖ri‖
‖T‖ ‖xi‖

≤ 10εM ,

the computation of those is accurate −do not forget the examples given on
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the final part of §5.6.
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