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1. INTRODUCTION 

Nowadays, steel is one of the most common materials widely used in the modern society 

for structural and functional applications. Actually, steel has been the main material for 

different sectors since the beginning of Iron Age, playing still today very important roles 

in the world 1.  

Steels are iron base alloys which contain carbon, generally in less content than 2%, and 

other alloy elements. They are classified on the basis of composition. On the one hand, 

the so called unalloyed steels can be found, which are divided in different groups 

depending on its carbon content. On the other hand, there are alloyed steels, made by 

mixing iron and carbon with small amounts of several alloy elements which give to the 

steel an improvement in its properties 2.  

Inside this last group, the so called weathering steels can be found. These are high-

strength low alloy steels whose alloy elements help to develop a special atmospheric 

corrosion resistance due to the formation of a self-protection layer 3, 4. The amount of 

alloying elements, which commonly are Cr, Cu, Si and P among others, varies between 1 

and 2.5%. The presence of these alloy elements promotes the development of a 

protective rust layer. The formation of this rust layer depends on the access of oxygen in 

presence of moisture and air. After several wet/dry cycles, this layer system developed 

with time, becomes protective by preventing further access of oxygen and moisture, and 

therefore, reducing considerably the corrosion rate 3. 

Due to this fact, this material has been also widely used with artistic aims. Its colour and 

texture become crucial for artists. These rust characteristics depend upon the nature of 

the environment and exposure time. For instance, in an industrial atmosphere, the 

weathering process generally is more rapid and the final colour becomes darker. In 

contrast, on rural environments, the oxide formation is usually slower and the colour 

gets lighter 5. It is for this capability of controlling hues and appearance that this kind of 

steel is widely used in outdoor structures and it is in vogue among modern artists, being 

some of these structures considered as Cultural Heritage. 

1.1. WEATHERING STEEL 

As it has been mentioned above, this type of steel develops a characteristic rust layer 

that protects the metal by reducing the corrosion rate. This process is known as self-

protection and it is favoured by the presence, among other factors, of alloy elements, 
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where each one plays its own role 6. In this work, CorTen steel, which is the best-known 

commercial trademark and one kind of weathering steel, was analysed. 

1.1.1. Protective layer formation 

The corrosion process of weathering steel and the reactions that lead to the formation of 

the rust layer are the same as those of regular steels. In fact, the only difference is the 

effect of the alloy elements, which help on the formation of the protective rust layer on 

weathering steels, which is formed by reaction of iron and those alloy elements with 

reactive species such as water and SO2. To better understand this corrosion process it is 

necessary to know what a wet/dry cycle is and how it affects to the development of the 

protective rust layer 7, 8 since these cycles are crucial on the correct formation of a well 

packed rust layer. 

Atmospheric corrosion of iron is an electrochemical process and it can be divided into 

three stages (related with wet/dry cycles): the first one, the wetting of the dry surface, 

the second one, which is the wet surface, and finally, the drying-out of the surface. The 

first one occurs when the anodic reaction (Reaction 1) takes place, and part of the 

metallic iron is dissolved into ferrous ions. The rusting of steel in the atmosphere is 

given by Reaction 2 where the oxygen oxidizes other part of metallic iron to Fe3+, which 

in contact with water forms the corresponding oxyhydroxide. The two electrons 

generated in Reaction 1 will be used in cathodic partial reduction of the oxyhydroxide to 

magnetite (Reaction 3). The magnetite will be re-converted into FeOOH (Reaction 4) 

thanks to the atmospheric oxygen. The resulted FeOOH can be reduced also following 

the Reaction 5. 

𝐹𝑒 ⇄ 𝐹𝑒2+ + 2𝑒−       Reaction 1 

2𝐹𝑒 + 𝐻2𝑂 +
3

2
𝑂2 ⇄ 2𝐹𝑒𝑂𝑂𝐻     Reaction 2 

𝐹𝑒2+ + 8𝐹𝑒𝑂𝑂𝐻 + 2𝑒− ⇄ 3𝐹𝑒3𝑂4 + 4𝐻2𝑂   Reaction 3 

4𝐹𝑒3𝑂4 + 𝑂2 + 6𝐻2𝑂 ⇄ 12𝐹𝑒𝑂𝑂𝐻     Reaction 4 

2𝐹𝑒𝑂𝑂𝐻 + 2𝐻+ + 2𝑒− ⇄ 2𝐹𝑒 · 𝑂𝐻 · 𝑂𝐻    Reaction 5 

During the first step, after all reducible FeOOH is consumed, the oxygen reduction starts 

becoming the cathodic reaction (Reaction 6). 

𝑂2 + 2𝐻2𝑂 + 4𝑒− ⇄ 4𝑂𝐻−      Reaction 6 
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Finally, in the drying stage, the oxygen is able to re-oxidize the Fe2+ previously formed 

(Reaction 7). 

4𝐹𝑒 · 𝑂𝐻 · 𝑂𝐻 + 𝑂2 ⇄ 4𝐹𝑒𝑂𝑂𝐻 + 2𝐻2𝑂    Reaction 7 

All wet/dry process is represented in Figure 1.1. The formation of the protective layer 

requires these cycles to be well formed, the wetting to generate the rust and the drying 

to allow it to recrystallize 3, 5, 9.  

 

Fig 1.1. Rust layer formation. a) Wet conditions, the reduction of FeOOH of the rust and oxidation of substrate 
steel take place.  b) Dry conditions, the rust layer partially reduced is re-oxidized by O2. 

1.1.2. Structure of protective layer 

The first compound formed at early stages of rusting is lepidocrocite (γ-FeOOH) and 

part of it is transformed into goethite (α-FeOOH) with the exposure time. This process is 

promoted by alloying elements, which enable the formation of an uniform layer of the 

corrosion product by promoting the formation of γ-FeOOH. Misawa et al. 10 investigated 

first the mechanism of formation of rust layer in aqueous solution and identified 

amorphous oxyhydroxide (FeOx(OH)3–2x), together with α-FeOOH and γ-FeOOH. Under 

dry and oxidising conditions, when oxygen is able to enter into the rust layer, the 

magnetite (Fe3O4) is oxidised to amorphous FeOOH, which is again transformed into 

crystalline α or γ-FeOOH. Most of the authors have indicated that long-term exposure 

experiments are a key point in terms of protective rust formation on weathering steels. 

Moreover, they also supported the fact that the early stages of the exposure determine 

the subsequent corrosion rate 5, 8.  

1.2. DETERIORATION AND DECAYING MECHANISMS 

The ability of weathering steels to fully develop their anticorrosive action is dependent 

on the exposure conditions of the metallic surface. For the proper development of the 

rust layer, acid gases are necessary. However, when the quantity of these acid gases is 

too high, the soluble salts formed can increase the corrosion process, being sulphur 

dioxide the most studied contaminant. Besides, the increasing presence of other gases, 

like NOx, has fostered the study of their effects.  Furthermore, other compounds such as 
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chloride can influence seriously the formation of rust layer, especially in coastal 

environments 11, 12. The high amount of acid gases and a high humidity can cause 

aesthetical problems on the structures, which could lead into structural damages, such 

as holes, detachments of steel chips, discolorations and irregularities due to the increase 

of the corrosion rate of the steel. Sometimes this type of problems forces the removal of 

sculptures or their demolition 13.  

1.2.1. Sulphur dioxide 

Sulphur dioxide (SO2) is dissolved in water and high concentrations of it decrease the pH 

enhancing the corrosion rate of the steel as following reactions show:  

𝑆𝑂2 + 𝐻2𝑂 ⇄ 𝐻2𝑆𝑂3       Reaction 8 

𝐻2𝑆𝑂3 ⇄ 𝐻+ + 𝐻𝑆𝑂3
−      Reaction 9 

 𝐻𝑆𝑂3
− ⇄ 𝐻+ + 𝑆𝑂3

2−       Reaction 10 

Part of the dissolved SO2 may be oxidized to SO3 producing H2SO4, while another part is 

absorbed on the metal surface reacting with iron to produce FeSO4 (Reaction 11). This 

soluble salt reacts with the atmospheric oxygen generating iron oxyhydroxide and 

sulphuric acid (Reaction 12) which attack the surface regenerating the soluble sulphate 

(Reaction 13) 9.   

𝐹𝑒 + 𝑆𝑂2 + 𝑂2 ⇄ 𝐹𝑒𝑆𝑂4      Reaction 11 

4𝐹𝑒𝑆𝑂4 + 𝑂2 + 6𝐻2𝑂 ⇄ 4𝐹𝑒𝑂𝑂𝐻 + 4𝐻2𝑆𝑂4   Reaction 12 

4𝐻2𝑆𝑂4 + 4𝐹𝑒 + 2𝑂2 ⇄ 4𝐹𝑒𝑆𝑂4 + 4𝐻2𝑂    Reaction 13 

The presence of soluble salts of iron promotes the leaching of iron cations to the soil and 

to the ground waters. 

1.2.2. Nitrogen compounds 

Nitrogen oxides are the major components in the troposphere. The most frequently 

nitrogen oxide is nitric oxide (NO), which oxidizes to nitrogen dioxide NO2, which are the 

precursors of nitrous and nitric acids. Due to their slow reaction kinetics and low water-

solubilities can acidify the water film formed on metal surfaces (Reaction 14). This 

acidification can happen in presence (Reaction 15) and absence (Reaction 16) of oxygen. 

These reactions can be followed by a thermal decomposition of nitrous acid into nitric 

oxide and nitric acid 14. 



Introduction 
_____________________________________________________________________________________________________ 

5 
 

 2𝑁𝑂2 + 2𝐻2𝑂 → 𝐻𝑁𝑂3 + 𝐻𝑁𝑂2      Reaction 14 

2𝐻𝑁𝑂2  + 2𝑂2 → 2𝐻𝑁𝑂3      Reaction 15 

3𝐻𝑁𝑂2 → 2𝑁𝑂 + 𝐻𝑁𝑂3      Reaction 16 

As happens in the case of the sulfuric acid, nitric acid reacts with the iron forming the 

corresponding nitrates, which are very soluble. These soluble nitrates ate another origin 

of iron cations leaching. 

Besides, NO2 and SO2 have a synergistic effect, which is based on the fact that the 

presence of nitrogen oxides enhances the subsequent absorption of sulfur dioxide 15.  

1.2.3. Chloride in marine environments 

Chloride ion is one of the most important natural particulate materials in atmospheric 

environments.  In presence of a higher chloride concentration, there is a harmful effect 

on the corrosion kinetics, rust composition and structures, i.e. accelerating the rate of 

corrosion through the modification of redox potentials of iron. Akaganeite (β-FeOOH) is 

typical of coastal environments. It is formed in the surface of steel in high amount of Cl- 

containing environment, and can work as a reservoir of chloride ions in the metal. In 

addition, the presence of this compound in the rust layer increases its porosity and 

facilitate the transmission of chloride and other stressors from outside, which finally 

accelerates the corrosion process 3, 16. Nomura et al. 17, noted that lepidocrocite was 

formed on the surface of the rust surface where the oxygen is available, whereas the 

formation of akaganeite takes place in the inner part of the rust layer, at the steel/rust 

interface, where the access of oxygen from the air is more limited but where the damage 

is higher. 

Besides, not only iron can leach, but also other metals such as manganese or nickel can 

leach in sulphate or nitrate form 3. Taking all this into account, it is necessary to study 

the behaviour of weathering steel under urban polluted atmospheres and marine 

environments in order to preserve the Cultural Heritage elements made of this alloy. In 

this way, the destruction of the sculptures due to the increase of corrosion rate could be 

avoided, and several negative environmental impacts due to the toxicity of the metals 

that compose the steel and which are leached as soluble salts could be prevented. 

In order to prevent metal leaching, because of the problem caused by anionic 

compounds, in this research work it was proposed the use of ion exchange resins. 
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1.3. POSSIBLE SOLUTION: ION EXCHANGE RESINS 

Nowadays, resins are likely the most widely used material for ion exchange and they 

have some advantages such as uniform quality, several types to choose from, hydraulic 

properties and the ability to be manipulated to increase efficiency. These are the reasons 

why, ion exchange based resins had been proposed as a method for removal of the 

previously described soluble salts and chlorides 18.  

Synthetic ion exchange resins (Fig 1.2) are based on polymers which are able to 

exchange ions between the polymer and 

other ions in solutions or surfaces that 

are in contact with them. They are cross-

linked polyelectrolytes with an uniform 

distribution of ionic functional groups 

attached by covalent bond to the 

polymeric matrix. Exchange materials 

are spheres with specific size and 

uniformity to fulfil the needs of a specific 

application. To preserve electro neutrality, a same number of ions and counter ions, 

have to be present 19. The exchanges occur without any alteration into the resin, 

allowing the regeneration of that resin. Therefore, when the resin is saturated, after a 

simple post-treatment, it will be ready for another exchange operation reducing the 

possible environmental impact that would involve its management or elimination. These 

synthetic exchangers are generally divided into four groups depending on the resin 

functional group, which determines whether cations or anions are exchanged and 

whether the resin is a strong or a weak electrolyte (Table 1.1). If the resin is in cation 

form, it has exchangeable positive ions in a negatively charged matrix. However, if the 

resin is in anion form, matrix is positively charged and the exchangeable ions are 

negative 20, 21. 

Table 1.1. Clasification of ion exchange resins 

TYPE ACTIVE GROUP TYPICAL CONFIGURATION 

Cation Exchange Resins 

Strong acid Sulfonic acid 
 

Fig 1.2. Schematic representation of a cation exchanger 
resin 
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Weak acid Carboxylic acid 
 

Anion Exchange Resins 

Strong Base Quaternary ammonium 
 

Weak base Secondary amine 

 

Weak base Tertiary amine (aromatic matrix) 
 

The exchange will take place (as following Reaction 17) when a resin (R) with an ion A, 

has a better affinity for ion B, which is in the material the resin is in contact with. The 

exchanger R in A form is able to exchange for B replacing it with an equivalent quantity 

21.  

 𝐴𝑅̅ + 𝐵+/− ⇄ 𝐵𝑅̅ + 𝐴+/−      Reaction 17  

All these resins have some chemical properties in common that are important when they 

are used: 

 Capacity. It refers to total number of sites available for exchange. It is expressed 

on a dry weight, wet weight or wet volume. Capacity depends on the nature of the 

polymer and on the environment in which the sample is placed 21. 

 Swelling. It is related to the hydration of the fixed ionic groups. Resin volumes 

change with conversion to ionic forms with different degrees of hydration 21. 

 Kinetics. It means the speed that exchange happens with. Uniform particle sized 

resins show increased kinetic performance 21. 

 Stability. It depends on the resin type or the ion that it is wanted to change. 

Stability also is dependent on temperature and pH 21. 
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2. OBJECTIVES 

The main objective of this final master’s dissertation was to evaluate the 

damage caused in weathering steel structures due to the effect of different 

environmental stressors. These stressors are compounds like acid gases (SO2 

or NOx) and chlorides which, moreover, it has been demonstrated that they 

have a key role in this material deterioration process and in material loosing 

3.  

To accomplish that objective, different experiments were carried out.  

On the one hand, accelerated corrosion tests will be performed in order to see 

the redox potential trend and the kinetic of the metal leaching. In this way, it 

will be possible to relate the potential trend with the protective layer 

formation. Besides, determining the composition of the sample surface  is 

another purpose to assure the presence of soluble salts which are the 

responsible of the structural damage. In addition, the effect that the leaching 

of metals in a porous material, such as a calcite ground, could cause will be 

evaluated in order to compare this situation with a real one. In this way, the 

stained caused on the ground where weathering steel structures are placed 

will be better understand. Moreover, the importance of the environment in 

which the structures are exhibited will be checked. 

On the other hand, a sample exposed to the weather will be analysed due to 

the similarities with a real situation, in order to check a solution for the 

structural damage described in the Introduction by employing ion exchange 

resins. The aim is to remove the described compounds that are increasing the 

corrosion rate of the steel. 
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3. EXPERIMENTAL PROCEDURE 

3.1. DESCRIPTION OF THE SAMPLES 

The weathering steel pieces analysed were obtained from the casting that was used for a 

sculpture (Besarkada XI) made by the Spanish sculptor Eduardo Chillida (Fig 3.1). This 

sculpture is exhibited outdoors in Bilbao city (Northern Spain), which is subjected to a 

corrosive atmosphere because of the high humidity and the presence of acid gases 3. Due 

to this fact, it is suffering a detaching process that makes the surface heterogeneous and 

due to this fact the access of harmful compounds becomes easier. The steel used for the 

artwork is a special type of CorTen A steel that has an amount of copper lower than 

conventional CorTen A. 

 

Fig 3.1. CorTen steel pieces without protective layer 

The composition of the material is summarized in Table 3.1. Therefore, the attainment of 

this study will help in the comprehension of the conservation problems (described in the 

Introduction section) of the mentioned sculpture without the necessity of performing 

any sampling procedure.  

Tabla 3.1. Composition (%) of Besarkada XI's CorTen steel 

C S P Si Mn Ni Cu Cr 

≤0,07 ≤0,02 0,08-0,13 0,25-0,4 0,3-0,5 0,3-0,6 0,15-0,35 0,75-1 

Due to the problems that this type of material can suffer in polluted or marine 

environments a simulation of outdoor conditions was done. For that purpose, an 

accelerated aging experiment was carried out immersing steel pieces (2,4x2cm; ~20g) 

(Fig 3.2. a)) in synthetic rainwater during, at least, two weeks. This rainwater was 

prepared with the following inorganic salts dissolved in 1 litter of deionized water 22: 
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NaNO3 (4.07 g); NaCl (3.24 g); KCl (0.35 g); CaCl2 · 2H2O (1.65 g); MgSO4 · 7H2O (2.98 g); 

and (NH4)2SO4 (3.41 g). The resulting solution had a pH of 5.3.  

Besides, a piece (7x5 cm2; ~130 g) exposed to the weather during 4 years (Fig 3.2. b)), 

was analysed. This sample was placed in a balcony near to a high transited road and an 

estuary. Therefore, it was affected by polluted gases and marine airborne. With this 

sample, it was pretended to check the damage of a sample in a real environment and 

with an exposition time halfway between a short-term and long-term exposure 

experiments. 

 

Fig 3.2. a) Pieces immersed in synthetic rainwater; b) Piece exposed outdoors 

On the other hand, another steel sample was placed over a marble slab (Fig 3.3), and 

was sprayed with the prepared acid rain daily for two months. The marble slab had an 

inclination angle of 45o in order to study the run-off of the metal and the stained effect of 

the iron, and other metals, over the porous material. 
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Fig 3.3. Analysed marble slab indicating the points where EDXRF analyses were done 

3.2. MATERIALS AND METHODS 

3.2.1. Potentiometry 

In order to see the redox potential trend of the solution in which the samples subjected 

to the accelerated aging were immersed, potentiometric measurements were carried 

out. For that purpose a platinum electrode (Metrohm Ion Analysis) and Ag/AgCl 

reference electrode (Crison) were immersed together with the samples under magnetic 

stirring and inside a thermostatic bath (25oC, Fig 3.4). Home-made software called 

POTTIE 23 was used to acquire the redox potential during the experiments. As it has 

mentioned before, these experiments had a duration of at least, two weeks, taking data 

every 864 seconds. 

 

Fig 3.4. Thermostatic bath of potentiometric experiment 
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3.2.2. Raman spectroscopy 

By means of this technique the samples were analysed to characterise the protective 

layer and the degradation products formed in the steel surface. The samples were 

analysed directly without any preparation step. On the one hand, a hand-held InnoRam 

spectrometer by BWTECINC (Fig 3.5. a)) was used with a 785 nm excitation laser, 20x 

long range objective and with a Charge Couple Device (CCD) detector (Peltier cooled). 

The spectroscopic data were acquired with the BWSpecTM software version 3.26. On the 

other hand, a Renishaw inVia Raman micro spectrometer (Fig 3.5. b)), provided with a 

532 nm laser as excitation source, with 20x objective and a CCD detector was used. In 

this case, the software used for the data collection was the Wire 4.2 and the equipment 

was installed on antivibratory table.  

In all cases, laser powers lower than 20mW were used to avoid the 

thermodecomposition of the samples and mineral phases changes. Acquisition times as 

well as the number of scans were set to optimum values in order to obtain a good signal 

to noise ratio. The calibration of the instruments was performed every day by using a 

silicon slice with the 520,5 cm-1 band. 

For spectral analysis and treatment, the Omnic software by Thermo Nicolet was used. 

The spectra interpretation was performed by comparison with standard spectra 

contained in home-made spectral database 24, with the RRUFFTM on-line database and 

bibliography 3, 25, 26, 27, 28, 29. In addition, when broad bands appeared, deconvolutions 

were performed with GRAMS32 (Thermo Scientific) software based on Lorentzian and 

Gaussian functions. 

 

 

 

 

 

 

 

 

Fig 3.5. a) InnoRam BWTECINC Raman spectrometer. b) Renishaw InVia Raman micro spectrometer 

a) b) 
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3.2.3. Infrared spectroscopy 

Through this technique the pieces immersed in acid rain were analysed in order to 

support the results obtained by Raman spectroscopy because some compounds were 

very difficult to identify by means of the last technique. The infrared spectra were 

acquired with a Jasco 6300 FT/IR spectrometer (Fig 3.6). The system has a Ge/KBr 

beam splitter and DLATGS detector with Peltier temperature control. All spectra over 

the 400-4000 cm-1 range were obtained by the co-addition of 64 scans with a resolution 

of 4 cm-1. In this regard, it was necessary the preparation of pellets because the 

measurements were performed in transmittance mode. For that purpose, 0,5 mg of 

sample (the oxide layer formed in the steel surface scratched using an scalpel) were 

mixed with 200 mg of KBr in an agate mortar, transferred to a metallic die, and then a 

total pressure of 8 tons was applied. For the spectra acquisition Spectra Manager 

(JASCO) software was used and for the spectral analysis and treatment Omnic software 

was employed. The interpretation of the bands was performed by comparison with 

bibliography 30, 31, 32. 

 

Fig 3.6. Jasco 6300 FT/IR spectrometer 

3.2.4. Handheld Electron Dispersive X-Ray Fluorescence Spectroscopy (EDXRF) 

In order to determine the elemental composition of the samples a hand-held Electron 

Dispersive X-Ray Fluorescence (EDXRF) portable analyzer XMET5100 (OXFORD 

Instruments) was used (Fig 3.7). The equipment is provided with a rhodium X-Ray tube 

as excitation source that works at a maximum voltage of 45 kV and includes a high 

resolution silicon DRIFT detector (SDD). Before the analysis of samples, a reference steel 

material was analyzed to check the EDXRF system and to select the most appropriate 

method. The software by Oxford implements a so called Alloy LE method that provides 

accurate quantitative data for metallic alloys. The used experimental conditions were 70 

seconds and 5 replicates.  
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Fig 3.7. Handheld EDXRF portable analyser XMET5100 (OXFORD Instruments) 

3.2.5. Ion exchange resin treatment 

The resin treatment was performed by employing an ion exchange resin, Purolite A-100. 

It is a macroporous polystyrenic weak base anion resin having tertiary amine 

functionality. It is designed to exhibit high capacity in removing strong acids such as Cl-, 

NO3- and SO4-   33.  

As the resin is in Cl- form it was necessary to prepare the resin keeping it under water 

for at least 40 h 34 to change the chloride ions for hydroxide ions. Then, for the piece 

treatment, 15 g of resin were mixed with 0,15 g of methyl-cellulose and this mixture was 

applied in the sample during 48 h 35 (Fig 3.8).  

 

Fig 3.8. Resin applied on the steel sample 

3.2.6. Determination of soluble salts 

By means of Ion Chromatography (IC) the sample exposed to the weather during 4 years 

was analyzed. As it has been mentioned in the Introduction section, with the resin 

treatment it was pretended to remove some anions, exactly those which affect more to 
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the Corten Steel 3. Hence, it was necessary to quantify the salts present in the steel 

before and after that treatment in order to evaluate its effectiveness. Besides, this 

sample is very similar to the real sculpture (Besarkada XI) since they are made of the 

same material and exposed to comparable atmospheres. This fact allowed avoiding 

performing the essays over the real artwork since it was unknown if the resin treatment 

could change its colour or texture. 

To perform this, the pre-treatment of the samples was required. The samples were 

obtained from the surface of the piece with the help of a scalpel and then they were 

grinded using an agate mortar. The protocol followed is an adaptation of one proposed 

by the Society of Protective Coatings (SSPC) 36. The treatment carried out consists on 

introducing 0,1 mg of sample in 5 mL of deionized water, heating until the boiling point. 

The sample must be boiling for 45 minutes. Along this time, if liquid evaporated it had to 

be replenished up to 5 ml. After the extraction time, the extract was filtered with a 0,45 

µm Millipore filter an preserved at 4ºC. 

The quantification of the anions and cations of the soluble salts present in the steel 

surface was carried out using a Dionex ICS 2500 

ionic chromatograph with a suppressed 

conductivity detector ED50 (Fig 3.9). An IonPac 

AS23 (4x250 mm) column and IonPac AG23 (4x50 

mm) pre-column were used for separation of anions 

(chloride, sulphate and nitrate). The quantification 

of cations (sodium, calcium, potassium and 

ammonium) was conducted by using an IonPac 

CS12A (4x250 mm) column and IonPac CG-12A 

(4x50 mm) pre-column by Vertex. 5 mM Na2CO3/0.8 

mM NaHCO3 buffer and 25 mA suppression current 

at 1 mL·min-1 flow were set for the analysis of the 

anions. In the case of cations, 20 mM CH4SO3 as 

mobile phase and 59 mA of suppression current at 1 mL·min-1 flow were used. In both 

cases the Chromaleon 6.60-SPla software (Dionex Corporation, Thermo Scientific, USA) 

was used. 

 Fig 3.9. Dionex ICS 2500 ionic 
chromatograph 
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3.2.7. Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) 

This technique was employed for fulfilling two different objectives. On the one hand, the 

water where the samples were immersed was analysed in order to see the trend of the 

leached metals with time. These analyses were carried out taking 1 mL of that water 

every hour during 48 hours. The time of this experiment was set taking into account the 

results obtained in the potentiometric measurements since it was seen that 48 h was the 

time needed to reach potential stability in the system. On the other hand, the extracts 

measured by IC were also measured by ICP-MS, in order to determine and quantified the 

metals related to the soluble salts.  For that purpose, an ICP-MS NexION 300 (Perkin 

Elmer, Ontario, Canada, Fig 3.10) inside a clean room (class 100), was used. Argon 

(99,999%, Praxair, Spain) was used as carrier gas. The established parameters were: 

nebulized flow 0.9-1L·min-1, plasma flow 18L·min-1 and power RF 1500W. All the 

samples were acidified with 1% of HNO3 (65%) and all plastic material in contact with 

samples was soaked in 10% HNO3 bath at least 24 h and finally rinsed with deionized 

water before use. 

 

Fig 3.10. ICP-MS NexIon 300 (Perkin Elmer) 

3.2.8. Chemical and thermodynamic modelling 

In order to predict de formation of some compounds present in the steel surface, 

thermodynamic models were checked using information of stability constants included 

in the free academic software HYDRA (Hydrochemical Equilibrium-Constant) and 

Medusa 32 bit version (Make Equilibrium Diagrams Using Sophisticated Algorithms) 37 

from the Royal Institute of Technology of Stockholm, Sweden. MEDUSA is based on 

solgaswater algorithm 38 and HALTAFALL algorithm 39. 
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4. RESULTS AND DISCUSSION 

In this section, the results obtained by the different techniques described previously, are 

exposed. In order to identify the problems of the CorTen steel structures exhibited in 

polluted areas or marine environments, a corrosion simulation with acid rain was made 

as it was described in Experimental Procedure section. The samples immersed in 

synthesised acid rainwaterwere analysed by potentiometry, ICP-MS, EDXRF and Raman 

and infrared spectroscopies. 

By means of potentiometry, the formation of the rust layer in terms of redox potential 

can be explained. As it can be seen in the Figure 4.1, where the potential (mV) versus 

time (hours) is represented, the potential reach a stable value after 50 hours. However, 

before reaching that stability there are some oscillations in the potential value.  

 

Fig 4.1. Trend of the redox potential of the solution where the samples were immersed 

At the beginning, the potential is reduced due to the O2 consumption for the formation of 

FeOOH (Introduction, Reaction 2). Then, there is an increase of the potential due to the 

partial reduction of FeOOH to magnetite (Introduction, Reaction 3). Finally, there is 

another reduction in the redox potential due to the consumption of O2 in Reaction 4 

(Introduction). It is worthy to point out that these changes in the potential are repeated 

until reaching de stable value. This result leads to think that the formation of the rust 

layer is a cyclic process, which takes place through the repetition of the described 

reactions several times 13. 

In addition, this experiment was helpful to design the ICP-MS analyses of the water 

where the pieces were immersed because the concentration of the leached metals 

should reach stable value in the same time that potential did. Therefore, the water 

where the piece was immersed was collected each hour until 48 h since at that time the 

redox stability was reached.  
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The metal quantification experiment was performed in order to see the trend in the 

metal leaching. The results obtained by means of this technique are represented in the 

diagrams below (Fig 4.2 and 4.3) where the accumulated concentration (ng/g) versus 

time (hours) is represented. In the figures, it can be seen that iron is the metal which is 

leaching in higher concentration comparing with other metals of the steel alloy, as it 

could be expected. However, together with iron, it was found that manganese was also 

leached in high rate.  

In the case of the Fe and Mn (Fig 4.2), it can be observed that the concentrations reach a 

stable value after 50 h, as redox potential did. This stability is achieved due to two 

possible reasons, either because the solution where the pieces were immersed is 

saturated, or because the protective rust layer is stabilised. However, other metals like 

nickel and copper (Fig 4.3) do not reach the mentioned stability. This is due to the fact 

that, these are the so called sacrifice metals, which means that they are added to the 

steel composition and do not reach the stability, for other metals, like in this case iron 

and manganese, to achieve it. 

With these results and knowing the area (~5 cm2) of these samples, the amount of 

leached metal per square metre could be calculated. The uncertainties are given in 

relative standard deviation form (Table 4.1). Although the observed concentration seem 

to be low, they can give an idea of what could be the concentration of leached metals in 

bigger structures such as big sculptures, facades, etc. Moreover, it must be taken into 

account that the quantities reflected in the table are those corresponding to 48 hours. 

Therefore, if the stability is not reached, metals could be leached for years, dumping high 

quantities of heavy metals which could have negative environmental consequences.  

Fig 4.2. Accumulated concentration obtained by ICP-MS 

of leached Fe and Mn vs time 
Fig 4.3. Accumulated concentration obtained by ICP-MS 

of leached Ni and Cu vs time 
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In contrast, some metals like chromium, are added in high amount in the initial 

composition of the studied steel but its quantity in the analysed water is not significant, 

consequently, they are not forming soluble salts in the same way than iron and 

manganese do (as it will be seen later). 

Table 4.1. Amount of leached metal (mg) per sample area (m2) in 48 h  

Metal Fe Mn Ni Cu Cr 

Quantity 
(mg/m2) 

1,78±0,05 1,44±0,03 0,054±0,002 0,034±0,001 0,0022±0,0001 

Regarding the elemental composition of the alloy, it was provided by the steelwork, 

however, the technique used for the characterization and its related uncertainty was 

unknown. Therefore, in order to provide more information about elemental composition 

of the steel, EDXRF analyses were carried out after the ageing tests. First of all, a 

reference material was measured to determine what the most appropriate method, 

provided by the fabricant, for the sample analyses was. Reference material data and 

composition given by the handheld device are summarized in Table 4.2. The 

uncertainties associated to the concentrations are given in standard deviation form. 

Table 4.2. Elemental composition (%) of a reference material analysed by EDXRF using ALLOW LE method. 

Metal  Fe Mn Ni Cu Cr 

Reference 
material data 

Concentration 
(%) 

--- 0,82 0,44 0,22 0,58 

Data given by 
handheld 

97,77± 

0,04 

0,83± 

0,04 

0,467± 

0,006 

0,21± 

0,00 

0,567± 

0,006 

In order to see if there were differences between the reference material data and the 

composition obtained by EDXRF device, paired t-tests were performed. Student’s t-test 

confirmed, at 95% of confidence level, that there were not significant differences 

between the results, so, Alloy LE method was selected for the sample analysis since 

other methods provided worse results. 

EDXRF results revealed that the samples analysed were composed by iron, chromium, 

nickel, copper and manganese. All elemental values obtained from the media of 5 

replicas (%) with their uncertainties (SD) are summarized in Table 4.3. In this case, it is 
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showed only the results of one sample, but the same experiment was carried out with all 

the samples. 

Table 4.3. Elemental composition (%) of a sample immersed in rainwater analysed by EDXRF 

Metal Fe Mn Ni Cu Cr 

Sample 
immersed 

98,962± 

0,051 

0,074± 

0,011 

0,264± 

0,017 

0,0120± 

0,0045 

0,0300± 

0,071 

Regarding the results obtained for the different samples, at the beginning it was 

supposed that all results were going to be comparable since the depth reached by the X-

Ray given by the hand-held device was the same in all the analyses performed in the 

different samples, considering that they are made in the same material and the 

protective rust layer should be more or less the same. Nevertheless, after a student’s 

test-t study, it could be affirmed that, at 95% of confidence level, there were significant 

differences between the results obtained for different samples in some of the detected 

metals, such as Ni, Cu and Cr. When the experiment were designed, it was pretended 

that the conditions in all the experiments  were the same, however, taking into account 

the showed results, it could be assured that a little change in the conditions (at first 

sight, inestimable) could cause a significant change in the composition of the outer part 

of the steel.  

By means of Raman and IR spectroscopies, molecular information of the composition on 

the protective layer was obtained. According to these results, it can be said that the main 

mineral phases present in the rust layer were lepidocrocite and goethite. Moreover, 

another iron oxide, hematite (α-Fe2O3), was found. All these phases were detected by 

Raman spectroscopy (Fig 4.4).  

Lepidocrocite is the first step in the layer formation and, actually, it was detected in 

most of the spectra through its Raman bands at 248 (s), 303 (w), 375 (s), 523 (m) and 

645 (w) cm-1. Goethite arises from the transformation of lepidocrocite with the exposure 

time. In this way, it was difficult to find it in the studied samples because its formation 

requires more time. However, in some cases it was identified thanks to its main bands at 

301(m), 386 (s) and 545 (w) cm-1 together with γ-FeOOH, never as a pure compound. 

Regarding hematite, which was detected thanks to Raman bands at 224 (s), 290 (vs), 
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408 (s), 494 (w) and 608 (m) cm-1, is not very common compound in the protective layer 

but it is usually developed in SO2 rich environments 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

As it can be seen in the previous Raman spectra (Fig 4.4), some broad bands appeared 

commonly in the obtained spectra due to overlapping of various Raman signals in the 

same spectrum range. This phenomenon was seen in most of the spectra and, for that 

reason, Gaussian and Lorentzian decomposition was performed in order to identify the 

different Raman signals that were contributing in that area. In Figure 4.5, a 

decomposition with bands corresponding to maghemite (γ-Fe2O3), which is an 

amorphous compound that arises of the heating of lepidocrocite, is showed 26. Moreover, 

ferrihydrite (Fe2O3·3H2O), which is a low crystallinity phase composed of different types 

of disordered materials 29, was also identified. The presence of amorphous phases was 

expected since the analyses were carried out in the first stages of the protective rust 

layer formation. 

Fig 4.4. Raman spectra of immersed samples. a) Lepidocrodite (L) and maghemite (M); b) Goethite (G), 

lepidocrocite (L) and maghemite (M); c) Hematite (H) and maghemite (M) 

a) b) 

c) 
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Fig 4.5. Decompositionof a broad band where amorphous phases such as maghemite (M) and ferrihydrite (Fr) 
together with lepidocrocite and goethite (L+G) can be seen  

Moreover by Raman spectroscopy, apart from those iron phases, a manganese oxide 

with its main band at 580 cm-1 could be found (Fig 4.6).  

  

Fig 4.6. Raman spectrum of lepidocrocite (L) and maghemite together with main band of manganese oxide 
(Mn) 

Some of these results can be supported by IR spectroscopy. All IR spectra show an 

important absorption in the range from 3000 to 3600 cm-1 characteristic of the O-H 

stretching band of water. Besides, bands at ~2330 and ~2363 cm-1 corresponding to the 

vibrations of atmospheric CO2 can be observed. In addition, some bands of iron phases 

identified also by Raman spectroscopy were detected by IR (Fig 4.10). Lepidocrocite 

with IR bands at 74 and 1023 cm-1, goethite thanks to its band at 890 cm-1 and hematite 

with a band at 451 cm-1 were found. On the other hand, akaganeite with its main band at 

419 cm-1 and feroxyhyte (δ-FeOOH) with its IR bands at 484 and 1122 cm-1 were also 

detected. The first one could be detected by Raman as it is described above; and the 

second one has only weak broad band which are hard to detect because they are 

overlapped with lepidocrocite and goethite main bands 40, 41. Therefore, in addition to 
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confirm the information obtained by Raman, it could be affirmed the presence of 

another amorphous phase, the feroxyhyte.  

 

Fig 4.10. IR spectrum of immersed samples. Lepidocrocite (L), goethite (G), hematite (H), feroxyhyte (F) and 
akaganeite (AK) 

In the case of soluble salts formed on the steel surface, by means of Raman spectroscopy, 

some bands located on the spectral range at 980-990 (Fig 4.7. a)) and 1020 and 1104 

cm-1 (Fig 4.7. b)) could be recorded. These bands are in consistence with the presence of 

sulfates 42. Due to its low intensity and to the impossibility of determining the secondary 

bands, the presence of sulfates could be affirmed but it could not been accurately 

identified. However, it can be said that the most likely sulfates detected by Raman 

spectroscopy are those of iron and/or manganese since their sulfates Raman bands 

appear in this region, their oxides were also found, and, moreover, they are the most 

lixiviated metals according to ICP-MS results. 

 

 

 

 

 

 

In order to know more about the sulfate formation on the steel surface and to check the 

previously stated hypothesis, thermodynamic models were performed. According to the 

model (Fig 4.8), in the conditions in which the experiments were carried out (pH 5,3), 

iron, manganese and nickel sulfate are formed 13 which is in concordance with what the 

a) b) 

Fig 4.7. Raman spectra with the band of sulfates identified (S), together with lepidocrocite (L), goethite (G) and 

maghemite (M) 
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ICP-MS results revealed. In addition, the model estimated the fraction of the different 

sulphates formed and they were once again in concordance with the leaching tests, iron 

is the most lixiviated one because its sulphate is the predominant one, followed by 

manganese and finally, nickel.  

 

Fig 4.8. Thermodynamic model of iron, manganese and nickel sulfates formation. 

Finally, also by Raman spectroscopy, bands corresponding to akaganeite (Fig 4.9) were 

found. This compound, as it was said in the Introduction section, is formed in presence 

of chloride which, in this case, comes from the salts that compound the rainwater (NaCl, 

KCl and CaCl2 · 2H2O). Besides, it can be seen a band at 980 cm-1 corresponding, as it has 

mentioned above, to sulfates.  

 

Fig 4.9. Raman spectrum of akaganeite (AK) of immersed samples and a band corresponding to sulfates (S) 

On the other hand, the marble slab (Experimental Procedure, Fig 3.3) where one piece of 

CorTen steel was placed, was analysed by means of EDXRF with the aim of support the 

results obtained by ICP-MS and to see the behaviour of a porous material in contact with 

leached metals. With the results obtained, it could be confirmed again that iron and 

manganese were deposited on the surface in high extent, followed by nickel (Table 4.4). 

This fact means that, after the leaching of the metals, probably in soluble salt form, they 
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precipitate again in oxide form, which is the stain that it can be seen in the Figure 3.3. 

Moreover, as it is shown in Table 4.4, the concentration of leached metal, with its 

uncertainty indicated in total standard deviation, decreased with the distance from the 

sample. Knowing and taking into account that marble is a porous material, this 

experiment can be compared with a real situation in which a sculpture or a facade is in 

contact with a ground made of porous material, causing stains in the ground which are 

very difficult to eliminate. 

Table 4.4. Metal concentration in the marble slab stain (% wt) 

Metal Fe Mn Ni Cu 

Blank <LOD 72±20 33±5 <LOD 

Point 1 (0 cm) 97712±183 851±28 256±9 31±5 

Point 2 (2 cm) 3920±37 79±14 <LOD <LOD 

Point 3 (4 cm) 2928±36 72±17 21±4 <LOD 

Point 4 (6 cm) 2600±33 95±17 20±4 16±3 

Point 5 (8 cm) 2307±30 50±15 21±4 <LOD 

On the other hand, in order to see the results obtained in a real situation, the sample 

exposed to the weather was also analysed by means of Raman spectroscopy to 

characterize the rust layer. Besides, for the quantification of soluble salts, IC and ICP-MS 

analyses were carried out. In this case, the exposure time was higher than in the 

previous case, so there were more reactions with acid gases (come from the 

atmosphere), chlorides (due to the marine airborne) and other stressors. Therefore it 

should be easier to find the compounds that are causing the damage.  

By Raman spectroscopy, as in the other samples, even if the exposure time was longer, 

the main component found was lepidocrocite (Fig 4.11. a)). This rust layer phase could 

appear due to the fact that goethite needs more time for forming (around decades 3) 

and/or because analyses were performed in the surface of the rust layer where normally 

lepidocrocite is the main phase because it is the iron compound that appears due to the 

contact with atmosphere 43. In addition, hematite was also found (Fig 4.11. b)), which 

lead to think that SO2 has affect the evolution of the rust layer 3.  
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Besides, regarding degradation compounds, due to the location of the sample akaganeite 

(Fig 4.12) and sulfates were detected. In this case, it was possible to identify the sulfate 

through its main Raman band at 1021 cm-1 (as in the same way of Fig 4.7. b)) and one of 

its secondary bands at 1094 cm-1 which correspond to an iron sulfate, lausenite 

(Fe2(SO4)3·6H2O).  

 

Fig 4.12. Raman spectrum of akaganeite (AK), lepidocrocite (L), maghemite (M) and beta-carotenoids (bC) 
collected on the exposed sample. 

Apart from the iron phases which were expected, calcite (CaCO3) and carotenoids were 

found (Fig 4.12 and 4.13). Calcite comes from the deposition of atmospheric dust, being 

one of the most abundant particulate matters in the Basque Country because of its 

calcareous lands 44. On the other hand, carotenoids, concretely β-carotenoids, are 

biomarkers for lichen and moss presence since they occur in the pigmentation of these 

organisms (Fig 4.14). Besides, they are excreted by microorganisms as a mechanism to 

increase their resistance to extreme environments, like those with high concentration of 

acid gases 45. The climatic parameters such as temperature, solar radiation and 

humidity, are decisive in the growth of microorganisms with biodeteriorative capability 

46, 47. Due to the fact that the sample was exposed to different environmental conditions 

a) b) 

Fig 4.11. Raman spectra of the sample exposed to the weather. a) Lepidocrocite; b) Hematite (H) and maghemite (M) 
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(characteristic of the climate), these molecules has grown in the entire sample surface 

being observed in most of the spectra. 

Once  the presence of soluble salts in the steel surface was detected and knowing that 

they can damage the material and that they could cause an important environmental 

impact, a solution to remove these compounds was proposed. Ion exchange resin was 

selected for that purpose, as it has been mentioned before.  

The results of the experiments performed by means of IC and ICP-MS are summarized in 

Table 4.5. The anions and cations uncertainties are given in relative standard deviation. 

The limit of quantification (LOQ) was calculated following IUPAC rules, defined as blank 

signal plus 10 SD, were SD is the standard deviation of 4 measurements of a blank. 

As it was expected, taking into account that the resin is anionic, sulfate, nitrate and 

chloride concentrations decreased in the steel surface after the treatment. Based on the 

obtained results, it can be affirmed that the proposed solution is valid, and the 

compounds that cause the damage on the steel structures were removed. However, as 

the table shows, most of the cations and metals decreased too. Due to fact that the 

system has to maintain the electro neutrality, cations have to decrease in the same way 

that the anions do. Therefore, it is thought that these compounds are being leached with 

the water used to compact the resin, which could cause a major environmental impact. 

However, it had to be taken into account that, this damage was not representative 

because, this leaching would have happened likewise, with the rainwater, so the 

environmental impact would not be increased by the resin treatment. In Figure 4.15 it 

can be seen the loss percentage of each ion.  

Fig 4.13. Raman spectrum of calcite (Ca), β-carotenoids 

(bC) and some bands of lepidocrocite (L) 
Fig 4.14. Microphotograph of the steel surface with a 

microorganism 
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Table 4.5. Soluble salts concentrations determined by ion chromatography and ICP-MS in mg·kg-1. PRE-RESIN TREATMENT/POST-RESIN TREATMENT 

[Na+] [NH4+] [K+] [Ca2+] [Cl-] [NO3-] [SO42-] Fe Mn Ni Cu Cr 

1,75± 

0,36 

0,485± 

0,003 

1,82± 

0,32 

6,36± 

0,36 

2,38± 

0,49 
<LOQ 

3.,83± 

0,33 

0,193± 

0,009 

0,0036± 

0,0002 

0,0039± 

0,0002 

0,0030± 

0,0002 

0,0030± 

0,0001 

0,428± 

0,088 

0,573± 

0,010 

0,46± 

0,26 

5,15± 

1,23 

1,33± 

0,42 
<LOQ 

1,89± 

1,17 

0,030± 

0,002 

0,00055± 

0,00004 

0,0016± 

0,0001 

0,0032± 

0,0002 

0,0023± 

0,0001 

 

 

Fig 4.15. Loss percentage of each ion. Some of them increase as in the case of ammonium and copper. 
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5. CONCLUSIONS  

Following the analyses performed by different methods the composition of 

protective layer was determined and which metals were being leached and 

what was their trend was quantified.  

The potential changes could be related with the wet/dry cycles, 

corresponding to each change with one reaction involved in the layer 

formation. On the other hand, ICP-MS analyses showed which metals were 

leaching, in which amount and what the followed trend was. Based on the 

results, it could be affirmed that iron, manganese and nickel were the metals 

which were leached in higher amount, a fact confirmed by the EDXRF 

analyses carried out over the marble slab, obtaining the same leached metals 

with both techniques. The leached metals have their own function in the steel. 

For example, manganese and nickel are added in order to increase 

hardenability and to decrease weldability. Consequently, leaching of these 

metals can involve a loss of those properties, reducing the quality of the 

material and, therefore, causing detachments or discolorations in the surfaces 

as it has seen in Introduction section. This fact is very important when using 

this material for artworks, since in a short period of time the work could be 

very different from the one designed by the artist. 

The results obtained by EDXRF on the samples, showed, thanks to the 

Student’s t-tests, that a little change in the environmental conditions could 

lead in big differences in the composition of the surface of the steel. With 

these results, the importance of the location where a weathering steel 

structure is exposed could be observed, because, it could involve, not only 

structural damages as it has seen before, but also an environmental impact 

due to the formation of soluble salts of metals which compound the steel.   

Besides, with the scaled concentrations obtained with ICP-MS and EDXRF, 

and related to the dimensions of the analysed pieces of steel, it could be 

confirmed that the amount of metals leached can be important and it should 

be taken into account, to know the environmental effects that larger 

structures could cause due to the toxicity of these elements in high 

concentration. These leached metals can affect the soil, the groundwater 
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reaching rivers and sea, and finally they could be introduced in the food chain 

producing many diseases.  

Furthermore, as it can be seen in all analysed samples and as it was expected, 

the major components in the rust layer were lepidocrocite, goethite and 

hematite. It could be affirmed that lepidocrocite is formed in the first stages 

of atmospheric corrosion, and due to the short time of exposure (2 weeks), is 

the most found compound. In addition to these common phases, it was also 

identified some amorphous compounds such as, maghemite and ferrhydrite, 

showing that even if accelerated essays were carried out, the protective layer 

was still not passivated and therefore, it was not exerting any protective 

function. The IR analyses done with the samples immersed in rainwater were 

useful to support the Raman results being possible to identify the same 

mineral phases and, moreover, it was possible to observe another amorphous 

phase, feroxyhyte, which is very difficult to detect by Raman spectroscopy 

because it is very amorphous phase and it is difficult to distinguish from 

other compounds with broad bands.  

Apart from the exposure time, the influence of the environment in where the 

samples are exhibit can be seen evaluated based on the data extracted from 

this work. In this case, the contact with inorganic salts such as sulphates and 

chlorides, leads to the formation of the metal sulphates and akaganeite which 

were detected by Raman and IR spectroscopies and damage steel structure. It 

have to be taken into account that in most of the cases, the problem found 

was related with metal sulphates, so it could be affirmed that the most 

harmful compound was de SO2.  

Taking into account that soluble salts, sulphate among all, were the 

responsible for the observed problems, the anionic resin treatment seemed to 

be the better option for the consolidation of this material when it is exposed 

to acid and coastal environments. With the obtained results, it could be 

affirmed that anions which were increasing the corrosion rate of the steel 

and, at the end, causing the material loss problem, were removed by the resin 

and consequently that problem, was solved. However, it must be said, that 

ICP-MS results showed that the amount of metals also decreased. 
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Notwithstanding, this fact does not seem to be a negative aspect because the 

leaching of those metals would have occurred anyway by the effect of the 

rain. Actually, they were removed only by the water present in the resin 

when it was applied. Therefore, the only presence of moisture, for instance, 

would have removed them in a real situation since they are forming very 

soluble salts. To sum up, the resin treatment resulted very suitable to remove 

sulphates and chlorides which have been proved to be the most aggressive 

agents against the normal development of the weathering steel.  
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Resumen/Laburpena/Summary 
 
 
 
 

 

Weathering steel has a special resistance against the atmospheric corrosion 
through the formation of a protective layer. This layer is formed, among others, 
due to the reaction of some alloy elements present in the steel with reactive 
species, such as sulphur and nitrogen oxides and/or chlorides, which are present 
in the environment. For that reason, it is a widely used material in outdoor 
structures (facades, bridges) and it is in vogue among modern sculptors because 
this material changes its texture and colour with the pass of time and with the 
environment in which is exhibited. However, depending on the location, some 
problems could appear in the development of the protective layer. For instance, 
even if the acid gases collaborate in the formation of the rust layer, when they 
appear in high concentration they can be counter-productive in the well 
development of the protective layer. In fact, acid rain and marine aerosol can 
accelerate the corrosion process causing the leaching of some steel alloy metals. 
In consequence, the corrosion can be the responsible of the destruction of the 
structure, and moreover, the responsible of several negative enviromental 
impacts due to the toxicity of those leached metals. In this work spectroscopic 
techniques were used in order to determine the composition of protective layer, 
both the original composition and the degradation compounds formed due to the 
reaction of the material with the surrounding atmosphere. On the other hand, 
quantitative techniques, as well as monitoring the quantity of leached metals, 
they were helped in the development of a solution for the damage caused by 
chlorides and acid gases, being sulphates the most worrying stressors. For that 
purpose a ion exchange resin was employed with the aim of removing sulphates, 
chlorides and nitrates, and thus, avoiding the destruction of the steel structure. 
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