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 Ariane Sagasti 

Resumen 
 

En los últimos años, la investigación sobre materiales 

magnetoelásticos se ha centrado en sus aplicaciones en el campo de los 

sensores tanto químicos cómo biológicos, aprovechando el hecho de que 

este tipo de materiales permiten la detección de manera remota. 

Los materiales magnetoelásticos son materiales ferromagnéticos 

que presentan magnetoelasticidad. La magnetoelasticidad, también 

conocida como efecto Villari, es el fenómeno opuesto a la 

magnetostricción o efecto Joule. Los materiales magnetostrictivos se 

elongan o contraen cuando son sometidos a un campo magnético, 

mientras que los materiales magnetoelásticos sufren cambios en su 

estado magnético cuando son sometidos a tensiones, siendo el valor de 

la magnetostricción el que determina el tipo de comportamiento que 

presentará el material. Los materiales presentados en este trabajo poseen 

valores positivos de magnetostricción, ya que son los que usualmente se 

emplean como sensores. Debido a esto un material 

magnetostrictivo/magnetoelástico es un material ferromagnético que se 

deforma continuamente cuando se encuentra bajo la influencia de un 

campo magnético. De esta manera, excitando el material con un campo 

magnético podemos a partir de estas propiedades magnetoelásticas hacer 

que este vibre exhibiendo una frecuencia de resonancia característica. 

Esta frecuencia de resonancia, que varía en función de ciertos parámetros 

como la longitud de la cinta o la densidad, hace que nuestro material sea 

sensible a cambios en la masa, entre otros, siendo esto lo que 

fundamenta la base para las aplicaciones como sensor que se van a 

presentar.  

 Dentro de los materiales ferromagnéticos, las aleaciones amorfas 

presentan excelentes propiedades magneto-mecánicas y más 

concretamente las ricas en hierro presentan un alto coeficiente de 

acoplamiento magnetoelástico. Por tanto los materiales 

magnetoelásticos amorfos presentes a lo largo del trabajo son en base 

hierro, fabricados en forma de cinta por el método “melt-spinning”. 

Aleaciones con distintas composiciones se han empleado para los 

distintos tipos de sistemas. Sin embargo, para que estas cintas puedan 

actuar como sensores es necesario recubrirlas con algún “material activo”, 
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es decir, que sea capaz de detectar y atrapar las moléculas objetivo. De 

esta manera, el incremento en la masa del sistema dará lugar a un 

descenso en la frecuencia de resonancia, mediante el cual podrá 

calcularse la concentración presente en el medio del compuesto a 

detectar. Para esto previamente se habrá realizado un calibrado del 

sistema siguiendo la evolución de la frecuencia de resonancia con 

concentraciones conocidas del compuesto a detectar. 

El principal objetivo de este trabajo de tesis doctoral es por tanto 

desarrollar sensores basados en el efecto magnetoelástico para detección 

tanto química como biológica. Para tal fin, las cintas amorfas se han 

recubierto con “materiales activos” de distinta naturaleza, polímeros, 

compuestos semiconductores y aluminosilicatos. En todos los casos, el 

objetivo final es llegar a desarrollar un sensor que deberá cumplir una 

serie de requisitos como son alta sensibilidad, buena reproducibilidad y 

estabilidad, rápida respuesta, bajo coste y, en algunos casos, buena 

resistencia a la corrosión.  

Durante el transcurso de los experimentos se hizo evidente la 

importancia de que los resonadores magnetoelásticos presentaran una 

buena resistencia a la corrosión, no solo de cara al objetivo final que es 

la detección, sino también porque algunos procesos de recubrimiento 

transcurren por síntesis químicas en medios agresivos que dañan las 

cintas afectando a sus propiedades. Debido a este hecho, durante el 

transcurso de este trabajo se han fabricado nuevas cintas amorfas con un 

pequeño contenido en cromo, ya que se ha encontrado que mejora la 

resistencia a la corrosión. A fin de estudiar el comportamiento de los 

distintos resonadores magnetoelásticos frente a la corrosión se han 

realizado medidas de resistencia a la polarización, con un sistema de tres 

electrodos. A partir de los resultados obtenidos se puede determinar que 

las muestras que contienen cobalto presentan menor resistencia a la 

corrosión que las que presentan níquel, y que efectivamente la adición 

de un 2% de cromo en la aleación hace que la resistencia a la corrosión 

se vea mejorada. 

Inicialmente los resonadores magnetoelásticos han sido recubiertos 

con un polímero, poliestireno. A partir de estas primeras pruebas se han 

estudiado los dos parámetros fundamentales que afectan al proceso de 

detección, la sensibilidad S y el factor de calidad Q y cómo estos 
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parámetros se ven afectados al incrementarse la masa del sensor. 

Siguiendo la evolución de la frecuencia de resonancia con respecto al 

incremento de la masa del sistema debida a las sucesivas deposiciones 

de poliestireno ha sido posible determinar el campo aplicado que 

presenta mayor sensibilidad, que es el campo de anisotropía, es decir, 

aquel donde se localiza la mínima frecuencia de resonancia durante el 

barrido en función del campo aplicado. Además la curva de frecuencia 

medida a este campo aplicado es la que presenta la mayor amplitud, a 

pesar de que su factor de calidad es el menor por tener la curva más 

anchura. Por otra parte, se ha estudiado cómo afecta la longitud de la 

cinta a la sensibilidad, recubriendo cintas de distintas longitudes y 

estudiando los cambios en la frecuencia de resonancia. Esto ha permitido 

concluir, tal y como era de esperar, que la cinta más sensible es la más 

pequeña, de 1 cm de longitud. Sin embargo, para futuros experimentos 

será necesario tener en cuenta no sólo la alta sensibilidad de cintas de 

menor longitud, sino el hecho de que al poseer estas menor volumen 

superficial, la cantidad de moléculas que será posible atrapar también 

será menor. 

Para llevar a cabo la deposición del polímero sobre las cintas 

magnetoelásticas, ha sido necesario tratarlas con un ácido, a fin de 

disminuir la rugosidad superficial del material para que la adherencia con 

el polímero fuera mejor. En cuanto al proceso de deposición del 

polímero, el método empleado ha sido el “dip coating” y para ello se han 

empleado dos disolventes diferentes, tetrahidrofurano (THF) y tolueno. 

El THF presenta un menor punto de evaporación, debido a esto la 

velocidad a la que el disolvente se evapora formando la capa del film es 

más rápida que la del tolueno. Por este motivo, aunque el film de 

polímero parece homogéneo al usar THF como disolvente, al observar la 

topografía superficial por AFM se observa que no es tan homogénea y de 

hecho presenta poros que podrían afectar a la capacidad de detección 

del sistema si el compuesto objetivo a ser detectado penetra y reacciona 

con la cinta directamente. Debido a esto se ha propuesto como 

alternativa el tolueno, con mayor temperatura de evaporación, lo cual 

debe evitar o reducir la formación de esos poros superficiales en el film 

polimérico. Efectivamente, los resultados obtenidos han revelado una 

mayor homogeneidad superficial en el sistema depositado a partir de 

tolueno, sin embargo no se ha conseguido siguiendo el mismo proceso 
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experimental depositar una cantidad de masa similar, lo cual hace pensar 

que para cada tipo de deposición sea necesario un estudio inicial sobre 

las condiciones óptimas de deposición. 

En lo relativo a la evolución de la frecuencia de resonancia debido 

a las sucesivas deposiciones de poliestireno, lo cual supone un 

incremento en la masa final del sistema, se ha observado que; para 

cambios relativos de masa pequeños, el sistema cumple con la 

aproximación teórica que establece una relación lineal, habiéndose 

obtenido una pendiente de -0.53 cuando la teórica es de -0.5. Sin 

embargo, cuando el cambio en la masa relativa es mayor, los datos 

experimentales no se ajustan correctamente a esta aproximación lineal, 

sino que es necesario desarrollar la expresión de la que se simplifica, 

obteniéndose así una ecuación polinómica de segundo orden que sí 

ajusta de manera apropiada los datos experimentales. A pesar de esto, 

los valores obtenidos para los parámetros de la ecuación no coinciden 

con los teóricos. 

Por otra parte y con el objetivo de desarrollar un biosensor, los 

resonadores magnetoelásticos fueron recubiertos con óxido de zinc, ZnO. 

El óxido de zinc es un compuesto inorgánico semiconductor con gran 

cantidad de aplicaciones debido a sus propiedades. Presenta buena 

biocompatibilidad, baja toxicidad y buena biodegradabilidad; además de 

gran transparencia, alta movilidad electrónica, luminiscencia a 

temperatura ambiente y alta resistencias térmica y química. 

Nanoestructuras de óxido de zinc ya han sido usadas como sensores 

químicos para la detección de gases y de agentes biológicos. En este caso 

se empleará cómo soporte de la hemoglobina que será la capa activa que 

reaccionará con la molécula objetivo. 

Se han estudiado distintas metodologías para recubrir las cintas a 

partir de las cuales se ha podido concluir que la mejor alternativa para 

realizar una deposición homogénea que recubra toda la superficie, 

consiste en realizar procesos de “casting” con una solución a partir de 

nanopartículas de ZnO previamente sintetizadas. La síntesis de 

nanopartículas de ZnO se ha llevado a cabo por síntesis hidrotermal y las 

partículas han sido caracterizadas por XRD y PL. A partir de las 

nanopartículas dispersas en etanol se han realizado deposiciones 

sucesivas de ZnO, de tal forma que siguiendo la evolución del 
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desplazamiento de la frecuencia de resonancia con la masa de ZnO 

depositada, ha sido posible determinar el valor de módulo de Young del 

film de ZnO depositado. El valor obtenido, 60 GPa, está en buen acuerdo 

con los valores obtenido por otros autores para otro tipo de 

nanoestructuras de óxido de zinc. 

Este sistema ha sido empleado en experimentos de biodetección, 

para determinar la presencia de peróxido de hidrógeno, H2O2. Con este 

objetivo, sobre el film de ZnO se ha depositado hemoglobina, Hb, 

siguiendo un procedimiento similar al empleado en las deposiciones de 

ZnO. Se ha añadido una gota de solución de Hb, se ha dejado evaporar 

el disolvente y se ha eliminado el exceso lavando con solución salina. La 

hemoglobina es una hemoproteína encargada de la transferencia de 

oxígeno entre proteínas. Está compuesta por cuatro cadenas peptídicas 

cada una con un núcleo de hierro capaz de cambiar su estado de 

oxidación debido a su reacción con el oxígeno del medio. Esta habilidad 

del hierro de la Hb es lo que la hace adecuada para detectar H2O2. Los 

experimentos de biodetección se han llevado a cabo de manera 

simultánea por dos técnicas distintas; mediante medidas de resonancia 

magnetoelástica, sensible a cambios en la masa del sensor; y por 

métodos voltamétricos, capaces de detectar procesos electroquímicos 

como son oxidaciones y reducciones. Para esto se ha desarrollado un 

sistema experimental que permite combinar las dos técnicas, de tal forma 

que en la tapa de un vial se han colocado los tres electrodos necesarios 

para las medidas voltamétricas y ese vial a su vez ha sido cubierto con 

una bobina que será las responsable de las medidas magnetoelásticas. 

Así, a medida que se iba adicionando H2O2 en el vial sobre la solución 

salina se registraban ambas señales. Se ha registrado un incremento 

lineal en las corrientes de catálisis medidas en el intervalo 25-350 μM 

con un coeficiente de correlación de 0.99. Se ha determinado un límite 

de detección de 25-50 μM, y se ha observado una buena reproducibilidad 

y estabilidad del sensor, además de una rápida respuesta (30 s). Por otro 

lado, las medidas de resonancia magnetoelástica han mostrado un 

pequeño incremento de masa, de tendencia lineal con respecto al 

incremento en la concentración de H2O2 con una pendiente de 152 

ng/μM. Este cambio de masa se debe probablemente a la absorción de 

H2O2 sobre el ZnO durante los procesos de reacción electroquímica. 
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Para finalizar, se han desarrollado sensores para la detección de o-

xileno basados en zeolitas. El orto-xileno es un compuesto orgánico 

volátil muy peligroso en caso de contacto con la piel o los ojos y peligroso 

en caso de ingesta o inhalación ya que causa la depresión del sistema 

nervioso central. Su uso en procesos petroquímicos o como disolvente 

en pinturas, tintas o gomas está muy extendido a pesar de sus peligros 

ya que los disolventes alternativos son demasiado caros. Para la 

detección de este compuesto se han usado como “material activo” 

distintas zeolitas. 

Las zeolitas son aluminosilicatos cristalinos porosos que pueden 

tener origen natural o sintético.  Las zeolitas están constituidas por 

tetraedros de óxidos de aluminio y/o silicio dispuestos formando 

estructuras tridimensionales definidas por una serie de vacantes y canales 

de tamaño molecular. Es en estos donde las moléculas de o-xileno 

quedarán retenidas, dando lugar a un incremento en la masa del sistema 

que se traducirá en un desplazamiento de la frecuencia de resonancia 

hacia valores menores.  

En función de la proporción de silicio/aluminio y de la forma en que 

estos se dispongan espacialmente se pueden formar distintos tipos de 

zeolitas con distintos tamaños de poros. En este trabajo se han 

sintetizado por métodos hidrotermales sobre las cintas amorfas tres tipos 

de zeolitas; Faujasite (FAU), Movil-five (MFI) y Lynde Type A (LTA) y se 

ha estudiado su capacidad para detectar o-xileno. A fin de que la 

formación de la membrana de zeolita sea homogénea por toda la 

superficie de la cinta, se ha realizado previo a la síntesis un proceso de 

deposición de nanopartículas previamente sintetizadas de cada tipo de 

zeolita mediante “casting”, para que posteriormente estas nanopartículas 

actúen como puntos de nucleación para la formación de la membrana. 

Tras el proceso de síntesis hidrotermal las zeolitas han sido caracterizadas 

y su capacidad para detectar y atrapar xileno ha sido estudiada.  

Los resultados obtenidos para la zeolita FAU han sido erráticos, lo 

cual nos lleva a pensar que la membrana no estaba bien formada durante 

la síntesis. En el caso de la LTA, si se ha observado sensibilidad a la 

concentración de o-xileno, sin embargo parece que la membrana se 

satura con las concentraciones que se han estudiado. Finalmente, los 

resultados obtenidos con MFI sí han mostrado un descenso de la 
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frecuencia de resonancia con el incremento de la concentración de o-

xileno obteniéndose una sensibilidad de 0.69 Hz/ppm. El límite de 

detección parece estar en 13000 ppm con un cambio casi constante de 

5.75 kHz. Por otra parte cabe destacar que los tiempos de recuperación 

del sistema no ha sido excesivamente largos en ninguno de los casos. 

 



 Ariane Sagasti 



Ariane Sagasti 

Agradecimientos 
 

He aquí la parte más complicada de escribir de una tesis, según mi 

punto de vista… y no porque no tenga cosas que agradecer, sino porque 

según mi criterio esas personas que deben ser agradecidas por haber 

formado parte de esto y haberme apoyado o ayudado en cualquier 

aspecto ya lo han sido en el transcurso de estos años y no necesitan estas 

líneas. De todas formas aquí van mis agradecimientos, si alguna persona 

se me olvida o se ofende, en el primer caso lo siento, en el segundo... 

En primer lugar y como no podía ser de otra forma quiero dar las 

gracias al director y tutor de esta tesis, Jon Gutiérrez. Gracias por las 

lecciones de física a esta química y por todo lo que me has enseñado 

durante este tiempo. Además de por la paciencia, dedicación, motivación 

y por estar siempre aportando ideas para continuar con el trabajo. 

Guardaré especial recuerdo del terremoto en Grecia y mi primer congreso 

en Turín. He aquí tu “media docena” de líneas… 

Gracias también a mi directora de tesis María San Sebastián por su 

ayuda durante el desarrollo de la misma y al BCMaterials por darme la 

oportunidad de trabajar en este proyecto. 

Tampoco me gustaría olvidarme de quien me inició en esto de la 

investigación, haciéndome un hueco en su laboratorio para realizar el 

proyecto de fin de máster, Carlos Cesteros, quien me enseño muchas 

cosas sobre hidrogeles y sus propiedades. Y por extensión la gente con 

la que tuve la oportunidad de coincidir en el departamento de Química 

Física, en ese y otros laboratorios.  

Por otra parte, agradecer a esas personas, científicas o no, que se 

han ido cruzando en mi camino tanto de BCM como de EHU y que lo han 

hecho más agradable. No voy a nombrar a todas y cada una de las 

personas así que daros por agradecidos chavales.  

Durante el transcurso de esta tesis he tenido la oportunidad de 

poder contar con ciertas personas que me han ayudado a continuar 

aprendiendo y trabajando. Gracias a: Iñaki Orue por ayudarme con las 

medidas de AFM y los ciclos de histéresis,  Carol Redondo por permitirme 

hacer uso de su AFM, Luis Bartolomé (Txesko) de SGIKER por permitirme 



 

 Ariane Sagasti 

pesar “mis deposiciones”, Virginia Mutto por su trabajo con el Matlab y 

los ajustes de las Q, Javier Carrizo por acogerme en su laboratorio para 

tirar las nuevas cintas y Verónica Palomares por su ayuda con la celda 

electroquímica para las medidas de corrosión.  

Μεγάλο μέρος των εργασιών της παρούσας διατριβής διεξήχθη κατά 
την παραμονή μου στην Πάτρα (Ελλάδα). Γι'αυτό το λόγο θα ήθελα να 
ευχαριστήσω τους ανθρώπους που μου έμαθαν ό, τι ξέρουν, που με 
βοήθησαν και μου διευκόλυναν τον δρόμο. Ειδικά τον Δημήτρης Κουζούδης 
(για τη φιλοξενία μου στο εργαστήριό του), τον Νικόλαος Μπουρόπουλος 
και τον Εμμανουήλ Τοπογλίδης, χωρίς να ξεχάσω τον απόστολος, τη Βασιά 
και τον Γεώργιο. Επίσης, τη Μαίρη και την Φιλάνθη με τις οποίες πέρασα 
λίγο λιγότερο χρόνο, αλλά με φροντίσαν με γλυκά. Επιπλέον, υπήρξε μια 
οικογένεια που με υποδέχτηκε σαν να ήμουν μέλος της, υπολογίζοντας με 
στις διήμερες αποδράσεις τους και στις εκδρομές τους στην παραλία, 
γεγονός που έκανε την παραμονή μου πιο ευχάριστη. Γι αυτό, ευχαριστώ 
την Αmaia, τον Δημήτρη, την Αinhoa και τον Θωμά. Eπίσης, ευχαριστώ 
την Helena, τον Μαρίνο και τον Atreyu για την φιλοξενία τους στην Αθήνα 
και γιατί μου μάθανε διάφορα για τον Ελληνικό πολιτισμό, μεταξύ άλλων, 
πώς γιορτάζεται το Πάσχα στην Ελλάδα. 

 

Y por último, agradecer a las personitas que forman parte de mi 

vida, quienes durante estos años han estado incondicionalmente. Aita 

eskerrik asko batez ere zure laguntza eskaintzeagatik. Ama muchas 

gracias por creer en mí. Ainara, Ixone eta Udane, eskerrik asko beti irribar 

egiteko prest egoteagatik. 

Sin olvidarme de Irene, pupete, tú siempre has estado ahí 

apoyándome y dándome ánimos, hasta cuando todo parecía oscuro… así 

que mil gracias y mil más por leerte esto antes que nadie para corregir y 

repasar. Al resto de personas con las que tengo la suerte de compartir 

mi día a día; Maite, Itxas, Axel; eskerrik asko rollos. 

Y para acabar a quien convive conmigo y quien realmente ha visto 

cómo ha ido involucionando y evolucionando la tesis, Patxi. Muchas 

gracias por el apoyo y por todos los buenos momentos. 

Y no quiero que se me olviden los peludos; Izotz, Negu y Eki, 

quienes siempre tienen un montón de lametones para cuando se 

necesitan. 



Ariane Sagasti 



Ariane Sagasti 

Content 

1. Introduction:  

 Magnetoelastic resonant platforms as sensing devices 1 

1.1. Resonant devices for sensing purposes 3 

1.2. Magnetoelastic resonant platforms (MRPs) 9 
1.2.1. Metallic glasses 10 
1.2.2. Magnetostriction and magnetoelasticity 11 
1.2.3. The magnetoelastic resonance 14 

1.3. Functionalization of the magnetoelastic resonant platforms 17 
1.3.1. Polymers 20 
1.3.2. Inorganic compounds 21 

1.4. Objectives and structure of this thesis 22 

 

 

2. Experimental part:  

 Materials and methods 31 

2.1. The Magnetoelastic Resonant Platforms (MRPs) 33 
2.1.1. Fabrication of metallic glasses 34 
2.1.2. Magnetic and magnetoelastic characterization 41 

2.1.2.1. Hysteresis loop 41 
2.1.2.2. Magnetostriction 43 
2.1.2.3. Magnetoelastic resonance and ΔE effect 46 

2.1.3. Corrosion behaviour of selected compositions 51 

2.2. Characterization of the active layers onto the magnetoelastic 
resonant platforms 61 

2.2.1. X-Ray Diffraction (XRD) 61 
2.2.2. Scanning Electron Microscopy (SEM) 63 
2.2.3. Photoluminescence emission (PL) 65 
2.2.4. Atomic Force Microscopy (AFM) 67 

 

 

3. Study of the functionalization process of the 
magnetoelastic resonant platforms with polymers 75 

3.1. Introduction 77 

3.2. Parameters affecting the chemical and biological detection 
processes 77 

3.3. Polystyrene functionalized MRPs 85 
3.3.1. Fe-Co-Si-B metallic glass functionalized with polystyrene 87 
3.3.2. Fe-Ni-Cr-Si-B metallic glass functionalized with polystyrene 89 



 Ariane Sagasti 

3.4. A comparison between theoretical predictions and experimental 
results 90 

3.4.1. PS depositions onto Fe-Co-Si-B resonant platforms 90 
3.4.1. PS depositions onto Fe-Ni-Cr-Si-B resonant platforms 95 

3.5. Summary and conclusions 97 

 

 

4. Magnetoelastic resonant platforms for biological 
detection 103 

4.1. Introduction 105 

4.2. Detection by ZnO functionalized magnetoelastic resonant 
platforms 108 

4.2.1. ZnO deposition process study onto MRPs 109 
4.2.2. Determination of the elastic modulus of the deposited ZnO 
thin films  133 
4.2.3. Hydrogen peroxide detection 137 

4.2.3.1. Fabrication of the electrode 141 
4.2.3.2. Electrochemical behaviour of the electrode 143 
4.2.3.3. Simultaneous detection experiments 148 

4.3. Summary and conclusions 155 

 

 

5. Magnetoelastic resonant platforms for gas detection 165 

5.1. Introduction 167 

5.2. VOC detection by functionalization of MRPs with zeolites 168 
5.2.1. Introduction to zeolites 168 
5.2.2. Functionalization of MRPs with zeolites 174 
5.2.3. Detection process and results for o-xylene 185 

5.3. Summary and conclusions 195 

 

 

6. General conclusions and open perspectives 203 

6.1. General conclusions 205 

6.2. Open perspectives 207 

 

 

Appendix 211 

 



 

 Ariane Sagasti 



 

 

 

 Ariane Sagasti 

1. Introduction:  

Magnetoelastic resonant platforms as 

sensing devices 
_____________________________________________ 

 

 

This first chapter introduces the resonant sensors focusing on the use and 

benefits of employing magnetoelastic resonant platforms. It summarizes 

the importance of metallic glasses for developing a good sensor material. 

It explains the working principle of these magnetostrictive/ 

magnetoelastic materials to develop such a sensor, and the importance 

of several factors as the magnetoelastic coupling coefficient or the quality 

factor are. It analyses the state of art in the field of magnetoelastic 

sensors, especially for the ones that have been functionalized with 

polymers or inorganic compounds to sense different chemical or 

biological targets. Briefly, the importance of that needed 

functionalization will be described, as well as some different materials 

used for that purpose. Finally, the objectives and structure of this report 

are presented summarizing the content of the whole work. 
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1.1. Resonant devices for sensing purposes 

 

The word ‘transducer’ derives from the Latin verb ‘traducere’, which 

means ‘to convert’. Therefore, a transducer can be defined as a device 

capable of converting energy from one form into another, which usually 

has higher capacity for its transmission, storage or processing. 

Transducers can be found both as the input as well as at the output stage 

of a measuring system. The input transducer is known as sensor, because 

it senses the desired physical quantity and converts it into other energy 

form. The output transducer is called actuator, as it converts the energy 

into a form to which another independent system can react1. 

Sensors were introduced time ago and by using them, we are able 

to observe, to measure and to control phenomena or parameters of our 

environment.  They are used in a wide variety of fields such as electrical 

engineering, environmental detection, biomedical research or self-driving 

cars, for example, and they are essential partners in our daily life. 

Depending on the energy conversion that takes place or the type of 

material used for this purpose, there are different kinds of sensors and 

actuators. In this report, I will focus only on acoustic wave based devices. 

The acoustic sensing principle is based on the precise detection of 

changes on the properties (usually a resonant frequency) of an acoustic 

(mechanical) wave travelling through the bulk or the surface of the 

corresponding sensor material.  

 

 

 

Figure 1.1. Acoustic wave sensors input and output signals. 
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There are different sensors that use this acoustic principle such as 

the quartz crystal microbalance, the microcantilevers and, as I will deeply 

analyse, the magnetoelastic resonant platforms. Each system together 

with its advantages and disadvantages will be described hereinafter. 

 

 Quartz Crystal Microbalance (QCM) 

 

Traditional acoustic wave sensors are based on piezoelectric 

crystals, which allow transduction between electrical and acoustic 

energies. A number of configurations of acoustic devices have been 

constructed, including Surface Acoustic Wave (SAW), Bulk Acoustic Wave 

(BAW), Flexural Plate Wave (FPW) or Thickness Shear Mode Resonators 

(TMS), the latter also known as Quartz Crystal Microbalance (QCM). 

 A quartz crystal microbalance typically consists of a thin disk of AT-

cut quartz crystal, which is piezoelectric, with circular electrodes 

patterned on both sides as shown in Figure 1.22. 

 

 
 

Figure 1.2. Both sides of a quartz crystal resonator and a quartz crystal microbalance 

system. 

 

When an alternating current is applied between the electrodes, due 

to the piezoelectric properties and crystalline orientation of the quartz 

crystal, mechanical oscillations will be induced giving as a result an 

alternating deformation. This will generate a wave that will propagate 

through the sensor material (the quartz crystal). 
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The resonant frequency of this wave depends on the oscillating 

mass of the sensor and adhered layers. Therefore, if there is a change 

into the mass of the system both the resonant frequency and its 

amplitude will be modified proportionally.  

QCM was originally used to measure metal deposition rates3 and it 

has proved to be especially effective in the study of molecular 

interactions at solid interface4. Most recently, quartz crystal microbalance 

devices have been employed as physical5, chemical6 and biological7 

sensors. It has been also demonstrated that QCM devices can detect 

biological warfare agents, including bacterial spores after being coated 

with binding probes. 

This method has clear advantages as its high sensitivity, 

continuously measurement mode and a quick detection time, with the 

specific binding to the electrodes the detection of a target analyte has 

been reported within minutes.  

Nevertheless, the major disadvantage of the QCM sensors relays on 

the complex electronic circuitry needed for signal acquisition. 

Additionally, QCM sensors are sensitive to temperature, film stress and 

electrical noise. 

 

 Microcantilever (MC) like devices 

 

Micro-machined cantilevers were first fabricated and used as force 

probes on Atomic Force Microscopy (AFM). In 1994, researches from Oak 

Ridge National Laboratory and IBM Zurich found that a standard AFM 

cantilever could be used as a microsensor8,9. Depending on the material 

used to fabricate the microcantilever, they are classified in three types: 

silicon based MCs, piezoelectric based MCs and magnetostrictive based 

MCs. Figure 1.3 shows a scheme of how a microcantilever type system 

works. 
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Figure 1.3. Schematic cantilever based detection system. 

 

Silicon turns out to be an easy material for micro-machining. For 

silicon-based microcantilevers, an optical deflection technique is used to 

measure the deflections of the cantilever and the resonance frequency 

changes using a position sensitive detector that tracks the reflection of a 

laser beam on the surface of the microcantilever. As it can be expected, 

the optical system need to make such detections is very complex and it 

is not suitable for long duration measurements. 

In the case of piezoelectric based microcantilevers, the resonance 

frequencies can be easily measured by an impedance analyser. When an 

electric field is applied, the piezoelectric layer changes its shape causing 

the bending of the whole structure. An alternating electric field makes 

the MC vibrate, resonating when the frequency of the AC power matches 

with the own mechanical vibration frequency of the beam. Piezoelectric 

base microcantilevers are easy to actuate and detect compared to silicon 

based ones. However, they are not suitable for measurements in liquids 

because of the need of electric connexions. Besides, the actuating 

electric field requires an extra insulation if it is going to be used in a 

conductive liquid, which makes the fabrication process more complicated 

and reduces the sensor performance. 

Finally, magnetostrictive based microcantilevers developed by Z.Y. 

Cheng at Auburn University are composed10, similar to the piezoelectric 

based ones, by one layer of magnetostrictive alloy and one layer of non-

magnetostrictive metal. These MCs sensitivity is higher than in the other 

MC devices due to the material properties. Magnetostriction is a material 
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property that will be extensively described in the following, but one of 

the main advantages of this magnetostriction based microcantilever is 

the lack of complex electrical connections and possible short-circuits as 

they use the magnetic field to transfer signals. 

Summarising, cantilevers have been researched to measure a wide 

range of physical, chemical and biological properties of materials and in 

solutions11,12. Nevertheless, they present the same problem as the QCM, 

the need of complex electrical connections or circuits as well as a 

complex and expensive equipment to measure the generated signals. In 

Table 1.1 the main characteristics of each kind of microcantilevers are 

summarised. 

 
Table 1.1. Comparison of different materials used to fabricate microcantilevers working 

as sensor platforms13. 

 Silicon-based Piezoelectric Magnetostrictive 

Structure Simplest Complicated Simpler 

Fabrication Easy Difficult Easy 

Actuating 
Mechanical 

(difficult) 

Electrical 

(connexions 

needed) 

Magnetic 

(easy, wireless) 

Sensing 
Optical 

(bulk system) 

Electrical 

(connexions 

needed) 

Magnetic 

(wireless) 

In air Good Good Good 

In liquids Difficult Very difficult Works well 

Q value High Low Very high 

Overall 
sensitivity 

High Low High 
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 Magnetostrictive/magnetoelastic materials 

 

The mechanical vibration of the magnetoelastic material would be 

generated by sending a time-varying magnetic signal; the magnetoelastic 

material would in response generate a time varying magnetic flux that 

could be detected with a set of pick-up coils. The vibration of the sample 

would additionally generate acoustic waves, which could be detected 

with a microphone. Furthermore, a laser beam could be reflected from 

the surface of the sensor, and the response of the sensor characterised 

by recording the changes in the returned beam intensity. Figure 1.4 

illustrates the three different ways to monitor the magnetoelastic sensor 

response: magnetically, acoustically and optically. The magnetic 

detection method has the highest precision.  

 

 

Figure 1.1. Magnetic excitation of a magnetoelastic sensor platform and response 

detected by magnetic, acoustic, or optical techniques14. 

 

Magnetoelastic sensor platforms were originally used for chemical 

and physical detections, such as liquid density15, viscosity16, pH17,18, 

humidity or temperature19. Recently, detection of chemical gasses or 

biological molecules has been achieved. For these kinds of detection, the 

immobilisation of a selective and specific functional layer covering the 

magnetoelastic platform for binding of target analyte has been found 

necessary. Several sensors have been reported for different molecule 
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detection. For gases, for example there are NH3 sensor20, CO2 sensor21 

and volatile organic compound (VOC) gas sensors22. In the case of 

biological detection, there are glucose sensors23 but usually research is 

focused on bacteria detection, as for example E.coli24, Salmonella 
enterica typhimurium25 and Bacillus Anthracis Sterne spores 26. 

Magnetoelastic sensor platforms present several advantages. Many 

magnetoelastic materials are very cheap, which greatly reduces the cost 

of this kind of sensors allowing them to be used in a disposable manner. 

Besides they have a simple structure and the fabrication process is not 

too laborious. The main advantage of using magnetoelastic sensors is the 

fact that no complicated electrical connexions or wires are required to 

give us information about the sensor environment. As I previously 

mentioned the excitation and detection processes work by applying an 

external alternating magnetic field, which allows us to measure it 

wirelessly and remotely. 

 
1.2. Magnetoelastic resonant platforms (MRPs) 

 

Ferromagnetic amorphous alloys, usually metallic glasses containing 

Fe, Ni and/or Co, are excellent magnetoelastic materials, despite their 

moderate magnetostriction value. These alloys present a good coupling 

between magnetic and elastic properties and, in fact, combine 

simultaneously excellent magnetoelastic and mechanical properties.  

Magnetostrictive/magnetoelastic materials exhibit both the Joule 

effect and the Villari effect. In other words, these materials change their 

shape when subjected to a magnetic field and, conversely, suffer a 

magnetization change when a mechanical stress is applied to them. This 

bi-directional coupling provides the transduction capability when working 

as sensing devices. In the following, all these aspects will be extensively 

described. 
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1.2.1. Metallic glasses 

 

Metallic glasses are ferromagnetic amorphous alloys. Amorphous 

materials are characterised because of the absence of long-range atomic 

order, which can be observed in X-ray diffraction (XRD) experiments. The 

XRD patterns of amorphous materials show a broad peak because the 

light scatters in many directions as the atoms are randomly oriented. On 

the contrary, the atoms of a crystalline material are periodically arranged 

in a 3D space what makes the X-rays scatter only in certain directions 

that will cause high intensity narrower peaks27.  

The amorphous state is a metastable state, which means that it is 

not in its thermodynamic equilibrium. In other words, any solid usually 

possesses less free energy in its crystalline state than in the amorphous 

one. So, during the fabrication process of amorphous alloys the 

solidification rate has to be quick enough to avoid the atoms to reach 

the thermodynamic equilibrium state that would evolve into a crystalline 

3D structure. The group directed by Pol Duwez synthesised the very first 

amorphous ferromagnetic alloy prepared in a laboratory in Cal Tech in 

196028. Nowadays, there are different ways to fabricate such kind of 

materials, as electrodeposition, vapour deposition, sputtering or melt 

spinning technique. 

The melt spinning technique is the most used one. Although to 

achieve the amorphous state for a pure metal the needed cooling down 

velocity would be really high (on the order of 1010 K·s-1), to obtain 

amorphous alloys with a 80% of metallic elements (Fe, Co, Ni, Cr, Au) 

and 20% of metalloids (B, Si, C, P) the cooling down velocity needs to 

reach the order of 106 K·s-1. The fabrication method and the melt spinning 

technique will be more extendedly explained in Chapter 2. 

Amorphous ferromagnetic alloys present some interesting properties 

such as high elastic limit, good corrosion resistance, high electrical 

resistivity and as they are soft magnetic materials, low coercive fields, 

low losses and high permeability due to the lack of magnetocrystalline 

anisotropy. 
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As I previously mentioned, one of the most common applications 

for metallic glasses is their use as a sensor, which is a device that converts 

one determined energy form in another one. Generally, most of the 

applications of these metallic glasses are based on the influence that the 

magnetic field and the mechanical stress have in the magnetic 

permeability. This influence is directly related with the amorphous 

structure, the elastic properties, the magnetostriction (λs) and the induced 

anisotropy (Ku) in the material due to the fabrication process or by 

applying a later heat treatment under magnetic field and/or mechanical 

stress. Three are the intrinsic magnetic properties of the metallic glasses, 

the saturation magnetostriction Ms, the Curie temperature Tc, and the 

saturation magnetostriction λs29. 

 

1.2.2. Magnetostriction and magnetoelasticity 

 

Magnetostriction is a property of the ferromagnetic materials that 

causes deformation when such are under the influence of an external 

applied magnetic field. This phenomenon was first noticed by James P. 

Joule in 1842 when observing a sample of iron30. 

In these materials each magnetic domain is deformed according to 

each own magnetization which in absence of external magnetic field, 

point along the direction defined by the magnetic anisotropy. Due to 

magnetostriction, when applying an external magnetic field to a 

ferromagnetic material not only the spontaneous magnetization rotates 

but also all the magnetic domains rotate to orientate along the same 

direction. As a consequence, a change in the material dimensions will 

occur, as the material will tend to minimise its internal energy. That local 

distortions caused by the magnetostriction will turn into a macroscopic 

deformation of the material. The kind of deformation (elongation or 

contraction) will vary depending on the sign of the saturation 

magnetostriction of the material as shown in Figure 1.2A.  

On the contrary, the phenomena that takes place when a material 

suffers a change in its magnetic state caused by an applied mechanical 
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stress is called magnetoelastic effect, also known as inverse 

magnetostrictive effect. It is also known as Villari effect because it was 

Emilio Villari who observed it first in 1865. The magnetoelastic effect is 

described in Figure 1.2B. 

 

 

Figure 1.2. Magnetostrictive and magnetoelastic effects. 

 

Summarising, a magnetostrictive material will elongate or contract 

under the action of an applied magnetic field and a magnetoelastic 

material will show a change in its magnetic state due to an applied 

mechanical stress. So, a magnetoelastic-magnetostrictive material is a 

ferromagnetic material which deforms continuously under the application 

of an external magnetic field. 

The magnetoelastic effect is directly related with the 

magnetostriction or relative length variation of the material when it 

reaches the magnetic saturation. The magnetostriction of a ferromagnetic 

material is obtained by the following equation: 

 

 𝜆=∆L/L [1.1] 

 

where 𝛥𝐿 is the deformation of the sample and L is the initial length of 

the sample. 
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The maximum deformation attained at magnetic saturation λs, is 

called saturation magnetostriction and it is a characteristic of the 

material. It is generally small of about some parts per million, as for 

example for iron, nickel or cobalt that is of 9 ppm, -40 ppm and -60 

ppm respectively. There are some exceptions for the case of rare earth 

metals alloyed with iron, as the case of the Terfenol-D, containing 

dysprosium and terbium, which can reach values of saturation 

magnetostriction up to 2000 ppm. Depending on the material, the 

deformation manifests as an expansion or as a contraction, as it can be 

observed in Figure 1.5, which is reflected in the sign of the 

magnetostriction constant.  

If the magnetostriction is positive (𝜆𝑠 > 0), the effect of a tensile 

stress is to favour the magnetization along the direction of the applied 

stress. The material is easier to magnetize in that direction and the 

permeability is increased. Therefore, the effect of a tensile stress in a 

material with positive magnetostriction is to favour an easy axis for the 

magnetization in the direction of the applied stress. However, if the 

magnetostriction is negative (𝜆𝑠 < 0), the stress favours magnetization 

along the perpendicular direction of its application. It is necessary a 

stronger magnetic field to magnetize the sample, that is, the magnetic 

permeability is reduced. Therefore, the effect of a tensile stress in a 

material with negative magnetostriction is to create an easy plane 

perpendicular to the direction of the applied stress31. 

The clearest and most interesting manifestation of 

magnetoelasticity is the dependence of the elastic constants with the 

external applied magnetic field, in particular for the Young modulus 𝐸. 

The variation of the Young modulus with the externally applied magnetic 

field is known as “𝛥𝐸 effect” which can be calculated by the following 

equation: 

 

 ∆𝐸 (%) =  
𝐸𝑠−𝐸𝑚𝑖𝑛

𝐸𝑠
· 100 [1.2] 

 

where 𝐸𝑠 is the Young modulus at the magnetic saturation state and 

𝐸𝑚𝑖𝑛 is the minimum value of the Young modulus. In normal 
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ferromagnetic materials, as nickel or iron, the 𝛥𝐸 effect is very small, 

18% and 0.4% respectively, but it is very large in magnetostrictive 

metallic glasses (easily up to a 50%). Those materials with a high 𝛥𝐸 
effect value will be useful for sensor applications as the elastic energy 

would be easily converted into magnetic energy and vice versa32. An easy 

way to determine quantitatively this effect is to use the so-called 

magnetoelastic resonance method. 

 

1.2.3. The magnetoelastic resonance 

 

The magnetoelastic resonance measurement method consists, as 

can be observed in Figure 1.1, in exciting a magnetoelastic material by a 

time varying magnetic field. In response, due to the magnetostrictive 

effect, the material would convert the magnetic energy into elastic 

energy, generating the propagation of elastic waves through the material. 

Those strain waves will cause the mechanical vibration of the material, 

which through the magnetoelastic effect, would in turn generate a time 

varying magnetic flux due to magnetization oscillations that can be 

detected by a pick-up coil. Under specific boundary conditions, the 

propagated waves become stationary, and if their frequency is such that 

the wavelength of the mechanical oscillation matches the dimension of 

the sample, the magnetoelastic resonance will take place. At this 

resonance frequency, large strain and maximum magnetization 

oscillation are induced and the apparent susceptibility of the material 

reaches the maximum. Therefore, by changing the excitation frequency 

of the applied external magnetic field (or bias) we could reach a particular 

frequency at which the magnetoelastic resonance takes place33. 

Theoretically, the resonance frequency for a sample vibrating with 

free ends under an applied magnetic field is given by the equation: 

 

 𝑓𝑟
𝑛 =

𝑛

2𝐿
√

𝐸(𝐻)

𝜌(1−𝜐2)
 [1.3] 
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where n is the resonance mode number (harmonic), L is the length of 

the ribbon, 𝜌 is the density of the metallic alloy, 𝜐 is the Poisson ratio 

and 𝐸(𝐻) is the magnetic field dependant Young modulus.  

By using the magnetoelastic resonance method this resonance 

frequency is in practice easy to be measured and in most applications 

only the fundamental resonant frequency 𝑓0
1 (𝑛 = 1) is considered 

because of the higher signal amplitude and the lower frequency, as it 

can be noticed in Figure 1.3.  

 

 

Figure 1.3. Curve obtained from the magnetoelastic resonance method. 

 

From the first longitudinal vibration mode, for instance the Young 
modulus can be calculated as: 

 

 𝐸(𝐻) = 𝜌(2𝐿𝑓𝑟)2 [1.4] 

 

By using this measurement method, other two important 

parameters can be calculated from the first fundamental resonant mode: 

the magnetoelastic coupling coefficient, 𝑘, and the quality factor, 𝑄. 
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As I previously mentioned, in ferromagnetic materials there is a 

coupling between magnetic and elastic properties. So, there is an 

effective energy interchange from magnetic to elastic, and vice versa. 

The parameter that accounts for that energy interchange is known as 

magnetoelastic coupling coefficient, 𝑘, and in the case of a ribbon, it can 

be calculated by the given expression: 

 

 𝑘2 =
𝜋2

8
[1 − (

𝑓𝑟

𝑓𝑎
)

2

] [1.5] 

 

where 𝑓𝑟 is the resonance frequency and 𝑓𝑎 the antiresonance frequency 

(or signal zero value). 

On the other hand, 𝑄 is the mechanical quality factor that quantifies 

the energy losses of the resonator, giving us information about how good 

the resonance curve is on the efficiency of the energy conversion. 

Consequently, whereas high 𝑄 values turn into a sharper and narrower 

resonance curve indicating a low rate of energy losses, small 𝑄 values 

give rise to a wider bandwidth and a higher rate of energy losses. 𝑄 factor 

can be estimated by the following relationship: 

 

 𝑄 =
𝑓𝑟

∆𝑓
 [1.6] 

 

where 𝑓𝑟 is the resonance frequency, and ∆𝑓 is the bandwidth measured 

at  𝐴𝑚𝑎𝑥

√2
⁄ , being 𝐴𝑚𝑎𝑥 the maximum amplitude. 

All the mentioned parameters, 𝐸 (𝐻), 𝑘 (𝐻) and 𝑄 (𝐻), measured as 

a function of the applied magnetic field, fully characterise the 

magnetoelastic behaviour of a magnetostrictive/magnetoelastic material. 
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1.3. Functionalization of the magnetoelastic resonant 

platforms 

 

As I have previously explained, the magnetoelastic resonance 

method allows us to magnetically excite the 

magnetostrictive/magnetoelastic material, magnetically detect the 

generated flux and determine its resonant frequency. This resonance 

frequency shifts in response to different external physical parameters 

including pressure34, magnetic field35,36 temperature37, stress, flow 

velocity38, liquid viscosity39, and mass loading. Equation [1.3] describes 

the resonant frequency as a function of mechanical properties. 

Nevertheless, the model can be extended to include the dependence to 

some external parameters by introducing different variables. 

For example, a magnetoelastic sensor can respond to changes in 

ambient pressure. To enhance the pressure sensitivity it is fundamental 

to create out-of-plane vertical vibrations by appropriately bending the 

sensor. The idea is to induce stress on the magnetoelastic materials by 

which the magnetoelastic energy is coupled to create a basal plane 

vibration. So, the resonant frequency shift of the bent sensor as: 

 

 ∆𝑓 = 𝑓 − 𝑓0 = −
1

√3

𝜐2

1−𝜐2

𝑚𝑔𝑢

𝑘𝐵𝑇𝑑𝜌𝑠
𝑃 [1.7] 

 

where 𝑃 is the pressure, 𝑑 is the sensor thickness, 𝑢 is the maximum 

vibration amplitude, 𝜐 is the Poisson ratio, T is the temperature, kB is the 

Boltzmann’s constant and 𝑚𝑠 is the mass of the acting gas. This equation 

indicates that the resonant frequency decreases with the increasing 

pressure and it was used to measure the atmospheric pressure34. 

For the case of the field and temperature dependant resonant 

frequency, we can consider that the elastic and magnetic properties of 

the material could be affected by the temperature. So, the resonant 

frequency will in this case be expressed as: 
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 𝑓𝑜 (𝑇, 𝐻) =
1

2𝐿(𝑇)
√

𝐸𝑠(𝑇)

𝜌𝑠(𝑇)
(1 +

9𝜆𝑠(𝑇)𝐻2𝐸𝑠(𝑇)

𝑀𝑠(𝑇)𝐻𝑘
3(𝑇)

)
−1/2

 [1.8] 

 

This equation is more extendedly described in 35 and 36. According 

to equation [1.8], the resonant frequency shift can be used to directly 

measure the temperature37. Thus, when working as a temperature 

sensor, an appropriate field H can be applied to the material to yield the 

optimum temperature sensitivity; for other sensing applications, the 

value of H can be chosen so the sensor has no temperature dependency. 

A magnetoelastic sensor can also be used to measure liquid fluid 

flow rates since the flowing liquid creates a damping force, proportional 

to the flow rate, on the sensor surface and causes a shift in the sensor 

resonant frequency. The resonant frequency decreases quadratically at 

laminar liquid flow and increases again when the liquid switches from 

laminar to turbulent flow38. Other application for these magnetoelastic 

resonant platforms is to determine viscosities39. Among the different 

parameters that define the state of lubricant oil, viscosity is one of the 

most important. In this case, the measurements were performed using 

different commercial oils with viscosities ranging from 32 to 326 cSt. 

In these previous examples, those physical parameters (pressure, 

temperature, viscosity, etc.) have been measured by the magnetoelastic 

resonant platform itself. However, in other cases, such as for chemical or 

biological sensing applications a responsive layer is needed to cover the 

magnetoelastic resonant platform in order to selectively detect the target 

molecule. 

If a coating mass ∆𝑚 is uniformly applied on the sensor surface, the 

density 𝜌 can be replaced by (𝑚𝑠 + ∆𝑚)/𝐴𝑑 where 𝑚𝑠 is the mass of the 

sensor, 𝐴 is the surface area, and 𝑑 is the thickness of the sensor. This 

will yield a new fundamental resonant frequency that depends on the 

initial resonant frequency 𝑓0 of the uncoated magnetoelastic material and 

on the loading (added) mass. The new equation for this resonance will 

be: 

 

 𝑓 = 𝑓0√
1

1+∆𝑚 𝑚𝑠⁄
 [1.9] 
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In a general way, the displacement of the resonance curve of an 

uncoated resonant platform and a coated one can be observed in Figure 

1.4. The new resonant frequency will always shift to lower values as the 

loading mass increases. 

Considering this mass loading effect, if the resonant platform is 

coated by a mass-changing chemically or biologically responsive layer, 

the developed sensor will be able to monitor chemical or biological 

analyte concentrations. This active layer can provide a specific detection 

for the target molecule and a rapid response. Depending on the target 

parameter17 (pH18, humidity19) or molecule (a gas22, a protein23, a 

bacteria25), the nature of the active layer will be different. Active layers 

can be performed with different kinds of materials such as polymers or 

inorganic compounds, among others. 

 

 

Figure 1.4. Shift in the resonance frequency of a magnetoelastic resonant platform 

due to a mass deposition. 
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1.3.1. Polymers 

 

The word polymer comes from two Greek words: poly-, which 

means ‘many’ and –mer, from meros, meaning ‘part’ or ‘member’. Hence, 

a polymer is a large molecule, usually called macromolecule, which 

means that it is a molecule of high relative molecular mass. The structure 

of a polymer essentially comprises the multiple repetition of units of low 

relative molecular mass. There are different ways to classify the polymers 

depending on their origin (natural or biological polymers and synthetic 

ones), on the polymer structure (linear, branched, cross-linked), or 

processability, among others. 

Nowadays, a large number of polymers is widely used in various 

applications due to their versatile properties. This is mainly because they 

are available in a wide variety of compositions and forms (solid, fibre, 

film, gels), their properties can be tailored during the fabrication 

processes or by synthesis methods, they are easy to produce as well as 

being cost effective, and they can be fabricated into complex shapes and 

structures. 

Polymer coatings continue to be used in even more increasingly 

diverse applications and sectors. From simple barrier coatings to 

elaborated nanotechnology based composites, polymers offer a bastion 

of functionalities for their underlying hosts. The attraction of these 

materials for sensing applications relies on their flexibility, 

biocompatibility and ease of deposition onto a substrate. In the case of 

amorphous magnetoelastic materials, probably the most important 

property of the polymer coating is the corrosion protection that they 

confer to the whole sensor system40. The selection of the optimal 

polymer coating has to be made according to several criteria. Polymer 

should be easily and reproducibly deposited onto the sensor surface. It 

must be resistant against oxidative processes at the detecting conditions; 

it will also serve as a protective layer against aggressive environments. 

In addition, they should ideally provide a rapid and linearly related 

response with the analyte concentration. 
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By using magnetoelastic materials, sensors have been developed for 

different purposes such as environmental contaminant detection or 

biomedical applications. A sensor coated with a copolymer formed by 

acrylamide and isooctylacrylate polymers has been reported to sense 

carbon dioxide21. A similar copolymer based on acrylic acid and 

isooctylacrylate was used to fabricate a pH sensor41. Additionally, a pH 

responsive polymer coating has been used to fabricate a sensor for 

organophosphate pesticides using the enzyme organophosphate 

hydrolase onto the polymer coating. The hydrolase catalyses the 

hydrolysis of the organophosphates changing the pH of the polymer 

hydrogel, which will swell or shrink producing a change on the resonant 

frequency of the whole system42. 

In the field of biomedicine, a sensitive polymer coated 

magnetoelastic sensor has been developed to in vivo measure the pH43. 

Other kind of biomedical sensors have been developed to sense glucose. 

This was fabricated by coimmobilizing glucose oxidase into a pH sensitive 

polymer coated magnetoelastic material. When the glucose is oxidised it 

produces gluconic acid inducing the shrinking of the pH sensitive 

polymer, which in turn decreases the polymer mass and therefore 

changing the response of the magnetoelastic material44. 

 

1.3.2. Inorganic compounds 

 

Some inorganic materials have also been used as covering active 

layers for the magnetoelastic ribbons. Nanostructured materials are being 

intensively studied for applications in many different nanoscale functional 

devices. Nanostructure oxides, as TiO245, have been used to build 

humidity sensors on a commercial Metglas ribbon. In this case, as the 

humidity increases, water vapour is absorbed into the oxide layer, 

increasing the effective mass on the sensor and decreasing the resonant 

frequency of the sensor. Similar results were obtained for alumina (Al2O3) 

covered samples46. 
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Other inorganic materials, which present good properties to be used 

as active layers, are zeolites. Zeolites are porous crystalline 

aluminosilicates: silicon and aluminium combined with oxygen, 

originating a wide range of chains, rings, layers and three-dimensional 

arrays. Despite all the zeolites, share the same basic chemical 

composition the different arrangements of atoms and molecules lead to 

structures with different physical and chemical properties. These 

materials have found a wide range of applications as molecular sieves, 

catalysis, mechanical reinforcement, medical and biological applications, 

sensors, filtration membranes and energy storage, among others. The 

many applications are mainly related to their high surface area, excellent 

thermal/hydrothermal stability, high shape-selectivity and superior ion-

exchange ability47.  

For their applications with sensing purposes, the aluminosilicate 

materials are constructed from linked tetrahedral joined through shared 

oxygen atoms forming three-dimensional frameworks that define a 

regular system of voids and channels of molecular dimensions. 

Depending on the size and shape of those channels, the zeolite will 

actuate as a molecular sieve to preferentially adsorb certain molecules 

and to exclude others. This selective detection applied to sense a wide 

range of volatile organic compounds (VOCs) has been reported for three 

different kinds of zeolites: MFI, LTA or FAU48. Other experiments also 

performed using magnetoelastic resonance methods allowed the 

determination of zeolites Young modulus and their flexibility 49,50. 

 

1.4. Objectives and structure of this thesis 

 

This work has as a general objective the development of sensors 

based on magnetoelastic resonant platforms. With this purpose in mind, 

magnetoelastic materials in the form of ribbons will be fabricated and 

characterized. The magnetoelastic amorphous alloys will be 

functionalized with different active materials in order to use them for 

chemical or biological detection purposes. These active materials should 

be selective to the target analyte changing the mass of the sensing 
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platform to allow us to measure the shift promoted in the resonant 

frequency of the magnetoelastic material. The deposition process of each 

coating material has to be optimised, a task for which the magnetoelastic 

resonance will be also very useful. The thesis is divided in different 

chapters related with the diverse materials used as active layers for the 

development of the magnetoelastic sensors. 

Chapter 2 will focus on the experimental part of the thesis. To start, 

the fabrication process of the metallic glasses and subsequent 

characterization of the most important parameters will be explained. 

Additionally, magnetic and magnetoelastic characterization of the 

fabricated metallic alloys was performed by measuring the 

magnetostriction parameters, 𝜆𝑠, the 𝛥𝐸 effect or the quality factor, 𝑄. 

During the development of the thesis, the importance of the corrosion 

resistance has demonstrated to be a very important factor that should be 

taken into account when the alloy is going to be coated with a certain 

type of materials or when a later treatment needs special conditions to 

be carried out. Due to this, the corrosion behaviour of some previously 

fabricated ribbons was analysed in order to be able to fabricate other 

new magnetoelastic ribbons with higher corrosion resistance that will be 

also presented and studied in this chapter. Finally, the characterization 

techniques employed for the characterization of the active layer 

deposited onto the magnetoelastic materials. Functionalization of the 

previously fabricated resonant platforms with polymers or organic 

compounds is needed to use them for sensing applications so the 

characterization of the deposited layers must be performed. 

Chapter 3 will be focused on monitoring the process of the 

functionalization of a MRP with the polymer polystyrene. Moreover, the 

main parameters affecting the sensing experiments will be introduced as 

they will be useful for this and next chapters. Polystyrene will be 

deposited onto two different composition alloys using the same 

deposition process, dip coating, but varying the solvent of the polymer 

to enhance the final deposited layer properties. A final comparison 

between the theoretical predictions for the deposited mass and the 

experimental results will also be presented. During the polymer 

deposition experiments, a nonlinear resonant frequency against 



Chapter 1   

 

 

24 Ariane Sagasti   

deposited mass behaviour has been observed, which made us to look to 

the up to date accepted theory that predicted a linear behaviour for 

small-deposited mass quantities. 

The next two chapters will be focused on the coating process with 

inorganic materials. The work presented in those two chapters (4 and 5) 

has been developed at the University of Patras (Greece), in the 

Department of Chemical Engineering, in the Department of Material 

Science and in the Foundation of Research and Technology (Forth ICE-

HT). Two different materials will be deposited onto magnetoelastic 

materials: zinc oxide, ZnO, with biological detection purposes, and 

zeolites for gas detection purposes. 

Chapter 4 will focus onto the biological sensing process and will 

study several methods to functionalize the magnetoelastic ribbon 

metallic surface with zinc oxide. In this case, the magnetoelastic material 

is going to be a commercial one, Metglas 2826MB. By analysing and 

choosing the best functionalization procedure, ZnO will be deposited as 

nanosized nanoparticles to fabricate a thin film. By performing 

magnetoelastic resonance measurements, I will determine the elastic 

modulus of those final deposited zinc oxide thin films. Finally, some bio-

detection experiments concerning hemoglobin and H2O2 will be carried 

out. 

In Chapter 5, xylene detection will be performed with zeolite coated 

homemade magnetoelastic resonant platforms. The main objective of 

this chapter is to compare the obtained results with some previously 

ones, obtained when using as resonant platform the commercial Metglas 

2826MB one. Therefore, I will compare the sensitivity of both systems 

and discuss the difference in terms of the resonant platform properties. 

Finally, in Chapter 6, the conclusions derived from this work will be 

presented and open perspectives will be pointed out. 
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2. Experimental part: 

Materials and methods 
_____________________________________________ 

 

 

This second chapter describes first the procedure employed to fabricate 

the magnetoelastic ferromagnetic amorphous ribbons by using the melt 

spinning technique. These homemade alloys were magnetic and 

magnetoelastically characterized and corrosion resistance measurements 

were also performed with some selected samples compositions. 

Corrosion resistance has been proved to be an important factor that must 

be taken into account when trying to coat the magnetoelastic ribbons 

with the active layer, as one of the main problems observed was related 

with the oxidation of the samples in certain liquid media. Afterwards, the 

parameters that affect the sensing ability of the resonant platforms will 

be explained, especially for chemical and biological detection purposes.
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2.1. The Magnetoelastic Resonant Platforms (MRPs) 

 

 

Ferromagnetic amorphous alloys with five different compositions 

have been used as magnetoelastic resonant platforms throughout this 

work. Those compositions and properties of the ribbons depended on the 

application of the developed system. 

The first alloy was a commercially available material. This is the 

Metglas 2826MB3 purchased from Hitachi Metals Europe GmbH 

(Dusseldorf, Germany). It is an iron-nickel based alloy of composition 

𝐹𝑒40𝑁𝑖38𝑀𝑜4𝐵18, with medium saturation induction, low magnetostriction 

and higher corrosion resistance, sold for applications in field sensors, 

shielding applications, high frequency cores or magnetomechanical 

sensors1. This alloy was used as a reference material for the corrosion 

resistance measurements and also for the measurements made for 

biodetection purposes. 

The iron-cobalt and iron-nickel rich alloys used were fabricated by 

Dr. Andoni Lasheras during his PhD thesis work. Those compositions were 

chosen due to their expected low anisotropy field, high magnetization 

value (which implies a high magnetic susceptibility) and due to their 

relative high saturation magnetostriction. Metallic glasses were fabricated 

by the melt spinning technique. The alloys prepared by Dr. Andoni 

Lasheras were fabricated at the Institute of Metal Physics of the Ural 

Federal University (Russia). The compositions of the three alloys 

employed were 𝐹𝑒64𝐶𝑜21𝐵15 (used for gas sensing applications), 
𝐹𝑒64𝐶𝑜17𝑆𝑖6.6𝐵12.4 (used for the first studies depositing polymer) and 

𝐹𝑒55𝑁𝑖25𝐵20 (used for the corrosion resistance measurements). 

The last alloy of composition 𝐹𝑒54𝑁𝑖24𝐶𝑟2𝑆𝑖10𝐵10 was specially 

fabricated for this PhD thesis work in order to improve the corrosion 

resistance of the magnetoelastic materials, while keeping good magnetic 

and magnetoelastic properties of the material in order to be able to be 

used for possible sensing applications.  

 



Chapter 2 

  

 

34 Ariane Sagasti   

2.1.1. Fabrication of metallic glasses 

 

The chromium-containing alloy which was the one fabricated 

specially for this PhD thesis work was fabricated at the laboratories 

located at BCMaterials, at the University of the Basque Country and at 

the University of Oviedo. First of all the metal constituents were cut (at 

BCMaterials) following the corresponding stoichiometric calculations in 

order to obtain the desired alloy. The metals were purchased from Alfa 

Aesar, in rod form for iron (99.95%), nickel (99.5%), cobalt (99.95%) 

and silicon (99.99%), and in pieces in the case of boron (99.5%) and 

chromium (99.99%). The needed quantities were cut with a Desktop 

Crystal Cutter: Model: CU-01 (Crystal systems corporation, Japan) that 

can be seen in Figure 2.1. 

 

 

Figure 2.1. First step of the fabrication process: cutting of the metallic constituents. 

 

 The next step of the fabrication process consisted on fabricating 

what is known as the “master” alloy, prior to the final amorphous ribbon 

shape fabrication. For this purpose, an induction furnace (Induret 

Compact, Reitel) was employed and 18 g of each composition were 

prepared (at the University of the Basque Country). The induction furnace 
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consists of two main spaces. The upper space contains a thick helicoidal 

coil, that is refrigerated with water and surrounds a ceramic crucible; at 

the lower part where a copper mould will be placed. The whole 

instrument is presented in Figure 2.2. The heating process happened due 

to the dissipative Joule effect caused by the induction of Eddy currents 

in the metals. These currents arise from a high frequency electric current 

circulating through the coil that generated so a high frequency 

electromagnetic field acting directly in the metallic (and so conductive) 

sample. In order to favour the melting process, the elements were 

carefully placed inside the ceramic crucible as compact as possible at the 

centre. This ceramic crucible has a hole below which will keep closed 

with a stopper during the melting process. Inside this stopper, the 

thermocouple was placed to monitor and control the temperature.  

 

 

Figure 2.2. Second step of the fabrication process: fabricating the alloy. 

 

Once the elements were properly place, the chambers were closed 

and vacuum was made inside the chambers by using the Venturi effect. 

Previously, the chambers must be purged with argon several times in 

order to clean the atmosphere as better as possible. 

The melting process could be directly visualised through a window 

located above the crucible (Figure 2.3). When the alloy was completely 

melted and homogeneous (approximately at 1200 ℃ for the prepared 
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alloys), the crucible stopper was elevated opening the hole and an argon 

pressure of 3 – 4 bar was suddenly introduced, forcing the melted alloy 

fall down to the copper mould. The obtained ingot inside the copper 

mould can be observed in Figure 2.3. The melting process was repeated 

twice in order to obtain totally homogeneous alloys. 

 

 

Figure 2.3. The melted alloy and the obtained ingot inside the copper mould. 

 

The third step of the process, once the ingots of the alloys were 

fabricated, was to fabricate the amorphous ribbons by the melt spinning 

technique. The samples were fabricated at the University of Oviedo, 

under the supervision of Dr. Javier Carrizo. The melt spinning system 

employed is shown in Figure 2.4: as it can be observed the melt spinning 

technique consists of a copper wheel, which rotates at high speed. Pieces 

of the alloys were introduced into a quartz tube which was located above 

the wheel at a certain distance. The whole system was left under vacuum 

reaching 5·10-5  mbar, and then the melting of the alloys started. As 

aforementioned, by applying a high frequency electromagnetic field, the 
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induced eddy currents were able to melt the alloy. The diameter of the 

outlet hole of the quartz tube, where the alloy is melted, measured 

around 2 mm, and the distance between the hole and the wheel was 1-

2 mm. The alloys were ejected with an overpressure of argon of 200 

mbar when the melting temperature was of about 1250 ℃. 

 

 

Figure 2.4. Third step of the fabrication process: the melt spinning technique. 

 

One example of the obtained material is presented in Figure 2.5. 

As it can be observed the samples were obtained in the form of long 

ribbons with different geometry parameters (mainly width and thickness), 

as different alloy compositions were obtained in different laboratories. 

Detailed geometry parameters for all the compositions used in this PhD 

work are given in Table 2.1. 
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Figure 2.5. View of the Fe54Ni24Cr2Si10B10 amorphous ribbon obtained by the melt 

spinning technique. 

 

Table 2.1. Geometry parameters and density of the alloys used in this PhD work. 

Sample 
composition Width (mm) 

Thickness 
(µm) 

Density 
(kg/m3) 

𝐹𝑒40𝑁𝑖38𝑀𝑜4𝐵18 6.0 30 7544 

𝐹𝑒64𝐶𝑜21𝐵15 2.6 23 7644 

𝐹𝑒64𝐶𝑜17𝑆𝑖6.6𝐵12.4 1.6 28 7450 

𝐹𝑒55𝑁𝑖25𝐵20 2.1 32 7668 

𝐹𝑒54𝑁𝑖24𝐶𝑟2𝑆𝑖10𝐵10 1.8 30 7455 

 

The composition of the chromium containing fabricated alloy was 

analysed using a SEM-EDX (Hitachi TM3000) electronic microscope, that 

is shown in Figure 2.6 and the obtained data was analysed with the 

Quantax 70 software.  

Energy Dispersive X-ray spectroscopy (EDX) is an analytical 

technique used for the elemental analysis or chemical characterization of 

a sample. It relies on an interaction of some source of X-ray excitation 

and the sample. Its characterising capabilities are due to the fundamental 
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principle that each element has a unique atomic structure allowing a 

unique set of peaks on its electromagnetic emission spectrum which is 

the main principle of spectroscopy. 

 

 

Figure 2.6. Hitachi TM 3000 SEM-EDX apparatus. 

 

An EDX setup consists of four primary components: an excitation 

source (electron beam or x-ray beam), an x-ray detector, a pulse 

processor and an analyser. To stimulate the emission of characteristic X-

rays from a specimen, a high-energy beam of charged particles such as 

electrons or protons, or a beam of X-rays, is focused into the sample 

being studied. In our case the beam is the same used in the SEM. The 

incident beam may excite an electron in an inner shell, ejecting it from 

the shell while creating an electron hole where the electron was. An 

electron from an outer, higher-energy shell then fills the hole, and the 

difference in energy between the higher-energy shell and the lower 

energy shell may be released in the form of an X-ray. The number and 

energy of the X-rays emitted from a specimen can be measured by an 

energy dispersive spectrometer. As the energies of the X-rays are 

characteristic of the difference in energy between the two shells and of 

the atomic structure of the emitting element, EDX allows to measure the 

elemental composition of the specimen. The excitation and emission 

processes that allows the composition characterization in EDX analysis 

are very briefly shown in Figure 2.7.   
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Figure 2.7. Basic principle of X-ray emission process due to an external excitation on 

a material. 

 

Therefore, the EDX analysis allows us to know the composition of 

the fabricated alloy in order to ensure that the chromium has been 

incorporated to the amorphous glass alloy and that no significant quantity 

of chromium has been lost. In Table 2.2 the obtained results for this 

fabricated composition after the melt-spinning process can be observed. 

The resolution of the used SEM-EDX is not sensitive enough to be able 

to properly distinguish boron from carbon. Due to this, the obtained 

weight percentages were ‘not normalised’, assuming that the amount 

that rests to reach the 100% corresponds to the non-measured boron 

percentage. 

 

Table 2.2. SEM-EDX obtained results for the 𝐹𝑒54𝑁𝑖24𝐶𝑟2𝑆𝑖10𝐵10 composition. 

Metals 
Expected mass 

(% wt) 
EDX results 

(% wt) 

𝐹𝑒 61.32 60.39 

𝑁𝑖 28.65 26.92 

𝐶𝑟 2.11 2.09 

𝑆𝑖 5.71 5.52 

𝐵 2.19 - 
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As it can be observed in the obtained EDX values (Table 2.2), the 

chromium content of the prepared strips is similar to the expected one. 

This indicates that during the fabrication process there are no significant 

chromium losses. Even more, the obtained percentages for all the 

elements of this alloy are in good agreement with the expected values 

obtained from the initial composition calculations. 

 

2.1.2. Magnetic and magnetoelastic characterization  

 

2.1.2.1. Hysteresis loop 

 

Hysteresis loops of the ribbons were measured by using a Vibrating 

Sample Magnetometer (VSM) model EZ7 from Microsense, LLC that is 

shown in Figure 2.8. 

  

 

Figure 2.8. Vibrating Sample Magnetometer located at BCMaterials used to obtain the 

hysteresis loops. 
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The VSM was developed by S. Foner in 19592 after the development 

of the Vibrating-Coil Magnetometer by D.O. Smith in 19563. A simplify 

scheme of the basic operating principle of the VSM is presented in Figure 

2.9. The sample is placed within a uniform magnetic field H generated 

by an electromagnet that induces a magnetic moment m in the sample, 

while a perpendicular oscillation is applied to the sample, normally by 

means of a piezoelectric or a linear actuator. The resulting oscillating 

magnetic field of the vibrating sample induces a voltage in the sensing 

pickup coils proportional to the magnetic moment of the sample, and 

from measurements of this voltage the magnetic properties of the sample 

can be deduced. The resulting signal is amplified and recorded by 

standard techniques. 

 

 

Figure 2.9. VSM operating principle. 

 

The obtained magnetic polarization µ0M (in Tesla) versus magnetic 

field (in A/m) graph corresponding to the commercial Metglas 2826MB3 

is shown in Figure 2.10 (saturation magnetization value given by the 

seller company: 0.88 T). Obtained results for all the samples used in this 

PhD work are summarised in Table 2.3. 
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Figure 2.10. Room temperature measured hysteresis loop of Metglas 2826MB3 

obtained with the VSM technique. 

 

2.1.2.2. Magnetostriction 

 

The magnetostriction of the samples was measured using strain 

gauges connected to an electronic Wheatstone bridge working in half 

bridge configuration and including a passive gauge for passive 

compensation. The employed device was a Portable Strain Indicator 

Model P-3500 (Instruments division), the strain gauges were purchased 

from Kiowa Electronics Instruments Co., Ltd., and attached to the ribbons 

using a M-Bond 600 adhesive purchased from Micro-Measurements. The 

employed strain gauges were chosen as small as possible to correctly 

stick to the ribbons which can be seen in Figure 2.11. They were squared 

shaped of 0.2 mm side, with a gauge factor of 1.99 and a resistance of 

120 Ω. 
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Figure 2.11. Pictures of the P-3500 Strain indicator apparatus (left) and the employed 

gauges (right-up) and the half bridge configuration to measure the ribbons (right-

down). 

 

The elongation detection mechanism is based on the changes of the 

ohmic resistance of the stain gauge conductor due to the elongation, or 

piezoresistive effect. This strain is calculated from the following 

expression: 

 

 𝜀 =
∆𝐿

𝐿
=

∆𝑅
𝑅⁄

𝐺𝐹
 [2.1] 

 

being ∆𝑅/𝑅 the ratio of fractional change in electrical resistance and 

𝐺𝐹 the gauge factor of the strain gauge. 

The applied magnetic field was generated with the coil system 

shown down below in Figure 2.12. The magnetic field was generated by 

a pair of Helmholtz coils and driven by a bipolar power supply (KEPCO 

BOP 20-20M). The sample in half bridge configuration, as shown in 

Figure 2.11, was placed in the central region within the coils set-up and 

the change of the electrical resistivity suffered by the strain gauge was 

measured at the strain indicator, and recorded in the computer.  
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Figure 2.12. General view of the Helmholtz coils and measurement system. 

 

Figure 2.13 shows the obtained magnetostriction measurement for 

the Metglas 2826MB3 (value given by the seller company: 12 ppm). The 

magnetostriction values obtained for all the employed samples are 

summarised in Table 2.3. 

 

 

 Figure 2.13. Magnetostriction curve for Metglas 2826MB3 sample. 
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2.1.2.3. Magnetoelastic resonance and ΔE effect 

 

The magnetoelastic resonance (MR) characterization curves and the 

derived ΔE effect were measured using an experimental set-up consisting 

of three coaxial solenoids. The external solenoid generates a static 

magnetic field (bias) of 11 kA/m (138.2 Oe/A). The so-called primary coil 

was located within this solenoid and applied an AC magnetic field of 2.94 

kA/m per ampere (36.9 Oe/A). A secondary coil was placed within the 

primary one and picked up the induced signal, which was then visualised 

in a HP 3589A spectrum analyser and recorded in a computer. The whole 

experimental set-up is presented in Figure 2.14. 

The spectrum analyser does not only allow to observe the 

magnetoelastic resonance curve in a wide range of frequencies between 

10 Hz and 150 MHz, but also provides the AC voltage to excite 

magnetically (via the primary coil) the ferromagnetic ribbons. The DC 

magnetic field was applied by using a HP 6653A power supply. The MR 

frequency was determined by applying an excitation field of constant 

amplitude and by switching its frequency from 30 kHz to 400 kHz, while 

keeping the DC magnetic field amplitude constant.  

 

Figure 2.14. General view of the set-up employed to measure the magnetoelastic 

resonance. 
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Figure 2.15 shows the resonance frequency curves obtained for 

different length ribbons of composition 𝐹𝑒64𝐶𝑜17𝑆𝑖6.6𝐵12.4. This sample 

shows good magnetoelastic properties. Each curve was measured at the 

applied DC field where the resonance frequency amplitude was 

maximum. These resonance frequencies evidently increased as 

diminishing the length of the magnetoelastic strips, as it can be 

concluded from Equation 1.3. 

 

 

Figure 2.15. Obtained magnetoelastic resonance curves for different lengths of the 

Fe64Co17Si6.6B12.4 sample. 

 

From those magnetoelastic resonance curves of the ribbons, the 

main magnetoelastic parameters can be obtained. Using Equations 1.4, 

1.5 and 1.6, the Young modulus 𝐸, the magnetoelastic coupling 

coefficient 𝑘 and the quality factor 𝑄 can be obtained. As resonance 

frequency changes with the applied magnetic field, the magnetoelastic 

parameters also will change as a function of the applied magnetic field. 

Typical dependences of the Young modulus 𝐸(𝐻), the magnetoelastic 

coupling coefficient 𝑘(𝐻) and the quality factor 𝑄(𝐻) with the applied 

magnetic field are shown in Figure 2.16. 
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Figure 2.16. ΔE effect or 𝐸(𝐻) dependence (upper), magnetoelastic coupling 

coefficient 𝑘 (middle) and quality factor 𝑄 (lower) as a function of the applied 

magnetic field for a 3 𝑐𝑚 long ribbon of composition 𝐹𝑒64𝐶𝑜17𝑆𝑖6.6𝐵12.4. 
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The obtained values for all the magnetic and magnetoelastic 

characterization for all the studied samples are presented in Table 2.3. 

The presented 𝛥𝐸 effect values and the magnetostriction ones were 

obtained for 3 cm length ribbons. 

 

Table 2.3. Saturation magnetization and magnetostriction, and 𝛥𝐸 effect values 

obtained for each alloy used in this PhD work. 

Sample 
composition 

µ𝟎𝑴𝑺 (𝑻) 𝝀𝑺 (𝒑𝒑𝒎) 𝜟𝑬 𝒆𝒇𝒇𝒆𝒄𝒕 (%) 

𝐹𝑒40𝑁𝑖38𝑀𝑜4𝐵18 0.88 11 2.5 

𝐹𝑒64𝐶𝑜21𝐵15 1.03 20 11 

𝐹𝑒64𝐶𝑜17𝑆𝑖6.6𝐵12.4 1.65 20.5 22 

𝐹𝑒55𝑁𝑖25𝐵20 1.41 16 0.9 

𝐹𝑒54𝑁𝑖24𝐶𝑟2𝑆𝑖10𝐵10 1.22 11.5 6.8 

 

The magnetic and magnetoelastic properties are affected by the 

composition of the amorphous metallic alloys. As expected, the addition 

of Cr decreases the saturation magnetization and magnetostriction. 

Nevertheless, a good 𝛥𝐸 effect has been measured for those samples 

showing a little dependence of the Young modulus with the applied 

magnetic field. 

On the other hand and concerning magnetoelastic measurements 

performed at the University of Patras (Greece) the used system is shown 

in Figure 2.17. This magnetoelastic sensing instrumentation box, 

designed for measuring and characterizing magnetoelastic sensors, 

measures the impedance of a solenoid coil that is used for sensor 

interrogation. During the sensor interrogation, a constant AC current is 

applied to the coil, which generates an almost uniform AC magnetic field 

(inside the coil). When a magnetoelastic strip is put inside the coil, with 

its length parallel to the coil axis, it responds to the AC magnetic field 

and longitudinally vibrates as a result of the magnetostriction. The 
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longitudinal vibration of the sensor generates in turn a changing magnetic 

flux due to the magnetoelastic effect, resulting in an impedance change 

of the coil. The resonance behaviour of the sensor is characterized by 

analysing the impedance spectrum. 

So, in this case, to take the measurements, a microcontroller-

controlled frequency generator drove a current amplifier connected to a 

single coil. This coil does not only generate the alternating magnetic field, 

but also detects the magnetic flux generated by the magnetoelastic 

material. A scheme of the remote query nature of the magnetoelastic 

sensors and a picture of the magnetoelastic sensor ”reader box” used are 

shown in Figure 2.17. The “reader box” was connected via a RS 232 port 

to a computer for data display and storage4. When the frequency of the 

vibration matches with the natural frequency of the sensor, resonance 

occurs, and the maximum measured at that point is easily followed by 

the automated set-up5. A graphical user interface designed using 

Microsoft® Visual Basic® allowed the user to digitally specify all 

measurement parameters, such as the frequency sweep range, the 

frequency steps, the dc biasing field and the ac excitation voltage. 

 

 

Figure 2.17. Homemade coil and magnetoelastic resonance measurement box. 

 

This set-up system was used for the measurements presented in 

Chapter 4, related to the zinc oxide depositions, Young modulus 

calculations and hydrogen peroxide sensing experiments, and in Chapter 

5 for the o-xylene detection using three different zeolite types. 
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2.1.3. Corrosion behaviour of selected compositions  

 

Magnetoelastic resonators are generally surface functionalized 

ribbon-shaped strips with different recognition layers that provides 

diverse target detection possibilities: aqueous chemical detection such as 

pH6, glucose concentration7, as well as inorganic salts deposition5. Also 

gas analytes as humidity8, carbon dioxide9, or volatile organic 

compounds10 as benzene or xylene among others can be detected. Even 

more, they have been successfully used as biosensors for different 

pathogens as Salmonella11 or Escherichia Coli12. Independently of the 

target to be sensed, in many cases such detection processes must be 

performed in aqueous solution or aggressive media, when arising 

corrosion produces subsequent degradation of the material affecting the 

magnetic properties and sensing capability. 

Iron rich glasses show outstanding magnetic and magnetoelastic 

properties that increase the sensitivity to those detection processes due 

to their excellent magneto-mechanical properties and high 

magnetoelastic coupling effect. Nevertheless, they also show tendency 

to corrosion as the corrosion resistance usually is not high. Metallic 

glasses show better corrosion resistance if compared with crystalline 

samples that can be attributed to the homogeneous single glass phase, 

the alloy chemistry and the presence of metalloids. Even more, the 

absence of grain boundaries, dislocations, and other defects where 

corrosion can preferentially occur allow the growth of a uniform 

protective layer. The homogeneity in both the chemical composition and 

microstructure promotes amorphous oxide formation on the surface 

which retards ionic transport, and therefore corrosion.  Corrosion can be 

affected by several parameters as: the amorphous structure, chemical 

and structural homogeneity, chemical composition, among others. Figure 

2.18 shows a clear example of the composition influence: in order to 

functionalize the substrates, two equal length strips of commercial 

Metglas 2826MB3 (𝐹𝑒40𝑁𝑖38𝑀𝑜4𝐵18, high corrosion resistance), and a 

homemade metallic glass of composition 𝐹𝑒64𝐶𝑜17𝑆𝑖6.6𝐵12.4 were 

immersed in a water solution. After 4 hours, the corrosion effect is clearly 

visible for the homemade Fe-rich ribbon case. 
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Figure 2.18. Corrosion effect in commercial Metglas 2826MB3 and a homemade 

metallic glass of composition Fe64Co17Si6.6B12.4. 

 

Since the first Fe-based metallic glass was synthesised by liquid 

quenching in 196713, rapidly quenched alloys became a new class of 

engineering materials for which the knowledge of their Glass Forming 

Ability (GFA) and corrosion resistance behaviour turned out to be 

fundamental aspects14. In particular, corrosion behaviour of these 

materials has been shown to be mainly controlled by the presence or 

absence of a protective, passive layer. This passive layer may act as a 

protective barrier against aggressive environments improving the 

corrosion resistance of the material. The best corrosion resistance is 

achieved when the passive layer is stable, not only in the media where 

it was generated but also in other aggressive environments to which it 

may be exposed. 

The employed ferromagnetic alloys are mainly composed of an 80% 

of metallic elements and a 20% of non-metallic, and the corrosion 

behaviour of the material is determined by the composition of the alloy. 

For that purpose, special compositions can be fabricated by substituting 

part of the commonly used metallic elements: Fe, Ni or Co, or by 

changing the metalloids: Si or B.  

Many studies already established that the use of Ni instead of Coxi 

improve the corrosion resistance. The addition of a small amount of other 
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metallic elements to the alloy such as Cr 11,15,16,17 , Zr18, Y19, Mo20, among 

others greatly improve the corrosion resistance of metallic glasses. 

Generally, the minor addition of elements such as Cr, Mo or Y, will 

provoke the formation of a passive layer, resulting in an improvement of 

the corrosion resistance 15,21,22 , but as the composition changes some 

magnetic and magnetoelastic properties degrade. This passive layer must 

be stable and protect the material against external environmental 

parameters. Nevertheless, the role of the metalloids is not completely 

clear, as the effect of a given metalloid depends on the rest of the 

components and on the solution composition of the corrosion 

experiment. An increase of the B content in some alloys has been used 

to improve the corrosion resistance of a glassy alloy23. With P addition 

the kinetics of passivation and composition of passive film were improved 

in acid solution, while with Si  replacement of P, the corrosion resistance 

can be enhanced24. 

Bearing all this in mind and due to some corrosion problems that 

occurred when trying to deposit some materials as zeolites, the 

fabrication of samples with an improved corrosion resistance resulted to 

be needed. The well-known, commercial metallic glass with high 

corrosion resistance, Metglas 2826MB3 (𝐹𝑒40𝑁𝑖38𝑀𝑜4𝐵18), widely used for 

such biological and chemical detection purposes, will be used as 

reference for comparison of the obtained corrosion resistance values of 

our homemade metallic glasses. 

Corrosion is an unwanted spontaneous electrochemical reaction 

occurring between a material, (usually a metal or metallic alloy), and its 

environment that can lead to structural degradation of the material. As 

electrochemical reaction is the sum of two half reactions: an oxidation 

process (electron loss) and a reduction process (electron gain). In 

corrosion, the oxidation reaction is always the destructive oxidation of 

the metal which losses electrons, while the reduction is usually caused 

by water reduction or dissolved oxygen reduction. Corrosion represents a 

huge problem in daily life and it has been the cause of many catastrophic 

damages, as for example the sinking of the Erika ship, which broke in 

two spilling 30 kilotons of heavy fuel oil to the sea. In fact in 2013 the 
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United States estimate the direct cost of corrosion to be about 1 trillion 

dollars per year. 

In order to measure the corrosion resistance, electronic chemistry 

methods such as potentiodynamic polarization are applied in most 

researches, where considerable information on the electrode processes 

can be attained, such as corrosion potential (𝐸𝑐𝑜𝑟𝑟), corrosion current 

density (𝐼𝑐𝑜𝑟𝑟), corrosion rate, pitting behaviour, passivity, and the 

cathodic behaviour. A schematic curve of the theoretical anodic 

polarization and the calculation of corrosion potential and corrosion 

current density can be observed in Figure 2.19.  

 

 

Figure 2.19. Schematic diagram of potentiodynamic polarization: theoretical curve 

(right) and calculation of corrosion potential and corrosion current density (left). 

 

The potentiodynamic experimental curve shown in Figure 2.19 

(right) starts at point (1) and progresses in the positive potential direction 

until reaching point (2), that is at anodic polarization. The open circuit 

potential (OCP) is located at point A: at this potential the sum of the 

anodic and cathodic reaction rated on the electrode surface is zero. As a 

result, the measured current will be closed to zero. With the increase of 

the potential, it moves towards the active region. In this region, metal 

oxidation is the dominant reaction until point B is reached, which 

corresponds to the passivation potential. As the applied potential 

increases above that value, the current density decreases until a low, 

passive current density is achieved in passive region D. Once the 
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potential reached a sufficiently positive value, point C, sometimes called 

the breakaway potential, the applied current rapidly increases. 

Around the open circuit potential, corrosion parameters can be 

obtained by fitting two lines according to the linear regions of the 

polarization curves as it can be observed in Figure 2.19 (left). The current 

density at that obtained point will be the corrosion current density (𝐼𝑐𝑜𝑟𝑟) 

and the potential at which it falls is the corrosion potential (𝐸𝑐𝑜𝑟𝑟), that 

can also be calculated by using the Tafel fit of the polarization resistance 

(𝑅𝑝) of the material. 𝑅𝑝 is defined as the inverse of the slope of the 

current density against the potential curve at the free corrosion potential. 

It is generally agreed that the higher the corrosion potential, the more 

difficult is the occurrence of the oxidation reaction for the metals; 

moreover, the larger the corrosion current density is, the higher the 

corrosion rate will be, that is, the lower corrosion resistance for metallic 

glasses25. 

In our case, Linear Polarization Resistance (LPR) technique was used 

to monitor the corrosion processes in the samples. This technique is 

specially designed for the determination of the 𝐸𝑐𝑜𝑟𝑟, 𝑖𝑐𝑜𝑟𝑟 and 𝑅𝑝 of a 

material through potential steps around the corrosion potential. All the 

anodic polarization curves of the amorphous metallic alloys were 

performed with a BioLogic VMP3 Potensciostat/Galvanostat in the three 

electrode conventional cell that can be observed in Figure 2.20. As 

working electrode (WE) the amorphous metallic strip was used, as 

reference electrode (RE) an Ag/AgCl ingold electrode purchased from 

Methrom and as counter electrode (CE) a platinum foil electrode 

purchased from Methrom. As electrolyte solution, a saline phosphate 

buffer solution (PBS) (0.138 M NaCl and 0.0027 M KCl) purchased from 

Sigma. The measurements were made at room temperature (25 ℃) and 

at pH 7.3 with a scan rate of 0.5 mV/s. Before measuring the corrosion 

resistance behaviour, the samples were cleaned with acetone in 

sonication for 5 minutes and dried at room temperature in order to avoid 

any contamination form the fabrication or manipulation processes. 
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Figure 2.20. Cell used for the corrosion experiments with the three electrodes on it. 

 

To perform the measurements the sample were left to stabilise for 

30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, measuring the open circuit potential (OCP), and afterwards 

the working electrode was forced to decrease -250 mV from the OCP 

and scan the potential in the anodic direction at 0.5 mV/s until 250 mV 

above that OCP. By analysing the obtained curves with the software EC-

Lab (in particular Tafel fit and 𝑅𝑝 fit) values for the corrosion potential 

(𝐸𝑐𝑜𝑟𝑟), the corrosion current density (𝑖𝑐𝑜𝑟𝑟) and the corrosion resistance 

(𝑅𝑝) were obtained. The obtained curves are presented in Figure 2.21. 

 

 

Figure 2.21. LPR curves measured for all the studied samples. 
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As expected Co containing alloy has shown the worst corrosion 

resistance, with the lowest values of corrosion potential. Substitution of 

Co by Ni improves the corrosion resistance as it has been experimentally 

demonstrated. However, the alloy with the best corrosion behaviour is 

the one containing Cr, as the addition of certain amount of Cr greatly 

improves the corrosion resistance behaviour of these amorphous alloys. 

The values for corrosion potential corrosion current density and 

polarization resistance obtained by fitting the LPR curves are summarised 

in Table 2.4. 

 

Table 2.4. Corrosion potential, corrosion current and polarization resistance values 

obtained for all the studied samples. 

Sample composition 
𝑬𝒄𝒐𝒓𝒓 

(𝑽) 
𝑱𝒄𝒐𝒓𝒓 𝟏𝟎−𝟔 

(𝑨/𝒄𝒎𝟐) 

𝑹𝒑 𝟏𝟎𝟑 

(𝜴 𝒄𝒎𝟐) 

𝐹𝑒40𝑁𝑖38𝑀𝑜4𝐵18 −0.42 8.15 6.47 

𝐹𝑒64𝐶𝑜17𝑆𝑖6.6𝐵12.4 −0.51 8.18 11.74 

𝐹𝑒55𝑁𝑖25𝐵20 −0.39 13.07 7.41 

𝐹𝑒54𝑁𝑖24𝐶𝑟2𝑆𝑖10𝐵10 −0.25 2.54 53.22 

 

Other kinds of processes that can occur during corrosion can be 

studied, such as pitting or passivation by performing cyclic-

potentiodynamic polarization (CPP) experiments. A schematic cyclic 

polarization curve is shown in Figure 2.22. A potential scan is started 

below the corrosion potential, 𝐸𝑐𝑜𝑟𝑟 where the current density goes to 

zero, and then increases to a low and approximately constant anodic 

value in the passive range. In this range, the passive film, a thin 

oxide/hydroxide film, protects the material from high corrosion rates. If 

the current density decreases when the potential scan direction is 

reversed, as in path 1, the material is shown to be immune to pit 

corrosion. However, if on the potential up scan, the current density 

suddenly increases, then remains high on the down scan, until it finally 

decreases to the passive-region value, as in path 2, where the material 

is shown to undergo a form of pitting corrosion. The potential at which 
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the current density suddenly increases (pitting initiation) is known as the 

pit potential, 𝐸𝑝𝑖𝑡, and the potential at which the current density returns 

to the passive value is known as the repassivation potential or the 

protection potential, 𝐸𝑝𝑝. Between 𝐸𝑝𝑖𝑡 and 𝐸𝑝𝑝, pits are initiating and 

propagating. In the case of path 2, pits will not initiate at 𝐸𝑐𝑜𝑟𝑟, the natural 

corrosion potential; and, therefore, the material will not undergo pitting 

corrosion under natural corrosion conditions. If, on the other hand, path 

3 is exhibited, where 𝐸𝑝𝑝is below 𝐸𝑐𝑜𝑟𝑟, the material will undergo pitting 

corrosion at surface defects. 

 

Figure 2.22. Schematic diagram of cyclic potentiodynamic polarization curve. 

 

CPP measurements are used for general corrosion studies. In this 

type of corrosion, anodic dissolution is uniformly distributed over the 

entire metallic surface. The corrosion rate is nearly constant at all 

locations. 

The corrosion behaviour of three fabricated samples were studied 

by electrochemical methods, and the obtained values were compared 

with the commercial high corrosion resistance Metglas 2826MB3 

(𝐹𝑒40𝑁𝑖38𝑀𝑜4𝐵18). The homemade samples were 𝐹𝑒64𝐶𝑜17𝑆𝑖6.6𝐵12.4, 

𝐹𝑒55𝑁𝑖25𝐵20 and 𝐹𝑒54𝑁𝑖24𝐶𝑟2𝑆𝑖10𝐵10. The obtained values for corrosion 
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potential, current density, and polarization resistance, are given and 

discussed in terms of Ni and Cr content.  

As it can be observed in Figure 2.23, the Fe-Co sample does not 

present any passive region where passivation processes take place, as it 

happens with the other samples. In the Fe-Co sample the obtained curve 

is wholly caused by the oxidation process of the alloy. In Fe-Ni containing 

samples, there is a passive region which extension depends on the other 

elements of the composition. As it was expected the Cr containing alloy 

is the one with the larger passivation plateau, since that chromium tends 

to form a stable passive layer. Even more, in all the samples the 

protection potential is higher than the corrosion potential which means 

that pitting processes will undergo at surface flaws, as it has been 

previously explained in Figure 2.22. 

 

Figure 2.23. Cyclic Potentiodynamic Polarization for all the studied samples. 

 

The polarization resistance experiments, made to study the 

corrosion behaviour of the different magnetoelastic amorphous alloys 

𝐹𝑒40𝑁𝑖38𝑀𝑜4𝐵18 (commercial Metglas 2826MB3), 𝐹𝑒64𝐶𝑜17𝑆𝑖6.6𝐵12.4, 

𝐹𝑒55𝑁𝑖25𝐵20, 𝐹𝑒54𝑁𝑖24𝐶𝑟2𝑆𝑖10𝐵10, have demonstrated that the alloy with 

the best behaviour against corrosion is 𝐹𝑒54𝑁𝑖24𝐶𝑟2𝑆𝑖10𝐵10in a PBS media 
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at 25 ℃ and a 𝑝𝐻 of 7.3. This sample has the highest corrosion potential, 

with the lower corrosion current density and a high polarization 

resistance. Besides, it also has a good 𝛥𝐸 effect, not as good as the other 

homemade alloys but the addition of chromium, which improves the 

corrosion resistance behaviour decreases the magnetoelastic properties 

of the material. Nevertheless, it is still better than the commercial alloy 

making this alloy also interesting for sensing applications. The obtained 

results let us assume that we have improved the corrosion resistance of 

our homemade magnetoelastic material, not affecting too much the 

magnetostrictive properties which still make these alloys suitable for 

developing sensor with chemical or biological detection purposes. 

As a visual proof of our observations, Figure 2.24 shows pictures 

taken at different times for the studied alloys, in which the development 

of the corrosion process can be observed. 

 

Figure 2.24. Pictures taken at different times (initial time, after 8 hours and after 24 

hours) for all the studied samples to visually observe the corrosion process. 
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2.2. Characterization of the active layers onto the 

magnetoelastic resonant platforms 

 

2.2.1. X-Ray Diffraction (XRD) 

 

XRD is a powerful non-destructive analytical technique for 

characterizing crystalline solids and powders. It provides information on 

crystal structures, phases, preferred crystal orientations, chemical 

composition and physical properties of the materials. A primary use of 

this technique is the identification and characterization of compounds 

based on their diffraction pattern. XRD is based on constructive 

interferences of monochromatic X-rays and the sample. Those X-rays are 

generated by a cathode ray tube, filtered to produce monochromatic 

radiation, collimated to concentrate, and directed toward the sample. In 

materials with regular structure, the interaction of the incident rays with 

the sample produces constructive interference (and a diffracted ray) 

when conditions satisfy Bragg’s law: 

 

 𝑛 𝜆 = 2 𝑑 𝑠𝑖𝑛𝜃 [2.3] 

 

where 𝑛 is an integer, 𝜆 is the wavelength of the X-rays, 𝑑 is the 

interplanar spacing generating the diffraction, and 𝜃 is he diffraction 

angle. This law relates the wavelength of electromagnetic radiation to 

the diffraction angle and the lattice spacing in a crystalline structure. A 

schematic representation of the diffraction principle can be observed in 

Figure 2.25. 
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Figure 2.25. X-Ray Diffraction principle. 

 

The directions of the possible diffractions depend on the size and 

shape of the unit cell of the material. The intensities of the diffracted 

waves depend on the kind and arrangement of the atoms in the 

crystalline structure. In this work, the XRD difractograms were useful to 

identify the nature of the formed precipitate/films. By scanning the 

sample through a range of 2𝜃 angles, all possible diffraction direction of 

the lattice should be attained. The conversion of the diffraction peaks to 

d-spacings allows the identification of the compound, as each compound 

has a set of unique d-spacings26. Typically, this is achieved by comparison 

of d-spacings with standard reference patterns, as it will be shown later. 

X-ray diffractometers consist of three basic elements: an X-ray tube, 

a sample holder and a X-ray detector. X-rays are generated in a cathode 

ray tube by heating a filament to produce electrons, accelerating the 

electrons toward a target by applying a voltage, and bombarding the 

target material with the electrons. Those electrons have enough energy 

to dislodge inner shell electrons of the target material and characteristic 

X-ray spectra are produced. Copper is the most common target material 

for single-crystal diffraction. These X-rays are collimated and directed 

onto the sample. As the sample and the detector are rotated, the 

intensity of the reflected X-rays is recorded. When the geometry of the 

incident X-rays impinging the sample satisfies the Bragg equation, a 

constructive interference occurs as well as a peak in intensity. The 

geometry of a diffractometer is such that the sample rotates in the path 

of the collimated X-ray beam at an angle 𝜃 while the detector is mounted 

on an arm to collect the diffracted X-rays and rotates at an angle of 2𝜃. 
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XRD measurements were made with a Bruker D8 advanced 

diffractometer, shown in Figure 2.26, operated at 40 kV and 40 mA using 

CuKα radiation with a scanning speed of 0.35 sec/step for 2θ in a range 

from 15 to 70 for zinc oxide measurements and in a range of 5 to 40 for 

zeolite measurements.  

 

 

Figure 2.26. Bruker D8 diffractometer at FORTH institute. 

 

2.2.2. Scanning Electron Microscopy (SEM) 

 

The scanning electron microscope produces images of a sample by 

scanning the surface of the sample with a focused beam of electrons. It 

is a powerful magnification technique that can provide topological, 

morphological and compositional information. Even more, it is useful to 

detect and analyse surface fractures, to provide information about 

microstructures, to examine surface contamination or to reveal spatial 

variations in chemical compositions or to provide qualitative chemical 

analyses among others. Therefore, SEM technique has found a variety of 

applications in a number of scientific and industry related fields.  
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In a SEM imaging run, the electrons interact with the atoms at 

various depths within the sample producing various signals that contain 

information about the sample surface topography and composition. Due 

to the very narrow electron beam, SEM micrographs have a large depth 

of field yielding a characteristic three-dimensional appearance useful for 

understanding the surface structure of the sample. 

In a typical SEM instrument, the electron beam is thermo-ionically 

emitted from an electron gun fitted with a tungsten filament cathode. 

Tungsten is usually employed in thermos-ionic electron guns because it 

has the highest melting point at lowest vapor pressure of all metals, 

thereby allowing it to be electrically heated for electron emission, and 

because of its low cost. This generated electron beam is accelerated 

down and passed through a combination of lenses and apertures to 

produce a focused beam of electrons which hits the surface of the 

sample. The beam passes through pairs of scanning coils which are 

responsible for controlling the position of the electron beam on the 

sample or pair of deflector plates in the electron column, typically above 

the objective lens, which deflect the beam so that it scans over a 

rectangular area of the sample surface. This scanning beam enables 

information about a defined area of the sample to be collected. As a 

result of the electron-sample interaction, a number of signals are 

produced and detected by appropriate detectors. The sample is mounted 

on a stage in the chamber area, and both, the column and the chamber 

are evacuated by a combination of pumps. The level of vacuum required 

will depend on the design of the microscope. A simple scheme of a SEM 

instrument structure can be observed in Figure 2.27. 

The morphology and structure of the fabricated particles formed and 

the homogeneity of the deposited layers appearing in this PhD report 

were studied by using SEM microscopy with a Zeiss SUPRA 35VP 

instrument operated at 10 kV, that can be seen in Figure 2.28. 
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Figure 2.27. Simplified scheme of a scanning electron microscope. 

 

 

 

Figure 2.28. Zeiss Supra 35VP Scanning Electron Microscope. 

 
2.2.3. Photoluminescence emission (PL) 

 

Photoluminescence emission phenomena involve the energy 

absorption and subsequent light emission, the later generically known as 

luminescence. That is when a laser type light illuminates a material, both 

Raman scattering and photoluminescence can occur. PL comprises both 

fluorescence and phosphorescence processes and originates from an 

absorption/emission process between different electronic energy levels 
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in the material. One example of luminescent materials are phosphors 

that emit light when excited by radiation and which are usually fabricated 

as microcrystalline powders or thin films designed to provide visible 

colour emission. 

Photoluminescence, fluorescence and phosphorescence occur when 

a material is excited by absorbing photons and then emits them with a 

decay time that is characteristic of the sample environment. 

Photoluminescence is the term that physicists use to describe the 

absorption and emission of light by a certain kind of material such as 

semiconductors. Fluorescence is a term used by chemists when the 

absorbing and emitting species are atoms or molecules. Usually 

fluorescence is “fast” (ns time scale). Phosphorescence is similar to 

fluorescence, except that it is “slow”, this means that the time between 

absorption and emission is longer than in fluorescence (up to hours or 

even days).  Figure 2.29 describes those different phenomena. 

Dispersing the photoluminescence light to form a spectrum is a good 

optical method to probe the electron transitions between high and low 

energy states, allowing investigation of the impurities, defects, and 

bandgaps in semiconductor materials. This method does not only show 

the energy states, but also the electron densities of states for electron 

transitions, which supply more electronic information27.  

 

 

Figure 2.29. Luminescence phenomena. 
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As proof of the quality of the ZnO layers deposited onto the 

magnetoelastic strips, PL spectra were also recorded at room temperature 

with a Hitachi F2500 Fluorescence Spectrophotometer, working from 

350 to 600 nm at an excitation wavelength of 325 nm, instrument that 

can be seen in Figure 2.30. 

 

 

Figure 2.30. Hitachi F2500 Fluorescence Spectrophotometer. 

 

2.2.4. Atomic Force Microscopy (AFM) 

 

Atomic force microscopy (AFM) is a very high resolution type of 

scanning probe microscopy (SPM). The information is gathered by 

“feeling” or “touching” the surface of the studied material with a 

mechanical probe. The AFM was invented by IBM scientist Gerd K. Bennig 

in 198228. The AFM precursor, the scanning tunnelling microscope (STM) 

was developed by Gerd Binnig and Heinrich Rohrer in the early 1980s at 

IBS Research-Zurich, a development that earned them the 1986 Nobel 

Prize for Physics. 

Figure 2.31 shows the typical configuration and working principle of 

an AFM: an atomic force microscope consists of a cantilever (1) with a 

sharp tip (probe) (4), that are carried by a support (2). The cantilever is 

typically silicon or silicon nitride with a tip radius of curvature of the order 

of the nanometres. Optionally, a piezoelectric element (3) oscillates the 

cantilever. The sharp tip is fixed to the free end of the cantilever. When 
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the tip is brought into proximity of the sample surface, forces between 

the tip and the sample lead to a deflection (displacement with respect to 

the equilibrium position) of the cantilever according to Hooke’s law. The 

detector (5) measures the deflection of the cantilever and converts it into 

an electrical signal. The intensity of this signal will be proportional to the 

displacement of the cantilever. The detector used to be a position-

sensitive photodetector where the deflections of the light of the laser are 

collected. The sample (6) is mounted on the sample stage (8) and it is 

displaced in the three directions x, y, and z with respect to the tip due to 

a ‘xyz drive’ (7). Although Figure 2.31 shows the drive attached to the 

sample, the drive can also be attached to the tip, or independent drives 

can be attached to both, since it is the relative displacement of the 

sample and tip that needs to be controlled29.  

 

 

Figure 2.31. Configuration and working principle of the Atomic Force Microscope. 

 

According to the configuration described above, the interaction 

between tip and sample, which can be an atomic scale phenomenon, is 

transduced into changes of the motion of cantilever which is a macro 

scale phenomenon. Several different aspects of the cantilever motion can 

be used to quantify the interaction between the tip and sample, most 

commonly the value of the deflection, the amplitude of an imposed 

oscillation of the cantilever, or the shift in resonance frequency of the 

cantilever. In fact, the AFM can be operated in a number of modes, 

depending n the application. In general, possible imaging modes are 
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divided into static or contact modes and a variety of dynamic or tapping 

(non-contact) modes where the cantilever is vibrated or oscillated at a 

given frequency. 

The AFM has three major abilities: force measurement, imaging, 

and manipulation. In force measurement, AFMs can be used to measure 

the forces between the probe and the sample as a function of their 

mutual separation. This can be applied to perform force spectroscopy, to 

measure the mechanical properties of the sample, such as the sample's 

Young's modulus, a measure of stiffness. For imaging, the reaction of the 

probe to the forces that the sample imposes on it can be used to form 

an image of the three-dimensional shape (topography) of a sample 

surface at a high resolution. This is achieved by a raster scanning the 

sample position with respect to the tip and recording the height of the 

probe that corresponds to a constant probe-sample interaction. In 

manipulation, the forces between tip and sample can also be used to 

change the properties of the sample in a controlled way. Examples of 

this include atomic manipulation, scanning probe lithography and local 

stimulation of cells. 

The AFM has been applied to problems in a wide range of disciplines 

of the natural sciences, including solid-state physics30 (identification of 

atoms at a surface, evaluation of interactions of atoms), semiconductor 

science and technology31, molecular engineering, polymer chemistry and 

physics32, surface chemistry33, molecular biology (study of the protein 

complexes), cell biology (distinguish cancer and normal cells34), and 

medicine.   

Concerning the work presented in this PhD report, AFM images will 

be taken to observe the topography of the deposited polystyrene layers 

when using two different solvents: tetrahydrofuran and toluene, 

respectively. 
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3. Study of the functionalization process of 

the magnetoelastic resonant platforms with 

polymers 
_____________________________________________ 

 

 

This chapter is focused on the performed studies with the magnetoelastic 

resonant platforms concerning the two main factors affecting their 

sensing ability. The magnetoelastic ribbons were coated with a polymer, 

polystyrene (PS), in order to study how the mass deposition affects the 

resonance frequency and to determine the best conditions of the 

resonant platform for the future sensing applications. The important 

parameters ruling the magnetoelastic sensing ability are the sensitivity 

𝑆 and the resonance quality factor 𝑄. The sample resonance frequency 

was measured at different applied magnetic fields, in order to compare 

the sensitivity and the quality factor under different applied magnetic 

field conditions, in order to achieve the best resonant frequency signal. 

Additionally, resonators with different ribbon lengths were compared in 

order to determine the one with the highest sensitivity to this mass 

deposition.  
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3.1. Introduction 

 

As it has been previously explained, magnetoelastic materials can 

be use for sensing applications if they are coated with an active layer. 

This layer will be part of smart functionalized system that must selectively 

detect and trap the target molecule or analyte desired to be detected. As 

a consequence of the target molecule trapping, the concentration can be 

detected through a change in the resonant frequency of the hybrid 

system1, 2, 3. 

For these first studies, polystyrene will be deposited on our 

homemade magnetoelastic ribbons in other to observe how it gets 

attached to the amorphous metallic glass and in order to analyse the best 

resonant conditions by studying the parameters affecting the 

magnetoelastic resonance detection method. 

 

3.2. Parameters affecting the chemical and biological 

detection processes 

 

As previously explained, magnetoelastic materials need an active 

layer which is the responsible for selectively detecting and trapping the 

target molecules or analytes that want to be detected and/or quantified. 

That active layer will be deposited covering the surface of the 

magnetoelastic ribbon changing therefore the mass and resonant 

frequency of the whole sensor. This will be the starting point for the 

detection measurements. In order to test how the mass deposition affects 

the material magnetoelastic response, experiments covering 

magnetoelastic material with polymers have been performed and will be 

presented throughout this chapter. 

When a magnetoelastic resonant platform is used for sensing 

purposes the main parameters governing the detection process are two; 

the quality factor, 𝑄, and the sensitivity, 𝑆. 
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 Quality factor 𝑸 

 

The 𝑄 factor is the mechanical quality factor that quantifies the 

energy losses of a resonator, giving information about how good the 

resonance curve is concerning the efficiency of the energy conversion. 

Consequently, whereas high 𝑄 values turn into a sharper and narrower 

resonance curve and indicate a low rate of energy losses, small 𝑄 values 

give rise to a wider bandwidth and a higher rate of energy losses. 𝑄 factor 

is usually estimated by the following relationship: 

 

 𝑄 =
𝑓𝑟

∆𝑓
 [3.1] 

 

where 𝑓𝑟 is the resonance frequency at which amplitude is 

maximum 𝐴𝑚𝑎𝑥 and ∆𝑓 is the bandwidth measured at 𝐴𝑚𝑎𝑥  / √2. In Figure 

3.1 an example of the quality factor for two different resonance curves is 

shown. 

 

 

Figure 3.1. Two resonance curves with different 𝑄 value. 
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The quality factor is a dimensionless parameter that can be 

calculated and / or approximated by different methods. The 

mathematical expression for the 𝑄 parameter for a resonant system is 

given in Equation [3.1]. Kaczkowski demonstrated that by using this 

equation the error in 𝑄 determination could be as high as a 20% So, he 

modified this classical expression in order to be able to determine the Q 

factor of a magnetostrictive/magnetoelastic material working at its 

magnetoelastic resonance from impedance measurements4. He 

stablished an equation for the 𝑄 determination from the motional 

impedance circle diagram, which relates the resonance frequency and 

maximum and minimum frequency values of the real part of the 

resonance curve. Kaczkowski compared both methods and stablished a 

much higher accuracy by using his motional impedance circle.  

We are now studying the best way to determine the quality factor 

𝑄 taking into account the factors by which this parameter can be 

affected, so in this thesis report the calculation of the 𝑄 is going to be 

performed by using Equation 3.1. 

While all 𝑄 values appearing in this report are calculated by using 

Equation 3.1 a deep study about 𝑄 determination has been actually 

performed5. 

 

 Sensitivity 𝑺 

 

The other important parameter that affects the detection and 

sensing process is the sensitivity. Sensitivity, 𝑆 is defined as the shift in 

the resonance frequency of the magnetoelastic resonator due to the 

attachment of a unit mass load on its surface. A higher 𝑆 means a larger 

shift in the resonant frequency for the same mass load. A first estimation 

of 𝑆 is given by6: 

 

 𝑆 = −
∆𝑓

∆𝑚
=

−𝑓𝑟∆𝑚
2𝑚0

⁄

∆𝑚
= −

𝑓𝑟

2𝑚0
 [3.2] 
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where 𝛥𝑓 and 𝛥𝑚 are the changes on the resonance frequency and 

the loading mass respectively and 𝑓𝑟 and 𝑚0 correspond to the resonance 

frequency of the unloaded resonant platform, respectively. In all the 

cases, it will be assumed that the mass is uniformly distributed on the 

whole surface of the magnetoelastic ribbon. 

As it has been previously presented in Chapter 2, the resonant 

frequency of a magnetoelastic ribbon changes as a function of the applied 

magnetic field. This fact can be observed in Figure 3.2. For the first 

studies presented in this chapter different parameters affecting the 

sensing capability will be studied and presented. These experiments were 

made by using a 3 cm length ribbon of composition 𝐹𝑒64𝐶𝑜17𝑆𝑖6.6𝐵12.4. 

 

 

Figure 3.2. Change of the frequency of a magnetoelastic strip with the applied 

magnetic field. 

  

The values of the applied magnetic field where the resonance 

curves were obtained and the obtained resonance frequency curves for 

each applied magnetic field are shown in Figure 3.3.  
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Figure 3.3. Frequency vs applied magnetic field with the selected measurement fields 

marked (up). Resonance frequency curves obtained at those applied magnetic field 

values (down). 

  

Five different applied magnetic field values were selected for the 

resonance frequency measurements in order to cover the whole range of 

the obtained frequency versus magnetic field change. The first value 

where the applied magnetic field is the minimum (almost 0), H0; a 
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second curve was obtained during the decrease of the frequency before 

reaching the minimum, Hd; the third one at the called anisotropy field, 

Hk, where the resonance frequency is the minimum; the forth one at the 

increase of the frequency before reaching the magnetic saturation, Hu; 

and the last curve was obtained at this saturation, Hs. The quality factor 

of each curve was graphically calculated by using Equation [3.1] and the 

obtained values are presented in Table 3.1. 

As it can be observed, the first and the last resonance curves 

obtained (H0 and Hs) have a very small amplitude, and therefore those 

two points were discarded for the present study. 

 

Table 3.1. Quality factor and sensitivities calculated for the as quenched magnetoelastic 

ribbon at different applied magnetic fields studied. 

 𝑯𝒂𝒑𝒑𝒍𝒊𝒆𝒅 (𝑨/𝒎) 𝑸 |𝑺| (𝑯𝒛/µ𝒈) 

H0 ≈  0 − 6.95 

Hd 85 135 6.87 

Hk 146 96 6.80 

Hu 440 350 7.13 

Hs 2000 190 7.67 

 

The objective of these experiments was to determine the applied 

magnetic field at which the sensitivity 𝑆 was the highest. Simultaneously, 

the resonant frequencies at different applied magnetic fields were 

studied during some polymer deposition experiments. All the samples 

were cut (at the desired length), cleaned (under sonication in methanol 

and acetone) and dried (with a stream of nitrogen) before making any 

measurement in order to remove any dirt arisen from the fabrication or 

handling process. To cover these samples with polystyrene, PS, a 

previous acid treatment was needed. Our first experiments trying to cover 

the as-quenched amorphous ribbons failed, as the polymer detached 

from the metallic surface. Therefore, in order to improve the polymer 

adherence to the magnetoelastic substrate, several treatments were 

performed, as acid or basic surface treatments. 
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As it was later observed by AFM topographical images, it was 

needed to decrease the roughness of the strips surface, in order to 

increase the adhesion of the polymer. To do this, an acid treatment turn 

out to be the best option. As the acid attacks the metallic surface, it 

decreases the rugosity of the surface making it smoother for the polymer 

deposition. The acid treatment consisted on immersing the samples in 

1𝑀 𝐻𝐶𝑙 solution for 1 hour under sonication. The topography of the 

surfaces of the ribbons observed by AFM is presented in Figure 3.4, and 

also the obtained profiles for those samples. The ribbons roughness 

decreased from 140 nm in the as-quenched state to 30 nm in the acid 

treated ones. 

 

As quenched sample Acid treated sample 

  

  
Figure 3.4. 100 µ𝑚 𝑥 100 µ𝑚 AFM images for the as quenched and cleaned 

magnetoelastic ribbon (left) and for the acid solution treated sample (right) and their 

corresponding profiles. 

 

After the cleaning process and the acid treatment, the samples were 

coated with polystyrene, dissolved in tetrahydrofuran (THF). These first 

experiments were performed by using a PS 10-3  M solution by using the 
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dip coating technique that will be later explained in detail. The samples 

were immersed for 30 seconds in the solution and the solvent was left 

to evaporate at room temperature. Several depositions were made by 

following the same procedure and after each deposition, not only the 

resonance frequency at the selected applied field values, but also the 

weight of the deposited polymer mass were measured. 

In this way, these first experiments allowed us to study the 

sensitivity of the resonance frequencies obtained at different applied 

magnetic fields with the deposited mass. As it was expected, the 

resonance frequency decreased when the deposited mass of polymer 

increased. As it was expected and as it can be observed, the resonant 

frequency decreases as the mass of the materials increases Nevertheless, 

it is clear that this process has failed, since there is no clear correlation 

between the number of PS depositions (𝑁) and the corresponding mass 

change. The obtained dependence of the resonance frequency with the 

mass for one of the applied magnetic field studied is shown in Figure 

3.5. 

 

 

Figure 3.5. Decrease of the resonance frequency of a 3 cm length ribbon as a 

consequence of the mass increment during successive PS depositions. 
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The only clear conclusion for this initial polymer deposition study is 

that the highest sensitivity is obtained at Hk, although the 𝑄 is not the 

highest one. On the other hand, the polymer coating process has to be 

improved in order to achieve the increase of the deposited mass with the 

increasing number of depositions.  

 

3.3. Polystyrene functionalized MRPs 

 

In order to coat the ribbons with polystyrene, PS, the samples must 

be cut and cleaned. After cutting the ribbon pieces, they were cleaned 

to remove any dirt from the fabrication or manipulation processes. 

Cleaning was carried out by sonicating the samples in methanol and 

afterwards in acetone during 10 minutes each. Samples were dried with 

a stream of nitrogen. As it has been previously mentioned, in order to be 

able to coat the magnetoelastic resonant platforms with PS an acid 

treatment is needed. Samples were treated in HCl 1 M for 1 hour in 

sonication. The magnetic and magnetoelastic responses were not 

affected by the acid treatment. 

The polymer active layer was deposited onto the magnetoelastic 

material by the dip coating technique7. Dip coating consists in immersing 

the resonant platform in an adequate polymeric solution in order to 

achieve the deposition of a polymeric layer. The dip coating process can 

be separated into five stages8: 

 

1.-  Immersion; the substrate is immersed in the solution of the 

coating material at a constant speed. 

2.-   Start-up; the substrate has remained inside the solution for 

a while and it is starting to be pulled up. 

3.-  Deposition; the thin layer deposits itself on the substrate 

while it is pulled up. The withdrawing is carried out at a 

constant speed to avoid any jitters. The speed determined 

the thickness of the coating9. 
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4.-  Drainage; the excess liquid will drain from the surface. 

5.-  Evaporation; the solvent evaporates from the liquid, forming 

the thin layer. For volatile solvents, such as alcohols, 

evaporation starts already during the deposition and drainage 

steps. 

 

Many factors contribute to determine the final stage of the dip 

coating of a thin film. A large variety of repeatable dip coated film 

structures and thicknesses can be fabricated by controlling many factors 

as the functionality of the initial substrate surface, submersion time, 

withdrawal speed, number of dipping cycles. In which concerns the 

solution and for a successful dip coating process, also solution 

composition, concentration and temperature, number of solutions in each 

dipping sequence and environment humidity must be strictly controlled. 

PS depositions onto the magnetoelastic resonant platforms can be 

followed by measuring the resonance frequency change associated with 

the corresponding PS deposition number. The PS deposition has to be 

done in two different ways: 

 

1) Dipping the sample in a constant concentration solution 

several times. (This was done for previous experiments). 

2) Dipping the sample in different solutions with increasing PS 

concentrations. (That will be the next procedure to be 

employed). 

 

From our observations, procedure 1) does not assure an increase of 

the deposited mass, since after several depositions, an equilibrium state 

between the dissolved and deposited polymer is achieved, giving rise to 

saturation of the added mass. This has occurred during the 

measurements at different applied fields. Procedure 2), instead, gives a 

systematic increase of the deposited mass of PS after each dip coating 

process. For the dip coating processes described hereinafter the second 

procedure was used. 
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3.3.1. Fe-Co-Si-B metallic glass functionalized with 

polystyrene 

 

For these experiments the ribbon of composition 𝐹𝑒64𝐶𝑜17𝑆𝑖6.6𝐵12.4 

was selected, as it has good magnetic and magnetoelastic properties 

(µ0𝑀𝑆 = 1.65 𝑇, 𝜆𝑆 = 20 𝑝𝑝𝑚, 𝛥𝐸 𝑒𝑓𝑓𝑒𝑐𝑡 ≈ 22%). The melt spinning 

fabricated ribbon has a width of 1.6 mm and a thickness of 28 µm. The 

influence of the length on the sensitivity was studied: 3 cm, 2 cm and 1 

cm length strips were coated with PS. 

As previously explained, polystyrene depositions were made by the 

dip-coating technique. The magnetoelastic strips were immersed for 5 

seconds in a polymer solution and let them dry at room temperature until 

total evaporation of the solvent. Successive depositions were made to 

follow the evolution of the change on the resonance frequency with the 

deposited mass. The samples were weighted after each deposition 

process and the resonance frequency was measured. A balance with a 

resolution of 0.1 µg was used to weight the amount of PS deposited in 

each dip coating process. For the polymer deposition, solutions of 

different polystyrene concentrations were prepared, from 10-5 M to 10-4 

M, using tetrahydrofuran as solvent. 

Tetrahydrofuran (THF) is an organic compound, specifically a cyclic 

ether with formula (CH2)4O. Being polar and having a wide liquid range 

is a versatile solvent, mainly used as a precursor to polymers. As it is a 

colourless, water miscible organic liquid with low viscosity it is also widely 

used as solvent for most organic compounds. It has been previously used 

for PS depositions onto metallic surfaces10, 11. It has low boiling point of  

66 ℃, making it suitable for dip coating processes as it can be easily 

evaporated at room temperature. 

After 6 deposition processes, the final topography of the obtained 

polymer film was observed by AFM. As it can be observed in Figure 3.6., 

the coated surface is not homogeneous; in fact, it seems that bubbles 

have formed during the evaporation process. 

 



Chapter 3 

  

 

88 Ariane Sagasti 

  

Figure 3.6. 100 µ𝑚 𝑥 100 µ𝑚 AFM picture for PS (in THF) coated ribbon and its profile. 

 

The presence of those spherical holes all over the PS film is probably 

due to the rapid evaporation of the THF. Besides, as THF is a water 

miscible solvent, and as the deposition and evaporation processes carried 

out without a controlled atmosphere, the obtained structure may be 

considered as breath figures. In a general breath figure process, a 

polymer solution in a high volatile solvent (as THF is) is cast onto a 

substrate under adequate humidity. The fast evaporation of the solvent 

temporally cooled down the solvent/air interface. This process induces 

the condensation of water from the humid air. Water droplets are 

arranged onto the surface ideally into a honeycomb pattern12. In this 

evaporation process as the humidity was not controlled and stable, the 

obtained structure is not well ordered, and the obtained holes have 

different sizes.  

These large holes are an undesired consequence of a badly 

performed dip coating process occurring within the deposited film. Those 

holes can reach directly the surface of the amorphous ribbons and as a 

consequence leave the surface of the metallic ribbon exposed to any 

chemical agent of the atmosphere resulting in false resonance value that 

mistakes the desired detection, if any reaction takes place directly due 

to the contact with the metallic element. 

A convenient alternative to THF solvent can be toluene, which is a 

non polar solvent with a higher boiling point (111 ℃). For the depositions 

with the new samples toluene will be used as solvent. 
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3.3.2. Fe-Ni-Cr-Si-B metallic glass functionalized with 

polystyrene 

 

For these new set of experiments, the homemade corrosion 

resistance samples containing chromium will be used, in particular the 

one of composition 𝐹𝑒54𝑁𝑖24𝐶𝑟2𝑆𝑖10𝐵10  (µ0𝑀𝑆 = 1.22 𝑇, 𝜆𝑆 = 11.5 𝑝𝑝𝑚, 

 𝛥𝐸 𝑒𝑓𝑓𝑒𝑐𝑡 ≈ 7 %). The melt spinning fabricated ribbon has a width of 1.8 

mm and a thickness of 30 µm, and in this case, samples of 1 cm length 

will be coated with PS.  

As in the previous experiments with polystyrene, successive polymer 

depositions were made by the dip coating process with solutions of 

increasing concentrations. The 1 cm length samples were cleaned and 

treated as in the previous experiments in order to ensure a good 

attachment between the PS and the ribbon surface. Solutions of different 

PS concentrations were prepared, from 10-5 M to 10-4 M, using toluene 

as solvent. The ribbons were immersed for 5 seconds in the polymer 

solution and let them dry at room temperature. In this case, due to the 

solvent higher boiling point, the samples required more time to totally 

evaporate the solvent. After making the deposition the samples were 

weighted and the resonance frequency was measured with the spectrum 

analyser. 

Toluene is a mono substituted benzene derivative, consisting of a 

methyl group attached to a phenyl group. The non polar character of the 

toluene and it higher boiling point will make it to evaporate at a slower 

rate than THF, and even more, as it is water-insoluble liquid breath 

figures should not be formed during the solvent evaporation 

consequently avoiding the hole formation observed in the THF case. 

After 9 deposition processes, the final topography of the obtained 

polymer film was observed by AFM. As it can be observed in Figure 3.7. 

the polymer coating obtained using toluene as solvent of the polystyrene 

is more homogeneous than the obtained using THF as solvent. It is not 

totally smooth, but there is no signal of the previously obtained holes, so 

it can be supposed that the ribbon surface is totally covered with the 
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polymer. Therefore, the deposition process has been improved by 

changing the PS solvent. 

  

    

Figure 3.7. 100 µ𝑚 𝑥 100 µ𝑚 AFM picture for PS (in toluene) coated ribbon and its 

profile. 

 

The result obtained for the resonance frequency will be shown and 

discussed in Section 3.4. 

 

3.4. A comparison between theoretical predictions and 

experimental results 

 

3.4.1. PS depositions onto Fe-Co-Si-B resonant 

platforms 

 

As theory predicts, the resonance frequency depends on the length 

of the ribbon Equation [1.3]. So the shorter the ribbon, the higher its 

magnetoelastic resonance frequency value, as it has been determined by 

measuring those resonance frequencies at 67, 102 and 206 kHz for the 

3, 2 and 1 cm ribbon lengths, respectively (see Figure 3.8). These 

samples are covered with PS using THF as solvent. 
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Figure 3.8. Magnetoelastic resonance curves obtained for the clean studied ribbons at 

an applied 𝐻𝑘  corresponding to the minimum in measured 𝛥𝐸 curves. 

 

As it has been previously explained, the sensitivity is a key factor 

when the magnetoelastic resonator is used for sensing purposes. Table 

3.2. shows the calculated sensitivity values for the different length 

samples after several deposition processes. 

 

 

Table 3.2. Sensitivities obtained for the different length samples covered with 

polystyrene dissolved in THF. 

𝑳 (𝒎𝒎) |𝑺| (𝑯𝒛/µ𝒈) 𝟏/|𝑺| (𝒏𝒈/𝑯𝒛) 

𝟑𝟎 7.5 133.3 

𝟐𝟎 181 55.2 

𝟏𝟎 52.4 19 

 

As expected, the most sensitive device to the deposited polymer 

mass is the smallest one, L = 1 cm with 19 ng/Hz detected mass value 
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per resonance frequency change. This has been also the device with the 

highest 𝑄 = 155 value. 

Concerning the change of the resonant frequency of the samples 

with the deposited polymer mass, it is widely accepted that the basic 

equation that governs the magnetoelastic resonance based detection 

processes is: 

 

 
∆𝑓

𝑓0
= −

1

2

∆𝑚

𝑚0
 [3.3] 

 

 

where 𝑚0 is the original mass of the magnetoelastic platform that 

resonates at 𝑓0 and ∆𝑓 = 𝑓 − 𝑓0 is the resonant frequency change when 

a ∆𝑚 uniformly deposited mass quantity is attached to the device. 

However, Equation [3.3] is just an approximation of a more general 

expression13: 

 

 
𝑓

𝑓0
= [1 +

∆𝑚

𝑚0
]

−1
2⁄

 [3.4] 

 

 

that can be expanded as: 

 

 
∆𝑓

𝑓0
≈ −𝑎 (

∆𝑚

𝑚0
) + 𝑏 (

∆𝑚

𝑚0
)

2

 [3.5] 

 

 

with 𝑎 =  0.5 and 𝑏 =  0.375. Such a second order expression agrees 

with our experimental observations for the relative change in the 

resonant frequency of each resonant platform as subsequent depositions 

were performed, and so the deposited mass increases in a continuous 

way for each of them. The obtained curves are shown in Figure 3.9.  
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Figure 3.9. Change of resonant frequency versus deposited PS mass change, for all 

the different length ribbon. 

 

 

Nevertheless, the values of the coefficients a and b obtained from 

such numerical fits presented in Table 3.3 (all of them with a 0.99 

regression factor) clearly differ from the expected values. 

 

 

Table 3.3. a and b coefficients obtained from the fit of equation 3.3 to the experimental 

data shown in Figure 3.9. 

𝑳 (𝒎𝒎) 𝒂 𝒃 

𝟑𝟎 0.966 0.045 

𝟐𝟎 0.796 0.049 

𝟏𝟎 1,109 0.101 
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In Figure 3.10. it can be directly seen how the estimated height 

changes with the number of depositions N made (average, of course, 

since the formed holes by the solvent bubbles during the evaporation 

process have not been taken into account). As expected, the relative 

deposited mass amount is higher for L=1 cm than for L=3 cm, and 

therefore in this graph the increasing trend quickly separates from 

linearity (in the case L=1 cm). 

 

 

Figure 3.10. Change on the height of deposited polystyrene with the increasing 
number of depositions 𝑁 for the three studied lenghts. 

 

 

In Figure 3.11. the previous data shown in Figure 3.10. have been 

normalized, taking as parameter the relative change in mass for both 

tape lengths. It can be observed that the expected linearity in the 

resonance frequency change is achieved only for low relative mass 

changes, up to 4.5% as the upper limit in this change. For larger mass 

relative changes, this good initial linearity is lost. 
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Figure 3.11. Mass changes on the height with the increasing number of depositions 𝑁, 
up to a 4 – 5 % as the upper limit of the linearity. 

 

 

 

 
3.4.1. PS depositions onto Fe-Ni-Cr-Si-B resonant 

platforms 

 

In the case of the 𝐹𝑒54𝑁𝑖24𝐶𝑟2𝑆𝑖10𝐵10 resonant ribbons, in which the 

PS depositions were made using toluene as solvent, only 1 cm ribbons 

were used since they show the highest sensitivity. The results obtained 

for the change of the resonant frequency with the increasing deposited 

polymer mass are shown in Figure 3.12. 
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Figure 3.12. Change of resonant frequency versus deposited PS mass change for the 

toluene solvent sample. 

 

Two facts deserve further explanation: firstly, the differences 

between the deposited mass amount in both cases, using different 

solvents; and secondly the obtained correlation between the mass 

increment and the resonance frequency displacement. 

Concerning the polymer deposition, the dip coating process being 

followed has been the same for both samples by using different solvents. 

In both cases, solutions of increasing polymer concentration have been 

used to ensure the mass increase with the increasing number of coating 

processes. Nevertheless, for the FeCoSiB sample with 6 deposition 

processes the mass increment achieved was of about 5 %, while for the 

FeNiCrSiB with 9 depositions has been less than 2 %. This fact can be 

attributed to the solvent differences. Both solvents are cyclic organic 

compounds where PS is soluble, however THF is a polar solvent which is 

miscible with water while toluene is a non polar solvent which is water 

insoluble. The polarity and solubility differences between the solvents 

can influence the wettability of the resonant platform being the 

responsible of the polymer adherence onto the surface of the 

magnetoelastic material. If the wettability of the surface to a solvent is 
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low, the PS will have worse adherence to the ribbon surface, as the 

solvent will not spray all over the surface, and therefore the deposited 

mass will be smaller. On the contrary, if the wettability is high, the PS 

solution will spray through the whole surface letting the PS properly 

adhere to the metallic ribbon and increasing the deposited mass amount. 

But this cannot be the only factor, it can also be influenced by the ribbon 

composition, as the PS adherence can be improved or not depending on 

the substrate composition. 

On the other hand, and concerning the mass versus resonance 

frequency shifts, it has been observed that when the mass change is less 

than 2 %, the experimental data obtained fits the linear expression of 

Equation [3.3]. Furthermore, the obtained slope value -0.53 is really 

close to the theoretical one, which is -0.5. Nevertheless, when the 

coating material mass is higher the experimental data fits better with the 

polynomial expression given in Equation [3.5], as it has been observed 

for the THF solvent samples. Following this line of reasoning, it can be 

concluded that the linear expression can be useful when the relative 

mass change is small, while for situations where the relative mass change 

is higher the second order polynomial expression must be employed. 

 

 

3.5. Summary and conclusions 

 

The results shown in this chapter demonstrated that it is possible to 

coat a magnetoelastic material with a polymer as polystyrene acting as 

active layer. It has been observed that due to the high rugosity of the as 

quenched amorphous ribbons, a previous acid treatment is needed to 

ensure the good adherence between the magnetoelastic strip and the 

polymer. 

It has also been observed that there are several factors affecting the 

polymer depositions by the dip coating technique. For example, in order 

to homogeneously coat the magnetoelastic ribbons solutions of 
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increasing concentrations are needed in order to be sure that the polymer 

deposited mass will systematically increase. If the samples are dipped in 

a constant concentration solution for several times, after several 

depositions, an equilibrium state between the dissolved and the 

deposited polymer can be achieved, giving rise to saturation of the added 

mass. To avoid this problem, the dipping process must be performed with 

solutions of increasing polymer concentrations. 

Another important parameter that must be taken into account, is 

the solvent used to prepare the polymer solutions. It has been observed 

that depending on the solvent nature, the obtained film will be different. 

For the THF, which is a polar solvent with a boiling point of 66 ℃, an 

inhomogeneous film surface was obtained. As it was observed in the AFM 

images, the topography of the deposited polymer film was full of bubbles 

and holes, due to the solvent high evaporation rate at room temperature, 

and probably due to humidity. On the contrary, the toluene solvent 

samples, presented a more uniform polymer layer, as toluene is a 

nonpolar solvent with a higher boiling point, of 111 ℃, comparing with 

the THF and that is less miscible in water, so it is less affected by ambient 

humidity.  

However, it has not been possible to deposit as much mass using 

toluene as THF, probably due to the differences between the solvents 

and the nature of the chosen magnetoelastic materials. As the polarity 

and water miscibility of the employed solvents are different, it has 

affected PS deposition processes. For the THF coated samples, the mass 

increment has reached 5 %, while for the toluene samples it has been 

less than 2 %. This fact can be attributed to the solvent wettability, due 

to its polarity properties. Probably, the ribbon wettability with toluene is 

lower, therefore, PS solution does not spray properly through the metallic 

platform and PS adherence becomes worse what leaves less polymer 

coating the resonant platforms in each dip coating process. More studies 

about the influence of the solvent and the influence of the substrate 

must be performed.  

Concerning the studied magnetoelastic parameters, the most 

sensitive device to the deposited mass is, as expected the smallest one 

(L=1 cm) with in fact the highest Q value. Linearity has been observed in 
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the initial deposition processes when the deposited mass is actually 

small. Nevertheless, theoretical prediction about the linear dependence 

of higher mass change values to resonant frequency change with 

expected slope (-0.5) needs of a deep revision. 
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4. Magnetoelastic resonant platforms for 

biological detection 
_____________________________________________ 

 

 

This fourth chapter introduces the magnetoelastic resonant platforms to 

develop biological sensors. It will be focused on the study of several 

methods to functionalize the magnetoelastic strip surfaces with zinc oxide 

(ZnO) to make it sensitive to the final target analyte. In this entire 

chapter, the magnetoelastic material is a commercial Metglas 2826MB3. 

After comparing the different functionalization methods, the best one 

will be used to deposit a zinc oxide thin film and by performing 

magnetoelastic resonance measurements we will determine the elastic 

modulus of that deposited layer. Finally, bio-detection experiments will 

be carried out by immobilising hemoglobin onto the zinc oxide film with 

the aim of being able to detect the presence of H2O2. Thus and, after 

construction of a small sensing device, the oxidation of the hemoglobin 

by H2O2 will be monitored simultaneously by two different techniques, 

magnetoelastic resonance method and cyclic voltammetry 

measurements. 
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4.1. Introduction 

 

 

Zinc oxide is an inorganic compound with formula ZnO. It is a rather 

common material used for a quite large variety of different applications, 

such as an additive in numerous daily life materials and products, 

including rubbers, plastics, ceramics, glass, adhesives, pigments, foods, 

batteries and so on1. Although it occurs naturally as the mineral zincite, 

most zinc oxide is synthetically produced. 

ZnO occupies a special place among wide bandgap semiconductors 

of the II-VI group, as it possesses several favourable properties such as, 

good transparency, high electron mobility, high radiation, high room-

temperature luminescence and chemical and thermal resistance2. Those 

properties have made zinc oxide valuable in some emerging applications 

such as, transparent electrodes, energy-saving or heat-protecting 

windows, thin film transistors or light emitting diodes3.  

Most of the group II-VI binary compound semiconductors crystallise 

in either cubic zinc blende or hexagonal wurtzite structure, where each 

anion is surrounded by four cations at the corners of a tetrahedron, and 

vice versa. This tetrahedral coordination is typical of sp3 covalent bonding 

nature, but these materials also have a substantial ionic character that 

tends to increase the bandgap beyond the one expected from the 

covalent bonding. ZnO is an II-VI compound semiconductor whose 

ionicity resides at the borderline between covalent and ionic 

semiconductors. The crystal structures shared by ZnO are hexagonal 

wurtzite, cubic zinc blende and cubic Rochelle salt. Under ambient 

conditions, the thermodynamically stable phase is that of wurtzite 

symmetry. On the other hand, the zinc blende structure can be stabilised 

only by growth on cubic substrates and the Rochelle salt metastable 

structure may be obtained at relatively high pressures. Figure 4.1 shows 

a representation of the ZnO crystal structures. 
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Figure 4.1. Representation of the ZnO crystal structures (hexagonal wurtzite, cubic 

zinc blende and cubic Rochelle salt). Grey spheres denote Zn atoms, and black 

spheres denote oxygen atoms. 

 

The wurtzite structure has an ABAB hexagonal close packing (HCP) 

structure, belonging to the space group P63mc, and it is characterized by 

two interconnecting sublattices of Zn2+ and O2-, such that each Zn ion is 

surrounded by a tetrahedral of O ions, and vice versa. The Zn2+ and O2- 

ions create a normal dipole moment and an instant polarization, which 

results in a diversification of surface energy. Therefore, the tetrahedral 

coordination in ZnO results in a noncentral symmetric structure giving 

rise to polar symmetry along the hexagonal axis. This polarity is 

responsible for a number of properties of the ZnO, including its 

piezoelectricity, pyroelectricity and spontaneous polarization, and it is 

also a key factor in crystal growth, etching and defect generation4. 

At the nanoscale, ZnO presents diverse range of possible structures 

and morphologies such as nanospheres, nanoflowers, nanowires5,6, 

nanorods, nanobelts7, nanobridges8, nanonails8, nanohelices9, 

tetrapods10 and comb-like nanostructures11. The structure and 

morphology of the obtained nanoparticles depends on the synthesis 

method, which can take place through various routes including sol-gel 

processes, chemical coprecipitation, chemical vapour deposition, metal-

catalysing growth, thermal evaporation, hydrothermal synthesis, solid-

state reactions, among others12.  

Wurtzite ZnO is one of the key wide-band-gap (3.437 eV) 

semiconductors and has a relative large excitation binding energy 
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(60mV). Owing to these unique properties, ZnO is attracting much 

attention for a variety of electronic and optoelectronic applications. Some 

advantages associated with that large bandgap include high-temperature 

and high-power operation, low noise generation, high breakdown 

voltages and ability to sustain large electric fields. Besides, the lack of a 

centre of symmetry in wurtzite, combined with the large 

electromechanical coupling, results in strong piezoelectric and 

pyroelectric properties and the consequent use of ZnO in mechanical 

actuators and piezoelectric sensors. In fact, it is already widely utilised 

not only in piezoelectric transducers13 or sensors14 (including chemical 

sensors), but also in varistors, phosphors15, solar cells16, luminescence 

devices and transparent conducting films. This particular semiconductor 

has attracted also such interest due to its excellent chemical and thermal 

stabilities.  

ZnO with a wurtzite structure naturally becomes an n-type 

semiconductor due to the presence of intrinsic and extrinsic defects, 

which are generally attributed to native defects, such as the Zn-on-O 

antisites, the Zn interstitial and the O vacancies. Various forms of ZnO 

exhibit two luminescence bands, a short wavelength band, which is 

located near the absorption edge of the crystal, and a broad long 

wavelength band, the maximum of which usually, is in the green spectral 

range. As far as the green luminescence is concerned, despite a huge 

number of investigations, its nature is yet to be understood. However, 

several structural defects, such as: zinc vacancies17,18, oxygen 

vacancies19,20, interstitial zinc ions21 or oxygen antisites22, among others 

have been considered responsible for the green luminescence by 

different authors23. Nevertheless, successful p-type doped ZnO structures 

have also been reported. P-type and n-type nanowires, for example, can 

serve as p-n junction diodes and LEDs, and fields effect transistors (FETs) 

can be fabricated from then to make complementary logic circuits. 

But not only in electronic applications, as it was previously 

mentioned ZnO has a wide range of applications in very different fields. 

ZnO is used in rubber manufacturing for activating the vulcanisation 

process, being also a very important additive in car tyres as it improves 

the thermal conductivity, which helps the tyres to dissipate heat quickly. 

Fine particles of ZnO have antimicrobial and deodorising qualities and 
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hence they are used for packaging purposes. These properties along with 

its ability of neutralising acids makes it ideal for being used in antiseptic 

creams, healing creams or as component of toothpastes and dental 

prosthetics. Furthermore and due to its ability to absorb ultraviolet light, 

ZnO is also used in sunscreens and sunblocks to prevent sunburns. 

Besides, ZnO is usually added to food products as a source of zinc, which 

is considered to be a necessary nutrient as it helps in the performance of 

various physiological activities. Finally, and since as zinc oxide is an 

excellent inhibitor of fungi, mildew and mould, is extensively used as 

additive for anti corrosive coatings, for example in paints. 

 

The experimental part of this chapter has been developed at the 

Department of Material Science in the University of Patras (Greece), the 

Foundation for Research and Technology (FORTH) and the Institute of 

Chemical Engineering Science in Patras (Greece) under the supervision 

of Dr. Nikolaos Bouropoulos, Dr. Dimitris Kouzoudis and Dr. Emmanuel 

Topoglidis and with the help of Apostolos Panagiotopoulos. 

  

4.2. Detection by ZnO functionalized magnetoelastic 

resonant platforms 

 

The study of zinc oxide material and its employment in micro-scale 

and nano-scale devices has grown tremendously during last decade. As 

it waspreviously mentioned, zinc oxide is a very versatile material that 

can be used in many microsystems. The combination of its wide band 

gap, piezoelectric, electrical and optical properties makes ZnO unique 

and crucial for a wide range of device applications. Due to its high 

electromechanical coupling coefficient, ZnO is one of the leading 

candidates for efficient signal transduction between electrical and 

mechanical domains in both sensors and actuators. Furthermore, ZnO 

also stands out from other materials because of its ability to operate in 

extreme conditions such as nuclear reactors and space, due to its better 

radiation hardness if compared to other materials used for such purposes. 
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In particular, the piezoelectric characteristics of ZnO make it an 

outstanding transducer material for making microelectromechanical 

systems (MEMS), resonators and mechanical switches. These small 

resonators are useful in wireless communication systems where small 

size, low power consumption and the ability for on-chip integration with 

microelectronics are greatly appreciated. Piezoelectrically-actuated 

resonators in bulk acoustic wave (BAW) mode have been widely used in 

wireless communicators providing piezoelectric MEMS resonators to 

succeed in wireless world. 

Another application of ZnO piezoelectric effect is employed in mass-

sensitive sensors, which are based on the acoustic wave phenomena. 

These transducers can be used for chemical and biological monitoring 

devices where the resonant frequency strongly depends on the amount 

of external mass attached to the resonator. ZnO is also a biocompatible 

material, and therefore it can be used for many biomedical applications 

such as biomedical implants and coatings.   

In this chapter, the functionalization of commercial ferromagnetic 

magnetoelastic strips with zinc oxide will be presented. Different 

deposition methods will be studied to achieve the most homogenous 

deposited layer of ZnO. From the sample with the best deposited and 

formed active layer, studies to determine the Young Modulus of the 

deposited ZnO film will be carried out. Finally, these samples will be 

tested for biodetection purposes. Hemoglobin will be attached onto the 

zinc oxide layer in order to make the system sensitive to the reactions 

with hydrogen peroxide. This detection process will be performed 

simultaneously by two different methods, cyclic voltammetry curves and 

magnetoelastic resonance measurements. 

 

4.2.1. ZnO deposition process study onto MRPs 

 

In which concerns the following experimental work, the 

magnetoelastic material used as base layer for the ZnO deposition 

processes is a commercial long ribbon of Metglas 2826MB3 

(𝐹𝑒40𝑁𝑖38𝑀𝑜4𝐵18) purchased from Hitachi Metals Europe GmbH 
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(Dusseldorf, Germany). This has 6 𝑚𝑚 width and 29 𝜇𝑚 thickness. The 

ribbon was cut in pieces (strips) of 2 𝑐𝑚 length, cleaned with analytical 

grade acetone purchased from Sigma-Aldrich under sonication for 15 

minutes to remove any dirt from the fabrication or manipulation 

processes and finally dried at room temperature. These strips with the 

ZnO already deposited on them, will be used afterwards as resonant 

platforms for sensing purposes. 

Once the samples were cut and cleaned, the subsequent 

functionalization of the resonant platforms was carried out by three 

different techniques: 

• Direct precipitation from a mixture of solutions 

• Seeding procedure and later precipitation process 

• Casting technique by evaporation of the solvent 

 

The main objective is to compare them by studying the formed 

structures and compositions, morphology and homogeneity of the 

deposited layers. To do this, the obtained deposited layers will be 

characterized using different techniques as X-Ray Diffraction (XRD), 

Scanning Electron Microscopy (SEM or Photoluminescence Emission (PL). 

As it was previously mentioned, the magnetoelastic material for 

these tests will be the commercial Metglas 2826MB3. The ribbons were 

cut in pieces of 2 cm length, cleaned with analytical grade acetone under 

sonication for 15 minutes and finally dried at room temperature. 

Once the strips were cut and cleaned, they were weighted and the 

resonant frequency measured (112 kHz). The subsequent 

functionalization of the Metglas 2826MB3 resonant platforms with a ZnO 

layer was carried out by three different techniques. The methodologies 

employed and studies performed to characterize the fabricated ZnO 

layers were: 

 Direct precipitation from a mixture of solutions 
 

- Time dependence 

- Zn concentration dependence 
 

  



Magnetoelastic resonant platforms for biological detection 

   

 

 Ariane Sagasti 111 

 Seeding procedure and later precipitation process 
 

- Zinc acetate particles 

- Zinc oxide particles 
 

 Casting technique by evaporation of the solvent 
 

- Zinc oxide particles 
 

 

With the best obtained Metglas 2826MB3 + ZnO layer sample other 

studies will be subsequently performed as the determination of the 

Young modulus measurement of the deposited zinc oxide layer and a 

biodetection experiment to show a final possible application of the 

developed system. 

All the precipitation reactions, both for the direct precipitation 

procedures and for the precipitations after the seeding procedures, were 

performed by mixing a sodium hydroxide 0.1 𝑀 solution (𝑁𝑎𝑂𝐻 0.1𝑀) 

with zinc nitrate 0.2 𝑀 solution (𝑍𝑛(𝑁𝑂3)2 0.2𝑀) under different 

conditions to study the factors that may have influence on the formation 

of the precipitate. Both reactants were purchased from Sigma. Those 

conditions will be detailed in each procedure in a table to ease the 

understanding of each process. 

 

- Direct precipitation process: Time dependence 
 

Different samples were prepared by mixing the same amount of 

reactants at the same temperature conditions but varying the reaction 

times. In Table 4.1, the sample preparation conditions are shown. The 

Metglas 2826MB3 strips were put in a glass vial with the rough side up 

and fixed to the bottom of the vial with an external magnet in order to 

add the solutions and avoid the sample movement. Both solutions were 

then added to the glass vial with micropipettes. When adding the 

Zn(NO3)2 solution some turbidity appeared, due to the quickly formation 

of the precipitate of zinc hydroxide, so the final mixture was manually 

shaken until the turbidity disappeared so it has been well homogenised. 

After this, the external magnet was removed and the glass vial was closed 

and let into the oven at 65 ℃ for different precipitation times. Several 
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depositions were made following this procedure. At each precipitation 

process, the samples were cleaned by rinsing them with ethanol and 

dried at 65 ℃, weighted and subsequently measured the corresponding 

resonance frequency, to follow the evolution of the loaded mass with the 

resonant frequency change. Some white precipitates were observed onto 

the deposited surface. 

 

Table 4.1. Sample preparation conditions for the time dependence study by direct 

precipitation process. 

𝑺𝒂𝒎𝒑𝒍𝒆 𝑹𝒆𝒂𝒄𝒕𝒂𝒏𝒕𝒔 𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆 (℃) 𝑻𝒊𝒎𝒆 (𝒎𝒊𝒏) 

𝑴𝟏_𝟏𝟖 
10 𝑚𝑙 𝑁𝑎𝑂𝐻 0.1 𝑀 

+ 

0.2 𝑚𝑙 𝑍𝑛(𝑁𝑂3)2 0.2 𝑀 

65 

𝟗𝟎 

𝑴𝟐_𝟏𝟖 𝟔𝟎 

𝑴𝟑_𝟏𝟗 𝟑𝟎 
 

 

 

In Figure 4.2 XRD patterns of the prepared samples and some useful 

materials as references, as pure zinc oxide (wurtzite structure) and zinc 

hydroxide patterns, are shown. As it can be observed, for the shorter 

precipitation time, sample M3_19, 30 minutes, there is a mixture in the 

deposited layer formed by zinc hydroxide and zinc oxide with a clear 

predominance of the hydroxide structure (the peaks related with the 

hydroxide structure are more intense that the ones that correspond to 

the zinc oxide structure). On the other hand, when the reaction time is 

longer, of 60 or 90 minutes, the obtained patterns reveal only the 

presence of ZnO in the structure of the deposited material, with no other 

peaks appearing.  
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Figure 4.2. X-ray spectra for the samples of the deposited layers by direct 

precipitation at different times and ZnO and Zn(OH)2 patterns to compare the 

obtained precipitates. 

 

The obtained XRD results are in good agreement with the SEM 

analysis, as it is shown in Figure 4.3. In the case of the samples with 

longer reaction times, where all the formed precipitate is ZnO, a flower-

like morphology can be observed on the fabricated layer. However, for 

the shorter reaction time sample, two different structures were observed 

due to the mixture of ZnO and Zn(OH)2. Not only flower-like grains 

corresponding to the ZnO were observed, but also other hexagonal 

structures which are related to the Zn(OH)2 (wulfingite) structures. In 

Table 4.2, the conclusions obtained from each conditions are 

summarised. 
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Figure 4.3. SEM images of two different time precipitation samples. M2_18 (60min), 

flower structure of ZnO layer. M3_19 (30min), flower structure of ZnO and hexagonal 

structures of Zn(OH)2. 

 

  

M2_18         M3_19 
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Table 4.2. XRD and SEM characterization results (final product and morphology) for the 

precipitation layers formed at different precipitation times.  

 

𝑺𝒂𝒎𝒑𝒍𝒆 𝑻𝒊𝒎𝒆 (𝒎𝒊𝒏) 𝑿𝑹𝑫 𝑺𝑬𝑴 

𝑴𝟏_𝟏𝟖 90 𝑍𝑛𝑂 𝐹𝑙𝑜𝑤𝑒𝑟𝑠 

𝑴𝟐_𝟏𝟖 60 𝑍𝑛𝑂 𝐹𝑙𝑜𝑤𝑒𝑟𝑠 

𝑴𝟑_𝟏𝟗 30 𝑍𝑛𝑂 +  𝑍𝑛(𝑂𝐻)2 𝐹𝑙𝑜𝑤𝑒𝑟𝑠 +  𝐻𝑒𝑥𝑎𝑔𝑜𝑛𝑠 

 

 

It can be concluded that, through direct precipitation, it is possible 

to obtain a zinc oxide layer deposited onto the Metglas ribbon. For this 

purpose, the precipitation reaction must be performed allowing the 

detailed reaction to take place at 65 ℃ for precipitation times of at least 

of 60 minutes. If the reaction time is not enough a mixture of zinc oxide 

and zinc hydroxide will be obtained. The formed ZnO precipitate layer 

has a flower like structure, which is directly related with the conditions 

of the reaction. In the case of a mixed composition, hexagonal structures 

were observed due to the presence of wulfingite.   

 

- Direct precipitation process: Zn concentration dependence 
 

In order to study the influence of the zinc concentration on the 

formed precipitate structure, different samples were prepared by 

changing the initial quantity of zinc nitrate at the same temperature and 

time conditions. Table 4.3a and Table 4.3b show the different sample 

preparation conditions.  

In Figures 4.4a and 4.4b, XRD patterns of the prepared samples are 

shown. As it can be observed, for the lower zinc concentration samples 

(0.25 𝑚𝑙 or less) there is a mixture on the deposited layer of zinc oxide 

and zinc hydroxide. Besides, the deposited layer was not homogenous 

probably because there was not enough amount of reactants to form a 

homogenous and well distributed precipitate layer to cover the whole 

ribbon surface. For samples with higher concentrations of zinc nitrate, 

only zinc oxide formation has been observed.  
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Table 4.3a. Sample preparation conditions for zinc concentration dependence by direct 

precipitation. 

𝑺𝒂𝒎𝒑𝒍𝒆𝒔 

𝑹𝒆𝒂𝒄𝒕𝒂𝒏𝒕𝒔 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔 𝑽 𝑵𝒂𝑶𝑯 
𝟎. 𝟏𝑴 (𝒎𝒍) 

𝑽 𝒁𝒏(𝑵𝑶𝟑)𝟐 

𝟎. 𝟐𝑴 (𝒎𝒍) 

𝑴𝟏_𝟐𝟎 

10 

0.15 

1 𝑑𝑎𝑦 𝑎𝑡 𝑟𝑜𝑜𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

+ 

2 𝑑𝑎𝑦𝑠 𝑎𝑡 65 ℃  

𝑴𝟐_𝟐𝟎 0.20 

𝑴𝟑_𝟐𝟎 0.25 

𝑴𝟒_𝟐𝟎 0.30 

𝑴𝟓_𝟐𝟎 0.35 

 

 

 

 

 

Table 4.3b. Sample preparation conditions for zinc concentration dependence by direct 

precipitation. 

𝑺𝒂𝒎𝒑𝒍𝒆𝒔 

𝑹𝒆𝒂𝒄𝒕𝒂𝒏𝒕𝒔 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔 𝑽 𝑵𝒂𝑶𝑯  
𝟎. 𝟏𝑴 (𝒎𝒍) 

𝑽 𝒁𝒏(𝑵𝑶𝟑)𝟐 

𝟎. 𝟐𝑴 (𝒎𝒍 ) 

𝑴𝟏_𝟑𝟏 

10 

0.30 

1 𝑑𝑎𝑦 𝑎𝑡 𝑟𝑜𝑜𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

+ 

2 𝑑𝑎𝑦𝑠 𝑎𝑡 65 ℃ 

𝑴𝟐_𝟑𝟏 0.35 

𝑴𝟑_𝟑𝟏 0.40 

𝑴𝟒_𝟑𝟏 0.45 

𝑴𝟓_𝟑𝟏 0.50 

𝑴𝟔_𝟑𝟏 0.55 

𝑴𝟕_𝟑𝟏 0.60 

𝑴𝟖_𝟑𝟏 0.65 
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Figure 4.4a. X-ray spectra for the samples of the deposited layers by direct 

precipitation with different zinc nitrate initial concentrations. 

 

 

Figure 4.4b. X-ray spectra for the samples of the deposited layers by direct 

precipitation with different zinc nitrate initial concentrations. 
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The obtained SEM images, presented in Figure 4.5 show a 

completely different morphology compared with the previous ones, due 

to the synthesis conditions used that have been clearly different if 

compared to the time dependence study. Instead of ZnO particles in 

‘flower’ type shape in this case ‘sponge’ like structures were obtained. In 

Table 4.4 the results obtained from XRD and SEM are summarised. 

 

Figure 4.5. SEM images of M3_31 where ZnO precipitate has sponge like structure. 

 

  

M3_31 
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Table 4.4. XRD and SEM characterization results (final product and morphology) for the 

precipitation layers formed at different zinc nitrate initial concentrations. 

𝑺𝒂𝒎𝒑𝒍𝒆𝒔 
𝑽 𝒁𝒏(𝑵𝑶𝟑)𝟐  

𝟎. 𝟐 𝑴 (𝒎𝒍) 
𝑿𝑹𝑫 𝑺𝑬𝑴 

𝑴𝟏_𝟐𝟎 0.15 𝑍𝑛(𝑂𝐻)2  +  𝑍𝑛𝑂 − 

𝑴𝟐_𝟐𝟎 0.20 𝑍𝑛(𝑂𝐻)2  +  𝑍𝑛𝑂 − 

𝑴𝟑_𝟐𝟎 0.25 𝑍𝑛(𝑂𝐻)2  +  𝑍𝑛𝑂 − 

𝑴𝟒_𝟐𝟎 0.30 𝑍𝑛𝑂 𝑆𝑝𝑜𝑛𝑔𝑒𝑠 

𝑴𝟓_𝟐𝟎 0.35 𝑍𝑛𝑂 𝑆𝑝𝑜𝑛𝑔𝑒𝑠 

𝑴𝟏_𝟑𝟏 0.30 𝑍𝑛𝑂 − 

𝑴𝟐_𝟑𝟏 0.35 𝑍𝑛𝑂 − 

𝑴𝟑_𝟑𝟏 0.40 𝑍𝑛𝑂 𝑆𝑝𝑜𝑛𝑔𝑒𝑠 

𝑴𝟒_𝟑𝟏 0.45 𝑍𝑛𝑂 − 

𝑴𝟓_𝟑𝟏 0.50 𝑍𝑛𝑂 − 

𝑴𝟔_𝟑𝟏 0.55 𝑍𝑛𝑂 𝑆𝑝𝑜𝑛𝑔𝑒𝑠 

𝑴𝟕_𝟑𝟏 0.60 𝑍𝑛𝑂 − 

𝑴𝟖_𝟑𝟏 0.65 𝑍𝑛𝑂 𝑆𝑝𝑜𝑛𝑔𝑒𝑠 

 

As a further characterization and proof of the quality of the formed 

precipitate and deposited ZnO layers, photoluminescence measurements 

were also carried out at room temperature.  

Zinc oxide is a semiconductor which presents a wide and direct 

bandgap in the near UV spectral region (3.4 eV) and large exciton binding 

energy (~60 meV at room temperature). ZnO often exhibits a broad and 

weak green luminescence, centred between 2.2 and 2.4 eV. This green 

luminescence has been observed in samples prepared with a variety of 

techniques, and it is important to point out that there may not be a single 

source for this luminescence. 

For instance, the presence of certain impurities has been suggested 

as a potential cause; nevertheless, samples without any impurities have 

shown also the green luminescence. Due to this fact, a native defect 

have also been suggested as a potential cause. Moreover, this is going to 
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be our hypothesis. As Reynolds and Kohan have suggested, that zinc 

vacancy can give rise to green luminescence. Indeed, the calculated 

transition level between the -1 and -2 charge states occurs at 0.9 eV 

above the valence band maximum and hence the transition between the 

conduction band and the acceptor level would give rise to luminescence 

around 2.5 eV, in good agreement with the observed transition energy. 

Besides, zinc vacancy is favoured under O-rich condition synthesis, as it 

will happen in the followed ZnO synthesis processes. As PL spectra are 

going to be present as function of the wavelength, in Figure 4.6 

conversion between eV and nm can be observed. 

 

 

Figure 4.6. Spectrum of the visible light over the wavelength in nanometres and the 

photon energy in eV. 

 

As afore explained, there is not a clear agreement for the 

explanation of the green luminescence emission of the ZnO. In our case, 

the origin of such green broadband that can be observed in Figure 4.7 

can be attributed to zinc vacancies. Firstly, as our synthesis procedure 

has been performed in air, that band cannot be caused by oxygen 

vacancies. Besides, two samples of different concentrations appear in this 

study, M3_31 and M7_31, and as it can be observed the one with the 

higher concentration of zinc nitrate, M7_31, is the one that has formed 

the higher amount of zinc oxide and the one presenting a more intense 

band, as it could be expected. 
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Figure 4.7. Photoluminescence spectra of two samples with different initial 

concentration of zinc nitrate. 

 

Extensive research has been carried out to study the luminescence 

mechanism in ZnO nanostructures. The PL spectra observed in Figure 4.7 

shows a clear broadband usually related with the defect emission due to 

trap states in ZnO. The origin of this defect related emission in the visible 

region is still a controversial question. In our case, the band is centred at 

550 nm corresponding to the green region of the spectra and matched 

with an energy of 2.25 eV.  

From this study of the dependence with the zinc concentration 

when using the direct precipitation synthesis method, it can be concluded 

that it is possible to achieve the coating with ZnO of the magnetoelastic 

strips when the amount of zinc nitrate 0.2 M is higher than 0.30 ml and 

mixed with 10 ml NaOH 0.1 M. If there is less amount of nitrate, a mixture 

of zinc hydroxide and zinc oxide will be obtained, while if that amount is 

higher the precipitate will only be zinc oxide. In this case, the morphology 

of the deposited particles is close to a sponge mainly due to the 

conditions of the reaction. 
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- Seeding procedure with zinc acetate particles 
 

In this series of experiments, the cleaned Metglas 2826MB3 ribbon 

was directly seeded with a 0.1 M zinc acetate dihydrate solution in 

ethanol. For the seeding procedure, metglas strips were placed in a petri 

dish with the rough side up, and 2 ml of (C2H3O2)2Zn · 2H2O were added. 

This was kept overnight at 80 ℃ to evaporate the solvent and to let the 

zinc acetate particles get attached to the surface of the metglas to act as 

nucleation points for the later precipitation reaction. After this, the 

samples, as in the previous experiments, were placed in a glass vial with 

the rough side up, held with an external magnet to add the precipitation 

solutions and manually shaken until total homogenisation. The added 

amounts of zinc nitrate were the same as for the previous experiment 

where only zinc oxide was obtained, and the precipitation conditions 

similar to the ones of the time dependence studies, being these synthesis 

conditions summarised in Table 4.5. 

 

Table 4.5. ZnO preparation conditions for the samples seeded with zinc acetate after 

the precipitation step. 

𝑺𝒂𝒎𝒑𝒍𝒆𝒔 
𝑺𝒆𝒆𝒅𝒊𝒏𝒈 

𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔 

𝑹𝒆𝒂𝒄𝒕𝒂𝒏𝒕𝒔 
𝑷𝒓𝒆𝒄𝒊𝒑𝒊𝒕𝒂𝒕𝒊𝒐𝒏 

𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔 
𝑽 𝑵𝒂𝑶𝑯 

𝟎. 𝟏 𝑴 (𝒎𝒍) 
𝑽 𝒁𝒏(𝑵𝑶𝟑)𝟐 
𝟎. 𝟐 𝑴 (𝒎𝒍) 

𝑴𝟏_𝟓𝟖 

2𝑚𝑙 𝑜𝑓 𝑒𝑡ℎ𝑎𝑛𝑜𝑖𝑐  
𝑧𝑖𝑛𝑐 𝑎𝑐𝑒𝑡𝑎𝑡𝑒  

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

+  

1 𝑑𝑎𝑦 𝑎𝑡 80 ℃ 

10 

0.30 

1 𝑑𝑎𝑦 𝑎𝑡 65 ℃ 

𝑴𝟐_𝟓𝟖 0.35 

𝑴𝟑_𝟓𝟖 0.40 

𝑴𝟒_𝟓𝟖 0.45 

𝑴𝟓_𝟓𝟖 0.50 

𝑴𝟔_𝟓𝟖 0.55 

 

 

As it can be observed in Figure 4.8 XRD patterns showed that, in all 

the samples there is presence in the final product of acetate traces. It 

was expected that during the reaction time and due to the precipitation 

process, all the initially seeded zinc acetate would evolve to zinc oxide 

just before acting as nucleation points for the subsequent deposition 
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procedure. However, this has not been a successful procedure. Therefore, 

these samples are not useful for further experimental characterization. 

 

 

Figure 4.8. X-ray spectra of the samples prepared by seeding procedure with zinc 

acetate solution and later precipitation process. 

 

- Seeding procedure with zinc oxide homemade nanoparticles 
 

As in the previously described synthesis procedure, the samples will 

be seeded before the precipitation reaction with different zinc nitrate 

concentrations. However, as in the last experiments the zinc acetate of 

the seeding procedure did not evolve to zinc oxide during the 

precipitation, in the present case the seeding solution will be prepared 

directly with zinc oxide homemade nanoparticles. 

The synthesis of ZnO nanoparticles was carried out by following a 

hydrothermal procedure: 0.4 g of lithium hydroxide monohydrate, 

Li(OH)·H2O were suspended in 100 ml absolute ethanol under magnetic 

stirring. The suspension was added into 50 ml ethanoic 0.1 M solution of 

zinc acetate dihydrate, Zn(CH3COO)2·H2O under constant stirring. The 

obtained solution was then sealed in an autoclave reactor and maintained 

at 100 ℃ for 3 h, followed by natural cooling down to room temperature. 
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The obtained particles were centrifuged at 4000 rpm for 10 minutes, 

washed after resuspension in water and centrifugation for three times 

and finally dried at 80 ℃. The XRD characterization of these homemade 

nanoparticles is shown in Figure 4.9. The measured diffraction pattern is 

compared to the standard JCPDS card for ZnO which corresponds to the 

wurtzite crystal No 36-1451 structure of ZnO. The observed experimental 

peaks fit well to the standard card values corresponding to ZnO 

reflections arising from (100), (002), (101), (102), (110) and (103) planes. 

 

 

Figure 4.9. X-ray spectra of the homemade zinc oxide nanoparticles and the zinc 

oxide standard card. 

 

For the deposition procedures, the metglas strips were put in a petri 

dish with the rough side up, and 2 ml of the seeding solution, ethanoic 

zinc oxide nanoparticle solution, were added. This solution was prepared 

by dispersing 100 mg of ZnO homemade nanoparticles in 50 ml ethanol 

under magnetic stirring and sonication. For the solvent evaporation 

process, those seeded strips were left in an oven at 80 ℃ overnight. 

Following, the seeded strips were placed in a glass vial again with 

the rough side up, held with an external magnet to add the precipitation 

solutions and manually shaken until total homogenisation of the initially 
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formed turbidity when both solutions were added. The added amounts 

of zinc nitrate covered in this particular case the whole range previously 

studied in the zinc nitrate concentration dependence to observe if in this 

new procedure there is formation of zinc hydroxide after the seeding with 

zinc oxide. In fact, two different series of samples were prepared to cover 

the previously studied zinc nitrate quantities. After the solutions 

homogenisation, the vials were left for the precipitation process to take 

place into an oven for 1 day at 65 ℃. This precipitation time was chosen 

to ensure the total evolution of the formed precipitate to zinc oxide, 

avoiding as much as possible the zinc hydroxide formation. In Table 4.6 

sample preparation conditions are summarised.  

 

Table 4.6. Sample preparation conditions for the samples seeded with zinc oxide 

solution after precipitation step. 

𝑺𝒂𝒎𝒑𝒍𝒆𝒔 
𝑺𝒆𝒆𝒅𝒊𝒏𝒈 

𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔 

𝑹𝒆𝒂𝒄𝒕𝒂𝒏𝒕𝒔 
𝑷𝒓𝒆𝒄𝒊𝒑𝒊𝒕𝒂𝒕𝒊𝒐𝒏 

𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔 
𝑽 𝑵𝒂𝑶𝑯 

𝟎. 𝟏 𝑴 (𝒎𝒍) 
𝑽 𝒁𝒏(𝑵𝑶𝟑)𝟐 

𝟎. 𝟐 𝑴 (𝒎𝒍) 

𝑴𝟏_𝟔𝟎 

2𝑚𝑙 𝑜𝑓 𝑒𝑡ℎ𝑎𝑛𝑜𝑖𝑐 
𝑧𝑖𝑛𝑐 𝑜𝑥𝑖𝑑𝑒 
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

+ 

1 𝑑𝑎𝑦 𝑎𝑡 80 ℃ 

10 

0.30 

1 𝑑𝑎𝑦  𝑡𝑜 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑒 

𝑠𝑒𝑒𝑑𝑖𝑛𝑔 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝑠𝑜𝑙𝑣𝑒𝑛𝑡 

+ 

1 𝑑𝑎𝑦 𝑎𝑡 65 ℃ 

 

𝑴𝟐_𝟔𝟎 0.35 

𝑴𝟑_𝟔𝟎 0.40 

𝑴𝟒_𝟔𝟎 0.45 

𝑴𝟓_𝟔𝟎 0.50 

𝑴𝟔_𝟔𝟎 0.55 

𝑴𝟏_𝟔𝟑 0.05 

𝑴𝟐_𝟔𝟑 0.10 

𝑴𝟑_𝟔𝟑 0.15 

𝑴𝟒_𝟔𝟑 0.20 

𝑴𝟓_𝟔𝟑 0.25 

𝑴𝟔_𝟔𝟑 0.30 

 

 

In Figure 4.10, a picture of the vials, M1_63 to M6_63, after the 

precipitation process is shown. As previously mentioned, a white 

precipitation powder deposits all over the bottom of the vial covering the 
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magnetoelastic ribbon. Due to the increasing concentration, in the first 

vial the precipitate is barely visible, while from 4 to 6 the metglas strip 

is totally covered with the synthesized zinc oxide particles. 

 

 

Figure 4.10. Precipitate formation and deposition that takes place after de reaction 

process for increasing concentration of zinc reactant in samples 1_63 to 6_63. 

 

In Figure 4.11 XRD patterns of the prepared samples are shown. As 

it can be observed, in all the samples the deposited layer is formed by 

zinc oxide without any presence of other compounds as zinc hydroxide. 

This means that the precipitation process has had enough time to 

completely evolve to zinc oxide. The morphology of this deposited 

precipitate onto the metglas ribbon was studied by SEM. The obtained 

SEM pictures can be seen in Figure 4.12. showing the same flower 

structure as when the time dependence experiments were performed. 

The structure of the formed precipitate depends on the reaction 

conditions (temperature and time). During these last synthesis 

experiments, the samples were directly put into the oven to allow the 

precipitation take place, as it was made for the experiments about the 

time dependence. In Table 4.7 the results obtained from XRD and SEM 

are summarised. 
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Figure 4.11. X-ray spectra of the samples prepared by seeding procedure with zinc 

oxide solution and later precipitation process. 

 

 

 

 

 
Figure 4.12. SEM images of M2_63 sample. ZnO deposited layer with flower 

structure. 

     

  

M2_63 
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Table 4.7. XRD and SEM characterization results (final product and morphology) for the 

precipitation layers formed at different zinc concentrations. 

𝑺𝒂𝒎𝒑𝒍𝒆𝒔 
𝑽 𝒁𝒏(𝑵𝑶𝟑)𝟐 
 𝟎. 𝟐 𝑴 (𝒎𝒍) 

XRD 𝑺𝑬𝑴 

𝑴𝟏_𝟔𝟎 0.30 𝑍𝑛𝑂 − 

𝑴𝟐_𝟔𝟎 0.35 − 𝐹𝑙𝑜𝑤𝑒𝑟 

𝑴𝟑_𝟔𝟎 0.40 − − 

𝑴𝟒_𝟔𝟎 0.45 𝑍𝑛𝑂 − 

𝑴𝟓_𝟔𝟎 0.50 − 𝐹𝑙𝑜𝑤𝑒𝑟 

𝑴𝟔_𝟔𝟎 0.55 𝑍𝑛𝑂 − 

𝑴𝟏_𝟔𝟑 0.05 − − 

𝑴𝟐_𝟔𝟑 0.10 𝑍𝑛𝑂 𝐹𝑙𝑜𝑤𝑒𝑟 

𝑴𝟑_𝟔𝟑 0.15 − − 

𝑴𝟒_𝟔𝟑 0.20 − 𝐹𝑙𝑜𝑤𝑒𝑟 

𝑴𝟓_𝟔𝟑 0.25 𝑍𝑛𝑂 − 

𝑴𝟔_𝟔𝟑 0.30 − − 
 

 

As a part of the characterization of the formed precipitate and 

deposited layers, photoluminescence measurements were also carried 

out. The green luminescence broadband with a maximum at 545 nm can 

be observed in Figure 4.13. As in the previous PL spectra (see Figure 

4.6), the intensity of the band is related with the quantity  of ZnO formed 

onto the surface of the metglas strip. As it can be clearly observed, as 

the concentration increases the intensity follows the same tendency. For 

the samples with a low amount of deposited ZnO, M1_63 and M2_63 

only a weak band can be observed. On the contrary, for higher ZnO 

containing samples, M3_63 and M4_63 this band becomes broader, as it 

could be expected. 

As it was previously shown in Figure 4.7, the PL spectra shown in 

Figure 4.13 shows a clear broadband in the visible region. The band is 

centred at 545 nm corresponding to the green region of the spectra and 

matching with an energy of 2.27 eV.  
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Figure 4.13. Photoluminescence spectra samples with different initial concentration of 

zinc nitrate for the precipitation process after the seeding. 

 

As conclusions of these seeding and further precipitation 

experiments, it can be concluded that in order to ensure the deposition 

and formation of a ZnO layer onto the magnetoelastic material the 

seeding procedure must be performed with ZnO particles and not with 

other kind of precursor as zinc acetate is. It has to be concluded that 

those ZnAc2 particles do not evolve to zinc oxide during the reaction 

processes and induce impurities in the deposited layer. For the optimal 

deposition of ZnO layer following this type of procedure, ZnO particles 

must be used as seeds. Nevertheless, although the Metglas 2826MB3 

strip surface was covered with the ZnO fabricated and deposited layer, 

this was not homogeneously distributed along the whole surface of the 

strip. 

 

- Casting procedure with zinc oxide nanoparticle solution 
 

To follow this method, the metglas samples were covered directly 

with the homemade zinc oxide nanoparticles. The cleaned strips were 

placed in a petri dish with the rough side up and 2 ml of a zinc oxide 

nanoparticle solution were added. This solution was prepared by 
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dispersing 100 mg of ZnO homemade nanoparticles in 50 ml ethanol 

under magnetic stirring and sonication. After the addition of the solution, 

the samples were left into an oven at 85 ℃ until all the solvent has 

completely evaporated. 

By using the synthesis procedure, all the obtained and deposited 

final product was zinc oxide, as it can be observed in the difractograms 

presented in Figure 4.14. As the deposited amount of ZnO is low, the 

formed layer is too thin. This can be observed in the signal obtained in 

XRD difractograms where there is a prevalence of the metglas signal. The 

amplitude of the broad band coming from the amorphous metglas makes 

the whole difractogram to be noisy. Nevertheless, the most intense peaks 

from the ZnO nanoparticles can be observed for the deposited samples 

M1_67 and M4_67. 

 

 

Figure 4.14. X-ray spectra of the samples prepared by seeding procedure with zinc 

oxide solution and later precipitation process. 

 

SEM micrographs shown in Figure 4.15 show that the ZnO particles 

were found as aggregated composed of individual nanoparticles of 

spherical shape. The size of the nanoparticles was measured using the 

ImageJ software (National Institutes of Health, Bethesda, USA). The size 
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ranged from 11 to 32 nm with a mean value of 18.3 ± 4.0 nm. On the 

other hand, the deposited ZnO layer covered entirely the surface of the 

metallic ribbon as can be also observed in Figure 4.15.  

 

 

 

Figure 4.15. SEM images of the formed layer after 6 deposition processes. 

 

From these previous measurements, it can be inferred that the 

deposited layers were homogenous and only of ZnO, and also very thin. 

In order to get new information about the thickness of the obtained ZnO 

layer onto the Metglas 2826MB strip, the magnetoelastic resonance of 

the whole system will be used. Several subsequent deposition processes 

will be made and after each of them, the samples (ZnO layer + Metglas 

2826MB) will be weighted and hereafter their magnetoelastic resonance 

frequency will measured. By following the evolution of the change in the 

resonant frequency against the loading mass amount of ZnO, not only an 

estimation of the deposited layer thickness per deposition process, but 

also a close measurement of the deposited ZnO layer Young's modulus 

can be done, as it will be better explained in a next section. 

Figure 4.16 shows photoluminescence spectra of the ZnO layer. A 

small peak appear at 380 nm, which can be attributed to the near band 

edge emission, arising from the recombination of free excitons. However 

the spectrum is dominated by a broad band with a maximum around 

λmax = 545 nm (2.27 eV) which is known as green emission and has a 

full width at half maximum of ΔE1/2 = 330 meV. 
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Figure 4.16. Photoluminescence spectra of one of the prepared samples by casting a 

zinc oxide nanoparticle solution. 

 

From all the previous considerations it is clear that at this point it 

can be concluded that the best synthesis procedure to obtain a pure ZnO 

final product and also a good and homogenous film is the casting 

procedure by directly depositing a solution formed with synthesised ZnO 

nanoparticles onto a Metglas 2826MB3 strip. 

Therefore, for the next experimental characterization 

(determination of the elastic modulus of the deposited ZnO thin film) 

and sensing tests as biosensing platforms (study of the oxidation of the 

hemoglobin in presence of hydrogen peroxide), only the samples 

fabricated by using this last method are going to be used.  
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4.2.2. Determination of the elastic modulus of the 

deposited ZnO thin films 

 

The knowledge of the elastic parameters of a thin film turns to be 

of great importance in the design and fabrication of sensing devices. 

While the usual technique to measure the Young modulus of a bulk 

materials is uniaxial tensile testing, this turns out to be impossible to 

apply when dealing at the nanoscale, where the manipulation of the 

material and application of the force and accurate measurement of 

displacement is extremely difficult. Thus, the possibility to perform in situ 

experiments at the nanoscale becomes a necessary tool in order to obtain 

not only quantitative but also qualitative information about nanosized 

materials24. 

Therefore, the detection of the magnetoelastic resonance frequency 

of our fabricated devices becomes a precise tool to determine not only 

the Young's modulus value of the deposited ZnO film, but also to give 

information about the Young's modulus of the bare magnetoelastic strip 

and discuss the goodness of the deposition process of the ZnO film onto 

it.  

Once the magnetoelastic ribbons were cleaned and dried, they were 

weighted and the resonant frequency was measured with a homemade 

coil system that can be seen in Figure 4.17. For those magnetoelastic 

resonance measurements, a magnetoelastic sensor “reader box” made by 

driving a homemade coil (N = 24 turns, R = 0.6 W, L = 6.9 µH), wrapped 

around a cylindrical glass vial of 4.6 cm height and 2.3 cm diameter. 

The magnetoelastic resonance method employed to make all these 

measurements is different than the one previously explained for the 

polymer deposition experiments. As the system to perform the 

magnetoelastic resonance measurements is also different, in this case 

there is only one coil, which is the responsible for driving all the 

processes. 

In this particular case, in order to take the measurements, the 

experimental set-up at the Department of Material Science in the 

University of Patras was used. A picture of the magnetoelastic sensor 
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“reader box” and the homemade coil used are shown in Figure 4.1725, 26. 

An extensive explanation has already been given in section 2.1.2.3. 
Magnetoelastic resonance and ΔE effect. 

 

 

Figure 4.17. Homemade coil and magnetoelastic resonance measurement box. 

 

The fundamental resonance frequency of a single flat layer, stress 

free ribbon of length L, density ρ, and elastic Young modulus E is given 

by the well-known relationship27,28: 

 

 𝑓𝑟 =
1

2𝐿 √
𝐸


 [4.2] 

 

but when, as it is our case, we have more than one layer at 

resonance, that formula has to be modified to: 

 

 𝑓𝑟
′′ =

1

2𝐿 √
𝐸′′

 ′′
=

1

2𝐿
√

𝐸+𝐸′
ℎ′

ℎ

 +  ′
ℎ′

ℎ

  [4.3] 

 

where 𝐸′′ = 𝐸 + 𝐸′ (
ℎ′

ℎ
) and 𝜌′′ = 𝜌 + 𝜌′(ℎ′/ℎ), are referred to the whole 

sensing element which is the ZnO coated metglas strip. The unprimed 

parameters refer to the metglas 2826MB strip alone and the primed 

parameters refer to the ZnO layer.  
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Figure 4.18. Schematic representation of the Metglas 2826MB3 and ZnO layers layout 

in our resonant devices. 

 

According to the method, if a series of similar films with different 

thicknesses ℎ′ can be synthesised, then a plot of the 𝐸′′ parameter of the 

bilayer system (extracted numerically from the resonance frequency) 

versus ℎ′ will be a straight line with a slope equal to the value of the 

Young's modulus 𝐸′ of the film. Additionally, the Young's modulus 𝐸 of 

the substrate layer can be extracted from the 𝑦-intercept. In our case, a 

thickness of ℎ ≈ 30 µ𝑚 was measured for the metglas 2826MB3 layer (𝜌 =

7900 𝑘𝑔/𝑚3), while the thickness ℎ′ of the ZnO layer was estimated 

assuming a uniform film, given its mass, dimensions and the (bulk) 

density value of ZnO 𝜌′ = 5606 𝑘𝑔/𝑚3 . As I have previously explained, 

bearing the purpose of the determination of the Young modulus in mind, 

six different and successive depositions of the ZnO solution were 

performed onto the metglas strips, with the final one resulting to the 

thickest ZnO solid film of about 1 µm thickness. 

Figure 4.19 shows the obtained results and the corresponding linear 

fit for one of our resonant platforms. The good linearity reveals the 

validity of the aforementioned method. From the 𝑦-intercept, a Young's 

modulus of 160 GPa is estimated for the bare Metglas strip, in good 

agreement with previous results29. From the slope, a Young's modulus 

value of 60 GPa is calculated for the ZnO film. 
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Figure 4.19. Total Young's modulus (E'') measured as a function of the ratio h'/h 

(width of the deposited ZnO layer / width of Metglas 2826MB strip). 

The Young's modulus of bulk ZnO is ≈  140 𝐺𝑃𝑎, a value that is 

generally accepted and was calculated by Kobiakov30 starting from elastic 

constants for ZnO crystal. The range of experimental values measured 

when dealing with ZnO at the nanoscale, is quite diverse depending not 

only on the geometry of the material but also on the experimental 

process used for its measurement Thus, for ZnO nanowires Song et al.31 

gave a value of 29 𝐺𝑃𝑎 determined by AFM bending measurements and 

Desai et al.32 obtained a value of 21 𝐺𝑃𝑎 measured by using a MEMS 

test-bed to perform uniaxial tensile experiments. On the other hand, Ji 

et al.33 have reported values of Young's modulus as high as 117 𝐺𝑃𝑎 and 

232 𝐺𝑃𝑎 for ZnO nanowires with diameters of 100 nm and 30 nm 

respectively, by studying the buckling of the nanowires with nano-

indentation. For ZnO nanobelts, Bai et al.34 gave a Young's modulus 

value of 50 𝐺𝑃𝑎, and Wang obtained a value of 52 𝐺𝑃𝑎35, in both cases 

by measuring the dynamic response of the specimen in an alternating 

electrostatic field inside a TEM. Considering all the previously reported 

values, our observations mostly agree with those obtained for nanobelt 

shaped samples, and we can infer that our ~1 µ𝑚 thickness ZnO film on 

the Metglas 2826MB3 strip, behaves like a wide nanobelt with Young's 

modulus of about 60 𝐺𝑃𝑎.  
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4.2.3. Hydrogen peroxide detection 

 

Over the last 30 years there has been a great effort to develop new 

hydrogen peroxide, electrochemical biosensors in order to understand the 

redox processes of enzymes and proteins and if these are maintained 

after their immobilization on electrodes surface. Hydrogen peroxide is a 

chemical compound with the formula H2O2, that has found a wide range 

of applications. It is employed in the industry for pulp and paper 

bleaching and for certain waste-water treatments; it is also used in 

medicine as disinfectant, with cosmetically purposes as human hair 

bleaching or to treat acne, chemically used as an oxidizer or to fabricate 

some explosives among others. Hydrogen peroxide is also found in 

biological systems including the human body and plays a role in the 

immune system. H2O2 presents cytotoxic effects and associated tissue 

injury, and even more it plays a role in physiological and biomedical 

studies as well as when monitoring biological processes. H2O2 is also a 

side product of many oxidative biological reactions catalysed by enzymes 

such as glucose oxidase (GOx), lactate oxidase (LOx), cholesterol oxidase 

(ChoOx) and many others. The protein structure and redox transformation 

of protein molecules are actually a preferential task devoted to give a 

deep insight into physiological electron transfer processes. Therefore, it 

is of high importance to be able to achieve sensitive determination of 

H2O2 presence in many biological processes and related applications. 

Additionally, it is also well known that due to its intrinsic peroxidase 

activity, hemoglobin is an excellent protein to fabricate H2O2 

electrochemical biosensors36,37. 

Hemoglobin (Hb) is the iron-containing oxygen transport 

metalloprotein present in the red blood cells. This physiologically oxygen 

transfer protein with formula C2952H4664O832N812S8Fe4, has a well known 

and documented structure, and properties as low cost, relatively higher 

stability and intrinsic peroxidase activity38. Hb has a quaternary structure 

made up of four protein molecules (globulin chains) that are connected 

together. Those polypeptide chains have one electroactive iron heme 

group39 each, as it can be seen in Figure 4.20. A heme group consists of 

an iron ion held in a heterocyclic ring that consists of four pyrrole 
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molecules cyclically linked together with the iron ion bound in the centre. 

The structure of a heme group can be observed in Figure 4.21. 

 

 

Figure 4.20. Ribbon diagram of hemoglobin showing the position of the four hemes 

(blue) taken from the RCSB Protein Data Bank and plotted on BIOvia Discovery Studio 

Visualizer. 

 

Figure 4.21. Chemical structure of a heme group with the iron ion in the centre 

surrounded by a four pyrrole linked structure. 

 

Hemoglobine is a prototype molecule for studying biological 

electron transfer processes and therefore it has been extensively used as 

an ideal model enzyme to study biological electron transfer reactions, to 

evaluate materials for their choice to be used as substrates for the 

immobilisation of biomolecules in an active configuration. It has already 
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been used in the past for the fabrication of electrochemical biosensors 

and bioreactors40, 41.  

  Nevertheless, many of the fabricated sensors exhibit slow electron 

exchange due to the unfavourable orientation of hemoglobine molecules 

onto electrode surfaces, and so, efforts point towards the development 

of new immobilisation methods and supporting materials to promote the 

direct electron transfer of Hb while maintaining its enzymatic activity. 

Among other possibilities, ZnO nanoparticles are good candidates for 

such purposes42. 

Hemoglobin is an auto-oxidating protein where heme iron atoms 

easily oxidise from ferrous Fe (II) to ferric Fe (III) and reduce from Fe (III) 

to Fe (II). The reaction scheme for the electrochemical reduction and 

oxidation of Hb can be written as follows:   
 

 𝐻𝑏𝐹𝑒 (𝐼𝐼𝐼) +  𝐻+ +  𝑒−
  𝐻𝑏𝐻𝐹𝑒 (𝐼𝐼)  

 

An excellent and complete graphical representation of all involved 

reactions in this reduction and oxidation of Hb process can be found in 

literature38. It is well known that the Hb molecule can catalyse the 

reduction of H2O243,44,45 and accordingly Hb has been extensively used to 

construct H2O2 biosensors46. As shown in Figure 4.22, the enzymatic 

reaction mechanism can be described as follows47,48: 
 

 2 𝐻𝑏𝐻𝐹𝑒 (𝐼𝐼) +  𝐻2𝑂2 + 2𝐻+  → 2 𝐻𝑏𝐹𝑒 (𝐼𝐼𝐼) + 2𝐻2𝑂  

 

 

 
Figure 4.22. Reaction scheme for the direct reduction and oxidation of the 

immobilised hemes of Hb and the electrocatalytic reduction of H2O2 on the sensor 

(created on Chemdraw). 
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With this purpose in mind, we have fabricated a biosensor to detect 

the oxidation of hemoglobine by H2O2. The biosensor is composed of a 

thin-film of nanostructured ZnO deposited onto a magnetoelastic strip of 

commercial magnetoelastic material Metglas 2826MB. The ZnO 

nanoparticles for the ZnO layer were prepared using the hydrothermal 

method and a layer of Hb was successfully immobilised on the ZnO layer. 

The resultant three-layer sensor was used in two simultaneous detection 

techniques, as a working electrode (Metglas/ZnO/Hb) in cyclic 

voltammetry (CV) and as the resonant platform in magnetoelastic 

resonance measurements (MR). A detailed scheme of the detection home 

made system is shown in Figure 4.23.  

 

 

Figure 4.23. The experimental set-up consisted of three electrodes immersed in a 

PBS buffer solution inside a glass vial on which a coil was wrapped externally. 

 

On one hand, the experimental cyclic voltammetry (CV) technique 

was used to monitor the electrochemical behaviour of the modified 

electrodes. The detection experiment consisted of a standard 

electrochemical cell composed of three electrodes, the sensor as the 

working electrode (WE), the platinum counter electrode (CE) and the 

Ag/AgCl reference electrode (RE). The system was immersed in a PBS 
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buffer solution at room temperature where drops of H2O2 were added. 

The measurement technique applied a voltage V between the reference 

and working electrodes during the CV scans and the resulting current (I) 

between the working and the counter electrodes was recorded. On the 

other hand, magnetoelastic materials working in resonant conditions are 

known to be extremely sensitive to external parameters, such as mass 

load49. An external coil was wrapped around the glass vial, which 

contained the electrolyte solution and the cell. The MR system is the 

same described above. The appearance of any mass load onto a 

magnetoelastic ribbon will immediately cause a decrease in its resonant 

frequency and this decrease can be used to determine the loaded mass 

value by comparing to calibration curves of known mass loads.  

The electrochemical measurements were performed on an Autolab 

PGStat 101 Potentiostat with a conventional three-electrode system; the 

Metglas/ZnO/Hb  acted as working electrode, a platinum wire as counter 

electrode, and Ag/AgCl  microelectrode as reference electrode. 

Simultaneously, magnetoelastic resonance detection was performed by 

using a magnetoelastic resonator made by Sentec and our homemade 

coil described above. 

 

4.2.3.1. Fabrication of the electrode 

 

The Metglas/ZnO/Hb electrode was fabricated following the 

procedure described above for the Metglas/ZnO film, plus the 

immobilisation of Hb on its surface. Hemoglobin (MW 65,000), from 

Bovine blood was purchased from Sigma and was used without further 

purification. For the Hb immobilization, a 20 μM Hb solution was 

prepared using 0.01 M Phosphate Buffer Solution (PBS), pH 7 and stored 

at 4 ℃. Hb was deposited on the surface of the Metglas/ZnO by dropping 

5 μl of Hb solution on the surface material and allowing it to dry at 30 

℃ for 30 minutes. This procedure was repeated twice to ensure the 

immobilization of the hemoglobin and a homogenous distribution of the 

deposited amount. Sodium dihydrogen orthophosphate (0.01M) from 

Sigma was used to prepare the supporting electrolyte solution, and its pH 
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was adjusted to 7 using NaOH and was thoroughly deaerated by bubbling 

with argon prior to the experiments. All solutions were prepared with 

deionized water. Prior to all electrochemical measurements, the 

Metglas/ZnO/Hb electrode was rinsed with PBS to remove any non-

immobilised Hb from its surface. 

For the sensing experiments H2O2 (30% w/v solution) purchased 

from Lach-Ner was used. Successive additions of aliquots of 5 µL of H2O2 

30 µM were made in order to increase the H2O2 concentration by 25 µM 

at each step. Each amount was added at time intervals of 15 minutes 

and CV scans and MR were obtained right afterwards (30 seconds) and 

shortly before the end of the interval (5 minutes). 

A real picture of the whole vial cap, with the three electrodes in it 

can be observed in Figure 4.24. Holes were made in the cap to ensure a 

good fixing of the electrodes and which is even more important to avoid 

any contact among them. The connexions with the sensor material, 

which is the working electrode, were made by attaching a cooper wire 

with carbon tape to the middle of the ribbon. In that way it can be 

ensured that there are no contributions of the wire to the vibration of the 

sample, as the middle part of the sample is a ‘vibration free point’. A 

picture of the back part of the ribbon where the connection was made, 

can be observed also in Figure 4.24. 

 

 

  

Figure 4.24. The experimental set-up consisted of three electrodes immersed in a 

PBS buffer solution inside a glass vial on which a coil was wrapped externally. 

 

The final measure system with all the connections for the electrodes 

to make the voltammetry curves and inside the vial with the coil wrapped 



Magnetoelastic resonant platforms for biological detection 

   

 

 Ariane Sagasti 143 

on it for the magnetoelastic measurements is shown in Figure 4.25. This 

is the real system shown schematically in Figure 4.23, which has been 

developed specially for making these essays. It is a totally homemade 

system that uses a glass vial as a cell, making holes on the cap to properly 

fix the different electrodes. 

 

 

Figure 4.25. Final measurement set-up with the electrode connexions for the CV 

measurements and the external coil for the MR measurements. 

 

4.2.3.2. Electrochemical behaviour of the electrode 

 

When using CV, the potential between the reference and working 

electrodes was scanned from a certain initial voltage to a certain final 

potential to charge the capacitor and again scanned back in the reverse 

direction in order to discharge it. This allows the tracking of the 

electrochemical properties of the modified electrodes. The resulting 

current between the working and counter electrodes was plotted against 

the applied potential with respect to the reference electrode. The CV 

curve of an electric double layer capacitor (such as Metglas/ZnO) would 

be of a rectangular shape, in absence of a faradic reaction. In the 

presence of faradic redox reactions, the CV curve should exhibit peak 
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currents, which are due to the effect of pseudo-capacitance exhibited by 

the electrode material. 

All voltammetry experiments showed in this part were carried out 

in a hemoglobin-free, 10 mM aqueous PBS electrolyte solution of pH 7 

at room temperature. Figure 4.26 shows the CV curves of Metglas 

2826MB (black), Metglas/ZnO (red) and Metglas/ZnO/Hb (blue) 

electrodes at a scan rate of 0.1 V/s.  

 

    

     

Figure 4.26. Cyclic voltammetry curve of Metglas 2826MB (black), Metglas/ZnO (red), 

Metglas/ZnO/Hb (blue) electrodes at a scan rate of 0.1 V/s, and as comparison the 

three in the same graph. 
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The metglas monolayer is exhibiting high peak redox currents, 

which are shown in the CV (Figure 4.26a). This metglas is exhibiting a 

very interesting electrochemical behaviour, and it seems likely to be a 

diffusion-controlled system with charge transfer phenomena in play. The 

metglas ribbon shows a characteristic reduction peak at -0.35 V and a 

(re)oxidation peak at -0.15 V in aqueous electrolyte solution. The voltage 

range is taken from -1 V to +1 V because in this range the metglas 

electrode is effectively working without any breakdown. These peaks that 

correspond to a reversible process could be possibly due to the high 

content of iron in metglas. As metglas is an amorphous iron rich metallic 

alloy, the iron atoms can occur in both oxidizing states Fe(II) and Fe(III), 

depending on their local neighbourhood in the amorphous atomic 

framework. Thus, depending on the applied potential, iron can be 

oxidized and reduced easily. These peaks could be a sum of contribution 

of various oxidation processes of iron to form divalent or trivalent 

species50. In addition, the metallic metglas gives back a greater and 

broader current when compared to the semiconducting Metglas/ZnO, due 

to its conducting nature. 

 

 

Figure 4.26a. Cyclic voltammetry curve of Metglas 2826MB electrode at a scan rate of 

0.1 V/s. 
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The Metglas/ZnO system, where a zinc oxide layer has been 

deposited onto the metglas, (Figure 4.26b) shows the characteristic 

charging/discharging currents assigned to electron injection into sub-

band gap/conduction band states of the ZnO film. The charging of the 

ZnO film as seen in Figure 4.26b starts at -0.16 V, which is around the 

same value reported at previous studies in literature51. Over the potential 

range examined, for potentials more positive to -0.16 V, the ZnO is 

insulating and serves only as a support for the immobilization of 

biomolecules. 

 

Figure 4.26b. Cyclic voltammetry curve of Metglas/ZnO electrode at a scan rate 

of 0.1 V/s. 

 

The voltammetry curve of the Metglas/ZnO/Hb electrode in PBS 

solution is shown in Figure 4.26c. It was used to estimate the midpoint 

redox potential of the immobilised hemoglobin. As the applied potential 

was ramped from 1.0 V to -1.0 V and reversed vs Ag/AgCl, the 

Metglas/ZnO/Hb electrode exhibits in addition to the film charging 

currents, nearly reversible, but not equivalent well-defined reduction (-

0.35 V) and oxidation(+0.15 V) peaks. These peaks are assigned to Hb 

reduction Fe (II) and re-oxidation Fe (III). The Fe (III)/Fe (II) redox 

chemistry of heme is termed quasi-reversible as the peak-to-peak 

separation was > 60 mV and the peak oxidation current was typically 
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much less than the reduction peak current48. These peaks are clearly 

absent from the CVs of the same electrode before the immobilisation of 

Hb. It clearly demonstrates that the immobilized protein is electroactive 

and that it could be used for the sensing of H2O2. 

 

 

Figure 4.26c. Cyclic voltammetry curve of Metglas/ZnO/Hb electrode at a scan rate of 

0.1 V/s. 

 

Finally, Figure 4.26d shows all the above mentioned different 

curves of the three electrodes, plotted together for direct comparison. It 

is evident in the plot that the metallic metglas gives back a greater and 

broader current with respect to the other two electrodes, which is due to 

its conductive nature. 
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Figure 4.26d. Cyclic voltammetry curves of the electrode at different stages at a scan 

rate of 0.1 V/s, Metglas 2826MB (black), Metglas/ZnO (red) and Metglas/ZnO/Hb 

(blue) for comparison purposes. 

 

 

4.2.3.3. Simultaneous detection experiments  

 

 Control curves 

 

In order to ensure that the signal being detected in the 

measurements was due to the oxidation of the immobilised Hb by H2O2, 

we performed control experiments without any presence of H2O2, which 

means that those measurements were made in plain PBS solution. In 

Figure 4.27 are shown the CV scans taken every 5 minutes in a total time 

period of 50 minutes. It is evident that there is no much activity during 

these 50 minutes as it was expected.  
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Figure 4.27. CVs of a Metglas/ZnO/Hb electrode at a scan rate of 0.1 V/s at specific 

time intervals (5 - 50 min) in PBS solution, without H2O2 presence. 

 

In Figure 4.28 are shown the magnetoelastic resonance 

measurements at the same conditions, in absence of H2O2. It can be seen 

a typical resonance signal which is received when the Metglas/ZnO/Hb 

electrode is immersed in the PBS solution, where the continuous red line 

is a Gaussian fit to the data. From those curves the resonance frequency 

is extracted by the x-value at the peak, and the evolution of those 

resonance frequencies for different times can also be observed in Figure 

4.28. It is clear that the curve is quite flat with an error of about 0.02 

kHz.  

 



Chapter 4 

  

 

150 Ariane Sagasti 

 

Figure 4.28. Magnetoelastic resonance measurement and resonance frequency 

evolution versus time when the electrode is immersed in PBS solution. 

 

  



Magnetoelastic resonant platforms for biological detection 

   

 

 Ariane Sagasti 151 

 H2O2 detection curves 

 

To test the electrochemical reaction between Hb and H2O2, 5 μL 

aliquots of 30 µM H2O2 solution were added each time successively in 

the cell where the Metglas/ZnO/Hb electrode was immersed in PBS 

buffer, in order to increase the H2O2 concentration by 25 μM at each step. 

Each amount was added at time intervals of 5 minutes and CV scans 

were obtained right afterwards (30 seconds) and shortly before the end 

of the interval (<5 minutes). CV obtained scans at 50 μM step additions 

of H2O2 are shown in Figure 4.29. This plot reveals an intense 

electrochemical activity (electrocatalytic responses), as expected, since it 

is well known that Hb can catalyse the reduction of H2O2.  

 

 

Figure 4.29. CVs obtained for a Metglas/ZnO/Hb electrode in PBS buffer before and 

after the addition of increasing amounts (50-350 μM)  of H2O2 at a scan rate of 0.1 

V/s (sensing signals measured 30 seconds after each addition of H2O2) 
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Hb was immobilised in the mesopores of the ZnO film in a stable 

and functional way and it was able to interact with the semi-conducing 

substrate as well as the aqueous electrolyte solution. When the H2O2 

molecules were added to the electrolyte solution in the cell, they could 

easily enter the mesopores of the ZnO film, interacting there with the 

immobilized molecules of Hb, which were reduced by the four bound 

iron atoms on each of the heme molecules of Hb. In Figure 4.29 these 

interactions between the immobilised Hb and the added H2O2 are 

displayed by the gradual increase of the current peaks and their gradual 

shift to the right (to less negative biases). Figure 4.30 shows the peak 

current versus the H2O2 concentration with a good linear correlation (R = 

0.99). This plot proves that the CV method is not only sensitive enough 

to detect the electrochemical changes that take place between Hb and 

H2O2  but also that the corresponding signals produce a linear calibration 

plot that could be used as a H2O2 biosensor. 

 

 

Figure 4.30. Evolution of the peak current values vs H2O2 concentration. 
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Figure 4.31. Comparison of the control peak current (circles) obtained from the CVs of 

a Metglas/ZnO/Hb electrode in PBS solution and the corresponding sensing current 

(triangles) when H2O2 is added in the solution. 

 

For comparison, the peak current of CV curves, is plotted in Figure 

4.31 as solid circles for the control experiments together with the 

corresponding signal (solid triangles) which is received when H2O2 is 

added in the solution. The control experiment produces a flat response 

with a small error of about 0.5 μA and it is obvious that the changes 

brought up by the electrochemical reaction of H2O2 with the Hb, produce 

a big enough sensing signal of about 8 μA in variation, much larger than 

the above error. Thus, CV method is a sensitive enough method to detect 

the electrochemical reactions caused by the addition of H2O2. 

Figure 4.32 depicts the magnetoelastic data, which show that the 

resonance frequency of the sensor has a linear drop versus time as the 

H2O2 concentration increases. Additionally, the total change of 0.075 kHz 

is larger than the error of 0.02 kHz observed at the control experiment 

and thus the change should be related to the H2O2 concentration. As it 

was mentioned in the introduction, the magnetoelastic sensors are used 

as microbalances since the resonance frequency depends on the mass 

load. For the particular metglas ribbon used, calibration with known small 
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mass loads gives a calibration factor of -1.4 kHz/mg. From this factor and 

the maximum H2O2 concentration of 350 μM, it can be concluded that 

there was a corresponding mass increase on the sensor of 152 ng/μM, 

which is most probably due to the H2O2 adsorption in the mesopores of 

the ZnO film during the electrochemical reaction. 

 

 

Figure 4.32. Magnetoelastic resonance data of a Metglas/ZnO/Hb electrode measured 

5 mins after the addition of increasing aliquots of H2O2. 

 

The influence in the sensing experiments of the time interval 

between the addition of H2O2 aliquots and the electrochemical detection 

was also tested. For that purpose, three different cases were analysed (3 

different concentrations of H2O2 and two different time intervals: 30 s 

and 5 min after each addition of H2O2). The results are shown in Figure 

4.33. Comparing the obtained CV scans at each time interval, it can be 

clearly seen that the detection happens instantly, so it can be affirmed 

that there is no time dependence in the electrochemical detection 

process. 
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Figure 4.33. CVs of a Metglas/ZnO/Hb electrode at a scan rate of 0.1 V/s after 

the addition of 3 different concentrations of H2O2  measured after 30 s and 5 min after 

each addition. 

 

4.3. Summary and conclusions 

 

In this chapter it has been demonstrated that it is possible to directly 

coat a magnetoelastic amorphous material in the form of ribbon with a 

zinc oxide active layer. Parameters as the temperature or time of the 

synthesis conditions are a key factor to ensure that the deposited layer 

is only composed by zinc oxide, and not only affect the composition of 

the formed layer but also the morphology of the final precipitate. The 

ZnO layers deposited by three different methods were fully characterized 

by XRD, SEM and PL. From the obtained results, it has to be concluded 

that among the different methods used and analysed to cover the surface 

of the ribbon, the best way to deposit a homogenous layer of ZnO is by 

making a direct casting with the previously synthetized ZnO 

nanoparticles. Other deposition procedures do not ensure that the formed 

layer is only constituted by ZnO without other impurities which can be 

obtained due to the fabrication or deposition processes. Also, in most of 
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the cases the formed film did not homogeneously cover the surface of 

the ribbon, which is another important factor for our purposes, that is to 

use them later as biosensors.  

Even more, once the best procedure to make the ZnO films onto 

the magnetoelastic material has been determined, it has also been 

possible to determine the Young modulus of the deposited ZnO film by 

making several successive depositions and by measuring the change at 

each step in the magnetoelastic resonant frequency as the mass 

increment of the future sensor platform will happen. According to the 

employed method, a straight line is obtained when plotting the Young 

modulus of the whole composite material (resonant platform) versus the 

thickness relation of each layer (Metglas 2826MB3 + ZnO layer), and from 

that evolution Young’s modulus of the Metglas 2826MB3 and what is 

more important of the deposited ZnO film can be obtained from the slope 

of the obtained linear dependence. Thus, after 6 depositions of the ZnO 

material, a good layer of about 1 µm thickness and Young’s modulus of 

about 60 GPa, has been obtained. This value is in good agreement with 

other values reported for other morphologies of ZnO nanostructures 

synthesised. 

Finally, the fabrication of a biosensor to monitor the oxidation of 

the hemoglobin protein (Hb) has been presented. The sensor was 

fabricated to simultaneously detect the oxidation of the Hb due to its 

reaction with H2O2 by two different methods, by cyclic voltammetry and 

magnetoelastic resonance. For that purpose, hemoglobin has been 

immobilised onto the surface of the previously prepared Metglas/ZnO 

bilayer, thus constructing both a sensitive modified voltammetry 

electrode and a magnetoelastic biosensor. In this way it has been possible 

to monitor the reaction of the immobilized protein with specific aliquots 

of H2O2 by using simultaneously cyclic voltammetry and magnetoelastic 

detection procedures. The voltammetry measurements reveal direct 

electrochemical behaviour of Hb and display good electrocatalytical 

response to the reduction of H2O2. The measured catalysis currents 

increase linearly with the H2O2 concentration in a wide range of 25-350 

μM with a correlation coefficient 0.99. The detection limit is 25-50 μM. 

Moreover, the Metglas/ZnO/Hb electrode displays a rapid response (30 s) 

to H2O2, and exhibits good stability and reproducibility of the 
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measurements. On the other hand, the simultaneously performed 

magnetoelastic measurements show a small linear mass increase versus 

the H2O2 concentration with a slope of 152 ng/μM, a mass change that is 

most probably due to the H2O2 adsorption in ZnO during the 

electrochemical reaction. No such effects were detected during the 

control experiment when only the PBS solution was present for a long 

time, a fact that strongly support the previous conclusion. 
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5. Magnetoelastic resonant platforms for gas 

detection 

 
_____________________________________________ 

 

 

This chapter is devoted to the practical use of magnetoelastic resonant 

platforms for gas detection. Zeolites will act as active layer in this 

functionalized resonant strips. Three different zeolites, LTA, MFI and FAU 

will be directly synthesized by hydrothermal methods onto the surface of 

the resonant platforms and will be used to trap the target analyte, ortho-

xylene. O-xylene is a volatile organic compound that is very hazardous 

in case of skin or eye contact and slightly hazardous in case of ingestion 

or inhalation.  As in the previous chapter, the aim is to enable the 

fabrication from the very first state the whole sensor material, starting 

from homemade magnetoelastic ribbons and ending with the zeolite 

sensitive membrane. 
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5.1. Introduction 

 

In previous chapters, the use of magnetoelastic materials with 

several purposes has been described. Magnetoelastic materials have been 

use to determine the Young modulus of a ZnO deposited layer or as 

biosensors to determine the oxidation of hemoglobin due to the reaction 

with H2O2. As it has been previously explained, magnetoelastic ribbons 

coated with an active layer can be used for applications as chemical or 

biological sensors. 

Magnetoelastic materials can be also used for gas sensing 

applications, if the active layer, the coating of the magnetoelastic 

material, is sensitive to a target gas molecule. Depending on the nature 

of this active layer, sensors for different gases can be created1. For such 

detection, the active layer can be a metal oxide film, a polymer, a metal, 

an inorganic material or an organic membrane. 

Concerning the metal oxides, TiO2 has been used for different 

purposes. For example, if the material that coats the magnetoelastic 

ribbon responds to humidity by absorbing ambient moisture, then the 

resonant frequency would be expected to decrease when the humidity 

increases, due to the mass absorbed by the sensor. With this purpose, 

magnetoelastic materials in combination with a moisture-absorbing layer 

such as TiO2 or Al2O3, have been used as humidity sensors2. Other 

authors have reported the use of magnetoelastic sensors coated with Pt-

TiO2 for the detection of ethylene, an organic gas compound that works 

as a plant hormone in the regulation of metabolic processes which is 

crucial for both fruit ripening and plant respiration. For this particular 

case, a 155 nm coated sensor showed a shift of 65 Hz in the resonant 

frequency in response to 50 ppm ethylene3. 

Polymers, as polystyrene sulfonic acid (PPSA), have been also used 

to detect humidity4. Other polymers as acrylamide or isooctylacrylate 

have been used as active layers to detect carbon dioxide concentrations5. 

Similarly, ammonia sensors have been fabricated by coating 

magnetoelastic materials with a layer of poly (acrylic acid-co-
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isooctylacrylate)6. In addition, a commercial polymer, bayhydrol-110, has 

been used as an active layer for volatile organic compound detection7. 

Selective absorption is also possible by using other kind of materials 

as sensitive layers: for example, mercury vapour was achieved by coating 

a magnetoelastic sensor with gold8, while carbon nanotubes were used 

to sense CO24. 

The experiments described in this chapter have been carried out at 

the Foundation for Research and Technology (FORTH) and the Institute 

of Chemical Engineering Science in Patras (Greece), under the 

supervision of Doctor Dimitris Kouzoudis and with the help of Vasiliki 

Tsoukala. 

 

5.2. VOC detection by functionalization of MRPs with 

zeolites 

 

As it has been explained in this work magnetoelastic resonant 

platforms covered with an active material are able to detect a wide range 

of environmental, physical, chemical or even biological parameter. One 

of those active layer materials can be zeolites, which have been used to 

trap and detect several gases as carbon dioxide9, light hydrocarbons10 or 

volatile organic compounds (VOC)11. 

 

5.2.1. Introduction to zeolites 

 

Zeolites are porous crystalline aluminosilicate materials that can 

have natural or synthetic origin. Although all the aluminosilicates share 

the same basic chemical composition, the different atom and molecular 

arrangements lead to structures with different properties. Zeolites are 

constructed from linked TO4 tetrahedra (where T = Al3+ or Si4+) joined 

through shared oxygen atoms, and forming three-dimensional framework 

that defines a regular system of voids and channels of molecular 
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dimensions. The first zeolite was identified in 1756 by the Swedish 

mineralogist Friedrich Axel Cronstedt, who observed that on heating the 

stones he had gathered in a blow-pipe flame, they dance about in a froth 

of hot liquid and steam, appearing as if the stones themselves were 

boiling. He thus coined the name ‘zeolite’ which from Greek derivation 

(zein, ‘to boil’; lithos, ‘a stone’) means ‘stones that boil’12. 

Nowadays, the International Zeolite Association (IZA)13 database 

contains crystallographic data and information on the structure of over 

232 different types of zeolites. IZA has set up a database and has 

established an international code of designations using three letters for 

the different structures of both natural and synthetic zeolites. Each code 

also corresponds to a different grid topology and its name usually is 

derived from the first three letters of the zeolite name or from researchers 

phrases. For example, FAU comes from Faujasite mineral, LTA comes 

from Linde Type A and MFI corresponds to Mobil Five (number)14. Those 

codified names are extremely useful in cases where there are many 

names for the same topology. In addition to the type of a mesh of 

zeolites, its chemical composition is also important in determining its 

properties. The general formula describing the chemical composition of 

zeolites is 𝑀𝑦/𝑚
𝑚+ [(𝑆𝑖𝑂2)𝑥(𝐴𝑙𝑂2

−)𝑦] · 𝑛𝐻2𝑂, where M denotes a cation with 

charge m+, n corresponds to the number of water molecules and the sum 

of (x+ y) is the total number of Si and Al tetrahedrons present in the unit 

cell15.  

Different zeolite structures are formed by different arrangements 

and coordination structures of the TO4 tetrahedra. The grid of pure 

silicate (SiO2) does not have an electric charge since silicon has valence 

+4.  Conversely, the existence of trivalent aluminium requires the 

existence of cations for balancing the electric charge. That should be 

equalized by M cations electrostatically bonded to the grid to ensure the 

electrical neutrality in the crystal. Nevertheless, AlO4 compounds have 

not been observed on zeolites. As Loewenstein17 first explained two 

tetrahedrons AlO4 cannot occur in adjacent positions within the zeolite 

lattice, the repulsive electrostatic forces between the similarly charged 

aluminium squares make that compound extremely unstable. Due to this 

Loewenstein claimed that the Si/Al ratio should be between one and 
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infinite; 1 < (Si/Al) < ∞. Typical cations in natural zeolites are metals 

such as Na+, K+ or alkaline earths. In synthetic zeolites, the cation may 

be either inorganic or organic. The ion exchange of the cationic zeolites 

necessary for the electrical neutrality can change their important 

properties such as the pore size, conductivity or rheological and catalytic 

capabilities. Figure 5.1 shows the structures of four selected zeolites. 

 

 

Figure 5.1. Structures or different zeolites and their micropore systems and 

dimensions16. 

 

As previously mentioned, the ratio of the silicon to aluminium atoms 

is an important and characteristic number that can be adjusted affecting 

so the properties of the zeolite. For example, by increasing the 

percentage of aluminium the number of interchangeable cations will 

increase, while the zeolite is characterized as hydrophilic. Such a zeolite 

can be used, for example as a drying agent in a moisture-rich steam 

stream. In contrast, hydrophobic high Si/Al zeolites are used to adsorb 

organic molecules from high humidity or water streams. 

In zeolites, the union of the TO4 tetrahedra is also called primary 

building block and leads to the formation of secondary building units 

(SBUs) that consist of single, double and branched rings that can contain 

from four to sixteen tetrahedrons. Those secondary building block, in 
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turn, can be properly joined together to form cells and chains. Due to 

this, the final form of the zeolite structure contains uniform openings 

being characterized by the presence of pores and cavities of molecular 

dimensions. The diameter of the pores or channels of zeolites range 

between 3 and 15 Å. 

Zeolites are thermally and chemically stable material, and thus they 

can be used in a variety of thermochemical environments. Based on its 

chemical properties the most well known application for zeolites is as 

catalyst.   

Nevertheless, due to their high porosity, zeolites have been used 

for a wide range of other applications. They have demonstrated to be 

useful for their ability to eliminate and absorb water by about 30% of 

their weight18. They have been also used as ion exchange membranes as 

they can exchange cations without any significant alteration of their 

structure19. For this reasons the thermodynamics and chemistry of zeolite 

diffusion, sorption and ion exchange capacity have been extensively 

studied. In fact, zeolites are thermally and chemically stable materials. 

Among the applications, the binding of hazardous heavy metals from 

industrial waste waters through ion exchange, their use as additives in 

building materials (cement for example) and applications in energy or 

medicine fields can be remarked20,21.   

Zeolites are often called molecular sieves due to their ability to 

distinguish different molecules by size, shape or polarity. Besides, due to 

their unique physicochemical properties described above, they have 

found many applications as catalysts22,23, sorbents24,25, water 

softeners26,27, selective membranes28,29, optoelectronic devices30,31, 

sensors32,33. 

The main objective of this section is to develop a new fully 

homemade magnetoelastic/zeolite sensor which should be able to detect 

and quantify small amounts of o-xylene. Xylene, in liquid form at room 

temperature, is a volatile aromatic hydrocarbon produced through 

petrochemistry, which is used as a solvent in the printing, rubber, paint 

and leather industries. Exposure to this organic compound can occur via 

inhalation, ingestion, and eye or skin contact. Xylene causes health effect 

from both small and also large exposures. The type and severity of health 
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effects depends on several factors, including the amount of chemical 

exposed to and the length of time exposed for. The main effect of 

inhaling xylene vapor is depression of the central nervous system, with 

symptoms such as headache, dizziness, nausea and vomiting. The effects 

listed below can occur with exposures to air levels as low as 1000 ppm34. 

Although the hazards of xylene are well documented, most of the less 

expensive alternatives do not have the same properties, particularly the 

ability to be miscible with alcohols but not with water. But not only 

xylene, many of the VOC, are quite hazardous and cause long-term 

health and environmental problems, even at very low concentrations, 

being their detection absolutely necessary35. 

Bearing this purpose in mind, the adsorption ability of o-xylene of 

three different zeolites: LTA, FAU and MFI, deposited onto our 

homemade magnetoelastic ribbons is going to be compared, together 

with previous reported results for the same kind of zeolite membranes 

grown onto a commercial resonant platforms10,11. A scheme of the main 

characteristics and structure of these zeolites can be seen in Figure 5.2 

and Table 5.1.  

 

 

Figure 5.2. FAU, MFI and LTA zeolite structures36. 
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 Faujasite (FAU) 

FAU is a large pore (about 7.3 Å) zeolite , with cubic symmetry 

which can be synthesized in a variety of compositions that differ in the 

silicon to aluminium ratio. In FAU structure, each corner of the 

microstructure represents a Si or Al atom and each line an oxygen 

bridging atom. 

 

 Movil Five (MFI) 

MFI can possess different crystal symmetries depending on the 

temperature, the Si/Al ratio, the nature and the amount of absorbed 

guest molecules. In this work Al-free state of MFI, also call Silicalite-1, is 

going to be synthesized. Silicalite-1 has types of channels interconnecting 

each other. This type of zeolite has an intermediate pore size of 5 Å, 

between FAU and LTA types. 

 

 Linde Type A (LTA) 

LTA is a zeolite with silicon to aluminium ratio usually equal to 1. It 

has a cubic symmetry with eight sodalite cages connected with four-

member oxygen bridges. It has pore opening slightly smaller than 4.2 Å, 

and it is utilized as adsorbent for the separation of n-alkanes from their 

branched isomers.  

 

 

Table 5.1. FAU, MFI and LTA zeolites main properties13. 

 FAU MFI LTA 

Cell structure 
Cubic 

(Fd3m) 

Orthorhombic 

(Pnma) 

Cubic 

(Pm3m) 

Pore size 7.3 Å 5 Å 4.2 Å 

Accessible 
volume 

27.4% 9.8% 21.4% 
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5.2.2. Functionalization of MRPs with zeolites 

 

To develop the sensor elements in this particular case, a homemade 

magnetoelastic alloy of composition Fe64Co21B15 was selected. It was also 

fabricated by the melt spinning technique previously described and the 

obtained strip had a width of 2.6 mm and a thickness of approximately 

13 µm. The magnetic characterization gave a saturation magnetization 

value of 1 T and a saturation magnetostriction of 20 ppm. The obtained 

curves for the hysteresis loop and the measured magnetostriction can be 

observed in Figure 5.3. 

 

   

Figure 5.3. Magnetic and magnetostrictive characterization of Fe64Co21B15. 

 

The fabrication of the sensor took place in different stages. It starts 

with the preparation of the sample (cleaning + metallization) and the 

functionalization of the magnetoelastic resonant platforms with the 

zeolite. This first stage included the cleaning process made to the 

magnetoelastic strips, the seeding procedure with the zeolite 

nanoparticles, (including the seed synthesis in the case it had been made) 

and the hydrothermal synthesis of the zeolites. In some cases and after 

the hydrothermal synthesis, an annealing procedure was needed to 

eliminate the employed organic template. Finally, sensing experiments 

were made in order to detect the o-xylene gas by using those prepared 

resonant platforms. In Figure 5.4 a brief scheme of the fabrication 

processes followed for the three zeolites can be observed. 
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Figure 5.4. Scheme of the followed procedure for the fabrication of the o-xylene 

sensors. 

 
 Sample preparation 

 

The magnetoelastic ribbons were cut in 2 cm long pieces and 

ultrasonically cleaned, alternatively they were cleaned with methanol 

and trichloroethylene for 10 minutes. This cleaning procedure was 

repeated three times in order to remove any dirt from the fabrication or 

manipulation process. Afterwards, these samples were dried using a 

heating plate. 

When this work was carried out, corrosion resistant samples were 

not been fabricated yet, so such problems arised when trying to cover 

the samples with the zeolite membranes. In the first attempts, zeolites 

synthesis processes were performed simultaneously both in a commercial 

Metglas 2826MB3 sample and in the Fe64Co21B15 homemade alloy. The 

main idea was to study how the hydrothermal synthesis should be carried 

out, with a substrate that was already used in the past (having so the 

guarantee that the synthesis process works on it) and compare with the 

homemade magnetoelastic resonant platforms case. As it can be 
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observed in Figure 5.5, a zeolite membrane was formed onto both 

substrates, showing that hydrothermal synthesis was successfully carried 

out. Nevertheless, two problems were detected: on the one hand, the 

formed membrane was not homogeneous in the case of LTA, due to 

problems that occurred during the synthesis process. On the other hand, 

corrosion appeared on the homemade Fe64Co21B15 samples after the 

zeolite synthesis, affecting the magnetoelastic material properties. That 

behaviour was not observed in the commercial Metglas 2826MB3 strips, 

so it could be inferred that a protective layer was needed in order to 

avoid corrosion appearance during the sensor development. 

 

 

Figure 5.5. First attempt synthesizing LTA and MFI onto commercial metglas (up) and 

the homemade magnetoelastic ribbon (down). Oxidation can be observed in 

homemade ribbons but not in commercial ones. 

 

This observation was another strong reason that made us fabricate 

new corrosion resistant magnetoelastic materials in the form of ribbons, 

as previously discussed.  

 

 Metallic coating of the MRPs 

 

Following our observations, once the samples were cleaned, they 

had to be protected to avoid the corrosion of the surface, and this was 

achieved by covering the strips with an adequate metallic coating.  
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Several metal coatings were tested in order to avoid the corrosion 

damage. All of the tested metals were sputtered onto the surface of our 

homemade alloys, in order to make a thin protective film. This film must 

cover the whole surface of the ribbon to ensure the good protection of 

the sample in aqueous solutions, as the hydrothermal synthesis of 

zeolites would take place in basic aqueous media. 

The first protective coating used was gold (Au). Gold sputtering was 

performed in the laboratory upon the surface of our magnetoelastic 

ribbons giving rise to a film of approximately 40 nm thickness. A picture 

of the employed equipment can be observed in Figure 5.6. To test the 

gold layer attachment state to the surface of the strip and to ensure that 

it would protect the ribbon against corrosion, it was directly immersed in 

water. After a few minutes, a quick detachment of the gold film from the 

surface of the ribbon was observed. Due to this problem, gold was 

discarded as a good alternative to protect the samples from corrosion 

before developing the active zeolite membrane layer. 

 

 

Figure 5.6. Gold sputtering process going on. 

 

As an alternative to gold protective layer, other two metals were 

tested, chromium (Cr) and titanium (Ti). The sputtering process for those 

metals was carried out only in one side of the samples. To do this, two 

different samples were selected to be simultaneously covered with those 

previously mentioned metals. Both Cr and Ti are supposed to favour 
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corrosion resistant behaviour (in fact, chromium was chosen in a previous 

chapter as additive element to develop corrosion resistant metallic 

alloys). Once the two samples were sputtered with the metals, they were 

immersed in water for 1 day, to test the adhesion of the deposited layers 

and the corrosion resistance. In both cases, they seemed to be perfectly 

deposited and attached onto the surface of the resonant platforms and 

as expected, the metal-covered side did not present any sign of 

corrosion, as it happened with the non-covered side.  

The next step was to test the zeolite membrane formation. In the 

first experiment and after the seeding procedure, LTA type membrane 

was grown onto two samples, one covered with Ti and another one with 

Cr to compare the results of the formed zeolite membrane and the gas 

sensing capability. In both cases the zeolite membrane seemed to be 

successfully formed, as a white film covering the whole surface was 

observed. Nevertheless, when the first sensing experiments were made, 

chromium deposited samples did not show any sensing response. A 

possible explanation can be that the expected zeolite membrane was not 

properly formed onto the chromium deposited layer. Probably some LTA 

zeolite structures had been grown around nucleation points created 

during the seeding procedure giving rise to a non porous membrane. 

Such good porosity is absolutely required for the good developments of 

the subsequent sensing experiments.  

On the contrary, titanium deposited sample showed o-xylene 

detection ability on those preliminary experiments. So, titanium was 

chosen as the best available material to protect the surface of the 

amorphous alloys from corrosion, allowing also the formation of the 

zeolite membrane, and without affection to the sensing capability of the 

whole device (magnetoelastic platform + Ti coating + LTA zeolite 

membrane).  

In what follows, all presented samples and results were performed 

with the magnetoelastic strips covered onto both sides with a protective 

titanium layer prior to zeolite synthesis. Figure 5.7 shows the surface of 

one of the formed LTA membranes. As it can be observed zeolite covered 

the whole surface of the ribbon creating a quite homogeneous film, 
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which was after all used for gas sensing experiments, in particular in o-

xylene containing atmospheres. 

 

 

 

Figure 5.7. LTA zeolite membrane formed onto the surface of a titanium coated 

magnetoelastic resonant platform. 

 

 Zeolite seed synthesis and seeding procedure 

 

For the optimal formation of the zeolite membranes onto the 

metallic substrate, a first seeding step is needed. The deposited seeds 

would act as nucleation points for the later formation of the zeolite 

membrane. It would ensure a better homogeneity of the formed 

membrane that would start growing from the nucleation points until it 

totally covers the surface of the magnetoelastic alloy. Afterwards, the 

cleaned-metal-covered magnetoelastic strips were weighted to later be 

able to ensure that the subsequent processes as the seeding or the zeolite 

membrane formation succeeded. 
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Depending on the zeolite type, different kind of seeds will be used. 

The seeding procedure consisted on dipping the magnetoelastic ribbons 

onto the seeding solution for a few seconds following a dip-coating 

procedure, and allowing it to dry. In all the cases, the concentration of 

the seeding solution was of 1 g of seeds in 100 ml of water. After that, 

the samples were left at room temperature until the total evaporation of 

water. This seeding procedure was repeated several times (5-6) to ensure 

that seeds of the zeolite have been sprayed all over the surface of the 

resonant platforms. This was done, to assure a more homogenous 

formation of the zeolite membrane. 

 

 FAU seeding solution was prepared from a commercially 

available NaY solution of Sigma-Aldrich. 

 

 MFI seeding solution was prepared with previously synthesized 

MFI seeds. 

MFI seed synthesis: all the reactants 19.25 g H2O, 18.36 g TpAOH 

(tetrapropylammonium hydroxide), 10.7 g TEOS (tetraethoxysilane) and 

0.0158 g NaOH (sodium hydroxide) were stirred together until the 

hydrolysis of the TEOS took place. The samples were left at room 

temperature under stirring for a minimum of 24 hours for hydrolysis to 

take place. When TEOS was hydrolysed, the odour of the solution 

changed and it became more transparent. The solution was introduced 

in a polypropylene bottle into the oven at 100 ℃ for 1 day to leave the 

synthesis to form the seeds. Afterwards, the solution was centrifuged at 

9000 rpm for 20 minutes. To clean the obtained particles, water was 

added under sonication and centrifuged again until the particles were 

totally cleaned. Finally, the obtained seeds were dried at 100 ℃. 
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 LTA seeding solution was prepared with previously synthesized 

LTA nanoseeds37.  

LTA nanoseed synthesis: a first solution ‘A’ containing 0.19 g NaOH, 

14.885 g H2O, 53.01 g TmAOH (tetramethylammonium hydroxide) was 

prepared and left stirring for 30 minutes until total homogenization. This 

first solution ‘A’ was divided in two; ‘A1’ where 4.21 g of aluminium 

isopropioxide and ‘A2’ where 12 g of the silica source LUDOX 30 were 

added and both were left under stirring at room temperature for 2 hours. 

Once the two solutions were well homogenised they were mixed 

together and poured in a polypropylene bottle at room temperature 

under magnetic stirring for 4 days. After that, the mixture was placed 

into the oven at 80 ℃ for 24 hours. To recover the formed particles, the 

solution was stirred at 7500 rpm for 15 minutes. The supernatant was 

removed and the particles were cleaned with water under sonication and 

centrifuged again. This cleaning procedure was repeated until reaching 

pH 8. Finally, the sample was dried in a porcelain plate at 100 ℃. 

 

 MRP functionalization: zeolite membrane formation by 
hydrothermal synthesis 

 

Once the samples were seeded and dried, they were weighted to 

ensure that seeding procedure had succeeded. The next step of the 

procedure was to grow the zeolite membrane onto the surface of the 

magnetoelastic resonant platforms. For this purpose, the seeded 

magnetoelastic ribbons were placed in polypropylene bottles for the 

cases of FAU and LTA hydrothermal synthesis and in an autoclave for MFI 

synthesis, since higher temperatures were needed. Samples were placed 

vertically with the help of a little teflon cylinder inside the reactors. That 

cylinder maintains the samples vertical to facilitate the formation of the 

zeolite membrane all over the surface of the ribbon. As in the previous 

section, the synthesis of the different zeolite membrane is going to be 

described separately. 
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 FAU membrane hydrothermal synthesis: 

FAU membrane synthesis required two initial solutions. On the one 

hand, solution ‘A’ where 15.81 g H2O, 0.716 g NaOH and 0.25 g Al foil 

were mixed and left under magnetic stirring at room temperature until 

all the aluminium was dissolved. It took 2-3 hours time, depending on 

how small the pieces of the aluminium foil were cut. On the other hand, 

solution ’B’ where 22.59 g H2O, 0.83 g NaOH, 1.84 g TEOS and 7.05 g 

TEA (triethanolamine) were mixed and maintained under magnetic 

stirring until TEOS hydrolysis happened, at least 12 hours at room 

temperature. 

When both solutions were homogeneous, ‘A’ solution was filtered 

(Whatman No. 2) and slowly added to solution ‘B’ while being stirred, 

resulting in a final synthesis gel. This gel was then added to the 

polypropylene bottle where the magnetoelastic ribbon was vertically 

maintained and the hydrothermal synthesis took place into the furnace 

for 7 days at 85 ℃. Finally, the sample was taken out from the solution, 

cleaned with distilled water to eliminate the non-attached zeolite 

particles, dried and weighted. 

To perform this synthesis an ‘organic template’ (TEOS) was used to 

ensure the correct formation of the zeolite membrane. This organic 

template was filling the pores of the zeolite structure, so the elimination 

of this reactant is mandatory to be able to use the channels and pores of 

the zeolite for sensing purposes. In order to get the zeolite structure 

empty of the organic template, the sample was annealed at 280 ℃ for 

3 days. After this final treatment the samples was weighted again. The 

obtained film was characterized by XRD to ensure that the zeolite formed 

was the desired one. As can be observed in Figure 5.8, the measured 

diffraction pattern matches with the standard card of the FAU type 

zeolite. 
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Figure 5.8. X-ray difractogram of the synthesized FAU membrane and a standard FAU 

card to probe the structure of the obtained membrane. 

 

 MFI membrane hydrothermal synthesis: 

In this case, a unique solution was prepared by mixing 30 ml H2O, 

5.65 ml TpAOH and 10.2 ml TEOS. The solution was maintained under 

stirring until TEOS hydrolysis took place, at least 12 hours at room 

temperature. As in the seed synthesis, the odour of the solution changed 

when TEOS was hydrolysed. 

Once the synthesis solution was made, it was added carefully to the 

autoclave where the metallic ribbon was placed. It was closed and 

introduced into the furnace at 185 ℃ for 5 hours. After this, the autoclave 

was quickly cooled down with water to be able to take the sample out. 

Finally, the sample was cleaned with distilled water to eliminate the non-

attached zeolite particles. It was dried and weighted.  

As with the FAU zeolite case, TEOS ‘organic template’ was used to 

ensure the correct formation of the zeolite membrane. To eliminate it 

the sample was annealed at 280 ℃ for 5 days. After this final treatment 

the samples was weighted again. The obtained membrane was 
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characterized by XRD to ensure that the zeolite formed was the desired 

one. As can be observed in Figure 5.9, the obtained diffraction pattern 

matches with the standard card of the MFI type zeolite. 

 

 

Figure 5.9. X-ray difractogram of the synthesized MFI membrane and a standard MFI 

card to probe the structure of the obtained membrane. 

 

 LTA membrane hydrothermal synthesis: 

An initial solution containing 30 ml H2O and 2.96 g NaAlO2 was 

prepared at 50 ℃ stirring for 15-20 minutes, until the sodium aluminate 

was totally dissolved. This solution was then filtered (Whatman No. 2) 

and slowly added to 7.24 g NaSiO3 (liquid). A gel was formed blocking 

the magnetic stirrer and manual stirring with a spatula was needed to 

homogenise well the synthesized gel. 

This gel was added to the polypropylene bottle where the seeded 

sensing platforms were. The polypropylene bottle was put into the oven 

at 100 ℃ for 5 hours in order the hydrothermal synthesis to take. After 

this, the samples were taken out from the bottle and cleaned with 

distilled water to eliminate the non-attached zeolite particles. Finally, 
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they were dried, weighted and characterized by XRD to ensure that the 

zeolite structure matches with the standard LTA card. The obtained 

diffraction pattern can be observed in Figure 5.10. 

 

 

Figure 5.10. X-ray difractogram of the synthesized LTA membrane and a standard 

LTA card to probe the structure of the obtained membrane. 

 
5.2.3. Detection process and results for o-xylene 

 

The zeolite hydrothermal synthesis as well as the gas sensing 

experiments were carried out in the Laboratory of Composition and 

Applications of Microporous Materials, at FORTH Institute (Patras, 

Greece). A general view of the lab space where the sensing experiments 

were performed is presented in Figure 5.11.  
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Figure 5.11. Photograph of the laboratory space where the sensing experiments were 

performed. 

 

Ortho-xylene is an aromatic hydrocarbon with formula C6H4(CH3)2, 

with two methyl substituents bonded to adjacent carbon atoms of a 

benzene ring and a kinetic diameter of 6.8 Å38. It is a colourless, 

flammable liquid usually produced in petrochemical industries by the 

methylation of toluene and benzene. It is considered a harmful 

substance, labelled with different R and S phrases, as R11 (highly 

flammable), R20 ((harmful by inhalation), R21 (harmful in contact with 

skin), R38 (irritating to skin) or S2 (keep out of the reach of children) and 

S25 (avoid contact with eyes). As it is a hazardous substance that may 

cause nervous system depression as well as liver, kidney and lung 

damage, the detection of o-xylene concentrations in the atmosphere has 

proved to be of great importance to avoid health damage.  

The experimental set-up shown in Figure 5.11 for the sensing 

experiments is schematically presented in Figure 5.12 with some extra 

pictures showing in detail the different parts of the real system.  
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Figure 5.12. Experimental set-up scheme used to detect VOC’s using the zeolite 

covered magnetoelastic material. 

 

The sensing experimental set-up consist of a coil turned onto a glass 

tube where the gasses pass through creating a controlled atmosphere. 

The experiments were made in synthetic air atmosphere, the gas flow 

being driven by a mass flower controller. The gas flow was divided in two 

branches; the first one with only pure synthetic air, and the second one 

passing through the saturator where the o-xylene was in liquid state, in 

order to generate a saturated atmosphere. Those two branches converge 

again and with the help of a circuit of valves, the desired gas composition 

can be obtained. The desired o-xylene concentration was achieved by 

opening or closing the o-xylene path, as the branch of ‘only air’ branch 

was always kept open. Then the gas mixture (air or air + o-xylene) went 

through the sensing resonant platform which was located inside the glass 

tube surrounded by the coil. For the magnetoelastic resonance 

measurements, a microprocessor-controlled frequency generator drives a 

current amplifier connected to that single coil. It creates an alternating 



Chapter 5  

 

 

188 Ariane Sagasti 

magnetic field, which induces elastic waves on the sensor due to its 

magnetoelastic properties and, causes the mechanical vibration of the 

sample. When that mechanical vibration matches with the natural 

frequency of the sensor, magnetoelastic resonance occurs. The maximum 

measured frequency at that point is easily followed by an automatized 

set-up. Since the sample is inside the glass tube with the controlled 

atmosphere, the stream of gas passes through that glass tube getting in 

contact with the sensor. So, when the zeolite membrane deposited onto 

the magnetoelastic detects molecules of that gas stream, those 

molecules will be trapped into the membrane increasing the mass of the 

sensor and therefore decreasing its magnetoelastic resonance frequency.   

At the same time, the glass tube with the sensing platform inside 

and the coil wrapped around it were placed inside a small furnace. This 

was done prior to start with the sensing experiments, to ensure that the 

pores and cavities of the fabricated zeolites were empty of any gas or 

substance. For this purpose, the fabricated sensors, with the different 

zeolite membranes onto them, were left overnight inside the system with 

an air flow of 20 sccm at 100 ºC. This process is especially important to 

eliminate possible water vapour contained into the porous zeolite 

structures, from both channels and pores. After passing the whole night 

under such airflow, o-xylene detection started. 

The study of the change of the resonant frequency of the developed 

sensing platforms as the o-xylene concentration varies was performed by 

changing the o-xylene concentration within the ‘sensing chamber’. This 

was possible by using two mass flow controllers. Figure 5.13 shows a 

scheme of the detection procedure that has been followed in these 

measurements, AIR refers to only synthetic air flow and VOC refers to the 

o-xylene case, as this gas is a Volatile Organic Compound. Measurements 

were taken every 5 minutes, starting with an AIR flow of 50 sccm, during 

30 minutes. Afterwards, o-xylene flow was switched on, and a mixture 

of 50 sccm AIR and 10 sccm o-xylene passed through the system for 60 

minutes, taking measurements every 5 minutes. Finally, o-xylene flow 

was switched off and only AIR flow was measured for 30 minutes. This 

procedure was repeated by increasing the o-xylene concentration by 5 

sccm at each step until reaching 30 sccm, in order to get and analyse 
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the response of the sensor to different o-xylene concentrations. The gas 

sensing measurements were performed at room temperature. 

 

  

Figure 5.13. Scheme of the VOC detection process followed. 

 

The results obtained for the resonant platforms (MER, 

magnetoelastic resonator), together with the three different types of 

zeolites synthesized are presented and discussed in the following. 

 

 MRP + FAU detection results: 

For the sample coated with Faujasite zeolite the obtained results do 

not show the expected behaviour, as can be observed in Figure 5.14. The 

magnetoelastic resonant frequency should have to decrease when the o-

xylene flow was switched on, but the obtained response seems to be 

quite aleatory. In fact, it either increase or decrease when the VOC flow 

was on.  
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Figure 5.14. O-xylene sensing experiments with FAU zeolite. 

 

This phenomenon could be explained if the formed zeolite 

membrane was not homogeneously formed. The resonant frequency 

change does not seem to be related with the o-xylene concentration in 

the created atmosphere, as it happened in the other cases. 

 

 MRP + MFI detection results:  

The sample with the Movil Five synthesized zeolite was the one that 

gave the best systematic response to the o-xylene concentration 

detection. As Figure 5.15 shows, the initial resonant frequency of the 

sample in only air atmosphere was of about 139kHz, and when the 

atmosphere was a mixture of air and o-xylene, the presence of the xylene 

made the resonant frequency to decrease due to the adsorption of the 

xylene inside the porous structure of the zeolite. Moreover, the decrease 

of the resonant frequency become bigger with higher o-xylene 

concentrations, until reaching a saturation value. As can be observed in 

Figure 5.15, for o-xylene flows higher than 20 sccm, that “saturation” 

resonant frequency value was of about 132 kHz, most probably indicating 
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that all the pores and cavities of the zeolite structure were filled with the 

o-xylene gas molecules and therefore no more quantity could be retained 

in the structure. 

By performing this experiment, it was also possible to test the 

recovery process for the substrate (MER + zeolite). After any AIR + VOC 

measure during 60 minutes, a recovery period with only AIR was made 

during 30 minutes.  

 

 

Figure 5.15. O-xylene sensing experiments with MFI zeolite. 

 

As can be observed in Figure 5.15, it took  almost those 30 minutes 

to recover the initial ‘only air’ value of the resonant frequency of about 

139 kHz. This means that was not too difficult to get out the o-xylene 

from the pores and cavities of the zeolite and have it clean for the next 

experimental conditions. 

The o-xylene concentration was calculated from Raoult’s law 

assuming that the first air stream (through the bubbler) was saturated by 

organic vapor and knowing the vapor pressure of the o-xylene at room 

temperature, calculated from equation [5.1] (with temperature value in 

Kelvin the obtained pressure is given in Pascal): 
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 𝑃𝑉𝑂𝐶 = exp (𝐶1 +
𝐶2

𝑇
+ 𝐶3 ln 𝑇 + 𝐶4𝑇𝐶5) [5.1] 

 

where C1, C2, C3, C4 and C5 are constant values for each volatile 

organic compound39. For the o-xylene, the values are 90.3, -7948.3, -

10.08, 5.97·10-6 and 2 respectively, giving a vapour pressure value at 

room temperature (298K) of 880.95 Pa (0.008694 at). 

With the concentration values of o-xylene given in ppm, the 

response and sensitivity of our sensor can be analysed. Figure 5.16 shows 

the obtained shift in the resonance frequency due to the different 

concentrations of o-xylene. As can be clearly observed the frequency 

smoothly increases with the VOC concentration until reaching a steady 

value. At lower concentrations of o-xylene the shift of the resonance 

frequency is higher, nevertheless it seems that at certain concentration 

the zeolite is not able to retain more quantity of xylene and the shift on 

the frequency remains almost constant. The obtained experimental 

values polynomial fitting agrees with a second order expression, as it 

happened in the obtained curves for the polymer depositions. 

 

 

Figure 5.16. Resonant frequency shift due to o-xylene increasing concentration with 

MFI zeolite. 
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The sensitivity of our sensor can be estimated from the linear fitting 

of the obtained values for low o-xylene concentrations being about 0.5 

Hz/ppm (see Figure 5.17). It has been also taken into account that there 

is a saturation detection limit of about 13000 ppm. 

 

 

Figure 5.17. Sensitivity results for low o-xylene concentrations with MFI zeolite. 

 

 MRP + LTA detection results: 

The Lynde Type A sample gave intermediate results if compared 

with the obtained behaviours with the FAU and MFI samples. Performed 

measurements in this last case are presented in Figure 5.18, and a 

decrease of the resonance frequency can be observed when o-xylene 

was present in the atmosphere. Due to initial technical problems, 

because the sample does not seem to be totally humidity free, the 

obtained values for the initial AIR and AIR + 10 sccm o-xylene, cannot 

be taken into account. In the subsequent measurements the expected 

behaviour appeared, being the initial resonance frequency value in only 

air atmosphere of about 128 kHz, and always decreasing when the o-

xylene concentration increased. In this case, the variation of the 
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resonance frequency (and also the sensitivity to the detection) is lower 

than in the case of the MFI zeolite: an abrupt initial change and only of 

about 2 kHz and almost constant once the o-xylene has been applied. 

This phenomenon could be explained taken into account the pore 

size of the both structures. LTA membrane is formed by channels of pores 

of  4.2 Å  of diameter, while MFI channels have a diameter of 5 Å. Due 

to this difference in the pore size, xylene molecules can penetrate better 

in MFI structure where pores are bigger, giving a higher change in the 

resonance frequency of the system when same flow conditions are 

compared. 

 

 
Figure 5.18. O-xylene sensing experiments with LTA zeolite. 

 

As can be observed in Figure 5.18, in LTA sensing experiments there 

is not a gradual and progressive insertion of the o-xylene molecules 

inside the zeolite membrane. The change of the resonance frequency is 

always abrupt and of about 2 kHz, what let us think that there is no 

adsorption of the o-xylene inside the membrane of the LTA. As LTA is 

the studied zeolite with the smallest pore size, o-xylene may not be small 

enough to go inside the membrane. Therefore, o-xylene molecules can 

only be attached to the surface of the zeolite membrane. This causes 
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that rapid change on the resonant frequency without a gradual decrease 

of it, as it happened in the MFI study. 

O-xylene whole molecule’s kinetic diameter (6.8 Å) seems to be big 

if compared with the MFI (5 Å) and LTA (4.2 Å) channels size. However, 

the kinetic diameter of the benzene ring (5.85 Å) and the methyl group 

(2 Å, Van der Waals radius), matched and is slightly smaller, respectively 

than the pore size of the MFI zeolite. Because of this fact, MFI measured 

sensing ability turns out to be better than when using LTA zeolite.  

 

5.3. Summary and conclusions 

 

The results shown in this chapter demonstrate that it is possible to 

fabricate a magnetoelastic resonance-based device for gas sensing 

purposes, provided that the surface of the magnetoelastic strip is properly 

functionalized. 

Resonant platforms of composition Fe64Co21B15 in the form of 

ribbons have been fabricated using the melt spinning technique. Such 

platforms have good magnetic and magnetoelastic properties, which 

make them suitable for sensing applications. 

Additionally, a protective layer was needed to improve the corrosion 

resistance of the alloys as later processes involve alkali water media. For 

that purpose, a titanium protective layer was sputtered onto the surface 

of the ribbons on both sides. Although other metals were tested as 

protective layers, titanium  was the one with the best adhesion and 

sensing ability results, as gold detached from the surface of the ribbons 

and chromium did not allow to sense the target analyte. 

Finally, the active layer was deposited onto the protected ribbon. 

Three samples were studied simultaneously having one different zeolite 

each; Faujasite (FAU), Movil Five (MFI) and Lynde Type A (LTA). In order 

to have more reactive surface, both sides of the samples were covered 

with the titanium and the zeolite membranes. The formation of the 

zeolite membrane took place in two steps; first, a seeding procedure was 
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made and then the hydrothermal synthesis of the zeolites was carried 

out. 

The synthesis processes for used zeolites was different starting from 

the seeding process. In the case of the FAU synthesis, commercial powder 

was used to fabricate the seeding solution while for the case of MFI and 

LTA, the seeds were fabricated following a recipe found in literature. 

After the seeding process, the hydrothermal synthesis of the zeolites took 

place to cover the magnetoelastic material surfaces. After that an 

annealing treatment was needed for the FAU and MFI zeolites, due to 

the presence on the synthesis of an organic template that was filling the 

pores and channels that will be needed for the sensing experiments. 

All the samples were characterized by XRD measurements to ensure 

the structure of the formed zeolite. 

Once the sensors were made, sensing experiments were carried out 

with a totally homemade system. A gas stream passed though the sensor 

and changes on the resonant frequency of the system were observed 

when the gas flow contained o-xylene in it. 

Results obtained for the three zeolites showed that some problems 

occurred in the FAU synthesis as the behaviour of the sensor was not the 

expected one, probably due to the bad formation of the zeolite 

membrane. 

In the case of the LTA sensor, some response was observed when 

the o-xylene concentration increases, nevertheless the initial measures 

reveal also a problem on the system. 

Finally, the results obtained for the MFI sample reveal that this was 

the best fabricated sensor. O-xylene is gradually adsorbed by the MFI 

membrane, decreasing in consequence the resonance frequency of the 

sensor and making possible the detection of the o-xylene concentrations 

in air atmospheres. The obtained sensitivity value for this sensor has been 

of about 0.5 Hz/ppm. The higher limit of detection until the membrane 

was not able to trap more o-xylene was of about 13000 ppm, giving an 

almost constant frequency change of about 5.75 kHz. For this system, 

there was a good relationship between the concentration of o-xylene in 
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the atmosphere and the change on the resonance frequency. It has also 

been observed that the recovery time for this system was not too large, 

as in 30 minutes in air atmosphere the sample recovered the initial 

resonance frequency value. 
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6. General conclusions and open 

perspectives 
_____________________________________________ 

 

 

This last chapter summarizes the obtained conclusions from each 

experimental chapter: first, concerning the parameters affecting the 

sensing device itself as the characteristics of the magnetoelastic metallic 

glass as well as its functionalization by using an active layer as a polymer 

(like Polystyrene); second the zinc oxide deposition methods, the 

calculation of the zinc oxide Young modulus value and the hydrogen 

peroxide sensing ability of the hemoglobin coated metglas/ZnO system; 

and finally the resonant platform surface functionalization with zeolites, 

their characterization and o-xylene sensing ability. To conclude this PhD 

report, some open perspectives and future lines of work will be indicated. 
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6.1. General conclusions 

 

 

The most important conclusion derived from this thesis is that 

magnetoelastic resonators can be functionalized with properly chosen 

active layers in order to develop biological and chemical sensing devices. 

In particular, 

 

 In Chapter 3 it has been proved that it is possible to coat 

the homemade magnetoelastic ribbons with polystyrene. Nevertheless, 

due to the high roughness of the as quenched amorphous ribbons, a 

previous acid treatment is needed to ensure the good adherence between 

the magnetoelastic strip and the polymer. The deposition process was 

carried out by the dip coating technique. In order to obtain a homogenous 

polymer film covering the amorphous alloy, several factors affecting the 

film layer formation must be taken into account: the concentration of 

the dipping solutions, the immersion time, and the solvent used, as the 

most important ones. It has been observed that the employed solvent 

influences the amount of mass deposited, as the mass quantities 

obtained by using THF and toluene are different even by following the 

same deposition procedure. This has been attributed to the solvent 

inherent properties, as they have different polarity and water miscibility. 

More experiments about the influence of the solvent and of the substrate 

must be perform to understand properly these processes. 

Concerning the magnetoelastic resonators and taking into 

account that for our purposes many of the experiments will be performed 

in water solution, we have been able to fabricate Cr containing metallic 

glasses that show high corrosion resistance properties, and to proceed to 

their full characterization. About the parameters affecting the sensing 

ability of these magnetoelastic resonators, a comparison of the obtained 

sensitivity and quality factor of different length ribbons and at different 

applied magnetic fields was performed. It has been observed that the 

most sensitive device to the deposited mass is, as expected, the smallest 

one (L = 1 cm) since it shows the highest Q value. Linearity has been 

observed in the initial deposition processes when the deposited mass is 

really small. Nevertheless, theoretical prediction about the linear 
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dependence of the mass change to resonant frequency change with slope 

0.5 needs of a deep revision. 

 

 In Chapter 4 it has been demonstrated that it is possible to 

directly coat a magnetoelastic amorphous commercial material (Metglas 

2826MB3) with a zinc oxide active layer by properly controlling 

parameters such as the temperature or time of the ZnO synthesis 

conditions. From the obtained results, it was concluded that the best way 

to deposit a homogenous layer of ZnO is by making a direct casting with 

the previously synthetized ZnO nanoparticles. By performing successive 

depositions following that procedure it has been possible to determine 

the Young modulus of the deposited ZnO film, that has been calculated 

to be of about 60 GPa for a 1 µm thick ZnO layer. 

The deposition of ZnO as active layer allows us to fabricate 

a biosensor to monitor the oxidation of the hemoglobin protein (attached 

to the ZnO layer) with hydrogen peroxide. The fabricated sensor was 

used to simultaneously follow the process by two different methods: 

cyclic voltammetry (CV) and magnetoelastic resonance. Concerning CV 

measurements catalysis currents increase linearly with the 

H2O2concentration in a wide range of 25-350 μM. The detection limit is 

25-50 μM and the Metglas/ZnO/Hb electrode displays rapid response (30 

s) to H2O2, and exhibits good stability and reproducibility of the 

measurements. On the other hand, the performed magnetoelastic 

measurements show a small linear mass increase versus the 

H2O2concentration with a slope of 152 ng/μM, a mass change that is most 

probably due to H2O2adsorption in ZnO during the electrochemical 

reaction. 

 

 Results shown in Chapter 5 demonstrate that it is possible 

to fabricate a magnetoelastic resonance based device for Volatile Organic 

Compounds (VOC) sensing purposes with zeolites working as active layer. 

In this case, the sensor was fabricated by using a homemade amorphous 

ribbon of composition Fe64Co21B15, which had to be protected before 

zeolite membrane formation with a passive layer of titanium, in order to 

avoid corrosion processes during the zeolite synthesis processes. Three 
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different zeolite types have been hydrothermally synthesized onto the 

surface of the magnetoelastic material: Faujasite (FAU), Movil Five (MFI) 

and Lynde Type A (LTA), and characterized using XRD. 

Sensing experiments were performed to detect o-xylene, a 

hazardous volatile organic compound. No sensing response was obtained 

for FAU zeolite containing resonant platform, probably because of a bad 

formation of the zeolite membrane during the hydrothermal synthesis. 

For LTA zeolite containing sensor, some response was observed but it 

was probably due to a superficial attachment and not to an adsorption 

process, as the resonance frequency change instead of increasing with 

the increasing concentration of gas, turns out to be abrupt and almost 

constant and about 2 kHz for all the concentrations. The best results were 

obtained for the MFI sample, where the o-xylene is gradually adsorbed, 

decreasing in consequence the resonant frequency of the sensor. For MFI 

sample, the obtained sensitivity was of about 0.5 Hz/ppm. 

 

6.2. Open perspectives 

 

This work has generated new doubts and has opened new routes 

for us to continue the research on magnetoelastic resonators by studying 

the different processes to fabricate such sensing systems. Thus, we would 

like to get deeper in the functionalization processes of the 

magnetoelastic ribbons for specific chemical or biological target 

molecules: 

 

• Trying to improve the zeolite synthesis onto the 

magnetoelastic materials in order to have a well fabricated 

membrane that will be able to discriminate different but at the 

same time similar gases, in order to have a more specific 

detection system. 

 

• Using new semiconductors as active layers, as for example 

SnO2, which is much more conducting than ZnO and that can 
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easily and reproducibly be prepared by a low temperature route. 

This tin oxide has already been successfully deposited onto IOT-

PET plastic substrates, and has proved to be useful to properly 

attach hemin. Hemin is a much smaller molecule that 

hemoglobin, that could be attached easily on the surface of the 

deposited SnO2 film and could be used to follow the 

electrocatalytic reduction of the H2O2.  

 

• By choosing new types of active layers: another good 

alternative to functionalize the surface of the homemade 

amorphous ribbons would be Metal-Organic Frameworks, MOFs. 

Those MOFs are compounds consisting of metal ions or clusters 

coordinated to organic ligands to form three-dimensional porous 

structures. Due to the presence of organic ligands they can be 

synthesised to selectively adsorb pollutant compounds as Volatile 

Organic Compounds (VOCs). Therefore, by covering our 

magnetoelastic ribbons with these MOFs, it could be possible to 

detect different kinds of gases as toluene, for example. 

 

On the other hand, it would be interesting to follow with the 

analysis of the parameters affecting the sensing ability of those 

magnetoelastic resonant platforms: 

 

• On one hand, by going deeper in the study of the quality 

factor Q, trying to study the best way to determine it, and the 

parameters affecting it. 

 

• On the other hand, by improving the fabrication of smaller 

magnetoelastic resonators of about a few millimetres. A 5 mm 

resonator will have not only a very low mass value but also a 

resonant frequency about 1 MHz, facts that lead directly to a high 

sensitivity for chemical and biological detection.  
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