

Linked Data Wrapper Curation: A

Platform Perspective

Dissertation

presented to

the Department of Computer Languages and Systems of

the University of the Basque Country

in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

Iker Aitor Azpeitia Lakuntza

Supervisors: Prof. Dr. Oscar Díaz García and

Prof. Dr. Juan Ignacio Iturrioz Sánchez

San Sebastián, Spain, 2017

(cc)2017 IKER AITOR AZPEITIA LAKUNTZA (cc by 4.0)

This work was hosted by the University of the Basque Country (Faculty

of Computer Science).

Every living creature is happy when he fulfills his destiny, that is, when

he realizes himself, when he is being that which in truth he is. For this

reason, Schlegel, inverting the relationship between pleasure and destiny,

said, “We have a genius for what we like.” Genius, man’s superlative gift

for doing something, always carries a look of supreme pleasure.

– José Ortega y Gasset

Summary

Linked Data Wrappers (LDWs) turn Web APIs into RDF end-points, lever-

aging the LOD cloud with current data. This potential is frequently un-

dervalued, regarding LDWs as mere by-products of larger endeavors, e.g.

developing mashup applications. However, LDWs are mainly data-driven,

not contaminated by application semantics, hence with an important poten-

tial for reuse. If LDWs could be decoupled from their breakout projects,

this would increase the chances of LDWs becoming truly RDF end-points.

But this vision is still under threat by LDW fragility upon API upgrades,

and the risk of unmaintained LDWs. LDW curation might help. Similar to

dataset curation, LDW curation aims to clean up datasets but, in this case,

the dataset is implicitly described by the LDW definition, and “stains” are

not limited to those related with the dataset quality but also include those

related to the underlying API. This requires the existence of LDW Plat-

forms that leverage existing code repositories with additional functionali-

ties that cater for LDW definition, deployment and curation. This disser-

tation contributes to this vision through: (1) identifying a set of require-

ments for LDW Platforms; (2) instantiating these requirements in SYQL,

a platform built upon Yahoo’s YQL; (3) evaluating SYQL through a fully-

developed proof of concept; and (4), validating the extent to which this

approach facilitates LDW curation.

Resumen

El término “software wrapper” lo podríamos traducir como encapsulador,

y se define como el software que encapsula otro software (o datos) para

que pueda ser utilizado en un nuevo sistema. Los Linked Data Wrap-

pers (LDW) convierten en datos semánticos RDF (Resource Description

Framework) los datos que los sitios web exponen a través de sus APIs (Ap-

plication Programming Interface). De este modo, los LDWs ofrecen en la

nube de datos enlazados (Linked Open Data -LOD- cloud) información

generada por los usuarios en los sitios web. El ejemplo más conocido es

DBpedia, representación semántica en RDF de los datos de la Wikipedia.

Los LDW deben cumplir los cuatro principios del Linked Data (LD):

• nombrar los recursos en la web mediante URIs (Uniform Resource

Identificator);

• utilizar URIs HTTP (HyperText Transfer Protocol) para consultar

dichos identificadores;

• cuando alguien consulte una URI, ofrecer información útil mediante

el uso de estándares; e

• incluir enlaces a otras URIs para descubrir nuevos recursos.

Para lograrlo, los LDWs deben convertir las consultas a URIs en llamadas

a APIs web (lo que se conoce como lowering) para obtener datos RDF a

partir de los datos devueltos por la API (conocido como lifting).

Por lo tanto, los LDWs son encapsuladores de datos y, por ello, no están

contaminados con la lógica de la aplicación que los utiliza. Sin embargo,

la mayoría de LDWs están embebidos en las aplicaciones (por ejemplo,

en mashups) limitando su potencial de reutilización. Si se segregaran de

la aplicación aumentarían las posibilidades de convertirse en verdaderas

fuentes de datos RDF. No obstante, la estrecha vinculación de los LDWs

con la API web encapsulada lo dificulta. La continua evolución de las APIs

y la falta de adaptación de los LDWs a estos cambios son una amenaza para

su funcionamiento a largo plazo.

El mantenimiento de los LDWs ofrece una alternativa para su reuti-

lización. Del mismo modo que se realiza mantenimiento de las Bases de

Datos RDF, se puede optar por realizar mantenimiento de los LDWs. En

el caso de los LDWs, la Base de Datos RDF está implícitamente definida

en el propio LDW en tanto en cuanto encapsula una API web. A ello hay

que añadir que los “problemas” de mantenimiento no se limitan única-

mente a la calidad de los datos generados, también se extienden a aquellos

derivados de la API. Es decir, las APIs evolucionan obligando a las apli-

caciones que las utilizan a modificar su código. Estas dos vertientes del

mantenimiento, a saber, la calidad de los datos generados y la evolución de

las APIs, dificultan el mantenimiento y hacen los LDWs aún más frágiles.

Todo ello obligaría a una mayor atención de los programadores encargados

del mantenimiento. Sin embargo, los recursos destinados al mantenimiento

suelen ser insuficientes, en especial, en los proyectos de investigación.

Teniendo en cuenta todo lo anterior, el mantenimiento de LDWs puede

beneficiarse de plataformas similares a los repositorios de código fuente,

eso sí, con nuevas funcionalidades que se ajusten a las necesidades de

definición, despliegue y mantenimiento de LDWs. Esta tesis contribuye

a esta visión: (1) identificando un conjunto de requisitos para las platafor-

mas de LDWs; (2) plasmando estos requisitos en SYQL, una plataforma

construida sobre Yahoo YQL; (3) evaluando SYQL en un caso de estu-

dio; y (4), validando hasta qué punto SYQL facilita el mantenimiento de

LDWs.

En torno a los LDWs se identifican tres actores: los creadores, los

consumidores y los conservadores (los encargados del mantenimiento).

Los requisitos de las plataformas de LDWs se definen en base a las necesi-

dades de los actores.

• Los creadores necesitan definir los LDWs y desplegarlos. Para definir

LDWs los creadores deben lidiar con la heterogeneidad de las APIs

en cuanto a protocolos de comunicación y formato de datos.

Un lenguaje declarativo de definición de LDWs ofrece un buen equi-

librio entre sencillez de definición y expresividad. Una vez definido,

el LDW debe desplegarse, es decir, registrarse y ponerse en ejecu-

ción. Las plataformas comprueban la corrección sintáctica de los

LDW y la posibilidad de ejecutarlos (por ejemplo, si tienen creden-

ciales o no).

• Los consumidores deben encontrar (descubrir) los LDWs adecua-

dos para sus proyectos, consultarlos para verificar su idoneidad y

que estos cumplan con su función de consulta de recursos (URIs).

La descripción semántica de LDWs mediante ontologías facilita el

descubrimiento de los servicios ligados al LDW y permite valorar su

idoneidad para cubrir las necesidades del consumidor. La descrip-

ción semántica de los LDWs suele hacerse habitualmente en térmi-

nos de datos de entrada y datos de salida. Por lo tanto, los LDWs

son también recursos Linked Data que pueden ser consultados. En

última instancia, la función de los LDWs es la de ofrecer una vía de

acceso semántica a los recursos ofrecidos por la API embebida.

• Los conservadores precisan ser conscientes de los problemas de

mantenimiento de cada LDW y tener los medios para resolverlos.

Para ello, deben ser alertados de errores o deficiencias que requieran

una actualización del LDW. Una vez alertados, la plataforma debe

ofrecer herramientas para resolver los problemas detectados.

La plataforma Semantic YQL (SYQL) implementa estos requisitos so-

bre Yahoo YQL. La elección de Yahoo YQL sobre la que construir una

plataforma de LDWs no es baladí. Téngase en cuenta que Yahoo YQL

ofrece un lenguaje susceptible de ser utilizado para definir LDWs, un mo-

tor de ejecución eficaz y una comunidad de programadores. Para atraer a

los programadores de Yahoo YQL, se ha mantenido en lo posible su flujo

de trabajo habitual. Además, se han realizado añadidos sobre Yahoo YQL

que faciliten el mantenimiento sin necesidad de conocer el código interno

de los LDWs. Para ello, se ha optado por la ingeniería inversa que presenta

los LDWs como anotaciones semánticas de los datos devueltos por la API

encapsulada. Por lo tanto, SYQL permite la definición, despliegue y man-

tenimiento de los LDWs. Como elemento distintivo se puede mencionar el

testador de calidad o Health Checker. Un módulo que verifica la calidad

de los LDWs siguiendo criterios de calidad establecidos en la literatura

científica del área. La valoración de calidad se muestra en una página web

para conocimiento de los conservadores.

Esta tesis doctoral también evalúa SYQL desde la perspectiva de los

tres actores implicados. Un grupo de estudiantes ha actuado como pro-

ductor de LDWs en dos escenarios. En el primer escenario, los estudiantes

han producido un LDW desde cero, en el segundo, lo han creado a partir de

un artefacto YQL previamente existente. Estos artefactos, llamados Open

Data Table (ODT), permiten acceder a las APIs mediante el lenguaje de

consultas Yahoo Query Language (YQL). En resumidas cuentas, un LDW

no es más que un ODT extendido para describir el proceso de lowering y el

de lifting. Los resultados de la evaluación indican que la mayor dificultad

estriba en saber emparejar atributos devueltos por la API y su correspondi-

ente propiedad semántica. Lógicamente, a mayor complejidad estructural

de los datos de la API (por ejemplo, valores multivaluados) mayor dificul-

tad para emparejarlos.

Para los consumidores, el criterio más relevante a la hora de hacer uso

de los LDWs es el tiempo de respuesta (latencia) y cómo se degrada en

escenarios de múltiples accessos concurrentes. Para cuantificarlo, se han

simulado peticiones de acceso a la API en tres escenarios: (1) accediendo

directamente a la API web, (2) accediendo a través de un wrapper externo,

y (3) utilizando un LDW de SYQL. Las mediciones indican que, debido a

las indirecciones, SYQL introduce mayor retraso en la latencia media que

las otras dos alternativas. Pero sin embargo, hay que tener en cuenta que la

latencia media es menor que un segundo, lo cual es asumible por muchas

aplicaciones. Por otro lado, el motor de ejecución de Yahoo YQL balancea

los múltiples accesos paralelos entre diferentes servidores. De este modo,

la degradación en SYQL es imperceptible, mientras que el wrapper externo

se degrada en exceso.

Por su parte, otro conjunto de alumnos actuando de conservadores ha

evaluado las herramientas que SYQL les ofrece para mantener los LDWs.

Concretamente, han actualizado LDWs mediante una herramienta de ano-

tación que aplica la ingeniería inversa. Para ello han abordado cinco tareas

de mantenimiento en diferentes escenarios: evolución de la API, actual-

ización de la ontología, y cambios en el LOD cloud. Se han medido los

tiempos en completar las tareas y se ha recopilado su satisfacción. La valo-

ración ha sido positiva en general y los tiempos de realización de las tareas

han sido relativamente bajos, teniendo en cuenta que los conservadores

modifican LDWs que no han desarrollado ellos mismos.

Por lo tanto, los resultados de la evaluación son prometedores. Pero la

idoneidad del enfoque planteado en esta tesis, es decir, la externalización

de los LDWs a plataformas de LDWs para su mantenimiento por la co-

munidad, se verá confirmada cuando usuarios reales creen, consuman y

mantengan este tipo de LDWs. Como primer paso en esa dirección ofre-

cemos los LDWs creados en esta tesis y el código fuente de SYQL para

que puedan ser descargados, adaptados e instalados. Otras líneas de tra-

bajo son la generalización de los LDWs a otros lenguajes y motores de

ejecución (quizás PHP), la aplicación del Health Checker a otras fuentes

de datos en el LOD cloud (por ejemplo, DBpedia) y el estudio de nuevos

criterios de calidad (en concreto, la fiabilidad de los enlaces entre fuentes

de datos).

Contents

1 Introduction 1

1.1 Overview . 1

1.2 The Problem . 1

1.3 Contributions . 4

1.4 Design Science Research Approach 5

1.5 Outline . 6

1.6 Conclusion . 8

2 Practice 9

2.1 Overview . 9

2.2 Linked Data Wrappers 10

2.3 The Practice: Linked-Data Wrapping 11

2.3.1 LDWs Embedded in Linked Data Applications . . 13

2.3.2 LDWs as Separated Artifacts 15

2.4 The Case for LD Applications 19

2.4.1 CMS Platforms: WordPress 20

2.4.2 Task Automation Services: TABASCO 22

2.4.3 RDF Graph Visualizers: LODmilla 24

2.4.4 Semantic Mashups: LinkedWidgets 26

2.5 Conclusion . 28

3 Requirements 29

3.1 Overview . 29

3.2 Requirements for LDW Platforms 30

xv

Linked Data Wrapper Curation: A Platform Perspective

3.2.1 Producer Requirements 30

3.2.2 Consumer Requirements 31

3.2.3 Curator Requirements 32

3.3 Conclusion . 33

4 Realization 35

4.1 Overview . 35

4.2 A Platform for LDW Management: Architecture 36

4.2.1 YQL Basics . 36

4.3 Addressing Producer Requirements 39

4.3.1 Allow for LDW Definition 40

4.3.2 Allow for LDW Deployment 42

4.4 Addressing Consumer Requirements 44

4.4.1 Allow for LDW Discovery 44

4.4.2 Allow for LDW Lookup 45

4.4.3 Allow for Resource Lookup 46

4.5 Addressing Curator Requirements 48

4.5.1 Allow for Spotting Stains 49

4.5.2 Allow for Cleaning up Stains 52

4.6 Conclusion . 55

5 Validation 57

5.1 Overview . 57

5.2 Producer Perspective . 58

5.2.1 Measuring Effectiveness 58

5.3 Consumer Perspective . 61

5.3.1 Measuring URI-Dereferencing Latency 62

5.3.2 Measuring URI-Dereferencing Scalability 63

5.4 Curator Perspective . 64

5.4.1 Measuring Efficiency and Satisfaction 65

5.5 Comparing SYQL with other Platforms 68

5.6 Conclusion . 71

xvi

CONTENTS

6 Writing in the LD Cloud 73

6.1 Overview . 73

6.2 Definition . 73

6.3 Deployment . 76

6.4 Resource Insertion . 76

6.5 Spotting Stains . 77

6.6 Cleaning up Stains . 78

6.7 Conclusion . 79

7 Proof of Concept 81

7.1 Overview . 81

7.2 TAg-BASed inter-site COmmunication 82

7.3 Adding a New Site . 85

7.4 Credentials Management 88

7.5 Reactive Tag Definition 91

7.6 Conclusion . 93

8 Conclusions 97

8.1 Overview . 97

8.2 Results . 98

8.3 Publications . 99

8.4 Assessment and Future Research 100

8.5 Conclusion . 103

A SYQL Implementation 105

A.1 Java Project . 105

A.2 SYQL Storage . 105

A.3 SYQL Front-end . 107

A.4 SYQL Back-end . 108

B Demonstration 111

B.1 Overview . 111

B.2 Installation . 111

xvii

Linked Data Wrapper Curation: A Platform Perspective

B.3 LDW Definition . 112

B.4 LDW Deployment . 112

B.5 LDW Discovery . 113

B.6 LDW Lookup . 113

B.7 Resource Lookup . 114

B.8 Spotting Stains . 114

B.9 Cleaning up Stains . 115

Bibliography 117

xviii

List of Figures

1.1 Overview of the method framework for design science [JP14] 6

1.2 Chapter map . 8

2.1 Linked Data publishing options and workflows [HB11] . . 11

2.2 General architecture of LD Applications [SAD+14] 13

2.3 From Flickr API output (left) to URI-addressable resource

(right) . 14

2.4 Externalizing LDW concerns into a dedicated platform . . 19

2.5 WordPress editors: (a) Post editor and (b) plug-in editor . . 21

2.6 A schema:VideoObject Rich Snippet 21

2.7 Reactive Tag running example:“toshare” 23

2.8 LODmilla exploration graph 25

2.9 LinkedWidgets mashup 26

2.10 The vision: LDWs are created, upgraded and used by the

community . 27

4.1 SYQL main components 36

4.2 YQL Console. The "Annotation View" tab is added for

LDW curation . 37

4.3 ODT flickr.photos.info 38

4.4 An LDW template to be completed 39

4.5 YQL Editor Console. Turning the ODT in Figure 4.3 into

an LDW . 40

xix

Linked Data Wrapper Curation: A Platform Perspective

4.6 SYQL Verification window. Acknowledgement messages

at deployment time . 42

4.7 Metadata for the flickr.videoobject LDW in DataHub . . . 43

4.8 Individuals and LDW representations 44

4.9 Flickr.videoobject LDW VoID description 45

4.10 URI lookup sequence diagram. The “alt” deviation tackles

the consumer-provided API-key scenario 47

4.11 Health Checker Console 48

4.12 YQL Console augmented with the Annotation View tab . . 53

4.13 Credentials and URI Example curation window 54

6.1 An LDW template with the insert operation to be com-

pleted . 74

6.2 YQL Editor Console. The wordpress.weblog LDW 75

6.3 Resource creation sequence diagram 76

6.4 Lowering mapping editor 79

7.1 Adding a new site to TABASCO 86

7.2 Wordpress entry point and GET operation descriptions . . 87

7.3 POST operation description 88

7.4 Account form requesting required data 89

7.5 TABASCO tabs: a) granting TABASCO access to your ac-

counts; b) requesting authorization on someone else’s ac-

count; and c) managing authorization petitions on your ac-

counts . 90

7.6 From a schema:VideoObject item to a tsioc:BlogPost item 93

7.7 Reactive Tag running examples:“toshare” & “review” . . 94

A.1 Required libraries at the lefthand and packages/classes at

the righthand . 106

A.2 SYQL storage component diagram 107

A.3 SYQL front-end components diagram (simplified SYQL

storage component) . 108

xx

LIST OF FIGURES

A.4 Wrapper interface . 109

A.5 WrapperFactory interface 109

A.6 SYQL back-end components diagram (simplified SYQL

storage component) . 110

xxi

List of Tables

2.1 LDW approaches . 16

2.2 Spotting and Cleaning activities during data curation . . . 17

4.1 Quality dimensions. “Abr” stands for the abbreviation

used in [ZRM+16] . 50

5.1 SYQL realization of the requirements for LDW Platforms . 58

5.2 Effectiveness: (a) from ODT to LDW, (b) from API to LDW 60

5.3 Latency average values (ms) 63

5.4 Median latency values based on a number of threads (ms) . 63

5.5 Time spent on each task (in minutes) 67

5.6 Satisfaction assessment: from 1 (“total disagreement”) to

5 (“total agreement”) . 68

5.7 LDW Platform’s requirement compliance 69

6.1 Quality dimensions for the writing operation. “Abr” stands

for the abbreviation used in [ZRM+16] 78

xxiii

Chapter 1

Introduction

“Tell me to what you pay attention and I will tell you who you are.”

– José Ortega y Gasset

1.1 Overview

This chapter introduces Linked Data (LD) wrapping related concepts, ideas

and problems. Concretely, design science research is applied to analyze

problems in web API wrapping for the Linked Data cloud. So, this chapter

frames the Thesis and establish the context to understand the rest of the

dissertation.

1.2 The Problem

Web APIs are an important source of current data. The importance of APIs

for external data consumption should not be underestimated. According to

a report by the Harvard Business Revue, Salesforce generates 50% of its

revenue through APIs, Expedia generates 90%, and eBay, 60%, to name a

few [IS15]. This explains the exponential growth in API figures [Wen17].

1

Linked Data Wrapper Curation: A Platform Perspective

Unfortunately, less than 0.5% of APIs export their data using an RDF data

format [DV17], being JSON-LD the preferable RDF format [SLK+17].

This might be due to several circumstances: technical (i.e. mapping the

underlying data representation to Linked Data formats might not be triv-

ial), social (i.e. no demand on Linked Data representation by the service

community) or financial (i.e. no clear business model). Fortunately, in

case the data is available under a liberal license, producers can wrap these

services to expose Linked Data. Indeed, in the 2017’s Linked Open Data

(LOD) cloud diagram [AMB+] 36 datasets qualified as wrappers1. We

focus on this kind of wrappers [BB, BCG07].

Commonly, LDWs are regarded as by-products of larger endeavors,

e.g. developing a mashup application. Each application develops its own

LDW, and its usage tends to be limited to this application. Hence, the

LDW lifecycle is that of the containing application. The idiosyncratic and

short-lived nature of some semantic applications might lead to abandon

the application, and thus, leaving the LDW unmaintained. Indeed, it is

not rare the case of LDWs that properly worked at the time they were

launched, but they were no longer up at the time of this writing: Flickr

wrappr [BB], GoogleArt project to RDF [Gué11], OAPI2LOD IATI parser

[Gdb12], GeoNames wrapper [SH10] or Twitter wrapper [Twi].

The problem is then not so much about LDW development but about

unmaintained LDWs. This is unfortunate since it undermines the role of

LDWs as a sustainable foundation for both the Web of Data and Semantic

Applications. Causes may be many-fold: lack of interest, lack of recogni-

tion, lack of usage, lack of resources, etc. This dissertation addresses three

main causes:

1. LDWs’ lifecycles are coupled to those of the breakout projects. Once

projects are over, so is the maintenance of the attached LDWs,

2. LDW maintenance penalty is high. This is mainly due to LDW

1Search conducted in https://datahub.io for the keyword “wrapper” in
March, 2017.

2

Chapter 1. Introduction

fragility upon API upgrades,

3. the shortage of people involved. Traditionally, this is the case of

research groups which might lack the resources for keeping LDWs

up and running.

To lessen these causes, this dissertation resorts to LDW curation. Curation

is not new to the LOD world. Evidences on LOD’s mistakes and incom-

patibilities [HUH+12] gave rise to the interest in data curation. More to the

point, the fact that a dataset’s own quality might impact the quality of other

datasets that link to it, is being argued as “an incentive to clean stains in

LOD that goes beyond that of the original dataset creators” [BRB+14]. If

this is so for explicit datasets, similar concerns can be risen from implicit

datasets, i.e. LDWs. Different projects (e.g. Virtuoso Sponger [EM10]

and Bio2RDF [CCTAD13]) resort to GitHub repositories for developers to

clone LDWs; next, curate them in a different GitHub branch, and finally,

send a pull request to modify the master distribution.

LDWs are code and hence, they can resort to general facilities for code

artifacts, e.g. code repositories like GitHub. But, can we do better? After

all, LDWs realize the definition of implicit datasets whose “stains” are

not limited to those preventing the code from functioning but also those

related with the quality of the dataset being obtained. Beyond general-

purpose code repositories like GitHub, LDW-specific platforms could well

cater for the specifics of LDWs. This includes LDW deployment but also

supporting specific functionalities for LDW curation. Such platforms can

act as repositories where LDWs can outlive their original applications, and

most importantly, where third parties can tap into. Re-use increases the

number of actors interested in keeping LDWs in shape, inspiring others to

share LDW maintenance burden (i.e. the curators).

This dissertation contributes to this vision through: (1) identifying a set

of requirements for LDW Platforms; (2) instantiating these requirements in

SYQL, a platform built upon Yahoo’s YQL; (3) evaluating SYQL through

a fully-developed proof of concept; and (4), validating the extent to which

3

Linked Data Wrapper Curation: A Platform Perspective

this approach facilitates LDW curation.

1.3 Contributions

This dissertation addresses the unmaintained Linked Data Wrappers prob-

lem through an LDW Platform. The main contributions are:

• Set the LDW curation as a main task in the LDW lifecycle. This dis-

sertation advocates for externalizing LDWs to increase their lifespan

which contrast with ad-hoc and application built-in wrappers. This

introduces new challenges, how to detach LDWs from applications

and how to boost LDWs adaptation to the changing context in which

they run.

• Characterize LDW Platforms. Three interdependent stakeholders in-

volved in the LDW lifecycle are described: Producers, Consumers

and Curators. Requirements for LDW Platforms from the stakehold-

ers perspective are established: LDW definition and deployment;

LDW discovery and lookup; Resource lookup; and, quality issues

detection and solution.

• Instantiate an LDW Platform. A platform fulfilling requirements has

been instantiated for Yahoo’s YQL resulting on the Semantic YQL

(hereafter SYQL /sIlk/). LDWs for SYQL are based on the YQL

language and engine in order to take advantage of the YQL pro-

grammers community.

• Evaluate the SYQL platform from the stakeholders perspective. In

addition, SYQL suitability as data layer for a data-intensive Linked

Data Application is checked. Both resource lookup and resource

insertion has been checked to validate the LD read-write feasibility.

The wrappers and the SYQL source code developed for this dissertation

are available on the Onekin Research Group GitHub. Concretely, the

4

Chapter 1. Introduction

LDW repository is at https://github.com/onekin/ldw and the

SYQL platform is at https://github.com/onekin/ldwServer.

A SYQL server is running at http://rdf.onekin.org. Here a demo

video is available showing briefly how to create, deploy and curate LDWs.

1.4 Design Science Research Approach

This dissertation involves the development of different artifacts. However,

this is a research project. Its purpose does not end with the development

of the artifact. Rather the artifact serves to sustain (or rebate) a hypothe-

sis through the evaluation of the artifact by the target audience. That is,

besides the development of the artifact, other main research activities are

involved. This requires the use of a "research methodology". This work

will be handled using the “Design Science” methodology (see Figure 1.1).

Below we will outline each of the Design Science task:

1. The Explicate Problem activity is about investigating and analyzing

a practical problem.

2. The Define Requirements activity outlines a solution to the expli-

cated problem in the form of an artifact and it elicits requirements,

which can be seen as a transformation of the problem into demands

on the proposed artifact.

3. The Design and Develop Artifact activity creates an artifact that ad-

dresses the explicated problem and fulfills the defined requirements.

Designing an artifact includes determining its functionality as well

as its structure.

4. The Demonstrate Artifact activity uses the developed artifact in an

illustrative or real-life case, sometimes called a “proof of concept”,

thereby proving the feasibility of the artifact. The demonstration will

show that the artifact actually can solve an instance of the problem.

5

Linked Data Wrapper Curation: A Platform Perspective

Figure 1.1: Overview of the method framework for design science [JP14]

5. Evaluate Artifact. The Evaluate Artifact activity determines how

well the artifact fulfills the requirements and to what extent it can

solve, or alleviate, the practical problem that motivated the research.

As indicated by P. Johannesson and E. Perjons [JP14], these tasks do not

follow strictly in sequence. Rather, research is commonly iterative, moving

back and forth between all the activities of problem explication, require-

ments definition, development, and evaluation. The arrows in Figure 1.1

should not be interpreted as temporal orderings but as input–output rela-

tionships. In other words, the activities should not be seen as temporally

ordered but instead as logically related through input–output relationships.

1.5 Outline

This section summarizes the content of each chapter in this dissertation

and aligns it with the Design Science steps (see Figure 1.2).

6

Chapter 1. Introduction

Chapter 1

This chapter introduces the main concepts on top of which this disserta-

tion is built. LDWs are defined and the maintenance problem is identified

following the DSR methodology.

Chapter 2

This chapter highlights the importance of using LDWs in Linked Data Ap-

plications along some use cases. In addition, a detailed analysis of LDW

Platforms is performed.

Chapter 3

This chapter lists the objectives of the solution to address the LDW un-

maintenance problem. That is, requirements for LDW Platforms in order to

boost LDW curation. The involved stakeholders are recognized: Providers,

Consumers and Curators.

Chapter 4

In this chapter an artifact that fulfills the requirements is shown. The SYQL

platform supporting LDWs curation is described in detail.

Chapter 5

This chapter evaluates SYQL from Providers, Consumers and Curators

point of view. In addition, it discusses differences and remarks of SYQL

with respect to other LDW Platforms.

Chapter 6

In this chapter the writing operation in the LD cloud by LDWs is de-

scribed. Besides reading resources, some LD Applications require to write

resources in web sites. This is the case of our proof of concept.

7

Linked Data Wrapper Curation: A Platform Perspective

Figure 1.2: Chapter map

Chapter 7

A proof of concept demonstrates the suitability of SYQL as a data layer

providing semantic resources through read-write LDWs. SYQL has to ful-

fill specifications of a Linked Data Application.

Chapter 8

This chapter concludes the dissertation. It summarizes the obtained results,

makes an assessment and also identifies future research topics that this

work raised.

1.6 Conclusion

The intention of this chapter was to give an overview of the contents of

this dissertation. The topic was introduced and what, in our opinion, are

its contributions were listed. The next chapter shows LDWs practice.

8

Chapter 2

Practice

“Scientific truth is characterized by its exactness and the certainty of its

predictions. But these admirable qualities are contrived by science at the cost of

remaining on a plane of secondary problems, leaving intact the ultimate and

decisive questions. . . . Yet science is but a small part of the human mind and

organism. Where it stops, man does not stop.”

– José Ortega y Gasset

2.1 Overview

This chapter delves into Linked Data wrapping practice and introduces

some use cases. The aim is to highlight challenges and potential benefits

of Linked Data Wrappers. Broadly, LDWs are mainly used in two sce-

narios: Web of Data and Semantic Applications. This section outlines the

importance of LDWs in these two scenarios. Next, LDWs are analyzed as

either coupled artifacts or separated artifacts.

9

Linked Data Wrapper Curation: A Platform Perspective

2.2 Linked Data Wrappers

Software wrappers have been defined as "software that contains (’wraps

around’) other data or software, so that the contained elements can exist

in the newer system" [Mag]. For our purposes, Linked Data Wrappers

specializes previous definition where the wrapped content is a web API

and the "newer system" is the Linked Data cloud. This could be achieved

by supporting Linked Data Wrappers as REST-full services.

REST web services follow four basic design principles [Rod08]:

• use HTTP methods explicitly;

• be stateless;

• expose directory structure-like URIs; and

• transfer XML, JavaScript Object Notation (JSON), or both.

This design principles should be aligned with the four Linked Data ’rules’

[BL06]:

• use URIs as names for things;

• use HTTP URIs so that people can look up those names;

• when someone looks up a URI, provide useful information, using

the standards (RDF*, SPARQL); and

• include links to other URIs, so that they can discover more things.

Although there is an obvious alignment and overlap between the approaches

prescribed by REST and Linked Data, there are divergences in scope and

applicability too [PDRM11]. A divergence refers to the supported HTTP

methods. REST services offer the four methods: GET to retrieve a re-

source, POST to create a resource on the server, PUT to update a resource,

and DELETE to remove a resource. In contrast, the majority of Linked

Data sites are read-only. The Linked Data rules (only mentioning the

10

Chapter 2. Practice

Figure 2.1: Linked Data publishing options and workflows [HB11]

lookup operation and forgetting write operations) and the Linked Open

Data movement [BK11] (focusing on data publication) could create trend.

Therefore, wrappers on the web transform structured data into Linked

Data (see Figure 2.1 taken from [HB11]). For example, RDB-to-RDF

wrappers (e.g. D2RQ [CB]) are in charge of Relational Database tables

and tuples transformation. For web APIs, custom Linked Data Wrappers

are used. This dissertation focuses on LDWs wrapping web APIs.

2.3 The Practice: Linked-Data Wrapping

Web of Data. LDWs are being used to extent the LOD cloud with current

data. We conducted a search upon https://datahub.io for the key-

word “wrapper” in March, 2017: 36 datasets qualified as wrappers. But

11

Linked Data Wrapper Curation: A Platform Perspective

LDW usefulness does not stop at introducing current data but also help

to add “interlinkage layers” on top of existing LOD nodes. The need for

interlinkage layers is evidenced by a 2014 study that concludes that only

56% of the 1014 LOD datasets studied have external links [SBP14]. In

the same vein, Käfer et al. observe that, unlike the HTML world with

an estimate of 25% in the number of new hyperlinks in a week period, LD

seemed much more static [KAU+13]. The authors indicate that “this seems

counter-intuitive in that LD itself is fundamentally comprised of URIs and

thus, links”. More to the point, the steady introduction of new LOD nodes

requires this interlinkage to be a continuous effort. Indeed, a 2016 survey

about the quality of links between LD datasets, concludes that 7.9% of the

links were actually dead [NKH+16]. This sustains the need for continu-

ously revising LOD interlinkage. LDWs can help by repairing/enhancing

existing datasets with the broken/missing links.

Semantic Applications. They are grounded on the existence of qual-

ity datasets. Web APIs are a most important source of current data. Un-

fortunately, API providers (i.e. eBay, Amazon) lack a clear demand for

RDF, while consumers stick to JSON/XML due to the learning curve and

lifting effort to move to RDF. This chicken-and-egg “cold-start” problem

could be mitigated if LDWs were in place. If API providers do not yet

have a business case for leveraging their APIs to RDF, LDWs can tem-

porarily take their place, providing the basis for semantic applications to

thrive. Once semantic applications are available, this would make the case

for API providers to take over, and natively provide RDF, making (some)

LDWs redundant. The most recent LDW effort we are aware of is for the

CrunchBase API [FMH17]. Authors acknowledged as a main “sword of

Damocles” that of changes in the underlying APIs, though no solution is

given except that of “monitoring the CrunchBase mailing list”.

12

Chapter 2. Practice

Figure 2.2: General architecture of LD Applications [SAD+14]

2.3.1 LDWs Embedded in Linked Data Applications

A general architecture of Linked Data Applications exhibits three layers:

Presentation layer, Logic layer and Data layer (see Figure 2.2). The Data

layer provides tools to expose traditional data sources in RDF data formats.

They include wrappers for the databases and LDWs (aka RDFizers) for

transforming data from other formats (e.g. XML, JSON and HTML) into

RDF. Then, when all data is accessible as Linked Data, it might be stored

in storages or accessed via web APIs such as SPARQL endpoints. These

data might be manipulated and integrated to access in a refined form via a

SPARQL query interface by application code in the Logic layer.

From a data consumption perspective, three main architectural pat-

terns have been identified [SAD+14]. First, the Crawling Pattern where

data is loaded in advance [GGL+14]. Second, the Federated Query Pat-

tern in which complex queries are submitted to a fixed set of data sources

[SHH+11]. And finally, the On-The-Fly Dereferencing Pattern where URIs

are dereferenced at the moment that the application requires the data. This

13

Linked Data Wrapper Curation: A Platform Perspective

Figure 2.3: From Flickr API output (left) to URI-addressable resource
(right)

dissertation focuses on the last one. This pattern retrieves up to date data

but performance is affected when the application must dereference many

URIs. Therefore, this approach might not scale up when bulky data sets

need to be retrieved1 but it might fit scenarios where medium number of

RDF resources need to be returned, frequently on demand. This is a com-

mon scenario when tapping into web APIs.

As an example, consider the Flickr API. This API facilitates program-

matic access to pictures and videos [Fli]. Output formats include XML

and JSON but not Linked Data. Figure 2.3 broadly describes the wrapping

endeavor, i.e. moving from a JSON document in the left to a JSON-LD re-

source in the right. Notice that while a document is retrieved, a resource is

de-referenced, i.e. resource content is obtained by dereferencing its URI.

Hence, wrapping main tasks include [NKMF10, SH11, TKSA12]:

• lowering: i.e. mapping the URI (e.g. http://rdf.onekin.com/flickr/

videoobject/{itemNumber}) to the corresponding API call (e.g.

https://api.flickr.com/services/rest/?method=flickr.photos.getInfo

&photo_id={itemNumber}).

1API producers enforce a request rate limit to prevent abuse of the service. If you
exceed these thresholds, the API may stop working for you temporarily. Rates might be
set on different basis: consumer-based (e.g. Twitter sets a maximum of 450 calls per
15’), resource-based (e.g. Facebook sets a maximum of 4800 calls per page and day for
each active user) or operation-based (Youtube sets 1M calls per day for reads and 2000
for uploads).

14

Chapter 2. Practice

• credentials handling: an API key is a code passed in by programs

calling an API to identify the calling program, its producer, or its

user to the website (e.g. Flickr). Normally, API keys serve to limit

the number of times the API can be invoked in a certain period of

time. For Flickr, this accounts for 3600 calls an hour. LDWs call

APIs. Hence, they might require to first get an API key.

• lifting: creation of the Linked Data Resource from the API result

(see the “property-mapping” arrow in Figure 2.3). Not all API data

need to be exposed as Linked Data through a property mapping, and

some semantic properties might be obtained from different API data

as a calculation.

• interlinkage: most current APIs behave as data silos with no inter-

linkage with other resources. Hence, moving to the Linked Data

cloud might require not only a change in the output format but also

setting links with other URI-addressable related sources. Figure

2.3 illustrates this scenario (see the “association-mapping” arrow).

The resource holds references to the video’s location (through the

schema:locationCreated property) and the video’s topics on DBpe-

dia (through the property schema:about).

• metadata (see the metadata box in Figure 2.3): this includes a link to

the wrapper description (line 12), and provenance data (line 13-16).

The resulting code ends up being embedded in the Data layer of applica-

tions. Once applications are over, the interest in keeping up LDWs fre-

quently vanishes.

2.3.2 LDWs as Separated Artifacts

LDWs have a value on their own right. The fact that they are mainly data-

driven, increases their potential of reuse in different scenarios. Therefore,

a broad literature exists on defining LDWs on their own: LOD Laundromat

15

Linked Data Wrapper Curation: A Platform Perspective

Table 2.1: LDW approaches
Data source Wrapper

language

Creation

time

Tooling

LOD Laund. RDF datasets Hidden n/a Load time n/a

TWC LOGD CSV RDF Load time n/a

xCurator Semistructured Hidden n/a Load time Mapping tool

D2RQ RDB R2RML

ontology

On the fly Code

generator

Virtuoso Sp. RDB and

REST

Procedural

(C++, Java, ...)

Periodically Clone

Bio2RDF Semistructured,

RDB and

REST

Procedural

(PHP, Java or

Ruby)

Periodically Clone

DBpedia Wikipedia

articles

WikiText

template

Periodically Debug, clone

SA-REST Web services RDFa upon

SAWSDL

ontology

On the fly n/a

Karma REST Karma

ontology

On the fly PbE

SWEET REST hREST upon

MicroWSMO

ontology

On the fly Recommender

LIDS/LOS REST Ontology and

procedural

On the fly n/a

[BRB+14], TWC LOGD [DLE+11], xCurator [YHM11],

D2RQ, Virtuoso Sponger, Bio2RDF, DBpedia [LIJ+15], SA-REST [SGL07],

Karma [TKSA12], SWEET [MPD10] and LIDS/LOS services [NKMF10,

SH11]. This subsection compares these platforms along five dimensions:

the data source being wrapped, the wrapper language, the creation time,

tool availability, and finally, data curation support. First four dimensions

are collected in Table 2.1 while curation support is displayed in Table 2.2.

Data Sources. There are several initiatives to wrap heterogeneous data

sources to Linked Data. D2RQ wraps relational databases (RDB), DBpedia

converts Wikipedia HTML pages, and SA-REST focuses on web services.

16

Chapter 2. Practice

Table 2.2: Spotting and Cleaning activities during data curation
Artifact Spotting Cleaning

LOD Laundromat Datasets Automatic Automatic

TWC LOGD Datasets Consumers Consumers

xCurator LDW Consumers Administrators

Virtuoso Sponger LDW Developers Developers

Bio2RDF LDW Developers Developers

But it is the wrapping of REST API’s where more initiatives showed up.

More encompassing approaches such as Virtuoso Sponger or Bio2RDF of-

fer a middleware for a variety of data sources (relational database, web

service or REST).

Wrapper Language. DBpedia resorts to wiki templates, akin to the

wiki origins of this initiative. In D2RQ, wrapping is specified through the

R2RML ontology, where “TripleMaps” objects map relational databases’

tables and columns into RDF classes and properties, respectively. Depart-

ing from declarative specifications, other authors resort to general-purpose

procedural languages (e.g. Bio2RDF and Virtuoso Sponger), wrapper on-

tologies (e.g. Karma, TWC LOGD), or a mixture (e.g. SA-REST, SWEET

and LIDS/LOS), depending on the target audience (i.e. the Semantic Web

community for Karma).

Creation time. This dimension refers to the time the target RDF data

is created from the data source. Broadly, this dimension is related with

the obsolescence of the data source. For volatile data (e.g. REST data

sources), RDF resources are created when they are requested on the fly. For

more stable data (i.e. CSV, semistructured or RDF Dataset files), wrapping

might happen at loading time. Finally, some platforms such as Bio2RDF,

Virtuoso Sponger or DBpedia, allow for RDF data to be loaded periodically

in search of a higher throughput.

Tooling. Promoting collaborative LDW development involves dedi-

cated tools. This includes the existence of publicly available LDW repos-

itories that permit clone&own, code generators, assistive editing, testing

and debugging capabilities as well as cloud deployment. RBA

17

Linked Data Wrapper Curation: A Platform Perspective

[NVCM13] is a tool for semi-automatically generating customized R2RML

mappings from databases. Virtuoso Sponger and Bio2RDF resort to GitHub

as the LDW repository. In contrast, DBpedia shares wrappers as wiki

pages. SWEET offers an ontology-assisted annotation recommender based

on Watson [dMS+08]. Karma resorts to “programming-by-example” (PbE)

where users generate LDWs out of a set of examples of API calls.

Curation. Table 2.2 outlines main projects in the LOD area where cu-

ration is being addressed. For the purposes of this dissertation, the main

insights come from who conducts the curation, specifically, who conducts

two of its main tasks: detection (i.e. spotting the stain) and intervention

(i.e. cleaning the stain). Ideally, both tasks should be automated. Unfortu-

nately, curation is not fully automated for most data types, requiring user

intervention. Here, the user can be limited to the platform administrator

or extended to any consumer. The amplitude of the curator spectrum very

much depends on the complexity of the dataset or the LDW at hand, but

also on the richness of the stains to be spotted. For instance, LOD Laun-

dromat is a curation service for RDF datasets. Being an automatic curation

service, it detects and repairs only a fixed number of issues. Alternatively,

xCurator allows for consumers to spot stains that are next handled by sys-

tem administrators. In the same vein, TWC LOGD allows for consumers to

generate personal versions of datasets as needed. If we move to the LDW

realm, both Virtuoso Sponger and Bio2RDF resort to GitHub repositories

for developers to clone LDWs; next, curate them in a different GitHub

branch, and finally, send a pull request to modify the master distribution.

LDWs are code and hence, they can resort to general code repositories

like GitHub. This work advocates for dedicated platforms that leverage

existing repositories to account for LDW definition, deployment and cura-

tion.

18

Chapter 2. Practice

Figure 2.4: Externalizing LDW concerns into a dedicated platform

2.4 The Case for LD Applications

The vision is for LDW concerns to be externalized into a separated plat-

form (see Figure 2.4). Implications are many-fold:

• at development time, LDWs are specified at the LDW Platform. Be-

ing a specialized platform, utilities can be offered to speed-up both

specification and deployment. From the application’s perspective,

API resources are now accessed as native RDF resources. From the

developers’ perspective, LDWs are specified outside the application

boundaries but in the LDW Platform.

• at maintenance time, LDWs are curated at the LDW Platform. Facil-

ities should be provided for visualizing the current functioning status

of LDWs, and to spot (and amend) eventual malfunctions. Curators

might or might not coincide with the original LDW developers, so

code understandability becomes a critical feature.

19

Linked Data Wrapper Curation: A Platform Perspective

• at runtime, LDWs are enacted at the time resources are looked up or

created. From the application’s perspective, no difference should ex-

ists between static RDF resources, and RDF resources dynamically

assembled.

This section introduces different usage scenarios, namely, annotation plug-

ins, cross publishing tools, RDF visualizers and semantic mashups. Specif-

ically, this dissertation uses WordPress [Wor], TABASCO [IDA11b], LOD-

milla [lod] and LinkedWidgets [lin] as representatives of Content Man-

agement Systems (CMSs), Task Automation Services (TAS), RDF graph

visualizers and mashup platforms, respectively. For each platform, an ap-

plication is developed where LDW needs are externalized. In this way,

other developers can tap into existing LDWs.

2.4.1 CMS Platforms: WordPress

A CMS is a computer application that supports the creation and modifi-

cation of digital content using a common user interface. WordPress is a

popular open-source CMS. Here, content owners care about their pages

ranking high in search engines. Recently, Google, Yahoo and Bing join

forces to provide the schema.org ontology in order to mark up structured

data in the Web [GBM16]. Search Engines consume so annotated con-

tent and show it in a flashy way. The term “Rich Snippet” was coined

by Google to refer to those schema.org formatted samples of a site’s con-

tent. Once Web content is marked up along the snippet directives, search

engines can offer a more detailed account of web sites, making it more

enticing for users to click on, and easier for Search Engines to extract in-

formation [Sim11]. The importance of Rich Snippets is highlighted by the

fact that WordPress offers over two hundred plug-ins for WordPress sites

to be annotated this way. Bloggers are provided with a snippet editor that

inlays the corresponding Rich Snippet in the blog page when referring to

let’s say, people or organizations.

So far, bloggers are prompted to introduce this metadata manually.

20

Chapter 2. Practice

Figure 2.5: WordPress editors: (a) Post editor and (b) plug-in editor

Figure 2.6: A schema:VideoObject Rich Snippet

However, it is not rare for this metadata already be available via an API.

In this case, it is possible to develop a plug-in that obtains this information

automatically from the website API rather than prompting the user. Figure

2.5 (a) provides an example. A new post is being edited that inlays a video

taken from Flickr (e.g. the video with ID ’27376196615’). The plug-in

provides annotation mark-up (e.g. [FlickrVideoObject id=videoID]) for

obtaining the Rich Snippet out of an API call to Flickr. Not only does this

alleviate bloggers from introducing the metadata manually, but also avoids

mismatches between the metadata provided by bloggers and the metadata

already available through APIs. Unfortunately, these APIs rarely provide

their output in JSON-LD. Therefore, the WordPress plug-in needs to han-

dle the API call as well as the mapping from the API format to Rich Snip-

pet JSON-LD. Rather than embedding this wrapping functionality as part

of the plug-in, this dissertation advocates for this functionality to be de-

tached into an LDW Platform from where it can be re-used. Provided this

21

Linked Data Wrapper Curation: A Platform Perspective

is the case, our sample plug-in is reduced to the snippet in Figure 2.5 (b):

the code requests the flickr.videoobject LDW service available at https:

//github.com/onekin/ldw/blob/master/flickr/flickr.

videoobject.xml. The video ID is scrapped from the post render-

ing (line 2); the LDW URI is constructed (e.g. ’http://rdf.onekin.org/flickr

/videoobject/’ + video ID) (line 3); finally, the URI is dereferenced (lines

4-6), and the Rich Snippet is obtained (line 8). Figure 2.6 depicts the

embedded Rich Snippet. The WordPress plugin is available at https://

github.com/onekin/ldw/blob/master/Flickr.WPplugin.

php.

2.4.2 Task Automation Services: TABASCO

Cross publishing is described as “information posted on one site is pub-

lished automatically to another” [LGdSN10]. Such information is mate-

rialized as resources whose type is dependent of the container site: blog

posts in weblogs, bookmarks in bookmarking sites, wiki-articles in wikis,

and so forth [BBFD08]. Users perform resource republishing while they

are browsing the web or, alternatively, they define cross publishing rules

in advance. As an example of the former, the well known Facebook Like

button [Fac] is viewed across at least 2 million websites daily [Dat]. For

the latter, Task Automation Services (TAS) (e.g. IFTTT [IFT] and Zapier

[Zap]) support users without any formal programming skills on defining

cross publishing trigger-action rules. In doing so, the platform monitors

the source site to detect the triggering condition and, if detected, to exe-

cute the action. The action creates a resource in the target site from the

resource in the source site [Ova14].

Semantic resources simplify rules definition and resource derivation

due to understanding properties’ meaning is easier. TABASCO

(TAg-BASed inter-site COmmunication) is a case in point. It is a TAS per-

forming user tasks coded in tags. This is accomplished by Event-Condition-

Action (ECA) rules where the event rises if a resource contains a “re-

22

Chapter 2. Practice

Figure 2.7: Reactive Tag running example:“toshare”

active tag”. For example, Oscar labels research videos in Flickr with

the “toshare” tag to remember he wants to republish these videos in his

Wordpress blog. In order to automatize video publication, he defines this

rule: “on tagging toshare at Oscar’s Flickr, do create a post on Oscar’s

Wordpress into the research category” (see Figure 2.7). To achieve this,

TABASCO monitors Oscar’s Flickr account to detect new resources la-

beled with the toshare keyword. If a new video is detected then TABASCO

derives a new semantic resource from the source resource and publishes it

in the Oscar’s blog.

TABASCO can reuse the flickr.videoobject LDW to retrieve videos and

check tags out. However, schema:VideoObject resources do not hold tags

yet Flickr API provides tags, hence, TABASCO administrators upgrade

the flickr.videoobject LDW adding the sioc:topic property. Besides up-

grading and reusing the flickr.videoobject LDW, two new LDWs are cre-

ated. The first one is the flickr.person LDW to retrieve users’ video lists

to be monitored (available at https://raw.githubusercontent.

com/onekin/ldw/master/flickr/flickr.person.xml). The

23

Linked Data Wrapper Curation: A Platform Perspective

second one is an LDW for the sake of post creation in WordPress (word-

press.weblog available at https://raw.githubusercontent.com/

onekin/ldw/master/wordpress/wordpress.weblog.xml).

It is worth to note differences between this scenario and the previous

one. In the CMS Platform scenario, a VideoObject Rich Snippet is embed-

ded into an arbitrary post whilst in the TAS scenario a blog post about the

video is created.

2.4.3 RDF Graph Visualizers: LODmilla

Linked Data exploration is being supported through different visualization

tools [DP17, DR11]. An example is LODmilla. It permits navigate and ex-

plore multiple LOD datasets, save LOD views and share them with other

users. For the purposes of this dissertation, the point to note is that LOD-

milla allows for links to be navigated dynamically, exploring the LOD in a

personal way.

The question is to extend the exploration out of the existing LOD.

There exists plenty of APIs out there to tap into. The current LOD can be

idiosyncratically extended with dynamic resources obtained through API

calls. All it is needed is the existence of LDWs that permit to close the

chasm between API native format and JSON-LD, including interlinkage

with existing LOD sources. Let’s take an example. We can initiate the

exploration at a given Flickr user, and thereupon retrieve his videos. This

is straightforward with the previously developed LDWs. In addition, we

can interlinkage schema:VideoObject resources to other resources either

LOD-based (e.g. DBpedia resources) or API-obtained (e.g. GeoPlanet

resources). Figure 2.8 depicts how this exploration looks like at LOD-

milla merging LOD-sourced data (e.g. DBpedia) and API-sourced data

(e.g. Flickr, GeoPlanet [Neta] & Wunderground [Wea]) in the same graph

through LDWs.

The exploration starts at a given Flickr person (35092116@N00 node

in Figure 2.8) through the flickr.person LDW created in the TAS scenario.

24

Chapter 2. Practice

Figure 2.8: LODmilla exploration graph

Videos are next explored (through the flickr.videoobject LDW). Using

LODmilla facilities, users decide which video properties to show up:

schema:interactionCount (i.e the number of interactions for the video),

schema:about (i.e. the subject matter of the video), etc. This permits

to keep exploring on the basis of these resources. Specifically, schema:

locationCreated resources hold places information and from places the

weather reports are retrieved. This example requires an LDW for turn-

ing GeoPlanet API into a data set. Notice that the flickr.videoobject LDW

needs to be upgraded adding two links schema:about and schema:

locationCreated to point to DBpedia and GeoPlanet resources, respec-

tively.

The bottom line is that LDWs permit to combine in the very same graph

25

Linked Data Wrapper Curation: A Platform Perspective

Figure 2.9: LinkedWidgets mashup

LOD-sourced resources and API-sourced resources, hence introducing a

dynamicity that it is seldom obtained using LOD alone. In this way, LOD-

milla users can save the exploration to be next run periodically, and observe

how dynamic data (e.g. interaction counters, weather forecast) changes.

2.4.4 Semantic Mashups: LinkedWidgets

Semantic mashups are mashup applications using RDF as its background

data model, and SPARQL for tasks execution [KK15]. These applications

offer new functionality by combining, aggregating, and transforming data

26

Chapter 2. Practice

Figure 2.10: The vision: LDWs are created, upgraded and used by the
community

available on the Web of Data. The benefits brought by semantic technolo-

gies w.r.t traditional Web mashups, is the use of the RDF data model as

the unified data model for combining data from heterogeneous data re-

sources. Different tools have been proposed to empower end-users to cre-

ate mashups [GS10, LLSL16]. LinkedWidgets is a case in point.

In LinkedWidgets, mashups are modeled as widgets that are orches-

trated using a pipe-like approach. Figure 2.9 depicts a LinkedWidget mashup

that involves arranging somebody’s Flickr videos into Google Maps. It

looks like Yahoo Pipes but the novelty comes for the underlying data ex-

change technology: JSON-LD. This adds a semantic layer to the data and

makes it machine readable.

Though JSON-LD certainly improves interoperability, the low number

of APIs offering this format requires a wrapping effort. This is the case for

our sample problem. Flickr APIs need to be consulted to obtain the per-

son’s videos (flickr.person LDW) and the video metadata (flickr.videoobject

LDW) to be later displayed in the Google map. This wrapping effort might

27

Linked Data Wrapper Curation: A Platform Perspective

put some users off. Here, the notion of LDW-as-a-service can help. Specif-

ically, the flickr.videoobject and the flickr.person LDWs could have well be

made available as a result of the previous use cases. If so, LinkedWidgets

developers can tap into these LDWs when creating their widgets.

Figure 2.10 summarizes this dissertation’s vision: LDWs are created

(WordPress scenario), upgraded (LODmilla scenario) and used (Linked-

Widgets scenario) by the community as developers confront wrapping needs

in distinct scenarios. Developer needs could provoke to create, upgrade

and use LDWs in the same scenario (e.g. TABASCO scenario).

2.5 Conclusion

The issue: LDWs’ lifecycles are coupled to those of the breakout applica-

tions. To lessen this problem, this dissertation introduces a new artifact:

the LDW Platform. Unlike project embedded wrappers, separated wrap-

pers promote reusability. LDWs are created, upgraded and used by the

community as developers confront wrapping needs in distinct scenarios.

28

Chapter 3

Requirements

“Every intellectual effort sets us apart from the commonplace, and leads us by

hidden and difficult paths to secluded spots where we find ourselves amid

unaccustomed thoughts.”

– José Ortega y Gasset

3.1 Overview

LDW Platforms aim at becoming single-stop solutions for LDW manage-

ment. Specifically, LDW Platforms should account for three main stake-

holders: producers (i.e. those who develop LDWs from scratch), con-

sumers (i.e. those who re-use someone else’s LDWs) and curators (i.e.

those who perform some kind of LDW upgrading). The rest of this chapter

identifies requirements for each stakeholder.

29

Linked Data Wrapper Curation: A Platform Perspective

3.2 Requirements for LDW Platforms

3.2.1 Producer Requirements

Allow for LDW Definition

Mechanisms should be provided to address the specifics of LDW devel-

opment such as lowering, lifting, or interlinkage (see Section 4.3.1). Plat-

forms offer a possibility of abstracting developers from the heterogeneity

of API requests and its optimization, making LDW definition more declar-

ative, and hence, more effective.

LDW definition admits different compromises between expressiveness

and learnability. Domain-specific approaches focus on specific data sources

(e.g. Wikipedia or relational databases) which permit lowering and lifting

to be built-in. This accounts for more declarative LDW specifications that

ease user involvement. In the case of DBpedia, this is realized in terms

of wiki templates, akin to the wiki origins of this initiative. In relational

databases, wrapping is specified through the R2RML ontology [DSC12],

where “TripleMaps” objects map tables and columns into RDF classes and

properties, respectively. Departing from declarative specifications, other

authors resort to general-purpose procedural languages (e.g. Bio2RDF),

wrapper ontologies (e.g. TWC LOGD), or a mixture (e.g. SWEET), de-

pending on the target audience (i.e. programmers for Bio2RDF vs. the

Semantic Web community for Karma).

Allow for LDW Deployment

Deployment starts by registering the LDW into the platform. At this point,

some checks are made about LDW syntactic correctness [LIJ+15] and cre-

dential availability. Credentials are codes requested by the API servers to

verify the calls are being made through a valid account. API keys are the

most common mechanism. An API key is a code passed in by programs

calling an API to identify the calling program, its producer, or its user.

30

Chapter 3. Requirements

API key provision admits two alternatives. The API key can be pro-

vided by the LDW producer at LDW specification time. Alternatively, the

API key can be obtained from the LDW consumer at dereferencing time.

This mimics the handling of credentials in stored procedures in Data Base

Management Systems [Kyt05].

3.2.2 Consumer Requirements

Allow for LDW Discovery

LDW discovery helps consumers to identify potential LDW services. The

use of ontologies become paramount in so far as providing an homoge-

neous semantic description (most important in a sharing setting) [DV17].

For LDWs, LIDS and LOS are two approaches to document LDW in-

puts and outputs using Query Graph Patterns [NKMF10, SH11]. Next,

SPARQL can be used to query these patterns, though the complexity of

this notation makes it not the most accessible option. In a similar vein but

with a more affordable notation, Karma resorts to an RDF language to de-

scribe inputs, outputs and their relationships where models can be queried

using SPARQL [TKSA12].

Allow for LDW Lookup

Once LDWs of interest are located, consumers need to go down to the

nitty-gritty. Here, LDWs can be documented along their dual nature: im-

plicit dataset definition vs. services. As for the former, LDWs can be char-

acterized by their dataset content and dataset quality. Here, LDW produc-

ers can tap into the Vocabulary of Interlinked Datasets (VoID) [ACHZ11],

an RDF Schema vocabulary for expressing metadata about RDF datasets.

VoID increases discoverability and facilitates metadata consumption from

multiple LDWs [HB11, SBP14]. In addition, Debattista et al. evidence

the importance of the quality of Linked Data if an LD Application ecosys-

tem wants to be developed [DLA16]. Reusable resources should provide

31

Linked Data Wrapper Curation: A Platform Perspective

information about their quality not only to ease the process of selection

but also to increase the chances of reuse. Therefore, if LDWs are going

to become reusable, quality information should be provided. Accordingly,

W3C’s Data Quality Vocabulary (DQV) [AI16] is being proposed to as-

sess the dataset quality via a number of observed properties [LBC17]. As

implicit definition of datasets, LDWs can be qualified along DQV.

On the other hand, as services, LDWs need to be invoked and its ser-

vice quality characteristics reported. Invocation wise, producers can resort

to W3C’s Hydra Core Vocabulary. This lightweight vocabulary permits

to create hypermedia-driven web APIs [LG13]. By specifying a number

of concepts commonly used in web APIs, it enables a server to advertise

valid state transitions following REST best practices. This approach can

be extended to LDWs.

Allow for Resource Lookup

An LDW Platform is a Linked Data Platform [SAM15]. As such, it should

comply with the W3C standard for resource management [MGCEG13].

Specifically, LDW Platforms should support resource lookup. Compared

with explicit dataset, the difference stems from resources being dynami-

cally obtained from API data at the time they are dereferenced.

3.2.3 Curator Requirements

Allow for Spotting Stains

Means are needed to make the community aware of stains in LDWs. Stains

are not limited to those related with the quality of the dataset being ob-

tained but also include those preventing the code from functioning (e.g.

API upgrades). As for the former, data curation is tackled in LOD Laun-

dromat, Bio2RDF or TWC LOGD (see Section 2.3.2). As for spotting

code faults, inspiration can be drawn from incident management systems

(e.g. JIRA [ODKM15]) and on-line Linked Data validators. For exam-

32

Chapter 3. Requirements

ple, W3C’s RDF Validation service [Pru] and Vafu validation service [Red]

check whether Semantic Web data is correctly published according to best

practices1. Besides automatic issue detection, users can detect and notify

issues to be curated [AZS+16, KHS12].

Allow for Cleaning up Stains

Once stains are spotted, mechanisms should be in place to easy a prompt

repair. Different attempts have been conducted to facilitate LDW main-

tenance to developers other than the authors. Declarativeness is one way

forward. DBpedia introduces wikitext templates, i.e. DBpedia-specific

wrappers along the lines of Wikipedia templates. Bio2RDF supports open

source PHP scripts, Java programs and Ruby gems into a single GitHub

repository, facilitating scripts modification by anyone wishing to improve

the quality of RDF conversions. D2RQ platform provides a proprietary

server where LDW authors can customize automatically-generated LDWs2.

Our scenario departs from the previous ones in the data source being

wrapped, i.e., APIs rather than databases or Wikipedia.

3.3 Conclusion

This chapter gathers requirements for different stakeholders involved in

LDW creation, consumption and curation. Requirements are motivated by

the existing literature, outlining different ways in which the requirement

is being addressed so far. The intention is not to provide an exhaustive

account but just to motivate the need.

1Best practices are those defined by the Linked Data principles [BL06], the Best Prac-
tice Recipes [BPM+08] and the Cool URIs [SCAV08].

2The generate-mapping tool creates a D2RQ mapping file by analyzing the schema
of an existing database where table names and column names are used as default values.
Next, administrators can customize these default mappings to curate the generated code.

33

Chapter 4

Realization

“For, in fact, the common man, finding himself in a world so excellent,

technically and socially, believes that it has been produced by nature, and never

thinks of the personal efforts of highly-endowed individuals which the creation

of this new world presupposed.”

– José Ortega y Gasset

4.1 Overview

This chapter describes the SYQL (Semantic YQL) platform, an artifact

which fulfills requirements listed in Chapter 3. SYQL is heavily based on

YQL. Besides the technical facilities, YQL allows us to tap into an existing

community. At the time of this writing (July 2017), the YQL community

exhibits the following figures [ODT]: 151 contributors, 3291 commits,

37 open and 17 closed issues, 25 open and 403 closed pull requests, 732

stars, and 464 forks. We believe LDW concerns are not so alien to API

programmers. By moving to YQL, our hope is to tap into this sibling

community.

35

Linked Data Wrapper Curation: A Platform Perspective

Figure 4.1: SYQL main components

4.2 A Platform for LDW Management: Archi-

tecture

Figure 4.1 outlines SYQL’s architecture. Care is taken for the three

stakeholders: consumers (developing applications where resources are

dereferenced); producers (defining and deploying LDWs from scratch)

and curators (curating and tracking LDW functioning status). Next sec-

tions delve into how these stakeholders’ needs are considered in SYQL. A

video about the different services is available at http://rdf.onekin.

org/. First, a brief about YQL is provided.

4.2.1 YQL Basics

YQL is a query engine, which is hosted by Yahoo, and exposed as a REST

endpoint. Requests are specified in terms of a SQL-like language: the

Yahoo Query Language. Here, this dissertation will use “YQL” to denote

both, i.e. the platform and the language, unless the context does not make

36

Chapter 4. Realization

Figure 4.2: YQL Console. The "Annotation View" tab is added for LDW
curation

clear which one it refers to.

YQL aims at hiding APIs’ specifics into a uniform table-like metaphor.

To this end, it resorts to a SQL-like syntax. As an example, the following

YQL statement retrieves Flickr data about the photo (or video) whose ID

is 27376196615 (see Figure 4.2):

select * from flickr.photos.info where photo_id="27376196615"

and api_key = "4fb031bf5b2f138576d011ff37f31565"

This setting is achieved through three mechanisms: the Yahoo Query Lan-

guage, Open Data Tables (ODT), and the YQL Console.

The YQL Language. YQL includes SELECT, INSERT, UPDATE and

DELETE statements that permit to handle API requests à la SQL. Behind

the curtains, YQL maps these statements into the corresponding API meth-

ods. To this end, producers should provide Open Data Tables.

Open Data Tables (ODTs). Broadly, ODTs are syntactic sugar for

37

Linked Data Wrapper Curation: A Platform Perspective

Figure 4.3: ODT flickr.photos.info

API parameters. Figure 4.3 shows the flickr.photos.info ODT. Main tags

include <meta> and <bindings>. The former contains descriptive infor-

mation about the ODT such as author, description or documentation link

(lines 3-8). Bindings (lines 9-17) indicate how SQL operations are mapped

into API calls. An entry exists for each operation (i.e. <select>, <insert>,

<update> and <delete>). The snippet illustrates the SELECT case (lines

10-16): <url> accounts for the URL pattern to invoke (line 11) whereas

<inputs> denotes the possible YQL statement input fields (lines 12-15).

Each field (e.g. photo_id) accounts for variables to be instantiated when

SELECT is enacted. ODTs hold all the intricacies of the underlying APIs.

Specifically, benefits can be obtained from reusing of the authorization and

authentication code from YQL, given the many API access control mech-

anisms. In this way, YQL offloads processing that programmers would

normally do on the client/server side to the YQL engine. Besides those pro-

vided by YQL itself (known as “built-in tables”), ODTs can be provided

by producers (known as “community tables”). A full list of community

tables can be found at http://www.datatables.org/.

The YQL Console. The YQL Console [Netb] enables to run YQL state-

ments interactively from a browser (see Figure 4.2). The upper window

contains the YQL statement; the middle window displays the statement’s

output (e.g. an XML document); the bottom window contains the REST

counterpart of the YQL statement, ready to be embedded in the application.

38

Chapter 4. Realization

Figure 4.4: An LDW template to be completed

Community tables are listed on the left. Once an ODT table is selected,

YQL statements (e.g. SELECT) can be enacted, and the results show up

at the "Formatted View" tab. In addition, the REST-call counterpart of the

query is also provided, ready to be embedded in the application. Next, this

dissertation looks at how this approach can be extended for LDWs.

4.3 Addressing Producer Requirements

Producers develop LDWs from scratch. At design time, they look for APIs

(or even better, YQL ODTs) that meet their data needs. At implementation

time, they resort to a wrapping template for addressing lifting and lowering

39

Linked Data Wrapper Curation: A Platform Perspective

Figure 4.5: YQL Editor Console. Turning the ODT in Figure 4.3 into an
LDW

(i.e. LDW definition). At deployment time, they register LDWs with the

platform (i.e. LDW deployment).

4.3.1 Allow for LDW Definition

SYQL resorts to YQL expressiveness to define LDWs and provides a “SE-

LECT wrapping template” to guide developers (see Figure 4.4). The

template accounts for the three main steps: lowering, lifting and creden-

tials handling. As an example, let’s tap into the ODT in Figure 4.3, and

turn it into an LDW (see Figure 4.5).

Lowering (i.e. mapping the URI’s (e.g. http://rdf.onekin.com/flickr/

videoobject/{itemNumber}) to the corresponding API call (e.g.

https://api.flickr.com/services/rest/?method=flickr.photos.getInfo&

40

Chapter 4. Realization

photo_id={itemNumber})). YQL’s sampleQuery tag is used to describe

the lowering through the URI pattern (line 6) and some URI examples

(line 7). When the SYQL platform receives a URI (e.g. http://rdf.

onekin.org/flickr/videoobject/27376196615), it dynami-

cally identifies the ODT at hand through pattern matching against the reg-

istered URIPatterns. The lowering mapping from the URIPattern to the

ODT input parameters is realized through pattern matching (i.e. line 6 to

line 15 {dcterms:identifier} binding). Worth noticing, the URI parameter is

annotated along the dcterms ontology (line 6). This will turn useful during

LDW discovery. Note too that the select part in this example lacks the exe-

cute part shown in the LDW template. It is due to the API call is as simple

as a REST call to Flickr. In this way an indirection (i.e. calling to other

ODT through a SELECT statement) is avoided. In cases where API calls

are complex and they are programed into an ODT this indirection may be

advisable.

Lifting (i.e. creation of the Linked Data Resource from the API re-

sult). YQL’s function tag is recast for lifting. Specifically, the wrapping

template advices each XML tuple to be turned into an RDF resource which

is serialized as JSON-LD (i.e. oneJSONLD, line 26). The lifting function

holds <inputs> and <execute> tags. The former indicates the function’s

parameters which are set to <pipe> (i.e. holds a result tuple of the ODT

table described à la XML) (line 21) and <key> (i.e. to cast the URI for

the returned RDF resource) (line 22). As for <execute> (lines 24-39), it

holds the JavaScript code that obtains JSON-LD from the XML tuple (i.e.

from oneXML pipe input to oneJSONLD). The line 25 parses the oneXML

input to a JSON object. The lines 28 and 29 create the namespace and

the type of the resource, respectively. Line 30 creates an RDF property

from an oneJSON parameter. Interlinkage is also described here by con-

structing URIs out of existing parameters. Specifically, line 31 links the

video to a vivoweb ontology class type and line 32 links to a GeoPlanet re-

source about the locality. Lines 33-36 create an embedded schema:Person

resource that is linked to the video through the schema:creator association

41

Linked Data Wrapper Curation: A Platform Perspective

Figure 4.6: SYQL Verification window. Acknowledgement messages at
deployment time

(line 37).

Credentials handling. API keys are codes requested by the servers to

verify the calls are being made through a valid account. The question arise

about whether these keys should be provided by either the LDW producer

or the LDW consumer. When performance is not an issue (the number

of invocations per API key is limited), LDW consumers can stick to the

producer’s API key. In this case, the API key is embedded in the LDW

itself (see default value in line 16). In this way, all lookups will reuse the

same API key. In a more demanding setting, the extensive use of the same

API key could cause a capacity bottleneck. Here, LDW producers might

resort to API keys which are provided by consumers at lookup time.

4.3.2 Allow for LDW Deployment

Once defined, LDWs need to be deployed before being stored at the GitHub

repository. Deployment also takes place through the YQL Editor. Besides

setting the different registries, LDW deployment also includes quality veri-

fications. After all, this is a reuse architecture where eventual errors expand

beyond the original authors to potential LDW consumers.

42

Chapter 4. Realization

Figure 4.7: Metadata for the flickr.videoobject LDW in DataHub

So far, two types of verifications are conducted, namely, syntactic and

dereferenced-based (see Figure 4.6). Failure to meet any of them prevents

the LDW from being registered.

Syntactic verification. It checks whether LDWs are schema compli-

ant. Through an XML Schema parser, distinct syntactic errors are pointed

out: no URIPattern, no URIExample, lack of lifting <function>; LDW

badly parameterized.

Dereference verification. LDW definitions include URIExamples. At

registration time, LDWs are put to the test using these URIExamples. Pos-

sible errors include: not enough credentials, no resource returned, or

JavaScript errors.

43

Linked Data Wrapper Curation: A Platform Perspective

Figure 4.8: Individuals and LDW representations

Quality issues are detected as well but they do not prevent registration.

Instead, they are shown in the Health Checker to warn about quality issues

(see Section 4.5).

4.4 Addressing Consumer Requirements

Consumers build applications out of LDWs. At design time, consumers

look for LDWs that meet their data and quality service needs (i.e. LDW

discovery). At implementation time, consumers need help to create the en-

vironment for calling LDWs. Finally, at runtime, consumers’ applications

dereference individuals obtained through LDWs (i.e. resource lookup).

4.4.1 Allow for LDW Discovery

SYQL does not support LDW discovery. Rather, it relies on the DataHub

portal for LDW discovery. Refer to https://datahub.io/organization/linked-

data-wrappers for details. The aim: increasing the visibility of SYQL

LDWs. DataHub records and lists datasets metadata. After deploying

an LDW, SYQL automatically registers it in DataHub to make easier its

44

Chapter 4. Realization

Figure 4.9: Flickr.videoobject LDW VoID description

discovery. In that way, access points to the LDW’s VoID and Hydra de-

scriptions are provided (see Figure 4.7).

Visibility, and eventually the recognition that goes by using LDWs,

might turn rather important. Recognition is being reported as one of the

main spurs for sharing [PS09]. The Semantic Web community has so un-

derstood when the Semantic Web Journal announced in 2012 the first “Spe-

cial Call” for Linked Dataset descriptions as a way not only to dissemi-

nate but also to acknowledge the effort and importance of these resources

[HHJ16]. In the same way that explicit datasets, LDWs might avail of

these initiatives.

4.4.2 Allow for LDW Lookup

For LDW description, SYQL resorts to the combined use of VoID, Hydra

and DQV. Figure 4.8 sets the two main resource types: individuals and

LDWs. LDWs exhibit a two-fold nature. As implicit definition of datasets,

they can be characterized through VoID. As REST services, LDWs might

be documented through Hydra. Figure 4.9 shows the VoID description for

an LDW dataset along the structure depicted in Figure 4.8. Since resources

are generated on the fly, it is not possible to work out statistical informa-

tion (e.g. the number of entities stored in the API’s service). However,

other structural metadata is provided in the VoID description: the class of

the individuals (line 5), GitHub repository for the LDW code (line 6), the

example URI (line 7), the pattern of supported URIs (line 8), the base URI

(line 9). In addition, dqv:hasQualityMeasurement links to a set of DQV

45

Linked Data Wrapper Curation: A Platform Perspective

resources (line 10) while hydra:apiDocumentation points to the LDW’s

Hydra documents (line 11).

LDW lookup might be conducted by both humans and agents. The

former, to be informed about LDW characteristics. For easy access, SYQL

turns (part of) this information into an HTML page: the Health Checker

(see Section 4.5). In addition, and similar to the role of WSDL for web

services, interpreting and invoking LDWs might be facilitated by the use

of standards for LDW description. Hydra allows data to be enriched with

machine-readable affordances which enable interaction. By specifying a

number of concepts commonly used in web APIs, it enables a server to

advertise valid state transitions following REST best practices.

Specifically, SYQL resorts to Hydra for a main purpose: credential

provision. Credentials can be provided by either producers (at deployment

time) and consumers (at resource lookup). The former scenario might lead

to a capacity bottleneck if a large number of resource lookups are based

on the same API key. Alternatively, SYQL might also avail of API keys

provided by consumers at lookup time. This is when Hydra comes into

play. The LDW’s Hydra document holds an RDF credential description to

be used at the time resources are looked up. Consumer-provided keys take

precedence over producer-provided keys.

4.4.3 Allow for Resource Lookup

Once deployed an LDW, the LDW Platform starts dereferencing URIs that

conform to the LDW’s URIPattern. URI dereferencing involves five main

tasks (see Figure 4.10):

1. LDW retrieval, where the wrapper is downloaded from the LDW

repository;

2. lowering, where the YQL select statement is prepared, and the cre-

dentials provided;

46

Chapter 4. Realization

Figure 4.10: URI lookup sequence diagram. The “alt” deviation tackles
the consumer-provided API-key scenario

3. API calling, where the select statement is enacted, and the XML

document obtained1;

4. lifting, where the XML document is turned into an RDF resource;

and finally

5. metadata enrichment, where dataset and provenance metadata are

added2.

As for the latter, Figure 2.3 shows an example along the structure depicted

in Figure 4.8: void:inDataset holds a link to VoID dataset metadata (line

1SYQL focuses on wrapping the REST APIs whose inputs are given as part of the
invocation URIs. Alternatively, APIs might also take XML or JSON as input (using HTTP
POST). An example is the use of OAuth as an authentication mechanism. Here, API call
is not as easy as constructing an URL string but parameters need first to be encrypted
and next, passed as a POST parameter. This is commonly taken care of within the YQL’s
ODT.

2SYQL resorts to the Provenance Ontology http://purl.org/net/

provenance/ns#.

47

Linked Data Wrapper Curation: A Platform Perspective

Figure 4.11: Health Checker Console

12); prv:usedData describes the data source (line 14); prv:usedGuideline

indicates how the data has been created (e.g. pointing to the LDW URL)

(lines 15 and 16).

4.5 Addressing Curator Requirements

Curators keep LDWs in shape. At design time, curators become aware of

LDW stains. At implementation time, curators clean stains by upgrading

the LDW at hand. Finally, at deployment time, LDWs are checked to be

fully functional.

48

Chapter 4. Realization

4.5.1 Allow for Spotting Stains

SYQL introduces the Health Checker, a daemon that periodically checks

LDWs for stains, and renders the output as a Web page. Figure 4.11 illus-

trates the case for the 10 LDWs developed so far: green denotes that the

LDW works and passes all the quality filters (2 LDWs); yellow indicates

that the LDW works but still holds some stains (6 LDWs); finally, red in-

dicates that the LDW does not work, i.e. returns an error status code (2

LDW).

Stains can refer to either the functioning status or data quality issues.

Hereafter, Zaveri et al.´s quality framework is used [ZRM+16].

Functioning-status Stains This mainly corresponds to the Accessibil-

ity dimension in the Zaveri et al.´s quality framework. It involves aspects

related to “the access, authenticity and retrieval of data to obtain either

the entire or some portion of the data (or from another linked dataset)

for a particular use case”. Table 4.1 indicates how quality aspects find

their way in SYQL. For instance, availability is checked out by derefer-

encing the LDW’s sample URI. So, sample URIs act as a sort of regression

testing bucket. In addition, SYQL keeps an aggregate of how LDWs be-

have in the last 10 calls w.r.t. latency (Zaveri et al.´s P2 subdimension),

throughput (P3) and scalability (P4). Back to Figure 4.11, click on the

flickr.videoobject LDW for its quality measures to show up: contains no

interlinks (the I2 subdimension), 770 millisecond latency, 1.3 calls/second

throughput, and 977 millisecond average elapsed time for the last ten calls

(“scalability”).

In addition to Zaveri et al’s characteristics, this dissertation includes

two issues of concern for APIs: the expiration of the API key, and the

return of no value by the API. Both scenarios are also noted in the Health

Checker window (see Figure 4.11 under the heading “API Dimension”).

49

L
in

ke
d

D
at

a
W

ra
pp

er
C

ur
at

io
n:

A
Pl

at
fo

rm
Pe

rs
pe

ct
iv

e

Ta
bl

e
4.

1:
Q

ua
li

ty
di

m
en

si
on

s.
“

A
b

r”
st

an
ds

fo
r

th
e

ab
br

ev
ia

ti
on

us
ed

in
[Z

R
M

+
16

]

Dimension Subdimension Abr Metric SYQL realization

Accessibility

Availability A3 Dereferenceability of the URI Sample URIs work

Interlinking
I1 Detection of good quality interlinks Number of broken links

I2
Existence of links to external data

producers
Number of external links

Performance

P2 Low latency
Minimum request to response

delay

P3 High throughput Number of requests per second

P4 Scalability of a data source
Average throughput of the last ten

calls

Intrinsic

Syntactic validity SV2 Syntactically accurate values Detection of null values

Semantic accuracy SA2 No inaccurate values Notifications via GitHub comments

Consistency CS4 owl:DeprecatedProperty not used Number of deprecated properties

Conciseness CN1 High intensional conciseness Number of redundant attributes

Completeness
CM2 Property completeness Rate of XML elements lifted

CM4 Interlinking completeness Rate of XML elements in interlinks

Contextual Trustworthiness T7 Reputation of the dataset
Number of derefs and ratings in

GitHub

50

Chapter 4. Realization

Data-quality Stains This mainly corresponds to the Intrinsic and Con-

textual dimensions in the Zaveri et al.´s quality framework.

Intrinsic. It refers to whether information correctly (syntactically and

semantically), compactly and completely represents the real world, and

whether information is logically consistent in itself, independently of the

user’s context. Back to the example, Figure 4.11 reports three warnings.

First, the SA2 subdimension: consumers report 2 issues through GitHub.

Second, the CM2 subdimension: the ratio of properties per XML attributes

is low. Finally, the CM4 subdimension: the ratio of interlinks per XML

attributes is low. The values are computed along the formulae proposed by

Zaveri et al.

Contextual. This dimension tackles aspects that highly depend on the

context of the task at hand. For trustworthiness, SYQL supports the repu-

tation of the dataset (i.e. “assignment of explicit trust ratings to the dataset

by humans or analyzing external links or page ranks”). This can be worked

out based on human rating and rate of LDW reuse. SYQL works out these

measures from LDWs’ GitHub repositories, specifically from how users

rate the LDW’s code. As for LDW reuse, SYQL keeps a counter of the

number of times the LDW is being used from different IPs. Back to the

example, Figure 4.11 indicates that the sample LDW has been subject to

15 dereferenciations from 2 different IPs where the LDW has received 4

thumbs up and 1 thumbs down.

Worth mentioning, some of Zaveri et al.´s features are met “by con-

struction”. That is, the fact that datasets are obtained out of API calls

ensures the fulfillment of the following features:

• human-readable properties and metadata (U1): Figure 2.3 shows the

automatically generated metadata. In addition, the description, au-

thor name, etc. are extracted from the LDW definition.

• exemplary URIs (U2): the URIExample is compulsory for the low-

ering process (see line 7 in Figure 4.5).

• regular expression that matches the URI of the dataset (U3): the

51

Linked Data Wrapper Curation: A Platform Perspective

URIPattern also is compulsory and allows to derive a regular ex-

pression (see line 6 in Figure 4.5).

• indication of the vocabularies used (U5): the vocabularies are taken

from the @context property in the lifting function (see line 28 in

Figure 4.5).

• provision of the data in different serialization formats (V1): the

SYQL server performs content negotiation and dispatches the re-

quested serialization format: JSON-LD, RDF/XML, Notation3, N-

Quads, N-Triples or Turtle.

4.5.2 Allow for Cleaning up Stains

Producers start from scratch. By contrast, curators do not start afresh but

depart from someone else’s code. This moves to the forefront understand-

ability.

SYQL resorts to JavaScript for LDW implementation. This might put

some curators off. To fight this back, SYQL performs reverse engineer-

ing3 (hereafter re-engineering), i.e. LDW code is processed for extracting

knowledge about how the lifting has been conducted. This knowledge is

described in terms of annotation overlays on top of the sample API’s out-

put document provided by YQL (see Figure 4.12). The rationale is that

LDW semantics is frequently limited to a mapping from XML tags (from

the API output) to the ontology concepts. If this is the case, SYQL can

re-engineer LDW code as a collection of annotations.

As an example, consider the LDW in Figure 4.5. Figure 4.12 shows the

output:

• Class-type mapping annotation (window 1): the tag element accounts

for a resource (e.g. the schema:VideoObject class).

3Reverse engineering is “the processes of extracting knowledge or design informa-
tion from anything man-made and re-producing it or re-producing anything based on the
extracted information” [Eil11].

52

Chapter 4. Realization

Figure 4.12: YQL Console augmented with the Annotation View tab

• Property mapping annotation (window 2): the tag element accounts

for an RDF property (e.g. the views tag is mapped to the schema

:interactionCount property).

• Association mapping annotation (window 3): the tag element ac-

counts for an RDF association. In this scenario, the XML element

supports an interlink to another LD resource. In the example, the

photo’s <media> element is lifted to VivoWeb URI: the http://

vivoweb.org/ontology/core#video is created from the

video value.

53

Linked Data Wrapper Curation: A Platform Perspective

Figure 4.13: Credentials and URI Example curation window

• Nested resource mapping annotation (window 4): the tag element ac-

counts for a resource. As an example, the <owner> tag in a <photo>

stands for a Person resource hold in schema:creator. This resource

holds the name, username and location properties.

The advantage is clear: Figure 4.12 is easier to understand than Figure

4.5. Re-engineering improves the chances of users to understand someone

else’s code, curate it, and move back to code. So far, re-engineering is

limited to LDWs that follow the wrapping template (see Section 4.3.1).

Besides the lifting annotation tool, a form is provided to change the

URI Example and credentials. If the API do not supply data it could be

because the expiration of the API key or because the example resource (i.e.

URI example) is not anymore available (“API Dimension” in the Health

Checker). Curators can change credential values (e.g. api_key) or example

URIs (see Figure 4.13) through a curation window. The LDW is remotely

edited with these new values and redeployed in SYQL. The Verification

window (see Figure 4.6) will indicate if the wrapper is running again or

problems persist.

54

Chapter 4. Realization

4.6 Conclusion

SYQL supports LDW creation, deployment, inspection and curation. As

for curation, the Health Checker detects data quality as well as API is-

sues in order to highlight LDWs weaknesses. LDW re-engineering for

lifting annotations simplify LDW maintenance by reducing programming

and annotation barriers. Additionally, a remote credentials and example

URI editor ease API related issues curation.

SYQL is a public server on the web (http://rdf.onekin.org).

In addition, LDWs (https://github.com/onekin/ldw) and the

SYQL’s source code (https://github.com/onekin/ldwServer)

are freely available in GitHub. Third parties could download and improve

them in order to run new instances.

55

Chapter 5

Validation

“That science is incapable of solving in its own way those fundamental questions

is no sufficient reason for slighting them.”

– José Ortega y Gasset

5.1 Overview

This chapter evaluates the extent to which SYQL fulfills the requirements

for LDW Platforms. Table 5.1 outlines SYQL realization of the require-

ments for LDW Platforms. All in all, this work’s main issue is not so much

about LDW definition or quicker resource lookup, but the one of extending

LDW lifecycle through curation. The challenge is not about accomplishing

the change (after all, the LDW is already there) but the mechanisms avail-

able for detecting the change (i.e. the Health Checker) and conducting

the change over someone else’s code (i.e. the code-to-annotation reverse

engineering approach). We are not aware of other approaches that tackle

similar issues. Hence, evaluation-by-comparison is not possible. Thus,

this dissertation evaluates Quality-in-Use as for the curation perspective.

Nevertheless, and for completeness sake, this dissertation also evaluates

SYQL from the perspective of producers and consumers.

57

Linked Data Wrapper Curation: A Platform Perspective

Table 5.1: SYQL realization of the requirements for LDW Platforms
Stakeholder Requirement SYQL Realization

Producer
Allow for LDW definition Wrapping template on top of ODT

tables

Allow for LDW deployment LDWs deployed as YQL services

Consumer

Allow for LDW discovery LDWs are publicized as “intensional

datasets” at the DataHub portal

Allow for LDW lookup Dereferenceable VoID & Hydra

documentation

Allow for resource lookup URI dereferencing

Curator
Allow for spotting stains Health Checker

Allow for cleaning up stains Code-to-annotation re-engineering

5.2 Producer Perspective

This evaluation from the producers perspective aims to measure the “qual-

ity of solution” when producers have to develop programmatically LDWs,

with no programming supporting tools more than the naked YQL console

and editor. Two possible scenarios: (1) create an LDW from scratch and

(2) take advantage from an existing ODT table.

5.2.1 Measuring Effectiveness

ISO/IEC 25010:2011 [fS11] provides a framework to evaluate quality in

use which includes effectiveness (i.e. the capability of the software prod-

uct to enable users to achieve specified goals with accuracy and complete-

ness) and efficiency (i.e. the relation between the capability of the software

product to enable users to expend appropriate amounts of resources in rela-

tion to the effectiveness). A main indicator of effectiveness is the “quality

of solution”, i.e. a measure of the outcome of the user’s interaction with

the system. As for efficiency, indicators include task completion time and

learning time. In this evaluation, “task completion time” is used as the

primary indicator of productivity.

Setting. In order to eliminate differences in the perception of LDW

58

Chapter 5. Validation

due to hardware or bandwidth differences, the study was conducted in a

laboratory of the Computer Science Faculty of San Sebastián. All partici-

pants used computers with the same features (i.e., Intel Core 2 1.86 GHz,

3 GB RAM and Windows XP Professional SP3) and a clean installation of

Firefox.

Subjects. The experiment was conducted among 15 graduate students

applying in a Master in Web Engineering. The majority of participants

were male (73.3%). Regarding age, 86.7% were in the 22-30 age range

and all participants were below 35 years old. This experiment was real-

ized at the end of 10 hours course in Web Programmable issues, where

students familiarize with the YQL console, the YQL language and ODT

specifications. As part of the Master degree, students followed a 30 hour

Semantic Web course, where Linked Data concepts and RDF syntax were

introduced. All of them were acquainted with JSON, but no JSON-LD.

5 students were expert JavaScript programmers, 5 had basic skills, and 5

knew the language but never code with it.

Procedure. Before starting, a 45-minute talk was given, introduc-

ing the purpose, some practical examples of JSON-LD, one implemented

LDW example and the registration process on the LDW server. A user-

guide sheet were distributed among subjects with all this information. Next,

subjects were faced with two scenarios, namely,

• Scenario a: From ODT to LDW. Here, subjects were given an exist-

ing ODT (i.e. lastfm.events.getinfo). The aim was to leverage this

ODT to become an LDW. Tasks ahead include: URL pattern specifi-

cation (i.e. lowering process) and lifting function definition. The lat-

ter involves ontologies identification, namespace handling, URI re-

source construction, URI class identification, properties XPath spec-

ification, multivalued attribute management and linkage pattern con-

struction.

• Scenario b: From API to LDW. Here, students started from scratch,

59

Linked Data Wrapper Curation: A Platform Perspective

Table 5.2: Effectiveness: (a) from ODT to LDW, (b) from API to LDW
Task #Students

scenario (a)

#Students

scenario (b)

API key obtention 12

API endpoint localization 15

API parameter localization 15

ODT construction 12

URL pattern specification 15 15

Ontologies identification 7 11

URI resource construction 13 12

Resource class identification 10 12

Properties XPath specification 15 11

Multivalue property management 2 5

Linkage pattern construction 11 12

i.e. the API (in this case, the authenticjobs.search API1). This method

returns the actual jobs that fulfill some input conditions. Besides the

previously mentioned tasks, this scenario’s demands include: API

key obtention, API Endpoint localization, API parameter identifica-

tion, and finally, ODT construction.

In order to measure productivity, participants had to annotate the start time

and the finishing time. Finally, the subjects were directed to a GoogleDocs

questionnaire to gather their opinion.

Effectiveness Results. Table 5.2(a) shows the results for the first task:

13 out of 15 students completed the LDW. The criterium for success was

the dereferenced of Last.fm events’ URIs. During LDW development, none

had problems to identify the URL Pattern that describes the lowering map-

ping. However, three had problems in specifying the <function> param-

eters that describe the lifting process. As expected, the lifting function

caused most problems: all students lifted at least two attributes and cre-

ated linked URI’s to one resource; 13 correctly identified the URI of the

resource (@id); 10 properly identified the type of the resource (@type:

mo:performance); 7 provided appropriate namespaces (@context); finally,

1http://www.authenticjobs.com/api/documentation/.

60

Chapter 5. Validation

only 2 successfully processed multivalued attributes. The latter can be

alleviated through a JavaScript library that helps managing multivalued at-

tributes. Finally, interlinkage to other resources task was properly fulfilled

by 11 students.

Table 5.2(b) depicts the outcome for the second endeavor: the devel-

opment of the ODT plus the LDW. Compared with the first LDW, this task

requires students to be familiarized with the authenticjobs API, identify-

ing the required method and its input parameters. Additionally, students

must register to authenticjobs to obtain the applications API Keys. Three

students had problems to obtain this API keys. This API follows a stan-

dard REST query protocol similar to the Last.fm API, so students follow

a clone-and-own approach by starting from the lastfm.events.getinfo ODT,

and next, adapt it to the authenticjobs’ specifics. This accounts for a collab-

orative LDW development. In the last step, that is, the ODT construction,

4 students had problems to identify the XPath where the result tuples were

located. Once the ODT was created, moving to the LDW didn’t involve

any significant setback for most students (mainly due to the first lab being

resolved some few hours before). Nevertheless, 3 students had problems

to identify the ontology while 4 had difficulties to identify some complex

XPaths from a service data (nested elements, attribute obtention, array po-

sition access). Once again, the main stumbling block stemmed from prop-

erty multivalued attributes. Linkage to other services accounted for 0 links

(3 students), 1 link (7 students), 2 link (4 students) and 3 links (1 student).

Productivity Results. A considerable dispersion on the time involved

in LDW development is appreciated. The first LDW involved 20’ on aver-

age while the second took 50’ on average. Spend time was proportional to

the student’s JavaScript experience.

5.3 Consumer Perspective

LDW continuous effort pays off if beneficiaries go beyond breakout devel-

opers. So far, most LDWs are seldom used outside their research projects.

61

Linked Data Wrapper Curation: A Platform Perspective

If LDWs are to evolve beyond proof of concept, scalability issues should

be considered. Graceful degradation of elapsed times should be obtained to

ensure appropriate quality of service. YQL can help by providing load bal-

ancing that outperforms small-scale attempts to host LDW services. This

section evaluates two scenarios:

• LDW overhead, i.e. additional latency introduced by the wrapping

w.r.t direct API access, and

• LDW load balancing gains, i.e. difference between running an LDW

in a server with and without load balancing.

Both studies were conducted over a AMD Turion 64 X2 2 GHz CPU with

4GB of memory, with a domestic 6Mbps WIFI LAN bandwidth. Measure-

ments were realized through JMeter [Eri13]. The experiment pivots around

the Flickr website. The goal was to dereference a URI that contains a posi-

tion (i.e. http://flickrservice/location/52.453056/13.

290556/) together with photos at this position. The wrapper was imple-

mented in two ways:

• as an ad-hoc program (i.e. Flickrwrappr). This accounts for the

traditional scenario, and it is based on a wrapper service provided by

the University of Mannheim2. The implementation accounts for 250

lines of PHP code.

• as an LDW on top of a YQL’s ODT (i. e. FlickrODT). Here, the

wrapper was developed and deployed using SYQL infrastructure.

5.3.1 Measuring URI-Dereferencing Latency

This experiment wants to measure the latency introduced by wrapping

w.r.t. directly invoking the Flickr’s API. To this end, dereferencing was
2http://wifo5-03.informatik.uni-mannheim.de/

flickrwrappr/. Interesting enough, this wrapper stopped working on June,
2014 as a result of a change in Flickr’s API (refer to http://code.flickr.net/
2014/04/30/flickr-api-going-ssl-only-on-june-27th-2014/).
We upgraded the code and installed it in our server.

62

Chapter 5. Validation

Table 5.3: Latency average values (ms)
Flickr Flickrwrappr FlickrODT

Mean 212 646 851

Median 194 601 726

Min 188 515 615

Max 300 990 1223

Table 5.4: Median latency values based on a number of threads (ms)
#threads Flickr Flickrwrappr FlickrODT

10 202 605 726

50 204 611 739

250 210 1251 802

2000 215 2371 957

conducted 1000 times with one call per second. The experiment was re-

peated three times at different hours of the day. Table 5.3 shows the re-

sults. Outcomes indicate that Flickrwrappr involves a three-fold overhead

compared with direct API calling. In addition, Flickrwrappr benefits from

directly invoking API whereas FlickrODT only accesses Flickr indirectly

through YQL services. This indirection costs 125ms in the median. This

dissertation can tentatively conclude that for sparsely used wrappers, ODT

indirection might improve maintenance but introduces a time penalty.

5.3.2 Measuring URI-Dereferencing Scalability

This second experiment looks at wrapper behavior with different loads.

Here, the experiment subjects the wrappers to different dereferencing pe-

tition loads: 10, 50, 250 and 2000 threads. The process was repeated 10

times every 5 seconds. Table 5.4 depicts the results. Here, FlickrODT

outperforms Flickrwrappr as a result of the load balancing performed by

the YQL platform. Whereas FlickrODT performance gracefully degrades,

Flickrwrappr surpasses 611ms as the median latency when handling over

50 threads in parallel. This behavior is most important to ensure quality of

service on the Web of Data. For wrappers supported by data owners (e.g.

63

Linked Data Wrapper Curation: A Platform Perspective

DBpedia) this might not be a problem, since they enjoy the resources to

meet these figures. However, third-party collaboratively developed wrap-

pers require YQL-like infrastructure to thrive. Otherwise, their poor qual-

ity of service might well discourage other end-points to set interlinkage

with them.

5.4 Curator Perspective

This section evaluates how successful SYQL is in facilitating users the

curation of third-party LDWs. From this perspective, Quality-in-Use be-

comes paramount. Specifically, the evaluation entails facing subjects with

the curation of someone else’s LDWs: flickr.videoobject (see Figure 4.5).

Curation scenarios include 3:

• API evolution. This might impact both the lowering and lifting of

LDWs. Two scenarios are considered:

– Task 1.1: API key expiration. No data is retrieved from the

API. Subjects should update LDW’s API key.

– Task 1.2: API resulting document structure changes. This causes

property lifting to stop working. Challenges include recreating

the mapping between the attribute and the property.

• Ontology upgrade. This might impact class mappings and property

mappings.

– Task 2.1: Switching dc:subject for dcterms:subject4. Difficul-

3Besides API, the LD cloud and data ontologies might also suffer changes. Linked
Open Vocabularies (LOV) database [VV] is a case in point. This database stores every
different version of a vocabulary over time. For instance, LOV reports 26 different ver-
sions of schema.org, 10 versions of FOAF, 3 DBpedia ontology versions or 13 Dublin

Core Metadata versions. Each version might entail an upgrade on the LDW using the
ontology.

4This is a real case: Dublin Core refined the dc namespace by dcterms [Ini13]. The
dcterms:subject range suggests to use a non-literal value (e.g. http://dbpedia.

org/resource/Spain) instead of a literal value (e.g. Spain).

64

Chapter 5. Validation

ties include transforming an Property mapping to an Associa-

tion mapping.

– Task 2.2: Class definition. Retype RDF resources as schema:

VideoObject. To increase discoverability and reusability, the

use of general purpose ontologies as de-facto standards is rec-

ommended. In addition, more specific classes into the class hi-

erarchy is recommended too. For instance, schema:VideoObject

is a subclass of schema:Media-Object which is a subclass of

schema:CreativeWork, and so on. In the sample wrapper, re-

sources are typed as schema:MediaObject. Subjects had to type

resources as pertaining to schema:VideoObject subclass.

• Linked Data cloud evolution. New nodes might enrich existing LDWs

with additional interlinkage.

– Task 3.1: A new interlinkage to a Linked Data cloud node.

Let’s suppose a consumer is interested in knowing where the

videos were taken. The subjects must create a new property

(e.g. schema:locationCreated) which points to the place where

the video has been taken (e.g. http://linkedgeodata.

org/api/3/intersects/Zarautz). The

LinkedGeoData service provides information about places

[SLHA12].

Next subsection describes the experiment.

5.4.1 Measuring Efficiency and Satisfaction

Measures. The evaluation focuses on two of the Quality-in-Use model

characteristics proposed by the ISO/IEC 25010:2011 standard 5:

5The effectiveness, freedom from risk and context coverage has not been evaluated in
this experiment.

65

Linked Data Wrapper Curation: A Platform Perspective

• Efficiency, which relates to the resources spent in relation to the ac-

curacy and completeness with which users achieve goals. A main

indicator of efficiency is task completion time.

• Satisfaction, which relates to the degree to which a user is satis-

fied with their perceived achievement of pragmatic goals, includ-

ing the results of use and the consequences of use. It was assessed

through specifically designed questionnaires measured by attitude

rating scales such as SUMI [KC93].

Setting. In order to eliminate differences in the perception of the sample

LDW due to hardware or bandwidth differences, the study was conducted

in a laboratory of the Computer Science Faculty of San Sebastián. All

participants used computers with the same features (i.e., Intel Core 2 1.86

GHz, 3 GB RAM and Windows XP Professional SP3) and a clean instal-

lation of Firefox 52.0.

Subjects. The experiment was conducted among 12 graduate students

applying in a Master in Web Engineering. The majority of participants

were male (75%). Regarding age, all participants were in the 22-26 age

range. This experiment was realized at the end of 10 hours course in Web

Programming issues, where students were familiarized with the YQL Con-

sole, the YQL language and ODT specifications. As part of the Master

degree, students followed a 30 hour Semantic Web course, where Linked

Data concepts and RDF syntax were introduced. All of them were ac-

quainted with XML and JSON, but not with JSON-LD. Seven students

were expert JavaScript programmers and five had basic skills.

Instrument. A questionnaire served to gather users’ experience. It

consisted of two parts, one to gather the participants’ background and one

to evaluate efficiency and satisfaction. In order to measure efficiency, par-

ticipants had to annotate the start time and the finishing time of each task.

Satisfaction was measured using 7 questions with a 5-point Likert scale

(1=completely disagree, 5=completely agree).

Procedure. Before starting, a 45 minute talk was given, introducing

66

Chapter 5. Validation

Table 5.5: Time spent on each task (in minutes)
avg.

Task 1.1 API evolution. Expired credential 0.8

Task 1.2 API evolution. Changed path 6

Task 2.1 Ontology upgrade. Property evolution 2.9

Task 2.2 Ontology upgrade. Class redefinition 1.8

Task 3.1 Cloud evolution. Increase interlinkage 3.2

the purpose. A user-guide sheet was distributed among participants with

all this information. Next, subjects were faced with the aforementioned

tasks.

Efficiency results. Table 5.5 shows the average time performing each

task. The experiment was arranged along the three sources of LDW fragility,

namely:

• API evolution. Task 1.1 requires less than one minute on average.

It implies changing the API key. Next, Task 1.2. It took 6 minutes

on average. Main challenge was to explore the API response on the

search for the missing property (as a result of API evolution) within

the XML structure.

• Ontology upgrade. Tasks 2.1 and 2.2 involve interacting with the

annotation tool to swap properties (i.e. from dc:subject to dcterms:

subject) and class membership (i.e. from schema:MediaObject to

schema:VideoObject), respectively. Subjects spent 2.9’ for Task 2.1.

and 1.8’ for Task 2.2. The reduction in time w.r.t. Task 1.2 (which

conceptually is not so different) can be presumably due to now the

mapping operates upon already annotated XML elements, fewer in

quantity and hence, easier to spot.

• Linked Data cloud expansion. Task 3.1 was twofold: composing a

URI out of the object name, and selecting the association that links

the annotated resource with a composed URI. This required mov-

ing to the lifting annotator, create a new resource from a string (e.g.

67

Linked Data Wrapper Curation: A Platform Perspective

Table 5.6: Satisfaction assessment: from 1 (“total disagreement”) to 5
(“total agreement”)

avg.

I easily pinpoint to the property I want to annotate 3.5

I easily realize whether properties were annotated or not 3.1

Defining instances types was easy 3.9

Defining property mapping was easy 4.1

Defining association mapping was easy 3.9

Pre-views help fixing mapping errors 3.7

The Semantic View tab is useful 4.2

Zarautz) and select the association (i.e. schema:locationCreated).

Satisfaction results. An evaluation questionnaire was prepared to ascer-

tain the satisfaction of subjects in using the annotation facility. This facility

is realized through the “Annotation View” and the “Semantic View” tabs

in the YQL Console (see Figure 4.12). Table 5.6 displays the results using

a Likert scale from 1 (“total disagreement”) to 5 (“total agreement”) for

the 12 subjects (S1, S2, etc). The weakest results are obtained for property

searching (3.5 avg. points) or the awareness of what is being annotated

(3.1 avg. points). This may be due to scalability matters when scrolling

large XML documents in search for a given element. Color conventions

(i.e. dark blue for unannotated, light blue for annotated) might also be too

faint to easily spot what properties have not yet being annotated. By con-

trast, pop-up windows for setting either resources’ type, property mapping

and association mapping are found intuitive enough with 3.9, 4.1 and 3.9

points, respectively. Showing the semantic counterpart for the annotation

at hand (i.e. pre-views) was also of interest (3.7 avg. points). In general,

the Semantic View tab was highly regarded (4.2 avg. points).

5.5 Comparing SYQL with other Platforms

Platforms can serve different aims, and hence, being driven by different

requirements. Platform comparison can then be unfair if the requirements

68

Chapter 5. Validation

Table 5.7: LDW Platform’s requirement compliance
LDW

Def./

Dep.

LDW

Discovery

LDW

lookup

Resource

lookup

Quality

check-

ing

LDW

curation

LOD

Laund.
No (1) Yes (1) Yes (4) Yes (2) Yes (1) No

TWC

LOGD
Yes (2) No Yes (1) Yes (2) No No

xCurator Yes (3) No No
Yes (1,

2)
Yes (1) No

D2RQ Yes (3) No Yes (1) Yes (2) No No

Virtuoso

Sponger
Yes No No

Yes (1,

2)
No Yes

Bio2RDF Yes No Yes (1) Yes (2) No Yes

DBpedia Yes No Yes (1)
Yes (1,

2)
Yes (1) Yes

SA-REST Yes No No No No No

Karma Yes (3) Yes No Yes (3) No No

SWEET Yes Yes Yes (4) Yes (3) No No

LIDS/LOS Yes No No Yes (1) No No

SYQL Yes
No (in

DataHub)

Yes

(1,2,3)
Yes (1)

Yes (1,

2, 3)
Yes

of the comparison are not those that drive the platform design. Neverthe-

less, this comparison is needed to show out the additional contributions,

and what is also important, the extent to which existing platforms can em-

brace the new requirements. This section addresses the extent to which the

aforementioned platforms fulfill these requirements.

Table 5.7 holds the output where each requirement admits two values

(i.e. “yes” or “no”) according to these criteria:

• LDW definition/deployment. Yes: users can define their own wrap-

pers6. No: there is no way to define wrappers;

• LDW discovery. Yes: facilities are provided to query LDWs7. No:

6Legend: 1-built-in, 2-automatic, 3-semiautomatic.
7Legend: 1-datasets.

69

Linked Data Wrapper Curation: A Platform Perspective

no query facilities;

• LDW lookup. Yes: LDWs are RDF resources8. No: LDWs are not

semantically described;

• Resource lookup. Yes: individual resources are dispatched9. No:

resources are not accessible through their URI;

• Quality checking. Yes: some quality assessment is conducted10. No:

no quality assessment is performed.

• LDW curation. Yes: users can enhance someone else’s LDWs. No:

users can only enhance their own LDWs, if any.

None of the listed systems cover all the requirements. Systems aim con-

straints the requirements their fulfill. LOD Laundromat is a fully autom-

atized RDF to RDF datasets cleaner. Hence, users cannot define or main-

tain wrappers. SA-REST consumes wrappers and data into a proxy server

so they are not publicly provided nor validated. SWEET and LIDS/LOS

focus on APIs semantic description. Issues of quality or maintenance are

not tackled. Virtuoso Sponger and Karma allow to create wrappers but

do not focus on quality and maintenance. D2RQ is a server to be locally

installed, therefore it ignores discoverability. SYQL has been mainly influ-

enced by five developments: Bio2RDF, xCurator, DBpedia, TWC LOGD

and Karma. Next, this dissertation provides a deeper comparison.

Bio2RDF shares the vision of an open community of wrapper produc-

ers. It allows producers to program in their preferred programming lan-

guage which lowers technological barriers but complicates reusability. By

contrast, SYQL aims to promote both LDW sharing and the engagement

of the API community. Its declarativeness and popularity among API pro-

grammers make YQL’s ODTs this dissertation’s bet. In addition, SYQL

8Legend: 1-VoID (dataset description), 2-Hydra (APIs documentation), 3- DQV (data
quality), 4-metadata.

9Legend: 1-dereferencing URIs, 2-SPARQL endpoint, 3-ad-hoc dereferenciation.
10Legend: 1-intrinsic, 2-accessibility, 3-contextual.

70

Chapter 5. Validation

provides an re-engineering and annotation tool to engage consumers in cu-

rating wrappers.

xCurator offers a semiautomatic wrapper development while the main-

tenance process gathers consumers’ feedback. The main difference with

SYQL lies in openness. SYQL is totally open: everybody can create and

curate wrappers. By contrast, in xCurator, data consumers can report data

problems but only administrators can curate wrappers.

DBpedia wrappers are syntactically validated whereas generated data is

assessed by selected consumers detecting and reporting errors [AZS+16,

KZAL13]. Users can ask for edition rights in order to curate wrappers

[DBp16]. The main difference stems from DBpedia being Wikipedia-

specific while SYQL is agnostic.

TWC LOGD also faces upgrading but with a different approach. Up-

grades are incrementally created adding new properties. That is, if there

are n different upgrades, there will be n different wrappers. In that way,

each consumer can pick up his favorite version. By contrast, SYQL only

keeps a single wrapper version, though producers can resort to GitHub’s

version control to create new LDWs out of previous versions.

Karma also addresses API-based LDWs. Both Karma and SYQL re-

sort to annotations. However, Karma illustrates a generative endeavor

(from annotations to code) whereas SYQL is a re-engineering effort (from

code to annotations). This difference stems from the different targeted au-

diences: Karma targets LDW producers whereas SYQL aims at helping

curators in cleaning someone else’s LDWs.

5.6 Conclusion

YQL ODTs (a combination of XML declarative language and Javascript

program) are a powerful mechanism to access APIs and, by extension, to

create LDWs. Lessons learned from the Producers perspective encouraged

us to provide programming libraries and templates to easy LDWs devel-

opment. Even more, the Annotator tool is designed not only for LDW

71

Linked Data Wrapper Curation: A Platform Perspective

curation but for LDWs creation too. The aim is to lower the needed pro-

gramming and semantic knowledge skills in LDW creation and curation.

In fact, Curators upgrade LDWs not developed by themselves. The re-

engineering simplifies maintenance tasks by showing code as annotations.

The SYQL platform (through the YQL system) manages well a num-

ber of concurrent calls. However, Consumers must to take into account

the latency introduced by LDWs. LDWs do not fit well for LD Applica-

tions requiring very fast responses but are suitable for other kind of LD

Applications where one second latency is acceptable.

To sum it up, SYQL and LDWs promote collaborative behaviors:

• Producers are more effective cloning ODTs in order to define new

LDWs,

• Consumers take advantage of online LDWs on top of the YQL sys-

tem, and

• Curators are able to maintain LDWs developed by others.

72

Chapter 6

Writing in the LD Cloud

“Whether he be an original or a plagiarist, man is the novelist of himself.”

– José Ortega y Gasset

6.1 Overview

LDWs support different operations although, so far, only resource lookup

(GET method) has been shown. In this chapter resource insertion operation

(POST method) is discussed. This dissertation advocates LDW curation to

increase LDW lifespan. Curation is not influenced by operations supported

by the LDW. However, tools and procedures could differ depending on the

operations.

6.2 Definition

The insertion operation is based on the YQL INSERT statement. For

example, the following statement creates a new blog post in the http:

//oscaronekin.wordpress.comWordpress blog:

73

Linked Data Wrapper Curation: A Platform Perspective

Figure 6.1: An LDW template with the insert operation to be completed

insert into wordpress.post (blogurl, username, password, title,

description, tags) values (’http://oscaronekin.wordpress.com’,

’oscaronekin’, ’12osin34’, ’Demo video’, ’https://www.flickr.com/...’,

’research’)";

SYQL also provides an “INSERT wrapping template” (see Figure 6.1).

For resource insertion a YQL INSERT statement is used (lines 20-22).

Here, the template accounts for two main steps: lowering and credentials

handling (see Figure 6.2). It is worth to note that this LDW lacks the lift-

ing step since the resource insertion process does not retrieve data from the

API to be lifted.

Lowering. In the insertion operation, lowering involves not only to

match the URI pattern (line 10 in Figure 6.2) and URI examples (line 11)

but also to send RDF data to the API. Input data is annotated defining

the properties of the input RDF resource (lines 21-23). These properties

74

Chapter 6. Writing in the LD Cloud

Figure 6.2: YQL Editor Console. The wordpress.weblog LDW

are sent to the API through pattern matching (e.g. line 21 to line 35 {dc-

terms:title} binding). The execution part (lines 25-39) allows to compose

a YQL INSERT statement in order to create the resource. Note that this

statement is an indirection to the wordpress.post ODT (lines 26-30).

Credentials handling. In the current example, the username (lines 17-

18) and the password (lines 19-20) are credentials. Credentials are man-

aged in the same way in all the operations. However, looked up resources

usually are publicly accessible and hence credentials (e.g. API key) al-

low to manage requests on the server (e.g. preventing abuse of the API).

In contrast, inserted resources are injected into users’ accounts, therefore

websites require personal credentials (e.g. password) in order to control

75

Linked Data Wrapper Curation: A Platform Perspective

Figure 6.3: Resource creation sequence diagram

access and identify the account. LDW creators, for sure, will not provide

valid data for these credentials, otherwise their own private data would be

not secure.

6.3 Deployment

When an LDW with an insert operation is deployed, only syntactic errors

are detected (except the lack of lifting function). Execution is not tested

because an example input RDF is not provided and the aforementioned

cautions with the personal credentials.

6.4 Resource Insertion

SYQL processes POST methods for URIs that conform to the LDW’s URI-

Pattern. Resource insertion follows three main tasks (see Figure 6.3):

1. data retrieval, where the LDW wrapper is downloaded from the LDW

repository. In addition, credentials and the RDF data are extracted

from the request body;

76

Chapter 6. Writing in the LD Cloud

2. lowering, where the YQL insert statement is prepared with the RDF

data and the credentials; and

3. API calling, where the insert statement is enacted resulting in a new

resource in the web service.

As said before, the insertion operations access personal accounts, hence,

personal credentials are provided in the request body as well as the RDF

data. For example, the POST method in order to create a blog post in

Wordpress may provide this data:

POST http://rdf.onekin.org/wordpress/weblog/

oscaronekin

Authorization = {"hydra:supportedProperty": [{"hydra:title":

"foaf:accountName", "schema:value": "oscaronekin"}, {"hy-

dra:title": "acc:password", "schema:value": "12osin34"}]}

{"@context":{"sioc": "http://rdfs.org/sioc/ns#", "tsioc":

"http://rdfs.org/sioc/types#", "dcterms":"http://purl.org/dc/terms/"},

"@type":"tsioc:BlogPost", "sioc:topic":"research", "dcterms:title":

"Demo video", "sioc:content": "https://www.flickr.com/photos/..."}

6.5 Spotting Stains

Stains in LDW

Quality of insertion operations is checked based on real executions. That

is, each time an application inserts a resource, data is gathered to asses

the operation’s quality. So, SYQL assesses quality based on the last 10

insertions. The quality features that are valid for insert operations are listed

in Table 6.1. They are a subset of those for the lookup operation.

Functioning-status Stains. Although performance quality is not as crit-

ical for insert operation as it is for lookup, the latency (P2), throughput

77

Linked Data Wrapper Curation: A Platform Perspective

Table 6.1: Quality dimensions for the writing operation. “Abr” stands for
the abbreviation used in [ZRM+16]

Dimension Subdimension Abr Metric SYQL realization

Accessibility Performance

P2 Low latency
Minimum request to

response delay

P3 High throughput
Number of requests per

second

P4
Scalability of a data

source

Average throughput of

the last ten calls

Intrinsic
Semantic

accuracy
SA2 No inaccurate values

Notifications via

GitHub comments

Contextual Trustworthiness T7 Reputation of the dataset
Number of insertions

and ratings in GitHub

(P3) and scalability (P4) quality features are registered. In addition, the

expiration of credentials is detected if the LDW returns an HTTP error

status.

Data-quality Stains. Resources inserted in sites are hidden for SYQL.

Hence, data-quality stains are reported by stakeholders by GitHub. Con-

cretely, consumers report comments about inaccurate data creation (SA2)

(e.g. incorrectly matched dcterms:title to the resource description) or their

subjective assessment (T7).

6.6 Cleaning up Stains

Re-engineering is applied for lowering annotations too. Mappings lower

the RDF data in the request’s body to the YQL insert statement. Accord-

ingly, the Health Checker offers a lowering annotation tool to modify these

mappings. For example, Figure 6.4 shows the lowering annotator for map-

pings in Figure 6.2 (lines 21-23).

78

Chapter 6. Writing in the LD Cloud

Figure 6.4: Lowering mapping editor

6.7 Conclusion

LDWs are enhanced YQL ODTs, hence, they could support the four CRUD

operations since YQL offers SELECT, INSERT, UPDATE and DELETE

statements. So far, SYQL supports lookup and resource insertion opera-

tions. Curation tools are adapted for each operation (e.g. lowering map-

ping vs. lifting mapping) but LDWs are uniformly managed no matter the

operations they support.

79

Chapter 7

Proof of Concept

“The metaphor is perhaps one of man’s most fruitful potentialities. Its efficacy

verges on magic, and it seems a tool for creation which God forgot inside one of

His creatures when He made him. All our other faculties keep us within the

realm of the real, of what is already there. The most we can do is to combine

things or to break them up. The metaphor alone furnishes an escape; between the

real things, it lets emerge imaginary reefs, a crop of floating islands. A strange

thing, indeed, the existence in man of this mental activity which substitutes one

thing for another — from an urge not so much to get at the first as to get rid of

the second.”

– José Ortega y Gasset

7.1 Overview

Section 2.4 describes four scenarios (i.e. CMS, TAS, Linked Data visual-

izers and Semantic Mashups) where LDWs are useful. This chapter delves

into one of them, TABASCO, a Linked Data Application that is going to

be used to check out SYQL.

81

Linked Data Wrapper Curation: A Platform Perspective

7.2 TAg-BASed inter-site COmmunication

Tagging is an important task for different systems and services such as

Diigo [Dii], WordPress or Flickr which allow participants to annotate a

particular resource (e.g. a web page, a blog post, an image) with a freely

chosen set of keywords (aka tags). Tags can be a powerful tool for social

navigation [MF06], helping people to share and discover new information

contributed by other community members. Notice however that such col-

laboration is restricted to the site itself. Collaboration-wise, these websites

behave as islands where collaboration is restricted to resources and users

within the website walls.

However, it is very common for users to keep an account in distinct

tagging sites depending on a broad range of issues: the resource type, the

utilities offered by the site, the supporting community, confidentiality, etc.

Therefore, taggable resources will most likely be scattered throughout the

Web. The potential synergies among many sites, communities, and ser-

vices are expensive to exploit, and their data are difficult and cumbersome

to link and reuse. The main reason for this lack of interoperation is that for

the most part in the Social Web, common standards still do not exist for

knowledge and information exchange and interoperation.

This chapter introduces a framework for TAg-BASed, inter-site COm-

munication (TABASCO). The system permits users to communicate seam-

lessly through heterogeneous websites. Users are represented through their

website accounts. Tasks are those set by the websites themselves, and nor-

mally available through an API. Tags are the means to denote the message

that enacts the associated task in the target account (hereafter referred to

as “reactive tags”). Messages are originated in the sender website and im-

pact on the receiver website. Finally, web resources (e.g. bookmarks, blog

posts, etc) stand for message parameters.

As an example, let U1 and U2 be two users that hold an account in

Flickr and Wordpress, respectively. Flickr keeps videos, and supports tag-

ging. Wordpress manages blog posts, and permits to file and categorize

82

Chapter 7. Proof of Concept

posts. In this example, Flickr and Wordpress will play the role of the sender

and receiver sites, respectively. U1 wants to communicate to U2 when an

interesting video is worth to be shared. To this end, U1 tags the interesting

video in Flickr as “toshare”. This tag is a reactive tag, i.e. its reactive se-

mantic has been previously defined in TABASCO by U1 provided he holds

U2 authorization. This makes TABASCO monitor U1 tagging behaviour in

Flickr. When “toshare” is used, TABASCO enacts its associated seman-

tics: creating a new post in U2’s Wordpress account.

The previous scenario illustrates the notion of Collaboration Space as

a graph of nodes (i.e. user accounts), and labelled edges (i.e. reactive tags).

Edges introduce collaboration paths whereby tagging on the source node

triggers some site-dependent reaction on the target node.

TABASCO aims at binding disperse communities together. From a

communication perspective, the approach accounts for uniformity and site

independence. So far, communication is provided within the site’s bound-

aries through distinct mechanisms: button, command lines or even tags (for

instance, the so-called machine tags in Delicious, e.g. for:Jon). TABASCO

uses reactive tags for messaging along no matter the website. Any web-

site supporting tagging is liable to use reactive tags. From the website

perspective, reactive tags are just standard tags. It is TABASCO monitor-

ing what makes the tag be reactive. Reactive semantics is specified using

Event-Condition-Action (ECA) rules. TABASCO looks up a sender site to

retrieve the item list, then retrieves the new items’ descriptions to check if

they hold the reactive tag (the event) and, if it is the case, creates derived

items in the receiver site (the action). Thus, a site (e.g. Wordpress) is a con-

tainer (e.g. a weblog) of items (e.g. blog posts). Containers accommodate

items that hold tags.

Social Web is fed with User Generated Data [KDN08]. SYQL pro-

vides API data as Linked Data. So, SYQL could supply User Generated

Data that is otherwise not available as Linked Data. Semantic data helps

TABASCO define reactive tags. In addition, SYQL supports the following

key requirements identified for TABASCO:

83

Linked Data Wrapper Curation: A Platform Perspective

• interoperability. TABASCO provides an additional layer on exist-

ing tagging systems. This brings issues on both syntactic interoper-

ability (such as data formats and communication protocols) and se-

mantic interoperability (e.g. existence of a shared reference model).

– Syntactic interoperability. LDWs hide API intricacies into YQL

ODTs which allows SYQL to lower URI calls to YQL state-

ments. In this way, TABASCO interacts with APIs as if they

were LD data sites on the cloud. Moreover, APIs evolution

would be detected and solved in SYQL’s Health Checker with-

out consequences for TABASCO.

– Semantic interoperability. Smooth system interoperation is

achieved by abstracting site specifics through ontologies. User

accounts, websites and the semantics of reactive tags are all

captured by adapting existing ontologies, namely, FOAF, SIOC

and ECA-ML, respectively. LDWs map API data into ontology

terms.

• integrity. Integrity is the assurance that the information can only

be accessed or modified by those authorized to do so. TABASCO

extends tagging consequences outside a single user account. Tag-

ging on one user account might impact someone else’s user account.

Users should keep control of who and how their accounts are ac-

cessed. Hydra documents in SYQL describe credentials required for

each LDW. TABASCO interprets these descriptions and asks users

for credential values. Thus, TABASCO manages user authorizations

and consumer credentials which take precedence over the LDW pro-

ducer credentials.

84

Chapter 7. Proof of Concept

7.3 Adding a New Site

TABASCO does not require any plugin on participating sites. Sender sites

need to provide tagging capabilities. Both sender and receiver sites should

be LD sites.TABASCO administrators add a new site (e.g. Wordpress)

specifying the site name, the Hydra description of the items lookup service

and the Hydra description of the container service (the service that storages

the items). It is worth to note that although TABASCO is intended to test

SYQL it could use services in the LD cloud as long as they provide Hydra

descriptions. In any case, TABASCO administrators need to find a Linked

Data source and assess its adequacy. To this end, administrators would

search the LD source in DataHub, the referral dataset directory. Next, they

would inspect source’s metadata and the supported items to decide whether

it is appropriate. SYQL assist administrators by providing a rich metadata

(i.e. quality measures in the Health Checker) and by allowing to modify

the item to provide required semantic properties (i.e. re-engineering tools).

Ultimately, if the site’s LD source does not exist administrators can define

and deploy a LDW for the site.

In the example form in Figure 7.1 a TABASCO administrator specifies

the Wordpress site by means of the wordpress.weblog LDW’s Hydra de-

scription1 (the items container) and the wordpress.blogpost LDW’s Hydra

description2 (the items lookup service). The form also lists the sites speci-

fied so far. For example, the Flickr site cannot be used in the action part of

the ECA rules because it does not support the resource insertion operation

(i.e. POST). In contrast, the wordpress.weblog LDW3 supports resource

lookup and resource insertion operations and, hence, Wordpress could be

used in rules’ event and action parts.

Hydra descriptions reveal how to interact with sites by means of (1) an

1Available at http://rdf.onekin.org/wordpress/weblog/(blogid)
/apidocumentation.

2Available at http://rdf.onekin.org/wordpress/blogpost/

(postid)/apidocumentation.
3Available at https://raw.githubusercontent.com/onekin/ldw/

master/wordpress/wordpress.weblog.xml.

85

Linked Data Wrapper Curation: A Platform Perspective

Figure 7.1: Adding a new site to TABASCO

entry point URI pattern, (2) the supported operations and (3) the required

credentials. The entry point (lines 10-22 in Figure 7.2) lists the supported

operations (lines 21-22) as well as the URI pattern (line 15) and the vari-

able(s) to be expanded (e.g. blogid) in order to obtain a correct container’s

URI (lines 16-20). Current example supports both GET (resource lookup)

and POST (resource insertion) operations. Other LDWs could only support

one of them.

The GET operation (lines 23-28) returns tsioc:Weblog items (line 28)

with these properties: sioc:name (lines 33-35), dcterms:description (lines

36-38) and sioc:container_of (lines 39-41). sioc:container_of holds the

list of contained items (e.g. blog posts).

The POST operation (lines 42-48 in Figure 7.3) sets credentials (lines

62-75) and data required to create tsioc:BlogPost items (lines 49-61). The

blog posts should contain the sioc:topic (lines 53-55), dcterms:title (lines

56-58) and sioc:content (lines 59-61) properties. As for credentials, the

acc:password (lines 66-70) and the foaf:accountName (lines 71-75) are

required. Note that the POST operation requires credentials and the GET

86

Chapter 7. Proof of Concept

Figure 7.2: Wordpress entry point and GET operation descriptions

operation does not. It is aligned with the LDW definition of the insert and

the select part4. Creating an item in a user’s blog requires authorization

whilst reading public posts is always allowed.

To sum up, Hydra allows TABASCO to retrieve and manage site in-

formation. Concretely, the items’ properties, the supported operations and

the required credentials are described. In this way TABASCO configures

itself without administrators interaction. Administrators only have to dis-

4The wordpress.weblog LDW is available at https://raw.

githubusercontent.com/onekin/ldw/master/wordpress/

wordpress.weblog.xml.

87

Linked Data Wrapper Curation: A Platform Perspective

Figure 7.3: POST operation description

cover and adapt appropriate LDWs in DataHub or create them in order to

fulfill data requirements.

7.4 Credentials Management

Hydra describes credentials for accessing user accounts. For example, the

Wordpress site definition in Figure 7.3 indicates that the POST operation

requires the acc:password and foaf:accountName credentials. TABASCO

automatically asks users for this credentials without administrator involve-

ment. Figure 7.4 shows the form collecting credentials in order to authorize

TABASCO to operate on behalf of Oscar.

TABASCO behaves as a “guarantor” of credentials. Users grant/request

88

Chapter 7. Proof of Concept

Figure 7.4: Account form requesting required data

authorization tokens to/from TABASCO. This requires the previous con-

sent from the authorization owner. Figure 7.5 outlines the main TABASCO

graphic user interfaces for this purpose.

Registration (“My Account” tab: Figure 7.5(a)). Users first indicate

whether their accounts will become nodes of the Collaboration Space. The

process goes as follows: (1) the user selects the website (e.g. Wordpress),

(2) TABASCO asks user for credentials to authorize TABASCO to work on

his or her account (e.g. user and password), (3) TABASCO checks whether

credentials are valid, and (4) the user account is registered for TABASCO

to work on this account.

Authorization request (“My Community” tab: Figure 7.5(b)). Even if

TABASCO holds an authorization, this does not imply that any registered

user can enjoy this authorization. Rather, defining reactive tags over a user

account requires authorization privileges upon this account. The petition

lifecycle goes along the following stages: start, pending, accepted/rejected

and revoked.

Authorization grantee (“My Grantees” tab: Figure 7.5(c)). Autho-

rization petitions are managed by account owners themselves. Petitions are

89

Linked Data Wrapper Curation: A Platform Perspective

Figure 7.5: TABASCO tabs: a) granting TABASCO access to your ac-
counts; b) requesting authorization on someone else’s account; and c) man-
aging authorization petitions on your accounts

notified through the “mail” icon, and handled through the “My Grantees”

tab. If granted, TABASCO extends the credential to the petitioner so that

he can now define reactive tags on this account. Authorization can be

revoked at any moment by the account owner. This process is internal

to TABASCO, and it does not involve any additional interaction with the

90

Chapter 7. Proof of Concept

website (e.g. Wordpress). At any moment, owners can check the status

of their tokens, and revoke authorizations. This disables the affected rules

(i.e. affected tags are not longer reactive) but does not delete them. If the

authorization is later renewed, these rules are enabled again. Rule deletion

should be explicitly conducted by the creator. Rule deletion does not imply

the removal of the companion reactive tag from the source site.

In an experiment conducted among 10 PhD students revealed a devia-

tion on the opinion about transferring user credentials to TABASCO. Two

of them strongly agreed, three agreed, one was neutral and four disagreed.

Although they were informed that the transferred authorizations can be re-

voked, some of them felt very reluctant to hand out credentials. We hope

this suspicion will decrease as OAuth5 becomes mainstream. Another mis-

understanding was about the nature of TABASCO. TABASCO is thought

to be deployed as a Web application by the community at hand, and hence,

within the control and management of the community. The Web interface

made some students think they were delivering their credentials to a third

party (i.e. as if TABASCO was an online service similar to Facebook)

which it is certainly not the case.

7.5 Reactive Tag Definition

Beside hiding API intricacies, LDWs used by TABASCO turn obscure and

heterogeneous API data into meaningful and uniform semantic data. For

instance, LDWs for video manager sites (e.g. Flickr and Vimeo) could

return schema:VideoObject items, while LDWs for blog managers (e.g.

Wordpress and Blogger) could return tsioc:BlogPost6 items. This simpli-

fies the definition of reactive tags as transformational rules. TABASCO

5OAuth (Open Authorization) is an open standard for authorization that allows users to
share their private resources (e.g. bookmarks) without having to hand out their credentials.
This is achieved by handing out tokens. A token grants access to a specific site (e.g. Diigo)
for specific resources (e.g. bookmarks at myReadingList folder) and for a defined duration
(e.g. the next 2 months). See http://oauth.net/.

6tsioc is the prefix for the http://rdfs.org/sioc/types# namespace.

91

Linked Data Wrapper Curation: A Platform Perspective

administrators create rule templates defining how receiver site items are

created from fixed values or from values of the sender site items. In the

latter case, instead of setting mappings among API data attributes, admin-

istrators set mappings among semantic properties (see Figure 7.6). Seman-

tics of properties help finding related properties and values. In addition, the

item uniformity reduces the number of possible combinations. For exam-

ple, if a set of web site APIs are turned into three types of items (e.g. Blog-

Post, Bookmark and VideoObject) this implies nine possible transforma-

tions: BlogPost to BlogPost, BlogPost to Bookmark, BlogPost to VideoOb-

ject, etc7. These mappings are already engineered in TABASCO. From

this perspective, edges are envisioned as pipes that push items along the

Collaboration Space.

TABASCO users define reactive tags by instantiating a transforma-

tional rule template. In order to do so, users specify (1) the source node,

(2) the target node, (3) the label and (4) the operational semantics. In Fig-

ure 7.7, the left-hand side panel provides available nodes according to the

authorizations held by the current user. Source nodes are restricted to ac-

counts owned by the user. That is, a user cannot define a reactive tag that

departs from someone else’s account. Target nodes correspond to accounts

the user is authorized to operate upon. This includes his own accounts plus

those he has been granted authorization. Through drag&drop, the user

initializes the middle canvas with the desired nodes. Standing for user ac-

counts, nodes are depicted as a blend of the user picture and the website

icon. Edges can now be drawn between user accounts, and in so doing,

setting the operational semantics of tags. For instance, users can overwrite

property mappings in the rule template.

As an example, let’s consider our first scenario, the semantics of the

7It could be possible to define a canonical model that factors out the n item types so
that the number of combinations would be reduced from n ∗ n to 2 ∗ n. However, the
overlapping among item types is rather small, and hence, the mapping between the type
and the canonical model would have been limited to very general properties. By con-
trast, a direct type-to-type mapping permits to express correspondences beyond general
properties.

92

Chapter 7. Proof of Concept

Figure 7.6: From a schema:VideoObject item to a tsioc:BlogPost item

toshare tag (see Figure 7.7): “on tagging toshare at Oscar’s Flickr, do

create a post in the research category on Oscar’s Wordpress”. The type of

both items is set by the participating websites (i.e. Flickr handles schema:

VideoObject items while Wordpress manages tsioc:BlogPost items). The

sioc:topic property is bound to the “research” value too.

7.6 Conclusion

TABASCO is a proof of concept to test the viability of SYQL. SYQL sup-

ports TABASCO fulfilling its requirements (i.e. interoperability and in-

tegrity). In general terms, LD Applications could take benefits not only

from the main ideas of this dissertation, i.e. LDW externalization and

community curation, but from the LDWs management too. The benefits

93

Linked Data Wrapper Curation: A Platform Perspective

Figure 7.7: Reactive Tag running examples:“toshare” & “review”

provided by SYQL are listed below:

• Uniform interface. Instead of calling to heterogeneous APIs, LD

Applications benefit from a simple and uniform interaction interface.

Namely, to look up a resource dereferencing its URI (GET request),

and to create a resource sending an RDF resource to a URI (POST

request).

• Reusable LDWs. Programming effort is reduced since LDWs are

available on the web to be reused. SYQL publishes LDWs in DataHub

so application developers can discover useful data sources. To this

end, SYQL creates a Hydra description from the LDW definition and

publishes quality measurements through the Health Checker. Even if

LDWs do not fulfill completely consumers needs (e.g. structurally,

because the lack of properties, or functionally, due to quality issues),

they can adapt LDWs.

• Current data. Current Linked Data offers new opportunities for in-

novative applications. Linked Data on the cloud usually is composed

94

Chapter 7. Proof of Concept

of almost static datasets updated once or twice a year. By contrast,

LDWs turn API data into Linked Data on demand. In the case of

Social Web sites, User Generated Data is provided as Linked Data.

Furthermore, the resource insertion capability may produce a more

dynamic data flow in the Linked Data cloud.

• Consumer credentials. LD Applications must manage consumer cre-

dentials. SYQL allows applications to provide user credentials which

take precedence over the LDW producer credentials. In this way,

users do not rely on SYQL but on the application.

95

Chapter 8

Conclusions

“Anybody who is not like everybody, who does not think like everybody, runs the

risk of being eliminated.”

– José Ortega y Gasset

8.1 Overview

LDWs turn APIs data into semantic data. This has the potential of pro-

viding API’s current data in the Linked Data cloud. However, LDWs usu-

ally are embedded in projects which limit LDWs lifespan. LDWs as sepa-

rated artifacts need a supporting infrastructure and a community for LDWs

maintenance. This dissertation addressed these challenges by establishing

requirements for LDW Platforms and by developing a solution on top of

the YQL system. A proof of concept application was used to assess the

applicability of the presented ideas.

This chapter reviews the main results of this dissertation, assesses its

limitations, and suggests works for future research.

97

Linked Data Wrapper Curation: A Platform Perspective

8.2 Results

This dissertation developed the content of the research into four main chap-

ters, whose contributions are detailed next:

• Chapter 3 identifies requirements for LDW Platforms. It does so

through three stakeholders in the LDW lifecycle: Producers, Con-

sumers and Curators. They are interdependent: if an LDW is not

produced it cannot be curated, and if an LDW is not updated it is not

consumed. Requirements for LDW Platforms from the stakehold-

ers perspective are established: LDW definition&deployment, LDW

discovery&lookup, resource lookup and spot&clean stains.

• Chapter 4 describes the Semantic YQL, an LDW Platform on top of

the Yahoo YQL system. The platform aims to fulfill the aforemen-

tioned requirements with a focus on LDW externalization and LDW

curation. The Health Checker highlights two kind of issues: data

quality issues and API issues. Re-engineering tools allow to curate

LDW modifying lifting mappings, editing credentials and changing

example URIs.

• Chapter 5 evaluates the LDW Platform. Experiments have been per-

formed in order to evaluate the platform from the stakeholders point

of view. That is to say, effectiveness, latency, scalability, efficiency

and satisfaction have been assessed. In addition, SYQL is compared

with other platforms.

• Chapter 7 checks the feasibility of SYQL as a data layer. The

TABASCO proof of concept is designed and developed to manage

(i.e. read-write) data in the Linked Data cloud. SYQL supports

TABASCO fulfilling its requirements (i.e. interoperability and in-

tegrity). SYQL, as a data layer, offers some advantages: a uniform

interaction interface, reusable LDWs, current data and consumer cre-

dentials.

98

Chapter 8. Conclusions

A LDW Platform and a set of LDWs has been developed. The source code

is openly available on the Onekin Research Group GitHub. Concretely, the

LDWs are at https://github.com/onekin/ldw and the SYQL

platform is at https://github.com/onekin/ldwServer.

8.3 Publications

Parts of the work explained in this thesis have been already presented and

discussed in distinct peer-reviewed forums. The list of publications to

which the author has contributed are listed below:

Journals

• Iker Azpeitia, Jon Iturrioz, and Oscar Díaz. Linked Data Wrapper

curation: A platform perspective. Semantic Web, pages 1–27. JCR

Impact Factor 2016: 2.889 (Q1). Accepted in the first round. Un-

der review in the second round.

International Conferences

• Jon Iturrioz, Iker Azpeitia, and Oscar Díaz. YQL as a platform for

Linked-Data wrapper development. In International Conference on

Web Engineering (ICWE), pages 355–373. Springer, 2015. Accep-

tance rate 23.6%. Rank B in the CORE2017 [IAD15b].

• Jon Iturrioz, Iker Azpeitia, and Oscar Díaz. Cross publishing 2.0:

Letting users define their sharing practices on top of YQL. In In-

ternational Conference on Web Engineering (ICWE), pages 76–92.

Springer, 2014. Acceptance rate 20.0%. Rank B in the CORE2017

[IAD14a].

99

Linked Data Wrapper Curation: A Platform Perspective

• Jon Iturrioz, Iker Azpeitia, and Oscar Díaz. Generalizing the like

button: Empowering websites with monitoring capabilities. In Pro-

ceedings of the 29th Annual ACM Symposium on Applied Comput-

ing (SAC), pages 743–750. ACM, 2014. Acceptance rate 23.22%.

Rank B in the CORE2014 [IAD14b].

• Jon Iturrioz, Oscar Díaz, and Iker Azpeitia. Reactive tags: Associat-

ing behaviour to prescriptive tags. In Proceedings of the 22nd ACM

conference on Hypertext and hypermedia (HT), pages 191–200. ACM,

2011. Acceptance rate 21.0%. Rank A in the CORE2014 [IDA11b].

Workshops/Posters

• Jon Iturrioz, Iker Azpeitia, and Oscar Díaz. Linked Data Wrap-

pers atop Yahoo’s YQL. In Workshop Services and Applications

over Linked APIs and Data (SALAD@ ESWC), pages 20–21, 2015

[IAD15a].

• Jon Iturrioz, Oscar Díaz, and Iker Azpeitia. A Tool for defining the

semantics of prescriptive tags. In The 22nd ACM Hypertext Confer-

ence, Posters and Demos HT’11. ACM, 2011.[IDA11a]

8.4 Assessment and Future Research

The work presented in this dissertation introduces, motivates and proposes

an LDW Platform for sharing and maintaining LDWs. However, an ob-

jective assessment exposes some limitations of this work, which motivates

areas of extension and future improvement.

Producers perspective

• Generic execution engines: As its name denotes, SYQL is an im-

plementation strongly tied to the Yahoo’s YQL system. Besides of

100

Chapter 8. Conclusions

breaking dependence on Yahoo, allowing new LDW definition lan-

guages and execution engines would increase the number of LDWs

available.

• Automatic LDWs generation: manual LDW generation requires

producer effort. It would be interesting to automatically generate

LDWs. The low quality of produced LDW would not be an is-

sue since this dissertation advocates for the LDWs curation through

SYQL. The challenge therefore is how to automatically generate

a functional LDW. One option is to extend existing LDWs to sib-

ling API’s methods. For example, if an LDW is created for the

flickr.photos.info ODT then it might be cloned to be functional for

the flickr.photos.search and flickr.photos.recent ODTs.

Consumers Perspective

• Interlinkage quality: LDWs are implicit Datasets where LD Re-

sources are created on-the-fly. This generates dead interlinkages that

are not detectable in advance [RSAS14]. Hence, it is detrimental

to data quality. For example, creating the schema:about interlink to

DBpedia based on a tag (e.g. “covfefe”) could produce not existing

URIs. A solution to enhance interlinks quality could be to check and

hide dead interlinks before LD resources are dispatched. However,

the latency would increase considerably and it would be unaccept-

able. Other solution could be to rate in the Health Checker through

the “dead interlinks rate” of a property. That is, a posteriori assess-

ment of the dead interlinks over the total interlinks generated. For

example, in an LDW the dead interlinks rate for the schema:about

property could be 0.2 whilst in other one it could be 0.9. It indicates

to Consumers the expected interlinkage quality.

• Speeding up data processing: LDW-based applications are limited

on the quantity of data retrieved (i.e. usually is dereferenced one

101

Linked Data Wrapper Curation: A Platform Perspective

resource per call) and on the response speed due to the network la-

tency. These limitations constrain the number of LD Applications

able to consume LDWs. Application data cache could help [NS17].

• Traverse applications: LD applications could traverse the Linked

Data cloud from node to node. Traversing nodes offer the advantage

of retrieving current data anytime the path is traversed. The question

now is how could the path be described. That is, a path starts in

a node, goes through a chain of nodes and reaches the last node.

The aim is to retrieved data from the last node, but maybe data from

intermediary nodes are interesting too [HÖ16]. Challenges include

conditional bifurcations in paths depending on data in intermediary

nodes.

Curators perspective

• Refactoring non-working wrappers: SYQL focuses on curating

LDWs deployed in SYQL. However, this dissertation mentions wrap-

pers that are not working anymore. Could those wrappers be refac-

tored as SYQL LDWs? In doing so, a user guide could be defined to

help developers and curators at wrappers recovery.

• LD cloud Health Checker: the Health Checker for LDWs on SYQL

is a contribution of this dissertation. It is based on the URI examples

dereferenciation, so, it seems easy to extend the check service to

LD cloud nodes. As an example, it could be interesting to define

a Health Radar checking the LD cloud nodes in order to create a

Cloud Health Map. Every day a monitoring application could check

selected URIs in DBpedia, Bio2RDF, BBC Music, Eurostat, etc. The

challenge here is to determine the health dimensions and granularity.

For instance, the API dimension (i.e. API key and API response) is

not applicable to DBpedia but value consistency could be a must.

102

Chapter 8. Conclusions

• Community management: SYQL is based on a community shar-

ing, consuming and curating LDWs. Hence, ways to promote partic-

ipation is a future research area. In addition, crowdsourced curation

could provoke discrepancies among curators. Deciding which prop-

erty to remove could be conflictive because each stakeholder has his

own interests. We assessed the convenience of enforcing Backward

Compatibility, that is, new properties can be added and old proper-

ties are not removed. However, this would lead to a decreasing data

quality since deprecated (Zaveri’s CS4 metric) or null-valued (SV2)

properties could not be removed and the incremental addition of re-

dundant properties would undermine conciseness.

8.5 Conclusion

This dissertation addresses wrapper curation challenges: LDWs’ lifecycles

are coupled to those of the breakout projects, LDW maintenance penalty is

high, and there is a shortage of people involved in LDWs maintenance. The

SYQL platform has been developed to address these challenges. Its feasi-

bility as data provider has been proved for LD Applications such as plu-

gins, Task Automation Services, RDF visualizers and mashup platforms.

It has been evaluated from the stakeholders perspective: Consumers, Pro-

ducers and Curators. The results are promising. However, the presented

approach has still to demonstrate that really pays off for real users. It would

be demonstrated if LDWs are created by external users, and if the SYQL’s

source code is improved and installed by third parties. This will certainly

imply moving from prototypes to products and from testing students to

real stakeholders as the target audience. Developments produced along

this dissertation are available on GitHub in order to foster it. In addition,

this dissertation has open new research lines worth to be explored.

103

Appendix A

SYQL Implementation

“Meditation on any theme, if positive and honest, inevitably separates him who

does the meditating from the opinion prevailing around him, from that which . . .

can be called “public” or “popular” opinion.”

– José Ortega y Gasset

A.1 Java Project

The SYQL Java project has been developed using the Eclipse Java EE

IDE for Web Developers (Version: Kepler Service Release 2). Figure A.1

shows the packages, classes and required external libraries. The complete

source code and required libraries are publicly available at https://

github.com/onekin/ldwServer so that other researchers can test,

improve and run SYQL instances.

A.2 SYQL Storage

SYQL stores information in different places:

105

Linked Data Wrapper Curation: A Platform Perspective

Figure A.1: Required libraries at the lefthand and packages/classes at the
righthand

106

Chapter A. SYQL Implementation

Figure A.2: SYQL storage component diagram

• Provisional LDWs (those in edition process) are initially stored in

the browser and then in the YQL storage.

• LDWs are finally stored in GitHub.

• LDWs are described in DataHub for discovery purposes.

• LDW’s quality assessments are stored in the SYQL server.

• Velocity1 templates are used to generate HTML web pages. These

templates are stored in the server.

Figure A.2 depicts databases in the SYQL storage component.

A.3 SYQL Front-end

Stakeholders interact with the SYQL front-end (see Figure A.3) to be aware

of LDW’s health and to curate LDWs. The former is performed through

the Health Checker Window which lists all deployed LDWs. The SYQL

server dispatches LDW’s health information (i.e. CheckHealth interface).

The latter is achieved by the re-engineering windows: Lifting mapping,

Lowering mapping and Credentials editor. LDWs Editor complements the

Lifting mapping. Both are implemented as a Greasemonkey augmenta-

tion over the YQL console and editor respectively. The augmentation

script is available at https://github.com/onekin/ldw/blob/

master/odt2ldw.user.js. Re-engineering windows read LDWs

1http://velocity.apache.org/

107

Linked Data Wrapper Curation: A Platform Perspective

Figure A.3: SYQL front-end components diagram (simplified SYQL stor-
age component)

from GitHub and show annotations or credentials to be edited. Changes

are added to LDWs and the SYQL server deploys them.

It is worth to note that this YQL-based front-end is an implementation

to take advantage of the YQL system. SYQL is designed to be extended

with other systems. To support a new type of wrappers the Wrapper inter-

face (see Figure A.4) and the WrapperFactory interface (see Figure A.5)

have to be implemented. For example, a new type of wrappers could inter-

pret PHP and execute them through an online PHP engine. It would result

in the Semantic PHP-platform (SPHP-platform)! So far it is not tested.

Any front-end requires to access the CheckHealth and the Deploy inter-

faces provided by the SYQL back-end.

A.4 SYQL Back-end

The SYQL back-end is a part of the SYQL server. That means that inter-

faces are implemented as a web API to interact with. Three interfaces are

provided: the Deploy interface, the CheckHealth interface and the Execute

interface (see Figure A.6).

The CheckHealth and Deploy interfaces are implemented by the HTML

server. The Wrapper Manager (re)deploys LDWs. It retrieves the LDW

definition from the YQL storage, checks it, and updates the Github storage

108

Chapter A. SYQL Implementation

Figure A.4: Wrapper interface

Figure A.5: WrapperFactory interface

and the Datahub storage.

The CheckHealth interface is managed by the Wrapper Manager too.

When the Health Checker Window is requested via the HTML Server the

manager asks wrappers for their health. Finally, the HTML Server dispatch

the health information using an HTML template.

The RDF Server dispatches RDF data, that is, LDW lookup, resource

lookup and resource creation requests (i.e. Execute interface). Wrappers

send YQL Statements to the YQL engine in order to dereferenciate or create

resources. The YQL Engine component interprets LDWs as ODTs and

calls underlying APIs.

109

Linked Data Wrapper Curation: A Platform Perspective

Figure A.6: SYQL back-end components diagram (simplified SYQL stor-
age component)

110

Appendix B

Demonstration

“Man is a substantial emigrant on a pilgrimage of being, and it is

accordingly meaningless to set limits to what he is capable of being.”

– José Ortega y Gasset

B.1 Overview

This appendix guides readers through a demonstration in order to check

the SYQL system in creating, consuming and curating LDWs.

B.2 Installation

Following steps set up dependencies of SYQL:

1. Open an account in Yahoo. Alternatively, you can use the sample

account: User: ana.fiss@yahoo.es Password: ldw-onekin.

2. Install the Greasemonkey Firefox add-on https://addons.

mozilla.org/en-US/firefox/addon/greasemonkey/.

111

Linked Data Wrapper Curation: A Platform Perspective

3. Install the SYQL plug-in available at https://raw.

githubusercontent.com/onekin/ldw/blob/master/odt2ldw.user.js.

SYQL client-side is supported as a Firefox 52.0 plug-in on top of

the YQL Console/Editor.

B.3 LDW Definition

Once logged in Yahoo, go to the YQL Editor at https://developer.

yahoo.com/yql/editor/ and click on the “LDW template (select)”

link. In doing so, an incomplete wrapper appears in the editor. Com-

plete the URI pattern and example, the credentials if required, the low-

ering part, and the lifting part. For example, you can copy the LDW in

Figure 4.5. Alternatively, to speed up the LDW edition you can copy the

code for the running example from https://github.com/onekin/

ldw/blob/master/flickr.videodemo.ldw. Finally, click on the

Save button and give a name to your LDW.

B.4 LDW Deployment

After clicking the Deploy button the Verification window appears display-

ing the result of the verification process. If verification issues are arisen,

they must be solved on the editor. Syntactic issues indicate the lack of es-

sential parts (e.g. the URI example is lost). Dereferencing issues appear if

there are errors on either the API call or the lifting process. To check the

XML parser, you could remove the URIExample from the current LDW

and next click the “Deploy” button. The registration window should alert

about the lack of the URIExample. Similarly, a dereference error could be

produced by introducing an incorrect JavaScript code into the lifting func-

tion. For example, write the “5 = 6” incorrect assignment at the beginning

of the lifting function. This will result in the creation of a void LD re-

source. Once corrected, acknowledgement messages should pop up in the

112

Chapter B. Demonstration

Verification Console.

B.5 LDW Discovery

Go to the https://datahub.io/dataset/flickr_videodemo

URL for consulting information about the recently deployed demo LDW.

Explore metadata and click on links to retrieve LDW’s information.

B.6 LDW Lookup

Let’s inspect the flickr.videodemo wrapper’s different descriptions. The

VoID description is retrieved dereferencing the Wrapper’s URI (i.e. http:

//rdf.onekin.org/flickr/videodemo/(photo_id)). It will

show information similar to that in Figure 4.9 extended with all the mea-

surements’ URIs (e.g. P2, IN3, T7, CM4, ...). Dereferencing one of them

assessment value will appear. For instance, dereferencing http://rdf.onekin

.org/flickr/videodemo/(photo_id)/dqv/P2measure could show:

{"@type":"dqv:QualityMeasurement", "@id":"http://rdf.onekin.org

/flickr/videodemo/(photo_id)/dqv/P2measure", "dqv:value":"831",

"dqv:computedOn":"http://rdf.onekin.org/flickr/videodemo

/(photo_id)"}

On the other hand, the Hydra description in the http://rdf.onekin.

org/flickr/videodemo/(photo_id)/apidocumentation

URI depicts the supported class description, the supported operation, the

entry point and credentials. Credentials indicate what data is required for

resource lookup:

{"@id":"http://rdf.onekin.org/flickr/videodemo/(photo_id)/

apidocumentation/credentials", "@type":"hydra:Class", "hydra:description":

"Required credentials", "hydra:title":"Credentials", "hydra:supportedProperty":

[{"@type": "hydra:SupportedProperty", "hydra:required":"true",

"hydra:title": "api_key"}

113

Linked Data Wrapper Curation: A Platform Perspective

B.7 Resource Lookup

Consumers do not need to install anything in order to dereference re-

sources in SYQL. Resources are directly dereferenceable in the browser,

or in any JSON viewer. For example, go to the Health Checker http://

rdf.onekin.org/ldw/page/healthchecker/, unfold the flickr

.videodemo LDW, and click on the URI Example for this resource to be

displayed using Online JSON Viewer1

This example illustrates resource lookup using the producer’s API key.

Alternatively, the API key can be programmatically provided by the LDW

consumer. This requires the HTTP request to hold a lookup URI and an Au-

thorization header providing the API key value (i.e. schema:value) along

the Hydra credential description:

GET http://rdf.onekin.org/flickr/videodemo/

27376196615

Authorization = {"hydra:supportedProperty": [{"hydra:title":

"api_key", "schema:value": "2c894ba749b413

7b6f7ab127c86890ec"}]}

For security reasons, the Authorization header should be encrypted but for

the sake of a better understanding it is not encrypted. SYQL recovers the

api_key from the header and embeds it in the API call. This API key takes

precedence over the one embedded in the LDW. Readers can check this out

through Hurl2.

B.8 Spotting Stains

Go to the Health Checker console available at http://rdf.onekin.

org/ldw/page/healthchecker/. Spot one LDW worth curating.

For instance, flickr.videodemo has some data-quality issues. Some of them

1http://jsonviewer.stack.hu
2https://www.hurl.it/

114

Chapter B. Demonstration

are not directly solvable because they depend on the net performance (e.g.

latency). Other issues can be solved editing the LDW, for example, a bro-

ken interlink. Let’s solve this out. Click on the Maintain the LDW button

and the YQL console will open. This moves us to next demo section.

B.9 Cleaning up Stains

Once in the YQL console (https://developer.yahoo.com/yql/

console/) select the Community LDWs radio button. Click on the flickr

.videodemo LDW and the Annotation View tab will appear. Here, anno-

tation interlays will show up after re-engineering flickr.videodemo code.

Go to the annotation that accounts for the broken interlink: property with

path photo/location/locality /content. Update the Association mapping’s

URI to http://rdf.onekin.org/geo/place/{VALUE}. A preview of the impact

on the instance resource can be obtained by moving to the Semantic View

tab. Once satisfied with the output, click the Generate button to obtain the

code counterpart. This moves you to the YQL Editor Console where you

can click on the Redeploy button. Finally, go to the Health Checker console

http://rdf.onekin.org/ldw/page/healthchecker/ to

check the interlink works.

115

Bibliography

[ACHZ11] Keith Alexander, Richard Cyganiak, Michael Hausenblas,

and Jun Zhao. Describing linked datasets with the VoID

vocabulary. Working draft, W3C, March 2011.

[AI16] Riccardo Albertoni and Antoine Isaac. Data on the Web

Best Practices: Data Quality Vocabulary. Working draft,

W3C, December 2016.

[AMB+] Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja

Jentzsch, and Richard Cyganiak. Linking Open Data cloud

diagram 2017. http://lod-cloud.net/ [accessed June 2017].

[AZS+16] Maribel Acosta, Amrapali Zaveri, Elena Simperl, Dimitris

Kontokostas, Fabian Flöck, and Jens Lehmann. Detecting

Linked Data quality issues via crowdsourcing: A DBpedia

study. Semantic Web, (Preprint):1–33, 2016.

[BB] Christian Bizer and Christian Becker. Flickr wrappr:

precise photo association. http://wifo5-03.informatik.uni-

mannheim.de/flickrwrappr/ [accessed June 2017].

[BBFD08] U. Bojars, J. G. Breslin, A. Finn, and S. Decker. Using the

Semantic Web for linking and reusing data across Web 2.0

communities. Web Semantics, 6(1):21–28, 2008.

[BCG07] Christian Bizer, Richard Cyganiak, and Tobias Gauß. The

RDF Book Mashup: From web APIs to a Web of Data. In

117

Linked Data Wrapper Curation: A Platform Perspective

Proceedings of the ESWC’07 Workshop on Scripting for the

Semantic Web (SFSW), volume 248. CEUR Workshop Pro-

ceedings, 2007.

[BK11] Florian Bauer and Martin Kaltenböck. Linked Open Data:

The essentials. Edition mono/monochrom, Vienna, 2011.

[BL06] Tim Berners-Lee. Linked Data. Design issues, W3C,

2006. https://www.w3.org/DesignIssues/LinkedData.html

[accessed July 2017].

[BPM+08] Diego Berrueta, Jon Phipps, Alistair Miles, Thomas Baker,

and Ralph Swick. Best practice recipes for publishing RDF

vocabularies. Working draft, W3C, August 2008.

[BRB+14] Wouter Beek, Laurens Rietveld, Hamid R Bazoobandi, Jan

Wielemaker, and Stefan Schlobach. LOD Laundromat: a

uniform way of publishing other people’s dirty data. In In-

ternational Semantic Web Conference (ISWC), pages 213–

228. Springer, 2014.

[CB] Richard Cyganiak and Christian Bizer. D2RQ. Ac-

cessing Relational Databases as Virtual RDF Graphs.

http://d2rq.org/ [accessed June 2017].

[CCTAD13] Alison Callahan, José Cruz-Toledo, Peter Ansell, and

Michel Dumontier. Bio2RDF release 2: Improved cover-

age, interoperability and provenance of life science Linked

Data. In Extended Semantic Web Conference (ESWC), pages

200–212. Springer, 2013.

[Dat] Datanyze. Social sharing market share table.

https://www.datanyze.com/market-share/social-sharing/

[accessed June 2017].

118

BIBLIOGRAPHY

[DBp16] DBpedia. DBpedia mappings wiki, 2016.

http://mappings.dbpedia.org [accessed June 2017].

[Dii] Diigo. Homepage. https://www.diigo.com/ [accessed June

2017].

[DLA16] Jeremy Debattista, Christoph Lange, and Sören Auer. Luzzu

– A framework for Linked Data quality assessment. In Inter-

national Conference on Semantic Computing (ICSC), pages

124–131. IEEE, 2016.

[DLE+11] Li Ding, Timothy Lebo, John S Erickson, Dominic

DiFranzo, Gregory Todd Williams, Xian Li, James

Michaelis, Alvaro Graves, Jin Guang Zheng, Zhenning

Shangguan, Johanna Flores, Deborah L. McGuinness, and

Jim Hendler. TWC LOGD: A portal for linked open gov-

ernment data ecosystems. Web Semantics: Science, Services

and Agents on the World Wide Web, 9(3):325–333, 2011.

[dMS+08] Mathieu d’Aquin, Enrico Motta, Marta Sabou, Sofia An-

geletou, Laurian Gridinoc, Vanessa Lopez, and Davide

Guidi. Toward a new generation of semantic web applica-

tions. Intelligent Systems, 23(3):20–28, 2008.

[DP17] Aba-Sah Dadzie and Emmanuel Pietriga. Visualisation of

Linked Data – Reprise. Semantic Web, 8(1):1–21, 2017.

[DR11] Aba-Sah Dadzie and Matthew Rowe. Approaches to visu-

alising Linked Data: A survey. Semantic Web, 2(2):89–124,

2011.

[DSC12] Souripriya Das, Seema Sundara, and Richard Cyganiak.

R2RML: RDB to RDF Mapping Language. Recommenda-

tion, W3C, September 2012.

119

Linked Data Wrapper Curation: A Platform Perspective

[DV17] Milan Dojchinovski and Tomas Vitvar. Linked Web APIs

Dataset: Web APIs meet Linked Data. Semantic Web,

(Preprint):1–10, 2017.

[Eil11] Eldad Eilam. Reversing: Secrets of reverse engineering.

John Wiley & Sons, 2011.

[EM10] Orri Erling and Ivan Mikhailov. Virtuoso: RDF support in a

native RDBMS. In Semantic Web Information Management:

A Model-Based Perspective, pages 501–519. Springer, 2010.

[Eri13] Bayo Erinle. Performance Testing with JMeter 2.9. Packt

Publishing Ltd, 2013.

[Fac] Facebook. Like Button for the Web.

https://developers.facebook.com/docs/plugins/like-button

[accessed June 2017].

[Fli] Flickr. API documentation.

https://www.flickr.com/services/api/ [accessed June 2017].

[FMH17] Michael Färber, Carsten Menne, and Andreas Harth. A

Linked Data wrapper for CrunchBase. Semantic Web,

(Preprint):1–11, 2017.

[fS11] International Organization for Standardization. ISO/IEC

25010:2011. Systems and software engineering – Sys-

tems and software Quality Requirements and Evaluation

(SQuaRE) – System and software quality models, 2011.

[GBM16] Ramanathan V Guha, Dan Brickley, and Steve Macbeth.

Schema.org: Evolution of structured data on the web. Com-

munications of the ACM, 59(2):44–51, 2016.

[Gdb12] Christophe Guéret and Victor de boer. Openaid IATI parser

and API, 2012. http://api2lod.appspot.com/oipa [accessed

June 2017].

120

BIBLIOGRAPHY

[GGL+14] Alasdair JG Gray, Paul Groth, Antonis Loizou, Sune

Askjaer, Christian Brenninkmeijer, Kees Burger, Christine

Chichester, Chris T Evelo, Carole Goble, Lee Harland, et al.

Applying Linked Data approaches to pharmacology: Ar-

chitectural decisions and implementation. Semantic Web,

5(2):101–113, 2014.

[GS10] Lars Grammel and Margaret-Anne Storey. A survey of

mashup development environments. In The Smart Internet,

pages 137–151. Springer, 2010.

[Gué11] Christophe Guéret. GoogleArt – Semantic data wrap-

per (technical update). DATAVERSITY.net, March

2011. http://www.dataversity.net/googleart-semantic-data-

wrapper-technical-update/ [accessed May 2017].

[HB11] Tom Heath and Christian Bizer. Linked Data: Evolving the

web into a global data space. Synthesis Lectures on the Se-

mantic Web: Theory and Technology, 1(1):1–136, 2011.

[HHJ16] Aidan Hogan, Pascal Hitzler, and Krzysztof Janowicz.

Linked Dataset description papers at the Semantic Web

Journal: A critical assessment. Semantic Web, 7(2):105–

116, 2016.

[HÖ16] Olaf Hartig and M Tamer Özsu. Walking without a

map: Ranking-based traversal for querying linked data. In

International Semantic Web Conference, pages 305–324.

Springer, 2016.

[HUH+12] Aidan Hogan, Jürgen Umbrich, Andreas Harth, Richard Cy-

ganiak, Axel Polleres, and Stefan Decker. An empirical

survey of Linked Data conformance. Web Semantics: Sci-

ence, Services and Agents on the World Wide Web, 14:14–

44, 2012.

121

Linked Data Wrapper Curation: A Platform Perspective

[IAD14a] Jon Iturrioz, Iker Azpeitia, and Oscar Díaz. Cross publish-

ing 2.0: Letting users define their sharing practices on top

of YQL. In International Conference on Web Engineering

(ICWE), pages 76–92. Springer, 2014.

[IAD14b] Jon Iturrioz, Iker Azpeitia, and Oscar Díaz. Generalizing the

like button: Empowering websites with monitoring capabil-

ities. In Proceedings of the 29th Annual ACM Symposium

on Applied Computing (SAC), pages 743–750. ACM, 2014.

[IAD15a] Jon Iturrioz, Iker Azpeitia, and Oscar Díaz. Linked Data

Wrappers atop Yahoo’s YQL. In Workshop in Services and

Applications over Linked APIs and Data (SALAD@ ESWC),

pages 20–21, 2015.

[IAD15b] Jon Iturrioz, Iker Azpeitia, and Oscar Díaz. YQL as a plat-

form for Linked-Data Wrapper development. In Interna-

tional Conference on Web Engineering (ICWE), pages 355–

373. Springer, 2015.

[IDA11a] Jon Iturrioz, Oscar Díaz, and Iker Azpeitia. A Tool for defin-

ing the semantics of prescriptive tags. In The 22nd ACM

Hypertext Conference, Posters and Demos. HT’11. ACM,

2011.

[IDA11b] Jon Iturrioz, Oscar Díaz, and Iker Azpeitia. Reactive tags:

Associating behaviour to prescriptive tags. In Proceedings

of the 22nd ACM conference on Hypertext and hypermedia

(HT), pages 191–200. ACM, 2011.

[IFT] IFTTT. The IFTTT website. https://ifttt.com/ [accessed June

2017].

[Ini13] Dublin Core Metadata Initiative. FAQ/DC

and DCTERMS Namespaces, 2013.

122

BIBLIOGRAPHY

http://wiki.dublincore.org/index.php/FAQ/DC_and_DCTER

MS_Namespaces [accessed June 2017].

[IS15] Bala Iyer and Mohan Subramaniam. The strategic

value of APIs. Harvard Business Review, January

2015. https://hbr.org/2015/01/the-strategic-value-of-apis

[accessed June 2017].

[JP14] Paul Johannesson and Erik Perjons. An introduction to De-

sign Science. Springer, 2014.

[KAU+13] Tobias Käfer, Ahmed Abdelrahman, Jürgen Umbrich,

Patrick O’Byrne, and Aidan Hogan. Observing Linked Data

dynamics. In Extended Semantic Web Conference (ESWC),

pages 213–227. 2013.

[KC93] Jurek Kirakowski and Mary Corbett. SUMI: The software

usability measurement inventory. British Journal of Educa-

tional Technology, 24(3):210–212, 1993.

[KDN08] John Krumm, Nigel Davies, and Chandra Narayanaswami.

User-Generated Content. IEEE Pervasive Computing,

7(4):10–11, 2008.

[KHS12] Magnus Knuth, Johannes Hercher, and Harald Sack.

Collaboratively patching Linked Data. arXiv preprint

arXiv:1204.2715, 2012.

[KK15] Aikaterini K Kalou and Dimitrios A Koutsomitropoulos.

Towards semantic mashups: Tools, methodologies, and state

of the art. International Journal of Information Retrieval

Research, 5(2):1–25, 2015.

[Kyt05] Thomas Kyte. Invoker and definer rights. In Expert Oracle,

pages 981–1026. A-Press, 2005.

123

Linked Data Wrapper Curation: A Platform Perspective

[KZAL13] Dimitris Kontokostas, Amrapali Zaveri, Sören Auer, and

Jens Lehmann. TripleCheckMate: A tool for crowdsourc-

ing the quality assessment of Linked Data. In International

Conference on Knowledge Engineering and the Semantic

Web, pages 265–272. Springer, 2013.

[LBC17] Bernadette Farias Lóscio, Caroline Burle, and Newton Cale-

gari. Data on the web best practices. Recommendation,

W3C, January 2017.

[LG13] Markus Lanthaler and Christian Gütl. Hydra: A vocabu-

lary for hypermedia-driven web APIs. In Proceedings of the

WWW2013 Workshop on Linked Data on the Web (LDOW),

volume 996. CEUR Workshop Proceedings, 2013.

[LGdSN10] Stefania Leone, Michael Grossniklaus, Alexandre

de Spindler, and Moira C Norrie. Synchronising per-

sonal data with Web 2.0 data sources. In Web Information

Systems Engineering – WISE 2010, pages 411–418.

Springer, Springer Berlin Heidelberg, 2010.

[LIJ+15] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,

Dimitris Kontokostas, Pablo N Mendes, Sebastian Hell-

mann, Mohamed Morsey, Patrick Van Kleef, Sören Auer,

and Christian Bizer. DBpedia – a large-scale, multilingual

knowledge base extracted from Wikipedia. Semantic Web,

6(2):167–195, 2015.

[lin] Linked Widgets Platform - Smart data exploration and data

integration with Linked Widgets. http://linkedwidgets.org/

[accessed June 2017].

[LLSL16] David Lizcano, Genoveva López, Javier Soriano, and Jaime

Lloret. Implementation of end-user development success

124

BIBLIOGRAPHY

factors in mashup development environments. Computer

Standards & Interfaces, 47:1–18, 2016.

[lod] SZTAKI LODmilla. http://lodmilla.sztaki.hu/ [accessed

June 2017].

[Mag] PC Mag. Definition of: wrapper.

https://www.pcmag.com/encyclopedia/term/54886/wrapper

[accessed June 2017].

[MF06] David R Millen and Jonathan Feinberg. Using social tagging

to improve social navigation. In Workshop on the Social

Navigation and Community Based Adaptation Technologies

(SNC-BAT), 2006.

[MGCEG13] Nandana Mihindukulasooriya, Raul Garcia-Castro, and

Miguel Esteban-Gutierrez. Linked Data Platform as a novel

approach for enterprise application integration. In Proceed-

ings of the Fourth International Conference on Consuming

Linked Data (COLD), volume 1034, pages 146–157. CEUR

Workshop Proceedings, 2013.

[MPD10] Maria Maleshkova, Carlos Pedrinaci, and John Domingue.

Semantic annotation of web APIs with SWEET. In Proceed-

ings of the ESWC’10 Workshop on Scripting for the Seman-

tic Web (SFSW), volume 699. CEUR Workshop Proceed-

ings, 2010.

[Neta] Yahoo! Developer Network. Yahoo! GeoPlanet

guide. https://developer.yahoo.com/geo/geoplanet/guide/

[accessed June 2017].

[Netb] Yahoo! Developer Network. YQL console.

http://developer.yahoo.com/yql/console/ [accessed June

2017].

125

Linked Data Wrapper Curation: A Platform Perspective

[NKH+16] Ciro Baron Neto, Dimitris Kontokostas, Sebastian Hell-

mann, Kay Müller, and Martin Brümmer. Assessing quan-

tity and quality of links between Linked Data datasets. In

Proceedings of the WWW2016 Workshop on Linked Data

on the Web (LDOW), volume 1593. CEUR Workshop Pro-

ceedings, 2016.

[NKMF10] Barry Norton, Reto Krummenacher, Adrian Marte, and Di-

eter Fensel. Dynamic Linked Data via Linked Open Ser-

vices. In Proceedings of the Workshop on Linked Data in

the Future Internet at the Future Internet Assembly (LDFI),

volume 700. CEUR Workshop Proceedings, 2010.

[NS17] Chifumi Nishioka and Ansgar Scherp. Keeping linked open

data caches up-to-date by predicting the life-time of RDF

triples. In Proceedings of the International Conference on

Web Intelligence, pages 73–80. ACM, 2017.

[NVCM13] Luís Eufrasio T Neto, Vânia Maria P Vidal, Marco A

Casanova, and José Maria Monteiro. R2RML by assertion:

A semi-automatic tool for generating customised R2RML

mappings. In Extended Semantic Web Conference (ESWC),

pages 248–252. Springer, 2013.

[ODKM15] Marco Ortu, Giuseppe Destefanis, Mohamad Kassab, and

Michele Marchesi. Measuring and understanding the effec-

tiveness of JIRA developers communities. In Proceedings

of the Sixth International Workshop on Emerging Trends

in Software Metrics (WETSoM), pages 3–10. IEEE Press,

2015.

[ODT] YQL Open Data Tables. GitHub repository.

https://github.com/yql/yql-tables [accessed June 2017].

126

BIBLIOGRAPHY

[Ova14] Steven Ovadia. Automate the Internet with "If This Then

That" (IFTTT). Behavioral & Social Sciences Librarian,

33(4):208–211, 2014.

[PDRM11] Kevin R Page, David C De Roure, and Kirk Martinez. REST

and Linked Data: a match made for domain driven develop-

ment? In Proceedings of the Second International Workshop

on RESTful Design, pages 22–25. ACM, 2011.

[Pru] Eric Gordon Prud’hommeaux. W3C’s RDF validation ser-

vice. W3C. https://www.w3.org/RDF/Validator/ [accessed

June 2017].

[PS09] Sotirios Paroutis and Alya Al Saleh. Determinants of knowl-

edge sharing using Web 2.0 technologies. Journal of Knowl-

edge Management, 13(4):52–63, 2009.

[Red] Redlink. Vafu, another Linked Data validator.

http://vafu.redlink.io/ [accessed June 2017].

[Rod08] Alex Rodriguez. RESTful web services: The basics. IBM

developerWorks, 2008.

[RSAS14] Enayat Rajabi, Salvador Sanchez-Alonso, and Miguel-

Angel Sicilia. Analyzing broken links on the web of data:

An experiment with dbpedia. Journal of the Association

for Information Science and Technology, 65(8):1721–1727,

2014.

[SAD+14] Elena Simperl, Maribel Acosta, Marin Dimitrov, John

Domingue, Peter Haase, Maria Maleshkova, Alexander

Mikroyannidis, Barry Norton, and Maria Esther Vidal. EU-

CLID: EdUcational Curriculum for the usage of LInked

Data. Chapter 5: building Linked Data applications,

2014. http://euclid-project.eu/modules/chapter5.html [ac-

cessed June 2017].

127

Linked Data Wrapper Curation: A Platform Perspective

[SAM15] Steve Speicher, John Arwe, and Ashok Malhotra. Linked

Data Platform 1.0. Recommendation, W3C, February 2015.

[SBP14] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim.

Adoption of the Linked Data best practices in different top-

ical domains. In International Semantic Web Conference

(ISWC), pages 245–260. Springer, 2014.

[SCAV08] Leo Sauermann, Richard Cyganiak, Danny Ayers, and Max

Völkel. Cool URIs for the Semantic Web. Working draft,

W3C, December 2008.

[SGL07] Amit P Sheth, Karthik Gomadam, and Jonathan Lathem.

SA-REST: Semantically interoperable and easier-to-use ser-

vices and mashups. IEEE Internet Computing, 11(6):91–94,

2007.

[SH10] Sebastian Speiser and Andreas Harth. Taking the LIDS off

data silos. In Proceedings of the 6th International Confer-

ence on Semantic Systems (SEMANTiCS), pages 44:1–44:4.

ACM, 2010.

[SH11] Sebastian Speiser and Andreas Harth. Integrating Linked

Data and services with Linked Data Services. In The Se-

mantic Web: Research and Applications, pages 170–184.

Springer, 2011.

[SHH+11] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel,

and Michael Schmidt. FedX: Optimization techniques for

federated query processing on Linked Data. In Interna-

tional Semantic Web Conference (ISWC), pages 601–616.

Springer, 2011.

[Sim11] Julien Simon. What are Rich Snippets

and when to use them?, September 2011.

128

BIBLIOGRAPHY

http://www.6smarketing.com/blog/what-are-rich-snippets-

and-when-to-use-them/ [accessed June 2017].

[SLHA12] Claus Stadler, Jens Lehmann, Konrad Höffner, and Sören

Auer. LinkedGeoData: A core for a web of spatial open

data. Semantic Web, 3(4):333–354, 2012.

[SLK+17] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lan-

thaler, and Niklas Lindström. JSON-LD 1.1: A JSON-based

serialization for Linked Data. Working draft, W3C, June

2017.

[TKSA12] Mohsen Taheriyan, Craig A Knoblock, Pedro Szekely, and

José Luis Ambite. Rapidly integrating services into the

Linked Data cloud. In International Semantic Web Confer-

ence (ISWC), pages 559–574. Springer, 2012.

[Twi] Twitter Wrapper. http://km.aifb.kit.edu/services/twitterwrap/

[accessed June 2017].

[VV] Pierre-Yves Vandenbussche and Bernard Vatant. Linked

Open Vocabularies (LOV). http://lov.okfn.org [accessed

June 2017].

[Wea] Weather Underground. A weather API designed for de-

velopers. https://www.wunderground.com/weather/api/ [ac-

cessed June 2017].

[Wen17] Santos Wendell. ProgrammableWeb API directory

eclipses 17,000 as API economy continues surge. Pro-

grammableWeb, March 2017.

[Wor] Wordpress. https://wordpress.org/ [accessed June 2017].

[YHM11] S Hassas Yeganeh, Oktie Hassanzadeh, and Renée J Miller.

Linking semistructured data on the web. 14th International

Workshop on the Web and Databases (WebDB), June 2011.

129

Linked Data Wrapper Curation: A Platform Perspective

[Zap] Zapier. The Zapier website. https://zapier.com/ [accessed

June 2017].

[ZRM+16] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo

Pietrobon, Jens Lehmann, and Sören Auer. Quality assess-

ment for Linked Data: A survey. Semantic Web, 7(1):63–93,

2016.

130

Acknowledgments

I would like to thank to all the people who has “suffered” this thesis.

First of all, I thank my supervisors, Prof. Oscar Díaz and Prof. Jon

Iturrioz, for their patience, guidance and support.

I owe gratitude to Jesús Ibáñez, Oscar Barrera and Patxi Echarte, the

mates with whom I started this journey.

Onekin members and my sister reminded me that finishing the thesis

is possible. I always remember Maider Azanza cheering me up with the

“de derrota en derrota hasta la victoria final” motto. My sister, Maider

Azpeitia, told me “hay vida después de la tesis”, and I added “pues nadie

ha vuelto para confirmarlo”. I express my gratitude to the present and past

members of Onekin for their accompaniment (I hope not to forget any-

one): Arantza Irastorza, Maider Azanza, Iñigo Aldalur, Luis M. Alonso,

Cristóbal Arellano, Oscar Barrera, Josune De Sosa, Jokin García, Felipe

Ibáñez, Felipe Martín, Haritz Medina, Leticia Montalvillo, Itziar Otaduy,

Iñaki Paz, Juanan Pereira, Sandy Pérez, Jeremías Pérez and Gorka Puente.

Thank you.

My family deserves an especial appreciation. My parents and my sister

because they allowed me to occupy their houses. My brother Asier and

my sister-in-law Zita because ... they were there. Above all, I must thank

Gloria, Beñat and Alba because they really suffered the consequences of

my anxiety, but nevertheless they motivated me to finish the thesis.

Bereziki zuri pottola. Eskerrik asko. Alba, ¡te quiero!

131

