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This paper investigates the existence of fixed points and best proximity points of p-cyclic self-
maps on a set of subsets of a certain uniform space under integral-type contractive conditions. The
parallel properties of the associated restricted composed maps from any of the subsets to itself are
also investigated. The subsets of the uniform space are not assumed to intersect.

1. Introduction

Fixed point theory is of an intrinsic theoretical interest but also a useful tool in a wide class of
practical problems. There is an exhaustive variety of results concerning fixed point theory in
Banach spaces andmetric spaces involving different types of contractive conditions including
those associated with the so-called Kannanmaps andwithMeir-Keeler contractions (see, e.g.,
[1–6]). There is also a rich background literature concerning the use of contractive conditions
in integral form using altering distances, Lebesgue integrable test functions, and comparison
functions, [7–9]. Also, the so-called reasonable expansive mappings have been investigated
in [10], and conditions for the existence of fixed points have been given. It has been used,
for instance, for the study of the Lyapunov stability of delay-free dynamic systems and also
for that of dynamic systems subject to delays and then described by functional differential
equations (see, for instance, [11, 12]) concerning a related fixed point background for those
systems and [12–15] concerning some related background for stability. On the other hand, it
has also been useful for investigating the stability of hybrid systems consisting of coupled
continuous-time and discrete-time or digital dynamic subsystems [16]. This paper considers
p-cyclic self-maps in a uniform space (X,Φ), where X is a nonempty set equipped with a
nonempty familyΦ of subsets ofX×X satisfying certain uniformity properties. The familyΦ
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is called the uniform structure of X, and its elements are called entourages, neighbourhoods,
or surroundings. The uniform space (X,Φ) is assumed to be endowed with an A-distance or
and E-distance. The existence of fixed points and best proximity points in restricted p-cyclic
self-maps F : X | (⋃i∈p Ai) → X | (⋃i∈p Ai) of X, [8], subject to the constraint F(Ai) ⊆ Ai+1

for each pair of adjacent subsets Ai of X, for all i ∈ p := {1, 2, . . . , p}, p ≥ 2, under the cyclic
condition Ap+i = Ai; for all i ∈ Z+, is investigated separately under two groups of integral-
type contractive conditions. One of such groups involves a positive integrand test function
while the other combines a positive integrand with a comparison function. Some properties
of the composed restricted self-maps on each of the subsets are also investigated. The subsets
of the uniform structure do not necessarily intersect. If the sets do not intersect, then it is
proven that g = gi ≡ gii+1 := dist(Ai,Ai+1) = d(zi, Fzi) if (X, d) is a metric space endowed
with a distance map d : X × X → R0+, some zi ∈ Ai, for all i ∈ p, and zi is said to be a best
proximity point. Also, it follows that g = gij := dist(Ai,Aj) = d(zi, Fj−izi), for all i, j(> i) ∈ p
for some zi ∈ Ai, for all i ∈ p. If the self-map T of X is nonexpanding, then g = gii+1 :=
dist(Ai,Ai+1) > 0, for all i ∈ p, [8].

2. Basic Results about A-Distances, E-Distances, and V -Closeness

Define the nonempty family Φ of subsets of X × X of the form Φ := (
⋃
i,j∈pΦij) with Φij :=

Ai ×Aj, for all i, j ∈ p := {1, 2, . . . , p}. Note by construction that

V ∈ Φ =⇒
⎡

⎣
(
V ∈ Ai ×Aj ; ∀i, j ∈ p) ∨ V ∈

⎛

⎝
⋃

i∈px
Ai

⎞

⎠ ×
⎛

⎝
⋃

i∈py
Aj

⎞

⎠

for some nonempty finite subsets of positive integers px, py ⊆ p
⎤

⎦.

(2.1)

The following definitions of V -closeness and an A and E-distances are used throughout the
paper.

Definition 2.1 (see [7, 9]). If V ∈ Φ and (x, y) ∈ V and (y, x) ∈ V , then x and y are said to
be V -close. A sequence {xn}∞0 ⊂ X is a Cauchy sequence for Φ if for any V ∈ Φ, there exists
N ≥ 1 such that xn and xm are V -close for n,m ≥N.

Definition 2.2. A function d : X ×X → R0+ is said to be an A-distance if

(1) d(x, y) = 0 ⇔ x = y for all x, y ∈ X;

(2) for each V ∈ Φ, there exist δ = δ(V ) > 0 such that

max
(
d(z, x), d

(
z, y
)) ≤ δ for some z ∈ X =⇒ (x, y) ∈ V. (2.2)

Definition 2.2 generalizes slightly that of [7] by admitting δ to depend on V since
it is being used on distinct sets Ai, i ∈ p. Note that V ∈ Φ is symmetrical, that is, V =
V −1 = {(y, x) : (x, y) ∈ V } then (x, y) ∈ V ⇔ (x, y) ∈ V so that x and y are V -close under
Definition 2.2.
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Definition 2.3 (see [7]). A function d : X ×X → R0+ is said to be an E-distance if

(1) it is an A-distance;

(2) d(x, y) ≤ d(x, z) + d(z, y); for all x, y, z.
Assertion 1. Assume that any Z ∈ Ψ ⊂ X × X is symmetrical, that is, Z = Z−1 = {(y, x) |
(x, y) ∈ Z}. Then, d : X × X → R0+ is an A-distance if and only if x and y are Z-close for all
Z ∈ Ψ provided that max(d(z, x), d(z, y)) < δ for some z ∈ X and some δ > 0.

Proof. It follows from the symmetry of all Z ∈ Ψ and Definition 2.3 by a simple contradiction
argument. Take a pair (x, y) ∈ Z from Definition 2.3 since d : X × X → R0+ is an A-distance
fulfilling max(d(z, x), d(z, y)) < δ for some z ∈ X and some δ > 0. Such a pair always exists
for anyZ ∈ Ψ. Since V is symmetrical, then (y, x) ∈ Z. Since (x, y) ∈ Z if and only if (y, x) ∈ Z
then x and y are V -close.

Assertion 2. (1) Φij and Φ := (
⋃
i,j∈pΦij) are symmetrical.

(2) If V ∈ Φ is of the form VX × VX then V is symmetrical.
(3) If V ⊆ ⋃i∈px,j∈py Φij is nonempty and px, py ⊂ p with px ∩ py = ∅, then V is not

symmetrical.
If, in-addition, Ai ∩Aj = ∅, for all i, j ∈ p then there are no x, y in Φ being V -close.

Proof. (1) [(x, y) ∈ Φij = Ai × Aj ⇔ (x ∈ Ai, y ∈ Aj) ⇔ (y, x) ∈ Φji = Aj × Ai] ⇔ Φij is
symmetrical. (x, y) ∈ Φ ⇔ x, y ∈ ⋃i∈p Ai ⇔ (y, x) ∈ Φ ⇔ Φ is symmetrical. Assertion 2(1)
has been proven.

(2) (x, y) ∈ V ∈ Φ ⇒ ((x, y) ∈ (
⋃
i∈px Ai) × (

⋃
i∈px Ai) ∩ V ) ⇔ (y, x) ∈ (

⋃
i∈px Ai) ×

(
⋃
i∈px Ai) ∩ V for some px ⊆ p =⇒ V is symmetrical. Assertion 2 (2) is proven .

(3) Proceed by contradiction: V symmetrical ⇔ [(x, y) ∈ V ⇒ ((x, y) ∈ ⋃i∈px,j∈py Φij =⋃
i∈px Ai ×

⋃
j∈py Aj ≡

⋃
i∈py Ai ×

⋃
j∈px Aj � (y, x) ⇐ (y, x) ∈ V )] ⇒ px ∩py /= ∅what contradicts

px ∩ py = ∅.

Assertion 2 states that some, but not all, nonempty subsets V of ∅ are symmetrical. For
instance, if V = (A1 ∪ A2) × (A3 ∪ A4), then V is not symmetrical since there are (x, y) ∈ V
such that (y, x) are not in V ; that is, there are pairs x, y which are not V -close. If furthermore
the sets A(·) are disjoint, then there is no pair in Φ being V -close (Assertion 2(3)). Note that
under symmetry of V , the second property of anA-distance can be rewritten in an equivalent
form by replacing (x, y) ∈ V with (x, y) being V -close. The subsequent result states that,
contrarily to results in former studies related toA and E-distances [7, 9], the second property
guaranteeing an A-distance necessarily involves δ-values exceeding distances between the
various subsets Ai, i ∈ p.

Lemma 2.4. Assume that d : X × X → R0+ is an A-distance and V ⊆ Φij ∈ Φ for some i, j ∈ p. If
(x, y) ∈ V , thenmax(d(z, x), d(z, y)) < δij for some z ∈ X and some δij > dist(Ai,Aj).

Proof. Assume that (x, y) ∈ V , so that x ∈ Ai and y ∈ Aj , and max(d(z, x), d(z, y)) <
dist(Ai,Aj), for some z ∈ X. The following cases can occur.

(1) If z = x ∈ Ai, and since y ∈ Aj , then

0 ≤ dist
(
Ai,Aj

) ≤ d(z, y) = max
(
d(x, x), d

(
z, y
))

< dist
(
Ai,Aj

)
, (2.3)

which leads to the contradiction dist(Ai,Aj) < dist(Ai,Aj).
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(2) If z(/=x) ∈ Ai, and since y ∈ Aj , then

0 ≤ dist
(
Ai,Aj

) ≤ max
(
d(z, x),dist

(
Ai,Aj

)) ≤ max
(
d(z, x), d

(
z, y
))

< dist
(
Ai,Aj

)
,
(2.4)

which leads to the same contradiction as in Case (1).

(3) If z(= y) ∈ Aj and if z(/=y) ∈ Aj , the above contradiction of cases (1) and (2), is
also obtained by replacing Ai ↔ Aj .

(4) If z ∈ Ai ∪Aj ∩X, then

0 ≤ dist
(
Ai,Aj

) ≤ max
(
d(z, x),dist

(
Ai,Aj

)) ≤ max
(
d(z, x), d

(
z, y
))

< dist
(
Ai,Aj

)

(2.5)

which leads to the same contradiction as that of case (1).

The following lemma is a direct consequence of Lemma 2.4:

Lemma 2.5. Assume that d : X ×X → R0+ is an A-distance and V ⊆ ⋃i∈px,j∈py Φij for px, py ⊂ p.
If (x, y) ∈ V thenmax(d(z, x), d(z, y)) < δ for some z ∈ X and some δ > maxi∈px,j∈py dist(Ai,Aj).

3. Main Results about Fixed Points and Best Proximity Points

Consider p-cyclic self-maps F : X | (
⋃
i∈p Ai) → X | (

⋃
i∈p Ai) subject to F(Ai) ⊆

Ai+1; for all i ∈ p = {1, 2, . . . , p}. The objective is to first investigate if each of them has a
fixed point and then if they have a common fixed point through contraction conditions on
Lebesgue integrals and use of comparison functions. Without loss of generality, we discuss
the fixed points of self-maps F of X. Consider a Lebesgue-integrable map ϕ : R0+ → R0+

which satisfies
∫ε
0 ϕ(t)dt > 0, for all ε ∈ R+ such that for all x ∈ Ai, for all y ∈ Ai+1.

Define also the composed self-map Fp : X | ⋃p

i=1Ai → X | ⋃p

i=1Ai as
⋃p

i=1Ai � y =
Fpx ∈ ⋃p

i=1Ai from the self-map F : X | ⋃p

i=1Ai → X | ⋃p

i=1Ai whose restrictions to Ai,
Fp : X | Ai → X | Ai; for all i ∈ p, are defined via the restriction Fp | Ai := Fp−i | Ap−i ◦ · · · ◦
Fi+1 | Ai+1 ◦ Fi | Ai; for all i ∈ p by y = Fpx ∈ Ai for each x ∈ Ai; for all i ∈ p. Note that the
domain of the self-map Fp of X is

⋃p

i=1Ai while that of Fp | Ai is Ai. The paper investigates,
under two types of integral-type contractive conditions of self-maps F of X, the existence of
fixed points of such a self-map in

⋂p

i=1Ai, provided that the intersection is nonempty. In that
case, the fixed points coincidewith those of the self-map Fp : X | ⋃p

i=1Ai → X | ⋃p

i=1Ai. It also
investigated the existence of best proximity points between adjacent and nonadjacent subsets
Ai; for all i ∈ p for the case that

⋂p

i=1Ai = ∅. In such a case, the best proximity points at each
pair of adjacent subsets Ai,Ai+1; for all i ∈ p are also fixed points of the composed self-maps
Fp : X | Ai → X | Ai from each subsetAi to itself; for all i ∈ p even under weaker contractive
integral-type conditions. A key basic result used in the mathematical proofs is that the
distance between any pair of (adjacent or nonadjacent) subsets is identical for nonexpansive
contractions.

It is first assumed that the integral-type contractive Condition 1 below holds.
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Condition 1. One has

∫d(Fnp+j+1x,Fnp+j+1y)

0
ϕ(t)dt ≤ (1 − αjn

)
∫d(Fnp+jx,Fnp+jy)

0
ϕ(t)dt + αjn

∫dist(Aj ,Aj+1)

0
ϕ(t)dt; ∀j ∈ p,

(3.1)

where {αjn}∞n=1 are sequences of nonnegative real numbers subject to
∑∞

n=1 αjn = ∞; for all
j ∈ p, for alln ∈ Z+. The self-map F of X is said to be reasonably nonexpansive through this
paper if

∫d(Fnpx,Fnpy)

0
ϕ(t)dt ≤ KM

∫d(x,y)

0
ϕ(t)dt +K′

M

d
(
Fipx, Fipy

)
≤ KMd

(
x, y
)
+K′

M ∀x, y ∈ X; ∀n ∈ Z+

(3.2)

for some nonnegative real constantsKM andK′
M. In particular, F is reasonably nonexpansive

if Fp is nonexpansive. The following result follows from Condition 1.

Theorem 3.1. The following properties hold under Condition 1 for anyA-distance d : X×X → R0+:

(i) The restricted self-maps Fp | Ai; for all i ∈ p satisfying (3.1) are all nonexpansive, and so
it is the self-map F : X | ⋃p

i=1Ai → X | ⋃p

i=1Ai;

(ii) ∞ > dist(Ai,Ai+1) = g ≥ 0; for all i ∈ p;
(iii) lim supn→∞

∫d(F(n+1)px, F(n+1)py)
0 ϕ(t)dt ≤ M < ∞, for all (x, y) ∈ Ai ×Ai+1; for all i ∈ p,

withM =M(g) andM : R0+ → R0+ being monotone increasing withM(0) = 0;

(iv) If dist(Ai,Ai+1) = 0; for all i ∈ p, that is,
⋂
i∈p Ai /= ∅, then there is a fixed point x ∈

(
⋂
i∈p Ai) ∩ Fix(Fp) of the self-map Fp of X and of its restrictions to

⋃
i∈p Ai and

⋂
i∈p Ai

defined through the natural set inclusions
⋂
i∈p Ai ⊆

⋃
i∈p Ai ⊂ X. Also, x ∈ Fix(F) for the

self-map F : X | ⋃p

i=1Ai → X | ⋃p

i=1Ai.

Proof. Consider some A-distance d : X ×X → R0+. Note that for each

V ⊆
⎛

⎝
⋃

i∈p
Ai

⎞

⎠ ×
⎛

⎝
⋃

i∈p
Ai

⎞

⎠ ∈ Φ, ∃δ = δ(V ) > max
i∈p

dist(Ai,Ai+1) ≥ 0; ∀i ∈ p (3.3)

such that

max
(
d(z, x), d

(
z, y
)) ≤ δ for some z ∈

⋃

i∈p
Ai ⊂ X

=⇒ [(x, y) ∈ V ∧ (y, x) ∈ V ]

⇐⇒ x, y are V -close

(3.4)

If, in particular, V ⊆ Ai × Ai+1; for all i ∈ p, then (x, y) ∈ V if max(d(z, x), d(z, y)) ≤ δ with
any δ > dist(Ai,Ai+1 ) ≥ 0 and z ∈ Ai ∪Ai+1; for all i ∈ p, and if V ⊆ (Ai ∪Ai+1) × (Ai ∪Ai+1)
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then [(x, y) ∈ V ∧ (y, x) ∈ V ] ⇔ x, y are V -close. It is first proven that the self-map Fp of X
satisfying (3.1) is nonexpansive. Proceed by contradiction by assuming that it is expansive.
Then, one gets the following by defining a real sequence {αn}∞n=1 with general term αn :=
1 −∏n

j=1[1 − αjn] ∈ [0, 1]:

⎛

⎝
p∏

j=1

[
1 − αjn

]
⎞

⎠
∫d(Fnpx,Fnpy)

0
ϕ(t)dt +

p∑

�=1

p∏

j=�+1

([
1 − αjn

])
α�n

∫dist(A�,A�+1)

0
ϕ(t)dt

≥ αn
∫d(Fnpx,Fnpy)

0
ϕ(t)dt +min

j∈p
(1 − αn)

∫dist(Aj ,Aj+1)

0
ϕ(t)dt

≥
∫d(F(n+1)px,F(n+1)py)

0
ϕ(t)dt >

∫d(Fnpx,Fnpy)

0
ϕ(t)dt

=⇒ min
j∈p

∫dist(Aj ,Aj+1)

0
ϕ(t)dt >

∫d(Fnpx,Fnpy)

0
ϕ(t)dt

=⇒ min
j∈p

dist
(
Aj,Aj+1

)
> d
(
Fnpx, Fnpy

) ≡ d(x1, y1
)

(3.5)

for some x1, y1 ∈ ⋃p

i=1Ai which is a contradiction, and the self-map Fp (and then the self-
map F) of X is nonexpansive and property (i) holds. Now, its is proven by contradiction that
dist(Ai,Ai+1) = g ≥ 0, for all i ∈ p. Assume that there exist i, j ∈ p satisfying 1 ≤ j ≤ p−i such
that dist(Ai,Ai+1) > dist(Ai+j , Ai+j+1). Then there are best proximity points zi ∈ Ai, ξi+j ∈ Ai+j

and some zi ∈ Ai such that, since p > j and the self-map F of X is nonexpanding, one gets

d(zi, Fzi) = dist(Ai,Ai+1) > dist
(
Ai+j , Ai+j+1

)
= d
(
ξi+j , Fξi+j

)

= d
(
Fjzi, F

j+1zi
)
≥ d
(
Fpzi, F

p+1zi
)
= d(ẑi, Fẑi) ≤ dist(Ai,Ai+1).

(3.6)

for some ẑi ∈ Ai with the last inequality being strict unless ẑi = zi, what is a contradiction if
ẑi /= zi. Now, assume that ẑi = Fpzi = zi, then the best proximity point zi = ẑi ∈ Fix(Fp) since
Fpẑi = F2pzi = Fpzi = ẑi = zi and dist(Ai,Ai+1) = 0, that is,Ai∩Ai+1 /= ∅. This is a contradiction
to the assumption dist(Ai,Ai+1) > dist(Ai+j , Ai+j+1). Then, dist(Ai,Ai+1) = g ≥ 0, for all i ∈ p
and

⋂p

i=1Ai /= ∅ if and only if g = 0. Since the self-map Fp of X restricted to
⋃p

i=1Ai is
nonexpansive, then the self-map F of X restricted to

⋃p

i=1Ai is reasonably nonexpansive.
It also follows by contradiction that g < ∞. Assume that g = ∞. Then, the following
contradiction follows from (3.1):

0 ≤
∫d(F(n+1)px,F(n+1)py)

0
ϕ(t)dt ≤

⎛

⎝
p∏

j=1

[
1 − αjn

]
⎞

⎠
∫d(Fnpx,Fnpy)

0
ϕ(t)dt

+
p∑

�=1

p∏

j=�+1

([
1 − αjn

])
α�n

∫dist(A�,A�+1)

0
ϕ(t)dt < 0

(3.7)
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for some n ∈ Z+, j ∈ p, unless
∫d(Fnpx, Fnpy)
0 ϕ(t)dt = +∞ (and then d(Fnpx, Fnpy) =

∞; for allx, y ∈ ⋃p

i=1Ai) provided that αjn > 0. Such a αjn always exists since
∑∞

n=1 αjn = ∞;
for all j ∈ p. Then, ∞ > dist(Ai,Ai+1) = g ≥ 0; for all i ∈ p, and Property (ii) follows.

Note that (3.1) yields directly via recursion

∫d(F(n+1)px,F(n+1)py)

0
ϕ(t)dt

≤
⎛

⎝
p∏

j=1

[
1 − αjn

]
⎞

⎠
∫d(Fnpx,Fnpy)

0
ϕ(t)dt +

p∑

�=1

p∏

j=�+1

([
1 − αjn

])
α�n

∫dist(A�,A�+1)

0
ϕ(t)dt

≤
n−1∏

�=1

⎛

⎝
p∏

j=1

[
1 − αj�

]
⎞

⎠
∫d(Fpx,Fpy)

0
ϕ(t)dt +

n−1∑

i=1

⎛

⎝
n−1∏

m=i+1

⎛

⎝
p∏

j=1

[
1 − αjm

]
⎞

⎠

⎞

⎠

×
⎛

⎝
p∑

�=1

p∏

j=�+1

([
1 − αji

])
α�i

∫dist(A�,A�+1)

0
ϕ(t)dt

⎞

⎠; ∀n ∈ Z+, ∀x ∈ Ai, ∀y ∈ Ai+1.

(3.8)

Note that ρn :=
∏p

j=1[1 − αjn] ∈ [0, 1]. Define Z+ := Zs ∪ Zc with Zs := {n ∈ Z+ : ρn < 1}, Zc :=
{n ∈ Z+ : ρn = 1} and

ρ := lim sup
m→∞

⎛

⎝
μ(Zsm)∏

n=1

ρn

⎞

⎠

1/m

Zsm :=
{
n ∈ Z+ :

[
ρn < 1 ∧ n ≤ m]} ⊂ Zs ⊆ Z+.

(3.9)

Note also that the cardinal (or discrete measure) of Zs is μ(Zs) = χ0 (i.e., infinity numerable),
since otherwise,

∑∞
n=1 αjn < ∞ for some j ∈ p (contrarily to one of the given hypothesis) and

μ(Zc) ≤ χ0. Since
∑m

n=1 αjn = ∞ and μ(Zs) = χ0, so that ρ ∈ (0, 1), it follows that

lim
m→∞

m∏

n=1

ρn =

(
∏

n∈Zs

ρn

)(
∏

n∈Zc

ρn

)

=

(
∏

n∈Zs

ρn

)

= lim
m→∞

ρm = 0. (3.10)

Then, since the distance between any two adjacent sets Ai,Ai+1 is a real constant g, one gets
the following from (3.8), and (3.10):

lim sup
n→∞

∫d(F(n+1)px,F(n+1)py)

0
ϕ(t)dt

= lim sup
n→∞

n−1∑

i=1

⎛

⎝
n−1∏

m=i+1

⎛

⎝
p∏

j=1

[
1 − αjm

]
⎞

⎠

⎞

⎠

⎛

⎝
p∑

�=1

p∏

j=�+1

([
1 − αji

])
α�i

∫g

0
ϕ(t)dt

⎞

⎠;

≤M :=
α

1 − ρ
(∫g

0
ϕ(t)dt

)

<∞; ∀x ∈ Ai, ∀y ∈ Ai+1, ∀i ∈ p,

(3.11)
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where α := supj∈p, n∈Z+
αjn ≤ 1 since limn→∞

∏n−1
�=1(
∏p

j=1[1 − αj�]) = limn→∞ρ
n = 0,

0 ≤
n−1∑

i=1

⎛

⎝
n−1∏

m=i+1

⎛

⎝
p∏

j=1

[
1 − αjm

]
⎞

⎠

⎞

⎠

⎛

⎝
p∑

�=1

p∏

j=�+1

([
1 − αji

])
α�i

∫g

0
ϕ(t)dt

⎞

⎠

<∞; ∀x ∈ Ai, ∀y ∈ Ai+1.

(3.12)

Note thatM =M(g) is monotone increasing with it argument g and thatM(0) = 0. Property
(iii) has been proven. If g = 0, then

⋂
i∈p Ai /= ∅ so that there is a fixed point x of F̂p1 : X |

⋂
i∈p Ai → X which is also a fixed point of its extensions F̂p2 : X | ⋃i∈p Ai → X and Fp : X →

X since Fp | ⋃i∈p Ai = F̂
p

2 , F
p | ⋂i∈p Ai = F̂

p

1 and F̂p2 | ⋂i∈p Ai = F̂
p

1 . It turns out that x is also a
fixed point of F : X | ⋃p

i=1Ai →
⋃p

i=1Ai, [17]. Property (iv) has been proven.

Note that the proved boundedness property of the A-distance ∞ > dist(Ai,Ai+1) also
relies on the fact that this is a distance between best proximity points in adjacent sets. It is well
known that a distance map in a metric space has always a uniform equivalent distance which
is finite. The following two concluding results from (3.11) are direct since

∫ε
0 ϕ(t)dt > 0; for all

ε ∈ R+.

Corollary 3.2. Assume that g := dist(Ai,Ai+1) > 0; for all i ∈ p and that

∃ lim
n→∞

n−1∑

i=1

⎛

⎝
n−1∏

m=i+1

⎛

⎝
p∏

j=1

[
1 − αjm

]
⎞

⎠

⎞

⎠

⎛

⎝
p∑

�=1

p∏

j=�+1

([
1 − αji

])
α�i

∫g

0
ϕ(t)dt

⎞

⎠ <∞. (3.13)

Then, there is a set S := {xi ∈ Ai : i ∈ p} of card S = p such that

d(xi, xi+1) = lim
n→∞

d
(
Fnpx, Fnpy

)
=

gα

1 − ρ ; ∀(x, y) ∈
⎛

⎝
⋃

i∈p
Ai

⎞

⎠ ×
⎛

⎝
⋃

i∈p
Ai

⎞

⎠; ∀i ∈ p. (3.14)

If α = 1 − ρ, then the points of the set S satisfy g = d(xi, xi+ 1), for all i ∈ p so that S is a set of best
proximity points in

⋃
i∈p Ai of the self-maps F and Fp of X. Each xi ∈ S is a fixed point of F | Ai, a

best proximity point of Fp | Ai; for all i ∈ p and satisfies Fxi = xi+1 and xi ∈ Fix(Fp | Ai) so that
Fpxi = xi; for all i ∈ p.

Corollary 3.3. If g = 0 so that
⋂
i∈p Ai /= ∅; for all i ∈ p, then Corollary 3.2 still holds with the set

S consisting only of a set of identical points x in
⋂
i∈p Ai such that x ∈ Fix(F), x ∈ Fix(Fp), and

x ∈ Fp | Ai; for all i ∈ p.

Since an E-distance is also an A-distance, the following conclusion is direct from
Theorem 3.1 and Corollary 3.2.

Corollary 3.4. Theorem 3.1 and Corollary 3.2 also hold if d : X ×X → R0+ is an E-distance.

An important relaxation of Condition 1 allows the reformulation of Theorem 3.1 and
Corollaries 3.2–3.4 except in the result that x ∈ Fix(F)when g = 0 as follows.
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Corollary 3.5. Assume that Condition 1 is reformulated as the p-cyclic contractive Condition 2 below.

Condition 2. One has

∫d(F(n+1)px,F(n+1)py)

0
ϕ(t)dt ≤ (1 − αn)

∫d(Fnpx,Fnpy)

0
ϕ(t)dt + αnmin

j∈p

∫dist(Aj ,Aj+1)

0
ϕ(t)dt (3.15)

for a new real sequence {αn}∞n=1 under the weaker constraints

αn := 1 −
p∏

j=1

[
1 − αjn

] ∈ [0, 1]; ∀n ∈ Z+,
∞∑

n=1

αn = +∞ (3.16)

and that the finite limit of Corollary 3.2 exists. Then, the following properties hold.

(i) Theorem 3.1 and Corollaries 3.2–3.4 still hold, except that in the case that the
distance between adjacent sets g is zero (i.e., if all subsetsAi, i ∈ p have a nonempty
intersection), the property x ∈ Fix(F) is not guaranteed, since the restricted self-
maps F : X | Ai → X | Ai+1 can be expansive for some i ∈ p.

(ii) If g > 0 then there exists a set S := {xi ∈ Ai : i ∈ p} of card S = p of best proximity
points of the self-map F of X such that xi ∈ Fix(Fp | Ai); for all i ∈ p, and there
are Cauchy sequences {xi(n)}∞n=1; for all i ∈ p which satisfy xi(n + 1) = Fpxi(n) =
Fxi−1(n + 1) and xi(n) → xi as n → ∞; for all i ∈ p. The points xi, xi+1 are (Ai ∪
Ai+1)× (Ai ∪Ai+1)-close for each i ∈ p via some existing real constant δ > αg/(1−ρ)
in Definition 2.2. Also, the pairs of Cauchy sequences {xi(n)}∞n=1, {xi+1(n)}∞n=1 have
subsequences {xi(n)}∞n=N, {xi+1(n)}∞n=N which are (Ai ∪Ai+1) × (Ai ∪Ai+1)-close via
a real constant δ0(ε) = ε + δ > ε + αg/(1 − ρ) in Definition 2.2 for any given ε > 0
and some integerN =N(δ, ε).

Proof. First note that Theorem 3.1(i)–(iii) is independent of the above modification. Note also
that now 1 − αn =

∏n
j=1[1 − αjn] < 1 on a subset of Z+ infinite discrete measure so that

(3.8)–(3.12) still hold except that x ∈ Fix(F) is not guaranteed when g = 0 (last part of
Theorem 3.1(iv), and Corollary 3.3), since αjn ≡ 1 for j belonging to some proper nonempty
subset of p, for all n ∈ Z+. It still holds that x ∈ Fix(Fp). Property (i) has been proven. Now,
note from Corollary 3.2 that from Theorem 3.1 there is a set S of p points each being a fixed
point of the restricted self-map Fp | Ai, for all i ∈ p under the pairwise constraints

d(xi, xi+1) = lim
n→∞

d
(
Fnpx, Fnpy

)
=

gα

1 − ρ ; ∀(x, y) ∈
⎛

⎝
⋃

i∈p
Ai

⎞

⎠ ×
⎛

⎝
⋃

i∈p
Ai

⎞

⎠; ∀i ∈ p (3.17)

which are necessarily in disjoint adjacent sets since the distances between all the sets are a
constant g > 0 and F(Ai) ⊆ Ai+1; for all i ∈ p. Then the A-distance d(x, y) of any pair (x, y) ∈
Ai ×Ai+1; for all i ∈ p converges to a constant distance gα/(1−ρ). Then, there is a convergent
sequence {xi(n)}∞n=1 of points in Ai verifying xi(n) → xi as n → ∞ since xi ∈ Fix(Fp |
Ai) for each i ∈ p. Those sequences are Cauchy sequences since each convergent sequence
in a metric space is a Cauchy sequence. Furthermore, xi(n + 1) = Fpxi(n) = Fxi−1(n + 1)
since xi(n) ∈ Ai implies that xi ∈ Ai, xi(n + 1) = Fpxi(n) ∈ Ai, and xi+1(n) = Fxi(n) ∈
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Ai+1, for all n ∈ Z+, for all i ∈ p. The remaining parts of Property (ii) concerning closeness
according to Definition 2.2 follow the fact that the best proximity points of the self-map F of
X are also fixed points of restricted composed maps to which Cauchy sequences of points
converge and whose distance is αg/(1 − ρ). Property (ii) has been proven.

Since the validity of Theorem 3.1(iii) is independent of the modification of Condition
1 to the weaker one Condition 2 implying the use of the sequence {αn}∞n=1 (see proof of
Corollary 3.5), Condition 2 of Corollary 3.5 may be replaced with the following.

Condition 3. One has

∫d(F(n+1)px,F(n+1)py)

0
ϕ(t)dt ≤ (1 − αn)

∫d(Fnpx,Fnpy)

0
ϕ(t)dt + αnmin

j∈p

∫g

0
ϕ(t)dt. (3.18)

The above discussion may be discussed under any of the following replacements of
Conditions 1–3.

Condition 4. One has

∫d(Fnp+j+1x,Fnp+j+1y)

0
ϕ(t)dt ≤ ψ

(∫d(Fnp+jx,Fnp+jy)

0
ϕ(t)dt +

∫g

0
ϕ(t)dt

)

; ∀j ∈ p. (3.19)

Condition 5. One has

∫d(Fnp+j+1x,Fnp+j+1y)

0
ϕ(t)dt ≤ ψ1

(∫d(Fnp+jx,Fnp+jy)

0
ϕ(t)dt

)

+ ψ2

(∫g

0
ϕ(t)dt

)

; ∀j ∈ p. (3.20)

Condition 6. One has

∫d(F(n+1)px,F(n+1)py)

0
ϕ(t)dt ≤ ψ

(∫d(Fnpx,Fnpy)

0
ϕ(t)dt +

∫g

0
ϕ(t)dt

)

. (3.21)

Condition 7. One has

∫d(Fnp+j+1x, Fnp+j+1y)

0
ϕ(t)dt ≤ ψ1

(∫d(Fnp+jx,Fnp+jy)

0
ϕ(t)dt

)

+ ψ2

(∫g

0
ϕ(t)dt

)

, (3.22)

where ψ, ψ1, ψ2 : R0+ → R0+ are comparison functions, namely, monotone increasing
satisfying limt→ ∞ψn(t) = ψn1 (t) = ψ

n
2 (t) = 0, for all t ∈ R0+.

Thus, ψ(0) = ψ1(0) = ψ2(0) = 0 and ψ(t) = ψ1(t) = ψ2(t) < t; for all t ∈ R+ as a
consequence of their above properties to be comparison functions. In addition, ψ : R0+ → R0+

satisfies the subadditive condition ψ(t1+t2) ≤ ψ(t1)+ψ(t2). As a result of the above properties,
note that:
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(a) Conditions 4 and 5 imply that

∫d(Fnp+j+1x,Fnp+j+1y)

0
ϕ(t)dt ≤

∫d(Fnp+jx,Fnp+jy)

0
ϕ(t)dt +

∫g

0
ϕ(t)dt, (3.23)

for all x, y ∈ ⋃i∈p Ai, for all j ∈ p with the equality standing for some j ∈ p and some x, y ∈
⋃
i∈p Ai if and only if g = d(Fnp+jx, Fnp+jy) = 0, that is, the distance between relevant points

in the upper-limits of the integral and between all the adjacent sets are zero.
(b) Conditions 6 and 7 imply that

∫d(F(n+1)px,F(n+1)py)

0
ϕ(t)dt ≤

∫d(Fnpx,Fnpy)

0
ϕ(t)dt +

∫g

0
ϕ(t)dt; (3.24)

for all x, y ∈ ⋃i∈p Ai with the equality standing for some x, y ∈ ⋃i∈p Ai if and only if g =
d(Fnpx, Fnpy) = 0.

The following results follow.

Corollary 3.6. Theorem 3.1and Corollaries 3.2–3.4 hold “mutatis-mutandis” under any of the p-
cyclic contractive Conditions 6 and 7.

Corollary 3.7. Theorem 3.1and Corollaries 3.2–3.4 hold “mutatis-mutandis” under any of the p-
cyclic contractive Conditions 4 and 5 except that x ∈ Fix(F) if the distance between adjacent sets g is
zero (i.e., all sets Ai, i ∈ p have a nonempty intersection).

The proofs are direct as that of Theorem 3.1 (see also that of Corollary 3.5) by using
the properties (3.24) for that of Corollary 3.6 and (3.23) for that of Corollary 3.7.
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