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Abstract. This paper investigates sufficient conditions of almost periodic sand periodic solutions of an
integral model under impulsive controls. Since the model is of generic epidemiological interest, such
impulsive controls are either vaccination actions or abrupt variations of the infected population due to
infected immigration or lost of infective numbers due to either vaccination or lost of infected population
by out-migration.

1. Introduction

This research deals with a nonlinear integral equation with eventual distributed time-varying time
delay. Some of its necessary and relevant properties like positivity and boundedness of the solution are
investigated. Also, some conditions of almost periodicity and periodicity of the solutions are dealt
with under the action of impulsive controls art certain impulsive time instants. The impulsive controls
can be interpreted as vaccination effort or infected immigration if the infected population decreases or
output migration otherwise. The model has been investigated in [1-9] in a simplified version the
impulsive- free case. The impulsive vaccination is a control, although the epidemic model is not
controllable, by nature. For state and output measuring-based controller synthesis, see, for instance,
[10-13]. The following basic notation is used:

R, ={zeR:z2>0}, R_.={zeR:2<0},Ry, =R, U{0},R,_=R_uU{0}, Rj, and R} are the n-th
orthants of R" whose components are in Ry, and R, , respectively. R{;"and R™" denote the sets of
real square n-matrices whose entries are in Ry, and R, , respectively. Rj_and R" are the n-th
orthants of R" whose components are in Ry,_and R_, respectively. RJ*"and R™" denote the sets of
real square n-matrices whose entries are in Ry_and R_, respectively,

Z,={1Z:2>0}, Zy, ={z1eZ:2>0}=2,0{0}, n={1,2,..,n},
if x,yeR"then x<y (x<y)means x; <y; (xj <y;) ; Vien. If A, BeR™then A:(Aij)s B:(Bij)
(A<B)means A; < Bij(Aij < Bij) Vi, j)enxm,
the superscript T stands for the transpose of a real vector or matrix,
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ifxe R", then |x| = (x| ,[xg| - |x| )", if AcR™™then |A|=(|A];)= (‘A,J‘) if a real function x(t) is

discontinuous at some t then x(t‘) is its left limit at t and x(t) (abbreviating x(t*)) is its right limit so
that if it is continuous at t its value is x(t)= x(t‘)

2. The model and its impulsive controlling actions
Consider the nonlinear integral equation with a finite distributed delay functionz: Ry, — R, and

eventual bounded discontinuities:

)= 1L F (s x(s).y()ds 3 x(t)=K(t)xk) (1)
. [1-2], where T(O)Ztszp r(t), F: (RO+ u[—r(O),O))xR8+ ><R8Jr —>R8Jr , X,y [—T(O),OO)—) R",

and K: Ry, — R( " are a positive vector function and a positive square n -matrix function, respectively.

In particular, x :[-7(0),0)— R" is the solution of (1) and vy :[-7(0),)— R" can describe different
actions like, for instance, an external disturbance (i.e. a disturbance which is independent of the
solution) or either an internal solution-dependent disturbance or a point-delay or distributed delayed or
nonlinear contribution to the solution. For instance, the special form F(t, x,y)= f(t,x)+g(t,y) is

discussed in [2] for the integral equation (1), where f,gand z are positive almost periodic. Integral

equations of the form (1) are of interest in the descriptions of some epidemic models. For instance,
X(.)could be the susceptible population which is measurable or partially known and can be treated
under vaccination effort, and y(.) some coupled population like, for instance, the infectious one. Note

that, for any te Ry, , if K(t)=1, (then -th identity matrix) then x(t)= x(t‘) so that x :[-7(0),0)— R"
is continuous at timet. If K(t)=1, then x(t)= x|t x( ) if x( );to. Note that (2) versus (1) can be
equivalently viewed for the case when x= yunder an integral contribution of an impulsive control

gain K(t)as

x(t) =t J+ I(K()- 10 )x(s)3(s ~thds = xlt~ i tim. [122((5)-1)x(s)8(s ~t)ds = x{t™ J+ (K ()~ 1,)#f)
e—0"
)
where the integrals in (1)-(2) are Lebesgue integrals, (K(t)- In)x(t*) is the left-continuous test vector
function which has a compact support and 5(t) denotes the Dirac distribution such that

[©,8(s)ds = lim [£.5(s)ds=1.Then &(t)=+xoif t=0 and &(t)=0 if t=0. Note that denoting the

e—>0"

shifted Dirac delta as &;(s)= (s —t), one has for anyt e Ry,

% (5)als—ths = lim [EEE(s)ols—thds =1 F(s)o(s—t)ds=1* £(s)a s (s)as =t

e—>0"

Note also that

[ f(s)s(s)ds = lim [, f(s)d(s—t)ds = f(O*) so that the Dirac distribution delta &(t) is also a not
e—0"

absolutely continuous measure with argument being a subset A of the real line with §(A)=1if 0 A
and §(A)=1ifo¢ A. The impulsive set of time instants is Imp:{teRo+ x(t) = x(t‘) if x(t‘)¢o}.
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The following positivity result for the solution (1)-(2), in the sense that no component state takes
negative values at any time if the initial conditions are non-negative, is immediate:

Proposition 1. Assume some initial condition  x:[-7(0),0)— R{,for the model
with F : (Ry, U[-7(0),0))x Rf, x R}, — R, in (1) such that the feedback control gain K:Ry, — RJ;".
Then, the following properties hold:

@) x:[-7(0),0)—> R{, ,

(i) if the feedback control is replaced with the non-feedback control x(t)=K(t) if te Impwith
K:Ry, — Ry, then x:[-7(0),0)— R, .

Note that the impulsive controlled action can be interpreted as due to a culling or quarantine of the
infected population if |K(t)|<1. Contrarily, if K(t) causes the inequality||x(t)||>“x(t‘)” then there is a

positive increase of infected population due to infected immigration into the studied environment.

3. Periodic and almost periodic solutions
Now, consider the impulsive set of time instantst; , tj1 (>t )e Imp Ry, , With T =t;,; —t;, so that for

some sequence {K(t;)}of non-identity matrices, one has:

x(t; )= K(ti)x(ti_):Jttiifr(ti)F(s,x(s), y(s))ds ; vt; € Imp (3)
The impulsive set Impis denumerable and consists of strictly ordered elements and can be finite or
infinite. Introduce by convenience the identities:

oltisg) =0+ 7 (tis) =70 + 7))+ T(t)5 Kltisa) = Ko +Kltisa) = Ko+ K(t )+ K(t)= K1)+ K(t;) 4)
; vt; e Imp, which allow to refer all delays (tj,;)at the impulsive set related to a constant delay

plus its deviation 7(t,;). It is assumed that the nominal gainK:Ry, — R{;" This deviation can be
related to that of its delay 7 () at the preceding impulsive time instant by its incremental value

Z(t;)=7(ti,1)-7(t;). A similar incremental description can be given for the impulsive gain sequence.
The following definitions are then used to characterize almost periodicity of the solutions, [2].

Definition 1. A set E < Rof real numbers is said to be relatively dense if there exists a number
¢ e R, such that any real interval (« ,a +¢)of length ¢ contains at least one number in E .

Definition 2. A function f € BC (RxQ ,Rq) is said to be almost periodic in te R uniformly in xe @
(abbreviated by f € AP (RxQ ,Rq)) if the ¢ -translation set of f

T(f ,g)={a)eR:|| flt+e,z)-f(t,z)|<e;v(t,z)e RxW VYcompact set W c 2}
is a relatively dense setin R forall s R, .Each weT(f ,&)is called an - period of f .

Almost periodic functions without uniformity in @ are defined closely by removing the argument z in
© and the compact subset W from the definition of T(f ,&). See, for instance, [2].

Definition 3. A function f € BC (Rx.Q ,Rq) is said to be p-almost periodic in te R uniformly in
x e 2 (abbreviated by f € AP (RxQ , Rq,p)) for some peR, ifthe ¢ -translation set of f
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T(f6)={weR:| f(t+o,2)- f(t,2)|<e;V(t,2)e RxW Ycompact set W < @}
is a relatively dense set in R for all se[p, ). Each weT(f ,&)is called an &- period of f for a
given e [p, »).

The following main result, whose proof is omitted, follows:

Theorem 1. Assume that the model integral equation, subject to
F:(Ry, u[-7(0),0))x R}, xR}, > Ry, , x,y:[-7(0),0)> R" andK:Ry, — R{;", satisfies the
subsequent hypotheses:

H1) Fe BC(ROerR(’,‘Jr ,R{,Lr)mAP(ROJr><R{)‘+ ,R8+,g) for some givene e R,

H2)Ti =tj,1 -t > 7o +7(t;), the i- th inter-impulse time interval T; e P(F, A;¢) (i.e. it is an A;e-
period for F for some givenseR,), (Tj—79)eP(F, Aye), (Ti-79-7(t))eP(F, A5¢) for some
AjeR.and je3; VieZy, for ceR, inHI,

H3) T0/11i +;(ti)ﬂ’2i +§(ti)ﬂ3i <1; Yi EZOJr

Thus, the following properties hold: (i) “ H <gand {T; }is a discrete ¢ -period sequence for the left

limit solution x(t‘). If | K(t; )] <min i 1””K ”—1 ||

& -period sequence for the right limit solution x(t),

—|K(ti_g)| | then |X(t;)|<eand {T; }is a discrete

i) [%(,)[<e. where R, )=x(t+7)-x(t), for any real 7e(0,T); VieZgso that

x e AP (R><R8+ ,R{)‘+,g), i.e. the solution of (1)-(2) is & -almost periodic in te R uniformly in R{, .

Under the conditions of Theorem 1, the free-impulsive integrand of the model is assumed almost-
periodic according to the Hypothesis H1. However, the impulsive effort at certain impulsive time
instants can also achieve the almost periodicity of the solution. The following relations are obtained:

x(t+p)-x(t)= Iii’;,t)F( () £ (S)V (5. X(5)) Jas = i) Flo. wls)xis (5)V (5, X(5) s

> 2 (xig (t+ )= xie (1)) = 2 (xie (t+ p)- ())*‘/10(,,0)
F )R () (i e+ ) ) -+ ) t+p>))—z;1<;>F(ti<t>,x(tr<t>),o)v(ti<t>,x(tra)))
< aeig +alt, p) ~ZPE [t t+ ) x(t7 (t+.0) 0) [Vt ) e+ )
+z;“=(lf)|:(ti (t),x(t;(t) 0 ‘v t (t),x(tf(t)))‘ < (5)

provided that under impulsive vaccination ( i.e. negative impulses) :

Z:’i(1t+p)|:(ti(t+p), ( (t+p ‘V (t+p) Xt ( (t+p)))‘
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~xm0 1 0) xlty ©) )|V t) 4 0))) = 2 + 200t ) ©)
and under general impulsive action with non-necessarily negative impulses:

gl F (it p) xlt @+ 0) 0V I+ ) i (24 )
~smO (4 0 O) OV ©) o ) <26 -~ (t0) )

Let the integrand of the epidemic model be decomposable as F(t ,x, y)= f(t, x)+g(t, y) subject to

olt @ x)> p(t, @, X)g(t.x) > gt X)> Aolt,x)
tﬁxz( -1, )tx>ﬂf(tx)

with min((p(t a ,X),(o(t,a_l ,x))>a > 4 and min(q)(t N ,X),(o(t,ﬂ_l ,x))>ﬂ. Then,

min(plt.c ) olt.57 y))> 5
so that

Flt.px aty)= Ft.p0+ olt o ty) > A1 L)+ 0t y)= BF(E X, y)

where ,a <(0,1) with g <a . Assume that the scalar vaccination gains are generated as follows:
kgi (t)=—kgi (t)] sanFi(t s, x(s), x(s-9))

then,

)= 1 Flt s, x(s), x(s-0)as

xi(t)= xi(t_)—ft‘_|Fi (t,s, x(s), x(s—6(s)))| ki (t) |s(t—s)

= Xi (t_)_“‘i (t)”':i (t* L X(t_)’ (e-ett)” )‘

If X(t_)za_l(t)x(t) and p(t) are the impulsive infective population increase at time (t-#(t))and the
corresponding impulsive vaccination correction at the current time t satisfying A(t)< a(t-0(t)) <1

o ) xt0)= k)| [Fle, 1l ) -0 )| = k@) B0 F( 6 x(), x-o) (8)
so that
x(t+p)= Iif;(”p)F(S+t+p,X(S+t+p),V(S+t +p ,x(s’ +t +p)))ds

= j?r(up)F(sH +p,x(s+t+p),0)ds

4Ty p)etmplie p-rg-7ep) 0] Fliltr o) x4 )0 v (6 ), e 2+ ) ©)
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for t>7q—7(0)+ 7y With z(t)=zo+7(t) , 7(t)e [Zm . Zm ], Tm =7m = —10aNd p € Ry, .Note that

) 0 |f te lmp[t—z(t),t]
[0 )]- {H b ho (e )] it mpli-e.0]

B B (t+p) x(t) if telmplt—z(t).t]
Hx(t +p)—X(t)H:HX(t + ) )-(ee)- )H { Xt + p)-x( tH Pl ),o)v(t,x(r))H it templt—z(t).t]
(10)
On the other hand, if (t+p) = z(t) , F(t,x(t),0) is Lipschitz with constant K
Hx(t +p H<K[0 || X(s+t+,p)—x(s+t)]|ds
o St pretmptp-.aep) Flits ) xl @+ 0)) 0 16+ o), 5l 0+ )
Sy emolicet.) F 0 x5 ©).0 v (50, s 0) (11)
Hx(t +p “<Kj° || X(s+t+p)—x(s+t)|ds
] Zatesphemolep-et0.t0) Flil+ o)Xl (20 (160 o) e+ )
- Syermpl+60.¢] Fid )0 Jv (50,55 ) (12)
s p) A< Hx(twp)—x(t)H if t+pelmplt+p—z(t+p),t+p]
p H ( ) (t)H+HF(t+p,X(t7+p),0)V(t+p,X(t7+p))H if t+pe|mp[t+p—r(t+p),t+p]
(13)
[x(t+p)- ||<Kj0 || X(s+t+p)—x(s+t)ds
| Syt plempt e, Fl ) xl + 0)) 0 v (1t ), ol (1)
_Zti(t)elmp[t—r(t),t]F(l()l (I_ ) )V( ( ))H (14)
limplt )= T4 eimpli-o(0 1V (6:0). i )]st~ (0) (15)

Thus, the following result holds:

Theorem 2. Assume that (t+p)=<(t), F(t,x(t),0) is Lipschitzian with constant K. Furthermore,
card Imp[t—z{t),t] =card Imp[t+p—zlt+p),t+p] =m(t),
t;(t) e Impt—r(t) .t ] = t; (t+p) e Imp[t+p—r(t) ,t+p ] then &)t (t+p) e Implt—z(t) t+p ],

Y (ti (t+kp), x(ti‘ (t+ kp)))SV (ti (t), x(ti‘ (t)))+ ve forsome veR"; Vke Zg,

Then, for all te R,, , one has that the solution is almost & -oscillatory with period o in the sense [4-
5] that:

[x(t+p)-x()] < Kjo ||x(s+t+p)—x(s+t)||ds
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< { K ( o(t)+ m(t) " [rtnax “V (t)))”]+|| v ] (16)
provided that
[v]<1-K sup [r(t)+ m(t) max “V (t)))”] (17)
teRy, tj(t)e[t-z(t
under the necessary condition that
K < sup [r(t)+ m(t) max HV ti(t), x ”J -+ (18)
teRo, ti(t)eft—

Note, on the other hand that i(t‘): x(t)—x(t‘):K(t)x(t‘) , Where K(t)=0 implies x( ) 0 so that
x(t) = x(t‘) provided that x(t‘);to if K(t)=0. Then, for some o:Ry, — Ry, , One has

Note the following features:
a) if it(s,x(s‘)):o ie. x(s x( )) 0 for seft-z(t),0), equivalently, Imp[t—z(t),t)=2 then
O'(t_):l,

<t)ol™) sup [[F(s.x(s).0)] (19)
seft-z(t),t)

F(s+t,x(s+t),V(s+t,x(s+t)))ds

b) If a(t‘)< 1then there is a net vaccination impulsive control action on [t—z(t),0) with a net
reduction of the infective population at the impulsive instants. In this case,

H H <tt)olt) sup  |F(s.x()0)|<lt) sup | F(s,o(t)x(s).0))] (20)
s t—z(t),t) seft-z(t),t)
[x@)] <z(t)olt) sup ||F(s,x(s).0)|<z(t) sup |F(s,oft)x(s),0)] (21)
seft-z(t),t] seft-z(t),t]
c) If a(t*)> 1then there is a net increase of the infection at impulsive time instants on [t—z(t),0)

with a net reduction of the infective population at the impulsive instants.

In a similar way, we obtain:

||_Hj° F(s+t,x(s+t),V(s+t,x(s+t)) ds”<r oft) sup |F(s,x(s).0)] (22)
seft-z(t),t]

Assume that a(t‘)sland that F(t : x(t‘),o) is globally Lipschitz so that for some constantL e R*, one
gets under comparison with the impulsive-free zero solution:

H x(t‘)“ <zt sup ” )-F(s,0,0 )H < r(t)a(t_)L [ su(p) ) [x(s)] (23)
se|t—r(t),t
[ x(@)] < =(t a(t)L sup | x(s)] < r(t)a(t‘)L sup ” ” (24)
se [t—T(t),t] Se [t r( )
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and  telmplt—z(t).,tJthen | x(t)|= x(t‘) <M If instead
f®)L sup | x(s)| “ “
seft-z(t)t)
a(t‘)> M and  t=tpq elmp[t-z(t)t] with K(t) being such that
)L sup [ x(s)|
seft-7(t),t)
olt) < AM for some 1€ (0,1-4) then |[x(t)|<AM <({1-4)M and since x(t) is
f®)L sup | x(s)]
seft-z(t),t]
continuous in [t ,t+y,) since it is time-differentiable in (t ,t+y,) for some, since it can be concluded
that there exists some ye[0,7o] such that |x(t)|<M on yo=yo(t)e R, [t t+yy) provided that

| x(t) <M since[t ,t+y)nImp[t+y—z(t+y),t+y)=2. Now, proceed in the same way with

{t+7/}=Imp[t+7—r(t+7),t+}/] if olt” +y)> M e} that
( ) o(t+y)L [ su(p) )|| x(s+7)]
se|t—r(t),t

and ||X(t+l)||S/1M and (t+y)elImplt+y—z(t+y),t+y] with

M

tt+y)L sup | x(s+y)]
seft-z(t),t]
Imp[t+y—z(t+y),t+7]=@, otherwise. We can proceed in the same way along the whole time interval

[0,0).

G(t+}/) <

4. Concluding remarks

In this paper, the properties of a new proposed integral model which might be related in particular
cases to epidemic models has been discussed. This model incorporates delays and two coupled sub-
states. The positivity, periodicity and almost-periodicity of the solution have being discussed under
impulsive controls.
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