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Abstract

Background: Different studies have shown that cellular enzymatic activities are able to self-organize spontaneously,
forming a metabolic core of reactive processes that remain active under different growth conditions while the rest of the
molecular catalytic reactions exhibit structural plasticity. This global cellular metabolic structure appears to be an intrinsic
characteristic common to all cellular organisms. Recent work performed with dissipative metabolic networks has shown that
the fundamental element for the spontaneous emergence of this global self-organized enzymatic structure could be the
number of catalytic elements in the metabolic networks.

Methodology/Principal Findings: In order to investigate the factors that may affect the catalytic dynamics under a
global metabolic structure characterized by the presence of metabolic cores we have studied different transitions in
catalytic patterns belonging to a dissipative metabolic network. The data were analyzed using non-linear dynamics
tools: power spectra, reconstructed attractors, long-term correlations, maximum Lyapunov exponent and Approximate
Entropy; and we have found the emergence of self-regulation phenomena during the transitions in the metabolic
activities.

Conclusions/Significance: The analysis has also shown that the chaotic numerical series analyzed correspond to the
fractional Brownian motion and they exhibit long-term correlations and low Approximate Entropy indicating a high level of
predictability and information during the self-regulation of the metabolic transitions. The results illustrate some aspects of
the mechanisms behind the emergence of the metabolic self-regulation processes, which may constitute an important
property of the global structure of the cellular metabolism.

Citation: De la Fuente IM, Vadillo F, Pérez-Samartı́n AL, Pérez-Pinilla M-B, Bidaurrazaga J, et al. (2010) Global Self-Regulation of the Cellular Metabolic
Structure. PLoS ONE 5(3): e9484. doi:10.1371/journal.pone.0009484

Editor: Jean Peccoud, Virginia Tech, United States of America

Received July 31, 2009; Accepted February 4, 2010; Published March 2, 2010

Copyright: � 2010 De la Fuente et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Spanish Ministry of Science and Education Grants with the projects MTM2007-62186 and MTM2005-01504 and by the
Basque Government grants GIC07/151-IT-254-07 and IT-305-07. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mtpmadei@ehu.es

Introduction

Living cells are essentially dynamic reactive structures formed

by complex membranes surrounding a singular fluid mixture

where millions of different biochemical elements interact. In this

complex mixture most of the molecules are incessantly synthesized

and destroyed through a labyrinthine network of biochemical

reactions densely integrated forming one of the most complex

dynamical systems in the nature [1,2].

The enzymes are the most outstanding molecules of this

surprising biochemical reactive machinery. They are responsible

for almost all the biomolecular transformations, which considered

globally are called cellular metabolism.

In the conditions prevailing inside the cell, the enzymes do not

work in an isolated way but forming molecular associations, e.g., the

analysis of proteome of Saccharomyces cerevisiae has shown that 83% of

their proteins form complexes containing from two to eighty-three

proteins, and its whole enzymatic structure is formed by a modular

network of biochemical interactions between protein complexes [3].

Nowadays, there are enough experimental data showing the

existence both in prokaryotic and eukaryotic cells of numerous

functional enzymatic associations belonging to metabolic pathways

like: glycolysis, protein synthesis, lipid synthesis, purine synthesis,

Krebs cycle, urea cycle, respiratory chain, fatty acid oxidation,

DNA and RNA synthesis, amino acid metabolism, cyclic AMP

degradation, etc. [4–13].

In addition, reversible interactions of enzymes with structural

proteins and membranes are a common occurrence. This results in

the existence of microcompartments within the soluble phases of

cells. The microcompartmentation provides, on one hand,

biophysical and biochemical mechanisms of physiological impor-

tance for the regulation of metabolic pathways, and on the other

hand, direct transfers of the intermediate substrates from one

enzyme to an adjacent enzyme in a process that is called

metabolite channelling [14–17].

Extensive studies of cellular metabolism during the last three

decades have shown that the functional enzymatic associations,

the microcompartmentation of the metabolic processes and the
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metabolite channelling are the principal ways of microstructural

organization of cell metabolism [18–24].

The cellular organization at the molecular level presents

another relevant dynamic characteristic: the emergence of

dissipative catalytic patterns.

Experimental observations have shown that the enzymes may

form functional catalytic associations in which molecular oscilla-

tions may spontaneously emerge. When the oscillations in an

enzymatic association are periodic [25–29] all the metabolic

intermediaries oscillate with the same frequency but different

amplitudes [25].

This new type of supramolecular self-organization that operates

far from equilibrium conditions was called dissipative structures by

Prigogine [29–30].

Numerous experimental observations both in prokaryotic and

eukaryotic cells have shown the spontaneous emergence of

molecular oscillations in most of the fundamental metabolic

processes. For instance, there are oscillatory biochemical processes

involved in: intracellular free amino acid pools [31], biosynthesis of

phospholipids [32], cytokinins [33], cyclins [34], transcription of

cyclins [35], gene expression [36–39], microtubule polymerization

[40], membrane receptor activities [41], membrane potential [42],

intracellular pH [43], cyclic AMP concentration [44], ATP [45],

respiratory metabolism [46], NAD(P)H concentration [47], glycol-

ysis [48], intracellular calcium concentration [49], metabolism of

carbohydrates [50], beta-oxidation of fatty acids [51], metabolism

of mRNA [52], tRNA [53], proteolysis [54], urea cycle [55], Krebs

cycle [56], mitochondrial metabolic processes [57], nuclear

translocation of the transcription factor [58], amino acid transports

[59], peroxidase-oxidase reactions [60], photosynthetic reactions

[61], and protein kinase activities [62].

To get a more accurate understanding of the global metabolic

phenomena, we have developed a reactive dynamical system

called dissipative metabolic networks (DMNs) which is basically

formed by functional enzymatic associations that may present both

steady states and oscillatory molecular patterns.

We define as a metabolic subsystem any group of dissipatively

structured functional enzymatic associations that form a catalytic

entity as a whole, in which the activity is autonomous with respect

to the other enzymatic associations (they carry out their activities

relatively independently between them) and molecular oscillations

and steady states may emerge spontaneously.

The presence of some regulatory enzymes (both of the allosteric

modulation and covalent interaction kind) in each metabolic

subsystem makes possible the interconnection among them.

Allosteric regulation is the major mechanism by which the

enzymatic activities are controlled in cells; they are modulated

by means of effectors which are not binding at the active site

(catalytic site), but at another locus on the surface of the enzyme

(allosteric site) [63]. Such types of reversible modulation may be

both positive (activation of their catalytic rates) and negative

(inhibition of the reactive process). Covalent modulation allows an

active enzymatic form to be converted into an inactive form by

covalent modifications and vice versa; this regulation generates

‘‘all or nothing’’ answers [63].

In agreement with all these considerations, a DMN is an open

metabolic system formed by a set of discrete modules of

functionally associated enzymes (metabolic subsystems) intercon-

nected by substrate fluxes and regulatory signals (allosteric and

covalent modulations) in which both steady states and oscillatory

catalytic patterns can emerge.

In 1999 we found a singular global metabolic structure able to

self-organize spontaneously, characterized by a set of metabolic

subsystems always locked into active states (metabolic cores) while

the rest of the catalytic elements present dynamics of on-off

changing states (structural plasticity) [64]. In this theoretical first

work with DMNs we also suggested that this cellular metabolic

structure could be present in all living cells.

In 2004 and 2005 the existence of this global metabolic

structure was verified for Escherichia coli, Helicobacter pylori, and

Saccharomyces cerevisiae under different growth conditions by means

of flux balance analysis applied to metabolic networks and it was

also suggested that this self-organized enzymatic configuration

appears to be an intrinsic characteristic of metabolism, common to

all living cellular organisms [65–67].

We have investigated the influence of some molecular processes

in the self-organization of the global metabolic configuration by

means of numeric simulations in DMNs and we have observed an

asymptotic trend approximately 100% of the networks displaying

this kind of global configuration when the number of metabolic

subsystems is incremented: this suggested that the number of

catalytic elements could be the fundamental element for the

emergence of this global metabolic behaviour [68].

Recently, we have performed extensive DMNs simulations

(around 15,210,000 networks) taking into account: the proportion

of the allosterically regulated enzymes and covalent enzymes

present in the networks, the variation in the number of substrate

fluxes and regulatory signals per catalytic element, the random

changes in the topology of all flux and regulatory signal

interconnections, as well as the random changes in the values of

the outer fluxes. The results show that the fundamental factor for

the spontaneous emergence of this global self-organized enzymatic

structure is the number of catalytic elements in the metabolic

networks [69].

Here, our main goal is to get a more accurate understanding on

the dynamical features which guarantee that the global functional

structure is preserved under different external inputs. For this aim,

we have studied by means of non-linear dynamic tools, different

transitions in the catalytic patterns belonging to a dissipative

metabolic network. Concretely, we have analyzed by means of

non-equilibrium statistical physics tools the following: the stability

of the catalytic activities by means of the Lyapunov exponent, the

type of signal belonging to the complex transitions by calculating

the slope of the power spectral, the rate of entropy production by

testing the Approximate Entropy and the possible presence of

long-term correlations in the enzymatic transitions data by means

of the bridge detrended scaled windowed variance analysis.

Here we have also studied both simple and complex dynamical

transitions of different metabolic subsystems and we have

reconstructed the complex attractors responsible for the dynamical

regulations during the transitions in the metabolic activities.

Our analysis has shown the spontaneous emergence of self-

regulation processes in the metabolic patterns. Likewise, we have

observed that the complex numerical series analyzed correspond

to fractional Brownian motion. They exhibit long-term correla-

tions and low Approximate Entropy indicating a high level of

predictability and information during the self-regulations of the

metabolic transitions.

These results illustrate some aspects in the mechanisms behind

the emergence of the metabolic self-regulation processes which

may constitute an important property of the global structure of the

cellular metabolism.

Methods

1. Dissipative Metabolic Networks Model
Dissipative metabolic networks (DMNs) are dynamical systems

basically formed by a given number of interconnected metabolic

Metabolic Cores
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subsystems. Each metabolic subsystem represents a group of

dissipatively structured functional enzymatic associations (the

catalytic processes can present both stationary and oscillatory

activity patterns and comprise an infinite number of distinct

activity regimes). These enzymatic sets are considered as

individual catalytic entities and receive both input fluxes (the

substrates of the enzymatic reactions) and regulatory signals, which

may be of three types: activatory (positive allosteric modulation),

inhibitory (negative allosteric modulation) and all-or-nothing type

(which correspond with the regulatory enzymes of covalent

modulation).

Input-output conversion is made in two stages. First, the input

fluxes are transformed into an intermediary activity by means of

flux integration functions. In a second phase, the ‘‘intermediary

activity’’ is modified by means of the ‘‘regulatory signals

integration’’, which depends on the combination of the received

regulatory signals. Each regulatory signal has an associated

regulatory coefficient which defines the intensity of its influence.

In DMNs, when the set of dissipatively structured enzymes

shows an activity with a rhythmic behaviour the output activities

present nonlinear oscillations with different levels of complexity as

could be expected in the cellular conditions ‘‘in vivo’’.

Formally, we assume that the activity of the i-th metabolic

subsystem is defined by

yi(t)~BizAi sin 2pvitð Þ,

where Ai is the amplitude of oscillation, Bi is the baseline and vi is

the oscillation frequency. Moreover, in order that yi(t)w0 we

assumed that 0ƒAiƒBi and we also suppose that the means and

the frequencies are bounded values, so there exist Bmax and vmax

such that

B1ƒBmax and v1ƒvmax Vi:

In this way, the activity of each metabolic subsystem yi(t) can be

characterized by three variables xi,1, xi,2 and xi,3, with values

between 0 and 1 such that

Bi~xi,1Bmax,

Ai~xi,2Bi,

vi~xi,3vmax,

The subsystem is inactive when xi,1~0, and is steady state when

xi,2~0 or xi,3~0.

Fix 0vTvz? and let Dt~T=M be a time interval during

which the oscillations are constants, in the m-th time interval

between tm{1~(m{1)Dt and tm~mDt, the activity of the i-th

subsystem is represented by the vector xm
i ~(xm

i,1,xm
i,2,xm

i,3) and the

state matrix

Xm~

xm
1

..

.

xm
N

0
BB@

1
CCA~

xm
1,1 xm

1,2 xm
1,3

..

. ..
. ..

.

xm
N,1 xm

N,2 xm
N,3

0
BB@

1
CCA,

characterizes the whole DMN system, N is the total number of

subsystems.

To study the evolution of the whole system, we assume that each

subsystem receives two different kinds of inputs:

– The substrates of the biochemical reactions.

– Regulatory signals of three types: activatory, inhibitory and

total inhibitory.

These inputs may produce a change in the activity of the

subsystems. Moreover, according to experimental observations,

the output activity must be stationary or periodic.

Each subsystem processes inputs to produce outputs in two stages:

1. An intermediate activity is obtained using the flux integration

functions.

2. The received regulatory signals originate a regulatory signal

integration which varies the intermediary activity.

2. Flux Integration
Let us suppose that the i-th subsystem receive flux from the j-th,

its intermediate values zm
i will be computed by three flux

integration functions

zm
i,1~F1 xm

j,1,pi,1

� �
,

zm
i,2~F2 xm

j,2,pi,2

� �
,

zm
i,3~F3 xm

j,3,pi,3

� �
,

Where pi,1, pi,2 and pi,3 are parameters associated to the flux

integration function which are characteristic of each metabolic

subsystem, and the Fi are piecewise linear approximations for

nonlinear functions obtained in [70] by Goldbeter and Lefever in

their studies about the oscillations for glycolytic subsystems. In this

paper, the functions will be the following:

F1 x,pð Þ~F2 x,pð Þ~

0, if xƒ0:1,

2:5 x{0:1ð Þ if 0:1vxƒ0:3,

0:5z
p{0:5

0:5
x{0:3ð Þ if 0:3vxƒ0:8,

p

0:1
0:9{xð Þ if 0:8vxƒ0:9,

0, if xw0:9,

8>>>>>>>><
>>>>>>>>:

and

F3 x,pð Þ~

0, if xƒ0:1,

2:5 x{0:1ð Þ if 0:1vxƒ0:3,

0:5z
p{0:5

0:6
x{0:3ð Þ if 0:3vxƒ0:9,

p, if xw0:9:

8>>>>><
>>>>>:

When a subsystem receives flux from at least two subsystems, we

compute the arithmetic mean.

3. Regulatory Signal Integration
In this second stage, the intermediary values are modified using

the signal integration functions, which depend on the combination

Metabolic Cores
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of the received regulatory signals and their corresponding

parameters (regulatory coefficients). In the metabolic subsystems,

the existence of some regulatory enzymes (both allosteric and

covalent modulation) permits the interconnection among them. The

allosteric enzymes present different sensitivities to the effectors,

which can generate diverse changes on the kinetic parameters and

in their molecular structure; likewise, the enzymatic activity of

covalent modulation also presents different levels of regulation

depending on the sensitivity to other activators or inhibitors.

These effects on the catalytic activities are represented in the

dynamical system by the regulatory coefficients and consequently

each signal has an associated coefficient which defines the intensity

of its influence. There exist three kinds of signal integration

functions:

– Activation function AC.

– Inhibition function IN.

– Total inhibition function TI.

In this way, to compute xmz1
i from zm

i the i-th subsystem

receives enzymatic regulatory signals from r subsystems and they

work sequentially computing

zm
i ~ xm

i

� �0? xm
i

� �1? xm
i

� �2? . . . . . .? xm
i

� �r
~xmz1

i

where each step depends on the signal type. From xm
i

� �s
to

xm
i

� �sz1
if the signal is AC and is received from the j-th MSb

xm
i,k

� �sz1

~AC xm
i,k

� �s

,xm
j,k,qi,k

� �

~1{ qi,k{1ð Þxm
j,kz1

� �
1{ xm

i,k

� �s� �

for k = 1, 2, 3 and qi,k are regulatory coefficient to each allosteric

activity signal which represents the sensitivity to the allosteric

effectors.

If the allosteric signal is inhibitory

xm
i,k

� �sz1

~IN xm
i,k

� �s

,xm
j,k,qi,k

� �
~ qi,k{1

� �
xm

j,kz1
� �

xm
i,k

� �s

,

and, finally, if the signal is of the total inhibition type

xm
i,k

� �sz1

~TI xm
i,k

� �s

,xm
j,k,d

� �
~

xm
i,k

� �s

, if xm
j,kvd

0, if xm
j,k§d,

8<
:

where d, the threshold value, is the regulatory coefficient

associated to each enzymatic activity signal of covalent modulation

which defines the intensity of its influence.

4. Random Metabolic Network Generation
First, we have fixed the following elements with control

parameters: 12 subsystems in the DMN, 2 substrate input fluxes

for each subsystem (figure 1a), 3 input regulatory signals for each

metabolic subsystem and the same proportion of the allosteric

activation signals, allosteric inhibition signals and regulatory

signals of covalent modulation present in the network (figure 1b).

DMNs are open systems and certain metabolic subsystems may

receive a substrate flux from the exterior. Here, we have arbitrarily

fixed the metabolic subsystem number three for this function.

Having fixed these elements, the structure of the network has

been randomly configured (following the uniform distribution)

including: the topology of flux interconnections and regulatory

signals, the pi parameters associated to the flux integration

functions, the qi regulatory coefficients to the allosteric activities,

and the values of the initial conditions in the activities of all

metabolic subsystems (Table S1).

The values of pi and qi are a random number between 0 and 1.

The changes in the parameters pi modify the flux integration

functions, which are piecewise linear approximations for the

nonlinear functions obtained in [70] by Goldbeter and Lefever.

The values of qi close to 0 represent a low level of influence of the

allosteric regulatory signals, and the values of qi close to 1

represent a high level of influence of the allosteric regulatory

signals. The random value of these pi and qi parameters originates

metabolic networks with a great variety of activities in each

subsystem.

We have taken the constants Amax, Bmax, and vmax equal 2.

Finally, given T and M we calculate the activity matrices Xm for

m = 1, …, M using the flux integration functions and the regulatory

signals.

Figure 1. Topology of the metabolic network. Dissipative metabolic network formed by 12 subsystems in which the interconnection by
substrate fluxes (figure 1a) and input regulatory signals (figure 1b) are reflected. These regulatory signals, allosteric activation (thin line), allosteric
inhibition (thick line) and covalent modulation of total inhibition (dashed line), come from any element of the network and do not require any flux
relationship.
doi:10.1371/journal.pone.0009484.g001
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5. Representation of the Activity of the Metabolic
Subsystems

The output of our automaton provides a sequence of three

positive values Bk,Ak,vkð Þ for k~1, � � � ,N which represent

baselines, amplitudes and frequencies respectively. Then we define

the activity y tð Þ~BkzAk sin 2pvktð Þ for the time t between tk{1

and tk~tk{1z1=vk. These activities are essentially piecewise

linear functions, the baselines plus sinusoids with different

amplitudes (Ak) and frequencies vk and therefore may be

discontinuous at times t1, � � � ,tN{1:
To avoid these discontinuities, per each k~1, � � � ,N{1,

we determine a unique three-degree polynomial p(t) whose

graph passes through the points tk{
3

20
tk{tk{1ð Þ and tk{

3

20
tkz1{tkð Þ being its first derivatives in these points equal

zero, finally p(t) plus sinusoids is the activity in a bit interval

tk{
3

20
(tk{tk{1)tkz

3

20
(tkz1ztk)

� �
.

6. Maximal Lyapunov Exponent
To calculate the maximal Lyapunov exponent we have used

the Wolf algorithm [71]; its idea is simple: Consider a re-

constructed attractor and define an arbitrary starting point x0

lying on it, one should find another point x’0, which is close

in space but is distant in time to x0 : x0{x’0k k~e0ƒemin

and DT x0ð Þ{T x’0ð ÞD§Tmin. Then trace systems dynamics using

initial points x0 and x’0. Then a distance e’0 between two

trajectories will exceed some value emax, stop and fix time of

tracing T0 and ratio e’0=e0. After that one should find another

starting point x’’1, which is close to x1 and shifted in the direction of

the vector x’1{x1. Let x1{x’’1k~e1k . Trace the dynamics of the

system using initial points x1 and x’’1. Then a distance e’1 between

two trajectories will exceed emax, stop and fix time of tracing T1

and ratio e’1=e1, etc.

The Maximal Lyapunov exponent is estimated as

L~

PN
k~0

ln e’k=ek

PN
k~0

Tk

where N is the iteration number.

7. Scaled Windowed Variance Analysis (bdSWV)
This method generates an estimation of the Hurst exponent (H)

for each series.

According to this procedure, if the signal is of the form xt,

where t = 1,…,N, then the following steps are carried out for each

one of the window sizes n = 2,4,…,N/2,N (if N is not a power of 2,

then n takes the values 2,4,…,2k, where k is the integer part of

log2N):

1) Partition of the data points in
N

n
adjacent non-over-

lapping windows W1,:::,WN
n

� 	
of size n, where Wi~

x i{1ð Þnz1,:::,xin


 �
. If N is not a power of 2 and N is not

divisible by n, then the last remaining points are ignored for

this value of n. For instance, if N = 31 and n = 4, the first 28

points are partitioned into seven windows.

2) Subtraction of the line between the first and last points for

the points in the n-th window.

3) For each i~1,:::,
N

n
, calculation of the standard deviation

SDi of the points in each window, by using the formula

SDi~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXin

t~ i{1ð Þnz1

xt{�xxið Þ
n{1

2

vuut ð1Þ

where �xxi is the average in the window Wi.

4) Evaluation of the average SD of the
N

n
standard deviations

corresponding to equation [1].

5) Observation of the range of the window sizes n over which

the regression line of log SD
� �

versus log(n) gives a good fit

(usually some initial and end pairs are excluded).

6) In this range, the slope of the regression line gives the

estimation of the Hurst coefficient H.

The empirical range of windows corresponding to step 5) which

we have found to be in accordance with the guidelines appearing

in [72], and consequently we have excluded the first two and last

three points. We have used in our work the program bdSWV,

available on the web of the Fractal Analysis Programs of the

National Simulation [73].

Results

To investigate the elements that may affect the catalytic

dynamics under a global metabolic structure characterised by

present metabolic cores, we have performed a unique DMN,

which is later perturbed, to study its reactive dynamical answer.

In this metabolic network, first we have fixed the following

parameters:

– The number of subsystems in the DMN: 12.

– The number of substrate input fluxes for each subsystem: 2

(figure 1a).

– The number of input regulatory signals for each metabolic

subsystem: 3 (figure 1b); these regulatory signals (allosteric

activation, allosteric inhibition and covalent modulation of

total inhibition) come from any element of the network and do

not require any flux relationship. Therefore, there are not

metabolic subsystems with single fluxes and every metabolic

subsystem receives fluxes and regulatory signals.

– The same proportion of the allosteric activation signals,

allosteric inhibition signals and regulatory signals of covalent

modulation present in the network.

DMNs are open systems, and certain metabolic subsystems may

receive a substrate flux from the exterior. Here, we have arbitrarily

fixed the metabolic subsystem number three for this function.

After determining these characteristics of the network, its

architecture was randomly configured including: the topology of

flux interconnections and regulatory signals, the parameters

associated to the flux integration functions and regulatory

coefficients of the allosteric activities, as well as the values of the

initial conditions in the activities of all metabolic subsystems (see

‘‘Methods’’ section for more details).

Once defined (Table S1), the DMN was perturbed to three

different values of the external input flux belonging to the

metabolic subsystem number three (figure 2).

We have first studied the dynamical patterns that emerge under

a stationary external input flux of substrate with a baseline of

about 0.2.

Metabolic Cores
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In this case, after the numerical computation, we have observed

that all metabolic subsystems present deterministic chaotic

activities, i.e., the output activity of all subsystems exhibits infinite

transitions, modifying uninterruptedly their activity so that they

never repeat themselves for arbitrarily long time periods.

In figure 3A are represented the dynamical behaviours of six of

them. We can observe that the amplitudes and periods of the

oscillations vary considerably from one subsystem to another; for

instance, the subset of enzymes number two shows low activity

values during irregular oscillations.

More interesting is the behaviour of the metabolic subsystem

number seven which eventually exhibits activity zero during irregular

intervals of time. This is due to the fact that in the net spontaneously

emerges a global functional structure in which 11 subsets of enzymes

are always in an active state (metabolic core) whereas the subsystem

number seven always exhibits a chaotic dynamic on-off (see [68,69]

for more details for this kind of global structure).

The mechanism that determines these chaotic behaviours is not

prefixed in any part of the metabolic system. There is neither

feedback with oscillatory properties nor other rules that determine

the system to present complex transitions in the output activities of

the metabolic subsystems. The complex dynamic behaviours

which spontaneously emerge in the network have their origin in

the regulatory structure of the feedback loops, and in the

nonlinearity of the constitutive equations of the system.

Next, we have considered a stationary input flux of external

substrate with a baseline of 0.25 (figure 2).

Under these new conditions, the same net undergoes a

reorganization of its dynamics and spontaneously all the subsystems

present complex regular behaviours in their activities with large

number of transitions between periodic oscillations without steady-

states, e.g., the metabolic subsystem 1 exhibits complex activity

patterns with 36 maxima and 36 minima per oscillation.

The global functional structure of the network has not been

altered by the perturbation; the metabolic core preserves the same

number of subsystems always in an active state whereas the

subsystem number seven exhibits a dynamics of on-off changing

states.

Finally, in the network we have considered an oscillatory

external input of substrate in the subsystem number three

(baseline: 0.7, amplitude: 0.4 and frequency: 0.3).

Again, the network spontaneously auto-organizes its activity

patterns provoking the emergence of a qualitative change in the

whole system and the activities of all subsystems presents simple

regular transitions between different periodic oscillations or steady-

state patterns (figure 3B). For instance, the enzymatic subset number

1 (figure 3B-1b) shows an output activity characterized by pre-

senting uninterrupted transitions between regular waves with six

oscillations per period.

The ranges of amplitudes and periods of these regular patterns

vary considerably from a subsystem to another. For instance,

subsystem number two, under the new conditions shows very low

activity with low frequency values.

The subsystem number 7 (figure 3B-7b) exhibits transitions

between steady states and its activity is eventually zero during

regular intervals of time. This is due to the fact that in the net, the

same global functional structure which has not been altered by the

perturbation emerges spontaneously.

Local Attractors in the DMN
The dynamical reorganizations of the metabolic network during

the changes provoked by the three different external fluxes

(figure 2) originate the emergence of different transition activities

which ends in one of the attractor states. For any metabolic

subsystem, each attractor represents the set of all the possible

asymptotic behaviours.

Formally, if y(t) is the activity of any subsystem in the network, a

set A is called an attractor for this subsystem in the following three

conditions:

(1) It is impossible to go out, in other words, if y(t0) is in A for

some time t0, later y(t) remains in A.

Figure 2. Summary of the numerical experiments. The DMN was perturbed by three different values of the external input flux belonging to the
metabolic subsystem number three. I: Chaotic patterns emerge under a stationary external input flux of substrate with a baseline of 0.2 (figure 2a). II:
Under a stationary input flux with a baseline of 0.25, the network undergoes a reorganization of its dynamics and spontaneously all the subsystems
present complex regular behaviours in their activities (figure 2b). III: Finally, we have considered an oscillatory external input flux (baseline: 0.7,
amplitude: 0.4 and frequency: 0.3) and in the metabolic subsystems steady-state patterns (figure 3c) and simple regular transitions between different
periodic oscillations (figure 3d) emerge. Circles with thin line represent subsystems always locked into active states, while the circle with thick line
represents a metabolic subsystem with dynamics on-off.
doi:10.1371/journal.pone.0009484.g002

Metabolic Cores

PLoS ONE | www.plosone.org 6 March 2010 | Volume 5 | Issue 3 | e9484



(2) There exists a neighbourhood of itself B (basin of attraction)

such that for any initial condition in B, the system approaches

indefinitely A.

(3) A is a compact set; this means it is a closed and bounded set.

Consequently, the attractor characterizes the asymptotic

catalytic behaviour of each subsystem.

To investigate the dynamics of DMN, we need to reconstruct

the attractor from the time series and compute its maximal

Lyapunov exponent which is very useful in testing the existence of

chaos.

Positive Lyapunov exponent indicates sensitivity to initial

conditions, a hallmark of chaos [74], by contrast, the leading

Lyapunov exponent would be zero for quasiperiodic evolution or

Figure 3. Emergent dynamic behaviours in the dissipative metabolic network. A: chaotic series, the metabolic subsystems show infinite
transitions between different activity patterns when the network is perturbed by a stationary external input flux of substrate (baseline of 0.2). B: regular
transitions between periodic or steady state behaviours emerge when the network is perturbed by an oscillatory external input flux of substrate
(baseline: 0.7, amplitude: 0.4 and frequency: 0.3). The activity Ac developed by each metabolic subsystem is represented as a function of the time t.
doi:10.1371/journal.pone.0009484.g003
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when the system is in some sort of steady state mode. A negative

Lyapunov exponent is characteristic of a stable fixed point or

stable periodic orbit in the phase space.

To reconstruct attractors we have used time-delay embedding

[75]; this technique allows us to establish a phase space re-

presentation for time series as a function of the current and of the

previous values; for that it requires a delay and an embedding

dimension.

Given a time series x(t), t = 1,2,…N, the m-dimensional return map

is obtained by plotting the vector X(t)~ x tð Þ,x t{tð Þ,x t{2tð Þ, � � � ,½
x t{ m{1ð Þtð Þ� where t is an integer delay.

This converts the one dimensional vector x(t), into the m-

dimensional vector X(t). The dimension m is known as the

embedding dimension, and the trajectory of X(t) converges to an

attractor in the m-dimensional Euclidian space, which is, up to a

continuous change of variable, the attractor of the subunit

dynamical system. In figure 4 we can observe six different

attractors, the first row corresponding to subsystem number two

representing different re-organizations of the activity patterns

during the three perturbations, and the second row is the result for

the re-organizations of the catalytic activities belonging to

subsystem seven.

Once the attractor for each metabolic subsystem has been

created, we have computed the maximal Lyapunov exponent with

the results of the third column in table 1. The arithmetic mean is

about 0.223, the standard deviation 0.07 and the range between

0.122 and 0.319. These results confirm the chaotic behaviour for

all subsystems under a stationary external input flux of substrate

with a baseline of about 0.2.

Long-Term Correlations in the Metabolic Subsystem
Activities

In order to study the presence of long-term correlations in the

numerical chaotic data, we have determined whether the series is a

fractional Gaussian noise (fGn) or a fractional Brownian motion

(fBm); fGn and fBm can be distinguished by calculating the slope

of the power spectral density plot.

The signal is said to exhibit power law scaling if the relationship

between its Fourier spectrum and the frequency is approximated

asymptotically by S(f)&S(f0)=fb, for adequate constants S(f0)
and b. If {1,b,1, then the signal corresponds to an fGn. If

1,b,3, then the signal corresponds to a fBm [76].

The regression line was estimated for the pairs (log S( f ), log f ),

where f is the frequency and S( f ) the absolute value of the Fourier

transform (figure 5). The b constant was taken to be the opposite of

the coefficient of x in that regression line.

The analysis in table 1 show that all the metabolic activity series

that we have studied present power law scaling with b in the range

1.233–2.108, which suggests that the series are fBm.

A number of tools are available for estimating the long-term

correlations of an fBm time series. The scaled windowed variance

analysis is one of the most reliable methods that have been

thoroughly tested on fBm signals [71]. In particular, we have used

the bridge detrended scaled windowed variance analysis (bdSWV)

for the analysis of these temporal sequences of metabolic activities

[77].

This method generates an estimation of the Hurst exponent

(H) for each series. For a random process with independent

increments, the expected value of H is 0.5. When H differs from

Figure 4. Local attractors in the dissipative metabolic network. The dynamical reorganizations of the network are represented by local
attractors which are the set of possible asymptotic behaviours for each metabolic subsystem activity. The first row (A1, A2 and A3) corresponds to
subsystem number two during the changes provoked by three different patterns in the external input fluxes, and the second row (B1, B2 and B3)
corresponds to subsystem number seven.
doi:10.1371/journal.pone.0009484.g004
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0.5, it indicates the existence of long-term memory, that is to say,

dependence among the values of the process. If H.0.5, it was

produced by a biased random process which exhibits persistent

behaviour. In this case, for several previous transitions, an

increment on the phase-shift average value implies an increasing

trend in the future. Conversely, a previously decreasing trend for a

sequence of transitions usually implies a decrease for a similar

sequence. Antipersistent behaviour is obtained for 0,H,0.5, a

previously decreasing trend implies a probable increasing trend in

the future and an increase is usually followed by decreases [71,77].

We have used in our work the program bdSWV, available on

the web of the Fractal Analysis Programs of the National

Simulation Resource [72] (see the Methods section for more

details).

In table 1 the results of the bdSWV analysis of each one of the

12 metabolic series are shown. All the values of the estimation of

the Hurst coefficient H were smaller than 0.5, in all the numerical

series. The arithmetic mean of the whole set of series obtained is

H = 0.1858, with a standard deviation s of 0.028 and a range of

0.161–0.196, indicating that the studied metabolic activity exhibits

long-term persistence (more concretely, antipersistent behaviour).

Therefore, the value of each metabolic activity studied depends to

some extent on previous ones.

Global Attractors in the DMNs
The set formed by the asymptotical behaviours followed by all

the metabolic subsystem activities form the global attractor of the

metabolic net.

Table 1. Analysis of the regular and chaotic series for the dissipative metabolic network with 12 metabolic subsystems.

Chaotic series Regular series

MSb b H l ApEn MSb ApEn

1a 1.663 0.196+0.090 0.249 0.413 1b 0.044

2a 1.744 0.173+0.077 0.316 0.356 2b 0.012

3a 1.634 0.185+0.096 0.194 0.313 3b 0.052

4a 1.320 0.190+0.096 0.207 0.407 4b 0.035

5a 1.831 0.169+0.095 0.116 0.326 5b 0.024

6a 1.845 0.161+0.092 0.144 0.380 6b 0.040

7a 1.479 0.270+0.089 0.289 0.266 7b 0.028

8a 2.108 0.173+0.092 0.251 0.322 8b 0.045

9a 1.594 0.175+0.094 0.122 0.318 9b 0.036

10a 1.233 0.183+0.091 0.249 0.374 10b 0.042

11a 1.982 0.188+0.086 0.319 0.379 11b 0.041

12a 1.720 0.167+0.092 0.217 0.379 12b 0.047

Msb: the number of metabolic subsystem; b: slope of the power spectral density plot; H: Value of the Hurst exponent; l: maximal Lyapunov exponent;
ApEn: approximate entropy value.
doi:10.1371/journal.pone.0009484.t001

Figure 5. Spectral density plot of a representative series of the dissipative metabolic network. S(f) is the absolute value of the Fourier
transform and f the frequency. The opposite of the slope has a value of 1.663; this means that the process is a fractional Brownian motion (fBm).
doi:10.1371/journal.pone.0009484.g005
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Formally, if yi(t) is the activity of any subsystem in the network

M, obviously y1(t),y2(t), . . . ,yn(t)f g is a dynamical system in Rn:
After some transitory time, the activity subsystem functions

y1 tð Þ,y2 tð Þ, . . . ,yn tð Þ end up and remain in one global attractor

representing the catalytic asymptotic behaviour of the whole

network. Since these attractors have many dimensions, we have

represented their projections in only three dimensions.

In figure 6 we can see global attractors both chaotic (figure 6a)

and metabolic regular dynamics (figure 6b) for subsystems 1, 2

and 7.

The entropy theory of dynamical systems can be found in many

textbooks [78–79]. Roughly speaking, the entropy will be highest

when all transition states have the same number of possible

emergency, and the maximum entropy occurs when any transition

pattern could be found with equal probability, therefore the

entropy will be lowest and information highest when one pattern

or a few patterns are dominant (small number of states with high

probabilities).

The entropy is also a useful concept in the study of the attractors

which may allow estimating the degree of complexity and

information contained in them. Concretely, Kolmogorov–Sinai

entropy (K–S entropy) provides a measure of the information and

the level of predictability in the attractor [80]. However, the K–S

entropy cannot be computed directly, it can only be approximat-

ed. Problems arise when entropy rates have to be estimated from a

finite number of observations containing a relatively high noise

component.

A practical solution to this problem has been put forward using

a developed family of statistics named Approximate Entropy

(ApEn) which is a good approximation of the Kolmogorov-Sinai

entropy [81].

Formally, given N data points from a time series x(1), x(2),.,

x(N), two input parameters m and r must be fixed to compute

ApEn, denoted precisely by ApEn(m, r, N).

To estimate ApEn, first we form the m dimensional vector

sequences X(1)….X(N-m+1) such that X(i) = (x(i)…..x(i-m+1))

which represent m consecutive values. Let define the distance

between X(i) and X(j) (d[X(i),X(j)]) as the maximum absolute

difference between their respective scalar components and for

each X(i) we count the number of j such that d[X(i),X(j)],r,

denoted as Nm(i) and Cm
r (i)~Nm(i)=(N{mz1), which measure

within a tolerance r the frequency of patterns similar to a given

one of window length m.

The average value of Cm
r (i), is wm(r) which portrays the average

frequency of the ocurrence that all the m-point patterns in the

sequence remain close to each other, and finally

ApEn(m,r,N)~wm(r){w(mz1)(r):

The idea is that ApEn measures the logarithmic likelihood that runs

of patterns that are close (within r) for m contiguous observations

remain close on subsequent incremental comparisons.

In table 1 the results of the ApEn estimation for the 12 chaotic

series are shown. The arithmetic mean is 0.353, with a standard

deviation s of 0.044 and a range of 0.313–0.413 which indicates

high information contained in the global attractor that emerges in

the phase space when the studied metabolic network is perturbed

by a stationary external input flux of substrate with a baseline

of 0.2.

Finally, we have computed the ApEn entropy of the regular

series (see table 1) and all the values are near to zero. These values

correspond to the expected ones.

In any process, if the series are regular, the KS entropy is very

near to zero, when they are chaotic, it grows and it is infinite in

numeric series with random noise (82).

Discussion

In an attempt to investigate the dynamical features of the

dissipative metabolic networks which guarantee that the global

functional structure is preserved under different external inputs we

have studied, using non-equilibrium statistical physics tools,

catalytic activities belonging to a dissipative metabolic network.

The first results show that the chaotic numerical series present

power-law scaling with a slope of the power spectral density plot b
varying between 1.126 and 2.658, which corresponds in all case to

fractional Brownian motion (fBm). This fBm is a generalization of

Brownian motion in which the increments are normally

distributed but they are no longer independent and therefore the

process is correlated in time. This dynamic characteristic is also

present in different physiological signals [83,84].

In order to estimate the level of the long-term correlations, the

chaotic numerical data were analyzed by means of the bdSWV

method finding values for the Hurst exponent (H) in a range of

0:045ƒHƒ0:329.

We clearly found that the values of the Hurst exponent were

lower than 0.5 in all cases and consequently, the metabolic

Figure 6. Global attractors in the dissipative metabolic network. 4A: chaotic global attractor which emerge when the network is perturbed
by a stationary external input flux of substrate with a baseline of about 0.2. Figure 4B shows a regular global attractor, i.e. the set of biochemical
states when the network is perturbed by an oscillatory external input of substrate. We have represented their projections in only three dimensions for
the metabolic subsystems 1, 3 and 4 (the x-axis is the 1a series, the y-axis is the 3a series, and the z-axis is the 4a series).
doi:10.1371/journal.pone.0009484.g006
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processes analyzed depend on their history; they are conditioned

to some extent on the previous ones.

Values of H,0.5 are interpreted as characteristic of ‘trend-

reversing’ or long-term antipersistence, i.e., the behaviour of the

metabolic series tends to reverse itself, an increasing tendency in

the past for a sequence of metabolic transitions is followed on

average by decreases in the future, and conversely, a decreasing

trend in the past is likely to be followed by an increasing tendency.

The chaotic metabolic transitions transmit information and this

information presents long-term memory properties. A complex

dynamic phenomenon may emerge in the metabolic system during

large sequences so that the state of the catalytic activity in each

subsystem is affected by a certain number of its previous activity

states.

In deterministic chaotic processes, the sensitive dependence on

initial conditions will lead to large changes in posterior system

states with exponential divergence in the orbits of the chaotic

attractors. However, these perturbations do not prevent the

integral trajectories belong to the attractor. In fact, the chaotic

dynamical system has enough information to allow the trajectories

to remain quite close to the attractor. This information can be

estimated by means of the Kolmogorov-Sinai entropy which

indicates the degree of complexity and information contained in

the attractors and estimates the rate at which information about

the state of a system is lost. Likewise, this information is correlated

in time i.e., it exhibits long-term persistence.

Both properties, sensitive dependence on initial conditions and

persistence, coexist in the chaotic dynamic systems. These de-

terministic systems contain a certain level of information (level of

predictability) and this information presents long-term correlation.

Long-term correlations have also been observed in experimental

studies, e.g., the quantification of DNA patchiness [85], physio-

logical time series [84,86], NADPH series [87], DNA sequences

[88–90], K+ channel activity [91], mitochondrial processes [57]

and neural electrical activity [92].

In previous works, we have also studied, by means of the R/S

method, the relationship between chaotic deterministic processes

and long-term correlations. For instance, we have investigated

persistent properties in the Lorenz attractor [93], glycolytic

attractors (93), chaotic cardiac oscillations [94] and electrical

neuronal processes [95]. Likewise, we have also observed long-

term antipersistence (R/S method) in numerical series of oscillatory

amplitudes belonging to a DMN [64].

On another hand, the DMN was perturbed by three different

values of the external input flux and as consequence local and

global attractors appear spontaneously in the phase spaces

belonging to metabolic subsystems and global network.

When a metabolic subsystem begins its activity the catalytic

patterns fall into one of the possible local attractors and all the

dynamical reactive behaviours become trapped inside. Local

attractors determine the output activity of the metabolic

subsystems. Changes in their parameters (see Methods section)

provoke changes in the type of emergent patterns (either causing a

stationary state or an oscillatory behaviour) and in the values of the

dynamical activity.

Global attractors determine that the metabolic system operates

like an individual and complete integral system, and their dynamics

are responsible, on one hand, for the self-organization of the

metabolic processes (the emergence of a global functional structure

with several sets of enzymes always in an active state, whereas the

rest of molecular catalytic sets exhibit dynamics of on-off changing

states) and, on the other hand, for global self-regulations of the

metabolic transitions (the dynamical reorganizations of the patterns

during the changes provoked by the external perturbations).

We have used ApEn to estimate the degree of complexity and

of information contained in the local attractors. Approximate

Entropy is also a measure of the self-organization of a system and

estimates the rate at which information about the state of a system

is lost.

In this sense, the results have shown that in the numerical series

the entropy is low indicating a high level of predictability and

information in the local attractors which govern the corresponding

transition patterns. The entropy values of the numerical metabolic

series exhibit a narrow range of low values (0:313ƒApEnƒ0:413).

In our opinion, the small deviation appears because in the

model, in order to simplify, the flux integration functions and the

regulatory signal integration functions of all metabolic subsystems

are quite similar. In this sense, we think that the experimental

metabolic data in cellular conditions should show notably different

entropy values.

The emergence of local attractors belonging to different

metabolic subsystems has been investigated in extensive studies

mainly carried out by means of systems of differential equations,

e.g., in Krebs cycle [96], amino acid biosynthetic pathways [97],

oxidative phosphorylation subsystem [98], glycolytic subsystem

[99], transduction in G-protein enzyme cascade [100], gene

expression [101], cell cycle [102], etc.

From the biochemical point of view, these metabolic processes

represent enzymatic sets self-organized as dissipative dynamical

systems which carry out their activity relatively independently

between them and play distinctive, systematic and essential roles in

the cell [25,29].

In previous works, we have also investigated the emergence of

dynamical patterns depending on different input flux values in a

glycolytic subsystem model which is governed by means of a

system of differential equations with delay [103]. In these studies

we have analyzed different attractor dynamics linked to Hopf

bifurcations [104], tangent bifurcations [105] and the classical

period-doubling cascade preceding chaos [106]. Likewise, we have

also studied the multiplicity of coexisting attractors in the phase

space [106].

In all these works, each metabolic subset forms a unique,

absolutely well-defined, deterministic, dynamical system and the

local variables are perfectly identified. In most of the cases, they

have to do with the catalytic kinetics of the different enzymes

belonging to each subsystem.

In our dissipative metabolic network model, each subsystem

receives different number of fluxes and regulatory signals which, in

all the cases, are output activities of other metabolic subsystems.

Therefore, each subsystem receives a subset of the total output

activities developed by all the subsystems in the network in form of

input fluxes and input regulatory signals.

The activity of each metabolic subsystem is determined by their

local variables: on the one hand, the input flux and input

regulatory signals and on the other hand the variables related to

the catalytic kinetics of the different enzymes which have been

substituted in our model by the variables belonging to the flux

integration functions and regulatory signal integration functions.

However, the phase spaces of the global attractors are formed

by the set of all subsystem output activities. Therefore, the

variables of the flux integration functions and regulatory signal

integration functions do not participate in these phase spaces.

Since both spaces of phases are formed by different variables,

the global attractors and the local attractors are different and the

local attractors cannot be considered as mere projections of a

global attractor.

The results also show that, as a consequence of the emergent

attractor dynamics, three essential properties can be observed: the
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self-organization of the global structure characterized by

exhibiting a metabolic core, the self-regulation of the global

structure which permits the integration of external stimuli

adapting the system to them and the persistent chaotic
dynamics for which the generated chaotic behaviours are

correlated in time.

The global reactive structure emerges spontaneously in the

dissipative metabolic network due to self-organized processes

[68,69]. As a consequence of dynamic and dissipative processes

the metabolic system increases its complexity generating a new

global structure that did not exist before and which is

characterized by a set of metabolic subsystems which are always

in an active state (metabolic core), while the rest of the enzymatic

subsystems exhibit on-off changing states.

Self-organization is a spontaneous process, i.e., the complex

system abandoned to itself is ordered in an immediate way,

emerging without necessity of an external source of information

and does not depend on local properties of subsystems.

The fundamental factor for the spontaneous emergence of the

global self-organized enzymatic structure characterized by a

metabolic core is the number of metabolic subsystems in the

networks (see our paper [69]). This structure for a sufficient

number of metabolic subsystems emerges independently of: the

proportion of the allosteric and covalent enzymes present in the

networks, the number of substrate fluxes and regulatory signals per

catalytic element, the changes in the values of the outer fluxes, as

well as the topology of all flux and regulatory signal interconnec-

tions [69].

Self-organization is a different property from self-regulation and

it can be understood as a global process by which the metabolic

system tends to reach particular activity states or a set of cycling

activity states with autonomy from external factors.

Self-regulation permits the integration of external stimuli and

the adaptation of the system to them. As a consequence of this

process, the metabolic subsystems adopt different functional

activities exhibiting distinct but inter-related and coordinated

catalytic behaviours.

This process is also an emergent property originated by the

complex dynamics of the global interactions in the metabolic

system and implies the modulation of each metabolic subsystem

activity, driving the whole catalytic behaviours over time and

across changing circumstances.

In our opinion, it seems that the metabolic processes forms a

structure as a whole, highly interconnected, able to transmit

information between its parts, in such a way that the activity of

every metabolic subsystem could be considered as an informative

operation. Each catalytic element of the network, in its

subordination to signals generated by other metabolic subsystems,

would perform three functions at the same time: signal reception,

signal integration and acting as a source of information.

The transmission of information between the metabolic

subsystems forces them to be interlocked between themselves;

i.e., each subsystem is conditioned to cooperate and have precise

and specific activity regimes, regulating their local activities

forming to the global activity of the metabolic network.

The dynamic net of regulatory interconnections (substrate flux,

allosteric and covalent signals) acts like a ‘‘dynamic network of

functional links’’ which defines in every moment a set of

instructions that makes each subsystem evolve with a particular

and precise catalytic pattern. As a consequence of these complex

processes the metabolic structure acts as a whole being able to

self-regulate.

Contrarily to self-organization, the self-regulation does not seem

to be a spontaneous process since it depends on local properties of

subsystems (fundamentally on the emergent attractor dynamics).

Self-organization requires processing the information relative to

the different states of all catalytic elements of the network.

Metabolic subsystems are enzymatic sets self-organized as

dissipative dynamical systems which operate in far from

equilibrium conditions forming a catalytic entity as a whole. They

carry out their activities relatively independently between them

and they play distinctive, systematic and essential roles in the cell.

The metabolic network is a dynamic complex super-structure

which integrates different dynamic systems (the metabolic

subsystems) and it forms a global and a unique, absolutely well

defined, deterministic, dynamical system in which self-organiza-

tion, self-regulation and persistent properties emerge.

Finally, we think that the existence of chaotic patterns long-term

memory properties in the activity of the metabolic subsystems

integrated in a stable global functional structure may constitute a

biological advantage.

Chaotic patterns exhibit sensitive dependence on initial

conditions. Sensitivity means that a small change in the initial

state will lead to large changes in posterior system states and the

fluctuations of the chaotic patterns are conditioned by the degree

of perturbation on the initial conditions. These changes in the

system states present exponential divergence, provoking fast

separations in the chaotic orbits.

For ‘‘slow dynamical systems’’ the typical time scale of the

chaotic fluctuations is on the order of 1ms [107,108] and in ‘‘very

fast chaotic systems’’ the characteristic time scale is on the order of

1 ns [107,109].

On the other hand, different studies have shown that chaos

permits fast transmission of information and high efficiency [110].

The existence of chaos in some metabolic processes may

constitute a biological advantage by allowing fast and specific

responses during the adaptation of the metabolic system to

environmental perturbations.

For example, calcium plays an important role in the regulation

of cell metabolism, modulating many physiological processes

[111]. In response to extra cellular signals, the cytosolic calcium

exhibits chaotic transitions which are conditioned by the intensity

and type of the perturbation factor [112]. Since many enzymes are

modulated by calcium, when intracellular calcium concentration

presents chaotic patterns, they exhibit sensitivity to initial

conditions and long-term memory properties which may influence

the dynamical activities of the metabolic subsystems on those it

acts, permitting fast and specific metabolic responses during the

adaptation to external perturbations.

In this sense, numerous works have shown chaotic behaviours at

cellular conditions (e.g., in intracellular free amino acid pools [31],

respiratory metabolism [46], photosynthetic reactions [61],

glycolysis [113], Krebs cycle [114], peroxidase-oxidase reactions

[60], membrane potential [115], nuclear translocation of the

transcription factor [58], NAD(P)H concentration [116], cyclic

AMP concentration [117], ATP concentration [45], intracellular

calcium concentration [112]).

Since a notable part of the biological temporary processes seem

to be chaotic in cell conditions, it will be fundamental to take into

account these persistent phenomena in quantitative biology.

The conception of a stable cellular metabolic structure able to

self-organize spontaneously, forming a metabolic core of reactive

processes that remain active under different growth conditions,

able to self-regulate the transitions between the different molecular

catalytic patterns and able to permit fast and specific responses

during adaptation to the external medium may help to better

understand cytological phenomena and to reinterpret them in a

way closer to reality.
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Understanding the elemental principles governing the global

cellular metabolic structure as well as their nexus with central

cytological processes may be one of the most important goals of

the post-genomic era.

Supporting Information

Table S1 Parameters of the dissipative metabolic network. MSb:

the number of metabolic subsystems; Reg. Sign. Coef.: Coefficient

values of the regulatory signals; Flux Parameter 1u: integration

function parameters belonging to the first flux of the subsystems;

Flux Parameter 2u: integration function parameters belonging to

the second flux of the subsystems; Fluxes in: the topology of flux

interconnections; Reg. Signals: the topology of regulatory signals

(+, allosteric activation; 2, allosteric inhibition; -T, covalent

modulation of total inhibition).

Found at: doi:10.1371/journal.pone.0009484.s001 (0.08 MB

DOC)
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