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ABSTRACT 

 

Cooking process involves the occurrence of several physico-chemical reactions affecting into a 

lesser or greater extent food quality parameters with consequences from the nutritional, sensory 

and safety points of view. The main purpose of cooking is the enhancement of digestibility, 

microbiological safety and sensory attributes, although, under certain conditions, the simultaneous 

occurrence of non-desirable reactions cannot be ruled out.  

Among food components, lipids play important roles not only regarding food texture, flavor 

and shelf-life, but also nutritional food quality, because they provide certain vitamins, essential fatty 

acids and cholesterol, among other components. In spite of its relevance, changes undergone by 

lipids during cooking, especially by the most prone to oxidation, like those polyunsaturated omega-3 

contained in fish, require further research bearing in mind the scarce number of studies performed 

to date and the inconclusive results reported.  

Due to this, the first aim of the present doctoral thesis was contemplated. This is, to deepen 

knowledge on the changes, if any, provoked in the lipids and/or volatile profile of fish meat as a 

result of cooking by means of Proton Nuclear Magnetic Resonance (1H NMR) and Solid Phase 

Microextraction followed by Gas Chromatography/ Mass Spectrometry (SPME-GC/MS). For this 

purpose, several cooking methods differing on the temperature and cooking time, the heat transfer 

medium and on the exposure to oxygen were selected: pan-frying, microwave-frying, boiling, 

steaming, sous-vide cooking, conventional oven baking, salt-crusted oven baking and microwave 

cooking. The influence of the cooking method applied on the extent of the changes observed was 

investigated. Moreover, the potential impact of fish species and growing conditions was also tackled. 

This was approached by using two fish species widely consumed in the Mediterranean area (Gilthead 

sea bream, Sparus aurata; and European sea bass, Dicentrarchus labrax), and by using wild and 

farmed specimens of European sea bass. These latter samples, although belonging to the same fish 

species, widely differed on their initial lipid content and composition in main and/or minor lipidic 

components, as well as on their volatile profile.  

The information obtained by accomplishing this first aim showed that the cooking process 

greatly modified the lipids and the volatile profile of fish, although large differences were observed 

depending on the cooking technique applied, and the fish species and growing conditions. Hence, 

from a practical point of view, the results obtained can be very valuable; for instance, they could be 
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helpful for the food industry to produce ready-to-eat fish products that would ensure food 

nutritional and safety quality as much as possible, as well as consumer acceptance. 

Due to economical and health implications, many food technologists and scientists have 

devoted their efforts to study lipid degradation during food processing and storage, paying special 

attention to the underlying mechanisms and the development of strategies which are capable of 

delaying it. Nevertheless, the nutritional quality and safety of lipids could also be modified during 

subsequent digestion. Since this physiological process is an unavoidable step, it seems logical to 

research on the several chemical reactions that may take place in lipids under gastrointestinal 

digestive conditions, in order to better understand the effect of lipids on human health. Indeed, a 

deeper knowledge on this issue is required not only to advance in the study of the fate of the 

different nutrients, but also for the design of healthier foods and diets.  

To date, the study on the changes undergone by lipids along the gastrointestinal tract has been 

scarcely addressed and hence, they remain unknown. The research performed was mainly focused 

on lipid hydrolysis reaction and on the factors affecting lipid bioaccessibility and bioavailability, 

especially in the last years, due to the increasing public concern about obesity. However, after 

reviewing the available literature in the field of lipid digestion research, it was detected the need for 

the development of methodologies able to accurately quantify lipolytic products and to assess the 

extent of lipid digestion in a simple and fast way. The most commonly employed methodologies to 

study lipolysis reaction are the titration of fatty acids released by means of a pH-stat apparatus and 

chromatographic techniques, such as High Performance Liquid Chromatography, High Performance 

Thin Layer Chromatography or Gas Chromatography followed by Mass Spectrometry. These 

methodologies show some limitations, among which lack of accuracy, unspecificity, time-consuming, 

and/or the use of large amount of solvents can be cited.  

In this context, the second aim of this doctoral thesis included the development of a 1H NMR 

methodology that could provide a global study of the digested lipidic sample in a fast and simple 

way, and without any chemical modification. Firstly, the identification and assignment of the proton 

signals corresponding to triglycerides, 1,2- and 1,3-diglycerides, 2- and 1-monoglycerides and fatty 

acids was performed using standard compounds of different chain length and unsaturation degree. 

Secondly, several equations based on 1H NMR spectral data were proposed in order to quantify the 

number of moles of the above-mentioned molecular species when present in complex lipid mixtures. 

The accuracy of these equations was validated by using mixtures of known composition made up 

with standard compounds. Afterwards, the usefulness and high versatility of the new methodology 

proposed to study the extent of lipid digestion extent was proved by using real digested food lipid 
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samples. They were obtained from the in vitro digestion of sunflower oil and fish meat samples using 

different experimental conditions, in such a way that partially and totally lipolyzed digested samples 

were collected and studied. The validated new methodology hereby proposed can offer many 

advantages not only in the field of food technology and nutrition, but also in those of enzymology, 

pharmacology, medicine and petrochemistry, among others.  

In addition, the sound and reliable results obtained by means of this new 1H NMR 

methodology allowed to further deepen knowledge on the influence of several experimental factors 

on in vitro lipolysis extent reached under gastrointestinal digestive conditions. Thus, in order to lately 

investigate the potential changes undergone by lipids during digestion, an in vitro gastrointestinal 

digestion protocol widely employed in lipid digestion studies was optimized with regard to in vivo 

lipid digestion performance reported (95% of triglycerides absorbed as fatty acids and 

monoglycerides). This issue was considered a challenge necessary to overcome because: on the one 

hand, the lipolysis degree reached and reported in many in vitro digestion studies is far below the in 

vivo one, especially regarding fish lipids; and on the other hand, an accurate match of in vitro 

methodologies with in vivo naturally occurring events is necessary for consistent statements and 

predictions. In fact, in digestion research the use of in vitro digestion models that simulate the 

human physiological environment within the digestive tract has been widespread in the last decade 

due to ethical, economical and practical reasons.  

Once optimized the in vitro gastrointestinal digestion model to be used, the third aim of this 

doctoral thesis consisted on the study of the lipid hydrolysis, oxidation and other reactions occurring 

during in vitro gastrointestinal digestion of unsaturated edible oils of vegetable and animal origins 

and the potential influence on the extent of these reactions of the oil initial oxidation level, the oil 

unsaturation degree, and of the presence of other food components.  

Apart from hydrolysis, other chemical reactions affecting lipids might also take place in the 

gastrointestinal tract because of its high reactive environment. Nonetheless, due to the scarce 

number of studies and the methodologies usually employed (absorbance in the ultraviolet visible 

region for determining conjugated dienes, peroxide value, thiobarbituric acid reactive substances 

test), there is a current lack of knowledge on the extent of ongoing chemical reactions, especially of 

lipid oxidation, as well as on the specific nature of the oxidation products generated from lipids that 

could remain bioaccessible for intestinal absorption. Hence, in this doctoral thesis, a systematic and 

in-depth study of the potential occurrence of lipid oxidation, and other reactions like Maillard-type 

and esterification ones, in addition to lipolysis, during in vitro digestion of edible oils rich in ω-6 and 

ω-3 lipids was carried out by means of 1H NMR and SPME-GC/MS.  
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To evaluate how the unsaturation degree of lipids and the initial oxidative status could affect 

the extent of the above-mentioned reactions, fresh and slightly oxidized oil samples of sunflower oil, 

as model of lipids rich in ω-6 acyl groups, and flaxseed oil, as model of lipids rich in ω-3 acyl groups, 

were in vitro digested. Likewise, cod liver oil, as model of fish lipids, was also employed in digestion 

experiments. The influence of the presence in the food bolus of other non-lipidic components that 

are usually present in food, like proteins or antioxidants, was also tackled by submitting to in vitro 

digestion systems consisting of mixtures made up with slightly oxidized sunflower and flaxseed oils 

and two proteins (ovalbumin and soy protein isolate) and of mixtures made up with commercial cod 

liver oil and the antioxidant 2,6-di-tert-butyl-hydroxytoluene (BHT, E-321). It must be pointed out 

that these two proteins were selected because they are widely employed as food additives and are 

present in several food formulations. Likewise, the synthetic phenolic antioxidant BHT was selected 

because of its widespread use by the food industry and its ubiquitous presence, including food 

products of animal origin in whose addition is not allowed by the authorities but results from a carry-

over process from commercial feeds. This is the case of the farmed European sea bass samples 

subjects of study of this thesis.  

By accomplishing this third aim, knowledge on the specific oxidation products generated from 

polyunsaturated lipids under the specific conditions of gastrointestinal digestion was provided. It was 

observed that not only their amount, but also their nature, widely varied depending on the 

unsaturation degree and the initial oxidation level of the oil sample. In this sense, lipids rich in ω-3 

acyl groups oxidized into a greater extent that those rich in ω-6 ones. The consumption of oxidized 

oils (even those at the first stages of lipid oxidation) should be avoided as much as possible, because 

a larger amount of potentially toxic aldehydes was generated during digestion. Among the several 

kinds of oxidation products generated during in vitro digestion of sunflower, flaxseed and cod liver 

oils, the formation of hydroxy-octadecadienoic acids/acyl groups derived from linoleic chains, of 

monoepoxy-octadecadienoic acids/acyl groups from linolenic chains, and of 4-hydroperoxy-(E)-2-

alkenals from long-chain polyunsaturated ω-3 acyl groups was evidenced for the first time.  

Furthermore, data obtained clearly showed that the food bolus composition considerably 

influences the extent and the pathways of oxidation reactions occurring under gastrointestinal 

conditions. For instance, in the presence of proteins lipid oxidation was greatly limited during in vitro 

digestion and, in addition to oxidation, reduction reactions took place, in such a way that almost all 

the lipid hydroperoxides were converted to hydroxy-derivatives. Therefore, caution should be taken 

when selecting markers to evaluate the occurrence and extent of lipid oxidation during digestion. 

Techniques, such as 1H NMR, that allow the study at once of a broad variety of oxidation products, 

including not only conjugated dienes, hydroperoxides and carbonyl compounds, but also epoxides and 
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hydroxides, are required to avoid erroneous conclusions. Likewise, the use of both 1H NMR and SPME-

GC/MS techniques provides very useful and complementary information, enabling a global study at a 

molecular level of the reactions taking place during lipid in vitro digestion. 

Finally, chemical reactions occurring during in vitro gastrointestinal digestion of fish meat, 

which is a much more complex matrix than bulk oils or protein-oil mixtures, was investigated in the 

fourth aim of this thesis. Attention was also paid to the impact of common technological processing, 

like salting and smoking, on the extent of the ongoing chemical reactions. For this purpose, European 

sea bass unprocessed, brine-salted, dry-salted and smoked with two liquid smoke flavourings 

showing different phenolic content were in vitro digested using the optimized digestion protocol. 

Afterwards, non-digested and digested samples were studied by means of 1H NMR and SPME-

GC/MS, as done in the studies performed in the frame of the third aim. 

It was observed that, in addition to the expected hydrolysis, lipid oxidation occurred during in 

vitro digestion of fish meat, although to a low extent because only the generation of low amounts of 

primary oxidation compounds (conjugated dienes supported on chains having also hydroperoxy and 

hydroxy groups) was evidenced by 1H NMR. The formation of secondary oxidation compounds of low 

molecular weight coming from fish unsaturated acyl groups (mainly from ω-3 acyl groups or fatty 

acids) was only proved by means of SPME-GC/MS; this high sensitive technique was able to detect 

oxidation compounds present in such low concentrations that were not detectable by 1H NMR. 

Likewise, the increase after in vitro digestion of certain volatile compounds highlighted the occurrence 

of amino acids degradation, Maillard-type reactions between fish nitrogenated components and lipid 

oxidation products and esterification. 

As far as the effect of salting is concerned, data obtained from SPME-GC/MS study showed 

that this technological processing favours the advance of the above-mentioned chemical reactions 

during in vitro digestion, especially when intense salting processes (dry-salting) are performed. By 

contrast, no differences were observed between in vitro lipolysis of unsalted and salted fish. As far as 

the effect of liquid smoking is concerned, both 1H NMR and SPME-GC/MS showed that this 

technological process protects fish lipids from oxidative degradation under gastrointestinal 

conditions, inhibiting the generation of primary and secondary oxidation compounds arising from 

polyunsaturated ω-3 and ω-6 lipids that takes place during digestion of unsmoked fish samples. 

Moreover, an important result derived from this fourth aim, was the evidence of the 

bioaccessibility of smoke flavouring components, among which a great variety of phenolic 

compounds with well-known antioxidant activity can be cited, which could be very relevant from a 

health point of view since these compounds could limit in vivo oxidative damage.  
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RESUMEN 

 

El proceso de cocinado implica la ocurrencia de diversas reacciones físico-químicas que pueden 

afectar, en mayor o menor extensión, los parámetros de calidad del alimento, lo cual tiene 

consecuencias tanto desde el punto de vista nutricional y sensorial, como de la seguridad 

alimentaria. Aunque el objetivo principal del cocinado es la mejora de la digestibilidad, de la 

seguridad microbiológica y de las propiedades organolépticas del alimento, bajo ciertas condiciones 

de procesado culinario, puede tener lugar la ocurrencia simultánea de reacciones no deseables que 

afecten negativamente a los distintos componentes del alimento.  

Entre dichos componentes del alimento, los lípidos juegan un papel esencial en relación no 

sólo a su textura, flavor y vida útil, sino también a su calidad nutricional, porque proporcionan al 

organismo vitaminas liposolubles, ácidos grasos esenciales, colesterol, etc. No obstante y a pesar de 

su relevancia, los cambios provocados por el procesado culinario en los lípidos del alimento, 

especialmente en aquellos particularmente sensibles a oxidación como pueden ser los grupos acilo 

ω-3 de cadena larga presentes en el pescado, requieren una mayor atención dado el escaso número 

de estudios publicados hasta la fecha y los resultados no concluyentes reportados en los mismos.  

Es por ello que el primer objetivo de la presente tesis doctoral fue profundizar en los cambios 

provocados en los lípidos y/o en el perfil volátil del pescado como consecuencia del procesado 

culinario, mediante dos técnicas: la Resonancia Magnética Nuclear de Protón (1H NMR) y la Micro-

Extracción en Fase Sólida seguida de la Cromatografía de Gases/Espectrometría de Masas (SPME-

GC/MS). Para la consecución de dicho objetivo, diversas técnicas culinarias fueron seleccionadas para 

el cocinado de pescado: fritura superficial en sartén y en horno microondas, cocción en agua, cocción 

al vapor, cocción al vacío (también llamado sous-vide), asado convencional y asado a la sal en horno, 

y cocción en horno microondas. Estas técnicas difieren en la temperatura y tiempo de cocinado, en el 

medio de transferencia del calor, así como en el grado de exposición al oxígeno del alimento. Se 

estudió la influencia del tipo de cocinado en la extensión de los cambios provocados en el alimento. 

Igualmente, se prestó especial atención a la potencial influencia de la especie de pescado y del 

método de producción del mismo (pesca extractiva/acuicultura). Para ello, se emplearon dos 

especies de pescado ampliamente consumidas en la zona mediterránea (dorada, Sparus aurata, y 

lubina europea, Dicentrarchus labrax), así como muestras de origen salvaje y cultivado de lubina 

europea. Estas últimas muestras, si bien pertenecen a la misma especie, difieren de forma 
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significativa en cuanto a su contenido lipídico, composición de sus lípidos en componentes 

mayoritarios y minoritarios, así como en su perfil aromático. 

La información obtenida tras el desarrollo de este primer objetivo mostró que el proceso de 

cocinado puede modificar de forma significativa los lípidos y el perfil volátil del pescado, pero 

observándose grandes diferencias dependiendo de la técnica culinaria empleada, la especie de 

pescado y el método de producción del mismo. Por tanto, desde el punto de vista práctico, los 

resultados obtenidos pueden ser de gran utilidad, por ejemplo, para la Industria Alimentaria 

interesada en producir productos de pescado listos para consumo que aseguren, lo máximo posible, 

no sólo su calidad nutricional y de seguridad alimentaria, sino también la aceptación por parte del 

consumidor. 

Hasta el momento, debido a las implicaciones económicas y de salud, una gran parte de los 

tecnólogos de alimentos y científicos han centrado su interés en el estudio de la degradación lipídica 

durante el procesado y almacenamiento de los alimentos, prestando especial atención a los 

mecanismos por los cuales transcurre y el desarrollo de estrategias capaces de limitar dicha 

degradación. Sin embargo, la calidad nutricional y la seguridad de los lípidos alimentarios podría 

verse también afectada por el posterior proceso de digestión. Dado que este proceso fisiológico es 

una etapa ineludible, es de esperar que las posibles reacciones químicas que puedan afectar a los 

lípidos durante su paso por el tracto gastrointestinal sean también estudiadas con objeto de 

comprender mejor el efecto de los lípidos en la salud humana. De hecho, un mayor conocimiento 

sobre este tema permitiría avanzar en el diseño de alimentos y/o dietas más saludables. 

Los cambios sufridos por los lípidos durante el proceso de digestión gastrointestinal han sido 

escasamente estudiados en profundidad, y por consiguiente todavía no se conocen bien. La 

investigación realizada hasta la actualidad se ha centrado principalmente en la lipólisis y en los 

factores que influyen en la bioaccesibilidad y biodisponibilidad de los lípidos, especialmente en los 

últimos años debido a la obesidad, un creciente problema de salud pública. Sin embargo, tras revisar 

la literatura científica disponible sobre el proceso de digestión de lípidos, se detectó la necesidad de 

desarrollar nuevas metodologías robustas y fiables para la cuantificación de los distintos productos 

de la hidrólisis de los triglicéridos y para la evaluación de la extensión de la digestión de lípidos de 

forma rápida y sencilla. Entre las metodologías actualmente empleadas, cabe mencionar: la 

valoración de ácidos grasos mediante el equipo pH-stat, la Cromatografía Líquida de Alto 

Rendimiento (HPLC), la Cromatografía en capa fina (TLC) o la Cromatografía de Gases seguida por 

Espectrometría de Masas (GC/MS). Estas metodologías presentan ciertas limitaciones, como por 
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ejemplo: la falta de precisión, de especificidad, el largo tiempo de análisis, y/o el uso de cantidades 

importantes de solventes.  

En este contexto, en el segundo objetivo de esta tesis doctoral se planteó el desarrollo de una 

metodología basada en la 1H NMR que permitiera un estudio global de la muestra de lípidos 

digeridos de forma rápida, sencilla y sin previa modificación química de la muestra. En primer lugar, 

se llevó a cabo la identificación y asignación de las señales espectrales correspondientes a 

triglicéridos, 1,2- y 1,3-diglicéridos, 2- y 1-monoglicéridos, y ácidos grasos, empleando para ello 

compuestos estándares de distinta longitud de cadena y grado de insaturación. En segundo lugar, se 

plantearon diversas ecuaciones basadas en datos espectrales obtenidos por 1H NMR con objeto de 

cuantificar el porcentaje molar de las distintas especies moleculares anteriormente citadas cuando 

están presentes en mezclas lipídicas complejas. Dichas ecuaciones fueron validadas usando mezclas 

de composición conocida de los estándares previamente caracterizados. Posteriormente, la utilidad y 

versatilidad de la nueva metodología propuesta para el estudio de la extensión de la digestión 

lipídica se probó usando muestras reales de lípidos digeridos (aceite de girasol y lípidos de pescado 

parcialmente y totalmente digeridos). La nueva metodología propuesta puede ser de gran utilidad no 

sólo en el campo de la Tecnología de Alimentos y de la Nutrición, sino también en otros como la 

Enzimología, Farmacología, Medicina, Petro-Química, etc.  

Por otra parte, los fiables resultados obtenidos mediante esta nueva metodología basada en la 

RMN de 1H permitieron avanzar en el conocimiento de la influencia de diversos factores 

experimentales en la extensión de la hidrólisis de lípidos bajo condiciones in vitro de digestión 

gastrointestinal. Los factores objeto de estudio fueron: ……Se llevó a cabo la optimización de un 

modelo de digestión in vitro ampliamente utilizado en estudios de digestión lipídica en relación a la 

capacidad de hidrólisis reportada in vivo (95% de triglicéridos absorbidos en forma de ácidos grasos y 

monoglicéridos). Esta cuestión fue considerada un desafío necesario de superar debido por un lado, 

a que el grado de lipólisis alcanzado in vitro y reportado en la mayoría de estudios de digestión está 

muy por debajo del alcanzado in vivo, y por otro lado, a que para obtener resultados consistentes y 

conclusiones que puedan ser extrapolables al ser humano es necesario simular lo más fiel posible las 

condiciones gastrointestinales in vivo. De hecho, cabe mencionar que en la última década, debido a 

razones éticas, económicas y prácticas, están siendo extensamente utilizados en investigación 

modelos de digestión in vitro que simulan las condiciones fisiológicas del tracto gastrointestinal 

humano.  

Una vez optimizado el modelo de digestión in vitro a emplear, el tercer objetivo de esta tesis 

doctoral consistió en el estudio de las reacciones de hidrólisis, oxidación y otras, que tienen lugar 
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durante la digestión gastrointestinal in vitro de aceites insaturados comestibles de origen vegetal y 

animal, y la posible influencia del grado de insaturación del aceite, del nivel de oxidación inicial del 

aceite, así como de la presencia de otros componentes alimentarios, en la extensión de dichas 

reacciones. 

Durante la digestión, además de la hidrólisis de los grupos ester en glicéridos, otras reacciones 

químicas que afectan a los lípidos pueden ocurrir también debido a la gran reactividad del medio. No 

obstante, debido al escaso número de estudios publicados y al tipo de metodologías empleadas en 

los mismos (absorbancia en una región concreta del espectro ultravioleta visible para determinar 

dienos conjugados, índice de peróxidos, test de substancias reactivas al ácido tiobarbitúrico), 

actualmente hay un gran desconocimiento en relación a la naturaleza y extensión de la reacciones 

que tienen lugar, especialmente en relación a la oxidación lipídica. De igual forma, es poco conocida 

la naturaleza específica de los productos de oxidación lipídica que pudieran ser generados en tales 

condiciones y por tanto estar bioaccesibles para su absorción intestinal. Es por ello, que en esta tesis 

doctoral se ha querido llevar a cabo un estudio sistemático y en profundidad sobre la posible 

ocurrencia de reacciones de oxidación y otras, tales como reacciones de Maillard y de esterificación, 

además de la lipólisis, durante la digestión in vitro de aceites ricos en grupos acilo poliinsaturados 

mediante 1H NMR de  y de SPME-GC/MS.  

Para evaluar cómo el grado de insaturación de los lípidos, así como su nivel de oxidación 

inicial, pudieran influir la extensión de las reacciones anteriormente citadas, muestras comerciales no 

oxidadas y ligeramente oxidadas de aceite de girasol (como modelo de lípidos ricos en grupos acilo 

ω-6) y de aceite de lino (como modelo de lípidos ricos en grupos acilo ω-3) fueron sometidas a 

digestión in vitro. Igualmente, aceite de hígado de bacalao (como modelo de lípidos de pescado) 

también fue sometido a las mismas condiciones. Asimismo, también se estudió el efecto de la 

presencia en el bolo alimenticio de otros componentes no lipídicos que pueden encontrarse 

frecuentemente en los alimentos, como proteínas o compuestos con capacidad antioxidante. Para 

ello, se sometieron a digestión in vitro sistemas modelo consistentes en mezclas de aceites de girasol 

y de lino ligeramente oxidados con dos tipos de proteína (ovoalbúmina y proteína aislada de soja) y 

en mezclas de aceite de hígado de bacalao con el antioxidante 2,6-di-tert-butyl-hydroxytolueno (BHT, 

E-321) usando dos concentraciones distintas: una muy inferior (20 ppm) al límite legal vigente de 100 

ppm y otra muy superior (800 ppm). Ambas proteínas fueron seleccionadas porque son 

frecuentemente empleadas como aditivos alimentarios y están presentes en muchas formulaciones 

de alimentos. De igual forma, se empleó el antioxidante fenólico sintético BHT dado su amplio uso 

por la Industria Alimentaria a nivel mundial y su ubicua presencia, incluyendo productos de origen 

animal en los cuales su uso no está permitido por las autoridades vigentes, pero resulta de su 
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bioacumulación a través de los piensos animales dónde sí está permitido (proceso de carry-over). 

Éste es el caso de las muestras cultivadas de lubina europea objeto de estudio en este proyecto de 

tesis.  

A través de la consecución de este tercer objetivo, se pudo avanzar en el conocimiento de los 

productos de oxidación generados a partir de lípidos poliinsaturados bajo condiciones específicas de 

digestión gastrointestinal in vitro. Se observó que tanto su naturaleza como su concentración, varía 

notablemente dependiendo del grado de insaturación y del nivel de oxidación inicial de los lípidos. 

Como cabría esperar, los lípidos ricos en grupos acilo ω-3 se oxidaron en mayor extensión que 

aquellos ricos en grupos acilo ω-6. El consumo de aceites oxidados, incluso ligeramente, debería de 

ser evitado en la medida de lo posible, debido a que en condiciones de digestión éstos generan 

mayores concentraciones de aldehídos potencialmente tóxicos que los aceites sin oxidar. Entre los 

distintos tipos de productos de oxidación generados durante la digestión in vitro de aceite de girasol, 

de lino y de hígado de bacalao, se ha puesto de manifiesto por primera vez la potencial formación de 

ácidos grasos/grupos acilos hidroxi-octadecadienoicos derivados de cadenas de linoléico, de ácidos 

grasos/grupos acilos monoepoxi-octadecadienoicos derivados de cadenas de linolénico, y de 4-

hidroperoxi-(E)-2-alquenales durante la digestión de aceite de hígado de bacalao.  

Los datos obtenidos en el marco de este tercer objetivo también mostraron claramente que la 

composición del bolo alimenticio ejerce una gran influencia en la extensión y en los mecanismos de 

las reacciones de oxidación que tienen lugar en condiciones gastrointestinales. Por ejemplo, la 

presencia de proteína limita notablemente la oxidación lipídica durante la digestión in vitro, y además 

de reacciones de oxidación, provoca la ocurrencia de reacciones de reducción de tal forma que gran 

parte de los grupos hidroperóxidos presentes en los lípidos se reducen a hidróxidos. Por lo tanto, se 

debería de tener especial precaución a la hora de seleccionar marcadores de oxidación para evaluar la 

ocurrencia y la extensión de la oxidación lipídica durante la digestión. En este sentido, son 

especialmente útiles técnicas como la 1H NMR, que permiten el estudio simultáneo de una gran 

variedad de productos de oxidación, no sólo dienos conjugados, hidroperóxidos y aldehídos, sino 

también hidróxidos y epóxidos, lo cual es necesario para evitar conclusiones erróneas. De igual 

manera, el uso de la SPME-GC/MS ofrece una gran cantidad de información muy útil y 

complementaria a la obtenida mediante RMN de 1H, permitiendo un estudio global a nivel molecular 

de las reacciones que tienen lugar durante la digestión in vitro de los lípidos. 

Finalmente, en el marco del cuarto objetivo de la presente tesis doctoral se investigó la 

digestión gastrointestinal in vitro de la carne de pescado, que es una matriz mucho más compleja que 

los aceites o las mezclas aceites+proteínas estudiadas para el tercer objetivo. El estudio se centró en 
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el impacto de dos tipos de procesados tecnológicos ampliamente empleados en la Industria Pesquera 

a nivel mundial, como son el salado y el ahumado, en la naturaleza y extensión de las reacciones 

químicas que pueden tener lugar en condiciones de digestión. Para ello, se sometieron a digestión 

gastrointestinal in vitro muestras de lubina europea cultivada no procesadas (a modo de control) y 

muestras previamente sometidas a salado húmedo, a salado seco, y a ahumado usando dos humos 

líquidos comerciales con distinta concentración en compuestos fenólicos. Posteriormente, las 

muestras antes y después de la digestión fueron estudiadas mediante 1H NMR de  y SPME-GC/MS, al 

igual que en los estudios realizados durante el desarrollo del tercer objetivo.  

En relación a las muestras de pescado no procesado, se observó que en las condiciones 

estudiadas, además de la esperada lipólisis, la oxidación de lípidos también tuvo lugar, aunque en muy 

baja extensión porque sólo se pudo evidenciar mediante 1H NMR la generación en muy baja 

concentración de productos de oxidación primarios (dienos conjugados soportados en cadenas que 

contienen también grupos hidroperóxido e hidróxido). La formación de compuestos de oxidación 

secundarios de bajo peso molecular procedentes de la degradación de los grupos acilos insaturados 

de los lípidos de pescado (principalmente ω-3) fue únicamente puesta de manifiesto a través del 

estudio mediante SPME-GC/MS del espacio de cabeza de las muestras antes y después de la digestión; 

la gran sensibilidad de esta técnica permitió detectar compuestos de oxidación secundarios presentes 

en concentraciones por debajo del límite de detección de la 1H NMR. Además, tras la digestión in vitro 

de pescado, se observó un incremento en la abundancia de ciertos compuestos volátiles, marcadores 

de la degradación de aminoácidos, de la ocurrencia de reacciones de tipo Maillard entre compuestos 

nitrogenados del pescado y productos de oxidación lipídica, así como de reacciones de esterificación. 

En relación al efecto del salado en la evolución de los lípidos durante la digestión in vitro de 

pescado, los datos obtenidos mediante SPME-GC/MS mostraron que este tipo de procesado favorece 

el avance de las reacciones de oxidación, Maillard y esterificación anteriormente mencionadas, 

especialmente cuando el salado es más intenso (salado seco). Sin embargo, mediante 1H NMR no se 

observaron diferencias en el grado de lipólisis alcanzado en las muestras sin salar y saladas. En 

cuanto al efecto del ahumado con aromas de humo líquidos, ambas técnicas mostraron un menor 

avance de la oxidación lipídica durante la digestión de las muestras ahumadas, en comparación con 

las muestras sin ahumar, lo que puso de manifiesto que la aplicación de este tipo de procesado 

previo a la digestión de pescado puede evitar la formación de productos de oxidación primarios y 

secundarios provenientes de la degradación de los grupos acilo poliinsaturados ω-3 y ω-6 de los 

lípidos de pescado.  
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Además de esto, un resultado notable derivado de este cuarto objetivo ha sido que se ha 

demostrado por primera vez en condiciones in vitro la potencial bioaccessibilidad de los 

componentes del humo, entre los cuales se encuentran una gran variedad de compuestos fenólicos 

con conocida actividad antioxidante. La posible influencia de dichos compuestos en reacciones de 

estrés oxidativo in vivo podría ser de gran relevancia desde el punto de vista de la salud humana. 
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ABBREVIATIONS 

 
ABTS   2,2´-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) 

ADI   Acceptable dietary intake 

AG   Acyl group 

Ald   Aldehyde 

ALE   Advanced lipid oxidation endproducts 

ANOVA   Analysis of variance 

ARA   Arachidonic (C20:4ω6) acyl group/fatty acid 

AV   p-Anisidine value 

BHA   2,6-Di-tert-butyl-4-hydroxyanisole 

BHQ   2,6-Di-tert-butyl-1,4-benzenediol 

BHT   2,6-Di-tert-butyl-hydroxytoluene 

BHT-CHO  3,5-Di-tert-butyl-4-hydroxy-benzaldehyde 

BHT-CH2OH  3,5-Di-tert-butyl-4-hydroxy-benzyl alcohol 

BHT-COOH  3,5-Di-tert-butyl-4-hydroxy-benzoic acid 

BHT-OH   2,6-Di-tert-butyl-4-hydroxy-4-methyl-2,5-cyclohexadien-1-one 

BHT-OH(t)  3-Tert-butyl-2-hydroxy-β,β,5-trimethyl-benzeneethanol 

BHT-OH(t)QM  2-Tert-butyl-6-(2-hydroxy-tert-butyl)-4-methylene-2,5-cyclohexadien-1-one 

BHT-OOH  2,6-Di-tert-butyl-4-methyl-4-hydroperoxy-2,5-cyclohexadien-1-one 

BHT-Q   2,6-Di-tert-butyl-2,5-cyclohexadien-1,4-dione 

BHT-QM  2,6-Di-tert-butyl-4-methylene-2,5-cyclohexadien-1-one 

BJ   Bile juice 

CD   Conjugated dienes 

CD-OH  Conjugated dienic system supported in a chain having also an hydroxy group 

CD-OOH Conjugated dienic system supported in a chain having also an hydroperoxy 

group 

CMPL   Complete molecular picture of lipolysis 

DBP   2,6-Di-tert-butyl-4-phenol 

DG   Diglycerides 

DHA   Docosahexaenoic (C22:6ω3) acyl group/fatty acid 

DJ   Duodenal juice 

DNA   Deoxyribonucleic acid 

DPPH   1,1-Diphenyl-2-picrylhydrazyl 

DVB/CAR/PDMS Divinylbenzene/carboxen/polydimethylsiloxane 

DUω-6   Diunsaturated omega-6 acyl groups/fatty acids 

Eq   Equation 

EPA   Eicosapentaenoic (C20:5ω3) acyl group/fatty acid 

FA   Fatty acid 

FAME   Fatty acid methyl ester 

FAPR   Fatty acids physiologically releasable 

FID   Flame ionization detector 
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FTIR/FT-MIR  Fourier transform mid-infrared spectroscopy 

FOX-2  Ferrous ion oxidation-xylenol orange  

GC Gas chromatography 

GJ Gastric juice 

Gol Glycerol 

GS   Glyceryl structures 

HHE   4-Hydroxy-(E)-2-hexenal 

HL   Hydrolysis level 

HNE   4-Hydroxy-(E)-2-nonenal 

HPLC    High performance liquid chromatography 

HPTLC    High performance thin layer chromatography 

HS-SPME  Headspace-solid phase microextraction  

L   Linoleic (C18:2ω-6) acyl group/fatty acid 

LBA   Lipid bioaccessibility 

LC/APCI-MS Lliquid chromatography/ atmospheric pressure chemical ionization/ mass 
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1. PREVIOUS STUDIES ON THE EFFECT OF COOKING ON THE LIPIDS AND VOLATILE PROFILE OF 

FISH 

Fish is the main dietary source of long chain polyunsaturated ω-3 acyl groups, including 

eicosapentaenoic (EPA, 20:5ω3) and docosahexaenoic (DHA, 22:6ω3) groups. Their intake has been 

associated with potential health benefits in recent years. For this reason fish consumption is highly 

recommended in the context of a healthy diet. However, it has to be considered that the fish species 

and their growing conditions, as well as the post-harvest technological processing, like cooking, can 

greatly influence not only fish lipids but also its volatile profile (Alasalvar, Taylor, Zubcov, Shahidi, & 

Alexis, 2002; Orban, Nevigato, Di Lena, Casini, & Marzetti, 2003; Grigorakis, 2007; Fuentes, 

Fernández-Segovia, Serra, & Barat, 2010; Vidal, Manzanos, Goicoechea, & Guillén, 2012, 2016abc; 

Vidal, Goicoechea, Manzanos, & Guillén, 2014). In spite of its obvious relevance for food technology, 

nutritional and sensory properties and thus consumer acceptance, few studies have addressed this 

topic. 

As is well-known, several physico-chemical reactions take place during cooking. Some of the 

main reactions expected to take place during cooking are: lipolysis, due to the presence of moisture; 

lipid oxidation, because of exposure to heat, to oxygen and to endogenous pro-oxidant species 

present in fish muscle tissue (Hsieh & Kinsella, 1989); and also the degradation of nitrogenated 

components (proteins, amino acids and trimethylamine oxide) through Maillard-type or other 

reactions. Moreover, in the case of frying, lipid migration phenomenon in the food/culinary oil 

system may occur via absorption of culinary oil or fat into the food and leaching of liposoluble 

molecules out of the food to the frying oil.  

The occurrence of these reactions can affect the lipids and volatile profile of fish to a greater or 

lesser degree depending on their extent, which in turn depends on several factors, such as the 

availability of the corresponding substrates of each reaction and the cooking method conditions, like 

temperature, time, medium employed to transfer heat to food (air, oil and/or water, which in turn 

can be liquid or steam), and food exposure to oxygen. In the case of fried fish, the frying conditions, 

the nature of the culinary oil or fat and the food lipid content have proved to be decisive parameters 

for lipid changes in the fried food and in the frying oil (Echarte, Zulet & Astiasaran, 2001; Bakar, 

Rahimabadi, & Che Man, 2008; Moradi et al., 2011; Martínez-Yusta & Guillén, 2014abc, 2016). 

1.1. Changes on fish lipids provoked by cooking 

As far as the changes provoked by cooking on fish lipids are concerned, contradictory effects on 

the composition of acyl groups were observed for the same cooking method. For instance, Nurhan 



Introduction 

4 

(2007), Weber, Bochi, Ribeiro, Victorio, & Emanuelli (2008) and Larsen, Quek, & Eyres (2010) 

indicated that oven baking and microwave cooking did not affect the proportions of polyunsaturated 

acyl groups in fish lipids, whereas the opposite was reported by Chung, Choi, Cho, & Kim (2011) and 

Zhang et al. (2013). Likewise, a lack of consensus can be found among the data reported on cooked 

fish lipid oxidation status. For example, Tokur (2007) and Chung et al. (2011) evidenced a significant 

increase of conjugated dienes (CD) and of peroxide value (PV) in fish lipids after oven baking, 

whereas Weber et al. (2008) did not. Bakar et al. (2008) found significantly increased peroxide value 

in king mackerel lipids after steaming, whereas no increase was observed by Al-Saghir et al. (2004) in 

salmon lipids after steaming. 

The disagreements between the results reported by the above-mentioned authors might be 

due to: i) the different cooking experimental conditions (i.e. time and temperature) applied to the 

same culinary treatment; ii) the different fish species studied; or even to iii) the lack of precision in 

the multistep time consuming methodologies (analysis of fatty acid methyl esters (FAMEs) by gas 

chromatography) used to analyze lipid composition (Eder, 1995) and to iv) the well-known drawbacks 

of the classical methodologies employed to assess lipid oxidation level, like measurement of 

conjugated dienes absorbance at 234 nm, determination of anisidine (AV) and peroxide values, 

and/or thiobarbituric acid reactive substances (TBARS) test (Connell, 1975; Addis, 1986; Saito & 

Udagawa, 1992; Haywood et al., 1995; Frankel, 2005). Thus, further research on this topic using more 

specific techniques would be required in order to clarify if polyunsaturated fish lipids undergo 

oxidation during cooking and if so to what extent it takes place, by identifying the nature and 

abundance of the oxidation products generated from their degradation. 

1.2. Changes on fish volatile profile provoked by cooking 

Previous studies have shown that a great variety of volatile compounds are formed during fish 

cooking, and their nature and abundance depend on the kind of culinary technique performed, the 

fish species studied and the fish growing conditions (farmed versus wild) (Milo & Grosch, 1996; Prost, 

Serot, & Demaimay, 1998; Hallier, Prost, & Serot, 2005; Methven, Tsoukka, Oruna-Concha, Parker, & 

Mottram, 2007; Frank, Poole, Kirchhoff, & Forde, 2009; Liu, Zhao, Xiong, & Zhang, 2009; Chung et al., 

2011; Moreira, Valente, Castro-Cunha, Cuhna, & Guedes de Pinho, 2013). Nevertheless, no 

comparative studies on the changes provoked by different cooking methods on fish volatile profile 

have been performed to date. Thus, little is known about the potential differences among cooking 

methods regarding the formation of odour and flavour-contributing volatile compounds in fish, 

among which there are those arising from the occurrence of Maillard-type reactions (Whitfield, 

1992).  
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In this context, the first three objectives of the present doctoral thesis were contemplated. On the 

one hand, the Objective 1.1. addressed, by means of 1H NMR, the changes occurring in fish lipids and 

in the frying oil during shallow-frying, analyzing the potential influence of the frying technique, the 

cooking oil and the fish species on their extent. Although some exceptions can be found (Sanchez-

Muniz, Viejo, & Medina, 1992; Sioen et al., 2006; Amira et al., 2010; Martínez-Yusta & Guillén, 

2014abc, 2016), it must be noted that most previous studies of fish frying were focused only on the 

changes occurring in fish lipids, disregarding those taking place at the same time in the frying oil. In 

addition, most of them reported only the changes occurring in major but not minor lipid 

components. Therefore, as many aspects still remain unknown, it is of paramount importance to 

study the frying process from a global point of view in order to understand all the changes that it 

provokes not only in food, but also in the frying oil or fat. 

On the other hand, the Objectives 1.2. and 1.3. tackled the changes in the lipids of farmed and 

wild European sea bass (including some minor components like cholesterol, phospholipids and 

vitamin A) and also in their volatile profile, as a result of several common cooking methods: boiling, 

steaming, sous-vide cooking, salt-crusted oven baking, conventional oven baking and microwave 

oven cooking. For this purpose, two innovative techniques will be employed, Proton Nuclear 

Magnetic Resonance spectroscopy (1H NMR) and Solid Phase Microextraction followed by Gas 

Chromatography/ Mass Spectrometry (SPME-GC/MS). These widely used cooking methods were 

selected because they greatly differ on the mechanism of heating food. In this sense, it would be of 

great interest to go into the effect of the several culinary techniques in depth, from a food 

technological, nutritional and sensory point of view. 

 

2. LIPID HYDROLYSIS REACTION UNDER DIGESTIVE CONDITIONS 

Food lipids play important roles not only from a technological point of view, because they are 

related to food texture, flavor and shelf-life, but also from a nutritional one, because they include not 

only triglycerides, but also certain vitamins, essential fatty acids, and cholesterol, among other 

compounds. Nowadays, a deeper knowledge of the digestion process is required, not only for the 

design of healthier foods, but also to advance in the study of the fate of the different nutrients. 

Indeed, the management of lipid release and absorption has become a challenge in the last years 

(McClements, Decker, & Park, 2009).  
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2.1. Lipid digestion process  

Triglycerides (TG) are the major components of fats and oils, and once ingested, they are 

submitted to a process of hydrolysis which is mainly catalyzed by lipases present in gastric, and 

especially in duodenal digestive juices (see Introduction-Figure 1). This latter juice is a complex 

mixture in which at least three different types of lipases are secreted by the pancreas, colipase-

dependent lipase being mainly responsible for the digestion of dietary lipids. Carboxyl ester 

hydrolase (also named bile salt dependent lipase), which hydrolyzes water-soluble esters, cholesterol 

esters and lipovitamins, and phospholipase A2, which hydrolyzes phospholipids, are considered 

minor components of pancreatic juice (Reis, Holmberg, Watzke, Leser & Miller, 2009). In spite of 

wide compositional variations (Kalantzi, Goumas, Kalioras, Abrahamsson, Dressman, & Reppas, 2006; 

Clarysse, Tack, Lammert, Duchateau, Reppas, & Augustijns, 2009), the concentration of pancreatic 

lipases in vivo is reported to always be in large excess over substrate, which ensures a complete lipid 

digestion (Reis et al., 2009). Indeed, human body shows a high efficiency for lipid digestion, being 

more than 95% of ingested TG absorbed as monoglycerides (MG) or fatty acids (FA) (Golding & 

Wooster, 2010). 

 

 

Introduction-Figure 1. Schematic representation of lipid digestion process in vivo. 

 

Lipolysis reaction of a TG consists in a two-step reaction ruled by enzyme regiospecificty, and 

yields one molecule of 2-monoglyceride (2-MG) and two FA. Complete hydrolysis of TG into three FA 
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and glycerol (Gol) can also be achieved (see Introduction-Figure 2), after isomerization of 2-MG into 

1-monoglyceride (1-MG) (Desnuelle & Savary, 1963; Mattson & Volpenhein, 1964). In turn, MG and 

FA are solubilized in bile-salt aggregates and then absorbed across the intestinal epithelium after 

lipolysis (Mu & Høy, 2004).  

 

 

Introduction-Figure 2. Schematic representation of in vivo hydrolysis reaction of 
triglycerides. 

 

2.2. Assessment of lipid digestion extent 

The extent of lipid digestion process reached can be characterized by the quantification of 

each one of the different molecular species above mentioned (TG, DG, MG, FA, Gol) and/or by 

determining different parameters defined below and named: hydrolysis level, degree of TG 

transformation, lipid bioaccessibility level and percentage of FA physiologically releasable. These 

various approaches have been proposed by different authors due to several different interpretations 

of the concept of lipid digestion extent for its determination. In some cases, lipid digestion is 

considered from the chemical point of view, whereas in others the bioaccesibility of the products 

generated is taken into account, in an attempt to see matters from a physiological point of view.  

 Hydrolysis in the chemical sense. Several authors evaluate lipid hydrolysis level (HL%) by the 

percentage of FA released in relation to the total number of moles of acyl groups (AG) plus FA 

present in the sample (Rodriguez et al., 2008; Capolino et al., 2011; Helbig, Silleti, Timmerman, 

Hamer, & Gruppen, 2012; Zhu, Ye, Verrier, & Singh, 2013). This approach considers that total 

lipolysis (100%) is achieved when all the glycerides initially present (TG, DG, MG) are converted 

into FA and Gol.  
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 Lipid digestion as the relative disappearance of the substrate. In this approach, the degree of 

lipid digestion is defined as the relative disappearance of the substrate, which is to say the 

degree of TG transformation (TTG%) considering the substrate for digestion as made up of TG 

exclusively (Armand et al., 1999; Vinarov et al., 2012ab). In this case, complete lipolysis (100%) 

involves the hydrolysis of at least one ester bond in each TG molecule initially present. 

 Lipid digestion and bioaccessiblity (LBA%). Another more physiological approach is also used to 

evaluate the extent of lipid digestion. Some authors, focusing on the notion of bioaccessibility, 

have determined the level of lipolysis as the number of moles of acyl groups bound to MG and 

of FA in relation to the total number of moles of acyl groups plus fatty acids present in the 

sample (Capolino et al., 2011; Kenmogne-Domguia, Meynier, Viau, Llamas, & Genot, 2012). In 

fact, although further hydrolysis is possible, the complete absorption of a TG only requires its 

conversion into MG and two FA. In this case, a value of 100% involves the transformation of 

each TG into absorbable molecules, which may be either MG or FA.  

 Fatty acids in relation to those which may be released in the conversion of TG into MG. The 

percentage of FA physiologically releasable (FAPR%) assumes that each TG molecule can 

generate two FA and one MG and that no further hydrolysis of MG occurs (Pafumi et al., 2002; 

Li & McClements, 2010; Li, Hu, & McClements, 2011; Lamothe, Corbeil, Turgeon, & Britten, 

2012; Marze, Meynier, & Anton, 2013). In this case, a value of 100% involves the 

transformation of each TG into MG and FA. However, this assumption simplifies the real 

lipolysis reaction, since it does not take into account that a TG molecule can also suffer 

complete hydrolysis and may give rise to one molecule of Gol and three molecules of FA.  

2.3. Current methodologies employed to study lipolysis reaction  

Monitoring hydrolysis advance is an important task in lipid digestion research, and in 

consequence, the development of methodologies which are able to accurately assess the extent of 

lipolysis reaction is needed.  

The technique most commonly employed to estimate the extent of lipid digestion during in 

vitro digestion is the titration of fatty acids released by means of a pH-stat apparatus, in which 

titration with NaOH is carried out (Fatouros, Bergenstahl, & Mullertz, 2007; Brogård, Troedsson, 

Thuresson, & Ljusberg-Wahren, 2007; Li & McClements, 2010; Thomas, Holm, Rades, & Müllertz, 

2012; Helbig, et al., 2012; Marze, et al., 2013; Zhu et al., 2013). However, it has been pointed out that 

the accuracy of the pH-stat titration technique in quantifying the FA released during lipid digestion is 

highly dependent on the ionization of each FA and its availability to be titrated, which is in turn 
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dependent on several factors, including chain length, the pH of the medium and the bile salt and 

electrolyte concentrations (Sek, Porter, Kaukonen, & Charman, 2002; Thomas et al., 2012; Zhu et al., 

2013). In fact, this methodology is usually performed to monitor lipolysis only during the intestinal 

step and by using simple solutions (buffers) that do not mimic the composition of in vivo digestion 

juices, in order to avoid any interference from the complex media (Di Maio & Carrier, 2011). Other 

authors have already highlighted the inability of the pH-stat method to give reliable results when 

complex matrices are studied or when simulated digestive juices reproducing physiological 

composition are used (Hur, Decker, & McClements, 2009). Moreover, limited information on the 

lipolysis reaction can be obtained since quantification of partial glycerides (DG and MG) is not 

possible. 

Chromatographic techniques, such as High Performance Liquid Chromatography (HPLC), High 

Performance Thin Layer Chromatography (HPTLC) or Gas Chromatography (GC) followed by Mass 

Spectrometry (MS), have also been applied to quantify the different lipolytic products generated 

(Armand et al., 1999; Sek, Porter, & Charman, 2001; Capolino et al., 2011; Hur, Joo, Lim, Decker, & 

McClements, 2011; Kenmogne-Domguia et al., 2012b, Helbig et al., 2012; Zhu et al., 2013). 

Nevertheless, these methodologies are time-consuming, usually imply many preparation steps, 

including calibration with standard compounds, and also involve large amounts of polluting organic 

solvents. Moreover, some authors have reported unspecificity or discrepancies among data obtained 

when some of the above-mentioned techniques are compared (Sek et al., 2002; Helbig et al., 2012; 

Thomas et al., 2012).  

Regarding Nuclear Magnetic Resonance, few studies have demonstrated the usefulness of 13C 

and 31P NMR in determining the content of DG, MG and FA (Gunstone, 1991; Vlahov, 1996, 2006; Ng, 

2000; Spyros & Dais, 2000; Spyros, Philippidis, & Dais, 2004). However, these spectroscopic 

techniques may require long relaxation delays and lenghty accumulations to achieve a satisfactory 

signal to noise ratio necessary for accuracy of quantification or a previous derivatization of the labile 

hydrogens of partial glycerides in the sample with 2-chloro-4,4,5,5-tetramethyldioxaphospholane, as 

well as the use of internal standards for calibration. Previous studies have employed 1H NMR to 

quantify DG, MG and FA in relation to TG when they are minor components in vegetable fats and oils 

(Sacchi, Paolillo, Giudicianni, & Addeo, 1991; Compton, Vermillion, & Laszlo, 2007; Jin, Kawasaki, 

Kishida, Tohji, Moriya, & Enomoto, 2007; Satyarthi, Srinivas, & Ratnasamy, 2009; Kumar et al., 2011; 

Skiera, Steliopoulos, Kuballa, Holzgrabe, & Diehl, 2012; Sopelana, Arizabaleta, Ibargoitia, & Guillén, 

2013). Nevertheless, its usefulness to quantify all the lipolytic products arising from hydrolysis 

reaction in complex mixtures and to assess the extent of lipid digestion remained to be proven.  
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Therefore, in this context, the Objectives 2.1. and 2.2. of the present PhD thesis were 

formulated in order to develop and validate a new methodology based on 1H NMR spectral data 

allowing the qualitative and quantitative study of lipid hydrolysis reaction.  

2.4. Use of in vitro digestion models for the study lipid digestion 

Research into the influence of the digestion process on lipids, in order to better understand its 

effect on human health, is a current trend in food technology and nutrition. For ethical, practical and 

economic reasons, in vitro approaches have emerged as powerful tools when studying the physico-

chemical events that take place within the gastrointestinal tract, at least as an initial screening step 

(Hur, Lim, Decker, & McClements, 2011). In recent years, several authors have estimated in vitro the 

bioaccessibility and bioavailability of certain compounds which are either toxic or beneficial for 

human health (Garrett, Failla, & Sarama, 1999; Versantvoort, Oomen, Van de Kamp, Rompelberg, & 

Sips, 2005; Goicoechea et al., 2008; Roman, Burri, & Singh, 2012; Colle, Van Buggenhout, Lemmens, 

Van Loey, & Hendrickx, 2012). However, gastrointestinal digestion is a very complex and dynamic 

process where ingested food components are submitted to mechanical forces and to digestive juices 

until transformation into small bioavailable molecules, some of which can also be metabolized by the 

gut microbiota. Thus, an accurate reflection of the human physiological environment within the 

digestive tract in order to mimic naturally occurring events is very difficult and the performance of in 

vitro digestion can be influenced by several experimental factors.  

The in vitro digestion models proposed in the literature greatly differ in their complexity level, 

varying from static to dynamic, and from one step procedures to models that simulate sequentially 

all the digestive process, that is those taking place in the mouth, stomach and gut, including colonic 

fermentation (Molly, Woestyne, & Verstraete, 1993; Minekus, Marteau, Havenaar, & Huis in ’t Veld, 

1995; Versantvoort, Van de Kamp, & Rompelberg, 2004; Kong & Singh, 2010; Li et al., 2011). 

Depending on the research topic and objectives of the study, a wide variety of conditions has been 

assayed. Therefore, differences can be observed between the proportions of samples/digestive 

fluids, the composition of digestive juices, the transit times performed in each step, or the intensity 

of the mechanical forces applied (Hur et al., 2011b). Recently, an international attempt to 

homogenize experimental conditions for in vitro digestion was made in the frame of COST Action 

FA1005 INFOGEST (Minekus et al., 2014; Egger et al., 2016).  

The first requirement for all the in vitro methodologies should be to mimic in vivo 

macronutrient digestion extent (Hur et al., 2009; Golding & Wooster, 2010). As far as in vitro lipid 

digestion studies are concerned, lipolysis levels reported in the literature are usually far lower than 
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those occurring in vivo, especially with regard to fish lipids (Martin, Nieto-Fuentes, Señoráns, 

Reglero, & Soler-Rivas, 2010; Larsson, Cavonius, Alminger, & Undeland, 2012; Marze et al., 2013; Zhu 

et al., 2013; Tullberg et al., 2016). The high resistance of long-chain polyunsaturated acyl groups to in 

vitro hydrolysis by pancreatic lipase could explain the low rates of lipolysis reported for fish oils 

(Bläckberg, Hernell, Bengtsson, & Olivecrona, 1979). Thus, the improvement of lipolysis under in vitro 

conditions is a challenge that deserves a deeper knowledge of the factors affecting lipases activity.  

In this context, the effect of different experimental factors on lipid in vitro digestion extent was 

outlined in the Objective 2.3. of the present PhD thesis, using, as a starting point, the method 

described by Versantvoort et al. (2004, 2005). This in vitro gastrointestinal digestion model was 

initially designed for assessing bioavailability of food mycotoxins. Nonetheless, since then, it has 

been employed for several purposes, mainly related to lipid research, like the study of 

microstructural changes in emulsified lipids (Hur et al., 2009), the fate of toxic compounds coming 

from lipid oxidation (Goicoechea et al., 2008, 2011), the influence of cheese matrix on lipid digestion 

(Lamothe et al., 2012), the effects of antioxidants on lipid oxidation during digestion (Tarvainen, 

Phuphusit, Suomela, Kuksis, & Kallio, 2012), the digestion of fish oil emulsions (Marze et al., 2013), 

and milk macronutrient decomposition (Kopf-Bolanz, Schwander, Gijs, Vergères, Portmann, & Egger, 

2012).  

 

3. CHANGES UNDERGONE BY LIPIDS UNDER GASTROINTESTINAL DIGESTIVE CONDITIONS 

AND FACTORS AFFECTING IT 

Due to its economic and health-related implications, many food scientists have devoted their 

efforts to studying lipid degradation during food processing and storage, paying special attention to 

the underlying mechanisms and the development of strategies which are capable of delaying it 

(Guillén, Cabo, Ibargoitia, & Ruiz, 2005; Decker, Elias, & McClements, 2010; Guillén & Uriarte, 

2012abcd; Mártinez-Yusta, Goicoechea, & Guillén, 2014). However, the digestion process is also an 

important and determinant step, in which the nutritional quality and safety of lipids could be 

modified, and to date this topic has been scarcely addressed, in spite of its great relevance. 

3.1. Hydrolysis reaction 

Among the several chemical reactions undergone by lipids during their transit through the 

gastrointestinal tract, hydrolysis reaction has been the most widely studied to date. Nonetheless, few 

studies have focused on the factors affecting hydrolysis level reached during digestion (Márquez-

Ruiz, Garcia-Martinez, & Holgado, 2008). Among these latter, the oxidative status of the ingested TG 
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can be cited (Márquez-Ruiz, Guevel, & Dobarganes, 1998; Sánchez-Muñiz, Arroyo, Sánchez-Montero, 

& Cuesta, 2000). It was observed that the higher the molecular weight of the substrate (TG 

monomers, dimers or polymers), the lower pnacreatic lipase activity. In addition, it was evidenced 

that the hydrolysis of the non-oxidized TG (monomers) present in the frying oils was impaired by the 

concomitant presence of dimers and polymers. Nevertheless, these studies provided a “partial view” 

of the digestion process, because they focused on just in vitro lipolysis under simple incubation 

conditions with lipases, leaving aside the possible influence of all the other components of digestive 

fluids, or because they studied just the effect of the presence of pure oxidation compounds, 

disregarding the crucial influence of other dietary components simultaneously present in food.  

3.2. Lipid oxidation 

The potential occurrence of lipid oxidation during digestion cannot be discarded. Unsaturated 

lipids could undergo oxidative degradation during the digestion process, especially in the gastric step 

where lipids can be exposed to pro-oxidant conditions, like the acid pH of gastric fluid, the presence 

of oxygen incorporated to food during mastication, as well as of heme groups in certain proteins and 

of food-released transition metals, among others (Halliwell, Zhao, & Whiteman, 2000; Kanner & 

Lapidot, 2001).  

However, this issue has been studied very little. A few in vivo and in vitro digestion studies on 

lipid emulsions and meat products can be found in literature (Gorelik et al., 2005; Gorelik, Ligumsky, 

Kohen, & Kanner, 2008; Kuffa, Priesbe, Krueger, Reed, & Richards, 2009; Larsson et al., 2012; Lorrain, 

Dangles, Loonis, Armand, & Dufour, 2012; Kenmogne-Domguia, Meynier, Boulanger, & Genot, 2012; 

Kristinova, Storrø, & Rustad, 2013; Gobert, Rémond, Loonis, Buffière, Santé-Lhoutellier, & Dufour, 

2014; Kenmogne-Domguia, Moisan, Viau, Genot, & Meynier, 2014; Steppeler, Haugen, Rødbotten, & 

Kirkhus, 2016).  

It has been shown that the advance of lipid oxidation can be greatly influenced by several 

factors. Among these may be cited: the presence of heme proteins, free iron or minor dietary 

compounds showing antioxidant properties (Kanner & Lapidot, 2001; Gorelik et al., 2008; Kenmogne-

Domguia et al., 2012a; Larsson et al., 2012), as well as lipid composition, initial oxidative status and 

food fat content (Larsson et al., 2012; Kristinova et al., 2013; Kenmogne-Domguia et al., 2014; 

Steppeler et al., 2016). It must be noted that in most of these studies complex food matrices such as 

emulsions or cooked meat products already containing oxidation inititators or showing a certain 

degree of oxidation were digested. This may complicate the interpretation and comparison of the 

results obtained due to the interactions, often unknown, of other sample components with the lipid 

oxidation process. In this sense, additional systematic studies addressing the in vitro digestion of 
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simpler lipid matrices, such as bulk oils, could better clarify the susceptibility of lipids to oxidation 

under gastrointestinal conditions and the extent to which this reaction can be influenced by several 

factors. 

Moreover, the lipid oxidation level of the samples in the above-mentioned studies was mainly 

assessed by indirect measurements (oxygen uptake and loss of “antioxidant” compounds) and by 

classical techniques, which might offer limited accuracy and specificity (Frankel, 2005; Schaich, 2016), 

such as: determination of lipid hydroperoxides by iodometric titration or by ferrous ion oxidation in 

the presence of xylenol-orange (FOX2) or thiocyanate, and measurement of conjugated dienes 

absorbance or of Thiobarbituric Acid Reactive Substances (TBARS test). In addition, these 

measurements and techniques are unable to provide information either about the specific nature of 

the lipid oxidation products generated. 

It must be noted that in three recent studies the determination of three specific oxidation 

markers (malondialdehyde, 4-hydroxy-(E)-2-nonenal and 4-hydroxy-(E)-2-hexenal) by 

chromatographic techniques, after their extraction and derivatization, was also carried out  

(Kenmogne-Domguia et al., 2014; Steppeler et al., 2016; Tullberg et al., 2016). Nonetheless, these 

techniques are very laborious, require chemical transformation of the sample, involve the use of 

large amounts of solvents, and provide a very partial view of the lipid oxidation process, during which 

a high number of compounds of very different molecular weight and nature can be generated. 

Moreover, it must be noted that in order to get a “real picture” of the complex lipid oxidation 

reactions taking place, as many oxidation markers as possible should be considered because lipid 

oxidation can take place without the occurrence of these three specific compounds. So the use of 

other innovative techniques allowing a more complete study of lipid oxidation products in a simple 

and fast way would be required. Furthermore, in the above-mentioned studies the degree of lipolysis 

reached in the digestates was not investigated, in spite of its paramount importance in obtaining 

sound statements. In fact, as is well known, FA are more prone to oxidation than acyl groups 

supported on TG (Holman & Elmer, 1947).  

In this context, the Objectives 3.1. and 3.2. were addressed, this is, a study in depth of the in 

vitro digestion of fresh and slightly oxidized sunflower and linseed oils, as a models of ω-6 and ω-3 

rich lipids respectively, by means of 1H NMR and SPME-GC to get a more global view of the changes 

occurring during this complex process. As the intake of polyunsaturated ω-3 acyl groups has been 

encouraged in recent years, because of the health benefits which derive from this, a deeper 

knowledge of their potential chemical transformation during digestion can be considered of great 

relevance from a nutritional and food safety point of view. Indeed, the specific nature of the 
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compounds that may arise from the oxidation under digestive conditions of oils rich in 

polyunsaturated ω-3 acyl groups still remains unknown. 

3.3. Potential influence of the presence of proteins on lipid hydrolysis and oxidation 

reactions under gastrointestinal digestive conditions 

The extent of lipid hydrolysis and oxidation could be greatly influenced by the presence of 

proteins in the food bolus. During digestion, much in the same way as lipids, dietary proteins are 

hydrolyzed into smaller absorbable molecules (peptides and amino acids) by gastric pepsine and 

intestinal proteases. As a result, amino acids and peptides with different functional and bioactive 

properties (Elias, Kellerby, & Decker, 2008) could be present in the lumen.  

Some recent studies reported the potential antioxidant activity of peptides released during 

simulated digestion of several protein containing-foods, such as cooked eggs (Remanan & Wu, 2014) 

and carp muscle (Borawska, Darewicz, Vegarud, Iwaniak, & Minkiewicz, 2015), but using only 

chemical assays, like oxygen radical absorbance capacity (ORAC), 2,2´-azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS) or 2,2´-diphenyl-1-picrylhydrazyl (DPPH) free radical 

assays, whose drawbacks and limitations make them unable to reflect what is occurring in vivo or to 

provide further knowledge on the impact of peptides and amino acids on lipid oxidation pathways 

(Prior, Wu, & Schaich, 2015). Moreover, it is still unclear if amino acids/peptides/proteins can protect 

lipids from oxidation, or if the former react with oxidized lipids, causing a less presence of lipid 

oxidation products, and thus simulating more slowly advancing oxidation, which masks the real 

progress of this reaction.  

In order to further deepen knowledge about the potential effect of protein on chemical 

reactions undergone by lipids during digestion, the Objective 3.3. was outlined. In fact, most foods 

are composed not only of lipids, but also of other components, like proteins. Increasing knowledge 

on the potential inhibition of lipid oxidation by digestion-released amino acids/peptides would be of 

a great interest, not only from a nutritional point of view, but also from a food safety one, because 

this information would be very useful for the design of healthier and safer foodstuffs, or even diets. 

3.4. Potential influence of the presence of the synthetic antioxidant BHT on lipid hydrolysis 

and oxidation reactions under gastrointestinal digestive conditions. 

Data reported to date suggest that unsaturated lipids undergo oxidation under gastrointestinal 

conditions. However, this reaction could be limited by the presence of minor food components 

exhibiting antioxidant ability. Pioneer studies on the in vitro or in vivo gastric or duodenal digestion 

of oxidized turkey meat, myoglobin-added linoleic acid, and beef-sunflower oil mixture reported a 
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lower advance of lipid oxidation in the samples containing polyphenols than in the control ones; 

these polyphenols were either naturally present in red wine, apple, plum and artichoke, or were 

added pure standard compounds like resveratrol, epicatechin and caffeic acid (Kanner & Lapidot, 

2001; Gorelik et al., 2005, 2008; Kerem, Chetrit, Shoseyov, & Regev-Shoshani, 2006; Lorrain et al., 

2012; Gobert et al., 2014).  

Among the antioxidants of synthetic origin commonly used as additives in the food industry for 

delaying lipid oxidation in bulk oils, 2,6-di-tert-butylhydroxytoluene (BHT, E-321) can be cited. In 

Europe the single use of BHT in fish oils is currently restricted up to 100 ppm (Commission Regulation 

(EU) No 1129/2011 of 11 November 2011 to establish a Union list of food additives). In a recent 

study, the ability of this food additive to inhibit lipid oxidation during in vitro and in vivo digestion of 

cooked turkey meat has been assayed (Kuffa et al., 2009). The authors reported a significant 

decrease of PV and TBARS values in the presence of BHT at 200, 2000 and 10000 ppm under in vitro 

gastric conditions. In addition, in in vivo trials, a significantly lower concentration of conjugated 

dienes (measured by absorbance value at 234 nm) was reported in the blood of pigs 3-4 hours after 

their being fed with cooked turkey meat containing 2000 ppm of BHT than in that of the controls. By 

contrast, Tarvainen et al. (2012) did not observe differences in the amount of unspecified lipid 

oxidation products generated during in vitro gastrointestinal digestion of rapeseed oil containing or 

not BHT at 100 and 1000 ppm, determined by ultrahigh performance liquid chromatography-

electrospray ionization-mass spectrometry (UHPLC-ESI-MS). These contradictory results concerning 

the antioxidant effect of BHT may be due to: i) the different experimental conditions performed 

(gastric vs gastrointestinal digestion); ii) the different methodologies employed to assess lipid 

oxidation extent; or iii) to the different concentrations of BHT assayed, among other reasons. 

Moreover, in none of these two studies was attention paid to the occurrence of BHT-derived 

metabolites, which might be relevant due to the potential toxicity attributed to some of them, 

especially to quinone methide derivatives (Nagai, Ushiyama, & Kano, 1993; Thompson, Carlson, Sun, 

Dwyer-Nield, & Malkinson, 2001; Meier, Gomez, Kirichenko, & Thompson, 2007). 

In this context, on the one hand, the Objective 3.4. of the present PhD thesis was 

contemplated in order to review the literature data available on BHT and its metabolites (occurrence, 

origin, possible dual role as antioxidant/pro-oxidant, fate in foodstuffs, transformation into 

metabolites, toxicological implications, dietary BHT exposure studies and established limits, 

additional sources of exposure, and analytical determination in foods). And on the other hand, in 

order to shed light on the potential effect of BHT on in vitro gastrointestinal digestion of cod liver oil 

the Objective 3.5. was addressed. Since from a chemical point of view, any antioxidant could also be 

able to exert a pro-oxidant activity, concentrations of BHT either lower or far beyond that permitted 
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by European authorities will be employed, in order to check BHT behaviour under digestion 

conditions.  

 

4. IN VITRO GASTROINTESTINAL DIGESTION OF FISH AND THE POTENTIAL INFLUENCE OF 

SOME TECHNOLOGICAL PROCESSES LIKE SALTING AND SMOKING ON THE LIPIDS PERFORMANCE 

UNDER DIGESTIVE CONDITIONS 

Due to their high content in polyunsaturated acyl group, fish lipids may be especially prone to 

oxidation under digestive pro-oxidant conditions, which might impair their nutritional quality and 

safety. Thus, considering the results obtained in previous in vitro digestion studies on marine oils 

(Larsson et al., 2012; Kristinova et al., 2013; Kenmogne-Domguia et al., 2014; Tullberg et al., 2016), 

some oxidation could be expected to occur during in vitro digestion of fish meat. Nevertheless, the 

latter is a much more complex matrix than fish oil: the presence of other components together with 

fish lipids in the food bolus, such as proteins or endogenous fish antioxidants, among others, might 

greatly influence the advance of oxidation reactions occurring under digestive conditions.  

In a recent study, the formation of malondialdehyde (measured as TBARS value) and 4-

hydroxy-(E)-2-hexenal was reported during in vitro digestion of salmon (Steppeler et al., 2016). 

However, further knowledge concerning the nature of lipid oxidation products that may be 

generated during fish digestion would be useful. Moreover, other chemical reactions in addition to 

oxidation might take place and deserve further attention (Goicoechea et al., 2008, 2011). Thus, a 

detailed study of the occurrence of lipid oxidation and other reactions during fish meat digestion has 

not been undertaken to date; nor has the potential effect, if any, on the extent of these reactions of 

common technological processes applied to fish, such as salting and smoking, been studied.  

Salting is a technological process that has been traditionally carried out on fish in order to 

extend their shelf-life. Its preservative effect relies on the decreased water activity that this process 

provokes, which prevents microbiological growth. However, certain studies reported that salting can 

reduce the oxidative stability of fish lipids under frozen, refrigerated or thermo-oxidative conditions 

(Aubourg, & Ugliano, 2002; Guillén & Ruiz, 2004; Guillén, Ruiz, & Cabo, 2004; Vidal, Goicoechea, 

Manzanos, & Guillén, 2015). Using spectroscopic techniques, like Fourier Transform Mid-Infrared (FT-

MIR) and 1H NMR, it was observed that salting did not provoke any immediate oxidation, but when 

submitted to pro-oxidative conditions, fish lipid oxidation evolved at a greater rate in salted than in 

unsalted fish fillets. Nevertheless, when farmed and wild specimens of European sea bass were 

salted and studied by means of SPME-GC/MS, very slight lipid oxidation could be observed in wild 
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samples immediately after the most intense salting process (Vidal, Manzanos, Goicoechea, & Guillén, 

2016b). This pro-oxidant effect could be attributed to the loss of water-soluble antioxidants and to 

the increase of pro-oxidant agent concentration in contact with the lipid phase (Kanner, Harel, & 

Jaffe, 1991). Nevertheless, the degree of salting might also be determinant (Aubourg & Ugliano, 

2002). 

In this context, the Objective 4.1. of this doctoral thesis was addressed, to investigate fish 

meat in vitro digestion, paying special attention to the hydrolysis reaction and to the occurrence of 

lipid oxidation, without forgetting that other chemical reactions are also possible. Furthermore, the 

evaluation of the potential differences occurring during digestion of unsalted and salted fillets, as 

well as the influence of the degree of salting need to be addressed.  

Smoking is another preservation technique applied to fish from ancient times up to the 

present day. In recent decades, the use of commercial smoke flavourings, complex mixtures of 

smoke components retained in a liquid or solid carrier, instead of traditional smoking techniques 

using burning or smoldering materials has increased because of their many advantages. Among these 

can be cited: ease of application and a better control not only of sensory characteristics of smoked 

products, but also of the presence of smoke-derived toxic compounds, such as polycyclic aromatic 

hydrocarbons (Guillén & Ibargoitia, 1998).  

The extension of fish shelf-life and oxidative stability due to the smoking process has been 

addressed in previous studies, in which special attention was paid to the effect of different smoke 

flavouring compositions and application methods (Alcicek, 2011; Vidal, Goicoechea, Manzanos, & 

Guillén, 2016; Vidal, Manzanos, Goicoechea, & Guillén, 2016c). Nevertheless, the performance of 

smoked fish during human digestion still remains unknown. It could be expected that the well-known 

beneficial effects of the smoke components during fish meat storage, would also be evidenced in 

vivo during fish meat gastrointestinal digestion, because smoke phenolic components such as 

dihydroxybenzenes, 2,6-dimethoxy- and 2-methoxy-phenols have proved antioxidant activity 

(Bortolomeazzi, Sebastianutto, Toniolo, & Pizzariello, 2007; Soldera, Sebastianutto, & Bortolomeazzi, 

2008; Huang, Chang, Sung, Vong, & Wang, 2011). However, it must be noted that most of the studies 

on the antioxidant activity of smoke phenolic compounds have been carried out using chemical 

assays, like radical scavenging assays using ABTS and DPPH, whose drawbacks limit their usefulness in 

reflecting what takes place in in vivo or in real food systems (Prior et al., 2005). 

Therefore, the Objective 4.2. was considered to evaluate the effect of the smoking process 

with two commercial liquid smoke flavourings on lipid hydrolysis and oxidation occurring during in 

vitro gastrointestinal digestion of European sea bass, and to determine to what extent the flavouring 
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composition may influence these reactions. This study will provide a global view of how the 

mechanisms and extent of fish lipid hydrolysis and oxidation processes could be affected, if any, by 

the presence of smoke-derived compounds showing potential antioxidant activity. 
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The present PhD dissertation relies on four main aims, which will be achieved throughout the 

development of several specific objectives that are listed below. 

 

AIM 1. To study the effect of several cooking methods on fish lipids and on the formation of 

volatile compounds, as well as the potential influence of fish species and growing conditions 

For this purpose, the following specific objectives were formulated: 

1.1. To investigate by means of 1H NMR the potential influence of frying technique (pan-

frying/microwave-frying), cooking oil (extra-virgin olive oil/sunflower oil) and fish species 

(farmed European sea bass/farmed Gilthead sea bream) on the changes occurring in fish lipids 

and in cooking oil during fish shallow-frying (Manuscript 1). 

1.2. To study by means of 1H NMR and SPME-GC/MS the potential effect of boiling, steaming and 

sous-vide cooking on the lipids and volatile profile of farmed and wild European sea bass 

(Manuscript 2). 

1.3. To address by means of 1H NMR and SPME-GC/MS the potential effect of salt-crusted oven 

baking, conventional oven baking and microwave cooking on the lipids and volatile profile of 

farmed and wild European sea bass (Manuscript 3). 

 

Increasing knowledge on the effect of cooking on food quality parameters is of paramount 

importance from a nutritional, food safety, technological and sensory point of view. Accomplishing 

this first aim will shed light on the extent of the changes, if any, produced in the lipids and volatile 

profile of fish meat as a result of the different cooking methods. The information obtained could be 

very valuable, among others, for the food industry to produce ready-to-eat fish products that will 

ensure food quality and safety as much as possible, as well as consumer acceptance. 

 

 

AIM 2. To study the in vitro gastrointestinal digestion of lipids by means of 1H NMR, and the 

influence of several factors affecting the extent of in vitro lipolysis  

For this purpose, the following specific objectives were tackled: 

2.1. To develop and validate a new methodology based on 1H NMR spectral data to evaluate the 

hydrolysis level in complex lipid mixtures (quantification of triglycerides, 1,3- and 1,2-

diglycerides, 2- and 1-monoglycerides and fatty acids) (Manuscript 4). 
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2.2. To demonstrate the usefulness of 1H NMR when studying the extent of lipid hydrolysis reached 

during digestion of food samples (sunflower oil/minced fish meat), determining the hydrolysis 

level, the degree of triglyceride transformation, the lipid bioaccessibility level and the 

percentage of fatty acids physiologically releasable (Manuscript 5). 

2.3. To investigate the effect of different experimental factors (gastric acidification, intestinal 

transit time, presence of gastric lipase, sample/digestive fluids ratio, intestinal enzymes 

concentration and bile concentration) on lipid in vitro digestion extent (Manuscript 6). 

 

Reaching this second aim would be very relevant for the field of lipid digestion research, 

because there is an urgent need for the development of methodologies able to overcome the 

limitations of the currently employed techniques regarding the accurate quantification of lipolytic 

products and the versatility to assess lipolysis reaction extent in any of its definitions. 1H NMR 

approach will allow a global study of the digested lipidic sample in a fast and simple way, and without 

any chemical modification of the sample. This will be very useful to study in depth the impact of 

experimental factors on lipid in vitro digestion in order to optimize in vitro digestion protocols with 

regard to in vivo lipolysis level, which is required to obtain sound and reliable results. 

 

 

AIM 3. To study simultaneously lipid hydrolysis, oxidation and other reactions occurring during the 

in vitro gastrointestinal digestion of oils of vegetable and animal origins, and of other model 

systems, as well as the potential influence on their extent of the oil initial oxidation level, 

the oil unsaturation degree, of the presence of proteins and of the synthetic antioxidant BHT 

For this purpose, the following specific objectives were addressed: 

3.1. To tackle by means of 1H NMR and SPME-GC/MS the chemical reactions taking place during in 

vitro gastrointestinal digestion of non-oxidized and slightly oxidized sunflower oils, as models 

of ω-6 rich lipids (Manuscript 7). 

3.2. To investigate by means of 1H NMR and SPME-GC/MS the chemical reactions taking place 

during in vitro gastrointestinal digestion of non-oxidized and slightly oxidized flaxseed oils, as 

models of ω-3 rich lipids (Manuscript 8). 

3.3. To study by means of 1H NMR and SPME-GC/MS the potential effect of protein (ovalbumin/soy 

protein isolate) on the chemical reactions taking place during in vitro gastrointestinal digestion 

of slightly oxidized sunflower and flaxseed oils (Manuscript 9). 



Aims and Objectives 

23 

3.4. To review the available literature on the synthetic antioxidant 2,6-di-tert-butylhydroxytoluene 

(BHT, E-321) and its metabolites (occurrence, origin, possible dual role as antioxidant/pro-

oxidant, fate in foodstuffs, transformation into metabolites, toxicological implications, dietary 

BHT exposure studies and established limits, additional sources of exposure, and analytical 

determination in foods) (Manuscript 10). 

3.5. To investigate by means of 1H NMR and SPME-GC/MS the hydrolysis and oxidation reactions 

affecting polyunsaturated acyl groups and naturally present vitamin A during in vitro 

gastrointestinal digestion of cod liver oil, and the potential effect of low and high 

concentrations of added BHT (20/800 ppm) on the above-mentioned reactions (Manuscript 

11).  

 

This third aim will allow an in-depth and systematic study of the chemical reactions affecting 

lipids during gastrointestinal digestion and of the several factors affecting the extent of these 

reactions. The use of 1H NMR and SPME-GC/MS will provide a holistic view of the evolution of 

polyunsaturated lipids during this complex process, including potential oxidative degradation. This 

will provide, for the first time, knowledge on the specific nature of the oxidation compounds that can 

be generated under digestive conditions, which is needed to select properly the oxidation markers 

for these specific conditions. 

 

 

AIM 4. To study the effect of common technological processes, like salting and smoking, on lipid 

hydrolysis, oxidation and other reactions occurring during fish in vitro gastrointestinal 

digestion 

For this purpose, the following specific objectives were considered: 

4.1. To investigate by means of 1H NMR and SPME-GC/MS the chemical reactions taking place 

during in vitro gastrointestinal digestion of European sea bass, and the effect of fish salting 

(brine-salting/dry-salting) on their extent (Manuscript 12). 

4.2. To study by means of 1H NMR and SPME-GC/MS the effect of smoking with two liquid smoke 

flavourings on lipid hydrolysis and oxidation occurring during in vitro gastrointestinal digestion 

of European sea bass, and to evaluate to what extent the flavouring composition may 

influence these reactions (Manuscript 13). 
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The achievement of this fourth aim will be of paramount importance to gain further 

knowledge concerning the relationships existing between food composition, technological processing 

and human health. For the first time, an evaluation of how common technological processes could 

affect the chemical reactions ongoing during fish in vitro gastrointestinal digestion of will be 

investigated. 
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OBJECTIVE 1.1. 

To investigate by means of 1H NMR the potential influence of frying technique  

(pan-frying/microwave-frying), cooking oil (extra-virgin olive oil/sunflower oil) and fish species 

(farmed European sea bass/farmed Gilthead sea bream) on the changes occurring  

in fish lipids and in cooking oil during fish shallow-frying 

(Manuscript 1) 

1.1.1. Oil sample subjects of study 

Two cooking oils, extra-virgin olive oil (named evo) and sunflower oil (named s), were acquired 

in a local supermarket. 

In order to evaluate the effect of heating on the oils, extra-virgin olive and sunflower oils were 

submitted to the same frying conditions in the microwave-oven and in the pan in the absence of 

food. These heated samples were named: evoP, extra-virgin olive oil submitted to pan-frying 

conditions without food; evoM, extra-virgin olive oil submitted to microwave-frying conditions 

without food; sP, sunflower oil submitted to pan-frying conditions without food; and sM, sunflower 

oil submitted to microwave-frying conditions without food. 

After being used to fry fish fillets, oil samples were also collected and named: evoPA, extra-

virgin olive oil used to pan-fry sea bream (Sparus aurata); evoPL, extra-virgin olive oil used to pan-fry 

sea bass (Dicentrarchus labrax); sPA, sunflower oil used to pan-fry S. aurata; sPL, sunflower oil used 

to pan-fry D. labrax; evoMA, extra-virgin olive oil used to microwave-fry S. aurata; evoML, extra-

virgin olive oil used to microwave-fry D. labrax; sMA, sunflower oil used to microwave-fry S. aurata; 

and sML, sunflower oil used to microwave-fry D. labrax. It must be noted that oils were used just 

once for frying and never reused. 

1.1.2. Fish lipid sample subjects of study 

Fresh specimens of farmed gilthead sea bream (A, n=8) and of farmed European sea bass (L, 

n=8) were acquired in a local supermarket on the day of the experiment. Just before frying, fishes 

were gutted, cleaned and filleted. The average weight of sea bream fillets (n=16) was 332.7±21.7 g 

and that of sea bass fillets (n=16) 295.4±29.6 g; all fillets presented very similar dimensions (width 

and length). From each specimen, one fillet was submitted to cooking and the other one was kept 

raw (R) as a control.  
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The lipid extracts obtained from the control fillets were named: AR, lipids of raw sea bream; 

and LR, lipids of raw sea bass. The lipid extracts obtained from shallow-fried fish fillets were named: 

APevo, lipids of S. aurata pan-fried in extra-virgin olive oil; LPevo, lipids of D. labrax pan-fried in 

extra-virgin olive oil; APs, lipids of S. aurata pan-fried in sunflower oil; LPs, lipids of D. labrax pan-

fried in sunflower oil; AMevo, lipids of S. aurata microwave-fried in extra-virgin olive oil; LMevo, 

lipids of D. labrax microwave-fried in extra-virgin olive oil; AMs, lipids of S. aurata microwave-fried in 

sunflower oil; and LMs, lipids of D. labrax microwave-fried in sunflower oil. 

1.1.3. Shallow-frying techniques 

Two different shallow-frying techniques were employed, conventional pan-frying (P) using a 

domestic pan (28 cm internal diameter) over an electric heating unit, and microwave-frying (M) using 

a domestic ceramic baking dish (28 cm internal diameter) in a household microwave oven (Samsung 

Combi CE 117KB) operating at 900 W. In order to obtain comparable results and to mimic domestic 

conditions, some experimental conditions were the same in both techniques: oil temperature 

(170ºC), cooking time (2.5 min each fillet side) and oil surface/oil volume ratio (28 cm diameter/100 

mL). These conditions were maintained for all frying experiments. Before fish frying, oil temperature 

was checked with a dual purpose infrared and penetration thermomether (104-IR, Testo 

instruments, Lenzkirch, Germany), that can measure both oil/food surface and core temperatures. 

One fish fillet was fried each time and two independent experiments were carried out for consistency 

of results. The mean core temperature reached in pan-fried fillets was 60±5ºC and in microwave-

fried ones 95±3ºC; crust formation was observed on the surface of the former but not on the latter. 

After cooking, all fried fillets were drained for 15 s to remove excess oil and then minced in a grinder, 

vacuum-packed and stored at -80ºC for up to 24 h for subsequent study.  

1.1.4. Fish lipid extraction method 

Lipids of fish fillets before and after frying were extracted using carbon disulphide as solvent 

(CS2, HPLC grade, Sigma-Aldrich, St. Louis, MO, USA) in a proportion of 1:2 (w/v) in an ultrasonic bath 

for 1 h, as in a previous study (Guillén & Ruiz, 2004). This solvent was selected because of its ability 

to extract lipids and its high volatility. Afterwards, solvent was eliminated by means of a rotary 

evaporator under reduced pressure at room temperature in order to avoid lipid oxidation.  

1.1.5. Proton Nuclear Magnetic Resonance spectra acquisition  

The 1H NMR spectra of the oils unheated, heated and after their use in fish shallow-frying, as 

well as of the fish lipids extracted from raw and fried fillets, were recorded on a Bruker Avance 400 
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spectrometer operating at 400 MHz. As in previous edible oil studies carried out in our laboratory 

(Guillén & Ruiz, 2004), 200 μl of lipid samples were mixed in a 5 mm diameter tube with 400 μl 

deuterated chloroform (CDCl3), which contains 0.2% of non-deuterated chloroform, and a small 

proportion of tetramethylsilane (TMS) used as reference compound for calibrating chemical shift at 

0.0 ppm (Euroisotop, Paris, France). In order to select the most appropriate values to obtain accurate 

quantitative results in the shortest possible period of time, a very broad range of recycling times and 

relaxation delays were tested in the acquisition of the 1H NMR spectra. Thus, the acquisition 

parameters selected as being the most appropriate were the following: spectral width 6410 Hz, 

relaxation delay 3 s, number of scans 64, acquisition time 4.819 s and pulse width 90º. Each lipid 

sample was analyzed in duplicate. The relaxation delay and acquisition time allow the complete 

relaxation of the protons, the signal areas thus being proportional to the number of protons that 

generate them, making their use for quantitative purposes possible. 1H NMR spectra were plotted at 

a fixed value of absolute intensity to be valid for comparative purposes. Spectra were processed 

using MNova program (Mestrelab Research, Santiago de Compostela, Spain).  

1.1.6. Determination from 1H NMR data of the molar percentage of main acyl groups and of 

the concentration of some minor components, hydrolytic and thermo-oxidation compounds in the 

oils and in fish lipids  

As the area of the 1H NMR signal is proportional to the number of protons that generates it, 

and because the proportionality constant is the same for all types of hydrogen atoms, it is possible to 

determine in an accurate way the absolute concentration and also the molar percentages of the 

different kinds of acyl group chains present in the oils and in fish lipids. These determinations were 

carried out in agreement with previous studies (Guillén, Carton, Goicoechea, & Uriarte, 2008; 

Martínez-Yusta & Guillén, 2014abc, 2016). It is worth considering that the contribution of 

diglycerides present in the oils and of phosphatidylcholine in fish lipids is very small (due to the fact 

that their molar abundance is a hundred times lower than that of triglycerides). Thus, the molar 

percentage of total omega-3 (ω-3); of docosahexaenoic (DHA, C22:6ω3); of eicosapentaenoic (EPA, 

C20:5ω3) plus arachidonic (ARA, C20:4ω6) (EPA+ARA); of diunsaturated omega-6 acyl groups (DUω-

6), mainly linoleic (C18:2ω6); of total unsaturated (U); of oleic (C18:1ω9) plus other unsaturated 

(O+OU) acyl groups, the latter being mainly other monounsaturated ω-7 and ω-9, ARA and other 

minor unsaturated acyl groups; and of omega-1 (ω-1) acyl groups were estimated as follows: 

ω-3% = 100*(4*AB)/(9*AI)       [Objective 1.1.-eq.1] 

DHA% = 100*AF2/(3*AI)        [Objective 1.1.-eq.2] 

EPA+ARA% = 100*(2*AD2)/(3*AI)       [Objective 1.1.-eq.3] 
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DUω-6% = 100*(2*AG)/(3*AI)       [Objective 1.1.-eq.4] 

U% = 100*(2*AE+AF2)/(6*AI)      [Objective 1.1.-eq.5] 

O+OU% = (U%)-(ω-3%)-(ω-1%)-(DUω-6%)    [Objective 1.1.-eq.6] 

ω-1% = 100*(2*AP)/(3*AI)      [Objective 1.1.-eq.7] 

where AX is the area of signal X (see the signal assignment in Table 1 of Manuscript 1). Then, 

saturated plus modified (S+M) acyl groups were calculated from U%, by difference to 100%. It must 

be pointed out that modified acyl groups are those unsaturated chains that have been modified as a 

result of oxidation reactions, losing their original typical structure. It also must be noted that as the 

ARA content in these farmed fishes is usually very low (Orban et al., 2003), the whole area of signal 

D2 was considered due to EPA. Due to the overlapping of signals D1-D2 and G-H, the spectra of pure 

standard trieicosapentaenoin, triarachidonin, trilinolein and trilinolenin, acquired from Larodan AB 

(Malmö, Sweden), were recorded and taken into account for a correct determination of AD2 and AG. 

Moreover, quantification of some minor components present in the oils (β-sitosterol plus Δ5-

campesterol (Sit+Camp) and Δ7-avenasterol) and in fish lipids (cholesterol and phosphatidylcholine), 

expressed as mmol/mol of triglyceride (mmol/molTG), was also carried out using the following 

equations:  

St (mmol/molTG) = 1000*(4*ASt)/(3*AI)      [Objective 1.1.-eq.8] 

Phosphatidylcholine (mmol/molTG) = 1000*(4*AO)/(9*AI)   [Objective 1.1.-eq.9] 

where ASt  is the area of the signal of the methylic proton at the carbon atom C-18 of each 

sterol (Sit+Camp, Δ7-avenasterol, cholesterol) and AX the area of signal X (see the signal assignment 

in Table 1 of Manuscript 1).  

Regarding hydrolytic and thermo-oxidation compounds, the concentrations of 1,2-diglycerides, 

aldehydes (Ald) and (E)-9,10-epoxystearate, expressed also as mmol/mol of TG, were also 

determined as follows:  

1,2-diglycerides (mmol/molTG)=1000*(2*A3.72)/AI    [Objective 1.1.-eq.10] 

Ald (mmol/molTG)=1000*(4*AAld)/AI      [Objective 1.1.-eq.11] 

(E)-9,10-epoxystearate (mmol/molTG)=1000*(2*A2.63)/AI    [Objective 1.1.-eq.12] 

where A3.72 is the area of the signal at 3.72 ppm due to -CH2OH protons of 1,2-diglycerides, AAld 

is the area of aldehydic proton signals Q, R, S or T (see the signal assignment in Table 1 of Manuscript 

1), and A2.63 is the area of the signal at 2.63 ppm due to -CHOHC- protons of (E)-9,10-epoxystearate.  
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1.1.7. Statistical Analysis 

Statistical analysis was performed using the Statistical package SPSS v.19 (IBM, NY, USA). The 

significance of the differences on the several determinations among groups were determined by one-

way variance analysis (ANOVA) followed by post hoc Tukey b test at 0.05 threshold.  
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OBJECTIVE 1.2. 

To study by means of 1H NMR and SPME-GC/MS the potential effect of boiling, steaming and sous-

vide cooking on the lipids and volatile profile of farmed and wild European sea bass 

(Manuscript 2) 

1.2.1. Fish samples 

Fresh specimens of farmed (F, n=6) and wild (W, n=6) European sea bass were acquired in a 

local supplier within 48 h of their catch. On the day of purchase and just before cooking, fish 

specimens were gutted, cleaned, filleted and skinned. Average weight of farmed and wild sea bass 

fillets was 251.5±21.0 g (n=12) and 281.5±40.6 g (n=12), respectively. From each specimen, one fillet 

was kept raw (R) as a control, and the other one was submitted to cooking. Raw fillets of farmed sea 

bass were named FR (n=6) and those of wild sea bass WR (n=6). 

1.2.2. Cooking methods 

Also on the day of purchase, cooking processes were carried out. Three cooking methods were 

employed, fixing cooking times and temperatures according to real household conditions. Each fish 

fillet was cooked independently and cooking experiments were carried out in duplicate for 

consistency of results. After cooking, the core temperatures of the fillets were checked with a 

thermometer (104-IR, Testo instruments, Lenzkirch, Germany). 

Boiling (BO). This was performed using a domestic stainless steel casserole (24 cm internal 

diameter) over an electric heating unit; each fillet was immersed in 2 L of boiling water (100ºC) for 10 

min. After boiling, farmed (FBO, n=2) and wild (WBO, n=2) fillets core temperature was 88±2ºC. 

Steaming (ST). This was carried out using a steaming casserole set (24 cm internal diameter); 2 

L of boiling water (100ºC) were placed in the bottom of the casserole and the fillet was placed on the 

perforated middle layer (covered with the lid) and submitted to steaming for 10 min. After steaming, 

farmed (FST, n=2) and wild (WST, n=2) fillets core temperature was 91±0ºC. 

Sous-vide cooking (SV). Each fillet was vacuum-packed in a polypropylene (PP) heat-resistant 

(up to 120ºC) bag designed for this culinary technique, using a vacuum sealer (VAC-20S model, Edesa, 

Mondragon, Spain). Then, plastic bags were submerged for 20 min in 20 L of water pre-heated at 

85ºC, using a thermostatic water bath (Precisdig model, Selecta, Barcelona, Spain). Afterwards, the 
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plastic bag was opened and the core temperature of farmed (FSV, n=2) and wild (WSV, n=2) fillets 

measured (83±2ºC). 

Immediately after cooking, each fish fillet was minced in a grinder and the volatile profile of 

minced sea bass meat was studied by SPME-GC/MS. The remaining ground meat of each fillet was 

vacuum-packed immediately and stored at -80ºC for up to 24 h for the subsequent extraction of their 

lipids and study by 1H NMR.  

1.2.3. Lipid extraction  

Lipids of sea bass fillets before and after cooking were extracted using dichloromethane as 

solvent (CH2Cl2, HPLC grade, Sigma-Aldrich, St. Louis, MO, USA) in a proportion of 1:2 (w/v) in an 

ultrasonic bath for 1 h. This solvent was selected because of its ability to extract lipids, its suitable 

polarity for an exhaustive extraction and its high volatility. Afterwards, solvent was eliminated by 

means of a rotary evaporator under reduced pressure at room temperature in order to avoid lipid 

oxidation.  

1.2.4. 1H NMR spectra acquisition, standards and derived data 

The 1H NMR spectra of the lipid extracts of raw (FR, WR), cooked farmed (FBO, FST, FSV) and wild 

(WBO, WST, WSV) sea bass meat were recorded in duplicate on a Bruker Avance 400 spectrometer 

operating at 400 MHz. To do this, the sample preparation to acquire the corresponding spectra, the 

acquisition conditions and the study of the spectral data were the same as those described before in 

subsection 1.1.5. of the experimental design of Objective 1.1.  

Compounds, such as cholesterol, cholesterol-5β,6β-epoxide, 5α-cholestan-3β-ol, 

phosphatidylcholine, retinyl palmitate, retinyl acetate and retinol acquired from Sigma Aldrich, 

cholestadien-5β,6β-epoxy-3β-ol and 5-cholesten-3β,7β-diol acquired from Steraloids (Newport, RI, 

USA), and cholesterol-5α,6α-epoxide acquired from Cymit Química S.L. (Barcelona, Spain), were used 

as standard compounds for identification purposes in 1H NMR spectra. 

Bearing in mind that the area of each 1H NMR spectral signal is proportional to the number of 

protons that generates it, and that the proportionality constant is the same for all kinds of protons, 

the area of some spectral signals make it possible to estimate the molar proportion of the several 

kinds of acyl groups and the concentration of some minor components present in the lipid extracts of 

raw and cooked sea bass fillets. 
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Estimation of the molar percentages of acyl groups. The molar percentage of saturated and of 

total unsaturated acyl groups, the latter including total ω-3, diunsaturated ω-6 (DUω-6, mainly 

linoleic C18:2ω6), ω-1, and oleic plus other minor unsaturated acyl groups (mainly other 

monounsaturated ω-7 and ω-9, arachidonic and other minor unsaturated acyl groups) (O+OU), were 

calculated using equations developed in previous studies (Guillén & Ruiz, 2004; Vidal et al., 2012). 

Likewise, the molar percentages of long chain polyunsaturated acyl groups, such as docosahexaenoic 

(DHA, C22:6ω3) and eicosapentaenoic (EPA, C20:5ω3) plus arachidonic (ARA, C20:4ω6) acyl groups 

were estimated. 

Estimation of the concentration of minor lipidic components. The concentration, expressed as 

mmol/mol of triglyceride (mmol/molTG), of certain minor lipidic components of interest was also 

estimated using the following equations (see subsection 1.1.6. of the experimental design of 

Objective 1.1.):  

Cholesterol (mmol/molTG) = 4000*Aa/(3*AI)    [Objective 1.2.-eq.1] 

Phosphatidylcholine (mmol/molTG) = 4000*Ad/(9*AI)   [Objective 1.2.-eq.2] 

Phosphatidylethanolamine (mmol/molTG) = 2000*Ac/AI   [Objective 1.2.-eq.3] 

Vitamin A (retinyl ester) (mmol/molTG) = 4000*Ab/(3*AI)   [Objective 1.2.-eq.4] 

where Aa, Ad, Ac, Ab and AI are the areas of the 1H NMR spectral signal a (singlet at 0.68 ppm), 

signal d (singlet at 3.35 ppm), signal c (singlet at 3.15 ppm), signal b (singlet at 1.89 ppm) and signal I 

(doublet of double doublets at 4.22 ppm) respectively; the signal assignment is given in Table 1 of 

Manuscript 2 (Choi, Kim, Wilson, Erkelens, Trijzelaar, & Verpoorte, 2004; Guillén & Ruiz, 2004; 

Mannina et al., 2008; Vidal et al., 2012). 

1.2.5. Study by SPME-GC/MS of the volatile profile of raw and cooked sea bass meat  

Solid Phase Microextraction (SPME). The extraction of the volatile components of the headspace 

of raw and cooked minced sea bass meat (0.5 g in 10 mL screw-cap vial) was accomplished 

automatically in duplicate using a CombiPAL autosampler (Agilent Technologies, Santa Clara, CA, 

USA). The fibre used was coated with DVB/CAR/PDMS (Divinylbenzene/Carboxen/ 

Polydimethylsiloxane, 50/30 μm film thickness, 1 cm long), acquired from Supelco (Sigma-Aldrich), 

which was inserted into the headspace of the sample and was maintained for 60 min (50ºC). 

Variables such as the type of fibre (polarity and thickness of the coating) and the extraction 

conditions (sample and headspace volumes, extraction time and temperature) had been previously 

tested in our laboratory to select the best extraction conditions.  
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Gas chromatography/mass spectrometry (GC/MS) study. The fibre containing the extracted 

components was desorbed for 10 min in the injection port (splitless mode with 5-min purge time) of 

a gas chromatograph model GC 7890A equipped with a mass selective detector 5975C inert MSD 

with Triple Axis Detector (Agilent Technologies) and a computer operating with the ChemStation 

program. The column used was a fused-silica capillary column (60 m long x 0.25 mm inner diameter x 

0.25 μm film thickness, from Agilent J & W Advanced Capillary GC Columns), coated with a non-polar 

stationary phase (HP-5MS, 5% phenyl methyl siloxane). The operating conditions were as follows: the 

oven temperature was set initially at 50ºC (5 min hold) and increased to 290ºC at 4ºC/min (2 min 

hold); the temperatures of the ion source and the quadrupole mass analyser were kept at 230ºC and 

150ºC respectively; helium was used as carrier gas at a pressure of 18.611 psi; injector temperature 

was held at 250ºC; mass spectra were recorded at an ionization energy of 70 eV and the data 

acquisition mode employed was Scan (mass spectra range from 40 to 550 m/z). After the first 

desorption, the fibre was routinely submitted to desorption conditions for a second time to clean up 

and to determine if the first process was complete. In order to avoid carry-over problems, after each 

run the fibre was submitted to 20-min bake-out at 250ºC in the Fibre Cleaning and Conditioning 

Station of the CombiPAL autosampler. A reference sample of known composition was periodically 

analyzed in order to verify the extraction efficiency and repeatability of the SPME fibre and the 

performance of the chromatographic run. 

Most of the compounds were identified by using commercial standards (asterisked compounds 

in Tables 3, 4 and S1 of Manuscript 2) acquired from Sigma-Aldrich. When standards were not 

available, matching of the mass spectra with those obtained from a commercial library higher than 

85% (Wiley W9N08, Mass Spectral Database of the National Institute of Standards and Technology 

(NIST)), was taken as identification criteria. The semiquantification of the compounds was based on 

the area counts of the base peak (Bp) of the mass spectrum of each compound divided by 106. When 

the Bp of a compound overlapped with the same ion peak of the mass spectrum of another 

compound, an alternative ion peak was selected for the quantification of the former. Although the 

chromatographic response factor of each compound is different, the area counts thus determined 

are useful for the comparison of the abundance of each compound in the different samples. 

Compounds having lower abundance values than 50000 area counts were considered as traces. 

1.2.6. Statistical analysis 

The significance of the differences in the molar percentages of the several kinds of acyl groups 

and in the concentration of minor lipidic components estimated from 1H NMR data among the lipid 

extracts of raw and cooked sea bass fillets were determined by one-way variance analysis (ANOVA) 
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followed by Tukey b test at p<0.05, using SPSS v.22 software (IBM, NY, USA). Principal component 

analysis (PCA) performed on the abundances of certain volatile markers of lipid oxidation identified 

by SPME-GC/MS was carried out by using SIMCA v.13.0.3 software (Umetrics/MKS, Umeå, Sweden). 
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OBJECTIVE 1.3. 

To address by means of 1H NMR and SPME-GC/MS the potential effect of salt-crusted oven baking, 

conventional oven baking and microwave cooking on the lipids and volatile profile of farmed and 

wild European sea bass 

(Manuscript 3) 

1.3.1. Fish samples 

Fresh specimens of farmed (F, n=6) and wild (W, n=6) European sea bass were acquired from a 

local supplier within 48 h of their being caught. On the day of purchase and just before cooking, 

specimens were gutted, cleaned, filleted and skinned. The average weight of farmed sea bass fillet 

(n=12) was 256.5±25.0 g and that of wild one (n=12) was 253.4±18.9 g. From each specimen, one 

fillet was kept raw (R) as a control and the other one was submitted to cooking. Raw fillets of farmed 

and wild sea bass were named FR (n=6) and WR (n=6), respectively.  

1.3.2. Cooking methods 

Three cooking methods were carried out in this study: salt-crusted oven baking, conventional 

oven baking and microwave oven cooking. These widely used cooking methods were selected 

because they differ greatly in the food-heating mechanism. Thus, in the case of microwave cooking, 

the alternating electric field of microwaves provokes the rotation of dipole molecules contained in 

food (mainly water), whose friction heats the food from the inside to the outside; it is a very fast 

thermal treatment in which the maximum heating temperature is limited by the boiling point of 

water molecules. In the case of oven baking, infrared radiation heats the air molecules present inside 

the oven, which in turn heat the food surface by convection and then the inside is heated by 

conduction; therefore, longer heating times are needed and higher cooking temperatures can be 

reached. 

Fish cooking time and temperature (or microwave oven potency) were set according to real 

household conditions. Each fish fillet was cooked independently and cooking experiments were 

carried out in duplicate for consistency of results. After cooking, the core temperature of the fillets 

was checked with a thermometer (104-IR, Testo instruments, Lenzkirch, Germany). 

Salt-crusted oven baking (SC). Each fish fillet was laid on a coarse sea salt bed placed on a 

pyrex baking dish and entirely covered with a thick salty paste made of coarse sea salt and water. 

Salt was acquired in a local supermarket. The baking dish was placed in a pre-heated household oven 
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(model HT-610 ME, Teka, Santander, Spain) and cooked at 185ºC for 25 min. Then, the salt-crust was 

broken and the fish fillet scooped out. After salt-crusted oven baking, farmed (FSC, n=2) and wild (WSC, 

n=2) fillets core temperature was 91±1ºC. 

Conventional oven baking (CB). A fish fillet was placed on a pyrex baking dish and baked in a 

pre-heated household oven (model HT-610 ME, Teka) at 185ºC for 25 min. After conventional oven 

baking, farmed (FCB, n=2) and wild (WCB, n=2) fillet core temperature was 93±1ºC. 

Microwave oven cooking (MW). Each fish fillet was placed on a porcelain dish, covered with a 

plastic lid, and cooked at 900 W for 5 min in a household microwave oven (Samsung Combi CE 117 

KB). After microwave cooking, farmed (FMW, n=2) and wild (WMW, n=2) fillet core temperature was 

98±0ºC. 

Immediately after cooking, each fish fillet was minced in a grinder and the volatile profile of 

minced sea bass meat was studied by SPME-GC/MS. The remaining ground meat of each fillet was 

vacuum-packed immediately and stored at -80ºC for up to 24 h for the subsequent extraction of their 

lipids and study by 1H NMR. 

1.3.3. Fish lipid extraction  

Lipids of raw and cooked sea bass samples were extracted using dichloromethane as solvent 

(CH2Cl2, HPLC grade, Sigma-Aldrich, St. Louis, MO, USA), following the same methodology described 

in subsection 1.2.3. of the experimental design of Objective 1.2. The proportion of lipids in raw and 

cooked sea bass was calculated and expressed as g per 100 g of wet weight. 

1.3.4. 1H NMR spectra acquisition, standards and derived data 

The 1H NMR spectra of the lipid extracts of raw (FR, WR) and cooked farmed (FSC, FCB, FMW) and 

wild (WSC, WCB, WMW) sea bass samples were recorded in duplicate on a Bruker Avance 400 

spectrometer operating at 400 MHz. The sample preparation methodology and the acquisition 

parameters were the same as those described in subsection 1.1.5. of the experimental design of 

Objective 1.1.  

For identification purposes, the 1H NMR spectrum of the following standard compounds: 

cholesterol, cholesterol-5β,6β-epoxide, 5α-cholestan-3β-ol, phosphatidylcholine, retinyl palmitate, 

retinyl acetate, retinol, α-tocopherol, and squalene acquired from Sigma Aldrich; cholestadien-5β,6β-

epoxy-3β-ol and 5-cholesten-3β,7β-diol acquired from Steraloids (Newport, RI, USA); and cholesterol-

5α,6α-epoxide acquired from Cymit Química S.L. (Barcelona, Spain) were recorded. 
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Bearing in mind that the area of each 1H NMR spectral signal is proportional to the number of 

protons that generates it, and that the proportionality constant is the same for all kinds of protons, 

the area of some spectral signals were used to estimate the molar proportion of the several kinds of 

acyl groups and the concentration of some minor components in relation to triglycerides present in 

the lipid extracts of raw and cooked samples. The equations employed were the same as those 

detailed in subsection 1.2.4. of the experimental design of Objective 1.2.  

1.3.5. Study by SPME-GC/MS of the headspace composition of raw and cooked sea bass 

meat  

The methodology followed for the study by SPME-GC/MS of the headspace composition of raw 

and cooked sea bass meat is the same as that described in subsection 1.2.5. of the experimental 

design of Objective 1.2. 

1.3.6. Statistical analysis 

The significance of the differences on the molar percentages of the several kinds of acyl groups 

and on the concentration of the several minor lipidic components estimated from 1H NMR data 

among the lipid extracts of raw and cooked sea bass fillets were determined by one-way variance 

analysis (ANOVA) followed by Tukey b test at 0.05 threshold, using the Statistical package SPSS (v.22, 

IBM, NY, USA). Principal component analysis (PCA) performed on the average abundances of volatiles 

identified in duplicate by SPME-GC/MS and obtained from two cooking experiments was carried out 

by using SIMCA software (v.13.0.3 for Windows, Umetrics/MKS, Umeå, Sweden).  
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OBJECTIVE 2.1. 

To develop and validate a new methodology based on 1H NMR spectral data to evaluate  

the hydrolysis level in complex lipid mixtures (quantification of triglycerides, 1,3- and 1,2-

diglycerides, 2- and 1-monoglycerides and fatty acids) 

(Manuscript 4) 

2.1.1. Standards and mixtures 

For the development of the approach, standard compounds, such as tridocosahexaenoin, 

trieicosapentaenoin, trilinolenin, trilinolein and triolein (Larodan AB, Malmö, Sweden), as well as 

triestearin, 1,2-diolein, 1,3-dilinolein, 1-monolinolein, 2-monoolein, docosahexaenoic acid, 

eicosapentaenoic acid, linoleic acid and oleic acid (Sigma Aldrich, St. Louis, MO, USA) were used.  

For the validation of the approach, different mixtures (Mx) of the above-mentioned standard 

compounds were prepared. The composition of these mixtures, named Mx1 to Mx10, is given in 

Objective 2.1.-Table 1. They differ widely in the molar percentage of glycerides and fatty acids, in 

order to cover a broad range of potential hydrolysis levels. It has to be noted that mixtures Mx1 and 

Mx2 only contain triglycerides and that mixtures Mx3 to Mx10 are much more complex, also 

containing di-, mono-glycerides and fatty acids. Mixtures from Mx3 to Mx5 contain typical glycerides 

and fatty acids present in oils and fats of vegetable and terrestrial animal origin, whereas mixtures 

Mx6 to Mx10 contain glycerides and fatty acids present in marine lipids, which include typical 

polyunsaturated ω-3 acyl groups of fish lipids like docosahexaenoate and eicosapentaenoate. 
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Objective 2.1.-Table 1. Molar percentages (%) of the different standard compounds in the several 
mixtures (Mx1-10) prepared by weight.  

Standard compounds 
(%) 

Mixtures 

Mx1 Mx2 Mx3 Mx4 Mx5 Mx6 Mx7 Mx8 Mx9 Mx10 

TG (DHA) - 6.0 - - - 7.2 5.4 - - - 
TG (EPA) - 7.9 - - - - - 5.2 - - 
TG (Ln) 34.4 18.8 - - - 21.9 - - 5.1 - 
TG (L) 33.6 50.7 24.6 - - 21.5 16.6 - - - 
TG (O) 12.8 16.6 21.6 6.1 - 8.2 14.6 3.9 - - 
TG (S) 19.2 - - - - 12.2 - - - - 
Total TG 100.0 100.0 46.2 6.1 - 71.0 36.6 9.1 5.1 - 

  
 

        1,2-DG (O) - - 6.5 19.1 7.1 - 4.4 12.3 5.9 6.2 
1,3-DG (L) - - - - 13.0 - - - 10.9 11.5 
Total DG - - 6.5 19.1 20.1 - 4.4 12.3 16.8 17.7 

  
 

        1-MG (L) - - - 30.2 21.6 - - 19.4 18.0 19.0 
2-MG (O) - - 4.0 - - - 2.7 - - - 
Total MG - - 4.0 30.2 21.6 - 2.7 19.4 18.0 19.0 

  
 

        FA (DHA) - - - - - - 27.1 - - - 
FA (EPA) - - - - - 29.0 - 30.6 11.4 12.0 
FA (L) - - 43.3 - 30.8 - 29.2 - 25.7 27.1 
FA (O) - - - 44.6 27.5 - - 28.6 23.0 24.2 
Total FA - - 43.3 44.6 58.3 29.0 56.3 59.2 60.1 63.3 

Abbreviations: 1-MG: 1-monoglyceride; 2-MG: 2-monoglyceride; 1,2-DG: 1,2-diglyceride; 1,3-DG: 1,3-diglyceride; DHA: 
docosahexaenoate (C22:6ω-3); EPA: eicosapentaenoate (C20:5ω-3); FA: fatty acid; L: linoleate (C18:2ω-6); Ln: linolenate 
(C18:3ω-3); O: oleate (C18:1ω-9); S: stearate (C18:0); TG: triglyceride. 

 

2.1.2. 1H NMR spectra acquisition  

Pure standard compounds and all the above-mentioned mixtures (200 mg) were dissolved in 

400 μl of deuterated chloroform, which contains tetramethylsilane (TMS) as internal reference 

(Cortec, Paris, France). The 1H NMR spectra were recorded on a Bruker Avance 400 spectrometer 

operating at 400 MHz. The acquisition conditions were the same as those described in subsection 

1.1.5. of the experimental design of Objective 1.1. 

1H NMR spectral signal areas of the different kinds of protons are proportional to the number 

of protons that generate them, and the proportionality constant is the same in all cases. This allows 

one to carry out quantitative determinations. 
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OBJECTIVE 2.2. 

To demonstrate the usefulness of 1H NMR when studying the extent of lipid hydrolysis reached 

during digestion of food samples (sunflower oil/minced fish meat), determining the hydrolysis level, 

the degree of triglyceride transformation, the lipid bioaccessibility level and the percentage of fatty 

acids physiologically releasable 

(Manuscript 5) 

2.2.1. Samples  

The usefulness of 1H NMR to assess the extent of lipid digestion was tested in the in vitro 

digestion of two foods, considered as model foods, namely sunflower oil (S) and European sea bass 

(F). Sunflower oil was selected as representative of fats and oils coming from vegetables and 

terrestrial animals, and sea bass lipids of those coming from marine origins. It has to be noted that 

their lipid composition comprise different level of complexity. Sunflower oil is mainly made up of 

triglycerides supporting linoleic, saturated and oleic acyl groups. However, sea bass lipids are much 

more complex, including highly-polyunsaturated ω-3 acyl groups in addition to the above-mentioned 

acyl groups. Moreover, sunflower oil and fish are two very different matrices; the former consists 

exclusively of lipids whereas the latter also contains water, proteins and other minor components. 

These foods were purchased from a local supermarket. Before in vitro digestion experiments, 

fish was gutted, cleaned, filleted, skinned and grinded. Sunflower oil and minced fish flesh were 

submitted to in vitro digestion under different experimental conditions in order to obtain samples 

having different lipid hydrolysis levels. In this way, three different samples were studied from each 

food: the unlipolyzed samples (SUL, FUL), that is samples before being submitted to digestion; 

partially lipolyzed samples (SPL, FPL); and totally lipolyzed samples (STL, FTL).  

2.2.2. In vitro gastrointestinal digestion 

Digestion experiments were carried out following the in vitro digestion model described by 

Versantvoort et al. (2004, 2005), already employed in some previous studies (Goicoechea et al., 

2008, 2011). This model implies a three-step procedure which simulates digestive processes in the 

mouth, stomach and small intestine by adding sequentially the corresponding digestive juices. The 

transit times employed for oral, gastric and duodenal in vitro digestion were 5 min, 2 h and 4 h, 

respectively. 



Experimental design-Aim 2 

 

48 

Digestive juices (saliva, gastric juice, duodenal and bile juice) were prepared artificially in 

accordance with Versantvoort et al. (2005), but some slight modifications were carried out in order 

to obtain samples digested to different degrees of lipolysis. In the sunflower oil in vitro digestion, 100 

U/mL of lipase from Aspergillus niger in the gastric juice, 9.6 g/L of lipase (lipase from porcine 

pancreas) in the duodenal juice and 60 g/L of bile (bovine bile) in the bile juice were used. The partial 

lipolyzed SPL sample was obtained using 0.5 g of sunflower oil, whereas the totally lipolyzed STL 

sample was obtained using 0.25 g.  

As far as fish lipid samples were concerned, the partially lipolyzed FPL sample was obtained 

using the above-mentioned concentrations of enzymes and of bile and 4.5 g of minced fish. The 

totally lipolyzed FTL sample was obtained using the same amount of fish flesh, but on this occasion 

with 100 U/mL of lipase from Aspergillus niger in the gastric juice, a lipase (lipase from porcine 

pancreas) concentration in the duodenal juice of 1.5 g/L and a bile (bovine bile) concentration in the 

bile juice of 15 g/L. 

All the reagents for the preparation of the digestive juices were acquired from Sigma-Aldrich 

(St. Louis, MO, USA). Each digestion experiment was carried out in quadruplicate. 

2.2.3. Lipid extraction 

Lipid extraction was carried out on fish flesh before subjecting it to in vitro digestion and also 

in the digested samples of sunflower oil and minced fish. The lipids from minced fish muscle were 

extracted using dichloromethane (CH2Cl2, HPLC grade, Sigma-Aldrich), following the same 

methodology described in subsection 1.2.3. of the experimental design of Objective 1.2. The 

extraction was performed in duplicate and lipid extracts from minced sea bass were named FUL. 

Digested samples were submitted to a liquid-liquid extraction, using the solvent above-mentioned in 

a proportion of 2:3 (v/v). Afterwards, solvent was eliminated by means of a rotary evaporator under 

reduced pressure at room temperature, in order to avoid lipid oxidation. Lipid extracts obtained from 

in vitro digested samples were named SPL, STL, FPL and FTL, like the original digested samples.  

In all cases, dichloromethane was selected as solvent because of its ability to extract lipids, its 

high volatility and its suitable polarity. Different extraction conditions and solvents had been 

previously tested in our laboratory to ensure the exhaustive extraction of all the lipolytic products 

arising from triglyceride hydrolysis. 
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2.2.4. 1H NMR spectra acquisition  

The 1H NMR spectra of sunflower oil and fish lipids before digestion (SUL, n=2; FUL, n=2) and of 

the corresponding digested lipid extracts (SPL, n=4; STL, n=4; FPL, n=4; FTL, n=4) were recorded on a 

Bruker Avance 400 spectrometer operating at 400 MHz. To do this, the sample preparation to 

acquire the corresponding spectra, the acquisition conditions and the study of the spectral data were 

the same as those described in subsection 1.1.5. of the experimental design of Objective 1.1. 

2.2.5. Equations derived from 1H NMR spectral data used to quantify lipolytic products and 

lipid digestion extent  

As mentioned before, the signal areas in the spectra are proportional to the number of 

protons that generate them. Given this, the number of moles of the different kinds of molecules 

present (triglycerides (TG), diglycerides (DG), monoglycerides (MG), fatty acids (FA)) in the lipid 

samples can be calculated by the following equations, developed and validated in a previous study 

(see Manuscript 4):  

N2-MG = Pc*AK/4        [Objective 2.2.-eq.1] 

N1-MG = Pc*AL        [Objective 2.2.-eq.2] 

N1,2-DG = Pc*(AI+J-AL)/2       [Objective 2.2.-eq.3] 

N1,3-DG = Pc*(A4.04-4.38-2*A4.26-4.38-2*AL)/5     [Objective 2.2.-eq.4] 

NTG = Pc*(2*A4.26-4.38-AI+J+2*AL)/4      [Objective 2.2.-eq.5] 

NFA = (Pc*A2.26-2.40-6*NTG-4*N1,2-DG-4*N1,3-DG-2*N1-MG-2*N2-MG)/2    

          [Objective 2.2.-eq.6a] 

NFA = (Pc*10*A2.26-2.37+Pc*5*A2.37-2.44-60*NTG-40*N1,2-DG-40*N1,3-DG-18*N1-MG-13*N2-MG)/20 

          [Objective 2.2.-eq.6b] 

where N is the number of moles of the corresponding compound, Pc is the proportionality 

constant relating the 1H NMR spectral signal areas and the number of protons that generate them, A 

is the area of the 1H NMR spectral signal involved (see signal assignment in Table 1 of Manuscript 5), 

and A4.04-4.38, A4.26-4.38, A2.26-2.40, A2.26-2.37 and A2.37-2.44 are the areas of the signals ranging from 4.04 to 

4.38, 4.26 to 4.38, 2.26 to 2.40, 2.26 to 2.37, and 2.37 to 2.44 ppm respectively. It has to be noted 

that equation 6a is intended for lipids from vegetable or terrestrial animal origins, and equation 6b 

for marine lipids.  

These equations were applied to the two different methods employed in order to express the 

quantification of the products generated during lipolysis, as well as to assess the extent of lipid 

digestion.
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OBJECTIVE 2.3. 

To investigate the effect of different experimental factors (gastric acidification, intestinal transit time, 

presence of gastric lipase, sample/digestive fluids ratio, intestinal enzymes concentration and bile 

concentration) on lipid in vitro digestion extent 

(Manuscript 6) 

2.3.1. Samples, reagents and enzymes 

Farmed European sea bass specimens were purchased from a local supermarket. After 

cleaning, gutting, filleting and skinning, they were submitted to in vitro digestion. The fillets average 

weight was 252.9±22.0 g and their average lipid content of 8.2±1.0% (ww). 

Reagents and enzymes for the preparation of digestive juices were acquired from Sigma-

Aldrich (St. Louis, MO, USA): Aspergillus oryzae α-amylase (10065); pepsin from porcine gastric 

mucosa (P7125); lipases from Aspergillus niger (534781) and Candida rugosa (62316); pancreatin 

from porcine pancreas (P1750); lipase type II crude from porcine pancreas (L3126) and bovine bile 

extract (B3883). 

2.3.2. In vitro gastrointestinal digestion experiments 

The starting point for this study was the in vitro digestion model developed by Versantvoort et 

al. (2004, 2005) for fed state (see Objective 2.3.-Figure 1). The composition of digestive juices (saliva, 

gastric, duodenal and bile juice) is given in Objective 2.3.-Table 1.  
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Objective 2.3.-Figure 1. Schematic representation of the in 
vitro gastrointestinal digestion model developed by 
Versantvoort et al. (2004, 2005) used as a starting point in 
this study. 

 

Just before the in vitro digestion experiments, the juices were heated to 37±2ºC. The fish 

sample was prepared by mincing in a grinder, to simulate mechanical disintegration that occurs in 

the mouth. The digestion experiment started with the addition of 6 mL of saliva to 9 g of minced sea 

bass sample. After 5 min of incubation, 12 mL of simulated gastric juice (GJ) were added and the 

mixture was rotated head-over-heels at 40 rpm for 2 h at 37±2ºC. Thirty minutes after starting the 

gastric digestion, pH was set between 2 and 3 with HCl (37%), simulating the gradual acidification of 

the chyme that occurs in vivo. After 2 h of gastric digestion, 2 mL of sodium bicarbonate solution (1 

M), 12 mL of duodenal juice (DJ) and 6 mL of bile juice (BJ) were added. Subsequently, pH was set 

between 6 and 7, and the mixture was rotated again at 40 rpm and incubated at 37±2ºC for 2 h.  
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Objective 2.3.-Table 1. Composition of the juices employed in the model described by 
Versantvoort et al. (2004, 2005) used as a starting point in this study. 

Components Saliva 
Gastric 

Juice (GJ) 
Duodenal 
Juice (DJ) 

Bile 
Juice (BJ) 

KCl (mmol/L) 
NaCl (mmol/L) 
NaHCO3 (mmol/L) 
NaH2PO4 (mmol/L) 

NH4Cl (mmol/L) 
KH2PO4 (mmol/L) 
Na2SO4 (mmol/L) 
KSCN (mmol/L) 
MgCl2 (mmol/L) 
CaCl2*2H2O (mmol/L) 
HCl (37%) (mL/L) 
Urea (mmol/L) 
Glucose (mmol/L) 
Glucuronic acid (mmol/L) 
Uric acid (mmol/L) 
Glucoseamine hydrochloride (mmol/L) 
Bovine serum albumin (g/L) 
Mucin (g/L) 

-amylase (g/L) 
Pepsin (g/L) 
Pancreatin (g/L) 
Pancreatic lipase (g/L) 
Bile (g/L) 

12.02 
5.10 

20.17 
7.40 

- 
- 

4.79 
2.06 

- 
- 
- 

3.33 
- 
- 

0.09 
- 
- 

0.025 
0.29 

- 
- 
- 
- 

11.06 
47.09 

- 
0.22 
5.72 

- 
- 
- 
- 

2.72 
6.50 
1.42 
3.61 
0.10 

- 
1.53 
1.00 
3.00 

- 
2.50 

- 
- 
- 

7.57 
119.98 
40.33 

- 
- 

0.59 
- 
- 

0.53 
1.36 
0.18 
1.67 

- 
- 
- 
- 

1.00 
- 
- 
- 

9.00 
1.50 

- 

5.05 
89.99 
68.86 

- 
- 
- 
- 
- 
- 

1.51 
0.15 
4.16 

- 
- 
- 
- 

1.80 
- 
- 
- 
- 
- 

30.00 

pH 6.8±0.2 1.3±0.2 8.1±0.2 8.2±0.2 

 

 

The influence of some experimental factors on the fish lipolysis was evaluated. These were: 

gastric pH, intestinal residence time, presence of lipase in the GJ, sample/digestive fluids ratio, 

enzymatic composition of the DJ and bile concentration in the BJ. Although each variable can be 

affected by the others, the influence of each experimental factor on the lipolysis extent was studied 

sequentially, keeping the rest of the experimental conditions constant but including the selected 

conditions for the factor previously tested. This selection was made considering the improvement of 

lipolysis, the reflection of physiological conditions, as well as practical and economical reasons. Each 

digestion experiment was carried out in triplicate, except for that using a lower amount of 

sample/digestive fluids ratio that was performed in duplicate (4.5 g of fish meat: 6 mL of saliva: 12 

mL of GJ with lipase of A. niger added: 12 mL of DJ proposed by Versantvoort: 6 mL of BJ with bile at 

30 g/L). 
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2.3.3. Lipid extraction and 1H NMR spectra acquisition 

Lipids contained in minced fish and in digested samples were extracted using dichloromethane 

as solvent (CH2Cl2, HPLC grade, Sigma-Aldrich, St. Louis, MO, USA), following the same methodology 

described in subsection 2.2.3. of the experimental design of Objective 2.2. 

2.3.4. Equations derived from 1H NMR spectral data employed for the quantification of the 

several lipolytic products in the digestates and the extent of lipid digestion 

Bearing in mind that the signal areas in the spectra are proportional to the number of protons 

that generate them and the proportionality constant is the same for all kinds of protons, the number 

of moles (N) of 2-monoglycerides (2-MG), 1-monoglycerides (1-MG), 1,2-diglycerides (1,2-DG), 

triglycerides (TG), fatty acids (FA) and glycerol (Gol) in each sample can be expressed as follows (see 

Manuscript 4): 

N2-MG = Pc*AK/4         [Objective 2.3.-eq.1] 

N1-MG = Pc*AL         [Objective 2.3.-eq.2] 

N1,2-DG = (Pc*AI+J-2*N1-MG)/2      [Objective 2.3.-eq.3]  

NTG = (Pc*AN+O+P-2*N1,2-DG-2*N1-MG)/4      [Objective 2.3.-eq.4] 

NFA = (Pc*10*A2.26-2.37+Pc*5*A2.37-2.44-60*NTG-40*N1,2-DG-18*N1-MG-13*N2-MG)/20    

          [Objective 2.3.-eq.5] 

NGol = (NFA-N1,2-DG-2*N2-MG-2*N1-MG)/3     [Objective 2.3.-eq.6] 

where Pc is the proportionality constant relating the number of protons that generate a signal, 

A is the area of the signal involved (see signal assignment in Table 2 of Manuscript 6) and A2.26–2.37 

and A2.37–2.44 are the areas of signals at 2.26–2.37 and 2.37–2.44 ppm respectively.  

2.3.5. Statistical Analysis 

The significance of the differences on the molar percentages of the different kinds of lipolytic 

products present in the digestates, and on the hydrolysis level, triglyceride transformation and lipid 

bioaccessibility were determined by one-way variance analysis (ANOVA) followed by Tukey b test at 

p<0.05, using SPSS v.19 (IBM, NY, USA). 
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OBJECTIVE 3.1. 

To tackle by means of 1H NMR and SPME-GC/MS the chemical reactions taking place  

during in vitro gastrointestinal digestion of non-oxidized and slightly oxidized sunflower oils,  

as models of omega-6 rich lipids 

(Manuscript 7) 

3.1.1. Sunflower oil samples: non-oxidized and slightly oxidized 

Sunflower oil (S) was acquired in a local supermarket. To obtain the slightly oxidized sunflower 

oil (Sx), 10 g of oil were weighed in crystal Petri dishes and placed in a convection oven (Memmert 

GmbH+Co, Schwabach, Germany) at 70ºC with circulating air for 4 days; this heating time was 

selected because at that moment only signals related to primary oxidation compounds 

(hydroperoxides supported on chains having also conjugated dienes) were observed in their 1H NMR 

spectra, in agreement with previous studies in which sunflower oil was submitted to similar 

accelerated storage conditions (Guillén & Ruiz, 2005a). 

3.1.2. In vitro gastrointestinal digestion 

Sunflower oil samples (0.5 g), either slightly oxidized (Sx) or not (S), were digested following 

the in vitro gastrointestinal model developed by Versantvoort et al. (2004, 2005), which was slightly 

modified as described in detail in Manuscript 6. This model implies a three-step procedure which 

simulates digestive processes in the mouth, stomach, and small intestine by adding sequentially the 

corresponding digestive juices (see Objective 3.1.-Figure 1). The transit times employed for oral, 

gastric and duodenal in vitro digestion were 5 min, 2 h and 4 h, respectively. Digestive juices (saliva, 

gastric juice, duodenal and bile juice) were prepared in accordance with the original model, although 

some modifications were performed in order to reach a higher level of lipolysis: addition of 

Aspergillus niger lipase to the gastric juice at 100 U/mL and use of bovine bile extract at 18.75 g/L 

instead of 30.00 g/L in the bile juice. All the reagents for the preparation of the digestive juices were 

acquired from Sigma-Aldrich (St. Louis, MO, USA).  

Blank samples, corresponding to the same mixture of digestive juices in the absence of oils, 

were also subject of study in each experiment. For consistency of results the experiment was carried 

out in quadruplicate. The digested samples obtained from non-oxidized sunflower oils were named 

DS (n=4), and from the digestion of slightly oxidized samples DSx (n=4). 
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Objective 3.1.-Figure 1. Schematic representation of the in 
vitro digestion methodology followed in this study.  

 

3.1.3. Lipid extraction and 1H NMR spectra acquisition 

Lipids of the digestates (DS, DSx) were extracted using dichloromethane as solvent (CH2Cl2, 

HPLC grade, Sigma-Aldrich) and following the same methodology as described in subsection 2.2.3. of 

the experimental design of Objective 2.2. Afterwards, to ensure a complete protonation of fatty acids 

and/or the dissociation of the potential salts formed between fatty acids and cations, the remaining 

water phase was acidified to pH≈2 with HCl (37%) and a second extraction was carried out. Both 

CH2Cl2 extracts of each sample were mixed and solvent was eliminated by means of a rotary 

evaporator under reduced pressure at room temperature, in order to avoid lipid oxidation. With the 

aim of evaluating if the performed extraction was complete, the water phase was freeze-dried and 

later extracted with CH2Cl2 for subsequent analysis by 1H NMR spectroscopy.  

The 1H NMR spectra of 4 starting oil samples of each kind (S, Sx) and of the lipid extracts 

obtained from the 4 digestion experiments (DS, DSx) were acquired in duplicate using a Bruker 

Avance 400 spectrometer operating at 400 MHz; thus, 8 spectra of each kind of sample were 

obtained. To do this, the sample preparation to acquire the corresponding spectra, the acquisition 
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conditions and the study of the spectral data were the same as those described in subsection 1.1.5. 

of the experimental design of Objective 1.1.  

3.1.4. Quantification of the lipolytic products generated during in vitro digestion from 1H 

NMR spectral data  

Bearing in mind that the area of each 1H NMR spectral signal is proportional to the number of 

protons that generates it, and that the proportionality constant is the same for all kinds of protons, 

the area of some spectral signals make it possible  to determine the molar percentage of fatty acids 

(FA) and all glycerides present in the sample, which is to say triglycerides (TG), 1,2-diglycerides (1,2-

DG), 1,3-diglycerides (1,3-DG), 2-monoglycerides (2-MG), 1-monoglycerides (1-MG) and glycerol 

(Gol). For this purpose, the number of moles (N) of each kind of glyceride structures present in the 

sample was expressed as follows: 

N2-MG = Pc*AK/4         [Objective 3.1.-eq.1] 

N1-MG = Pc*AL         [Objective 3.1.-eq.2] 

N1,2-DG = Pc*(AI+J-2AL)/2       [Objective 3.1.-eq.3]  

NTG = Pc*(2A4.26-4.38-AI+J+2AL)/4      [Objective 3.1.-eq.4] 

N1,3-DG = Pc*(A4.04-4.38-2A4.26-4.38-2AL)/5     [Objective 3.1.-eq.5] 

where Pc is the proportionality constant existing between the area of the 1H NMR signals and 

the number of protons that generate the signal; AK, AL and AI+J are the areas of the corresponding 

signals indicated in Table 1 and Figure 1 of Manuscript 7; and A4.04-4.38 and A4.26-4.38 represent the area 

of the spectrum signals at 4.04-4.38 ppm and 4.26-4.38 ppm, respectively.  

In this study three different quantitative approaches based on 1H NMR data are proposed, 

which differ in the way of determining number of moles of fatty acids (NFA). In the first approach, 

named approach I, NFA will be determined using the area (A) of 1H NMR signal F (AF) corresponding to 

methylenic protons located in the α-position in relation to the carbonyl group of acyl groups (AG) and 

to the carboxylic group of FA, as in previous studies (see Manuscripts 4 and 5). In approach II, the 

area of signal D (AD) will be employed to determine NFA (it is also due to methylenic protons, but in 

the β-position in relation to the carbonyl group of AG and to the carboxylic group of FA). Finally, in 

approach III, the area of signal A (AA) due to all methylic protons of FA and AG will be used to 

determine NFA. Thus, the number of moles of fatty acids and glycerol (NGol) in the sample can be 

expressed as follows:  

NFA = (Pc*AF-6NTG-4N1,2-DG-4N1,3-DG-2N1-MG-2N2-MG)/2   [Objective 3.1.-eq.6-I] 
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NFA = (Pc*AD-6NTG-4N1,2-DG-4N1,3-DG-2N1-MG-2N2-MG)/2   [Objective 3.1.-eq.6-II] 

NFA = (Pc*AA-9NTG-6N1,2-DG-6N1,3-DG-3N1-MG-3N2-MG)/3   [Objective 3.1.-eq.6-III] 

NGol = (NFA-N1,2-DG-N1,3-DG-2N2-MG-2N1-MG)/3     [Objective 3.1.-eq.7]  

In this way, the total number of moles of glyceride structures (NTGS) and the total number of 

moles of acyl groups plus fatty acids (NTAG+FA) present in the samples can be determined as follows, 

depending on the approach used (I, II or III): 

NTGS = Pc*AF/6        [Objective 3.1.-eq.8-I] 

NTGS = Pc*AD/6        [Objective 3.1.-eq.8-II] 

NTGS = Pc*AA/9        [Objective 3.1.-eq.8-III] 

NTAG+FA = Pc*AF/2        [Objective 3.1.-eq.9-I] 

NTAG+FA = Pc*AD/2        [Objective 3.1.-eq.9-II] 

NTAG+FA = Pc*AA/3        [Objective 3.1.-eq.9-III] 

Using these equations the molar percentages of the different kinds of glyceryl structures in 

relation to NTGS (TG%, 1,2-DG%, 1,3-DG%, 2-MG%, 1-MG% and Gol%) and the molar percentages of 

acyl groups present in the different glycerides (AG) and of fatty acids (FA) in relation to NTAG+FA 

present (FA%, AGTG%, AG1,2-DG%, AG1,3-DG%, AG2-MG% and AG1-MG%), can be determined, as in previous 

studies (see Manuscripts 5 and 6).  

3.1.5. Quantification of the molar percentages of the several kinds of acyl groups and fatty 

acids present in the lipid samples from 1H NMR spectral data  

In order to investigate if changes measurable by 1H NMR in the lipid composition of the oil 

samples occur due to oxidation or other reactions during in vitro digestion, the molar percentage of 

the several kinds of AG or FA in relation to NTAG+FA was also determined using certain spectral signals. 

As far as we know this is the first time that equations based on 1H NMR spectra are proposed to do 

these determinations in hydrolyzed lipidic samples. Thus, the molar percentage of total unsaturated 

AG or FA (U%), linoleic AG or FA (L%), oleic AG or FA (O%), and of saturated plus modified AG or FA 

(S+M%) were calculated as follows: 

U% = 100*(Pc*AE/4)/NTAG+FA      [Objective 3.1.-eq.10] 

L% = 100*(Pc*AG/2)/NTAG+FA      [Objective 3.1.-eq.11] 

O% = U%-L%        [Objective 3.1.-eq.12] 

(S+M)% = 100-U%       [Objective 3.1.-eq.13] 
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It must be pointed out that modified AG or FA are those unsaturated chains (linoleic, oleic) 

that have been modified as a result of oxidation reactions, losing their original typical structure. The 

molar percentage of these modified chains together that of saturated ones are grouped as (S+M)%. 

3.1.6. Quantification of the oxidation compounds present in the lipid samples from 1H NMR 

spectral data  

The concentration of (Z,E) and (E,E) isomers of conjugated dienes (CD) supported in chains 

having also a hydroperoxy (OOH) or a hydroxy (OH) group, present either in the oil samples (S, Sx) or 

in their corresponding digested lipid extracts (DS, DSx), can be expressed as mmol/mol of AG plus FA 

present (mmol/molAG+FA) by these equations:  

(E,E)-CD-OH (mmol/molAG+FA) = 1000*(Pc*A6.18)/NTAG+FA   [Objective 3.1.-eq.14] 

(E,E)-CD-OOH (mmol/molAG+FA) = 1000*(Pc*A6.27)/NTAG+FA   [Objective 3.1.-eq.15] 

(Z,E)-CD-OH (mmol/molAG+FA) = 1000*(Pc*A6.45)/NTAG+FA   [Objective 3.1.-eq.16] 

(Z,E)-CD-OOH (mmol/molAG+FA) = 1000*(Pc*A6.58)/NTAG+FA   [Objective 3.1.-eq.17] 

where A6.18 is the area of signal d at 6.18 ppm corresponding to one proton of the (E,E)-

conjugated double bond supported on chains having also a hydroxy group, A6.27 is the area of signal b 

at 6.27 ppm due to one proton of the (E,E)-conjugated double bond supported in chains having also a 

hydroperoxy group, A6.45 is the area of signal a at 6.45 ppm corresponding to one proton of the (Z,E)-

conjugated double bond supported on chains having also a hydroxy group, A6.58 is the area of signal c 

at 6.58 ppm due to one proton of the (Z,E)-conjugated double bond supported in chains having also a 

hydroperoxy group, and NTAG+FA can be obtained using the equations 9-I, 9-II or 9-III.  

3.1.7. Study by SPME-GC/MS of the headspace composition  

The methodology employed for the study by SPME-GC/MS of the volatile components of the 

headspace of the samples subject of study (0.5 g in 10 mL screw-cap vial) is the same as that 

described in subsection 1.2.5. of the experimental design of Objective 1.2.  

The samples, all of them studied in duplicate, were the following: the starting oils (S, Sx); the 

corresponding digestates (DS, DSx); the juices submitted to digestion conditions in the absence of oil 

(J); and the mixtures S+J and Sx+J made of the starting oils and juices submitted to digestion 

conditions in absence of oils, having the same oil:juices proportions as in the digestates (DS, DSx). 

The S+J and Sx+J mixtures were studied for comparative purposes, in order to simulate, to a certain 

extent, a similar a matrix to that of digestates. As 4 digestion experiments were carried out, 

altogether the headspaces of 8 samples of each kind were studied.  
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3.1.8. Statistical analysis 

The significance of the differences on the molar percentages of several kinds of AG/FA, on the 

molar percentages of the different kinds of lipolytic products, and on the concentration of the 

several oxidation compounds, were determined either among the three different approaches for 

quantification by one-way variance analysis (ANOVA) followed by Tukey b test, or between two 

specific samples by t-student test at p<0.05, using SPSS v.22 software (IBM, NY, USA). 
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OBJECTIVE 3.2. 

To investigate by means of 1H NMR and SPME-GC/MS the chemical reactions taking place  

during in vitro gastrointestinal digestion of non-oxidized and slightly oxidized flaxseed oils,  

as models of omega-3 rich lipids 

(Manuscript 8) 

3.2.1. Fresh and oxidized flaxseed oil samples  

This study was carried out using fresh virgin flaxseed oil (F), acquired in a local supermarket, 

and slightly oxidized flaxseed oil (Fx). In order to obtain the oxidized samples (Fx), some aliquots of 

flaxseed oil were submitted to accelerated storage conditions: 10 g of oil were weighed in crystal 

Petri dishes and placed in a convection oven (Memmert GmbH+Co, Schwabach, Germany) at 70ºC 

with circulating air for 36 h. This heating time was selected in order for the flaxseed oil samples to 

reach the first stages of oxidation, in other words when their 1H NMR spectra show signals related to 

mainly primary oxidation compounds, in accordance with previous studies in which flaxseed oil was 

submitted to the same accelerated storage conditions (Guillén & Ruiz, 2005b). 

3.2.2. In vitro gastrointestinal digestion 

Flaxseed oil samples (0.5 g), either non-oxidized or slightly oxidized, were digested as 

previously described in subsection 3.1.2. of the experimental design of Objective 3.1.  

Blank samples, corresponding to the mixture of juices submitted to digestive conditions in the 

absence of oil sample (J), were also undertaken in each experiment for further analysis. For 

consistency of results the experiment was carried out in quadruplicate. The digested samples 

obtained from non-oxidized (fresh) flaxseed oils were named DF (n=4), and from the digestion of 

slightly oxidized samples DFx (n=4). 

3.2.3. Lipid extraction and 1H NMR spectra acquisition 

Lipids of the digestates (DF, DFx) were extracted using dichloromethane as solvent (CH2Cl2, 

HPLC grade, Sigma-Aldrich, St. Louis, MO, USA) and following the same methodology as described in 

subsection 3.1.3. of the experimental design of Objective 3.1.  

The 1H NMR spectra of the starting oils and of the corresponding digested lipid extracts were 

acquired using a Bruker Avance 400 spectrometer operating at 400 MHz. To do this, the sample 

preparation to acquire the corresponding spectra, the acquisition conditions and the study of the 
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spectral data were the same as those described in subsection 1.1.5. of the experimental design of 

Objective 1.1. 

3.2.4. Quantification from 1H NMR spectral data of lipolytic products, lipid composition, and 

some oxidation compounds present in the starting oil samples and the lipid extracts of the 

digestates 

Bearing in mind that the area of each 1H NMR spectral signal is proportional to the number of 

protons that generate it, and that the proportionality constant is the same for all kinds of protons, it 

is possible from the area of some spectral signals to determine the molar percentage or the 

concentration of several components present not only in the starting oil samples, but also in the lipid 

extracts of the digestates.  

Lipolytic compounds. The molar percentages of the different kinds of glycerides, this is 

triglycerides (TG%), diglycerides (1,2-DG%, 1,3-DG%), monoglycerides (2-MG%, 1-MG%) and glycerol 

(Gol%), in relation to the total number of glyceryl structures present in the samples were determined 

using the equations developed, validated and explained in detail in previous studies (see 

Manuscripts 4 and 5). 

Lipid composition. The various kinds of acyl groups (AG) and fatty acids (FA) of flaxseed oil 

samples and those of the corresponding digested lipid extracts were also studied quantitatively by 1H 

NMR. So the molar percentage of total unsaturated AG/FA (U%), linolenic AG/FA (Ln%), linoleic 

AG/FA (L%), oleic AG/FA (O%), and of saturated plus modified AG/FA (S+M%) in relation to the total 

number of moles of AG plus FA present (NTAG+FA) were calculated as follows: 

NTAG+FA = Pc*AF/2        [Objective 3.2.-eq.1] 

U% = 100*(Pc*AE/4)/NTAG+FA      [Objective 3.2.-eq.2] 

Ln% = 100*(Pc*AH/4)/NTAG+FA      [Objective 3.2.-eq.3] 

L% = 100*(Pc*AG/2)/NTAG+FA      [Objective 3.2.-eq.4] 

O% = U%-L%-Ln%       [Objective 3.2.-eq.5] 

(S+M)% = 100-U%       [Objective 3.2.-eq.6] 

where AF, AE, AH and AG are the areas of signals F, E, H and G indicated in Table 1 and Figure 1 

of Manuscript 8. It must be noted that due to partial overlapping of signals H and G, a previous 

correction of both areas must be undertaken to properly assess the area corresponding to each of 

them. This correction was performed by using trilinolein as standard compound (Sigma-Aldrich). 
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Oxidation compounds. The concentration of (Z,E)-conjugated dienic systems associated with 

hydroperoxy group in octadeca-di/tri-enoates ((Z,E)-CD-OOH) and that of monoepoxides present in 

the starting oil samples (F, Fx) and in the digested lipid extracts (DF, DFx), if any, were estimated as 

mmol/mol of AG plus FA present in the samples (mmol/molAG+FA), using the following equation:  

(Z,E)-CD-OOH (mmol/molAG+FA) = 1000*(Pc*Ac)/NTAG+FA   [Objective 3.2.-eq.7] 

Monoepoxides (mmol/molAG+FA) = 1000*[Pc*(Ae)/2]/NTAG+FA   [Objective 3.2.-eq.8] 

where Ac is the area of signal c at 6.58 ppm, and Ae is the area of signal e at 2.94 ppm (see 

Table 1 and Figure 2 of Manuscript 8), after subtracting the overlapped area corresponding to the 

side band of bis-allylic protons signals G and H (see intact side band at 2.65 ppm in Figure 2 of 

Manuscript 8). 

3.2.5. Study by SPME-GC/MS of the headspace composition 

The methodology employed for the study by SPME-GC/MS of the volatile components of the 

headspace of the samples subject of study (0.5 g in 10 mL screw-cap vial) is the same as that 

described in subsection 1.2.5. of the experimental design of Objective 1.2. These samples were the 

following: non-oxidized and slightly oxidized flaxseed oil samples (F, Fx), their corresponding 

digestates (DF, DFx), the juices submitted to digestion conditions in the absence of food (J), and 

mixtures made up of starting oil samples and juices submitted to digestion conditions in the same 

proportions as in the digestates (F+J, Fx+J). These latter mixtures were studied to simulate a matrix in 

the non-digested samples that was similar to that obtained after digestion, and thus comparable.  

3.2.6. Statistical analysis 

The significance of the differences on the molar percentages of the different kinds of lipolytic 

products and on the several kinds of AG/FA present in non-digested and digested samples were 

determined by one-way variance analysis (ANOVA) followed by Tukey b test at p<0.05, using SPSS 

v.22 software (IBM, NY, USA). 
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OBJECTIVE 3.3. 

To study by means of 1H NMR and SPME-GC/MS the potential effect of protein (ovalbumin/soy 

protein isolate) on the chemical reactions taking place during in vitro gastrointestinal digestion of 

slightly oxidized sunflower and flaxseed oils 

(Manuscript 9) 

3.3.1. Samples involved in the study 

Sunflower oil and flaxseed oil were acquired in a local supermarket. Their acyl groups 

composition, determined by 1H NMR as indicated in subsection 3.3.5. of the experimental design of 

this Objective 3.3., was the following: sunflower oil contained 50.5±0.5% linoleic, 38.7±0.3% oleic and 

10.8±0.1% saturated acyl groups; and flaxseed oil was composed of 49.4±0.2% linolenic, 22.0±0.1% 

oleic, 20.9±0.3% linoleic and 7.8±0.3% saturated acyl groups. In order to obtain the slightly oxidized 

sunflower (Sx) and flaxseed oil (Fx) samples, 10 g of each oil were weighed in crystal Petri dishes and 

placed in a convection oven (Memmert GmbH+Co, Schwabach, Germany) at 70ºC with circulating air 

for 4 (Sx) and 1.5 days (Fx), in accordance with previous studies in which both oils were submitted to 

the same oxidative conditions (Guillén & Ruiz, 2005ab). 

The proteins subject of study were ovalbumin (OA) and soy protein isolate (SP) acquired from 

a protein manufacturer (Apasa SA, Astigarraga, Spain). Both proteins were selected because they are 

widely employed as ingredients in many food formulations. 

3.3.2. In vitro gastrointestinal digestion 

Oil samples (0.5 g) were in vitro digested in the absence (DSx, DFx) or in the presence of 

protein (1.3 g), either ovalbumin (DSx+OA, DFx+OA) or soy protein isolate (DSx+SP, DFx+SP), 

following the same in vitro gastrointestinal model described in subsection 3.1.2. of the experimental 

design of Objective 3.1. (see Objective 3.3.-Figure 1).  

The amounts of oil and protein in the sample for digestion (0.5 and 1.3 g respectively) were 

selected because they correspond approximately to those present in 4.5 g of fish containing around 

11% lipids and 29% proteins (w/w); these latter are the typical proportions present in European sea 

bass, a fish species widely studied before by our research group (see Manuscripts 5 and 6).  
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Objective 3.3.-Figure 1. Schematic representation of the in 
vitro digestion methodology followed in this study. 

 

For consistency of results, the digestion experiments of the oils and of the oil+protein systems 

were carried out in triplicate (n=3). In each digestion experiment, blank samples corresponding to the 

mixture of juices submitted to digestive conditions in the absence of food (J, n=3) were also taken for 

further analysis. 

3.3.3. Lipid extraction of the digestates  

Lipids of the digestates were extracted using dichloromethane as solvent (CH2Cl2, HPLC grade, 

Sigma-Aldrich, St. Louis, MO, USA) and following the same methodology as described in subsection 

3.1.3. of the experimental design of Objective 3.1. 

3.3.4. 1H NMR spectra acquisition 

The 1H NMR spectra of the starting oil samples (Sx, Fx) and of the lipid extracts of digested oils 

(DSx, DFx) and digested oil+protein systems (DSx+OA, DFx+OA, DSx+SP, DFx+SP) were acquired in 

duplicate using a Bruker Avance 400 spectrometer operating at 400 MHz; thus, from each kind of 

sample 6 spectra were obtained. To do this, the sample preparation to acquire the corresponding 
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spectra, the acquisition conditions and the study of the spectral data were the same as those 

described in subsection 1.1.5. of the experimental design of Objective 1.1. 

3.3.5. Quantification from 1H NMR spectral data of lipolytic products, of the several kinds of 

acyl groups and fatty acids, and of the oxidation compounds present in the starting samples and in 

the lipid extracts of the digestates  

Bearing in mind that the area of each 1H NMR spectral signal is proportional to the number of 

protons that generate it, and that the proportionality constant is the same for all kinds of protons, 

the area of some spectral signals can be employed to quantify i) the molar proportions of the 

different glycerides; ii) three typical parameters used to describe the extent of lipolysis; iii) the molar 

proportions of the various kinds of acyl groups/fatty acids; and iv) the concentration of several 

oxidation compounds present in the starting oils and in the lipid extracts of the digestates. 

Concerning the various types of glycerides present. The molar percentages of triglycerides 

(TG%), diglycerides (1,2-DG%, 1,3-DG%), monoglycerides (2-MG%, 1-MG%) and glycerol (Gol%) in 

relation to the total number of glyceryl structures present in the lipid samples were determined 

using the equations developed, validated and explained in detail in Manuscripts 4 and 5.  

Concerning certain parameters used to describe the extent of lipolysis. To date, three 

parameters have been widely used in digestion studies to describe the extent of lipid hydrolysis. The 

first one, named Hydrolysis level (HL), is defined as the percentage of fatty acids (FA) released in 

relation to the total number of moles of acyl groups (AG) plus FA present; the second one, called 

degree of Transformation of TG (TTG), only considers the proportion of TG that have undergone 

hydrolysis of the ester bond of at least one AG in relation to the intact TG initially present; and the 

third one, named Lipid bioaccessiblity (LBA), is a more physiological approach that takes into account 

the proportion of MG and FA (which are the absorbable molecules) in relation to the total number of 

AG+FA present in the sample. These three parameters were calculated by using equations developed 

before in Manuscript 5. 

Concerning lipid composition. The molar percentages of total unsaturated AG or FA (U%), 

linolenic AG or FA (Ln%), linoleic AG or FA (L%), oleic AG or FA (O%), and saturated plus modified AG 

or FA (S+M%), in relation to the total number of moles of AG+FA present in the starting oils and 

digested lipid extracts, were estimated as previously described in subsection 3.1.5. of the 

experimental design of Objective 3.1. and in subsection 3.2.4. of the experimental design of 

Objective 3.2. 
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Concerning oxidation compounds. The concentration of (Z,E)- and (E,E)-conjugated dienic 

systems supported in chains having also hydroperoxy (CD-OOH) or hydroxy groups (CD-OH), of 

monoepoxides and of alkanals, expressed as mmol/mol of AG plus FA present, was also estimated as 

previously described in subsection 3.1.6. of the experimental design of Objective 3.1. and in 

subsection 3.2.4. of the experimental design of Objective 3.2. 

3.3.6. Study by SPME-GC/MS of the headspace composition of the digestates 

The methodology employed for the study by SPME-GC/MS of the volatile components of the 

headspace of the samples subject of study (0.5 g in 10 mL screw-cap vial) is the same as that 

described in subsection 1.2.5. of the experimental design of Objective 1.2. The samples, all of them 

analyzed in duplicate, were the following: slightly oxidized oil samples (Sx, Fx), their corresponding 

digestates obtained in the 3 digestion experiments carried out either without (DSx, DFx) or with 

ovalbumin (DSx+OA, DFx+OA) or soy protein isolate (DSx+SP, DFx+SP), and the juices submitted to 

digestion conditions in the absence of food (J). In addition, to gain knowledge about the possible 

origin of volatile compounds, both proteins were also submitted separately to the same digestion 

conditions in the absence of oils (DOA, DSP).  

3.3.7. Statistical Analysis 

The significance of the differences on the several determinations made among the samples 

were determined by one-way variance analysis (ANOVA) followed by Tukey b test at p<0.05, using 

SPSS software v.22 (IBM, NY, USA). 
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OBJECTIVE 3.4. 

To review the available literature on the synthetic antioxidant  

2,6-di-tert-butylhydroxytoluene (BHT) and its metabolites  

(Manuscript 10) 

This Manuscript 10 is a review of the current state-of-the-art of the occurrence and origin of 

BHT, of its possible dual role as antioxidant/pro-oxidant, of its fate in foodstuffs, of its transformation 

into metabolites, of its toxicological implications, of the dietary BHT exposure studies and established 

limits, of the additional sources of exposure, and of the analytical determination of BHT and its 

derived metabolites in foods. For this purpose, the experimental design involved: 

 Bibliographic research 

 Analysis and critic study of related works 

 Description of the current knowledge on BHT and its derived metabolites in foods 
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OBJECTIVE 3.5. 

To investigate by means of 1H NMR and SPME-GC/MS the hydrolysis and oxidation reactions 

affecting polyunsaturated acyl groups and naturally present vitamin A during in vitro gastrointestinal 

digestion of cod liver oil, and the potential effect of low and high concentrations  

of added BHT (20/800 ppm) on the above-mentioned reactions 

(Manuscript 11) 

3.5.1. Cod liver oil samples  

Samples subject of study were commercial cod (Gadus morhua) liver oil, intended for human 

consumption and acquired in a pharmacist’s, either non-enriched (CLO) or enriched with the 

synthetic antioxidant 2,6-di-tert-butyl-hydroxytoluene (BHT) (Sigma-Aldrich, St. Louis, MO, USA) at 20 

ppm (CLO20) and at 800 ppm (CLO800).  

3.5.2. In vitro gastrointestinal digestion experiments 

Oil samples (0.5 g), enriched (CLO20, CLO800) or not (CLO) with BHT, were digested were 

digested as previously described in subsection 3.1.2. of the experimental design of Objective 3.1. (see 

Objective 3.5.-Figure 1). 

For consistency of results, the in vitro digestion was carried out in quadruplicate. The digested 

samples obtained from BHT-free cod liver oil were named DCLO (n=4), and those obtained from cod 

liver oil enriched with BHT at 20 ppm were named DCLO20 (n=4) and those at 800 ppm, DCLO800 

(n=4). Blank samples, corresponding to the mixture of juices submitted to in vitro digestion 

conditions in the absence of oil (J) were also undertaken in each experiment for further analysis 

(n=4). 
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Objective 3.5.-Figure 1. Schematic representation of the in 
vitro digestion methodology followed in this study. 

 

3.5.3. Lipid extraction, 1H NMR spectra acquisition and standards 

Lipids of the digestates (DCLO, DCLO20, DCLO800) were extracted using dichloromethane as 

solvent (CH2Cl2, HPLC grade, Sigma-Aldrich) and following the same methodology as described in 

subsection 3.1.3. of the experimental design of Objective 3.1.  

The 1H NMR spectra of the starting oils (CLO, CLO20, CLO800) and of the lipid extracts of the 

digestates (DCLO, DCLO20, DCLO800) were acquired in duplicate using a Bruker Avance 400 

spectrometer operating at 400 MHz; thus, 8 spectra of each kind of sample were obtained. To do 

this, the sample preparation to acquire the corresponding spectra, the acquisition conditions and the 

study of the spectral data were the same as those described in subsection 1.1.5. of the experimental 

design of Objective 1.1.  

Compounds, such as retinyl palmitate, retinyl acetate, retinol and 2,6-di-tert-

butylhydroxytoluene (BHT), acquired from Sigma Aldrich, together with 4-hydroxy-(E)-2-nonenal, 4-

hydroxy-(E)-2-hexenal and 4-hydroperoxy-(E)-2-nonenal, acquired from Cayman Chemical (Ann 

Arbor, MI, USA), were used as standard compounds for identification purposes in 1H NMR spectra. 
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3.5.4. Quantification from 1H NMR spectral data of lipolytic products, of the several kinds of 

acyl groups and fatty acids, of vitamin A, of some of their oxidation compounds and of BHT, 

present in the starting oils and in the corresponding lipid extracts of the digestates 

Bearing in mind that the area of each 1H NMR spectral signal is proportional to the number of 

protons that generates it, and that the proportionality constant is the same for all kinds of protons, it 

is possible, using the area of some spectral signals, to estimate the molar percentage of lipolytic 

products and of the several kinds of acyl groups and fatty acids, as well as the concentration of 

retinyl esters (vitamin A), of some oxidation compounds and of BHT, present in the starting oils and 

in the lipid extracts of the digestates.  

Concerning the various types of glycerides present. The molar percentages of triglycerides 

(TG%), 1,2- and 1,3-diglycerides (1,2-DG%, 1,3-DG%), 2- and 1-monoglycerides (2-MG%, 1-MG%) and 

glycerol (Gol%) in relation to the total number of glyceryl structures present in the samples were 

determined based on the equations developed, validated and explained in detail in Manuscripts 4 

and 5. All these equations are detailed in the Supplementary Material of Manuscript 11. 

Concerning the several kinds of acyl groups (AG) and fatty acids (FA). The molar percentage 

of the several kinds of acyl groups present in the starting oils was determined by 1H NMR spectral 

data as in previous studies (Guillén & Ruiz, 2004; Guillén et al., 2008). Regarding digested lipid 

extracts, the molar percentage of ω-3 AG/FA was estimated in relation to the total number of moles 

of AG plus FA present (NTAG+FA) in either the starting oils or the lipid extracts of digestates, in 

agreement with Manuscript 4 and previous studies (Siddiqui, Sim, Silwood, Toms, Iles, & Grootveld, 

2003; Guillén & Ruiz, 2004). All these equations are detailed in the Supplementary Material of 

Manuscript 11. 

Concerning vitamin A. The concentration of retinyl esters, expressed as mmol/mol of AG plus 

FA present (mmol/molAG+FA), was estimated by means of the following equation: 

Retinyl esters (mmol/molAG+FA) = 1000*(Pc*Am/2)/NTAG+FA  [Objective 3.5.-eq.1] 

where Pc is the proportionality existing between the area of the 1H NMR signals and the 

number of protons that generate them, Am is the area of signal m at 4.72 ppm due to the two 

methylenic protons in α-position in relation to the carbonyl group of retinyl esters (see signal 

assignment in Table 1, Figure 2 and Figure S1 in Supplementary Material of Manuscript 11) and 

NTAG+FA is determined using [eq.S15] detailed in Supplementary Material of Manuscript 11. 
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Concerning oxidation compounds. The concentrations of (Z,E)-conjugated dienic systems 

supported in chains having also an hydroperoxy group ((Z,E)-CD-OOH) and of certain aldehydes, 

expressed as mmol/mol of AG plus FA present, were estimated as follows:  

(Z,E)-CD-OOH (mmol/molAG+FA) = 1000*(Pc*A6.58)/NTAG+FA   [Objective 3.5.-eq.2] 

Aldehyde (mmol/molAG+FA) = 1000*(Pc*AAld)/NTAG+FA   [Objective 3.5.-eq.3] 

where A6.58 is the area of signal c centered at 6.58 ppm as one proton of the conjugated dienic 

system of (Z,E)-CD-OOH, NTAG+FA is determined using [eq.S15] detailed in Supplementary Material of 

Manuscript 11, and AAld is the area of the signals j, k or l due to the aldehydic proton of 4-hydroxy-, 

4-hydroperoxy-(E)-2-alkenals or (Z,E)-2,4-alkadienals, respectively (see Table 1 of Manuscript 11). 

Concerning BHT concentration. The concentration of BHT in CLO800 samples and in their 

corresponding digested lipid extracts was also estimated, as mmol/mol of AG plus FA present in the 

samples, by using the following equation:  

BHT (mmol/molAG+FA) = 1000*(Pc*An/2)/NTAG+FA   [Objective 3.5.-eq.4] 

where An is the area of signal n due to the two aromatic protons of BHT (see Table 1 of 

Manuscript 11) and NTAG+FA is determined using [eq.S15] detailed in Supplementary Material of 

Manuscript 11. 

3.5.5. Study of the headspace composition of the digestates 

The methodology employed for the study by SPME-GC/MS of the volatile components of the 

headspace of the samples subject of study (0.5 g in 10 mL screw-cap vial) is the same as that 

described in subsection 1.2.5. of the experimental design of Objective 1.2.  

The samples, all of them studied in duplicate, were the following: non-enriched cod liver oil 

(CLO) and BHT-enriched samples at 20 and 800 ppm (CLO20, CLO800); their corresponding digestates 

(DCLO, DCLO20, DCLO800); the juices obtained after being submitted to digestion conditions in the 

absence of oil (J); and mixtures made up of starting oils and juices submitted to digestion conditions 

in the same proportions as in the digestates (CLO+J, CLO20+J, CLO800+J). These latter mixtures were 

studied with the aim of simulating a matrix in the sample before digestion similar to that obtained 

after digestion, and thus to a certain extent comparable. As 4 digestion experiments were carried 

out, altogether the headspaces of 8 samples of each kind were studied.  
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3.5.6. Statistical analysis 

The significance of the differences among the starting oils and the corresponding digestates on 

the molar percentage of the different kinds of lipolytic products, on the molar percentage of ω-3 AG 

or FA, and on the concentration of vitamin A and of the several oxidation compounds present, were 

determined by one-way variance analysis (ANOVA) followed by Tukey b test at p<0.05, using SPSS 

v.22 software (IBM, NY, USA). 
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OBJECTIVE 4.1. 

To investigate by means of 1H NMR and SPME-GC/MS the chemical reactions taking place  

during in vitro gastrointestinal digestion of European sea bass,  

and the effect of fish salting (brine-salting/dry-salting) on their extent 

(Manuscript 12) 

4.1.1. Fish specimens 

Four specimens of farmed European sea bass were acquired from a local supplier within 48 h 

of harvest. The average body weight of the specimens was 1337.3±51.1 g. On the same day of 

purchase specimens were gutted, cleaned, filleted and skinned. From each specimen, one fillet was 

maintained unsalted (U, n=4) and the other fillet was submitted to salting. The average weight of sea 

bass fillet (n=8) was 261.2±12.1 g.  

4.1.2. Fish salting 

Two salting methods were carried out in this study: dry-salting and brine-salting. The dry-

salted fillet (DS, n=2) was obtained by covering it completely with coarse sea salt for 8 h at 4ºC, 

whereas the brine-salted one (BS, n=2) was immersed for 15 min in a 15% brine-solution of salt at 

room temperature with a brine-to-fish proportion of 1:6 (w/v). Afterwards, both fillets were rinsed 

with water to remove the remaining surface salt or brine. Salted fish fillets were vacuum-packed, 

frozen and stored at -80ºC for up to 24 h until in vitro digestion experiments.  

4.1.3. In vitro gastrointestinal digestion 

Minced fish samples (4.5 g), either previously salted or not, were digested in duplicate, as 

previously described in subsection 3.1.2. of the experimental design of Objective 3.1. (see Objective 

4.1.-Figure 1). Thus, the digestates obtained from the in vitro digestion of unprocessed sea bass were 

named DU (n=8); those obtained from brine-salted sea bass samples were named DBS (n=4) and from 

dry-salted ones DDS (n=4). In addition, blank samples, corresponding to digestive juices submitted to 

in vitro digestion conditions in the absence of fish (J), were also undertaken (n=4) for further analysis.  
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Objective 4.1.-Figure 1. Schematic representation of the in 
vitro digestion methodology employed in this study. 

 

4.1.4. Fish lipid extraction and study by 1H NMR  

Lipid extraction. Lipids from sea bass fillets before digestion (U, BS, DS), from the digested fish 

samples (DU, DBS, DDS) and from the juices submitted to digestion conditions in the absence of food 

(J) were extracted with dichloromethane (CH2Cl2, Sigma-Aldrich, St. Louis, MO, USA), following the 

same methodology described in subsection 2.2.3. of the experimental design of Objective 2.2. The 

average lipid content per fillet was 7.5±1.2% (ww).  

1H NMR spectra acquisition and derived data. 1H NMR spectra of lipid extracts were recorded 

in duplicate on a Bruker Avance 400 spectrometer operating at 400 MHz. To do this, the sample 

preparation to acquire the corresponding spectra, the acquisition conditions and the study of the 

spectral data were the same as those described in subsection 1.1.5. of the experimental design of 

Objective 1.1. 

The lipid composition of unsalted and salted fish fillets before digestion, expressed as molar 

percentage of the different kind of acyl groups, and the content of the several kinds of lipolytic 
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products present in digested lipid extracts, were determined from 1H NMR spectral data, as in 

Manuscript 5 and in a previous study (Vidal et al., 2012). 

4.1.5. Study by SPME-GC/MS of the headspace composition 

The methodology employed for the study by SPME-GC/MS of the volatile components of the 

headspace of the samples subject of study (0.5 g in 10 mL screw-cap vial) is the same as that 

described in subsection 1.2.5. of the experimental design of Objective 1.2. The samples were the 

following: sea bass samples before digestion (U, BS, DS); digestive juices employed and submitted to 

digestion conditions in the absence of fish (J); mixtures made up of juices submitted to digestive 

conditions and of unsalted, brine-salted or dry-salted sea bass before digestion mixed in the same 

proportions as in the digestates (U+J, BS+J, and DS+J); and fish digestates (DU, DBS, DDS).  

4.1.6. Statistical Analysis 

Statistical analysis was performed using the Statistical package SPSS v.22 (IBM, NY, USA). The 

significance of the differences on the molar percentages of lipolytic products among samples was 

determined by one-way variance analysis followed by post hoc Tukey b test at 0.05 threshold.  
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OBJECTIVE 4.2. 

To study by means of 1H NMR and SPME-GC/MS the effect of smoking with two liquid smoke 

flavourings on lipid hydrolysis and oxidation occurring during in vitro gastrointestinal digestion of 

European sea bass, and to evaluate to what extent the flavouring composition may influence these 

reactions 

(Manuscript 13) 

4.2.1. Fish specimens 

Four specimens of farmed European sea bass were acquired from a local supplier within 48 h 

of harvest. The average body weight of the specimens was 1352.1±48.7 g. On the same day of 

purchase fishes were gutted, cleaned, filleted and skinned just before smoking. From each specimen, 

one fillet was maintained unprocessed as control (U, n=4) and the other fillet was submitted to 

smoking. The average weight of the fillet (n=8) was 240.3±13.1 g. The average molar percentages of 

the several kinds of acyl groups in fish fillets, determined by 1H NMR (Vidal et al., 2012), were the 

followings: 21.4±0.7% of saturated acyl groups and 78.6±0.7% of total unsaturated acyl groups; the 

latter consisting of 41.8±0.7% of oleic (plus other minor unsaturated acyl groups), 22.5±0.7% of 

diunsaturated ω-6 (mainly linoleic), 14.2±0.6% of polyunsaturated ω-3 acyl groups, which include 

5.8±0.3% of DHA and 5.1±0.4% of EPA, and 0.1±0.0% of ω-1 acyl groups.  

4.2.2. Liquid smoking procedure 

The smoking procedure consisted in the immersion of the fish fillet for 1 min in a solution of 

smoke flavouring in water (1:6, v/v) with a fish-to-flavouring solution proportion of 1:16 (w/v). 

Afterwards, smoked fillets were kept at room temperature for 2 h to facilitate the interaction 

between smoke components and fish flesh. In this study two commercial aqueous smoke flavourings 

(A and B) were used. Fish fillets smoked with flavouring A were named SA (n=2) and those smoked 

with flavouring B were named SB (n=2).  

These smoke flavourings A and B were selected because: i) they differ in their phenolic 

concentration (19 g/L and 24 g/L respectively, according to the manufacturer); ii) they have been 

employed in previous works carried out in our laboratory on oxidative stability and evolution during 

refrigerated storage of smoked European sea bass and thus, their performance under these 

conditions is known (Vidal et al., 2016ce); and iii) the composition of the dichloromethane extracts of 
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flavourings A and B is also known, having been studied in detail by GC/MS in the above-mentioned 

works (Vidal et al., 2016ce).  

4.2.3. In vitro gastrointestinal digestion  

Unsmoked and smoked fish fillets were minced in a grinder and then, 4.5 g of each sample 

were in vitro digested following the same methodology described in subsection 3.1.2. of the 

experimental design of Objective 3.1. (see Objective 4.2.-Figure 1). 
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Objective 4.2.-Figure 1. Schematic representation of the in 
vitro digestion methodology employed in this study. 

 

For consistency of results, digestion experiments were performed in duplicate. Thus, the 

digestates obtained from the in vitro digestion of unsmoked sea bass were named DU (n=8) and 

those obtained from smoked sea bass samples using flavouring A were named DSA (n=4) and from 

flavouring B, DSB (n=4). In addition, blank samples, corresponding to juices submitted to in vitro 

digestion conditions in the absence of fish meat (J, n=4) were also analyzed.  
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4.2.4. Fish lipid extraction and study by 1H NMR 

Lipids from fish samples before (U, SA, SB) and after digestion (DU, DSA, DSB) were extracted 

with dichloromethane (CH2Cl2, Sigma-Aldrich, St. Louis, MO, USA), following the same methodology 

described in subsection 2.2.3. of the experimental design of Objective 2.2. 

The 1H NMR spectra of the lipid extracts were recorded in duplicate on a Bruker Avance 400 

spectrometer operating at 400 MHz. To do this, the sample preparation to acquire the 

corresponding spectra, the acquisition conditions and the study of the spectral data were the same 

as those described in subsection 1.1.5. of the experimental design of Objective 1.1. 

Bearing in mind that, as mentioned before, the area of each 1H NMR spectral signal is 

proportional to the number of protons that generate it, and that the proportionality constant is the 

same for all kinds of protons, it is possible from the area of some spectral signals to estimate the 

molar percentage or the concentration of several components present in fish lipid extracts before 

and after digestion. Hence, the hydrolysis degree reached in the digestates was assessed using the 

equations developed, validated and explained in detail in Manuscripts 4 and 5.  

Furthermore, the concentration of (Z,E)-conjugated dienic systems associated with 

hydroperoxy groups and with hydroxy groups ((Z,E)-CD), if any, was estimated as mmol/mol of acyl 

group (AG) plus fatty acid (FA) present in the samples, in relation to total number of moles of AG 

plus FA present (NTAG+FA), as follows: 

NTAG+FA = Pc*A0.84-1.00/3        [Objective 4.2.-eq.1] 

(Z,E)-CD (mmol/molAG+FA) = 1000*[Pc*(A6.58+A6.48)]/NTAG+FA   [Objective 4.2.-eq.2] 

where Pc is the proportionality constant existing between the area of the 1H NMR signals and 

the number of protons that generate the signal, A0.84-1.00 is the area of the signals at 0.84-1.00 ppm 

due to the methylic protons (-CH3) of all AG and FA present, and (A6.58+A6.48) is the sum of the areas 

of signals a at 6.58 ppm and b at 6.48 ppm, the former signal being generated by one proton of (Z,E)-

conjugated dienes supported in chains having also hydroperoxy groups, and the latter signal by one 

proton of (Z,E)-conjugated dienes supported in chains also having hydroxy groups (Gardner & 

Weisleder, 1972; Murakami, Shirahashi, Nagatsu, & Sakakibara, 1992). 

4.2.5. Study by SPME-GC/MS of the headspace composition of the digestates 

The methodology employed for the study by SPME-GC/MS of the volatile components of the 

headspace of the samples subject of study (0.5 g in 10 mL screw-cap vial) is the same as that 

described in subsection 1.2.5. of the experimental design of Objective 1.2. Samples were the 
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following: digestates obtained in the two digestion experiments from unprocessed sea bass (DU) and 

from smoked samples using flavourings A and B (DSA, DSB), together with the juices submitted to 

digestion conditions in the absence of fish (J); in addition, the headspace composition of fish fillets 

before digestion (U, SA, SB) was also analyzed.  

4.2.6. Statistical Analysis 

The significance of the differences on the molar percentages of lipolytic products among 

samples and on the abundance of volatiles compounds detected in the digestates was determined by 

one-way variance analysis (ANOVA) followed by post hoc Tukey b test or by t-Student test at 0.05 

threshold, using the Statistical package SPSS v.22 (IBM, NY, USA). 
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AIM 1: Fish cooking methods. Effect on lipids and formation of volatile compounds. 

Influence of fish species and growing conditions  

 

 

OBJECTIVE 1.1. 

To investigate by means of 1H NMR the potential influence of frying technique 

(pan-frying/microwave-frying), cooking oil (extra-virgin olive oil/sunflower oil) and fish species 

(farmed European sea bass/farmed Gilthead sea bream) on the changes  

occurring in fish lipids and in cooking oil during fish shallow-frying (Manuscript 1) 

In this work, a detailed study of food shallow-frying was undertaken by means of 1H NMR for 

the first time. Fillets of farmed Gilthead sea bream (Sparus aurata) and European sea bass 

(Dicentrarchus labrax) were shallow-fried under domestic conditions using two frying methods 

(microwave- and pan-frying) and two cooking oils (sunflower and extra-virgin olive). The lipids of raw 

and fried fish fillets were extracted and their 1H NMR spectra recorded, together with that of the 

cooking oils before and after fish frying. Moreover, both oils were heated under the same conditions 

in the absence of food, and their 1H NMR spectra studied in order to elucidate potential changes 

which occurred in the main and minor components of fish lipids and of the oils used for frying, either 

in the absence or in the presence of fish fillets. 

Occurrence of lipid migration during fish shallow-frying 

The results obtained confirmed that there is a migration of main and some minor lipidic 

components between the two systems involved (oil/fish fillet), this exchange being linked to the 

proportion of each component in the original lipidic medium. Therefore, after fish frying, extra-virgin 

olive oil is richer in ω-3, ω-1, linoleic and saturated acyl groups and poorer in oleic acyl groups than 

the original oil. Likewise, after fish frying, sunflower oil is richer than the original in all kinds of acyl 

groups except for linoleic groups. In addition, after frying fish, both oils are enriched in the fish minor 

lipid component cholesterol. Concerning fish lipids, their composition also changes during frying, 

becoming richer in those acyl groups and minor components that are in higher concentration in the 

frying oil than in fish lipids, while poorer in those acyl groups and minor components that are in 

higher concentration in the raw fish lipids than in the original oils. Migration of healthy vegetable 

sterols Δ7-avenasterol, β-sitosterol, Δ5-campesterol from sunflower oil to fish lipids was highlighted, 

as well as migration of β-sitosterol, Δ5-campesterol from extra-virgin olive oil to fish lipids. 
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Considering all the frying techniques, oils and fish species studied, a contribution ranging from 

19.4 to 28.1% of the migrated fish lipids to the final molar percentage of the different kinds of acyl 

groups in the fried oil was estimated. The highest contribution of fish lipids to the changes observed 

in the fried oil was observed in those fish fillets which contained the highest initial fat content and 

which underwent the highest fat loss as a result of the frying process, evidencing a remarkable 

leaching of their lipids. By contrast, the smallest contribution of fish lipids to the changes observed in 

the fried oil was observed in those fish fillets showing the lowest initial fat content. 

The contribution of migrated oil to the molar percentage of the different acyl groups in the 

fried fish lipids was also important, although somewhat lower than that of fish lipids to the fried oil, 

ranging in most of the cases from 15 to 25%. The exception is the case of sea bass fillets microwave-

fried in sunflower oil, in which the contribution of the oil is very high (≈43%). These results are in 

agreement with the fact that the latter fish fillets showed the lowest initial fat content and that they 

were the only ones in which the total fat content increased after frying, highlighting that when 

microwave-frying these fillets the oil uptake took place to a greater extent than the leaching out of 

the fish lipids. 

Likewise, it could be observed that the total fat content of sea bream fillets significantly 

decreased after shallow-frying, whereas in the case of sea bass ones, it remained almost unchanged 

or increased. This seemed to be related to the initial fat content of the fish fillet. 

Occurrence of lipid thermo-oxidation during fish shallow-frying 

The occurrence of thermo-oxidation reactions under shallow-frying conditions was also 

evidenced by the degradation of the main unsaturated acyl group of the cooking oil and the 

occurrence of secondary oxidation products, being much more pronounced during pan-frying than 

during microwave-frying and in sunflower oil than in extra-virgin olive oil. As expected, no signals 

related to primary oxidation compounds (hydroperoxides containing a conjugated dienic system) 

were detected in any of the lipidic samples studied. However, secondary oxidation compounds were 

detected in the cooking oils, but not in the fried fish lipids. Regarding heated oils in the absence of 

food, alkanals, (E)-2-alkenals, (Z,E)- and (E,E)-2,4-alkadienals were detected in pan-heated sunflower 

oil, whereas alkanals, (E)-2-alkenals and (E)-9,10-epoxystearate in pan-heated extra-virgin olive oil. 

By contrast, none of these oxidation products were detected in microwave-heated extra-virgin olive 

oil and in microwave-heated sunflower oil significantly lower (p<0.05) amount of (Z,E)-2,4-alkadienals 

than in pan-heated sunflower oil were found. It must be noted that no changes in the concentration 

of sterols was noticed with the heating under shallow-frying conditions in the absence of food.  
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Concerning the occurrence of lipid oxidation products in the oils used for shallow-frying fish, 

these aldehydes were in much lower concentrations than those detected in the oils heated in the 

absence of food. This fact could be explained by several reasons: i) when the fish fillet is introduced 

into the system, the oil temperature goes down for a while and as a consequence the thermo-

oxidation process can be reduced, whereas in the absence of food it maintains constant (≈170ºC) for 

the 5 min heating experiment; ii) the presence of the fish fillet provokes a greater movement of the 

surrounding oil, which facilitates the escape of volatile aldehydes to the atmosphere; iii) the 

occurrence of Maillard type reactions between aldehydes and fish proteins takes place; and iv) there 

is a potential dilution effect due to the leaching of fish lipids into the frying media.  

Moreover, certain influence of the fish species on the abundance of aldehydes detected in the 

fried oils was evidenced. Indeed, (E,E)-2,4-alkadienals and (E)-2-alkenals were found in the sunflower 

oil employed to pan-fry sea bass, whereas only (E,E)-2,4-alkadienals were found in the sunflower oil 

employed to pan-fry sea bream, which was attributed to the lower molar percentage of DUω-6 

(mainly linoleic) and a higher one of ω-3 acyl groups in this latter. It is well-known that the 

degradation of linoleic acyl groups generates (E)-2-alkenals of higher molecular weight than those 

arising from polyunsaturated ω-3 acyl groups, which are very volatile and escape more easily 

towards the atmosphere due to their lower boiling points. This was confirmed by the study of the 

headspace composition of the fried oils by SPME-GC/MS. No aldehydes nor epoxides were detected 

in the pan-fried extra-virgin olive oil. In this sense, extra-virgin olive oil is safer and more suitable 

than sunflower oil for fish shallow-frying. 

Occurrence of lipid hydrolysis during fish shallow-frying 

The heating provoked in general a decrease of 1,2-diglycerides concentration in the cooking 

oils, which was more accentuated with the fish frying process. As the evolution of 1,2-diglycerides in 

fish lipids during frying did not follow a clear trend, the changes observed in their concentration in 

oils during fish frying are probably associated with degradation processes, in addition to lipid 

exchange between fish fillet and oil. 

In summary, in this study the frying technique, the nature of the cooking oil and the fish 

species have been evidenced to have a great influence on the changes occurring during food shallow-

frying. 
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OBJECTIVE 1.2. 

To study by means of 1H NMR and SPME-GC/MS the potential effect of boiling, steaming and sous-

vide cooking on the lipids and volatile profile of farmed and wild European sea bass (Manuscript 2) 

This study shed light on the changes provoked by boiling, steaming and sous-vide cooking on 

the lipids (including cholesterol, phospholipids and vitamin A) and on the volatile profile of farmed 

and wild European sea bass meat. Firstly, the lipid and volatile components of raw farmed and wild 

sea bass meat were investigated by means of 1H NMR and SPME-GC/MS and discussed with the aim 

of properly characterizing the starting fish samples. Secondly, the same study on cooked farmed and 

wild sea bass was undertaken, to evaluate the changes provoked by the three cooking methods. 

Raw European sea bass. Farmed versus wild specimens 

Raw farmed and wild sea bass had not only very different total lipid content but also a very 

different lipid composition. This is mainly attributed to the different diet of farmed and wild sea bass. 

Thus, the total lipid content of farmed specimens was significantly higher (≈5-fold) than that of the 

wild ones. Moreover, regarding the molar proportions of the several kinds of acyl groups, the lipid 

extracts of farmed sea bass contained a higher molar percentage of total unsaturated acyl groups 

than those of the wild samples, the proportion of DUω-6 acyl groups (mainly linoleic) being much 

higher (p<0.05) in the former, whereas that of ω-3 acyl groups being much lower (p<0.05). 

Furthermore, differences, regarding the molar concentration of certain minor lipidic components in 

relation to the moles of triglycerides, were noticed between both kinds of sea bass; the lipid extracts 

of farmed sea bass showed much lower (p<0.05) concentration of cholesterol, phosphatidylcholine, 

phosphatidilethanolamine and vitamin A (retinyl ester) than the lipid extracts of wild samples. 

Nevertheless, due to the much lower lipid proportion of wild than of farmed samples, it must be 

pointed out that the total content of ω-3 acyl groups, as well as of cholesterol, phospholipids and 

vitamin A ingested per 100 g of farmed or wild sea bass meat would be quite similar. Hence, from a 

nutritional point of view, both kinds of sea bass meat might not differ very much. 

It was also worth noting the low variability of farmed sea bass lipid composition, mainly due 

to the controlled growing conditions and commercial feeds. However, a relatively high degree of 

variability is found in wild sea bass lipids, which might be explained by the greater heterogeneity in 

the diet composition of wild specimens and in the environmental conditions of the geographical 

fishing ground, as well as by other factors, such as sex and age. 
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In relation to the volatile profile, a higher number of volatile components were detected in 

farmed than in wild sea bass samples, as could be expected from the markedly higher lipid content in 

the former than in the latter. One of the main differences is related to the great abundance of 

hydrocarbons in the headspace of farmed sea bass meat. These include aliphatic hydrocarbons, 

alkylbenzenes, some naphthalene derivatives and terpenic hydrocarbons. Another important 

difference lies in the abundance of the synthetic antioxidant 2,6-di-tert-butyl-4-hydroxytoluene (BHT, 

E-321), present in very high abundance in farmed samples but absent in wild ones. The near or total 

absence of these compounds in the headspace of wild sea bass is supposed to be due to the higher 

exposure to these compounds via commercial feeds and living environment, as well as to a higher in 

vivo retention of these lipophilic metabolites in farmed than in wild specimens due to the ≈5-fold 

higher lipid content. However, the headspace of farmed and wild sea bass meat hardly differed in 

volatile compounds coming from lipid oxidation processes (like alcohols, aldehydes, ketones, furans 

and acids) and in those related to fish nitrogenated components degradation (trimethylamine and 

ethanethiol). Abundance data of these compounds are very low in both kinds of sea bass, indicating a 

very low level of lipid and protein degradation via either autooxidation, enzymatic or microbial 

activity in the starting samples.  

Taking into account the above-mentioned differences, although both kinds of specimens 

belong to the same fish species, it seemed as if they belonged to different ones. Due to this, after 

cooking further differences were found between farmed and wild sea bass samples. 

Cooked sea bass. Analysis of the effect of some chemical reactions expected to occur 

during cooking on the lipids and volatile profile of farmed and wild sea bass meat 

Influence of cooking on sea bass lipid content. As a consequence of the loss of fish meat water 

during heat treatment, the cooked sea bass meat has a higher proportion of lipids than the 

corresponding raw meat. Regardless of the kind of sea bass, the highest weight loss occurred in 

boiled fillets and the lowest in steamed ones, sous-vide cooked samples showing intermediate 

values. 

Influence of cooking on sea bass lipid hydrolysis. None of the cooking techniques provoked 

the hydrolysis of triglycerides, phospholipids and retinyl esters (vitamin A) present in farmed and 

wild sea bass lipids to an extent detectable by 1H NMR. 

Influence of cooking on sea bass lipid oxidation. None of the cooking techniques provoked the 

oxidation of unsaturated acyl groups supported in triglycerides and phospholipids, of cholesterol and 

of vitamin A present in farmed or wild sea bass lipids to an extent detectable by 1H NMR.  
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By contrast, the study of the headspace composition of cooked fish meat by means of SPME-

GC/MS indicated that during cooking a very slight oxidation of unsaturated acyl groups took place, 

yielding several volatile secondary oxidation compounds of low molecular weight that enriched the 

aromatic profile of sea bass. Nevertheless, differences on the nature and abundance of lipid 

oxidation-derived volatiles generated were observed depending on the cooking method applied, on 

the fish growing conditions and on the content of BHT in farmed sea bass. 

 Cooking methods: boiling did not provoke lipid oxidation or, if it occurred it was not 

observable, presumably because the potential new compounds generated were lost by 

leaching out into the aqueous cooking media; as boiled sea bass meat is so poor in odour-

active volatile compounds, it can be said that it could be very suitable for consumers who do 

not like fishy aroma. Considering steaming and sous-vide cooking, both methods provoked a 

slight oxidation of unsaturated acyl groups, leading to the formation of alcohols, aldehydes, 

ketones, alkylfurans and acids that modified the headspace of cooked sea bass. Based on the 

abundances found, lipid oxidation reactions occurred to a similar extent during these two 

culinary techniques. 

 Fish growing conditions: a higher generation of volatile compounds was evidenced during 

cooking of farmed than of wild sea bass, which was expected due to the higher lipid content of 

the former. Moreover, due to the higher proportion of DUω-6 in relation to ω-3 acyl groups in 

farmed than in wild samples, in addition to volatile compounds derived from ω-3 acyl groups 

(1-penten-3-ol, 5(Z)-octa-1,5-dien-3-ol, propanal, (E)-2-pentenal, (Z)-4-heptenal, 2,4-

heptadienals, 1-penten-3-one, 3,5-octadien-2-one and 2-ethylfuran), high abundances of those 

derived from ω-6 ones (1-octen-3-ol, 1-pentanol, hexanal, (E)-2-hexenal and 2-pentylfuran) 

were also found in the headspace of cooked farmed sea bass meat.  

 BHT content in farmed sea bass: it was also evidenced that the initial BHT content of each 

farmed sea bass specimen had a great impact on the advance of oxidation reactions taking 

place during the culinary treatment, and thus on the generation of odour active compounds. 

The higher the abundance of BHT, the lower the advance of lipid oxidation reactions during 

cooking was. 

Influence of cooking on sea bass nitrogenated components degradation. As a result of the 

high temperatures applied during cooking, the degradation of fish nitrogenated components, such as 

proteins, amino acids or the nitrogenated base trimethylamine oxide (TMAO) was proved by SPME-

GC/MS. Among the volatile compounds generated from these reactions, there were: Strecker 

aldehydes and some of its derivatives, including sulphur-containing compounds, and trimethylamine 
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(TMA). Differences on the abundance of these volatile compounds were also noticed depending on 

the cooking method applied and the fish growing conditions. 

 Cooking methods: it was observed that boiling provoked fish nitrogenated components 

degradation to a lower extent than steaming or sous-vide cooking. Although the leaching out 

into the aqueous media of the potentially generated compounds cannot be ruled out. Again, 

reactions involved in the formation of protein-related volatile compounds seem to occur to a 

similar extent during steaming or sous-vide cooking. 

 Fish growing conditions: cooked farmed samples showed slightly higher number and 

abundances of all these volatile compounds than cooked wild ones, but these differences were 

not as remarkable as in the case of compounds coming from lipid oxidation. 

Occurrence of off-reactions during sous-vide cooking 

In addition to the chemical reactions occurring in fish components during cooking, the 

degradation of polypropylene vacuum-seal bag during sous-vide cooking was evidenced. Four 

specific branched hydrocarbons were only detected in sous-vide cooked sea bass meat, being 2,4-

dimethyl-1-heptene the main one. The occurrence of this latter, which is a well-known by-product of 

polypropylene degradation, highlighted some degree of migration of plastic-derived compounds into 

sea bass during sous-vide cooking. It also should be noted that the bags employed in this study were 

supposed to be heat resistant, manufactured for vacuum-cooking at temperatures up to 120ºC, and 

that sea bass subject of study was sous-vide cooked at only 85ºC.  

From these results, it seems evident that steaming and sous-vide cooking provide similar 

organoleptic profiles, although steaming is a cleaner, faster, cheaper and more environmentally 

friendly than sous-vide cooking. 
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OBJECTIVE 1.3. 

To address by means of 1H NMR and SPME-GC/MS the potential effect of salt-crusted oven baking, 

conventional oven baking and microwave cooking on the lipids and volatile profile of farmed and 

wild European sea bass (Manuscript 3) 

This Objective 1.3. tackled the possible effect of microwave cooking, salt-crusted and 

conventional oven baking on certain aspects of farmed and wild European sea bass quality, focused 

on their lipids and their volatile profiles. For this purpose, 1H NMR and SPME-GC/MS were the 

techniques employed. Special attention was paid to the different chemical reactions ongoing during 

cooking that may affect lipid and volatile profile of sea bass, analyzing potential differences on their 

extent related either to the culinary treatment applied or to fish growing conditions, namely farmed 

or wild. 

As in the previous Objective 1.2., as a starting point, raw farmed and wild sea bass samples 

were characterized to know the potential initial differences existing on their lipids and volatile 

profile. Similar results concerning the lipid content, the composition in main and minor lipidic 

components, and the volatile profile of farmed and wild samples were obtained. Therefore, below 

are only summarized the changes occurring on the lipids and volatile profile of farmed and wild sea 

bass during the three cooking techniques studied, which were provoked by lipid hydrolysis and 

oxidation, and by degradation of fish nitrogenated compounds (including Maillard-type reactions). 

Changes in the lipid content after cooking. The proportion of lipids in farmed and wild sea 

bass meat after conventional oven baking and microwave oven cooking significantly increased, 

mainly due to the loss of water from fish meat via dripping or evaporation under heating conditions. 

However, salt-crusted oven baking did not provoke any change in the lipid content, indicating that 

the presence of the salty crust prevents the fish fillet surface from dehydrating. 

Occurrence of lipolysis reactions during cooking. As in the case of boiling, steaming and sous-

vide cooking studied in the Objective 1.2., 1H NMR did not detect that hydrolysis of either 

triglycerides or minor lipidic components (phospholipids and retinyl esters) had taken place in sea 

bass lipids after microwave cooking, salt-crusted and conventional oven baking.  

Occurrence of lipid oxidation during cooking. 1H NMR results showed that none of the culinary 

techniques performed led to a detectable decrease in the molar proportion of unsaturated acyl 

groups, not even in the most polyunsaturated ones. The formation of oxidation products derived 

from ω-3 and ω-6 acyl groups of sea bass lipids was only evidenced by the SPME-GC/MS study of the 
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headspace composition of cooked sea bass meat. Although the extent of lipid oxidation reactions 

occurring during cooking was very limited, its major relevance might be in relation with fish sensory 

attributes. Among the volatile compounds with well-know aromatic properties, there were acids, 

alcohols, aldehydes, ketones and alkylfurans, whose generation depended on the fish growing 

conditions of sea bass and on the cooking method applied. 

 Fish growing conditions: in agreement with the previous study of the Objective 1.2. on the 

effect of boiling, steaming and sous-vide cooking, after microwave cooking, salt-crusted and 

conventional oven baking the headspaces of farmed sea bass was enriched to a greater extent 

in lipid-oxidation derived metabolites than that of the wild ones during cooking. This is due to 

the higher lipid content of farmed sea bass meat than of wild one. Moreover, due to the lower 

ω-3/ω-6 lipids ratio in farmed than in wild samples, the relative abundance of volatile 

compounds coming from ω-3 lipids in relation to those coming from DUω-6 ones is much 

higher in cooked wild samples than in cooked farmed ones. Hence, the abundance ratios of 

propanal:hexanal and of 2-ethylfuran:2-pentylfuran are higher in wild cooked sea bass 

headspaces than they are in farmed cooked. Likewise, unsaturated aldehydes coming from ω-6 

acyl group oxidation, like (E)-2-hexenal and (E)-2-heptenal, were only detected in cooked 

farmed samples. 

 Cooking methods: salt-crusted baking provoked unsaturated acyl groups oxidation to a slightly 

lesser extent than did conventional baking and microwave cooking, especially in wild samples. 

At any rate, it must be pointed out that the influence of the cooking method on the extent of 

lipid oxidation reaction was very slight in relation to that of sea bass growing conditions. 

Occurrence and effect of sea bass nitrogenated component degradation. During sea bass 

cooking, degradation of fish nitrogenated components (like proteins/peptides/amino acids, TMAO) 

also occurred generated, yielding TMA, as well as volatile markers of initial (Strecker aldehydes and 

some derivatives) and more advanced stages (heterocyclic aromatic compounds) of Maillard 

reaction. Again, sea bass growing conditions and the cooking method applied markedly influenced 

the formation of this kind of compounds during cooking. 

 Fish growing conditions: the headspace of cooked farmed sea bass was richer in number and 

abundance of these volatiles than was the wild cooked samples headspace, due to the lower 

lipid content of these latter, which leads to less generation of potential precursors of Maillard-

type reactions (carbonyl compounds). 
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 Cooking methods: conventional oven baking was the cooking method that provoked the most 

noticeable changes in the headspace of both farmed and wild sea bass meat, enhancing the 

formation of volatile compounds related to Maillard-type reactions, including alkylthiophenes, 

pyrroles, pyrazines and 2-ethylpyridine. Indeed, these potent odourants compounds were not 

detected after microwave cooking or salt-crusted oven baking. Bearing in mind that 

heterocyclic aromatic compounds provide desirable roasted, nutty, popcorn, and toasted-like 

notes in cooked fish meat, conventional oven baking might be a very suitable culinary 

technique for consumers looking for foods with marked odour notes. In the case of salt-

crusted oven baking, the extent of Maillard-type reactions seemed to be limited by the 

presence of the salt-crust covering fish fillet during baking, which provokes a wet environment 

surrounding fish, and in the case of microwave cooking, it is limited by the cooking 

temperature reached, which is not enough to cause browning reactions in such a short cooking 

time. Anyway, microwave cooking provoked a slightly higher degradation of nitrogenated 

components than salt-crusted oven baking, in spite of the much shorter cooking time (5 vs 25 

min).  

  

 



Summary-Aim 2 

493 

AIM 2: In vitro gastrointestinal digestion of lipids. Development and validation of a new 

method based on 1H NMR for the study of lipid hydrolysis during digestion. Study 

in depth of the influence of several factors affecting the extent of in vitro lipolysis  

 

 

OBJECTIVE 2.1. 

To develop and validate a new methodology based on 1H NMR spectral data to evaluate the 

hydrolysis level in complex lipid mixtures (quantification of triglycerides, 1,3- and 1,2-diglycerides, 2- 

and 1-monoglycerides and fatty acids) (Manuscript 4) 

In this Objective 2.1. a detailed study of the 1H NMR spectra of pure standard compounds, as 

well as of 10 mixtures containing different known proportions of triglycerides (TG), diglycerides (1,2-

DG, 1,3-DG), monoglycerides (1-MG, 2-MG) and fatty acids (FA), was carried out. The mixtures 

prepared covered a very broad range of concentrations and simulated edible oils and fats of 

vegetable and animal origins, including fish, with different levels of hydrolysis. The relaxation delay 

and acquisition time allow the complete relaxation of the protons, the signal areas thus being 

proportional to the number of protons that generate them, being possible their use for quantitative 

purposes.  

Assignment of proton signals of glycerides and fatty acids. The assignment of the spectral 

signals to the several protons of glycerides and FA was performed using different standard 

compounds corresponding to TG, 1,2-DG, 1,3-DG, 1-MG, 2-MG and FA of different chain length and 

unsaturation degree. Results showed that glycerides have specific signals due to the protons present 

in their glyceryl backbone. In addition, small differences in the multiplicity and chemical shifts of 

signals due to protons in α- and β-position in relation to the carbonyl group of acyl groups, and to the 

carboxyl group in the case of FA, were noticed. Thus, the simple observation of the 1H NMR spectrum 

of lipid samples provides important information about the nature and proportion of lipolytic 

products present. 

Quantification of glycerides and fatty acids using 1H NMR spectral data. Based on the 

proportionality existing between the area of the 1H NMR signals and the number of protons that 

generate them, the molar percentages of the different kinds of compounds constituting a complex 

lipid mixture were estimated using different equations involving the areas of different spectral 

signals. Two quantitative approaches were carried out, depending on the signals selected for 
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integration, either using signals generated by the lowest (approach “a”) or by the highest (approach 

“b”) number of protons.  

Thus, the number of moles (N) in the sample of those components having specific non-

overlapped signals in the spectrum, such as 2-MG, 1-MG and 1,2-DG were determined as follows:  

N2-MG = Pc*AQ         [Summary-eq.1a] 

N2-MG = Pc*AK/4        [Summary-eq.1b]  

N1-MG = Pc*AL         [Summary-eq.2] 

N1,2-DG = Pc*AR        [Summary-eq.3a]  

N1,2-DG = Pc*AJ/2        [Summary-eq.3b] 

where Pc is the proportionality constant relating the number of protons that generate a 

proton signal and its area, and Ax is the area of the corresponding signal X, whose assignment is 

shown in Table 2 of Manuscript 4.  

However, if 1-MG are also present in the sample, the specific signal J of 1,2-DG and the specific 

signal I of 1-MG overlap. Therefore, the following alternative equation was proposed: 

N1,2-DG = (Pc*AI+J-2*N1-MG)/2      [Summary-eq.3b’] 

Quantification of TG requires one to consider that half of its specific signal O overlaps with half 

of the specific signal P of 1,2-DG: 

NTG = (Pc*2*A4.26-4.38-2*N1,2-DG)/4      [Summary-eq.4] 

where A4.26-4.38 represents the area of the spectrum signals comprised between 4.26 and 4.38 

ppm. 

In the absence of 1-MG and 1,3-DG, the following equation 5 can be used: 

NTG = (Pc*AO+P-2*N1,2-DG)/4      [Summary-eq.5] 

In the absence of only 1,3-DG, the number of moles of TG can be estimated as follows:  

NTG = (Pc*AN+O+P-2*N1,2-DG-2*N1-MG)/4     [Summary-eq.6] 

The determination of the number of moles of 1,3-DG also requires bearing in mind that there 

is a high overlapping of specific signal M of 1,3-DG with the specific signal N of 1-MG, the specific 

signal O of TG and the specific signal P of 1,2-DG. In spite of this, the following equation can be 

applied: 
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N1,3-DG = (Pc*AM+N+O+P-4*NTG-2*N1-MG-2*N1,2-DG)/5    [Summary-eq.7] 

The determination of the number of moles of FA can be carried out from the area of the 

signals of the protons supported on carbon atoms in α-position in relation to the carbonyl and 

carboxyl groups of acyl chains and FA respectively. In the case of lipids coming exclusively from edible 

oils of vegetable and terrestrial animal origin, this determination can be made by using this equation: 

NFA = (Pc*A2.26-2.40-6*NTG-4*N1,2-DG-4*N1,3-DG-2*N1-MG-2*N2-MG)/2  [Summary-eq.8] 

where A2.26-2.40 is the area of the spectrum signals at 2.26-2.40 ppm.  

When fish lipids are involved, some corrections are required to properly quantify FA, due to 

the slight overlapping between the signals of the protons supported on both carbon atoms in α- and 

β-position in relation to the carboxyl/carbonyl group of DHA acid and acyl group and that of the 

protons supported on carbon atoms in α-position in 1-MG, 2-MG and EPA fatty acid. In this case the 

equation proposed was the following:  

NFA = (Pc*10*A2.26-2.37+Pc*5*A2.37-2.44-60*NTG-40*N1,2-DG-40*N1,3-DG-18*N1-MG-13*N2-MG)/20 

          [Summary-eq.9] 

where A2.26-2.37 and A2.37-2.44 are the areas of the signals appearing at 2.26-2.37 and at 2.37-2.44 

ppm respectively. 

Therefore, the total number of moles of different molecules (NT) in the sample can be 

determined as the sum of the moles of all the different compounds present, in which all terms 

enclose the same proportionality constant: 

NT= NTG+N1,2-DG+N1,3-DG+N2-MG+N1-MG+NFA     [Summary-eq.10] 

Finally, the molar percentage of any of the different compounds present (X) can be estimated 

using the following general equation: 

X% = 100*NX/NT        [Summary-eq.11] 

Validation of the approach. The accuracy of the new 1H NMR methodology proposed was 

tested using the several mixtures of known composition prepared. The molar proportions of the 

different compounds present determined using the above-mentioned equations were compared to 

those obtained by weight. The level of agreement between both series of data was very high, 

confirming the validity of 1H NMR to quantify lipolytic products. The error in the determination of the 

molar percentages of the compounds present in the 10 mixtures ranged from 0 to 9%, and only in 

one case did it reach 17%. Moreover, very similar results were obtained with the two approaches 
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carried out, either using the signals generated by the lowest (approach “a”) or by the highest 

(approach “b”) number of protons. It should be noted that the accuracy of the determinations can be 

influenced by the quality of the 1H NMR spectrum, the base line correction and the spectral signal 

integration.  
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OBJECTIVE 2.2. 

To demonstrate the usefulness of 1H NMR when studying the extent of lipid hydrolysis reached 

during digestion of food samples (sunflower oil/minced fish meat), determining the hydrolysis level, 

the degree of triglyceride transformation, the lipid bioaccessibility level and the percentage of fatty 

acids physiologically releasable (Manuscript 5) 

In this Objective 2.2. 1H NMR was proved to be, for the first time, a very useful technique in 

monitoring the extent of lipid hydrolysis in digestion processes. Sunflower oil and minced fish meat, 

as model foods, were subjected to different in vitro digestion experiments and the lipolysis levels 

reached were evaluated using 1H NMR spectral data.  

Information extracted from the simple observation of the 1H NMR spectrum. Very valuable 

information about the extent of the lipolysis could be extracted from the simple observation of 1H 

NMR spectrum, enabling a rapid discrimination among samples having different hydrolysis degree. 

When comparing the 1H NMR spectra of the unlipolyzed sample with those of partially and totally 

lipolyzed ones, noticeable differences were observed. Certain signals remained almost unchanged, 

whereas specific signals of TG (signals O, S) disappeared gradually. These almost disappeared in the 

spectrum of totally lipolyzed sample, indicating that nearly all the TG were hydrolyzed. At the same 

time and as the hydrolysis advances, specific signals due to partial glycerides appeared in the spectral 

region ranging from 3.60 to 5.30 ppm. The newly formed glycerides during in vitro digestion were 

predominantly 1,2-DG (signals J, P, R) and 2-MG (signals K, Q), in agreement with the regiospecificity 

of digestive lipases used. The presence, though in low intensity, of the spectral signals corresponding 

to 1-MG (signals I, L, N), especially in totally lipolyzed sample, was explained by the isomerization of 

2-MG molecules which have been reported to be very unstable and to isomerize easily into 1-MG in 

an aqueous medium at neutral or alkaline pH and at moderate temperatures (26-40ºC). It is also 

noteworthy the presence of the multiplet corresponding to 1,3-DG at 4.05-4.21 ppm (signal M) in the 

spectrum of partially lipolyzed sunflower oil. Due to the positional specificity of the lipases used in 

the in vitro digestion protocol, this could be mainly explained by the occurrence of 1,2-DG 

isomerization, as also reported in vivo. 

Likewise, differences in the chemical shift and multiplicity of proton signals due to the 

methylenic protons in α- and β-position in relation to the carbonyl group of acyl groups and to the 

carboxyl group of FA (signals D and F) can also be appreciated. These signals showed higher chemical 

shifts, as higher the level of lipolysis was. However, due to the great degree of overlapping of these 
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signals, the observation of these proton signals can also give information about the extent of 

lipolysis, but not about the nature of the lipolytic products generated.  

Determination of lipolytic products generated during in vitro digestion. 1H NMR allowed 

estimating quantitatively the products generated during TG lipolysis by two different ways. 

 Quantitative description in function of acyl groups plus fatty acids: the digestion products were 

quantified as the molar percentages of acyl groups (AG) supported on the different glyceride 

structures (TG, DG, MG) and also the molar percentage of FA, using the following equations: 

AGTG% = 100*3*NTG)/NTAG+FA       [Summary-eq.12] 

AG1,2-DG% = 100*2*N1,2-DG)/NTAG+FA     [Summary-eq.13] 

AG1,3-DG% = 100*2*N1,3-DG)/NTAG+FA     [Summary-eq.14] 

AG2-MG% = 100*N2-MG/NTAG+FA      [Summary-eq.15] 

AG1-MG% = 100*N1-MG/NTAG+FA      [Summary-eq.16] 

FA% = 100*NFA/NTAG+FA       [Summary-eq.17] 

NTAG+FA = 3*NTG+2*N1,2-DG+2*N1,3-DG+N2-MG+N1-MG+NFA   [Summary-eq.18] 

where N is the number of moles of each kind of digestion product and NTAG+FA is the total 

number of moles of acyl groups plus FA present in the sample. 

 Quantitative description in function of glyceryl structures: this way determines the proportion 

of TG molecules that remained intact and that were hydrolyzed partially into DG, MG, and 

totally into glycerol (Gol). The equations to apply are the following: 

TG% = 100*NTG/NTGS       [Summary-eq.19] 

1,2-DG% = 100*N1,2-DG/NTGS      [Summary-eq.20] 

1,3-DG% = 100*N1,3-DG/NTGS      [Summary-eq.21] 

2-MG% = 100*N2-MG/NTGS      [Summary-eq.22] 

1-MG% = 100*N1-MG/NTGS      [Summary-eq.23] 

NGol = (NFA-N1,2-DG-N1,3-DG-2*N2-MG-2*N1-MG)/3    [Summary-eq.24] 

Gol% = 100*NGol/NTGS       [Summary-eq.25] 

NTGS = NTG+N1,2-DG+N1,3-DG+N2-MG+N1-MG+NGol    [Summary-eq.26] 

where NTGS is the total number of moles of glyceryl structures present in the sample. 

It must be noted that, except for TG, very different values are obtained due to the different 

meaning of each way of quantifying. The second way of expressing lipid digestion products is very 

useful to monitor the progression of the lipolysis reaction during digestion because the proportion of 
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the different lipolytic products reflects the stoichiometry of reaction, ensuring thus a successful 

application of mass balances.  

Determination from 1H NMR spectral data of the extent of lipid digestion. Due to several 

different interpretations of the concept of lipid digestion extent, various approaches have been 

proposed in literature for its determination: hydrolysis level (HL), degree of TG transformation (TTG), 

lipid bioaccessibility level (LBA) and percentage of fatty acids physiologically releasable (FAPR). The 

high versatility of the new 1H NMR methodology proposed allowed the estimation of the extent of 

lipid digestion in all the different approaches proposed in a fast and simple way by using the 

following equations:  

HL% = 100*NFA/NTAG+FA = 100*NFA/(3*NTGi)    [Summary-eq.27] 

TTG% = 100*(NTGi-NTG)/NTGi      [Summary-eq.28] 

LBA% = 100*(N1-MG+N2-MG+NFA)/NTAG+FA     [Summary-eq.29] 

FAPR% = 100*NFA/(2*NTGi)       [Summary-eq.30] 

where NTGi is the number of moles of TG initially present in the sample, which can be estimated 

as NTGS when lipids before digestion consist almost exclusively of TG. 

The estimation of all these parameters in the unlipolyzed, partially and totally lipolyzed 

sunflower and fish lipid samples showed that very different values can be obtained, being the extent 

of lipolysis remarkably overestimated when using the parameter FAPR%. It must be noted that this 

latter is usually employed when using pH-stat apparatus to monitor in vitro lipolysis reaction. In this 

context, the wide variation in the definition of lipid digestion extent makes it difficult to compare the 

results of different studies and thus to advance in the knowledge about lipid digestion. Therefore, a 

consensus definition on lipolysis during digestion would be of great interest, as well as the use of 

sound techniques to determine lipolysis extent. 
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OBJECTIVE 2.3. 

To investigate the effect of different experimental factors (gastric acidification, intestinal transit time, 

presence of gastric lipase, sample/digestive fluids ratio, intestinal enzymes concentration and bile 

concentration) on lipid in vitro digestion extent (Manuscript 6) 

This work focused on the impact of several experimental factors, like gastric acidification, 

intestinal transit time, presence of gastric lipase, sample/digestive fluids ratio, concentration and 

nature of the enzymes in the intestinal juice, and bile concentration, on the extent of in vitro lipolysis 

when using the gastrointestinal model developed by Versantvoort et al. (2004, 2005). To evaluate 

the changes in the in vitro digestion lipolysis as consequence of the variations in several experimental 

factors, the determination of the lipolysis extent firstly in the starting method and also in all the in 

vitro digestion experiments essayed were carried out.  

Determination of lipolysis extent in sea bass digestates using Versantvoort conditions. From 

the simple observation of digested lipid spectra it was deduced that the lipolysis extent reached was 

rather limited and that an important amount of TG remained unhydrolyzed (69.2±3.3%), far below 

the hydrolysis performance reported in vivo (95% of TG absorbed as MG and FA). 1,2-DG was the 

most abundant partial glyceride generated and complete hydrolysis of TG into FA and Gol occurred 

to a slight extent. Thus, greater hydrolysis of the ester bonds occurred in TG than it did in DG and in 

MG, which was explained by the positional specificity of pancreatic lipase. The HL% reached with the 

starting method is very low, being released less than 20% of acyl groups; TTG% accounted for 

approximately to 30% and LBA% reached was close to 20%. The small difference between HL% and 

LBA% indicated that the molar percentage of AG supported on MG was much smaller than that of FA. 

Effect of gastric pH acidification. The acidification of the chyme to pH 2.5±0.5 was performed 

after 60 min of the addition of gastric juice, instead of 30 min (Versantvoort conditions), with the aim 

of mimicking human conditions. This change did not cause any significant difference to the lipolysis 

extent but, as it is closer to physiological conditions, this modification was maintained in the 

subsequent digestion experiments.  

Effect of intestinal transit time. An increase of intestinal residence time from 2 to 4 h was 

tested in order to ensure a greater lipolysis extent because higher residence time occurs in vivo. 

Results showed that a slight increase (p>0.05) in the extent of lipid in vitro digestion took place: 

approximately 6% more of TG molecules were hydrolyzed mainly yielding MG and Gol, so releasing 

potentially absorbable lipid structures (MG, FA). It was also observed that the isomerization of 2-MG 
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to 1-MG was favoured. Thus, a 4 h-intestinal transit time was performed in the subsequent 

digestions experiments.  

Effect of the addition of lipase to the gastric juice. Although pancreatic lipase is mainly 

responsible for fat digestion, lipolysis can start in the stomach catalyzed by an acid-stable gastric 

lipase, which hydrolyzes 5-35% of TG. This partial hydrolysis is believed to be of paramount 

importance for triggering the subsequent digestion in the small intestine, because gastric lipase 

promotes the pre-emulsification of lipids by altering the interfacial composition of lipid droplets 

through newly formed products, mainly DG and FA. Taking into account that human gastric lipase 

remains active in the duodenum, the performance of the addition of Aspergillus niger lipase at 100 

U/mL in the gastric juice on fish lipolysis was evaluated at the end of the whole digestion. This fungal 

lipase was selected because it shows a similar regiospecificity, a wide optimum pH range (2.5-5.5) 

and resistance against proteases. Data showed that in vitro lipolysis extent reached increased 

noticeably: TG% remaining unhydrolyzed decreased significantly (p<0.05) from 63.0 to 48.9%, in 

agreement with in vivo hydrolytic efficiency attributed to human gastric lipase. Consequently, 1,2-

DG%, 2-MG% and Gol% increased in a similar proportion. A significant increase was also observed in 

the three parameters used to describe lipolysis, being higher in TTG% than in HL% and LBA%. This 

indicated that the hydrolysis in the ester bond occurred to a greater extent in TG than in partial 

glycerides. Thus, like pancreatic lipase, this fungal lipase preferentially attacks the ester bonds of TG 

than those of partial glycerides.  

In accordance to previous studies, higher concentration of A. niger lipase (200 U/mL) was also 

assayed. However, no significant differences were observed. This limited increase in the lipolysis 

extent regardless of the amount of gastric lipase used could be explained by the hindrance of 

protonated long chain FA accumulated at the surface of lipid droplets, which could inhibit further 

lipolysis. Thus, A. niger lipase was added at 100 U/mL in the gastric juice for the subsequent 

experiments.  

Effect of food/digestive fluids ratio. A lower food/digestive fluids ratio than that initially 

proposed was tested, in line with previous in vitro digestion studies. The reduction of the sample 

amount from 9 to 4.5 g provoked a significant (p<0.05) decrease of TG% (≈10%). Likewise, 1,2-DG%, 

2-MG% and 1-MG% were reduced due to the improvement of complete hydrolysis of glycerides into 

Gol and FA. 

Effect of the enzymatic composition of the duodenal juice. Different types of duodenal juices, 

widely varying in ionic composition and type and amount of enzymes added, have been proposed in 
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literature for in vitro digestion models. To investigate the effect of the nature and concentration of 

the enzymes of duodenal juice on lipid digestion, in vitro digestion experiments of 4.5 g of minced 

fish were carried out in parallel, employing the juice proposed in the original model and 3 different 

approaches. These differed only in the content of pancreatin and porcine pancreatic lipase. 

Quantitative data showed that the increase in the concentration of duodenal enzymes did not lead to 

any significant increase of TG hydrolysis during in vitro digestion. This limited impact on lipolysis 

extent suggested that the amount and type of enzymes present in the originally proposed duodenal 

juice was already in excess over substrate and that did not require any modification.  

Effect of the bile concentration in the bile juice. The amount of bile present in the small 

intestine fluctuates over digestion time, and this value is also influenced by food composition and by 

individual characteristics; values ranging from 5 to 15 mM of bile have been found in vivo. Thus, the 

impact of different bile concentrations (0, 7.5, 15.0, 18.75, 30.0 and 60.0 g/L) in the bile juice on the 

extent of in vitro lipolysis was investigated. The use of low bile concentrations (0-18.75 g/L) led to 

significantly lower (p<0.05) TG% than the use of high ones (30, 60 g/L). This decrease of TG yielded 

mainly 2-MG and Gol, indicating that lower bile concentration greatly favoured the hydrolysis not 

only in TG, but also in partial glycerides, especially in DG. These results confirmed the key role of bile 

salts in controlling lipase activity in in vitro static models where digestion products generated are not 

removed from the media, in contrast with what occurs in vivo. Among the bile concentration tested, 

18.75 g/L (equivalent to 5 mM in the chyme according to the original model) was selected. Even if 

this concentration still remains lower than that used in in vitro protocols simulating fed state, it can 

be considered within the physiological range. 

Proposed conditions for a higher in vitro lipolysis extent. Considering all the above discussed, 

an optimized in vitro digestion method that allows one to obtain a TG hydrolysis level close to that 

occurring in vivo, was proposed for fish lipid digestion. The modifications to carry out regarding the 

starting model included: delaying gastric pH acidification (from 30 to 60 min), increasing intestinal 

transit time (from 2 to 4 h), adding A. niger lipase to the gastric juice (100 U/mL), decreasing 

food/digestive fluids ratio (using 4.5 instead of 9 g of food), and decreasing bile concentration (from 

30 to 18.75 g/L). Using these conditions, approximately 95% of TG initially present were hydrolyzed, 

which is very close to in vivo lipid digestion performance. No significant modification of 1,2-DG% was 

noticed in relation to the starting method, whereas the occurrence of potentially absorbable 

glycerides (2-MG, 1-MG) increased significantly. Moreover, approximately 44% of the initial TG were 

completely hydrolyzed, in agreement with that observed in vivo. 
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The parameters HL%, TTG% and LBA% were 3- or 4-fold higher than that reached with the 

starting model, pointing out the significant improvement of fish lipid digestion by varying, within a 

physiological range, the above-mentioned experimental factors.  

The holistic view of this 1H NMR study provides information of paramount importance to 

design sound in vitro digestion models to determine the bioaccessibility and bioavailability of 

lipophilic compounds. 
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AIM 3: In vitro gastrointestinal digestion of oils. Simultaneous study of lipid hydrolysis, 

oxidation and other reactions taking place during the in vitro digestion of oils of 

vegetable and animal origins, and of other model systems. Influence on their 

extent of the oil initial oxidation level, of the oil unsaturation degree, of the 

presence of proteins and of the synthetic antioxidant BHT  

 

 

OBJECTIVE 3.1. 

To tackle by means of 1H NMR and SPME-GC/MS the chemical reactions taking place during in vitro 

gastrointestinal digestion of non-oxidized and slightly oxidized sunflower oils, as models of omega-6 

rich lipids (Manuscript 7) 

In this Objective 3.1. a deep and complete study about the evolution of fresh and slightly 

oxidized sunflower oils during in vitro digestion was addressed. Changes in the lipolysis degree, lipid 

composition and oxidation level as a result of digestion process were studied by 1H NMR. For this 

purpose, 3 quantitative approaches which differed in the way of determining the number of moles of 

fatty acids (NFA) were used.  

 Approach I, in which NFA was determined using the area of 1H NMR signal corresponding to 

methylenic protons located in the α-position in relation to the carbonyl group of acyl groups 

(AG) and to the carboxylic group of FA (approach proposed in previous Objectives 2.1. and 

2.2.). 

 Approach II, in which NFA was determined using the area of the 1H NMR signal due to 

methylenic protons in the β-position in relation to the carbonyl group of AG and to the 

carboxylic group of FA. 

 Approach III, in which NFA was determined using the area of the 1H NMR signal due to methylic 

protons of FA and AG. 

Thus, several equations were newly developed for the quantification of lipolytic products, of 

the molar percentages of the several kinds of acyl groups and fatty acids, and of the oxidation 

compounds present in the starting oil samples and the corresponding digested lipid extracts.  

Moreover, the headspace of the oil samples before and after digestion was studied by SPME-

GC/MS. For this purpose, mixtures made of the starting oils and juices submitted to digestion 

conditions in absence of oils, having the same oil:juices proportions as in the digestates, were 

prepared in order to simulate, to a certain extent, a similar a matrix to that of digestates. This 
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technique provided information about the volatile secondary oxidation products generated by 

digestion process and also about other volatile compounds, markers of Maillard-type and 

esterification reactions. 

Information obtained from 1H NMR study 

Changes in fresh sunflower oil as a result of in vitro digestion. The 1H NMR study of fresh 

sunflower oil and the corresponding digested lipid extracts evidenced great changes in relation to the 

hydrolytic and oxidative status: 

 Hydrolytic status: after in vitro digestion of non-oxidized sunflower oil, approximately 17% of 

TG initially present remained intact and ≈30% were completely hydrolyzed to glycerol and fatty 

acids. Among the partial glycerides generated, 2-MG (≈27%) showed the highest values, 

followed by 1,2-DG (≈15%), 1-MG (≈10%) and finally 1,3-DG (≈1%). Thus, the lipid digestion 

performance obtained under in vitro conditions was smaller but relatively close to that 

reported in vivo. 

 Oxidative status: on the one hand, a decrease in the molar percentage of total unsaturated 

AG/FA (U%) of 1.5-2.8% after digestion occurred, suggesting that a loss of nutritive value may 

also occur. However, this decrease was statistically significant (p<0.05) only when using 

approach I. On the other hand, newly proton signals due to protons located in (Z,E)-conjugated 

dienes supported on chains having also hydroperoxy groups ((Z,E)-CD-OOH) appeared, 

evidencing the generation of this kind of primary oxidation compounds in low amounts 

(2.2±0.5 mmol/molAG+FA) during in vitro digestion of fresh sunflower oil. 

Changes in slightly oxidized sunflower oil as a result of in vitro digestion. The 1H NMR study 

of slightly oxidized sunflower oil and the corresponding digested lipid extracts evidenced great 

changes in relation to the hydrolytic and oxidative status: 

 Hydrolytic status: after in vitro digestion of slightly oxidized sunflower oil samples, more TG 

remained intact than in those of non-oxidized ones (23 vs 17%), and lower 2-MG% and Gol% 

were also found. These results indicated that the higher the oxidation level of the oil sample is, 

the lower its digestibility. Likewise, lower values for hydrolysis level (HL%, 54 vs 60%), lipid 

bioaccessibility level (LBA%, 66 vs 72%) and degree of triglycerides transformation (TTG%, 77 vs 

85%) were obtained. Therefore, the presence of oxidation compounds in slightly oxidized 

sunflower oil seemed to partially inhibit the activity of the lipases used in the in vitro digestion 

model used (which was that previously optimized in Objective 2.3.). 
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 Oxidative status: regarding the molar percentage of unsaturated AG/FA, it was observed a 

more noteworthy decrease (2.1-4.6%) in comparison to that found after the digestion of fresh 

oil. This decrease was statistically significant (p<0.05) using approaches I and II, but not if using 

approach III for quantification. At any rate, the higher the initial oxidation level of the sample, 

the higher extent of lipid oxidation during its in vitro digestion, which implies the higher 

degradation of unsaturated acyl groups. Regarding the formation of oxidation products, it 

must be pointed out that slightly oxidized sunflower oil samples already contained (Z,E)- and 

(E,E)-CD-OOH. However, after in vitro digestion, the occurrence of (Z,E)- and (E,E)-conjugated 

dienic systems supported on chains having also hydroxy groups (CD-OH) was evidenced. Taking 

into account the concentrations obtained and assuming that CD-OH come from the reduction 

of CD-OOH, the results suggested that during digestion some of the CD-OOH molecules 

originally present were reduced to CD-OH, that others remained intact, and also that new ones 

were generated, although at a lower rate than that of CD-OH formation. As far as aldehydes 

are concerned, no aldehydic proton signals were detected in the spectral region at 9.2-10.2 

ppm of digested lipid extracts spectra, suggesting that if primary oxidation compounds broke 

down into secondary ones, this took place to such a small extent that it was not detectable by 

1H NMR. 

Information obtained from SPME-GC/MS study 

Volatile markers of lipid oxidation. SPME-GC/MS study of non-digested (mixtures) and 

digested samples headspaces confirmed that the formation of volatile secondary oxidation 

compounds coming from DUω-6 AG/FA (linoleic) took place during in vitro gastrointestinal digestion. 

In line with the information obtained from 1H NMR study, a higher generation of these volatile 

compounds was noticed after digestion of slightly oxidized sunflower oil than of fresh one. Among 

the volatile aldehydes generated, there were reactive α,β-unsaturated aldehydes, like (E)-2-alkenals 

and 2,4-alkadienals. It is especially worth noting that the abundance of (E,E)-2,4-nonadienal was 

much greater than that of (Z,E)- and (E,E)-2,4-decadienals, in contrast to what was previously 

reported during sunflower oil storage or heating at 70ºC and at frying temperatures, where 2,4-

alkadienals of 10 carbon atoms were the most abundant ones. However, these reactive aldehydes 

were present in very low abundances in the headspace of the digestates, thus they might not 

represent a health risk. It must also be considered that human body contains diverse detoxifying 

mechanisms in the gut that probably would counteract the adverse effects of these lipid oxidation 

compounds. 
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Volatile markers of Maillard-type and esterification reactions. Volatile compounds coming 

from different chemical reactions, such as Maillard-type and esterification reactions, were also found 

in the headspace of the digested sunflower oil samples: 

 Nitrogenated compounds: most of them were related to the components of digestive juices, 

among which Maillard reaction precursors, like glucose and proteins (enzymes and others), can 

be found. Nevertheless, the generation of 2-pentylpyridine during digestion, which is known to 

come from the reaction of 2,4-decadienals and amino acids, evidenced the occurrence of 

Maillard-type reactions involving sunflower oil oxidation products. 

 Esters: the increase of octanoic acid ethyl ester abundance after in vitro digestion proved that 

esterification reactions also took place, in addition to hydrolysis, oxidation and Maillard-type 

reactions.  
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OBJECTIVE 3.2. 

To investigate by means of 1H NMR and SPME-GC/MS the chemical reactions taking place during in 

vitro gastrointestinal digestion of non-oxidized and slightly oxidized flaxseed oils, as models of 

omega-3 rich lipids (Manuscript 8) 

The aim of this work was to investigate the chemical reactions taking place during in vitro 

digestion of flaxseed oil, as a model of ω-3 rich lipids, paying special attention to lipid oxidation. For 

this purpose, fresh and slightly oxidized flaxseed oils were submitted to in vitro gastrointestinal 

digestion. The hydrolytic and oxidative status of the starting oil samples and of the digested lipid 

extracts were studied by 1H NMR. Then, for a more global study of the processes taking place during in 

vitro digestion, the headspace composition of digested flaxseed oil samples and mixtures made of the 

starting oils and juices submitted to digestion conditions in absence of oils, having the same oil:juices 

proportions as in the digestates, were studied.  

Information obtained from 1H NMR study 

Changes undergone by non-oxidized flaxseed oil during in vitro digestion  

 Hydrolytic status: quantitative data derived from 1H NMR spectra showed that, during in vitro 

digestion of fresh flaxseed oil, approximately 80% of TG underwent a hydrolysis reaction, 37% 

of them being partially hydrolyzed to monoglycerides (mainly 2-MG) and 27% completely 

hydrolyzed to Gol and three FA.  

 Oxidative status: lower molar percentages of linolenic and linoleic AG/FA were found in the 

lipid extracts of digested flaxseed oil than in the starting oil, whereas that of oleic ones 

remained unchanged. This indicated that not only a potential loss of essential AG/FA might 

occur under gastrointestinal conditions, but also that those AG/FA showing higher degree of 

unsaturation would be more affected. The decrease in the molar percentage of total 

unsaturated AG/FA during in vitro digestion of fresh flaxseed oil was statistically significant 

(p<0.05) and estimated to be ≈4.4%. This degradation of unsaturated chains led to the 

generation of to (Z,E)-CD-OOH, which can be supported either in octadecatrienoates (derived 

from linolenic AG/FA) or in octadecadienoates (derived from linoleic AG/FA). Their 

concentration was estimated to be 3.2±0.8 mmol/molAG+FA, which is a rather low value.  
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Changes undergone by slightly oxidized flaxseed oil during in vitro digestion 

 Hydrolytic status: as expected, in vitro digestion provoked the hydrolysis of oxidized flaxseed 

oil, although the extent was somewhat lower than that obtained in fresh flaxseed oil 

digestates: approximately 6% less TG were hydrolyzed and lower 2-MG% and Gol% were found. 

As a consequence, lower lipid bioaccessibility was reached.  

 Oxidative status: after digestion, the molar percentage of total unsaturated AG/FA markedly 

decreased from to 88 to 81% approximately, affecting mainly the most unsaturated AG/FA, 

namely the linolenic group. The degradation undergone by these latter was much higher than 

in the case of fresh flaxseed oil, indicating that oxidation reactions under digestive conditions 

took place to a greater extent in oxidized than in non-oxidized samples. With regard to the 

formation of oxidation products, the starting oxidized oil samples contained (Z,E)-CD-OOH at 

8.2±0.2 mmol/molAG+FA and also a small amount of monoepoxy-octadecadienoates (5.2±1.8 

mmol/molAG+FA) but after in vitro digestion, the estimated concentration of (Z,E)-CD-OOH 

was ≈2-fold higher. In addition to them, (Z,E)-CD-OH were also formed though in lower 

amounts. The corresponding (E,E) isomers may also be present, although the high overlapping 

in this spectral region did not allow the proper identification of their characteristic doublet of 

doublets at 6.18 ppm. It is also especially worth noting the great increase of monoepoxy-

octadecadienoates, whose concentration was ≈3-fold higher than before digestion. To the best 

of our knowledge, this is the first time that the generation of monoepoxides supported on 

AG/FA during in vitro gastrointestinal digestion has been evidenced. Finally the formation of 

alkanals during in vitro digestion of slightly oxidized flaxseed oil was also evidenced by 1H NMR. 

Information obtained from SPME-GC/MS study 

By means of SPME-GC/MS, volatile secondary oxidation compounds that were in such low 

concentrations as not to be detectable by 1H NMR were identified in digested samples. 

Volatile markers of the occurrence of lipid oxidation and its extent. The number and 

abundance of aldehydes (typical volatile markers of lipid oxidation) increased after in vitro digestion of 

fresh flaxseed oil. As expected, the highest increases were noticed for compounds arising from 

linolenic chains: pentanal, (E)-2-butenal, (E)-2-pentenal, 2,4-hexadienal, and 2,4-heptadienals. The 

same trend, although more pronounced, was observed during in vitro digestion of slightly oxidized 

samples, especially regarding alkadienals and alkatrienals, like 2,4-heptadienals, 2,4-hexadienal, 

nonatrienals and decatrienals. It was also particularly worth noting the increase of 4,5-epoxy-2-

heptenals, a well-known oxygenated α,β-unsaturated aldehyde derived from 2,4-heptadienals, and 
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hence, from ω-3 lipids. In addition to the linolenic-derived aldehydes, others derived mainly from 

linoleic chains (hexanal, (E)-2-hexenal, (E)-2-heptenal, 2,4-nonadienals, 2,4-decadienals) and oleic 

ones (octanal, nonanal, (E)-2-nonenal) also increased notably their abundances during the digestion of 

oxidized flaxseed oil samples. 

Volatile markers of Maillard-type reactions. Compounds, such as 2-ethylpyridine and 2-

pentylpyridine, increased their abundance after digestion. These two nitrogenated compounds have 

been described as deriving from the reaction of amino acids with 2,4-heptadienals and 2,4-

decadienals, respectively. The higher abundances found for 2-ethylpyridine than for 2-pentylpyridine 

are in agreement with the content of their corresponding precursors in flaxseed oil (linolenic and 

linoleic chains, respectively). 

Several considerations about the obtained results 

Differences between the transformations undergone by flaxseed oil and sunflower oil during 

in vitro digestion 

 In relation to the lipolysis degree reached: the results obtained on in vitro digestion of flaxseed 

oil are very similar to those obtained when the in vitro digestion of sunflower oil was 

addressed under the same experimental conditions (see previous Objective 3.1.). However, 

slightly lower (p>0.05) in vitro lipolysis was found in non-oxidized flaxseed than in non-oxidized 

sunflower oil digestates. This might be explained by several factors, such as oil density or 

viscosity, that may influence the emulsification of lipids during in vitro digestion. 

 In relation to the changes observed on the proportions of the several kinds of AG and FA: the 

in vitro digestion of sunflower oil also provoked a decrease of the molar percentage of total 

unsaturated AG/FA, being more affected those AG/FA showing the highest unsaturation 

degree (linoleic). However, in flaxseed oil samples this change took place to a higher extent 

than in sunflower oil, in agreement with the higher tendency to oxidation of the former due to 

its high content of polyunsaturated ω-3 acyl groups. 

 In relation to the oxidation products generated: the generation of (Z,E)-CD-OOH was also 

evidenced by 1H NMR in fresh sunflower oil digestates, although in a lower concentration than 

that found in the digested fresh flaxseed oil, in line with the previously-commented lower 

decrease of the molar percentage of total unsaturated AG/FA in the former. Regarding, slightly 

oxidized sunflower oil digestates, in addition to the above-mentioned compounds, the 

formation of (Z,E)- and (E,E)-CD-OH was evidenced by 1H NMR, but not that of alkanals or of 
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epoxides as took place during in vitro digestion of slightly oxidized flaxseed oil. Likewise, no 

oxygenated α,β-unsaturated aldehydes were detected by SPME-GC/MS in the headspace of 

digested sunflower oil samples, whereas in the headspace of slightly oxidized flaxseed oil 

digestates, 4,5-epoxy-2-heptenals were found. Therefore, under digestive conditions lipids rich 

in polyunsaturated ω-3 acyl groups underwent a greater oxidation than those rich in ω-6 ones, 

generating oxidation products not only more potentially reactive, but also of different natures.  

Some remarks on the selection of markers to study the occurrence and extension of lipid 

oxidation. This work evidenced that not only hydroperoxides or conjugated dienic systems could be 

useful as lipid oxidation markers under gastrointestinal conditions, but so could epoxides, especially 

in the case of oils rich in polyunsaturated ω-3 acyl groups. Quantitative data obtained suggested that 

epoxides were generated at a higher rate than CD-OOH, which could suggest a possible simultaneous 

generation. Moreover, it was proved that hydroperoxides and epoxides might be more suitable 

markers than aldehydes to assess the occurrence and extent of lipid oxidation under gastrointestinal 

conditions. In this sense, the analysis of only one kind of oxidation product might poorly reflect and 

could even underestimate the extent of oxidation reactions during digestion. Thus, caution should be 

taken when selecting oxidation compounds target of analysis in digestion studies, because other lipid 

oxidation markers not considered to date could be more appropriate than those currently employed.  

Potential toxicological and nutritional consequences derived from lipid oxidation during 

digestion  

 Toxicological implications: regarding the intake of non-oxidized lipids is concerned, these can 

be expected to be rather limited for several reasons: i) the low amount of potentially toxic 

oxidation products that would be generated during digestion; ii) the potential occurrence of 

“detoxification reactions” through Maillard-type reactions with other food components, thus 

limiting the bioaccessibility of oxidation products; and iii) the presence of several detoxifying 

enzymes in the gut (gastrointestinal tract immune system) that limit the increase of in vivo 

oxidative stress. By contrast, regarding the intake of partially oxidized lipids, this should be 

avoided because the additional oxidative degradation taking place during digestion can yield to 

higher amounts of potentially toxic oxidation products of different nature.  

 From a nutritional point of view: the greatly decreased polyunsaturated ω-3 AG/FA, as well as 

the reduced lipid digestibility during digestion of oxidized samples in relation to the non-

oxidized ones, should be taken into consideration. Reactions between lipases and reactive 

oxidation products might impair the biological functionality of the former. Therefore, reusing 



Summary-Aim 3 

512 

frying fats and oils, which is a common practice not only at household level but also at 

industrial one, should be avoided as much as possible due to the resulting increase of the 

oxidative status of the cooking oil and of the cooked food lipid, which take part in migration 

processes during food frying. 
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OBJECTIVE 3.3. 

To study by means of 1H NMR and SPME-GC/MS the potential effect of protein (ovalbumin/soy 

protein isolate) on the chemical reactions taking place during in vitro gastrointestinal digestion of 

slightly oxidized sunflower and flaxseed oils (Manuscript 9) 

To further deepen knowledge about the potential influence of other food bolus components on 

the transformations undergone by lipids during digestion, this work addressed the effect of two 

different kinds of proteins widely employed as ingredients in many food formulations during in vitro 

gastrointestinal digestion of sunflower and flaxseed oils. Instead of fresh oils, slightly oxidized samples 

were selected because lipid oxidation advances to a greater extent during their in vitro digestion, 

which would contribute to clarifying the possible effect of protein on the chemical reactions taking 

place. As in Objectives 3.1. and 3.2., 1H NMR and SPME-GC/MS were the techniques employed to 

obtain a global view of the changes in the extent of lipid hydrolysis and oxidation occurring during the 

digestion process. 

Differences in the extent of lipolysis reached during in vitro digestion of slightly 

oxidized oils due to the presence of protein 

The presence of ovalbumin or soy protein isolate proteins during in vitro digestion of slightly 

oxidized oils provoked a significant increase in the hydrolysis of TG into 1,2-DG; in addition, a higher 

proportion of 2-MG was observed. The decrease of TG% was ≈11-13% for sunflower oil samples, and 

a bit higher for flaxseed oil samples ≈15-18%. Nevertheless, oil+protein digestates showed lower 1-

MG% and Gol% in comparison with oil digestates, indicating that isomerization reactions of 2-MG 

during digestion are slightly limited, perhaps due to their buffer capacity of these two proteins or 

their hydrolysates; and that a preferential hydrolysis of AG supported in TG over those supported in 

DG and MG took place.  

Thus, lipolysis in the presence of proteins would be favoured at the beginning of digestion 

process, when the less polar glycerides (TG and DG) are the most abundant, over that of subsequent 

stages, when more polar structures with a greater tendency towards emulsification (MG and FA) are 

present in the media. Indeed, no significant differences were observed regarding lipid bioaccessibility 

(LBA parameter) between oil digestates and oil+protein digestates. 

 

 



Summary-Aim 3 

514 

Differences in the extent of lipid oxidation during in vitro digestion of slightly oxidized 

oils due to the presence of protein as seen by 1H NMR  

The occurrence of lipid oxidation during digestion was studied by monitoring the changes in the 

proportions of the several kinds of AG/FA and the generation of oxidation products of very different 

natures. 

Changes in the proportions of the several kinds of AG/FA. In the presence of protein, the 

degradation of highly unsaturated AG/FA was reduced, although not avoided. This indicated that 

lipid oxidation also took place during digestion but to a lesser extent than in the absence of proteins. 

The molar percentage of linoleic AG/FA in the lipid extracts of sunflower oil+protein digestates was 

slightly higher (≈0.9%) than in those of sunflower oil digestates. In the case of flaxseed oil samples, 

the lower degradation of unsaturated AG/AF provoked by the presence of proteins is much more 

remarkable (p<0.05). The lipid extracts of flaxseed oil+protein digestates contained ≈3.7% more 

linolenic chains than those of flaxseed oil digestates, and ≈3.6% less of saturated plus modificated 

AG/FA. Therefore, the intake of unsaturated lipids together with proteins would be more suitable 

from a nutritional point of view, since it would minimize the loss of the nutritive value of ω-6 and ω-3 

lipids. 

Generation of oxidation products during in vitro digestion. The starting oil samples were 

already slightly oxidized: both slightly oxidized sunflower and flaxseed oil samples contained a certain 

amount of (Z,E)- and (E,E)-CD-OOH. In addition to these compounds, flaxseed oil samples also 

contained a small amount of monoepoxy-octadecadienoates. In line with that observed in previous 

Objectives 3.1. and 3.2., in vitro digestion of these starting oils in the absence of proteins provoked 

an increase in their lipid oxidative status. 

 Regarding sunflower oil samples: the estimated concentration of total conjugated dienic 

systems significantly (p<0.05) increased from 14.0 to 17.3 mmol/molAG+FA, due not only to 

the generation of (Z,E)- and (E,E)-CD-OH but also to that of CD-OOH.  

 Regarding flaxseed oil samples: the occurrence of new oxidation compounds under digestion 

conditions was even more evident than in sunflower oil samples. The estimated total amount 

of conjugated dienic structures supported in octadeca-tri/di-enoates associated with either 

hydroperoxy or hydroxy groups increased from 13.9 to 39.6 mmol/molAG+FA after digestion. 

Moreover, the estimated concentration of monoepoxides was 3-fold higher than before 

digestion and a very small amount of alkanals (0.7 mmol/molAG+FA) was generated. 
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Furthermore, the occurrence of other oxidations products cannot be discarded. Proton signals 

newly detected in the spectra of the lipid extracts of digested flaxseed oil samples could be 

related to diepoxides or triepoxides derived from linolenic or linoleic chains, according to 

previous studies. 

During in vitro digestion of oil+protein systems, clear differences were detected in the nature 

and amount of the oxidation compounds generated not only in relation to the starting oil, but also in 

relation to the oil digestates in the absence of protein. One of the main differences observed was 

that reduction of hydroperoxides to hydroxides took place. 

 Regarding sunflower oil+protein samples: after digestion, the total amount of conjugated 

dienic structures remained almost unchanged or slightly increased in comparison to the 

starting oil sample. But comparing to the digestates of sunflower oil in the absence of protein, 

this concentration is significantly (p<0.05) lower. It was observed that most CD-OOH originally 

present in the starting oil were reduced to less reactive and more stable CD-OH during 

digestion of oil+protein systems. Moreover, no (E,E)-CD-OOH were detected in the lipid 

extracts of sunflower oil+protein digestates, highlighting their total reduction to hydroxides 

during digestion.  

 Regarding flaxseed oil+protein samples: in comparison with the starting oil, an increase of the 

total amount of conjugated dienic structures, monoepoxides and alkanals was observed, 

indicating a higher lipid degradation level after than before digestion (much more evident than 

in the case of sunflower oil+protein samples). Nonetheless, as in the case of sunflower 

oil+protein digestates, the advance of lipid oxidation occurred to a much lesser extent than 

during in vitro digestion of the oil alone: significantly (p<0.05) lower concentrations were 

found of Total CD, monoepoxides and alkanals than in the lipid extracts of flaxseed oil digested 

alone were found. These results totally agree with those previously commented on the lower 

degradation of linolenic and linoleic groups during digestion of flaxseed oil+protein systems 

than during that of flaxseed oil. Furthermore, as in the case of sunflower oil+protein digetates, 

all the CD-OOH originally present in the starting flaxseed oils were reduced to (Z,E)- and (E,E)-

CD-OH and only a small amount of (Z,E)-CD-OOH was newly formed. Likewise, no (E,E)-CD-OOH 

were detected, confirming their total reduction to hydroxides. 

In summary, these results suggested the potential antioxidant activity of amino 

acids/peptides released from ovalbumin and soy protein isolate under gastrointestinal digestive 

conditions, being the reduction of hydroperoxides to more stable hydroxides one of the possible 

mechanisms for delaying lipid oxidation. Although in general no significant differences were 
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observed between the effect of both kinds of proteins, quantitative data obtained indicated that 

during digestion ovalbumin provoked a slightly higher delay of lipid oxidation than soy protein 

isolate; the lowest decrease of the unsaturation degree and the lowest generation of total 

conjugated dienic systems occurred in the oil+ovalbumin digestates. 

Differences in the extent of lipid oxidation during in vitro digestion of slightly oxidized 

oils due to the presence of protein as seen by SPME-GC/MS 

The headspace composition of oil and oil+protein digestates were analyzed by SPME-GC/MS 

and compared in order to study in a more global way lipid oxidation process during digestion in the 

absence and presence of protein. The information obtained confirmed that amino acids/peptides 

released during digestion showed antioxidant properties, affecting not only the extent of lipid 

oxidation, but also reactions pathways.  

Differences on the occurrence of aldehydes. Alkanals, alkenals, alkadienals, alkatrienals and 

oxygenated α,β-unsaturated aldehydes presented higher abundances in the headspace of oil 

digestates than in that of oil+protein digestates. This lower bioaccessibility of potentially toxic 

aldehydes after digestion of oils in the presence of proteins could be explained not only by a lower 

advance of oxidation extent, but also by the potential reaction of aldehydes with amine groups or 

amino acid side chains of hydrolyzed ovalbumin and soy protein isolate. 

Differences on the occurrence of ketones and alcohols. Unsaturated ketones and alcohols also 

showed higher abundances in the headspace of oil digestates than in that of oil+protein digestates. 

Since alcohols might be less reactive towards amino acids and peptides than aldehydes, their lower 

abundance might confirm in a more sound way that a lower advance of lipid oxidation occurred in 

the presence of protein. Nonetheless, it could be observed that saturated ketones were found in 

higher abundance in the headspace of oil+protein digestates than in those of oil digestates. This 

suggested that, in the presence of protein, different oxidation pathways took place.  

Differences on the occurrence of furan and its derivatives. Higher abundances of 2-ethylfuran 

and 2-pentylfuran were found in the headspace of oil+protein digestates than in that of oil 

digestates. Although it is well-known that these two alkylfurans can be formed directly from linolenic 

and linoleic AG/FA oxidation respectively, their formation was enhanced in the presence of protein 

hydrolysates.  
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Selection of markers of lipid oxidation during digestion, a critical issue 

This study clearly evidenced that, depending on the oxidative conditions, the nature of the 

lipids involved and the presence of other food components, lipid oxidation evolves in a different way, 

giving rise to very different kinds of oxidation products. Hence, the selection of markers to determine 

the extent of this process under digestive conditions is a crucial issue to avoid erroneous conclusions. 

It was shown that the lipid oxidation level of slightly oxidized flaxseed oil+protein digestates was 

higher than that of the starting flaxseed oil because higher concentrations of hydroxides, epoxides 

and alkanals were found in the former. If oxidative status was assessed by means of peroxide value, 

which measures only lipid hydroperoxides, it would have been concluded that flaxseed oil+protein 

digestates had a smaller lipid oxidation level than the starting oil. Thus, in the presence of proteins, 

hydroxides are more suitable oxidation markers than hydroperoxides in assessing lipid oxidation 

during digestion. Thus, the best option is to use innovative techniques like 1HNMR that, without 

sample modification, allows the simultaneous determination of a wide range of lipid oxidation 

products, providing as global as possible a view of the real oxidative status of the sample.  
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OBJECTIVE 3.4. 

To review the available literature on the synthetic antioxidant 2,6-di-tert-butylhydroxytoluene (BHT) 

and its metabolites (Manuscript 10) 

BHT is a synthetic phenolic antioxidant which has been widely used as an additive in the food, 

cosmetic, and plastic industries for the last 70 years. Although it is considered safe for human health 

at authorized levels, its ubiquitous presence and the controversial toxicological data reported are of 

great concern for consumers. In recent years, special attention has been paid to these 14 metabolites 

or degradation products: BHT-CH2OH, BHT-CHO, BHT-COOH, BHT-Q, BHT-QM, DBP, BHT-OH, BHT-

OOH, TBP, BHQ, BHT-OH(t), BHT-OH(t)QM, 2-BHT, and 2-BHT-QM. These derived compounds could 

pose a human health risk from a food safety point of view, but they have been little studied. In this 

context, this review dealt with the occurrence, origin, and fate of BHT in foodstuffs, its 

biotransformation into metabolites, their toxicological implications, their antioxidant and pro-oxidant 

properties, the analytical determination of metabolites in foods, and human dietary exposure. 

Moreover, non-controlled additional sources of exposure to BHT and its metabolites were 

highlighted. These include their carry-over from feed to fish, poultry and eggs, their presence in 

smoke flavourings, their migration from plastic pipelines and packaging to water and food, and their 

presence in natural environments, from which they can reach the food chain. 

Occurrence of BHT and its origin 

BHT is one of the most commonly employed food antioxidants and its use in Europe is 

restricted to different dosages depending on the food involved. Regarding fats and oils for the 

professional manufacture of heat-treated foods, in frying oil and frying fat (excluding olive pomace 

oil), in lard, in fish oil, and in beef, poultry, and sheep fats, it can be added singly or in combination 

with gallates, BHA, or TBHQ in amounts of up to 100 mg/kg. In addition, BHT may also be added to 

animal feeds, food packaging materials, pharmaceuticals, pesticides, rubbers, plastic pipelines, 

biodiesel fuel, lubricants, paints and inks, personal care products, and cosmetics as a stabilizer or 

anti-skinning agent.  

BHT and its metabolites as antioxidants or pro-oxidants 

Antioxidant activity. BHT possesses a labile hydrogen atom in the hydroxy group that can be 

donated and reduce the free radicals. Thus, BHT itself is oxidized and the subsequent derived radical 

is stabilized by electronic delocalization in the benzene ring. This way, BHT can stop radical oxidation 
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propagation, retarding lipid oxidation. Concerning BHT-metabolites, BHT-OOH, BHT-CHO, and BHT-Q 

have shown lower antioxidant activity at 70ºC than BHT. 

Pro-oxidant activity. There is very limited information available concerning the conditions and 

the mechanisms under which BHT exerts a pro-oxidant behaviour. At high aeration rate, BHT could 

react with molecular oxygen rather than with the reactive oxygen species present, yielding BHT-

phenoxyl radical and superoxide. In addition, the phenolic radical itself may undergo redox recycling, 

which can be a critical factor depending on the reductant involved. However, BHT-phenoxyl radical 

has been reported to be relatively stable. Furthermore, BHT-metabolites, such as BHT-Q and BHT-

QM, could also act as pro-oxidants  

Fate of BHT in foods 

Only a few studies have addressed the fate of BHT in foods during processing at high 

temperatures. Under frying conditions, the loss of BHT might be very fast and their activity very low, 

which has been attributed not only to volatilization and steam distillation caused by the water boiled 

out of the cooked food, but also to rapid degradation. Concerning volatilization, BHT has shown 

higher volatilization at 110 and 185ºC than other phenolic antioxidants like BHA, TBHQ and propyl-

gallate. Regarding transformation, BHT may react directly with oxygen giving rise to BHT-OOH as the 

main oxidation product, which is unstable and, in turn, could generate other metabolites, among 

which BHT-CHO, BHT-OH, and BHT-Q. Another study reported the degradation at 185ºC of pure BHT 

into 5-methyl-7-tert-butyl-2,2-dimethyl-2,3-dihydrobenzo(b)furan, 2,6-bis(1,1-dimethylethyl)-4-

methyl-1-methoxybenzene, TBP, and 2 dimeric derivatives (one of them, 2-BHT). In turn, 2-BHT 

oxidation can give rise to 2-BHT-QM, a stilbenequinone derivative.  

It also has been proved that the compounds generated from BHT during food processing can 

vary on the food nature in which it is contained and on the heating conditions. Likewise, the 

concomitant administration of BHA has shown to vary BHT-oxidation pathways and also in vivo, 

leading to different kinds of metabolites (BHT-QM and 2-BHT-QM).  

Biotransformation of BHT 

The metabolism of BHT is very complex and it has been investigated in different animal species 

and also in humans. The nature and concentration of intermediate metabolites identified depend on 

the animal species. 
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Digestion. Changes undergone during in vivo digestion have not been studied, but under in 

vitro gastrointestinal conditions, BHT and its toxic metabolite BHT-QM remained bioaccessible. 

Absorption and distribution. A rapid absorption from the gastrointestinal tract and 

subsequent distribution to the liver and body fat has been observed. Its distribution to other organs, 

such as stomach, intestines, gall bladder, urinary bladder, kidney, spleen and salivary gland has also 

been proved in mice.  

Metabolism. The major route of BHT degradation is oxidation catalyzed by cytochrome P450 

and two major metabolic routes occur: 

 Oxidation of alkyl substituents: BHT can show oxidation in the p-methyl group and/or in one or 

both of the tert-butyl groups; in humans, this latter predominates. When oxidation of the p-

methyl group takes place, BHT-COOH (generated from BHT-CHO and BHT-CH2OH) may be the 

main metabolite. Further metabolism of BHT-COOH in rat liver can lead to DBP, BHQ and BHT-

Q. In the case of tert-butyl groups oxidation, BHT-OH(t) and its derivative BHT-OH(t)QM are 

formed. 

 Oxidation of the aromatic ring: among others, BHT-Q and BHT-OOH are formed, which in turn 

can generate BHT-QM. Generation of BHT-QM has not been proved in humans. 

Excretion. BHT and its metabolites are excreted in man mainly in the urine whereas in rodents 

50-80% is eliminated in the feces. The major metabolites indentified in human, rat and mice have 

been BHT-COOH and its ester glucuronide.  

Accumulation. Presence of BHT in fat, skin, liver, viscera and edible portions including eggs 

have been found in several animals fed with BHT. With regard to humans, it has been estimated that 

the bioconcentration factor of BHT in human adipose tissue is around 45 times higher than that 

calculated for rats.  

Toxicological implications of BHT and its metabolites 

Due to the widespread use of BHT in foods and in many other products in the last 70 years, 

and to the consequent human long-term exposure, a great number of toxicity studies have been 

carried out in several animal species in order to assess its safety. However, extrapolation to humans 

is difficult because the metabolites generated could be different and the conditions of exposure may 

not mimic those occurring in humans. Furthermore, controversial results regarding the toxicity of 

BHT and its metabolites can be found: beneficial, deleterious and even no effects on laboratory 
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animals have been attributed to it. With regard to humans, there is an evident lack of studies which 

relate BHT intake to disease. A prospective cohort study carried out in The Netherlands found no 

association between the consumption of mayonnaise and creamy salad dressings with BHT and 

stomach cancer risk. Even a statistically non-significant decrease in stomach cancer risk was observed 

with increasing BHT intake, although the intake of other food products containing BHT was not 

considered.  

Acute oral toxicity of BHT has been considered low in animals. Regarding short-term subchronic 

toxicity studies, inconsistencies in the findings have been obtained. Likewise, BHT does not represent 

a genotoxic risk, because most of the studies carried out to that date had shown BHT was not able to 

induce mutations or to damage deoxyribonucleic acid (DNA). Nevertheless, ability to cause DNA 

cleavage has been attributed to BHT-Q, BHT-CHO and BHT-OOH. However, carcinogenesis risk and 

cell apoptosis would be dependent on the intensity of the damage and the ability of the cell to repair 

it. The Panel on Food Additives and Nutrient Sources Added to Food of the European Food Safety 

Authority (EFSA) recognized in 2012 that these positive genotoxicity results may be due to the pro-

oxidative chemistry of BHT. As far as carcinogenicity and chronic toxicity of BHT and its metabolites in 

rodents, contradictory results have also been reported. Several studies have demonstrated the 

potential of BHT to act either as a tumor promotor or as a tumor suppressor, modulating the 

carcinogenicity of some well-known carcinogens. It must be pointed out that to date BHT is classified 

in group 3 of carcinogens (not classifiable as to its carcinogenicity to humans) by the International 

Agency for Research on Cancer (IARC).  

Regarding toxic effects of BHT metabolites, very few studies have been carried out. Quinone 

methide derivatives may form adducts with several proteins, including enzymes that protect cells 

from oxidative stress. Among these, BHT-QM is considered to play a significant role in hepatoxicity, 

pneumotoxity and skin tumor promotion in mice, and BHT-OH(t)QM, which is chemically more 

reactive than BHT-QM, has been recognized as the principal metabolite responsible for lung tumor 

promotion activity of BHT in mice.  

Dietary exposure studies and established limits  

The Panel on Food Additives and Nutrient Sources Added to Food of EFSA established an 

acceptable dietary intake (ADI) of 0-0.25 mg/kg body weight/day in 2012. Dietary intake studies 

carried out to date have shown that BHT exposure is unlikely to exceed the current ADI of 0-0.25 

mg/kg body weight/day. However, some exceptions can be found in children. In addition, it must be 

noted that the selection of food categories containing BHT and the methodological approaches were 
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very different. In most studies, the estimates were based on the distribution of food intakes 

observed in dietary surveys, assuming BHT to be present at the maximum permitted levels (MPLs) in 

all foods in which it is authorized. Other less common options were the use of concentration data of 

BHT in foods provided by the food industry or analytically determined. An over-estimation could be 

derived from the consideration of MPLs of BHT in authorized food products, as well as under-

estimation due to the fact that the foodstuffs in which BHT is not allowed but might be present are 

not considered.  

Additional sources of exposure and regulations 

Due to the variety of uses of BHT and its ubiquitous presence, there are other additional 

sources of exposure that should also be taken into account, such as the carry-over from animal feed 

to food, its presence in smoke flavourings, its migration from plastic pipelines and packaging to 

drinking water and other foodstuffs, or its presence in the natural environments from which it can 

reach the food chain. 

Analytical determination of BHT metabolites in foods  

Not only are the techniques and the ranges of abundance of the metabolites very varied, but 

so are the matrixes under study, with water being the most frequently examined and with GC/MS 

being the most widely used analytical technique.  
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OBJECTIVE 3.5. 

To investigate by means of 1H NMR and SPME-GC/MS the hydrolysis and oxidation reactions 

affecting polyunsaturated acyl groups and naturally present vitamin A during in vitro gastrointestinal 

digestion of cod liver oil, and the potential effect of low and high concentrations of added BHT (20/ 

800 ppm) on the above-mentioned reactions (Manuscript 11) 

The present work studied in depth and for the first time the in vitro gastrointestinal digestion 

of cod liver oil by means of 1H NMR and SPME-GC/MS. The occurrence of hydrolysis and oxidation 

reactions, affecting polyunsaturated acyl groups and naturally present vitamin A, were subject of 

study, as well as the specific nature of the oxidation products generated. In addition, the effect of the 

addition of the synthetic antioxidant BHT at 20 and 800 ppm on the above-mentioned reactions was 

tackled. For this purpose, cod liver oil samples, either enriched or not with BHT at 20 and 800 ppm, 

were submitted to in vitro digestion. Since from a chemical point of view, any antioxidant could also 

be able to exert a pro-oxidant activity, concentrations of BHT either lower or far beyond that 

permitted by European authorities (100 ppm) were employed. Likewise, special attention was paid to 

the occurrence of compounds arising from the oxidation of BHT itself. 

Characteristics of the starting oil samples 

Hydrolysis level. The commercial cod liver oil subject of study was mainly made up of TG 

(97%), 1,2-DG and Gol. As expected, the BHT-enriched samples showed the same molar percentages 

of the different kinds of glycerides present than the non-enriched one. 

Composition in main and minor lipidic components. The molar percentage of the several kinds 

of acyl groups of non-enriched and BHT-enriched cod liver oil samples was: 74.8±0.4% of total 

unsaturated acyl groups and 25.2±0.4% of saturated acyl groups; the former consisting of 40.1±0.8% 

of monounsaturated (mainly oleic), 25.8±0.0% of polyunsaturated ω-3 (which included 9.1±0.2% of 

docosahexaenoic and 9.8±0.3% of eicosapentaenoic acyl groups), 8.5±0.7% of diunsaturated ω-6 

(mainly linoleic), and 0.4±0.0% of ω-1 acyl groups.  

Moreover, according to the label provided by the manufacturer, cod liver oil also contained as 

minor components 1078 UI/g of vitamin A and 146 UI/g of vitamin D3. As far as vitamin A was 

concerned, proton signals of retinyl esters were detected in the 1H NMR spectra of the starting oils, 

being their concentration estimated to be 0.4±0.0 mmol/molAG+FA. 

Oxidation level. 1H NMR study evidenced that commercial starting cod liver oil used contained 

a small amount of (Z,E)-CD-OOH (1.8±0.1 mmol/molAG+FA). Although this concentration is quite low, 
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bearing in mind that the cod liver oil acquired was intended for human consumption, special 

attention should be taken during the processing and storage of fish oils in order to avoid as much as 

possible the potential intake of oxidized compounds. As expected, no differences in the oxidation 

level of cod liver oil was noticed after the addition of BHT.  

Study of hydrolysis and oxidation of main lipidic components of cod liver oil during in 

vitro digestion and effect of the presence of BHT 

Extent of triglycerides hydrolysis. A high lipolysis degree was reached under the in vitro 

gastrointestinal digestion conditions of this study; approximately 75% of TG of non-enriched cod liver 

underwent an hydrolysis reaction, with Gol, 1,2-DG and 2-MG the main resulting glycerides, 

generated in similar proportion (≈20-24%). 1-MG and 1,3-DG were also generated, but in much lower 

proportions. The addition of BHT in the range of concentrations tested did not modify the hydrolysis 

level reached during in vitro digestion. 

Occurrence of polyunsaturated acyl groups oxidation. This was proved by means of both 1H 

NMR and SPME-GC/MS. 

 Changes in the unsaturation degree of cod liver oil: a small but significantly (p<0.05) decreased 

molar percentage of ω-3 AG/FA after in vitro digestion of cod liver oil was observed (from 25.8 

to 24.7%). However, when BHT was added at 20 and 800 ppm to CLO, no decrease was 

noticed, indicating that, at the concentrations assayed, BHT slowed down the advance of 

oxidation reactions under gastrointestinal conditions, avoiding the degradation of 

polyunsaturated AG/FA into a degree detectable by 1H NMR. 

 Occurrence of primary and secondary oxidation products: 1H NMR study showed that during in 

vitro digestion of non-enriched cod liver oil primary ((Z,E)-CD-OOH) and several secondary 

oxidation products (monoepoxides derived from polyunsaturated ω-3 AG/FA, 4-hydroxy-(E)-2-

alkenals, 4-hydroperoxy-(E)-2-alkenals and (Z,E)-2,4-alkadienals) were generated. This was the 

first time that the generation of oxygenated α,β-unsaturated aldehydes containing an 

hydroperoxy group during fish oil digestion was evidenced. The addition of BHT at 20 and 800 

ppm clearly limited the generation of the above-mentioned compounds. In the digestates of 

samples enriched with BHT at 20 ppm, only a non-significant increase of (Z,E)-CD-OOH and a 

small generation of epoxides was observed. In samples enriched with BHT at 800 ppm, the 

formation of primary and secondary oxidation products was totally inhibited.  

SPME-GC/MS study showed that in vitro digestion of non-enriched cod liver oil provoked a 

marked increase in the number and abundance of acids, esters, alcohols, aldehydes ketones 
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and furan derivatives. These included volatile markers of diunsaturated ω-6 AG/FA (mainly 

linoleic) and of polyunsaturated ω-3 AG/FA, being the formation of these latter much more 

pronounced than that of the former. It was very worth noting the generation of ω-3 lipids-

derived reactive aldehydes, such as 2,4,6-nonatrienals, 2,4,7-decatrienals and oxygenated α,β-

unsaturated aldehydes (4-hydroxy-(E)-2-hexenal, 4-oxo-(E)-2-hexenal and 4,5-epoxy-2-

heptenals), although the abundances detected in the headspace were very low in comparison 

to that of alkanals and (E)-2-alkenals. Thus, it could be thought that oxygenated α,β-

unsaturated aldehydes present were mainly supported in truncated FA or AG, and thus their 

molecular weight is too high to be volatile. With regard to the effect of BHT, the abundances of 

esters, alcohols, aldehydes, ketones, and furans found confirmed that: i) the addition of BHT 

greatly limited cod liver oil oxidation during digestion; ii) at low concentration of BHT (20 ppm) 

oxidation reactions still occurred during digestion; and iii) at high concentration of BHT (800 

ppm) fish lipid oxidation was almost, but not totally, inhibited, as shown by the slight increase 

of the abundances of certain volatile markers derived from fish ω-3 and ω-6 lipids. 

Study of hydrolysis and oxidation of vitamin A during in vitro digestion of cod liver oil 

and effect of the presence of BHT 

Extent of retinyl esters hydrolysis. The results obtained did not allow a proper estimation of 

the extent of retinyl esters hydrolysis in cod liver oil digestates. The potential occurrence of retinyl 

esters hydrolysis into retinol could only be deduced by 1H NMR by the decrease of proton signals due 

to retinyl esters and the appearance of those of retinol. However, the proton signals of these 

molecules totally overlap, except for one signal that, if present in the 1H NMR spectra of digested 

lipid extracts, it would overlap with those of TG and 1,2-DG, and as a result it would not be 

distinguishable. Taking into account that the addition of BHT at the concentrations tested did not 

affect triglycerides hydrolysis, the same could be expected to occur in the case of vitamin A esters. 

Thus, if hydrolysis took place, this was only partial and at most affected half of the retinyl esters 

initially present because they still remained after in vitro digestion of samples enriched with BHT at 

800 ppm. 

Occurrence of vitamin A oxidation and nature of derived oxidation products. The oxidation of 

this minor lipidic component of cod liver oil under gastrointestinal digestion conditions was 

evidenced by the two techniques used. 

 Under the light of 1H NMR: during in vitro digestion of non-enriched cod liver oil, the 

degradation of vitamin A was evidenced, reaching a concentration below the limit of detection 
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by 1H NMR. Therefore, the bioaccessibility of vitamin A naturally present in cod liver oil was 

clearly reduced under gastrointestinal conditions, and the amount present in cod liver oil was 

not enough to limit oxidation of polyunsaturated ω-3 and ω-6 lipids. Added BHT was not able 

to withstand a significant loss of vitamin A during digestion; at 20 ppm of BHT, no retinyl ester 

remained available after in vitro digestion and, at 800 ppm of BHT, the concentration of retinyl 

esters remaining after in vitro digestion was estimated to be half of that initially present.  

 Under the light of SPME-GC/MS: seven vitamin A oxidation-derived metabolites were detected 

in the headspaces of digested samples whereas absent before digestion. These were: β-

ionone, 2,2,6-trimethylcyclohexanone, β-cyclocitral, (E)-5,6-epoxy-β-ionone, ionene, β-

homocyclocytral and dihydroactinidiolide. The highest abundances were found in the 

digestates of non-enriched cod liver oil, followed by those of samples enriched with BHT at 20 

ppm, and by those of samples enriched with BHT at 800 ppm. To our knowledge, this was the 

first evidence of the occurrence of the above-mentioned vitamin A metabolites not only 

during fish oil oxidation, but also of their generation under mild oxidative conditions such as 

digestion.  

Transformation of BHT during in vitro digestion and occurrence of derived-

metabolites 

The antioxidant activity of BHT involved the oxidation of the compound itself, so a decrease in 

its abundance after in vitro digestion was evidenced by 1H NMR and by SPME-GC/MS. It must be 

noted that, in the case of samples enriched with BHT at 800 ppm, this decrease was not observed by 

SPME-GC/MS, which might be due to the saturation of the SPME fibre. Nonetheless, as 1H NMR 

spectroscopy does not present this limitation, the decrease in BHT abundance after in vitro digestion 

could be quantified by this latter technique and was estimated to be almost 2-fold. 

As a result of the degradation of BHT during digestion, the main volatile oxidation products 

generated were BHT-OH and BHT-Q; the formation of BHT-QM only took place during digestion at 

high concentrations like 800 ppm. Further research on the other non-volatile metabolites of BHT 

would be required, considering the abundances of these four metabolites found, which are quite low 

in comparison with the order of decrease of BHT abundances. These non-volatile oxidation products 

of BHT, which might be the major ones, cannot be studied by SPME-GC/MS. 
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AIM 4: In vitro gastrointestinal digestion of processed fish. Influence of common 

technological processess like salting and smoking on the lipids performance 

under digestive conditions 

 

 

OBJECTIVE 4.1. 

To investigate by means of 1H NMR and SPME-GC/MS the chemical reactions taking place during in 

vitro gastrointestinal digestion of European sea bass, and the effect of fish salting (brine-salting/dry-

salting) on their extent (Manuscript 12) 

In this work, a study of the various chemical reactions which take place during fish in vitro 

digestion and the potential effect of fish salting on their extent was addressed for the first time. For 

this purpose, unsalted, brine-salted or dry-salted farmed European sea bass samples were in vitro 

gastrointestinal digested. Fish samples before and after digestion were studied by means of 1H NMR, 

which is able to provide information about the hydrolysis degree and the nature of primary and 

secondary lipid oxidation products, and by means of SPME-GC/MS, which is able to detect volatile 

secondary oxidation products and other markers coming from different processes, like 

esterifications, Maillard reactions and others. 

Information obtained from 1H NMR study 

Lipid composition and oxidation status of fish samples before digestion. None of the salting 

processes performed provoked a lipid oxidation detectable by 1H NMR technique. This was 

evidenced on the one hand by the lack of changes on the molar percentages of the several kinds of 

acyl groups in the lipid extracts of sea bass, and on the other hand, by the lack of proton signals 

related to primary or secondary oxidation compounds in the 1H NMR spectral regions in which could 

be visible, if present. 

Extent of lipolysis reaction during fish in vitro digestion. The molar percentages of fatty acids 

and acyl groups bounded to the different kinds of glycerides in relation of the total number of moles 

of fatty acids plus acyl groups present in the lipid extracts of non-digested and digested fish samples 

were determined by 1H NMR to evaluate the extent of lipid hydrolysis after in vitro digestion of 

unsalted, brine- and dry-salted sea bass. Similar values (p>0.05) were obtained for the three kinds of 

fish digestates; approximately 95% of triglycerides underwent a hydrolysis reaction and the average 
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value of fatty acids released was near 62%. These results indicated that neither the salting process 

nor the intensity of this latter affected the advance of fish lipid hydrolysis. 

Generation of lipid oxidation products during fish in vitro digestion. The potential occurrence 

of lipid oxidation during digestion was evaluated by comparing the spectra of fish lipids extracted 

before and after digestion. It was evidenced that new signals due to primary oxidation compounds 

appeared in the spectra of lipid extracts after in vitro digestion of unsalted sea bass. These were: 

signals due to (Z,E)-CD-OOH (hydroperoxy-dienes) and, also in very low intensity, signals due to (Z,E)-

CD-OH (hydroxy-dienes). It must be noted that none of these signals were detected in the spectra of 

the lipids extracted from the juices submitted to the same digestion process but in the absence of 

fish, proving that oxidation process took place to a very low extent during in vitro digestion of fish. 

Indeed, these oxidation products are considered to be formed at initial stages of the process. The 

same kind of lipid oxidation products, and at similar (p>0.05) concentrations, were generated during 

in vitro digestion of unsalted and salted sea bass. Therefore, information provided by 1H NMR 

suggests that fish salting does not favour oxidation reactions occurring under in vitro gastrointestinal 

conditions. 

In this context, it must me noted that the formation of lipid-derived hydroxy-dienes has been 

previously observed during in vivo digestion in rats. The fact that lipid-derived hydroxy-dienes are 

also formed during in vitro digestion would indicate that similar oxidation pathways and derived 

oxidation compounds are generated in both in vivo and in vitro systems, corroborating the usefulness 

of the results obtained using in vitro methodologies. 

Information obtained from SPME-GC/MS study 

Headspace composition of fish samples before digestion. SPME-GC/MS study of unsalted, 

brine- and dry-salted sea bass headspaces showed that the starting sea bass samples had similarly 

low oxidation levels, in line with the information extracted from 1H NMR study.  

In order to obtain non-digested and digested fish samples showing a similar matrix and with 

the same lipid content, whose headspace composition could thus be compared, mixtures made of 

fish samples before digestion and juices submitted to digestive conditions in the absence of food, in 

the same proportions as in the digestates, were prepared and their headspace studied. 

Occurrence of lipid oxidation during in vitro digestion of unsalted sea bass. When comparing 

the headspace composition of unsalted sea bass digestates and that of mixtures made of unsalted 

sea bass and juices, a significant increase of typical volatile markers arising from polyunsaturated ω-3 
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and ω-6 acyl groups oxidation (including alcohols, acids, aldehydes, ketones and furan derivatives) 

was noted. The main origin of these compounds generated was fish lipids, and not those lipids 

present in negligible amounts in juices. These results confirm those above-mentioned in the 1H NMR 

study, this is, lipid oxidation takes place during in vitro digestion of sea bass. 

Although a great number of α,β-unsaturated aldehydes were detected in the headspace of fish 

digestates, it must be pointed out that no toxic oxygenated α,β-unsaturated aldehydes, like 4-

hydroxy-(E)-2-hexenal or 4-hydroxy-(E)-2-nonenal, were found. If generated, they would probably 

have reacted through the oxygenated groups or the double bond with phospholipids, fish proteins or 

digestive enzymes, yielding Schiff bases, Michael adducts or other derived compounds.  

Differences in the oxidation extent reached during in vitro digestion of unsalted and salted 

fish. A greater degree of oxidation took place under gastrointestinal conditions in the case of salted 

fish than in that of unsalted ones, leading inevitably to a higher loss of nutritive value of fish lipids 

and to increased generation of potentially reactive aldehydes. In fact, most of the volatile 

compounds related to lipid oxidation process presented significantly higher (p<0.05) abundances in 

the headspace of salted fish than in the unsalted ones, such as 1-hexanol, 1-octen-3-ol, and 5(Z)-

octa-1,5-dien-3-ol, which could be derived from -3 acyl groups oxidation; octanoic acid; almost all 

the alkanals, (E)-2-alkenals and 2,4-alkadienals, being worth noting those above-mentioned coming 

from ω-3 acyl groups and (Z)-4-heptenal, which has been reported to come from 2,6-nonadienal; 

ketones like 3-octen-2-one, which was only detected in digested salted samples, and 3,5-octadien-2-

one, a well-known fish lipid oxidation product; and 2-(2-pentenyl)furan, that can be generated from 

ω-3 acyl groups.  

Influence of fish salting degree on the advance of oxidation reactions during digestion. 

Samples submitted to the most intense salting process (dry-salting) underwent oxidation to a highest 

extent during in vitro digestion. Although very similar, almost all the alkanals, (E)-2-alkenals and 

ketones identified, showed higher values in the headspace of digested dry-salted and than in those 

of brine-salted digestates. Moreover, oxidation pathways occurring during in vitro digestion of dry-

salted samples significantly (p<0.05) favoured the generation of the fish lipid oxidation markers 1-

octen-3-ol and hexanal, and also of 2,5-octanedione.  

Evolution during in vitro digestion of the abundance of antioxidants present in sea bass. In 

vitro digestion process provoked a very noteworthy decrease in the abundance of the synthetic 

antioxidant BHT initially present in the farmed sea bass samples acquired. This was explained by its 

performance as antioxidant during in vitro digestion process, corroborating that oxidation reactions 
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took place during in vitro digestion of sea bass and that the amount of this phenolic compound was 

not able to completely avoid them.  

Moreover, four BHT-derived metabolites (also initially present in farmed sea bass meat) were 

detected in the headspace of sea bass digestates: BHT-Q, BHT-OH, BHT-QM, and BHT-CHO. However, 

by comparing the abundances of these compounds in the digestates and in the mixtures, it could be 

evidenced that, during in vitro digestion, the abundance of BHT-QM decreased whereas that of BHT-

OH, BHT-Q and BHT-CHO increased. These later 3 metabolites have been reported to arise from the 

hydroperoxy-derivative of BHT, named BHT-OOH. Nonetheless, the formation of other non-volatile 

BHT metabolites cannot be discarded because the increase in the abundance of these BHT-derived 

volatile metabolites was very low in relation to the decrease observed in BHT initial abundance.  

Occurrence of amino acid degradation. Evidence of Maillard type reactions markers. The 

occurrence and/or the higher abundance of branched and aromatic aldehydes, sulphur-derivatives, 

and nitrogenated compounds in digested samples suggested that the in vitro digestion process 

promoted their formation by means of various reactions involving the loss of essential amino acids. 

Strecker aldehydes of methionine, valine, isoleucine, leucine, and phenylalanine were detected, 

together with some of their derivatives, like benzaldehyde and the sulphur compounds methanethiol 

and dimethylsulfide. It must be noted that sulphur containing compounds were found in very low 

abundances, primarily because of the low content of methionine and cysteine in sea bass protein (up 

to 2.7 g/100 g of protein). By contrast, significantly higher (p<0.05) abundances of aromatic 

aldehydes were detected after in vitro digestion, which is in agreement with a previous study carried 

out by our research group evidencing that during the intestinal step a selective release of aromatic 

amino acids (or residues) by the proteolytic enzymes takes place. Furthermore, nitrogen derivatives 

typically associated with Maillard reactions were detected in the headspace of sea bass digestates, 

proving that these reactions take place under gastrointestinal digestive conditions. However, only 2-

ethylpyridine could be exclusively attributed to fish origin and not to digestive juice components.  

Some of these amino acid-derived compounds were found significantly higher (p<0.05) 

abundances in the headspaces of digested salted samples than in those of unsalted ones. Results 

suggested thus that degradation reactions of amino acids occurring during in vitro digestion of sea 

bass may be enhanced by the salting process, although no clear effect of the degree of salting was 

observed.  

Evidence of esterification reactions during in vitro digestion. Esterification reactions between 

ethanol and octanoic acid were evidenced during in vitro digestion of sea bass, being also more 

pronounced in the case of salted samples.  
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About the consequences of fish salting from a food safety point of view 

Taking into account the abundance of potentially reactive α,β-unsaturated aldehydes, the 

digestates obtained from unsalted sea bass can be considered the healthiest ones, followed by those 

obtained from the fish submitted to the lowest salting degree (brine-salting), and finally by those 

obtained from the fish submitted to the highest salting degree (dry-salting). Nonetheless, as these 

compounds are present in very low abundances in the headspace of the fish digestates, they might 

not represent a health risk. It must be considered that human body contains diverse detoxifying 

mechanisms in the gut that probably would counteract the adverse effects of these lipid oxidation 

compounds. Special attention must be paid to the effect of salting on fish species with a higher fat 

content than European sea bass, like salmon, sardine, tuna or herring, because a higher level of 

oxidation during digestion can be expected. 
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OBJECTIVE 4.2. 

To study by means of 1H NMR and SPME-GC/MS the effect of smoking with two liquid smoke 

flavourings on lipid hydrolysis and oxidation occurring during in vitro gastrointestinal digestion of 

European sea bass, and to evaluate to what extent the flavouring composition may influence these 

reactions (Manuscript 13) 

This Objective 4.2. aimed to provide a global view of how the mechanisms and extents of fish 

lipid hydrolysis and oxidation processes could be affected, if any, by the presence of smoke-derived 

compounds showing potential antioxidant activity. In addition, the potential influence of the 

composition of the liquid smoke flavouring on the delay of lipid oxidation during digestion, if any, was 

also addressed. For this purpose, farmed sea bass fillets were smoked using two commercial liquid 

smoke flavourings of known composition, which have been previously used by our research group and 

differed in their phenolic content (19 g/L and 24 g/L). Afterwards, unsmoked and smoked samples 

were in vitro digested and non-digested and digested samples were studied by 1H NMR and SPME-

GC/MS. 

In vitro digestion of unsmoked and smoked sea bass studied by 1H NMR 

Differences on the lipolysis extent. The extent of lipolysis reaction reached in the three kinds 

of fish digestates was assessed by estimating the molar percentages molar percentages of fatty acids 

and acyl groups bounded to the different kinds of glycerides in relation of the total number of moles 

of fatty acids plus acyl groups present in digested lipid extracts. The results clearly indicated that the 

smoking process did not provoke any change in the lipid hydrolysis during fish meat in vitro digestion. 

Approximately 94% of TG were transformed into 1,2-DG, MG and glycerol, yielding ≈64% of FA. The 

estimated average molar percentage of the total chains that would be bioaccessible was near 77%.  

Differences on the lipid oxidation extent. The 1H NMR spectra of non-digested and digested 

fish lipids were compared in order to verify the occurrence of non-overlapped signals in certain 

spectral regions: 2.6-3.2 ppm, where proton signals due to epoxides appear; 5.9-6.7 ppm, where 

signals corresponding to protons of conjugated dienes are observable; and 9.2-10.0 ppm, where 

aldehydic proton signals are visible.  

 Before digestion: no signals related to lipid oxidation products were observed in any of the 

spectra of unsmoked and smoked fish lipid extracts. Only signals near 6.40, 6.57 and at 6.75-

6.85 ppm related to aromatic protons of phenolic compounds coming from the smoke 
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flavourings were visible in the spectra of smoked fish lipid extracts. It must be noted that the 

intensities of these signals were higher in the spectra of lipids extracted from the sea bass 

fillets smoked using the smoke flavouring B with the highest phenolic content.  

 After digestion of unsmoked sea bass: new signals appeared in the spectrum of the lipid 

extracts of unsmoked sea bass digestates, evidencing the occurrence of (Z,E)-CD-OOH and that 

of (Z,E)-CD-OH. The low amounts of primary oxidation compounds formed (3.3±0.9 

mmol/molAG+FA) and the absence of other kinds of oxidation products in concentration 

beyond the limit of detection of 1H NMR indicated that the extent of fish lipid oxidation was 

rather low.  

 After digestion of smoked sea bass: under the same simulated gastrointestinal conditions, 

smoked sea bass lipids did not generate (Z,E)-CD-OOH or (Z,E)-CD-OH. Therefore, smoking 

process provoked a clearly lower oxidation advance in the fish fillets during digestion, exerting 

some antioxidant activity. Moreover, aromatic protons signals of smoke-derived phenolic 

components were still detected, even showing slightly higher intensities than before digestion. 

This could be explained by the bounding of some smoked-derived compounds within sea bass 

muscle tissue before digestion and their release during the digestion process, resulting in their 

higher extraction.  

In summary, it is evidenced that the smoking process has as its consequence not only the 

increase of fish meat shelf-life, but also protection against oxidation occurring during digestion, with 

the subsequent health and nutritional benefits. 

In vitro digestion of unsmoked and smoked sea bass studied by SPME-GC/MS 

In order to confirm the results obtained from 1H NMR study regarding the oxidation level of 

unsmoked and smoked sea bass digestates, their headspace was also studied by SPME-GC/MS. This 

technique, much more sensitive than 1H NMR, can provide an additional approach to the study of 

lipid oxidation extent during digestion of unsmoked and smoked samples, by comparing the nature 

and abundance of volatile compounds present in the headspace of the three kinds of digestates.  

Differences regarding volatile markers of lipid oxidation. Volatile compounds typically arising 

from lipid oxidation process (alcohols, aldehydes, ketones and furans) were detected in much higher 

abundances in the headspace of unsmoked fish digestates than in smoked ones. For instance, 

significantly higher (p<0.05) abundances were observed for compounds typically derived from the 

degradation of ω-3 (1-penten-3-ol, 5(Z)-octa-1,5-dien-3-ol, pentanal, (E)-2-butenal, (E)-2-pentenal, 
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(E,E)-2,4-hexadienal, 2,4-heptadienals, (E,E)-2,6-nonadienal, 1-penten-3-one, 3,5-octadien-2-one, 2-

ethylfuran and 2-(2-pentenyl)furan), and ω-6 lipids (1-octen-3-ol, (E)-2-heptenal, 2,4-decadienals and 

2-pentylfuran). Furthermore, no 2,4-alkadienals were found in the headspace of smoked fish 

digestates. Thus, it is evidenced that polyunsaturated AG/FA of unsmoked sea bass lipids underwent 

a greater oxidation during in vitro digestion than those of smoked sea bass lipids.  

Regarding the presence of BHT and derived metabolites. The quantification of BHT 

abundance in farmed sea bass samples before digestion showed that all the samples contained BHT 

in a similar order (202.5±24.5*106 area counts). However, after digestion, BHT was barely detected in 

unsmoked sea bass digestates, whereas it occurred in very high abundances in the smoked ones. 

Taking into account the antioxidant activity of BHT and its absence in both liquid smoke flavourings 

employed, the results obtained suggested that: i) during in vitro digestion unsmoked sea bass lipids 

underwent oxidation to a higher extent than those from smoked samples, and as consequence, BHT 

was oxidized and its abundance greatly lowered in unsmoked sea bass digestate; ii) the amount of 

BHT initially present in raw farmed sea bass was not high enough to avoid fish lipid oxidation during 

digestion; iii) in smoked samples the oxidation of BHT was hindered by the smoke-derived 

compounds present in fish fillet and/or by those newly produced in the fish fillet as consequence of 

the smoking process.  

As for BHT metabolites derived from the oxidation of BHT, unsmoked sea bass digestates 

presented significanty higher (p<0.05) abundances of BHT-OH and BHT-Q in comparison with smoked 

digestates.  

Influence of the liquid smoke flavouring composition on delay of lipid oxidation under 

gastrointestinal digestive conditions. Abundance data of lipid oxidation-derived volatiles detected in 

the two kinds of smoked digestates evidenced that the higher the concentration of phenolic 

compounds in liquid smoke flavouring used, the higher delay of lipid oxidation during in vitro 

digestion is. This fact was not highlighted by 1H NMR study, evidencing thus the limitation of this 

technique when studying samples showing very low levels of oxidation. In this case, the use of SPME-

GC/MS in combination with 1H NMR would be suitable.  

Bioaccessibility of smoke-derived compounds with potential antioxidant activity 

For the first time the potential bioaccessibility of smoked-derived compounds was highlighted 

in this study. This might be a subject of great interest from either the nutritional, food safety or 

human health point of view, bearing in mind the antioxidant activity reported for many of them. 

Among those detected after in vitro gastrointestinal digestion, there were mainly phenol, 
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methoxyphenol and dimethoxyphenol derivatives, followed by ketones, furan and pyran derivatives, 

acids and esters, pyridine derivatives and alky-aryl ethers. Most of them came from the liquid smoke 

flavouring used, although pyridine and furfural derivatives could also be generated through Maillard-

type reactions between fish fillet and smoke flavouring components. As expected, the highest 

abundances of phenols (guaiacol, methylguaiacol, ethylguaiacol, propylguaiacol, syringol, 

methylsyringol, ethylsyringol, cresol, eugenol, isoeugenol, thymol, etc.) were found in the headspace 

of digested sea bass smoked using the smoke flavouring showing the higest phenolic content. In 

addition to them, 5-(hydroxymethyl)-2-furfural (HMF), a typical smoke component with well-known 

antioxidant ability, was also detected.  

In summary, it is evidenced that the smoking process had as its consequence not only the 

increase of fish meat shelf-life, but also protection against oxidation occurring during digestion, with 

the subsequent health and nutritional benefits. Among the wide variety of commercial liquid smoke 

flavourings, the use of those showing higher phenolic content would be more suitable to limit the 

advance of the potential oxidation reactions taking place in the gastrointestinal tract to a greater 

extent. 
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AIM 1: Fish cooking methods. Effect on lipids and formation of volatile compounds. 

Influence of fish species and growing conditions  

 

In the OBJECTIVE 1.1. (Manuscript 1): 

1. During fish shallow-frying under domestic conditions, migration of fish lipids to culinary oil 

occurs, as does migration of the oil components to the fish fillet. As consequence, the 

composition of the oils used for frying becomes richer in those acyl groups and minor 

components that are in higher concentration in fish lipids than in the original oil, while poorer 

in those acyl groups and minor components that are in smaller concentration in fish lipids than 

in the original oil. Concerning fish lipids, their composition also changes during frying, 

becoming richer in those acyl groups and minor components that are in higher concentration 

in the frying oil than in fish lipids, while poorer in those acyl groups and minor components 

that are in higher concentration in the raw fish lipids than in the original oils. 

2. The submission of the oils to the heating conditions of shallow-frying provokes thermo-

oxidation to a very low extent. However, the number and concentration of secondary 

oxidation products found in oils after fish frying are lower than those found after heating 

under the same conditions with the absence of food.  

3. The frying technique, the nature of the cooking oil and the fish species have a great influence 

on the changes occurring during during fish shallow-frying. 

 Influence of the frying technique: The oil uptake usually takes place to a greater extent 

during microwave-frying than during pan-frying. Heating by microwave provokes a lower 

thermodegradation than heating in a pan. 

 Influence of the cooking oil: The selection of the cooking oil is of paramount importance 

due to its impact not only on the fish lipid profile of main and minor components, but also 

on the possible generation of potentially toxic compounds in the oil during frying. As 

expected, sunflower oil shows a smaller resistance to degradation than extra-virgin olive oil 

not only during heating but also during fish shallow-frying. No thermo-oxidation was 

observed in extra-virgin oil used for fish frying, which makes it safer and more suitable than 

sunflower oil for fish shallow-frying. 

 Influence of the fish species: After frying, the lipid content of gilthead sea bream fillets 

greatly decreased, whereas that of sea bass ones increased or remained almost unchanged, 

which can be attributed to the higher initial fat content in the former. Moreover, different 
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oxidation products are generated and thus detected in the fried oils depending on the lipid 

composition of the fish species. 

 

In the OBJECTIVES 1.2. (Manuscript 2) and 1.3. (Manuscript 3): 

4. 1H NMR study evidenced that boiling, steaming, sous-vide cooking, salt-crusted oven baking, 

conventional oven baking and microwave cooking do not affect significantly sea bass lipid 

composition, including lipidic components especially prone to oxidation like long-chain 

polyunsaturated ω-3 acyl groups, cholesterol and vitamin A.  

5. SPME-GC/MS study evidenced that during the above-mentioned cooking methods sea bass 

volatile profile is notably enriched in volatile compounds coming from lipid oxidation and from 

fish nitrogenated components degradation, including Maillard-type reactions. However, fish 

growing conditions and the cooking method influenced qualitatively and quantitatively their 

generation. 

 A remarkable higher number and abundance of compounds were generated during the 

cooking of farmed sea bass than of wild samples, due to the significantly higher lipid 

content of the former. Therefore, the discrimination of sea bass samples considering their 

volatile profile can be made not only before, but also after cooking.  

 Boiling is the culinary technique that modified to the least extent the initial characteristics 

of the volatile profile of raw sea bass, which could make it suitable for consumers who do 

not like fishy aromas.  

 Conventional oven baking enhanced the generation of volatile compounds arising from 

initial (Strecker aldehydes and derivatives) and advanced (heterocyclic aromatic 

compounds) stages of Maillard-type reactions to a greater extent than the rest of culinary 

techniques studied. Pyrroles, alkylpyrazines, alkylthiophenes and 2-ethylpyridine were only 

detected in conventional oven baked samples.  

 In the case of salt-crusted oven baking, it has been evidenced a degree of protection 

offered by salt-crust against dehydration, lipid oxidation and degradation of nitrogenated 

components.  

6. 1H NMR and SPME-GC/MS provided very valuable information not only from the nutritional 

point of view, but also from the technological one, helping the food industry to produce ready-

to-eat fish products that will ensure food quality and safety as much as possible, as well as 

consumer acceptance. 
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AIM 2: In vitro gastrointestinal digestion of lipids. Development and validation of a new 

method based on 1H NMR for the study of lipid hydrolysis during digestion. Study 

in depth of the influence of several factors affecting the extent of in vitro lipolysis  

 

In the OBJECTIVE 2.1. (Manuscript 4):  

1. 1H NMR allows the qualitative and quantitative study of the molar proportions of triglycerides, 

1,2- and 1,3-diglycerides, 1- and 2-monoglycerides and fatty acids in complex lipid mixtures. 

For this purpose different equations based on 1H NMR spectral data have been proposed for 

the first time. 

2. In contrast to other methodologies employed to study lipolysis, this approach allows a global 

study of the lipid sample, providing simultaneous detailed information on all kinds of 

compounds present (including positional isomers), in a simple and fast way and without any 

previous chemical modification of the sample. 

 

In the OBJECTIVE 2.2. (Manuscript 5): 

3. The usefulness of 1H NMR to study the advance of lipid digestion process in real in vitro 

digested samples has been evidenced. Moreover, this new methodology shows a high 

versatility in assessing the extent of lipolysis reaction in any of its current definitions: 

hydrolysis level, degree of triglyceride transformation, lipid bioaccessibility and proportion of 

fatty acids physiologically releasable. 

4. During in vitro digestion of sunflower oil and fish meat samples, 1,2-diglycerides, 2-

monoglycerides, fatty acids and glycerol are the main hydrolysis products arising from 

triglycerides. However, 1,3-diglycerides and 1-monoglycerides are detected in very low 

proportions, suggesting the occurrence of isomerization reactions under these conditions. 

Furthermore, the complete hydrolysis of triglycerides into fatty acids and glycerol under in 

vitro digestion conditions can take place into a remarkable extent, in such a way the 

occurrence of this phenomenon should not be ruled out in in vitro digestion studies. 
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In the OBJECTIVE 2.3. (Manuscript 6): 

5. Further knowledge on the impact of experimental factors on lipid in vitro digestion is of 

paramount importance in gaining a better insight into the limitations of the protocols currently 

employed in in vitro studies, and thus understanding the results obtained. 

6. The addition of gastric lipase, the decrease of food/digestive fluids ratio and the decrease of 

bile concentration significantly improved the lipolysis level reached with the static digestion 

model proposed by Versantvoort et al. (2005). Bile concentration was found to be a key factor 

for controlling in vitro lipolysis. 

7. With the modifications proposed, a lipolysis degree similar to that reported in vivo is reached; 

approximately 95% of triglycerides undergo hydrolysis reaction and 80% of fish lipids acyl 

groups are bioaccessible. 

8. An accurate match of naturally occurring events is necessary for consistent statements and 

predictions. Therefore, the optimization of in vitro digestion experimental conditions should be 

carried out for each kind of sample when required, especially in bioaccessibility and 

bioavailability studies. 
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AIM 3: In vitro gastrointestinal digestion of oils. Simultaneous study of lipid hydrolysis, 

oxidation and other reactions taking place during the in vitro digestion of oils of 

vegetable and animal origins, and of other model systems. Influence on their 

extent of the oil initial oxidation level, of the oil unsaturation degree, of the 

presence of proteins and of the synthetic antioxidant BHT 

 

 

In the OBJECTIVE 3.1. (Manuscript 7): 

1. The high reactivity of the gastrointestinal tract chemical environment and the usefulness of 

innovative techniques, like 1H NMR and SPME-GC/MS, in providing a global view of the 

phenomena taking place, have been evidenced. 

2. During in vitro gastrointestinal digestion of sunflower oil not only hydrolysis takes place but 

also lipid oxidation, Maillard-type and esterification reactions. Nevertheless, their advance is 

greatly influenced by the initial oxidation level of the oil sample: 

 Lipolysis occurs to a smaller extent during in vitro digestion of slightly oxidized sunflower 

oil samples than of fresh ones.  

 Oxidation reactions take place to a greater extent during in vitro digestion slightly oxidized 

sunflower oil samples than of fresh ones. This is evidenced by a higher decrease of 

unsaturated acyl groups/fatty acids and by the higher generation of oxidation products, 

among which (Z,E)-hydroperoxy-, and (Z,E)- and (E,E)-hydroxy-octadecadienoic acids/acyl 

groups, as well as volatile secondary oxidation compounds typically arising from ω-6 acyl 

groups degradation. 

3. For first time, the formation under gastrointestinal digestive conditions of hydroxy-

octadecadienoic acids/acyl groups derived from linoleic chains is evidenced by 1H NMR. 

4. The consumption of oxidized oils (even those at the first stages of lipid oxidation) should be 

avoided as much as possible, because a larger amount of potentially toxic aldehydes is 

expected to be generated during digestion, remaining thus bioaccessible for absorption or 

even exerting negative effects in the gastrointestinal tract itself. 
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In the OBJECTIVE 3.2. (Manuscript 8): 

5. 1H NMR study shows a slightly lower digestibility of oxidized flaxseed oil samples in 

comparison to non-oxidized ones, although in both cases a high in vitro lipolysis degree is 

reached. 

6. Under gastrointestinal digestive conditions, oxidation of flaxseed oil occurs yielding the 

decrease of unsaturated acyl groups (especially linolenic and linoleic) and the formation of 

octadecatri/dienoic acids or acyl groups with (Z,E)-conjugated dienic systems having also 

hydroperoxy groups. In the case of slightly oxidized flaxseed oil samples digestion, the 

decrease of polyunsaturated acyl groups or fatty acids was much more pronounced, yielding in 

addition to the above-mentioned compounds: epoxides, octadeca-di/tri-enoic acids or acyl 

groups with (E,E)-conjugated dienic systems having also hydroperoxy groups and with (Z,E)- 

and (E,E)-conjugated dienic systems having also hydroxyl group, and alkanals in concentrations 

detectable by 1H NMR. 

7. For the first time, the formation of monoepoxy-octadecadienoates derived from linolenic 

chains under gastrointestinal digestive conditions is evidenced by 1H NMR.  

8. SPME-GC/MS technique provided very interesting information about the volatile aldehydes 

generated during flaxseed oil digestion that could not be detected by 1H NMR because of their 

occurrence in low amount; among them, potentially reactive aldehydes like (E)-2-alkenals, 2,4-

alkadienals and alkatrienals, typically arising from ω-3 acyl groups oxidation. In the case of 

oxidized samples, these compounds were formed in higher abundances than in non-oxidized 

ones, and the generation of the oxygenated α,β-unsaturated aldehyde 4,5-epoxy-2-heptenal 

was highlighted.  

9. During digestion lipids rich in ω-3 acyl groups (flaxseed oil) undergo a greater oxidation extent 

than those rich in ω-6 ones (sunflower oil), although the nutritive value loss and the 

generation of potentially hazardous compounds is greatly dependent on the initial oxidative 

status of the ingested lipids. Further research is needed on this topic, since the intake of oils 

rich in ω-3 lipids has been encouraged in recent years due to their potential health benefits.  

10. The selection of markers of lipid oxidation occurrence and extent should vary depending on 

the oxidation process conditions and on food lipid composition. The traditional mechanisms 

proposed for lipid oxidation might provide a too simplistic view, which does not fit to that 

taking place along the gastrointestinal tract. Therefore, it is of paramount importance to study 

each oxidation process in depth in order to properly select the oxidation markers that better 
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reflect the evolution of each process, and to use techniques that allow the study at once of a 

broad variety of oxidation markers, including not only conjugated dienes, hydroperoxides, and 

carbonyl compounds, but also epoxides and hydroxides.  

 

In the OBJECTIVE 3.3. (Manuscript 9): 

11. The food bolus composition influences considerably lipid hydrolysis and oxidation reactions 

occurring under in vitro gastrointestinal conditions. 

12. A significantly greater hydrolysis takes place in triglycerides than that occurring in diglycerides 

and monoglycerides during in vitro digestion of slightly oxidized sunflower and flaxseed oil in 

the presence of proteins (ovalbumin and soy protein isolate) than in their absence. 

13. Lipid oxidation occurring during in vitro digestion of slightly oxidized sunflower and flaxseed oil 

occurs to a lesser extent in the presence of ovalbumin and soy protein isolate proteins than in 

their absence. 1H NMR and SPME-GC/MS study showed a smaller decrease of polyunsaturated 

acyl groups/ fatty acids and a lower generation of total lipid oxidation products during oils 

digestion in the presence of proteins.  

14. For the first time, the potential antioxidant activity of ovalbumin and soy protein hydrolysates 

released during in vitro digestion is demonstrated by means of spectroscopic techniques, like 

1HNMR and SPME-GC/MS, instead of the typical in vitro chemical assays. 

15. The simultaneous digestion of proteins and lipids not only provokes a decrease of lipid 

oxidation reactions, but also the occurrence of lipid reduction reactions. 1H NMR study showed 

that lipid hydroperoxides, in particular (E,E)-isomers, were almost totally reduced to more 

stable hydroxides. 

16. Caution must be taken when selecting oxidation compounds target of analysis (markers) to 

assess lipid oxidation extent, because: i) depending on the oxidative conditions, the kind of 

lipid involved, and the presence of other food components, the typical mechanism of oxidation 

process might not properly fit; ii) erroneous conclusions on the oxidative status of a digested 

sample might be reached when determining the amount of only one or two kinds of lipid 

oxidation products. Thus, the best option to obtain sound results is to use techniques that 

allow a global study of multiple lipid oxidation products, in a single run and without chemical 

transformations of the sample. 
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In the OBJECTIVE 3.4. (Manuscript 10): 

17. BHT is a synthetic phenolic antioxidant which has been widely used as an additive in the food, 

animal feed, cosmetic and plastic industries for the last 70 years. Although it is considered safe 

for human health at authorized levels, ubiquitous presence of BHT, its controversial 

toxicological data, a lack of information about its true dietary intake can be of great concern 

for consumers. 

18. Increasing knowledge on BHT-derived compounds is needed because some of them (quinone 

methide derivatives) exert potentially toxic effects. 

19. The current extent of human exposure to BHT and its metabolites should be evaluated, not 

only as a result of their presence in authorized foods, but also as related to other additional 

sources that reach the food chain, such as carry-over processes from feed to farmed animal 

products, migration from plastic pipelines and packaging to water and food, and their presence 

in smoke flavourings and in natural environments. 

20. Further research on the possible dual role of BHT as either antioxidant or pro-oxidant is 

needed, as well as on the conditions and the mechanisms by which BHT acts on foods in these 

two ways. 

 

In the OBJECTIVE 3.5. (Manuscript 11): 

21. During in vitro gastrointestinal digestion cod liver oil oxidation takes place, resulting in the 

decrease of ω-3 acyl groups/fatty acids and of naturally present vitamin A and the generation 

of oxidation compounds derived from both. 

22. For the first time, the potential formation during cod liver oil digestion of toxic oxygenated 

α,β-unsaturated aldehydes containing hydroperoxy and hydroxy groups, together with 

monoepoxides and (Z,E)-conjugated dienic systems associated with hydroperoxy groups, has 

been proved by 1H NMR spectroscopy. 

23. SPME-GC/MS confirms the generation of typical reactive aldehydes arising from ω-3 lipids. 

Moreover, the high sensitivity of this latter technique allowed the identification of other kinds 

of oxidation compounds not detectable by 1H NMR arising from ω-3 and ω-6 acyl groups/ fatty 

acids degradation (furan derivatives, alkanals, (E)-2-alkenals, alkadienals, alkatrienals and 4,5-

epoxy-2-heptenals) and from vitamin A oxidation. 
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24. The enrichment of cod liver oil with the synthetic antioxidant BHT at 20 or 800 ppm greatly 

limited the advance of cod liver oil oxidation under gastrointestinal in vitro conditions, 

increasing significantly the bioaccessibility of polyunsaturated lipids and that of vitamin A, and 

decreasing the generation of the above-mentioned toxic aldehydes. 

25. As a result of its antioxidant activity, the oxidation of BHT itself takes place under in vitro 

gastrointestinal digestion, leading to a decrease of its abundance and the occurrence in very 

low abundances of volatile BHT-oxidation products, among which alcohol (BHT-OH) and 

quinone (BHT-Q) derivatives can be cited. 

26. Caution is needed during cod liver oil supplementation due to the potential intake of oxidized 

compounds and its further oxidation during digestion. In this sense, the simultaneous intake of 

other compounds with antioxidant activity would be required in order to increase the 

bioaccessibility of polyunsaturated acyl groups or fatty acids and of vitamin A, and to decrease 

or inhibit the formation of toxic oxygenated α,β-unsaturated aldehydes. 
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AIM 4: In vitro gastrointestinal digestion of processed fish. Influence of some 

technological processes like salting and smoking on the lipids performance under 

digestive conditions 

 

 

In the OBJECTIVE 4.1. (Manuscript 12): 

1. During fish in vitro digestion, lipid oxidation occurs to a low extent. 1H NMR evidenced the 

generation in very low amounts of primary oxidation compounds, such as conjugated dienes 

supported on chains having also hydroperoxy and hydroxy groups. SPME-GC/MS showed the 

formation of secondary oxidation compounds of low molecular weight coming from fish 

unsaturated acyl groups.  

2. Moreover, the occurrence of amino acids degradation, Maillard-type reactions between 

nitrogenated components and lipid oxidation products and esterification reactions is also 

proved by means of the detection of volatile end-products.  

3. The previous salting of fish clearly favours the advance of the above-mentioned chemical 

reactions during in vitro digestion, especially when intense salting processes (dry-salting) are 

performed. By contrast, no differences are observed between in vitro lipolysis of unsalted and 

salted fish.  

4. 1H NMR and SPME-GC/MS provided very useful and complementary information, in a fast way 

and without any chemical modification of the sample. They enabled a deeper study at a 

molecular level of the reactions taking place during fish in vitro digestion, which is of 

paramount importance to gain further knowledge concerning the relationships existing 

between food composition, technological processing and human health. It must be noted that 

this information about the specific nature of the generated compounds cannot be obtained 

when traditional methods are used. 

 

In the OBJECTIVE 4.2. (Manuscript 13): 

5. Smoking process does not affect the extent of lipolysis reaction during in vitro digestion of sea 

bass meat.  
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6. Smoking with liquid smoke flavourings protects fish lipids from oxidative degradation during in 

vitro gastrointestinal digestion. This kind of fish processing inhibits the generation of primary 

and secondary oxidation compounds arising from polyunsaturated ω-3 and ω-6 lipids that 

takes place during digestion of unsmoked fish samples. 

7. The protective effect of smoking towards fish lipid oxidation under gastrointestinal conditions 

is also confirmed by the markedly hindrance of the loss of the synthetic antioxidant BHT 

originally present in farmed sea bass. 

8. For the first time, the potential bioaccessibility of smoke flavouring components is proved by 

means of both 1H NMR and SPME-GC/MS. Among the smoke-derived components remaining 

bioaccessible after gastrointestinal digestion, there is a great variety of phenolic compounds. 

This issue is of paramount importance from a health point of view since these compounds 

could also limit in vivo oxidative damage. Further confirmatory in vivo studies on this topic 

would be appropriate. 
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