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This paper is concerned with the investigation of the controllability and observability of Caputo
fractional differential linear systems of any real order α. Expressions for the expansions of the
evolution operators in powers of the matrix of dynamics are first obtained. Sets of linearly
independent continuous functions or matrix functions, which are also Chebyshev’s systems,
appear in such expansions in a natural way. Based on the properties of such functions, the
controllability and observability of the Caputo fractional differential system of real order α are
discussed as related to their counterpart properties in the corresponding standard system defined
for α = 1. Extensions are given to the fulfilment of those properties under non-uniform sampling.
It is proved that the choice of the appropriate sampling instants is not restrictive as a result of the
properties of the associate Chebyshev’s systems.

1. Introduction

Caputo fractional calculus is a very useful tool to calculate alternative solutions to the classical
ones in many applications as, for instance, in dynamic systems (see, e.g., [1–3]). Since the
fractional order α can be a nonpositive integer, even real or complex, the technique can be
used to better fix the trajectory solution of mathematical models to obtained experimental
data due to modelling or measuring errors. On the other hand, the so-called Chebyshev
system of n linearly independent functions in the Banach space of continuous functions
C([a, b]), endowed with the supremum norm, has the important property, due to Haar, that
each nontrivial polynomial of this system has at most (n − 1) distinct zeros in [a, b], [4].
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There are many sets of linearly independent functions which are Chebyshev’s systems as,
for instance, (a) the sets {tk : k = 0, . . . , n − 1}, respectively, {cos kt : k = 0, . . . , n − 1}
on any real interval [a, b] of nonzero finite measure, respectively, on [0, 2π], and (b) the
set {f(t)tk : k = 0, . . . , n − 1} with f(t) being continuous and with no zeros on [a, b] is
a Chebyshev system on [a, b]. The linearly independent functions defining the expansions of
the C0-semigroup {eAt : t ∈ R0+}, of differential generatorA, in powers of A are a Chebyshev
system on any interval [γ, γ + π/ω) where ω is the maximum eigenfrequency; that is, the
maximum absolute imaginary part of any complex eigenvalues, if any, and otherwiseω = +∞
(see [5–7], firstly discussed in [6]). In [5], it is proven that the property holds even if A is
a complex matrix which is not related by a similarity transformation to some real one, that
is, some potential complex eigenvalues may not have their complex conjugate counterparts
as eigenvalues. In [6, 7], the Haar property of Chebyshev systems is used to formulate the
following properties:

(a) controllability to the origin of standard linear time-invariant dynamic systems
(roughly speaking, the ability to steer any initial condition to the equilibrium in
any finite time by injecting some admissible control) under, in general, non-uniform
(also referred to as aperiodic or nonperiodic) sampling,

(b) observability of standard linear time-invariant dynamic (i.e., the ability to calculate
initial conditions from past values of a measured output trajectory) under, in
general, non-uniform sampling,

(c) identifiability of standard linear dynamic time-invariant systems (i.e., the ability to
compute the values of the parameters from output measurements and eventually
time-derivatives up till some order of the output trajectory) and model matching of
linear and time-invariant systems also under, in general, non-uniform sampling.

It has been proven in the above papers that the Haar property ensures that the corresponding
properties are transferred from the continuous-time dynamic system to its discrete-time
counterpart for infinitely many choices of sets of sufficient large cardinal (exceeding a lower-
bound being dependent on the degree of the minimal polynomial of A and the dimensions
of the output and input spaces) of distinct sampling instants. The particular choices of
the sampling instants may be done by some practical considerations as, for instance, to
achieve a well-conditioned coefficient matrix of the resulting algebraic problem related to
controllability, observability, local identifiability and so forth. The study of the properties
of controllability, reachability (related to controllability to any final state), observability
and constructability (closely related to observability) under non-uniform sampling has
been extended more recently to nonfractional positive linear continuous time systems,
namely, those having nonnegative state and output trajectory for any given non-negative
initial conditions and controls [8]. Many other theoretical studies and applications have
been performed. In [9], the reconstruction problem from non-uniform data is focused on.
In [10], the general non-uniform sampling in a stochastic framework is investigated. The
problem of sequential estimation under non-uniform sampling is studied in [11]. In [12–14],
some estimation properties and application under non-uniform sampling are described. The
sampling efficiency in event-based sampling laws of signals is discussed in [15]. Finally, some
filtering properties under non-uniformly sampled signals are investigated in [16]. All those
commented studies were referred to the standard (i.e., nonfractional) case. Therefore, the
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extension given in this manuscript which includes the fractional case of positive real order is
novel in the context of non-uniform sampling. The paper is organized as follows. Section 2 is
devoted to some preliminary results concerning the expansions of the evolution operators of
the solution in powers of the matrix of dynamics of a linear time-invariant dynamic system.
Sets of Chebyshev’s systems of functions appear in a natural way in such expansions. Such
sets have the property of keeping nonsingular, under very generic sampling, the coefficient
matrices of the algebraic systems of equations associate to controllability, respectively,
observability problems in the case that the continuous-time counterpart is controllable or,
respectively, observable. The results are extended in Section 3 for Caputo fractional dynamic
systems on any real order α. Those results are used in Sections 4-5 to discuss the properties
of observability and controllability and their counterparts under non-uniform sampling.
Finally, an example is given in Section 6.

Some notations used are R0+ := R+ ∪ {0} = {z ∈ R+ : z ≥ 0}; R+ := {z ∈ R+ : z > 0}.
A corresponding notation Z0+, Z+ are used for the corresponding subsets of the integer set Z.
n := {1, 2, . . . , n}, for all n ∈ Z+, and A � 0 denotes that the matrix A is positive definite.

2. Preliminaries on the Expansions of exp(At) and Associate
Chebyshev’s Systems

This section is devoted to preliminary basic results about useful sets of linearly independent
real functions and realmatrix functions of time, which are also Chebyshev systems [4–7], and
used for the expansions of the evolution operators defining the solution of the differential
system.

Lemma 2.1. Assume that μ is the degree of the minimal polynomial of A ∈ Cn×n. Then {Ai ∈ Cn×n :
i ∈ μ − 1 ∪ {0}} is a linearly independent set of matrices.

Proof. Proceed by contradiction by assuming that the set {Ai ∈ Cn×n : i ∈ μ − 1 ∪ {0}} is
linearly dependent so that there is a nonidentically zero set {λi ∈ C : i ∈ μ − 1∪{0}} such that
∑μ−1

i=1 λiAi = 0. Assume that λj /= 0 for j ∈ μ − 1 ∪ {0} so that

Aj = −λ−1
j

⎛

⎝
μ−1∑

i(<j)=1

λiA
i +

μ−1∑

i(>j)

λiA
i

⎞

⎠. (2.1)

Choose j = max(i ∈ μ − 1 ∪ {0} : λk = 0, ∀k(> i) ∈ μ − 1 ∪ {0})which always exists since {λi ∈
C : i ∈ μ − 1 ∪ {0}} is a nonidentically zero set and 0 ≤ j ≤ μ − 1. Thus, Aj = −∑μ−1

i(<j)=1 λ
−1
j λiAi

and some 0 ≤ j ≤ μ − 1 is then the degree of the minimal polynomial of A which contradicts
that such a degree is μ.

Lemma 2.2. The following formula Ap =
∑μ−1

k=0 ak(p)Ak holds with unique complex coefficients
ak(p), for all k ∈ μ − 1 ∪ {0}, for all p (∈ Z+) ≥ μ.



4 Discrete Dynamics in Nature and Society

Proof. Note from Cayley-Hamilton theorem that Aμ =
∑μ−1

k=0 ak(μ)Ak , thus,

Aμ+1 =
μ−1∑

k=0

ak

(
μ
)
Ak+1 =

μ−2∑

k=0

ak

(
μ
)
Ak+1 + aμ−1Aμ

=
μ−1∑

k=1

ak−1
(
μ
)
Ak + aμ−1

(
μ
)
(

μ−1∑

k=0

ak

(
μ
)
Ak

)

=
μ−1∑

k=0

(
ak−1

(
μ
)
+ ak

(
μ
)
aμ−1

(
μ
))
Ak =

μ−1∑

k=0

ak

(
μ + 1

)
Ak,

(2.2)

so that the above identity holds irrespective of A if and only if

ak

(
μ + 1

)
=aμ−1

(
μ
)
ak

(
μ
)
+ak−1

(
μ
)
=
a0
(
μ+1

)

a0
(
μ
) ak

(
μ
)
+ak−1

(
μ
)
; ∀k ∈ μ−1 ∪ {0}, a−1

(
μ
)
= 0.

(2.3)

Proceeding recursively with the above formulas, one gets for all Z+ 	 p ≥ 1

Aμ+p =
μ−1∑

k=0

ak

(
μ + p − 1

)
Ak+1 =

μ−1∑

k=0

(
ak−1

(
μ + p − 1

)
+ ak

(
μ + p − 1

)
aμ−1

(
μ + p − i − 1

))
Ak

=
μ−1∑

k=0

ak

(
μ + p

)
Ak

(2.4)

with

ak

(
μ + p

)
= a

p

μ−1
(
μ
)
ak

(
μ
)
+

p−1∑

i=0

ai
μ−1

(
μ
)
ak−1

(
μ + p − i − 1

)
. (2.5)

The uniqueness of the coefficients follows from Lemma 2.1 as follows. Assume that there are

two sets of coefficients such that Ap =
∑μ−1

k=0 ak(p)Ak =
∑μ−1

k=0 a
′
k(p)A

k. Then,
∑μ−1

k=0(ak(p) −
a′
k
(p))Ak = 0 which implies ak(p) = a′

k
(p) for all k ∈ p − 1 ∪ {0} for all p(∈ Z+) ≥ μ from

Lemma 2.1 since {Ai ∈ Cn×n : i ∈ μ − 1 ∪ {0}} is a linearly independent set.

Alternative Proof

Equivalently, proceed by complete induction by assuming that

Aμ+j =
μ−1∑

k=0

ak

(
μ
)
Ak+j =

μ−1∑

k=0

ak

(
μ + j − 1

)
Ak+1 ; ∀j ∈ p − 1 (2.6)
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with

ak

(
μ + j

)
= a

j

μ−1
(
μ
)
ak

(
μ
)
+

j−1∑

i=0

ai
μ−1

(
μ
)
ak−1

(
μ + j − i − 1

)
; ∀j ∈ p − 1. (2.7)

Then, it follows that (2.4) holds with

ak

(
μ + j

)

= aμ−1
(
μ + j − 1

)
ak

(
μ + j − 1

)
+ ak−1

(
μ + j − 1

)

= a
j

μ−1
(
μ
)
ak

(
μ
)
+

j−1∑

i=0

ai
μ−1

(
μ
)
ak−1

(
μ + j − i − 1

)
; ∀k ∈ μ − 1 ∪ {0}, a−1

(
j
)
= 0, ∀j ∈ p − 1.

(2.8)

A particular case of interest of (2.8) is

ak(n) = aμ−1(n − 1)ak(n − 1) + ak−1(n − 1)

= a
n−μ
μ−1

(
μ
)
ak

(
μ
)
+

n−μ−1∑

i=0

ai
μ−1

(
μ
)
ak−1(n − i − 1); ∀k ∈ μ − 1 ∪ {0}, a−1(n − 1) = 0

(2.9)

that allows to interpret the two following common formulas for the Cayley-Hamilton
theorem:

Aμ =
μ−1∑

k=0

ak

(
μ
)
Ak; An =

μ−1∑

k=0

ak(n)Ak. (2.10)

where μ ≤ n and n are, respectively, the degrees of theminimal and characteristic polynomials
ofA. On the other hand, it is possible to extend the expansion of powers ofA up till the degree
of the characteristic polynomial ofA through the use of modified coefficients ak(·) as follows:

An =
n−1∑

k=0

ak(n)Ak =
μ−1∑

k=0

ak

(
μ
)
Ak

=
μ−1∑

k=0

ak(n)Ak +
n−1∑

k=μ

ak(n)Ak =
μ−1∑

k=0

ak(n)Ak +
n−1−μ∑

k=0

ak+μ(n)Ak+μ

=
μ−1∑

k=0

ak(n)Ak +
n−1−μ∑

k=0

ak+μ(n)

⎛

⎝
μ−1∑

j=0

aj

(
μ + k

)
Aj

⎞

⎠

=
μ−1∑

j=0

(

aj(n) +
n−1−μ∑

k=0

ak+μ(n)aj

(
μ + k

)
)

Aj,

(2.11)
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so that aj(n) = aj(μ)−
∑n−1

k=μ ak(n)aj(k), for all k ∈ n − 1∪{0} and it turns out that the extension

also works for Ap, for all p(∈ Z+) ≥ μwith ak(μ) = ak(μ), for all k ∈ p − 1 ∪ {0}, and

ak

(
p
)
= ak

(
μ
) −

p−1∑

j=μ

aj

(
p
)
ak(k); ∀k ∈ p − 1 ∪ {0} (2.12)

for p ≥ μ + 1. There has been proven the following.

Lemma 2.3. There exist complex coefficients ak(p) and ak(p), for all k ∈ p − 1∪{0}, for all p(∈ Z+) ≥
μ, such that the formulas Ap =

∑μ−1
k=0 ak(p)Ak =

∑p−1
k=0 ak(p)Ak are true. Those sets of coefficients

coincide if p = μ.

It turns out that he sets of expanding coefficients are real if the matrix A is real or
if it is complex being similar to a real one, that is, all complex values, if any, appear by
complex conjugate pairs or identical multiplicities. Now, the above results are related to
the fundamental matrices of time-invariant differential systems as follows. Consider C0-
semigroup {Φ(t) := eAt : t ∈ R0+} of infinitesimal generatorA ∈ Cn×n is an evolution operator
in L (Cn) point-wise defined by Φ(t) = eAt the defining the trajectory solutions x(t) = Φ(t)x0

of the differential system of order n ẋ(t) = Ax(t); x(0) = x0. An equivalent description is that

Φ : R0+ → Cn×n is the fundamentalmatrix function (or the state-transitionmatrix function) of
the above differential system. The expansions ofΦ(t) in finite powers ofA, being not less than
its minimal polynomial, where studied in detail for A ∈ Cn×n in [4–7] by using Chebyshev
sets of complex functions.

Lemma 2.4. The formulas Φ(t) := eAt =
∑p−1

k=0 βk(t, p)A
k, for all p ≥ μ for linearly independent sets

of functions Bp := {βk : R0+ × p → R : k ∈ p − 1 ∪ {0}} which are unique and analytic in R+ for

each p ≥ μ and which satisfy a p-order linear time-invariant differential system on R+.

Proof. It follows after using Lemma 2.3 with Ap =
∑μ−1

k=0 ak(p)Ak =
∑p−1

k=0 ak(p)Ak that

Φ(t) := eAt =
∞∑

k=0

Aktk

k!
=

p−1∑

k=0

Aktk

k!
+

∞∑

k=p

Aktk

k!
=

μ−1∑

k=0

Aktk

k!
+

∞∑

k=μ

Aktk

k!

=
μ−1∑

k=0

⎛

⎝ tk

k!
+

∞∑

i=μ

ak(i)ti

i!

⎞

⎠Ak =
μ−1∑

k=0

βk
(
t, μ

)
Ak

=
p−1∑

k=0

⎛

⎝ tk

k!
+

∞∑

i=p

ak(i)ti

i!

⎞

⎠Ak =
p−1∑

k=0

βk
(
t, p

)
Ak, ∀p ≥ μ

(2.13)
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with β0(0, p) = 1, βi(0, p) = 0; for all i ∈ p − 1 ∪ {0}, where

βk
(
t, μ

)
=

tk

k!
+

∞∑

i=μ

ak(i)ti

i!
; k ∈ μ − 1 ∪ {0},

βk
(
t, p

)
=

tk

k!
+

∞∑

i=p

ak(i)ti

i!
; k ∈ p − 1 ∪ {0}, ∀p ≥ μ.

(2.14)

Using the recursive expressions (2.9) for the a(·)(·) in the above formula and using also the
recursions (2.12) for the a(·)(·), for all k ∈ p − 1 ∪ {0}, one gets

βk
(
t, μ

)
=

tk

k!
+

∞∑

i=μ

ti

i!

⎛

⎝a
i−k+μ
k−μ−1

(
k − μ

)
ak

(
k − μ

)
+

i−k+μ−1∑

�=0

a�
k−μ−1

(
k − μ

)
ak−1(i − � − 1)

⎞

⎠;

k ∈ μ − 1 ∪ {0}, a−1(i) = 0; ∀i ≥ μ,

βk
(
t, p

)
=

tk

k!
+

∞∑

i=p

⎛

⎝ak

(
μ
) −

i−1∑

j=μ

aj(i)ak(k)

⎞

⎠ ti

i!
; k ∈ μ − 1 ∪ {0}, ∀p ≥ μ.

(2.15)

These functions satisfy sets of linear time-invariant ordinary differential equations as follows:

Φ̇(t) = AΦ(t) =
p −1∑

k=0

β̇k
(
t, p

)
Ak =

p −1∑

k=0

βk
(
t, p

)
Ak+1

=
p∑

k=1

βk−1
(
t, p

)
Ak + βp−1

(
t, p

)
Ap; p ≥ μ

(2.16)

that implies

β̇0
(
t, p

)
In +

p−1∑

k=1

(
β̇k
(
t, p

) − βk−1
(
t, p

))
Ak − βp−1

(
t, p

)
Ap = 0. (2.17)

The above constraint holds for any matrixA so that functions in the sets Bp := {β� : R0+×p →
R : � ∈ p − 1 ∪ {0}}, for all p ≥ μ are linearly independent since they are the solutions of the
linear time-invariant differential system

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

β̇0
(
t, p

)

β̇1
(
t, p

)

...

β̇p−1
(
t, p

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 a0
(
p
)

1 0 · · · 0 a1
(
p
)

. . . . . .
...

0 · · · 0 1 ap−1
(
p
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

β0
(
t, p

)

β1
(
t, p

)

...

βp−1
(
t, p

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

β0
(
0, p

)
= 1, βi

(
0, p

)
= 0; ∀i ∈ p − 1 ∪ {0};

(2.18)
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for all p ≥ μ,for all k ∈ p − 1∪{0}, with ak(μ) = ak(μ), for all k ∈ μ − 1∪{0}, whose respective
unique solutions are

fα
(
t, p

)
= eΩa(p)tfα

(
0, p

)
, (2.19)

where fβ(t, p) = (β0(t, p), β1(t, p), . . . , βp−1(t, p))T with fβ(0, p) = e1 = (1, 0, . . . , 0)T , and

Ωa

(
p
)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 a0
(
p
)

1 0 · · · 0 a1
(
p
)

. . . . . .
...

0 · · · 0 1 ap−1
(
p
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.20)

Then, there exist unique sets Bp := {βk : R0+×p → R : k ∈ p − 1∪{0}} of linearly independent
functions, which are unique and analytic in R+ for each p ≥ μ from (2.19)-(2.20), such that the

formulas Φ(t) = eAt =
∑p−1

k=0 βk(t, p)A
k hold, for all t ∈ R0+, for all p ≥ μ.

Remark 2.5. Note that it has been proven that there exist sets Ap := {ak(p) : k ∈ μ − 1 ∪ {0}}
and Ap := {ak(p) : k ∈ p − 1 ∪ {0}}; p ≥ μ of complex coefficients, with ak(μ) = ak(μ), for all
k ∈ μ − 1 ∪ {0}, such that the following polynomial expansions are true Aμ =

∑μ−1
k=0 ak(μ)Ak ,

An =
∑n−1

k=0 ak(n)Ak =
∑μ−1

k=0 ak(n)Ak where μ and n are the degrees of the minimal and the

characteristic polynomial ofA, respectively. In general,Ap =
∑μ−1

k=0 ak(μ)Ak =
∑μ−1

k=0 ak(p)Ak =
∑p−1

k=0 ak(p)Ak for p ≥ μ. Those sets are unique for each p ≥ μ. The above formulas imply that

there exist unique sets Bp := {βk : R0+ × p → R : k ∈ p − 1 ∪ {0}} of linearly independent
functions, which are unique and analytic in R+ for each p ≥ μ from (2.19)-(2.20), such that the

formulas Φ(t) = eAt =
∑p−1

k=0 βk(t, p)A
k hold, for all p ≥ μ.

The following result is useful to relate the coefficients of the minimal and characteristic
polynomials of A to the two more relevant versions of the Cayley-Hamilton theorem.

Lemma 2.6. Assume that pn(A) = det(sIn −A) = det(sIn − JA) is the characteristic polynomial of
a nonzero matrix A of n order and Jordan form JA. Then, pn(A) = sn −∑n−1

k=0 ak(n)sk.
Assume that μ, with 1 ≤ μ ≤ n, is the degree of the minimal polynomial of A, pμ(A). Then,

pμ(A) = pμ(JA) = pμ(ĴA) = sμ −∑μ−1
k=0 ak(μ)sk, where ĴA = ETJA E = ETT−1JATE is a μ-square

matrix and T and E are n-square nonsingular and μ×nmatrices, respectively, which are unique except
multiplication by a nonzero scalar and pμ(A) is the characteristic and minimal polynomial of ĴA.

Proof. The first part follows from the Cayley-Hamilton theorem in the form An =
∑n−1

k=0 ak(n)Ak and the fact that the matrix satisfies its own characteristic polynomial. If μ
is the degree of the minimal polynomial of A, then there exist a nonsingular real n-matrix
T and a μ × n real matrix E, formed by identity and zero-block matrices of appropriate
orders which pickup from JA the higher-order Jordan blocks of each eigenvalue of A,
whose orders are given by the respective index of each eigenvalue, such that the identities
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ĴA = ETJAE = ETT−1JATE hold. The last identity holds from the Cayley-Hamilton
theorem since the characteristic polynomial of ĴA and the minimal polynomial of A and JA
coincide.

3. The Expansions of Evolution Operators of
Functional Fractional Caputo Differential Systems
and Their Associate Chebyshev Systems

The above results are extended to the following fractional Caputo differential systems of
order α:

(
CDα

0+ x
)
(t) = Ax(t) + Bu(t), (3.1)

with k−1 < α (∈ R+) ≤ k, for some k−1, k ∈ Z0+ and B ∈ Rn×m is the control matrix. If α = 1,
then (3.1) is referred to in the sequel as the standard system. The initial conditions are ϕj(0) =
xj(0) = x(j)(0) = x0j , for all j ∈ k − 1 ∪ {0}. The admissible function vector u : R0+ → Rm is
any given bounded piecewise continuous control function. The following result is concerned
with the unique solution on R0+ of the above differential fractional system (3.1). The proof
follows directly from a parallel existing result from the background literature on fractional
differential systems by grouping all the additive forcing terms of (3.1) in a unique one (see,
e.g., [1], equations (1.8.17), (3.1.34)– (3.1.49), with f(t) ≡ Ax(t) + Bu(t)).The linear and time-
invariant differential functional fractional differential system (3.1) of any order α ∈ C0+ has
the following unique solution on R0+ for each given set of initial conditions and each given
control u : R0+ → Rm being a bounded piecewise continuous control function, [1]:

xα (t) =
k−1∑

j=0

tjΦαj(t)x0j +
∫ t

0
(t − τ)α−1Φα(t − τ)Bu(τ)dτ ; t ∈ R0+, (3.2)

with k = [Re α] + 1 if α /∈ Z+ and k = α if α ∈ Z+. Direct calculations yield that for any
set of initial conditions the solution (3.2) verifies (3.1). Uniqueness is direct from Picard-
Lindeloff theorem. The matrix functions Φαj(t), for all j ∈ k − 1 ∪ {0} and Φα(t) from R0+

to Rn×n are calculated via the Mittag-Leffler functions which, after using the identities A� =
∑μ−1

�=0 a�(�)A� =
∑p−1

�=0 a�(�)A� , for all p ≥ μ from Lemma 2.3 for the matrix A, lead to

Φαj(t) =
∞∑

�=0

A�tα�

Γ
(
α� + j + 1

) =
μ−1∑

�=0

⎛

⎝ tα�

Γ
(
α� + j + 1

) +
∞∑

i=μ

a�(i)tαi

Γ
(
αi + j + 1

)

⎞

⎠A�

=
μ−1∑

�=0

βαj�
(
t, μ

)
A� ; ∀j ∈ k − 1 ∪ {0}

=
p−1∑

�=0

⎛

⎝ tα�

Γ
(
α� + j + 1

) +
∞∑

i=p

a�(i)tαi

Γ
(
αi + j + 1

)

⎞

⎠A�,
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=
p−1∑

�=0

βαj�
(
t, p

)
A� ; ∀p ≥ μ, ∀j ∈ k − 1 ∪ {0}

(3.3)

Φα(t) =
∞∑

�=0

A�tα�

Γ((� + 1)α)
=

p−1∑

�=0

A�tα�

Γ((� + 1)α)
+

∞∑

�=p

A�tα�

Γ((� + 1)α)

=
p−1∑

�=0

⎛

⎝ tα�

Γ((� + 1)α)
+

∞∑

i=p

ak(�)tαi

Γ((i + 1)α)

⎞

⎠A� ; ∀p ≥ μ

=
p−1∑

�=0

βα�
(
t, p

)
A� ; ∀p ≥ μ,

(3.4)

for all t ∈ R0+, where, provided that k − 1 < α (∈ R+) ≤ k(∈ Z+), Γ : R0+ → R+ is the
Γ-function of definition domain restricted to R0+ and the elements of the sets of functions
Bαjp := {βαj� : R0+ × p → R : � ∈ p − 1∪ {0}}, for all j ∈ k − 1∪ {0} and Bαp := {βα� : R0+ × p →
R : � ∈ p − 1 ∪ {0}}, for all p ≥ μ are defined for t ∈ R0+ as follows:

βαj�
(
t, p

)
=

⎛

⎝ tα�

Γ
(
α� + j + 1

) +
∞∑

i=p

a�(i)tαi

Γ
(
αi + j + 1

)

⎞

⎠; ∀j ∈ k − 1, ∀� ∈ p − 1 ∪ {0}, ∀p ≥ μ,

βα�
(
t, p

)
=

⎛

⎝ tα�

Γ((� + 1)α )
+

∞∑

i=p

ak(�)tαi

Γ((i + 1)α)

⎞

⎠; ∀p ≥ μ.

(3.5)

Remark 3.1. Note that the homogeneous solution of the fractional differential system is given
by

xα(t) =
k−1∑

j=0

tjΦαj(t)x0j . (3.6)

Then,

⎛

⎝ CDα
0+

⎛

⎝
k−1∑

j=0

tjΦαj(t)

⎞

⎠

⎞

⎠(t) =
k−1∑

j=0

(
AtjΦαj(t)

)
(3.7)

(see, e.g., [1, 3]). On the other hand, if only one of the above point initial conditions ϕj(0) =
xj(0) = x(j)(0) = x0j is nonzero for some arbitrary j ∈ k − 1 ∪ {0}, then (3.7) is decomposable
for each additive term resulting in:

xα(t) = tjΦαj(t)x0j . (3.8)
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Thus, Φαj(t) is a fundamental matrix for all j ∈ k − 1 ∪ {0} which satisfies the fractional
differential system of order α

(
CDα

0+ t
jΦαj

)
(t) = AtjΦαj(t) =

(
CDα

0+

(
p−1∑

�=0

tjβαj�
(
t, p

)
A�

))

(t) =

(
p−1∑

�=0

tjβαj�
(
t, p

)
A�+1

)

,

(3.9)

for all j ∈ k − 1 ∪ {0}. Note that the fractional system becomes the standard one for j = 0 and
α = 1 so that β10p = βp (defined in Lemma 2.4) and Φ(t) = eAt.

The following result of Section 2 extends the linear independence of the functions
expanding eAt to those appearing in the expansions of Φαj(t), for all j ∈ k − 1 ∪ {0} and
Φα(t)

Lemma 3.2. All the sets of functions Bαjp := {βαj� : R0+ × p → R : � ∈ p − 1 ∪ {0}} and

Bαp := {βα� : R0+ × p → R : � ∈ p − 1 ∪ {0}}, for all p(∈ Z+) ≥ μ are analytic and linearly

independent on R+ for any given α ∈ R+, k ∈ Z+ fulfilling k − 1 < α ≤ k and for all j ∈ k − 1 ∪ {0},
for all p(∈ Z+) ≥ μ. Furthermore, the sets Bαjp satisfy a p-order linear time-invariant fractional

differential system on R+, for all j ∈ k − 1 ∪ {0}.

Proof. The sets of functions are analytic since from their defining formulas, it follows that
they are infinitely differentiable on R+. Their linear independence is proven by contradiction.
Since the rows of the fundamental matrices of solutions Φαj(t); for all j ∈ k − 1 ∪ {0} of the
Caputo fractional differential system of order α are linearly independent on R0+, it follows
that ΦT

αj(t)λ = 0 ⇔ λ = 0 for any λ := (λ1, λ2, . . . , λp)T ∈ Rp; for all p ≥ μ. But, if Bαjp is

a linearly dependent set on R0+, since [In AT · · · Ap−1T ] is a full row rank matrix, then it
exists λ/= 0 such that

t−jΦT
αj(t)λ =

[
In AT · · · Ap − 1T

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

βαj0
(
t, p

)
In

βαj1
(
t, p

)
In

...

βαj,p−1
(
t, p

)
In

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

λ = 0 ⇐⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

βαj0
(
t, p

)
In

βαj1
(
t, p

)
In

...

βαj,p−1
(
t, p

)
In

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

λ = 0,

(3.10)

for all t ∈ R+ which contradicts that λ = 0 in order that Φαj(t) be a fundamental matrix,
that is, their rows are linearly independent functions. The functions in the set Bαp := {βα� :
R0+ × p → R : � ∈ p − 1 ∪ {0}} are also linearly independent from the above considerations
for the particular case α = k, j = k − 1 of Bαjp. Note that the functions in the various sets are
zero for t = 0 so that linear independence is restricted to R+. On the other hand, the functions
in the set Bαjp, satisfy the differential system

(
CDα

0+

(
p−1∑

�=0

βαj�
(
t, p

)
A�

))

(t) =

(
p−1∑

�=0

βαj�
(
t, p

)
A�+1

)

, (3.11)
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for all j ∈ k − 1 ∪{0}, subject to initial conditions βαj0(0, p) = 1/Γ(j+1) = 1/j!, βαj�(0, p) = 0,

for all j ∈ k − 1, for all � ∈ p − 1, for all p ≥ μ. The functions in the sets Bαp satisfy initial
conditions βα0(0, p) = 1/Γ(α + 1) = 1/(αΓ(α)) for all j ∈ k − 1, βαj�(0, p) = βα�(0, p) = 0, for

all j ∈ k − 1, for all � ∈ p − 1, for all p ≥ μ.

Remark 3.3. Note that, in the nonfractional standard case, the solution is also obtained from
the fractional solution of order α (3.2) as a particular case for α = 1, j = 0, k = 1 which
results to yield Φ10(t) = Φ1(t) = eAt, for all t ∈ R0+, that is, the fundamental matrix
appears simultaneously for the homogeneous solution and for the zero-initial-state forced
one and in such a case is the exponential matrix function which also defines a C0-semigroup
of infinitesimal generator A. It can be pointed out that in the fractional case α/= 1, the
fundamental matrix is not an exponential matrix function as it follows from (3.3). The linear
independence of functions in Lemma 3.2 applies for the general fractional case as for the
nonfractional case. This is an essential point for the non-uniform sampling case discussed
later on in this paper.

4. Observability and Controllability of Linear Fractional Differential
Time-Invariant Systems

Consider the Caputo fractional differential system (3.1)with a measurable output defined by

yα(t) = Cxα(t) (4.1)

for some C ∈ Rz×n with z (∈ Z+) ≤ n. The following observability property is characterized.

Definition 4.1. The Caputo fractional differential system of order α is said to be observable
in the observation time interval [0, t] if xj(0) = x0j , for all j ∈ k − 1 ∪ {0} can be uniquely
calculated from the measurable output yα(t); t ∈ [0, t] for some real interval [0, t] of nonzero
measure.

Theorem 4.2. The Caputo fractional differential system (3.1), (4.1) of order α is observable in [0, t]
for any finite t ∈ R+ only if the standard dynamic system, that is, that resulting when α = 1, that is,

ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t) (4.2)

is observable.

Proof. First, consider the homogeneous Caputo fractional differential system (3.1), that is,
u ≡ 0. One gets from (3.2)-(3.3) that

yα(t) =

⎛

⎝
k−1∑

j=0

tjCΦαj(t)x0j

⎞

⎠ =

⎛

⎝
k−1∑

j=0

p−1∑

�=0

tjCβαj�
(
t, p

)
A�x0j

⎞

⎠

= β
T

α

(
t, p

)
BlockDiag

[

Ob
(
A,C, p

) ...
k︸︷︷︸
· · · ... Ob

(
A,C, p

)

]

x0,

(4.3)
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where x0 := [xT
00, x

T
01, . . . , x

T
0,k−1]

T , and

β
T

α

(
t, p

)
:=

[
βα00

(
t, p

)
Is · · · βα0,p−1

(
t, p

)
Is · · · tk−1βα,k−1,0

(
t, p

)
Is · · · tk−1βα,k−1,p−1

(
t, p

)
Is
]
,

(4.4)

for all t(∈ R0+) is a s × pks real matrix function; for all p ≥ μ where Ob(A,C, μ) :=
[

C
CA

CAμ−1

]

.

Since (4.2) is observable, then

rank BlockDiag

⎡

⎣Ob
(
A,C, p

)...
k︸︷︷︸
· · · ...Ob

(
A,C, p

)
⎤

⎦

= kn ⇐⇒ rankOb
(
A,C, μ

)
= rankOb

(
A,C, p

)
= n.

(4.5)

Furthermore, since the sets Bαjp := {βαj� : R0+ × p → R : � ∈ p − 1 ∪ {0}} are linearly
independent on R+ from Lemma 3.2, the map from Rkn to Rs × [0, t], for all t ∈ R+ from
the initial conditions to the output-trajectory of the homogeneous system defined by (4.3) is
injective. Thus, x0 can be uniquely calculated from y : Rkn → Rs × [0, t]. The sufficiency part
has been proven. The necessity is obvious since if the rank in (4.4) is less than n, so that (4.2)
is not observable, then the above mentioned map fromRkn to Rs × [ 0, t] is not injective. The
above considerations on (4.3)–(4.5) may be extended directly to the case that the admissible
control u(t) is nonzero with its proof remaining valid, by replacing via (3.2) and (4.1)

yα(t) = Cxα(t) −→ yα(t) = y(t) −
∫ t

0
(t − τ)α−1CΦα(t − τ)Bu(τ)dτ. (4.6)

Remark 4.3. Note that Definition 4.1 and Theorem 4.2 characterize the observability property
on any time interval of nonzero measure so that the property is independent of the time
interval used for observation purposes. On the other hand, the property is independent of α
because it implies the observability of the standard system (4.2) and it is implied by such an
observability.

Remark 4.3 is formally enounced in the subsequent result.

Corollary 4.4. The observability property of the Caputo fractional differential system (3.1), (4.1) is
independent of any real fractional order α, with k − 1 < α ≤ k for any given k ∈ Z+, and independent
of the observation interval provided it is of nonzero measure.

The observability property can be tested as follows.
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Corollary 4.5. The Caputo fractional differential system (3.1), (4.1) of any real order α, with k − 1 <
α ≤ k for any given k ∈ Z+, is observable if and only if any of the three equivalent conditions holds

(1)

rank
[

CT
...ATCT

... · · · ...ATμ−1CT

]

= n, (4.7)

(2)

rank
[

λIn −AT
...CT

]

= n; ∀λ ∈ σ(A), (4.8)

where σ(A) is the spectrum ofA,

(3)
∫ t
0 Ψ

T
α(τ)CTCΨα(τ)dτ � 0, for any finite time interval [0, t] of nonzero measure

Ψα(t) :=
[

Φα0(t)
...tΦα1(t)

... · · · ...tk−1Φα,k−1(t)
]

. (4.9)

Proof. The equivalence of Conditions (1)-(2) follows from the equivalence of the observability
test for the standard system (i.e., α = k = 1) with the Popov-Belevitch-Hautus spectral
observability test, [8, 17], with the observability of any Caputo fractional system of order
α with k − 1 < α ≤ k by using Corollary 4.4. The equivalence of Conditions (1)-(2) with
Condition 3 follows from the fact that the observability of the fractional system of order α is
uniform with respect to time (Theorem 4.2 or Corollary 4.4) and the fact that (3.6) into (4.1)
with (4.9) yields for the unique (nontrivial)measurable output trajectory of the homogeneous
fractional system of order α for each x0(/= 0) ∈ Rnk

0 <

∫ t

0
yT
α (τ)yα(τ)dτ = xT

0

(∫ t

0
ΨT

α(τ)C
TCΨα(τ)dτ

)

x0, (4.10)

for any time interval [0, t] finite of nonzero measure. Thus, x0(/= 0) ∈ Rnk is unique from
(4.10), and then the system is observable, if and only if

∫ t
0 Ψ

T
α(τ)C

TCΨα(τ)dτ � 0. Thus,
Condition (3) is equivalent to Conditions (1)-(2).

Remark 4.6. Note from Condition (3) of Corollary 4.5 that if the Caputo fractional system of
order α, with k − 1 < α ≤ k, is observable, then

∫ t

0
τ2jΦT

αj(τ)C
TCΦαj(τ)dτ � 0 ⇐⇒

∫ t

0
ΦT

αj(τ)C
TCΦαj(τ)dτ � 0; ∀j ∈ k − 1 ∪ {0}, (4.11)

for any finite time interval [0, t] of nonzero measure. This is easily seen by taking initial
conditions such that x0j /= 0 for some j ∈ k − 1 ∪ {0}while x0i = 0, for all i(/= j) ∈ k − 1 ∪ {0}.
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Remark 4.7. Note that Theorem 4.2 is alternatively proven from the spectral observability test
as follows. Since the rank in (4.8) can only be lost for λ ∈ σ(A), then (4.8) is equivalent to

rank
[

λIn −AT
...CT

]

= n; ∀λ ∈ C. (4.12)

Using Laplace transform of (3.1), [2], the spectral observability of the Caputo fractional sys-

tem of order α is lost if and only if rank[λαIn −AT
...CT ] < n for some λ ∈ C. Thus, note that

rank
[

λIn −AT
...CT

]

< n, some λ ∈ C =⇒ rank
[

λα
1In −AT

...CT

]

< n for λ1 = λ1/α,

(4.13)

rank
[

λαIn −AT
...CT

]

< n, some λ ∈ C =⇒ rank
[

λ1In −AT
...CT

]

< n for λ1 = λα. (4.14)

Then, the Caputo fractional system of order α, with k − 1 < α ≤ k, is (is not) spectrally
observable (equivalently, observable) if and only if the standard system α = k = 1 is ( is not)
spectrally observable.

The controllability property is now discussed.

Definition 4.8. The Caputo fractional differential system of order α is said to be controllable in
the time interval [0, t] of nonzero finite measure if it exists an admissible control u : [0, t] →
Rm which steers the state-trajectory solution to any prescribed value x∗ = xα(t) for any given
initial conditions.

Theorem 4.9. The Caputo fractional differential system (3.1), (4.1) of any real order α, with k − 1 <
α ≤ k for any given k ∈ Z+, is controllable if and only if any of the three equivalent conditions holds:

(1)

rank
[

B
...AB

... · · · ...Aμ−1B
]

= n, (4.15)

(2)

rank
[

λIn −A
...B
]

= n; ∀λ ∈ σ(A), (4.16)

where σ(A) is the spectrum ofA,

(3)
∫ t
0 Φα(τ)BBTΦα(τ)dτ � 0, for any finite time interval [0, t] of nonzero measure.

Proof. Assume the forced solution of (3.2) under zero initial conditions, namely, xj(0) = xj0 =
0; for all j ∈ k − 1 ∪ {0} so that
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xα(t) =
∫ t

0
(t − τ)α−1Φα(t − τ)Bu(τ)dτ =

p−1∑

�=0

(∫ t

0
(t − τ)α−1βα�

(
t − τ, p

)
A�Bu(τ)dτ

)

=

(∫ t

0
(t − τ)α−1

[
βα0

(
t − τ, p

)
, βα1

(
t − τ, p

)
, . . . , βα,p−1

(
t − τ, p

)]
u(τ)dτ

)

×
[

BT
...BAT

... · · · ...BTAp−1T
]T

= Co
(
A,B, p

)
γuα

(
t, p

)
,

(4.17)

for all t ∈ R 0+, for all p ≥ μ after using (3.4) where γuαi(t, p) :=
∫ t
0 (t − τ)α−1βαi(t − τ, p)u(τ)dτ

arem-vector functions being dependent on the control; for all i ∈ p − 1∪{0}; for all t ∈ R0+, and

Co
(
A,B, p

)
:=

[

B
...AB

... · · · ...Ap−1B
]

, (4.18a)

γuα
(
t, p

)
:=

[
γT
uα0

(
t, p

)
, γT

uα1

(
t, p

)
, . . . , γT

uα,p−1
(
t, p

)]T
; ∀t ∈ R0+ (4.18b)

are, respectively, a n × pm real matrix and a real pm-vector function. Since the functions in
βαp are linearly independent and analytic on R+, for all p(∈ Z+) ≥ μ for any given α ∈ R+

(with k − 1 < α ≤ k–Lemma 3.2), then Yuαp := {γuαi : R0+ × p → R : i ∈ p − 1 ∪ {0}}, for all
p(∈ Z+) ≥ μ is, by construction, a linearly independent set of analyticm-vector functions on a
finite nonzero measure time interval [0, t] ⊂ R+ for any given α ∈ R+, k − 1 < α ≤ k provided
that the control is nonzero on some subset of nonzeromeasure of [0, t]. Thus, note from (4.17)
that for arbitraryRn 	 x∗ = xα(t) for some linearly independent set Yuαp on [0, t] defined for
some admissible nonzero control u : [0, t] → Rm the Caputo fractional differential system of
order α is controllable, independent of α, if and only if

rank
[

Co
(
A,B, μ

)...x∗
]

= rankCo
(
A,B, p

)
= rankCo

(
A,B, μ

)
= n (4.19)

what follows fromRouché-Froebenius theorem fromLinear Algebra. Then, the controllability
is guaranteed by that of the standard system with α = k = 1. The equivalence of (4.15) with
the spectral controllability condition (4.16) follows from Theorem 4.2 and the well-known
duality result and the state trajectory solution (3.2). The pair (A,C) is observable in the sense
that (4.7), equivalently (4.8), holds if its dual pair (AT, CT ) is controllable. The equivalence
of Conditions (1)-(2) with Condition (3) is proven as follows from (4.16). Assume that the
control is generated as u(τ) = BTΦα(t − τ)K; τ ∈ [0, t] for some K ∈ Rm. Then, the
controllability constraint

x∗ = xα(t) =

(∫ t

0
(t − τ)α−1Φα(t − τ)BBTΦα(t − τ)dτ

)

K (4.20)
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is solvable for any prescribed x∗ ∈ Rn if and only if

∫ t

0
(t − τ)α−1Φα(t − τ)BBTΦα(t − τ)dτ � 0 ⇐⇒

∫ t

0
Φα(t − τ)BBTΦα(t − τ)dτ � 0 (4.21)

with the control solution being

u(τ) = BTΦα(t − τ)

(∫ t

0
(t − τ)α−1Φα(t − τ)BBTΦα(t − τ)dτ

)−1
x∗; τ ∈ [0, t]. (4.22)

Then, the Caputo fractional differential system of any order α is controllable independent of
αon [0, t] if

∫ t
0 Φα(t − τ)BBTΦα(t − τ)dτ � 0. Sufficiency has been proven. Necessity follows

by contradiction. Assume that the system is controllable and
∫ t
0 Φα(t − τ)BBTΦα(t − τ)dτ � 0

fails for a given [0, t] of nonzero finite measure. Then, the columns of the matrix function
Φα( t − τ)Bu(τ) are not linearly independent vector functions on [0, t] for any admissible

control u : [0, t] → Rm. Then, from (4.17)-(4.18a), (4.18b) either rank[B
...AB

... · · · ...Aμ−1B] < n
which contradicts the controllability Condition (1) or the set Yuαp is not linearly independent

on [0, t] for any admissible control what is impossible if rank[B
...AB

... · · · ...Aμ−1B] = n. Then,
Condition (3) is equivalent to the equivalent Conditions (1)–(3). All the proof may be easily
readdressed for nonzero initial conditions by replacing

x∗ = xα(t) −→ x∗ =

⎛

⎝xα(t) −
k−1∑

j=0

tjΦαj(t)x0j

⎞

⎠. (4.23)

Note that, although the controllability property is independent of α, the control (4.21)

depends on α. The matrices Co(A,B, μ) := [B
...AB

... · · · ...Aμ−1B] and Ob(A,C, μ) :=
[

C
CA

CAμ−1

]

are referred to as the controllability matrix of the pair (A,B) and the observability matrix of
the pair (A,C), respectively, and have to be of rank n in order that the standard system by
controllable (see Theorem 4.9, (4.14)), respectively, observable (see Corollary 4.5, (4.7)).

Remark 4.10. Note from Corollary 4.5 that the rank condition (4.7) requires the necessary
condition μ ≥ [n/s]which is then a necessary condition for observability. In the sameway, the
rank condition (4.15) in Theorem 4.9 requires μ ≥ [n/m] which is then a necessary condition
for controllability.

5. Observability and Controllability under Non-Uniform Sampling

The results of the above section on controllability and observability are now extended for, in
general, non-uniform sampling. It has proven in Section 4 that if the standard continuous-
time system (i.e., α = k = 1) is controllable/observable then, any fractional system of real
order α keeps the corresponding property from that of the standard system. It is now proven
that the properties are still kept under non-uniform sampling for almost all choices of the
sampling instants provided that their numbers are nonless than the degree μ of the minimal
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polynomial of the matrix A. Such generic choices are possible from the following important
property: the linearly independent matrix/vector functions which expand the evolution and
control operators defining the state and output trajectory solutions of the Caputo fractional
system of order α in polynomial functions of the matrix A in (3.1) are Chebyshev’s systems,
[4–7].

Theorem 5.1. Assume that the standard system is observable (controllable). Then, the sampled
Caputo fractional system of order α is observable (controllable) for almost any choices of p ≥ μ distinct
sampling instants subjects to distinct in-between sampling intervals.

Proof. Note from (4.3) and (4.17) that the measurable output of the homogeneous system of
the Caputo fractional differential system of order α and the transpose of its forced solution
under zero initial conditions at any time instant ti ∈ R+ are, respectively:

yα(ti) = β
T

α

(
ti, p

)
BlockDiag

⎡

⎣Ob
(
A,C, p

)...
k︸︷︷︸
· · · ...Ob

(
A,C, p

)
⎤

⎦x0, (5.1)

xT
α (ti) = γTuα

(
ti, p

)
Co

(
A,B, p

)T
, (5.2)

for all p(∈ Z+) ≥ μ, for all α(∈ R+) ∈ [k − 1, k], with k ∈ Z+, where Rs×pks 	 β T
α(ti, p) =

β̂ T
α(ti, p)Is, with β̂ T

α(ti, p) ∈ R1×pk , and γ T
α(ti, p) ∈ R1×pm. Now, define

yαp
(
t1, t2, . . . , tpk

)
:=

[
yT
α

(
t1, p

)
, yT

α

(
t2, p

)
, . . . , yT

α

(
tkp, p

)]T ∈ Rpks, (5.3)

βαp
(
t1, t2, . . . , tpk

)
:=

[

β
T

α

(
t1, p

)
, β

T

α

(
t2, p

)
, . . . , β

T

α

(
tkp, p

)
]

∈ Rpks×pks, (5.4)

for some set of sampling instants {t1, t2, . . . , tpk}; and

xαp
(
t1, t2, . . . , tpk

)
:=

[
xα

(
t1, p

)
, xα

(
t2, p

)
, . . . , xα

(
tkp, p

)]T ∈ Rpm×n, (5.5)

γuαp

(
t1, t2, . . . , tpm

)
:=

[
γuα

(
t1, p

)
, γuα

(
t2, p

)
, . . . , γuα

(
tpm, p

)]T ∈ Rpm×pm, (5.6)

for some set of sampling instants {t1, t2, . . . , tpm}. One gets from (5.3) via (5.1) and (5.4), and
from (5.5) via (5.2) and (5.6) the following linear algebraic systems:

yαp
(
t1, t2, . . . , tpk

)
= βαp

(
t1, t2, . . . , tpk

)
Block Diag

⎡

⎣Ob
(
A,C, p

)...
k︸︷︷︸
· · · ...Ob

(
A,C, p

)
⎤

⎦x0,

(5.7)

xTαp
(
t1, t2, . . . , tpk

)
= γuαp

(
t1, t2, . . . , tpm

)
Co

(
A,B, p

)T
. (5.8)
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Note that Block Diag[Ob(A, C, p)
...

k︸︷︷︸
· · · ...Ob(A,C, p)] ∈ Rkps×kn is full-rank equal to kn if

p ≥ μ ≥ [n/s] and rankOb(A,C, p) = rankOb(A,C, μ) = n (i.e., if the standard system with
α = k = 1 is observable). A unique solution exists to (5.7) if and only if the set of sampling
instants {t1, t2, . . . , tpk} is chosen so that the square realmatrix βαp(t1, t2, . . . , tpk) is nonsingular
provided that rankOb(A,C, p) = rankOb(A,C, μ) = n since then

rank

⎡

⎣yαp
(
t1, t2, . . . , tpk

)...βαp
(
t1, t2, . . . , tpk

)
BlockDiag

⎡

⎣Ob
(
A,C, p

)...
k︸︷︷︸
· · · ...Ob

(
A,C, p

)
⎤

⎦

⎤

⎦

×rank
⎡

⎣βαp

(
t1, t2, . . . , tpk

)
BlockDiag

⎡

⎣Ob
(
A,C, p

)...
k︸︷︷︸
· · · ...Ob

(
A,C, p

)
⎤

⎦

⎤

⎦ = kn

(5.9)

so that (5.7) is a compatible linear algebraic system (then, the map from Rkn to Rpks defined
via (5.7) is injective) leading to a unique solution x̂0 being a least-square estimation of x0

given by

x̂0 =
(
ΩT(t1, t2, . . . , tpk

)
Ω
(
t1, t2, . . . , tpk

) )−1
ΩT(t1, t2, . . . , tpk

)
yαp

(
t1, t2, . . . , tpk

)
, (5.10)

where

Ω
(
t1, t2, . . . , tpk

)
:= βαp

(
t1, t2, . . . , tpk

)
BlockDiag

⎡

⎣Ob
(
A,C, p

)
k︸︷︷︸
· · · Ob

(
A,C, p

)
⎤

⎦ (5.11)

from Rouché-Froebenius theorem for compatibility from Linear Algebra. Then, the observ-
ability property is preserved from the standard system for such a set of samples. Also, if
rankCo(A,C, p) = rankCo(A,C, μ) = n if p ≥ μ, so that the standard system is controllable,
then

rank
[

xTαp
(
t1, t2, . . . , tpk

)...γuαp

(
t1, t2, . . . , tpm

)
Co

(
A,B, p

)T
]

= rank
[
γuαp

(
t1, t2, . . . , tpm

)
Co

(
A,B, p

)T
]

= rank
[
Co

(
A,B, p

)]
= rank

[
Co

(
A,B, μ

)]
= n,

(5.12)

in (5.8), if and only if the set of sampling instants {t1, t2, . . . , tpm} is chosen so that the square
real matrix γuαp(t1, t2, . . . , tpm) is nonsingular. Then, the controllability property is preserved
from the standard system for such a set of samples. Since the linearly independent real
matrix vector functions βαi(t, p) and linearly independent real vector functions γT

uαi(t, p), for
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all i ∈ p − 1 ∪ {0}, for all p ≥ μ of domain R0+ are also Chebyshev’s systems, [4–7] both
βαp(t1, t2, . . . , tpk) and γuαp(t1, t2, . . . , tpm) are nonsingular matrices for almost all choices of the
sampling instants.

Remark 5.2. It suffices to choose the sampling periods (i.e. the time intervals in-between any
two consecutive sampling instants) in Theorem 5.1 as being mutually distinct and belonging
to real intervals of the form [η, η + π/ω), where η ∈ R+ is arbitrary and ω is an upper-
bound of the maximum eigenfrequency of (3.1), that is, the maximum absolute value of
the imaginary parts of all the complex eigenvalues of A, if any. Otherwise, ω = +∞. This
procedure guarantees that the corresponding coefficient matrices of Chebyshev’s systems are
nonsingular, [4–7]. Some choices are preferred if computation is required. For instance, it can
be suitable to solve the linear algebraic system (5.10) so that the coefficient matrix (5.11) be
as better conditioned as possible by the choice of the sampling instants. Then, the influence
of numerical errors in the computation of the solution is minimized. It can be also suitable
to take a number of sampling instants p being large enough to make the estimated initial
condition sufficiently close to the real one in the least-squares computation procedure.

For algebraic solvability, it might be possible to reduce the number of sampling
instants in (5.7)-(5.8) so that the coefficient matrix of the algebraic systems. The procedure
is formalized as follows.

Theorem 5.3. The following properties hold.

(i) Assume that the standard dynamic system is observable. Then, the Caputo fractional linear
system of order α is observable under non-uniform sampling as well from a set of existing
sampling instants ST := {t1, t2, . . . , tn̂} with n̂ := max1≤i≤sni for a set of integers ni ∈ Z0+

fulfilling
∑s

i=1 ni = kn in such a way that each ith component of the measured output, that
is yαi(ti), is observed at a set of sampling instants STi := {t1, t2, . . . , tni} ⊆ ST (which is
empty if ni = 0), for all i ∈ s which fulfils that the coefficient matrix β̂αn̂(t1, t2, . . . , tn̂) of
β-functions, defined below in the proof, of the associated linear algebraic system of grouped
data yαp(t1, t2, . . . , tn̂) is nonsingular.

(ii) Assume that the standard dynamic system is controllable. Then, the Caputo fractional linear
system of order α is controllable under non-uniform sampling as well from a set of existing
sampling instants ST := {t1, t2, . . . , tn̂} organized in such a way that for each control
component a set of sampling instants STi := {t1, t2, . . . , tni} ⊆ ST is used, which is empty if
(which is empty if ni = 0), for all i ∈ mwhere n̂ := max1≤i≤mni for a set of integers ni ∈ Z0+

fulfilling
∑m

i=1 ni = n provided that the associated coefficient matrix is nonsingular.

Proof. (i) For observability under non-uniform sampling with reduced number of samples,
the square coefficient matrix of linearly independent matrix functions (5.4), that is
βαp(t1, t2, . . . , tpk), of the algebraic linear system of (5.7)may be reduced to a minimum order
being the less integer nonless than kn in order to estimate x0 ∈ Rkn from a set of samples
of yα(t). The associated algebraic problem is formulated so that each component yαi(t) is
observed at a set of sampling instants {ti1, ti2, . . . , tini} (i ∈ s), which can be the empty set for
some of the components j ∈ s (and then nj = 0), with a choice of the s nonnegative integers
ni (i ∈ s) fulfilling the constraint

∑s
i=1 ni = kn. Since the functions in the coefficient matrix

are a Chebyshev’s system, the resulting coefficient matrix may be generically constructed as
being nonsingular for a set of sampling instants {t1, t2, . . . , tn̂} selected as tij (j ∈ ni) = tj if
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j ∈ ni and ni ≤ j, for all i ∈ s, for all j ∈ n̂ with n̂ := max1≤i≤sni. Equation (5.1) is replaced by
the component-to-component corresponding set of equations

yαi(ti) = β
T

αi

(
tj , j ∈ ni

)
Gix0; ∀i ∈ s, (5.13)

where

Gi := BlockDiag

⎡

⎣Ob
(
A,CT

i , μ
)...

k︸︷︷︸
· · · ...Ob

(
A,CT

i , μ
)
⎤

⎦; ∀i ∈ s (5.14)

so that the whole algebraic system (5.7) is replaced with

yαp(t1, t2, . . . , tn̂) = β̂αn̂(t1, t2, . . . , tn̂)BlockDiag

⎡

⎣G1
...

s︸︷︷︸
· · · ...Gs

⎤

⎦x0, (5.15)

where

β̂αn̂(t1, t2, . . . , tn̂) := BlockDiag
[[

β
T

α1

(
tj , j ∈ n1

)... · · · ...
]
β
T

αs

(
tj , j ∈ ns

)
]

. (5.16)

Then, the mapping from Rkn → Rkn defined from (5.15) is injective if and only if
rankOb(A,C, μ) = n, requiring s ≥ [μ/n], and, furthermore, the set of sampling instants
{t1, t2, . . . , tn̂} is chosen in such a way that Det β̂αn̂(t1, t2, . . . , tn̂)/= 0. Infinitely, many such sets
of sampling instants always exist from the property of Chebyshev’s systems of the functions
defining β̂αn̂(t1, t2, . . . , tn̂).

(ii) The proof is similar to that of property (i), and then its details are omitted.
The guidelines for controllability under non-uniform sampling with a reduced number
of sampling instants are as follows. One proceeds in a closed way the square coefficient
matrix (5.6), that is γuαp(t1, t2, . . . , tpm), of the algebraic linear system of (5.8) with a set of
nonnegative integers ni (i ∈ m), related to the input components, satisfying

∑m
i=1 ni = n and

a set of sampling instants {t1, t2, . . . , tn̂} selected as tij (j ∈ ni) = tj if j ∈ ni and n i ≤ j, for all
i ∈ m, for all j ∈ n̂with n̂ := max1≤i≤mni.

Remark 5.4. It follows from Corollaries 4.4, and 4.5 and Remark 4.10 that the controllability
and observability of the continuous-time system are independent of the positive real
fractional order α, that is, those properties hold for the fractional case if they hold for the
standard one. Those conditions are necessary conditions for controllability/observability
under non-uniform sampling (see Theorems 5.1 and 5.3 and Remark 5.2) which hold for
generic choices of always existing sampling instants such that the appropriate coefficient
matrices are nonsingular. Thus, we can conclude that if the standard system is controllable
(resp., observable), then they always exist generically chosen distinct sampling periods in
any number exceeding the degree of the minimal polynomial of the matrix A such that the
controllability (resp., observability) are maintained under such a non-uniform sampling sets.
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The method used to investigate the controllability and observability properties under non-
uniform sampling is close to that used in [8], namely, first to characterize the fulfilment of the
corresponding property for the continuous-time case as a necessary condition, as expected,
then to establish a sufficiency-type condition on a certain coefficient matrix, depending on the
sampling instants, so as to ensure that the corresponding property holds under non-uniform
sampling. Both conditions are of full-rank matrix type and then easily testable. The condition
on the sampling instants admits a rather generic choices of them from a well-known property
of Chebyshev’s systems, [5, 6]. A potential way of choosing the set of sampling periods is via
optimizing or suboptimizing the condition number of the coefficient matrix of the associate
linear algebraic system. This can be accompanied of taking a sufficiently number of data from
a sufficiently large set of sampling instants exceeding the degree of theminimal polynomial of
the relevant coefficient matrix. In that way, the effects of the transmission of potential errors
from data and parameters to results in the controllability and observability problems can
become improved, [6–8, 18].

6. An Example

Consider an ideal DC motor of normalized quotient of payload inertia and gain with a
second-order transfer function G(s) = 1/s(s + 1) at a fractional order α = 1, that is an
standard system, where s is the Laplace transform argument. This transfer function also
describes the step-response of a closed-loop transfer function 1/s under unit feedback and
zero initial conditions, [2]. Assume that such a transfer function is changed to G0(s) = s−4/3

so that step response is independent of the payload inertia at a fractional order setting of
α = 4/3, equivalently, we have a second order transfer function G(s) = 1/s(s4/3 + 1). A
brief discussion of such a transfer function under a controllability point of view follows. For
fractional order α = 1 (i.e., for the standard system), the dynamic system associated with
it, which is an equivalent model in state-space, is defined by the 2nd-order continuous-time
differential system for any piecewise continuous control function u : R0+ → R0+ as follows:

[
ẋ1(t)

ẋ2(t)

]

=

[
0 1

0 −1

][
x1(t)

x2(t)

]

+

[
0

1

]

u(t);

[
x1(0)

x2(0)

]

∈ R2, (6.1)

where the output of the transfer function is y(t) = x1(t). The controllability matrix of the
above system is

[ 0 1
1 −1

]
having rank two so that the standard continuous-time system (α = 1)

is controllable. Then, the necessary condition of controllability for any positive real fractional
order α > 0 holds. The solution for x1(t) for zero initial conditions at t0 = 0 and unit
step (Heaviside’s function) control is given as follows from (3.1)–(3.4) through the two-real
positive parameters Mittag-Leffler function defined by Eαβ(z) =

∑∞
�=0(z

�/Γ(α� + β)), [2]:

x1(t) = L−1
{
1
s
− s4/3−1

s4/3+1

}

= 1 − E4/3

(
−t−4/3

)
= t4/3E4/3,4/3+1

(
−t4/3

)

=
t4/3

Γ(4/3 + 1)
− t8/3

Γ(8/3 + 1)
+

t4

Γ(5)
− · · · ,

x2(t) =
4
3

t1/3

Γ(4/3 + 1)
− 8
3

t5/3

Γ(8/3 + 1)
+

4t3

Γ(5)
− · · · ,

(6.2)
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where L denotes the Laplace transform operator of inverse L−1. Since the functions β(·)
in (3.3)-(3.4) used in the expansions of the evolution operator and in that of its forced
counterpart in the forced response of the system are linearly independent and also
Chebyshev’s systems (see Lemma 3.2, Theorem 5.1, and Remark 5.4), it follows that the
controllability of the system of fractional order 4/3 is guaranteed under (in general) non-
uniform sampling for any sets consisting of any two or more distinct sampling instants
subject to distinct sampling intervals. The property holds as well for any other real fractional
order α > 0. For instance, take null initial conditions at t0 = 0 and two sampling instants
t2(= t1 + T1) > t1(= T0) > 0 of associate sampling periods T1 = t2 − t1, T0 = t1 and some
piecewise constant control u (t) = u0; for all t ∈ [0, t1) and u(t) = u1, for all t ∈ [t1, t2). Then,

x1(t2) =

(
T4/3
0

Γ(4/3 + 1)
− T8/3

0

Γ(8/3 + 1)
+

T4
0

Γ(5)
− · · ·

)

u1

+

(
T4/3
1

Γ(4/3 + 1)
− T8/3

1

Γ(8/3 + 1)
+

T4
1

Γ(5)
− · · ·

)

u0,

x2(t2) =

(
4
3

T1/3
0

Γ(4/3 + 1)
− 8
3

T5/3
0

Γ(8/3 + 1)
+

4T3
0

Γ(5)
− · · ·

)

u1

+

(
4
3

T1/3
1

Γ(4/3 + 1)
− 8
3

T5/3
1

Γ(8/3 + 1)
+

4T3
1

Γ(5)
− · · ·

)

u0.

(6.3)

Thus, note that the coefficient matrix of the above linear algebraic system from the unknown
vector (u0, u1)

T to de data (x1(t2), x2(t2))
T at t = T2 is nonsingular if T0 /= T1 guaranteeing the

sufficiency-type condition of guaranteeing the controllability of the continuous-time system
under non-uniform sampling. By choosing sets of more sampling instants and associated
sampling periods exceeding two, the same conclusion is achievable by constructing full-
column rank coefficient matrices. A close reasoning would apply for any other positive
fractional order.
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[16] L. Fesquet and B. Bidégaray-Fesquet, “IIR digital filtering of non-uniformly sampled signals via state
representation,” Signal Processing, vol. 90, no. 10, pp. 2811–2821, 2010.

[17] K. P. M. Bhat and H. N. Koivo, “Model characterizations of controllability and observability in time
delay systems,” IEEE Transactions on Automatic Control, vol. 21, no. 2, pp. 292–293, 1976.

[18] M. de la Sen, “Adaptive sampling for improving the adaptation transients in hybrid adaptive
control,” International Journal of Control, vol. 41, no. 5, pp. 1189–1205, 1985.


