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This paper is devoted to the investigation of the existence of fixed points in a normed linear space
X endowed with a norm ‖ · ‖ for self-maps f from T × X to X which are constructed from a given
class of so-called primary self- maps being also from T ×X to X. The construction of the self-maps
of interest is performed via a so-called switching rule which is a piecewise-constant map from a set
T to some finite subset of the positive integers or a sequence map which domain in some discrete
subset of T .

1. Introduction

This paper is devoted to the investigation of the existence of fixed points in a normed linear
space X with norm ‖ · ‖ for self-maps from T × X to X which are constructed from a given
class of so-called primary self-maps from T × X to X. The construction of the maps f : T ×
X → X of interest is performed via a so-called switching rule σ : T → N ⊂ Z+ which
is a piecewise-constant map from a set T to some finite subset of the positive integers. The
potential discontinuity points of such a self-map in a discrete subset ST ⊂ S are the so-called
switching points at which a new primary self-map in a class PM is activated to construct the
self-map f : T × X → X of interest, each of those self-maps depends also on some given
switching rule σ : ST := {ti} ⊂ T → N := {1, 2, . . . ,N} ⊂ Z+.

In particular, f(t) = fi(t) ≡ fσ(t)(t) ∈ PM, for all t ∈ [tj , tj+1) where tj , tj+1 > tj are
two consecutive elements in the sequence ST generated by the switching rule σ : T → N

such that σ(t) = i ∈ N, for all t ∈ [tj , tj+1), for all tj , tj+1(> tj) ∈ ST provided that there is no
ST � t ∈ (tj , tj+1).
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The class of primary self-maps PM used to generate the self-map f from T × X to X
might contain itself, in the most general case, a class of contractive primary self-maps from
T×X toX, a class of large contractive self-maps from T×X toX, a class of nonexpansive self-
maps from T ×X toX, as well as a class of expansive self-maps from T ×X to X. The problem
is easily extendable to the case when the switching rule is a discrete sequence of domain in
a discrete set of T and of codomain again being the set of nonnegative integers. The study is
of particular interest for its potential application to the study of eventual fixed points in the
state-trajectory solution of either continuous-time or discrete-time switched dynamic systems
[1–6], constructed from a fixed set of primary parameterizations.

It is well known that contractive self-maps in normed linear spaces and in metric
spaces possess a fixed point which is unique in Banach spaces (X, ‖·‖) and in complete metric
spaces (X, d), [7–10]. Under additional boundedness-type conditions, a large contractive
self-map f from T × X to X which generates uniformly bounded iterates for any number
of iterations still possesses a unique fixed point in a complete metric space (X, d) (or in a
Banach space (X, ‖ · ‖) [6]. Some nonexpansive self-maps as well as certain expansive self-
maps also possess fixed points (see, e.g., [11, 12]). On the other hand, pseudocontractive
self-maps and semicontinuous compact maps in Banach spaces can also possess fixed points
[13, 14]. Those features motivate in this paper the choice of the given class of primary self-maps for
this investigation. It is also taken into account as motivation that unforced linear time-invariant
dynamic systems are exponentially stable to the origin if the matrix of dynamics is a stability
matrix. In the case that such amatrix has some pair of complex conjugate eigenvalues then the
solution is bounded and the solution trajectory may oscillate, and if there is some eigenvalue
with positive real part (i.e., within the instability region), then the state trajectory solution
is unbounded. The two first situations can be discussed using the fixed pointy formalism,
[1, 2, 6]. Thus, it is of interest to have some extended formalism to investigate time-varying switched
dynamic systems obtained under switched linear primary parameterizations not all of them being
necessarily stable and then associated with asymptotic contractive self-maps. It is also of interest the
basic investigation on the existence of fixed points of discontinuous self-maps which are identical to
some self-maps in a prescribed class over each connected subset of T being generated from a switching
rule σ : T → N of switching points in the sequence ST ⊂ T . The switching rule which governs
the definition of the self-map f from T × X to X from the primary class of self-maps from
T ×X to X is shown to be crucial for f : T ×X → X to possess a fixed point. X is assumed to
be a normed linear space which is not necessarily either a Banach space or assumed to have
some uniform structure [15].

Three examples of the formalism are provided two of them being referred to the use of
arbitrary primary self-maps on X while the third one refers to linear time-varying dynamic
systems subject to simultaneous parameterization switching and impulsive controls.

2. Notation

R0+ := R+ ∪ {0} where R+ := {z ∈ R : z > 0}.
Z0+ := Z+ ∪ {0} where Z+ := {z ∈ Z : z > 0}.

C(q)(R0+,Rn), respectively, C(q)(R0+,Cn) are the sets of n-real, respectively, n-complex
vector functions of domain R0+ of class q, that is, q times n-real, respectively, n-complex
continuously differentiable everywhere in its definition domain R0+.

PC(q)(R0+,Rn), respectively, PC(q)(R0+,Cn) are the sets of n-real or, respectively, n-
complex vector functions of domain R0+ of class (q − 1) with its qth time derivative



Fixed Point Theory and Applications 3

being necessarily everywhere piecewise-continuous inR0+. Thus, PC(0)(R0+,Rn), respectively,
PC(0)(R0+,Cn) are the sets of all n-real, respectively, n-complex vector functions being
piecewise—continuous everywhere in R0+.

If t ∈ T is a first-class discontinuity point of f : T ×X → X, then f(t, x(t)), simplifying
the customary notation f(t−, x(t)), denotes the lower limit of f at t and f(t+, x(t)) denotes the
right limit of f at t.

μ(A) denotes the Lebesgue measure of a subset A of R.
μ(D) =

∑
i diδi is the discrete measure of the sequence D := {δi ∈ A} ⊂ A (A being

Lebesgue-measurable) defined via the Kronecker-delta defined by δi = 1 if di ∈ D and δi = 0,
otherwise.

The symbols ∧, ∨, and ¬ mean logic conjunction, disjunction, and negation,
respectively, andN := {1, 2, . . . ,N} is a subset of the positive integers numbers.

To establish the general framework for the formulation, consider a set T which is a
proper or improper subset of R0+ (it could also be a subset of Z0+) and X being a linear
normed space endowed with the norm ‖ · ‖.

Consider also a class of so-called primary (i.e., auxiliary) self-maps fi : T × X → X,
for all i ∈ N to be used to build the class of maps under study through Fixed Point Theory
which is defined by

M = M(σ, PM)

:=
{
f : T×X −→ X : f(t, x(t)) = fσ(t)(t, x(t)); ∀t∈T, ∀x∈X, σ : T −→ N, fi∈PM, i ∈ N

}
.

(2.1)

The class PM of primary self-maps of M, which generate the class M, is defined by PM :=
{fi : Ti(⊆ T) × X → X : i ∈ N} for some proper or improper subset Ti of T , for all i ∈
N. In many applications Ti = T ; for all i ∈ N. However, the possibility of taking different
subsets Ti of T remains open within this formulation, for instance, for cases when the various
N parameterizations (or some of them) are not defined or, simply, not allowed to switch
arbitrarily but each with its own switching restrictions. The map σ : T → N := {1, 2, . . . ,N}
(N ≥ 1) is the so-called switching rule being an integer-valued switching function if T is
a subset of R0+ of nonzero measure and a nonnegative integer-valued switching sequence
of real domain if T is a subset of Z0+. Each element of T for which the initial condition is
fixed is also axiomatically considered a switching point for any arbitrary switching rule. That
intuitively means that a switching rule involves a switch σ(0) ≡ σ(t1) ∈ N. The discrete
switching sequence ST = ST(σ, PM) of switching points Ti ∈ ST, indexed for i ∈ cST ⊂ Z0+ and
which is generated by the switching rule σ : T → N [3–5], is defined as follows,

ST :=
{
ti = ti(σ) fulfill Spσ ; ∀i ∈ cST

}cST
i=1 ⊂ T (2.2)

cST := card(ST) ≤ χ0 is the number of switching points which is either finite or infinity
numerable. Spσ (the so-called Switching Property of the switching rule σ): the switching
sequence ST is defined according to the Spσ-Property:

t1 ∈ ST ∧ ti = min
(
T � t > ti−1(∈ ST) : σ(t)/=σ(ti−1) = j(ti−1) ∈ N

)
; ∀i(> 1) ∈ Z+. (2.3)
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Note that each switching-dependent integer j(ti) is some integer in the set N = {1, 2, . . . ,N}
which defines the configuration within the set of N configurations which remains active
within the interval [ti, ti+1) for two consecutive switching points ti, ti+1 ∈ ST so that for any
three consecutive ti−1, ti, ti+1 ∈ ST,

σ(ti−1)/=σ(t) = σ(ti) = j(ti)/=σ(ti+1); ∀t ∈ [ti, ti+1). (2.4)

The discrete switching sequence ST = ST(σ, PM) may also be viewed as a discrete strictly
ordered set of real or integer nonnegative numbers of first element (i.e., first switching point)
t1 in the sense that ¬ ∃t ∈ ST such that t < t1. Also, ¬ ∃t ∈ ST such that t ∈ (tj , tj+1);
for all tj , tj+1 ∈ ST. Note that the switching sequence is a strictly ordered sequence of real
numbers which depends on the switching rule σ : T → N. If the switching rule is a piecewise
continuous function, that is, T is a countable union of real intervals then its discontinuity
point happen at points of ST since the function f ∈ M changes to another primary function
being distinct from the previous one. It is being supposed through the manuscript that Ti ≡ T
(being either R0+ or Z0+) and ST ⊂ R0+.

The above framework is useful for examples of composed functions, multi-
parameterizations of dynamic systems, and so forth involving mappings with some kind
of switching. In particular, it is useful to investigate the stability and asymptotic stability of
certain dynamic systemswhich switched parameterizations. Examples of problems situations
adjusting to the above description are [3–5].

(a) X, a subset of Rn, is the state space of a continuous-time linear time-varying
unforced dynamic system described for T = R0+ by

ẋ(t) = A(t)x(t), x(0) ∈ Rn. (2.5)

A : R0+ → Rn×n is a real matrix function of piecewise constant entries whose image is A(t) =
Aσ(t) ∈ {A1,A2, . . . , AN}, where Ai ∈ Rn× n, for all i ∈ N with Ai /=Aj if i /= j.

Then, f(t, x(t)) = fσ(t)(t, x(t)) = eAσ (t)(t−tj )x(tj),where eAσ(t)(t−tj ) is a fundamental matrix
of (2.5), for all t ∈ T on the interval [tj , tj+1), for all tj , tj+1(> tj) ∈ ST ⊂ T and σ is a piecewise
constant function taking values in the integer set N which changes value at each t ∈ ST so
that σ(t) = i ∈ N, for all t ∈ [tj , tj+1). The unique state trajectory-solution for each given initial
conditions x(0) ∈ X is x : R0+ → Rn with x ∈ C(0)(R0+,Rn) being differentiable everywhere
in Swith ẋ ∈ PC(0)(R0+,Rn) having first-class discontinuities in ST.

The eventual discontinuity points of the piecewise continuous switching function σ :
T → N, that is,

DT :=
{
t ∈ T : N � j = σ(t+)/=σ(t) = i

(
/= j
) ∈ N

}
(2.6)

are the discontinuity points of the state trajectory time-derivative ẋ : R0+ → Rn since they
generate discontinuities in at least one entry of A(t), for all t ∈ DT .

(b) X, a subset of Rn, is the state space of a discrete-time linear time-varying unforced
dynamic system described for T = Z0+ by

xj+1 = A
(
j
)
xj , x0 ∈ Rn; ∀j ∈ Z0+. (2.7)
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A : Z0+ → Rn× n is a real matrix sequence whose image is A(j) = Aσ(j) ∈ {A1, A2, . . . , AN},
where Ai ∈ Rn× n, for all i ∈ N.

The changes of value of the discrete switching function σ : T → N at a sample j ∈ Z0+

imply changes of values in at least one entry of A(j).
The class PM of primary self-maps ofM is a union PM = PMc∪PM�c∪PMne∪PMe∪PMr

of disjoint sets, of respective disjoint indexing sets IMc, IM�c, IMne, IMe, and IMr whose sum
of respective cardinals equalizes N that is

N = card IMc + card IM�c + card IMne + card IMe + card IMr (2.8)

with at least one of them being nonempty. Note from (2.1) that any function in M is
constructed by taking a function in its primary class PM for each interval [ti, ti+1); for
all ti, ti+1 ∈ ST(σ) and some σ : T → N. In this way, f ∈ M, with M = M(σ, PM),
is identical to some fji ∈ PM, for some ji ∈ N within each real interval [ti, ti+1) for each
pair ti, ti+1 ∈ ST(σ) with the switching rule σ : T → N being defined in such a way that
σ(ti) = ji ∈ N and σ(ti+1) = ji+1(/= ji) ∈ N. Thus, f(t) = fji(t); for all t ∈ [ti, ti+1). The sets
PMc, PM�c, PMne, PMe and PMr considered in this section of the manuscript are defined in
the sequel.

(1) The class PMc of strictly contractive primary self-maps from T × X to X is defined as
follows.

Definition 2.1. f : T × X → X belongs to the class PMc of strictly contractive primary
self-maps from T × X to X if for any x, y ∈ X, t(> t1) ∈ T , for all t1 ∈ ST, the following
inequality holds:

∥
∥f(t, x(t)) − f

(
t, y(t)

)∥
∥ ≤ k(t, t1)

∥
∥x(t1) − y(t1)

∥
∥, (2.9)

where k ∈ PC(0)(R0+, [0, k) ∩ R0+) for some real constants k ∈ [0, 1) where x(t) denotes the
value in X of x : T ×X → X at t ∈ T .

Note from Definition 2.1 that for each fi : T × X → X in PMc it exists a function
ki ∈ PC(0)(R0+, [0, ki) ∩ R0+) for some real constant ki ∈ [0, 1), for all i ∈ IMc ⊂ N. It is
assumed that t1 is the first element in ST. The terminology “strictly contractive self-map” is
used for the standard contractions referred to in the Banach contraction principle [6, 16] as
a counterpart of the alternative terminology used for large contractions [6], here introduced
below. Since strict contractions are also large contractions, since contractive self-maps are also
nonexpansive ones, and since the sets PM andN are investigated as corresponding unions of
disjoint components, the class of large contractions (resp., that of nonexpansive self-maps) are
characterized as members of a set which excludes the strict contractions (resp., as members
of a class which excludes any contractive self-map).

Remark 2.2. Note that the dependence of the functions ki : R0+ → R on the switching rule σ :
T → N is a generalization which often occurs in practical cases. For instance, if a dynamic
system (2.5) changes its parameterization at time t = t� ∈ ST from a stability matrix Aj to



6 Fixed Point Theory and Applications

another one Ai, j, i(/= j) ∈ N, then A(t) = Aσ(t) = Ai; some i ∈ N so that σ(t) = i, for all
t ∈ [t� − ε, t�)what leads to

x(t, x(t)) ≡ f(t, x(t)) ≡ fi(t, x(t)) = eAi(t−t�)x(t�), ∀t ∈ [t�, t� + ε) (2.10)

for some sufficiently small real constant ε > 0 if t� ∈ ST. Since eAi(t−t�) is also a fundamental
matrix of a time-invariant linear dynamic system (i.e., the active system parameterization
starting at time t�) for initial vector state x(ti), then it is of exponential order so that
‖eAi(t−t�)‖ ≤ ki(t, t�(σ)) := Kie

− ρi(t−t�) ≤ ki < 1 for t ≥ t� + μ for some real constant μ and
some real constants Ki ≥ 1 (being norm-dependent) and ρi ∈ R+; i ∈ N.

(2) The class PM�c of nonstrictly contractive large-contractive primary self-maps from T×X
to X is now defined as follows.

Definition 2.3. f : T × (X \ PMc) → X belongs to the class PM�c of nonstrictly contractive
large-contractive primary self-maps from T ×X toX if it fulfils the joint condition C1 ∧C2 for
any x, y ∈ X, t(> t1) ∈ T , for all t1 ∈ ST, where Conditions C1 and C2 are defined as follows.

(a) f : T × (X \ PMc) → X satisfies Condition C1 ⇐⇒
∥
∥f(t, x(t)) − f

(
t, y(t)

)∥
∥ <
∥
∥x(t1) − y(t1)

∥
∥; ∀x, y(/=x) ∈ X, ∀t(> t1), ∀t1 ∈ T. (2.11)

(b) f : T × (X \PMc) → X satisfies Condition C2 ⇔ for all ε ∈ R+, ∃δ = δ(ε)(∈ R0+) < 1
such that

[(
x, y
) ∈ X ∧ ∥∥x − y

∥
∥ > ε

]

=⇒ ∥∥f(t, x(t)) − f
(
t, y(t)

)∥
∥ ≤ δ(t, t1)

∥
∥x(t1) − y(t1)

∥
∥; ∀t(> t1), ∀t1 ∈ ST,

(2.12)

where δ ∈ PC(0)(R0+, [0, δ) ∩ R0+) for some real constant δ ∈ [0, 1).

Definition 2.3 applies to all fi in PM \ PMc with δi ∈ PC(0)(R0+, [0, δi) ∩ R0+) for some
real constant δi ∈ [0, 1), for all i ∈ IM�c ⊂ N.

(3) The class PMne of noncontractive nonexpansive primary self-maps from T × X to X is
defined as follows.

Definition 2.4. f : T × (X \ (PMc ∪ PM�c)) → X belongs to the class PMne of noncontractive
nonexpansive primary self-maps from T ×X to X if for any x, y ∈ X, t(> t1) ∈ T , t1 ∈ ST, the
following inequality holds:

∥
∥f(t, x(t)) − f

(
t, y(t)

)∥
∥ ≤ ∥∥x(t1) − y(t1)

∥
∥; ∀x, y ∈ X, ∀t(> t1), t1 ∈ ST. (2.13)

Note that the above inequality is fulfilled by any fi ∈ PM \ (PMc ∪ PM�c), for all i ∈
IMne ⊂ N.

(4) The class PMe of expansive upper-bounded primary self-maps from T×X toX satisfying
a global Lipschitz condition and an additional bounding property is now defined as follows.
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Definition 2.5. f : T × (X \ (PMc ∪ PM�c)) → X belongs to the class PMe of expansive upper-
bounded primary self-maps from T × X to X satisfying a global Lipschitz condition and
an additional bounding property if for any x, y ∈ X, t(> t1) ∈ T, t1 ∈ ST, the following
inequalities hold:

∥
∥f(t, x(t)) − f

(
t, y(t)

)∥
∥ ≥ β(t, t1)

∥
∥x(t1) − y(t1)

∥
∥

∥
∥f(t, x(t)) − f

(
t, y(t)

)∥
∥ ≤ k(t, t1)

∥
∥x(t1) − y(t1)

∥
∥

∀x, y ∈ X, ∀t(> t1), ∀t1 ∈ T, (2.14)

where β ∈ PC(0)(R0+, [β,∞) ∩ R+), and k ∈ PC(0)(R0+, [β, k) ∩ R+) for some real constants
β ∈ (1,∞) and k ∈ [β,∞) ⊂ R+.

The above upper-bounding condition has been assumed to facilitate the subsequent
exposition. Note that there exists βi ∈ PC(0)(R0+, [βi,∞)∩R+) and ki ∈ PC(0)(R0+, [βi, ki)∩R+)
for some finite real constants βi ∈ (1,∞) and ki ∈ [βi,∞) ⊂ R+ for any fi in PMe, for all
i ∈ IMe ⊂ N and that (PMc ∪ PM�c ∪ PMne)/⊂PMe. Note also that this requirement is not very
restrictive since it is fulfilled, for instance, by compact self-maps from T × X to X, also by
bounded self-maps from T × X to X and, even, by unbounded piecewise-continuous maps
of positive exponential order. That means that any state-trajectory solution generated from
bounded initial conditions in globally exponentially stable continuous-time linear dynamic
systems fulfil such a property for finite time in T . Many nonlinear dynamic systems whose
state-trajectory solutions do not exhibit finite escape times also possess this property.

(5) The class PMr of neither nonexpansive nor expansive primary self-maps from T × X
to X satisfying a global Lipschitz condition is defined in the sequel. This class includes, for
instance, primary self-mapswhich are expansive and globally Lipschitzian and nonexpansive
over alternate subsets of T of finite measure and primary functions which are, for instance,
asymptotically nonexpansive while being expansive for proper (then finite) subsets Tf ⊂ T =
R0+.

Definition 2.6. f : T ×X → X belongs to the class PMr of neither nonexpansive nor expansive
primary self-maps from T × X to X satisfying a global Lipschitz condition if it satisfies the
following inequality:

∥
∥f(t, x(t)) − f

(
t, y(t)

)∥
∥ ≤ k(t, t1)

∥
∥x(t1) − y(t1)

∥
∥; ∀x, y ∈ X, ∀t(> t1), ∀t1 ∈ ST, (2.15)

where k ∈ PC(0)(R0+,R0+ ∩ R) is uniformly upper-bounded by some finite real constant k (>
1) ∈ R+.

There exist ki ∈ PC(0)(R0+,R0+∩R) being uniformly upper-bounded by some finite real
constants ki(> 1) ∈ R+, for each fi in PMr , for all i ∈ IMr ⊂ N. Note that PMr := PM \ (PMc ∪
PM�c ∪ PMne ∪ PMe).

Since PM = PMc∪PM�c∪PMne∪PMe∪PMr , and all the self-mappings fi from T ×X toX
in all the component subsets satisfy a global Lipschitz condition, the following result is direct
via recursion for each pair of consecutive elements of ST(σ) from the definition of the class of
primary functions PM for M as a union of disjoint classes and Definition 2.1 and Definitions
2.3–2.6.
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Lemma 2.7. f(∈ M) : T ×X → X, being generated from a class of primary self-maps PM ofM in
X by any switching rule σ : T → N, possesses the two following properties:

(i)

∥
∥f
(
tj , x
(
tj
)) − f

(
tj , y
(
tj
))∥
∥

≤ k(t, t1)
∥
∥x(t1) − y(t1)

∥
∥

=
j−1∏

i=1

[
kσ(ti)(ti+1, ti)

]∥
∥x(t1) − y(t1)

∥
∥; ∀x, y ∈ X, ∀ti, tj(> ti) ∈ ST(σ)(i ∈ Z+),

(2.16)

(ii)

∥
∥f(t, x(t)) − f

(
t, y(t)

)∥
∥

≤ k(t, t1)
∥
∥x(t1) − y(t1)

∥
∥

= kσ(tj )
(
t, tj
) j−1∏

i=1

[
kσ(ti)(ti+1, ti)

]∥
∥x(t1) − y(t1)

∥
∥; ∀x, y ∈ X, ∀ti, tj(> ti) ∈ ST(σ) (i ∈ Z+),

[∀(T �)t ∈ [tj , tj+1
)
if tj+1 ∈ ST

] ∨ [∀(T � t) ∈ (tj ,∞
) ∩ T if ¬ ∃ t

(
> tj
) ∈ ST(σ)

]
.

(2.17)

Proof. Any function f : T ×X → X inM = M(σ, PM) is constructed for each interval [ti, ti+1)
by taking a function in its primary class PM, for all ti, ti+1 ∈ ST(σ) and some σ : T → N.
In this way, f ∈ M, with M = M(σ, PM), is identical to some fji ∈ PM, for some ji ∈ N
within each real interval [ti, ti+1) for each pair ti, ti+1 ∈ ST(σ) with the switching rule σ :
T → N being defined in such a way that σ(ti) = ji ∈ N and σ(ti+1) = ji+1(/= ji) ∈ N. Thus,
f(t) = fji(t), for all t ∈ [ti, ti+1). The primary class consists of a disjoint union of classes
defined in Definition 2.1 and Definitions 2.3–2.6 which all have upper-bounding functions of
the form of the first inequality in (2.16). The function k(t, t1) can be directly expanded for
any t ∈ [tj , tj+1) and tj ∈ ST(σ), provided that some next consecutive tj+1 ∈ ST(σ) exists, and
for any t ∈ [tj ,∞), otherwise (i.e., if switching ends, i.e., ST(σ) has finite cardinal, and the
last switching point is tj) via recursion from the preceding interswitching intervals [tj , ti+1);
ti ∈ ST(σ), for all i ∈ j.

Remark 2.8. The last logic proposition for the validity of Property (ii) of Lemma 2.7 means
that kσ(tj )(·, tj) ∈ PC(0)((tj+1, tj) ∩ T,R0+) if ∃tj+1 ∈ ST and, otherwise, that is, if {t ∈ ST :
t > tj} = ∅ so that tj is the last element in ST (with the physical sense that the switching
process generated by the switch rule σ : T → N stops in finite time), then kσ(tj )(·, tj) ∈
PC(0)(S \ [t1, tj] ∩ S,R0+).

Lemma 2.7(ii) leads to the following direct consequent result.
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Lemma 2.9. Assume that T is Lebesgue-mesasurable with μ(T) = ∞. Then, the self-map f(∈ M) :
X → X, being generated from a class of primary self-maps PM from T × X to X, which satisfies the
given assumptions, from the switching rule σ : T → N, is strictly contractive if there exists some
finite T0 ∈ T with [t1, t1 + T0) ⊂ T such that

(

kσ(tj )
(
t1 + T0, tj

) j−1∏

i=1

[
kσ(ti)(ti+1, ti)

]
)

≤ γ < 1 (2.18)

with ti ∈ ST(σ), for all i ∈ j, j := {max i ∈ Z+ : ti(≤ t1 +T0) ∈ ST(σ)}. The condition (2.18) implies

∃ lim
Z+� �→∞

(

kσ(tj )
(
t1 + �T0, tj

)j�−1∏

i=1

[
kσ(ti)(ti+1, ti)

]
)

= 0, (2.19)

where ti ∈ ST(σ), for all i ∈ j, j� := {max i ∈ Z+ : ti(≤ t1 + �T0) ∈ ST(σ)}, and also

∃ lim
T� t→∞

⎛

⎝kσ(tj )
(
t, tj
)j(t)−1∏

i=1

[
kσ(ti)(ti+1, ti)

]
⎞

⎠ = 0, (2.20)

where ti ∈ ST(σ), for all i ∈ j, j(t) := {max i ∈ Z+ : ti(≤ t1 + t) ∈ ST(σ)}.
The self-map f(∈ M) : X → X is still strictly contractive if (2.18) holds by replacing

t1 → t∗ for some finite t∗ ∈ T even if t∗ /∈ ST(σ).

Proof. It follows that if (2.18) holds, then proceeding inductively

∥
∥f(t1 + �T0, x) − f

(
t1 + �T0, y

)∥
∥

≤ γ
∥
∥f(t1 + (� − 1)T0, x(t1 + (� − 1)T0)) − f

(
t1 + (� − 1)T0, y(t1 + (� − 1)T0)

)∥
∥

≤ γ�
∥
∥x(t1) − y(t1)

∥
∥; ∀x, y ∈ X, ∀� ∈ Z+

(2.21)

so that one gets

∃ lim
Z+��→∞

∥
∥f(t1 + �T0, x(t1 + �T0)) − f

(
t1 + �T0, y(t1 + �T0)

)∥
∥

≤
(

lim
Z0+��→∞

γ�
)
∥
∥x(t1) − y(t1)

∥
∥ = 0; ∀x, y ∈ X,

∃ lim
R+�t→∞

∥
∥f(t, x(t)) − f

(
t, y(t)

)∥
∥ = lim sup

R+�t→∞

∥
∥f(t, x(t)) − f

(
t, y(t)

)∥
∥

= lim
Z+� �→∞

∥
∥f(t1 + �T0, x(t1 + �T0)) − f

(
t1 + �T0, y(t1 + �T0)

)∥
∥ = 0; ∀x, y ∈ X,

(2.22)
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so that f(∈ M) : X → X, being generated from a classof primary self-maps PM from T × X

to X from the switching rule σ : T → N, is strictly contractive from Banach’s contraction
principle. Equations (2.19) and (2.20) are a direct consequence of the fact that (2.18) implies
directly

lim sup
T� t→∞

⎛

⎝kσ(tj )
(
t, tj
) j(t)−1∏

i=1

[
kσ(ti)(ti+1, ti)

]
⎞

⎠

= lim
T�t→∞

inf

⎛

⎝kσ(tj )
(
t, tj
)j(t)−1∏

i=1

[
kσ(ti)(ti+1, ti)

]
⎞

⎠ = 0.

(2.23)

The second part of the result is obvious since the finite interval [t1, t∗) of T may be removed
from the discussion by still keeping the strict contraction property.

To discuss some practical situations that guarantee the fulfilment of the condition
(2.18), let us define the following subsets ST(a, b, σ, PM) of ST(σ, PM), as a union of disjoint
components associatedwith some proper or improper subset of the class of primary functions
being active to build f(∈ M) : X → X each on some nonempty subset of the subset [a, b) of
T :

ST(a, b, σ, PM) =
⋃

i∈N(a, b)

STi(a, b, σ, PM) =
⋃

i∈N
STi(a, b, σ, PM) = ST(σ, PM) \

(
[a, b) ∩ T

)

(2.24)

with

N(a, b, σ, PM) =
⋃

i∈N
Ni(a, b, σ, PM)

= NMc(a, b, σ, PM) ∪NM�c(a, b, σ, PM)

∪NMne(a, b, σ, PM) ∪NMe((a, b, σ, PM)σ) ∪NMr(a, b, σ, PM)

⊆ N =
⋃

i∈N
Ni = NMc ∪NM�c ∪NMne ∪NMe ∪NMr,

(2.25)

being such that σ : T \ [a, b) → N(a, b) :

[
∅/=STi(a, b, σ, PM) ⇐⇒

[
∃tj ∈ST(σ, PM) : σ(t) = σ

(
tj
)
= i ∈N for some

[
tj , tj + ε

)⊂[a, b)⊂T
]]

(2.26)

=⇒ Ni(a, b)/= ∅ for any given i ∈ N,

N(a, b) :=
{
i ∈ N : STi(a, b, σ, PM)/= ∅

}

= card IMc(a, b, σ, PM) + card IM�c(a, b, σ, PM) + card IMne(a, b, σ, PM)

+card IMe(a, b, σ, PM) + card IMr(a, b, σ, PM),

(2.27)



Fixed Point Theory and Applications 11

where STi(a, b, σ, PM)/= ∅ for any i ∈ N such that f(t) = fi(t) for any proper or improper
subset of (a, b) and

N = card N = card IMc + card IM�c + card IMne + card IMe + card IMr,

Nσ = IMcσ ∪ IM�cσ ∪ IMneσ ∪ IMeσ ∪ IMrσ ⊆ N,

Nσ = card IMcσ + card IM�cσ + card IMneσ + card IMeσ + card IMrσ ≤ N,

T = TMc(σ, PM) ∪ TM�c(σ, PM) ∪ TMne(σ, PM) ∪ TMe(σ, PM) ∪ TMr(σ, PM)

=

(
⋃

i∈IMcσ

TMci(σ, PM)

)

∪
(
⋃

i∈IM�c

TM�ci(σ, PM)

)

∪
⎛

⎝
⋃

i∈IMneσ

TMnei(σ, PM)

⎞

⎠

∪
(
⋃

i∈IMeσ

TMei(σ, PM)

)

∪
(
⋃

i∈IMrσ

TMri(σ, PM)

)

,

ST(σ, PM) = STMc(σ, PM) ∪ STM�c(σ, PM) ∪ STMne(σ, PM) ∪ STMe(σ, PM) ∪ STMr(σ, PM)

=

(
⋃

i∈IMcσ

STMci(σ, PM)

)

∪
(
⋃

i∈IM�cσ

STM�ci(σ, PM)

)

∪
⎛

⎝
⋃

i∈IMneσ

STMnei((σ, PM))

⎞

⎠ ∪
(
⋃

i∈IMeσ

STMei(σ, PM)

)

∪
(
⋃

i∈IMrσ

STMri(σ, PM)

)

⊂
(
⋃

i∈IMcσ

TMci(σ, PM)

)

∪
(
⋃

i∈IM�cσ

TM�ci(σ, PM)

)

∪
⎛

⎝
⋃

i∈IMneσ

TMnei(σ, PM)

⎞

⎠ ∪
(
⋃

i∈IMeσ

TMei(σ, PM)

)

∪
(
⋃

i∈IMrσ

TMri(σ, PM)

)

= TMc(σ, PM) ∪ TM�c(σ, PM) ∪ TMne(σ, PM) ∪ TMe(σ, PM) ∪ TMr(σ, PM) ⊂ T.

(2.28)

Note that N depends on PM, but not on the σ, since a particular switching rule can remove
some primary self-maps from generating a particular self-map from T×X toX. Note also that
the above decompositions are also extendable “mutatis-mutandis” to any subsets T(a, b) ⊂ T
and ST(a, b) ⊂ ST.

The interpretation of card IMc(a, b, σ, PM) ≤ card IMc ≤ N is the number of strictly
contractive primary self-maps from T ×X toX; that is, members of PM, being active on any of
the subsets of finite measure of (a, b) ⊂ T . Note that the sets ST(a, b, σ, PM) andN(a, b, σ, PM)
are, respectively, the set of switching points used to build f : X → X from the primary class
of functions PM on [a, b) ⊂ T by the switching rule and σ : T \ [a, b) → N which restrict
its image (since its domain is restricted) to some N(a, b, σ, PM) ⊆ N which is the subset of
active primary functions for some nonempty subset of [a, b) ⊂ T . The interpretations of the
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disjoint decompositions of, in general, nonconnected subsets, of the sets T and ST in (2.28)
are related to. Note that for any given σ : T → N, one has by construction

T =
⋃

i∈χ
[ai, bi) =

⋃

ti∈ST
[ti, ti+1) =

⋃

i

⎛

⎝
⋃

j∈N

⎛

⎝
⋃

�∈Nj (ai,bi)

[
aij�, bij�

)
⎞

⎠

⎞

⎠

=
⋃

i

⎛

⎝

⎛

⎝
⋃

j∈NMc

[
aij , bij

)
⎞

⎠ ∪
⎛

⎝
⋃

j∈NMc

[
aij , bij

)
⎞

⎠

∪
⎛

⎝
⋃

j∈NMc

[
aij , bij

)
⎞

⎠ ∪
⎛

⎝
⋃

j∈NMc

[
aij , bij

)
⎞

⎠ ∪
⎛

⎝
⋃

j∈NMc

[
aij , bij

)
⎞

⎠

⎞

⎠,

(2.29)

⊇
⋃

i

⎛

⎝
⋃

j∈NMc

[
aij , bij

)
⎞

⎠ =
⋃

i∈STj

⎛

⎝
⋃

j∈NMc

[
tij , ti+1j

)
⎞

⎠, (2.30)

where the sets [ai, bi) are connected disjoint subsets of T since ai = ti(σ) ∈ ST(σ) and ai+1 =
bi = ti+1(σ) ∈ ST(σ) are consecutive switching points under the switching rule σ : T → N, χ =
Z+ if card ST = χ0 (i.e., infinity numerable if σ : T → N generates infinitely many switching
points), and χ = card ST < χ0 with acard ST(∈ Z+) < ∞ and bcard ST(∈ Z+) = ∞, otherwise.
However, the subsets [aij�, bij�) and [aij , bij) of [ai, bi) are not necessarily connected for any
given switching rule σ : T → N since it can make a particular primary function at disjoint
subsets of T active to build f ∈ M(σ).

Note that the set T also includes any subset being obtained by replacingNMc in (2.30)
with any other of the disjoint components of N. Note also that Condition (2.18) needs the
presence of a strictly contractive self-map as a member of the primary functions for the given
switching rule as it is discussed in the subsequent result.

Lemma 2.10. A necessary condition for the strict contractive condition (2.18) to hold is that
switching rule σ : T → N which generates f(∈ M) : X → X has at least one self-map fi ∈ PMc /= ∅
being a member of the primary self-maps PM.

Proof. Proceed by contradiction by assuming that the generalized condition obtained from
(2.18) for any finite t1 ∈ T holds with PMc = ∅. If PMc = PM�c = ∅ then PM = PMne ∪ PMe ∪ PMr

and then (2.18) does not hold and, instead, we have,

(

kσ(tj )
(
t1 + T0, tj

) j−1∏

i=1

[
kσ(ti)(ti+1, ti)

]
)

≥ 1; ∀T0 ∈ T (2.31)

so that

lim
T�t→∞

inf

⎛

⎝kσ(tj )
(
t, tj
)j(t)−1∏

i=1

[
kσ(ti)(ti+1, ti)

]
⎞

⎠ ≥ 1 > 0, (2.32)
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and, then, either

lim
T�t→∞

⎛

⎝kσ(tj )
(
t, tj
)j(t)−1∏

i=1

[
kσ(ti)(ti+1, ti)

]
⎞

⎠ ≥ 1 > 0 (2.33)

provided that it exists, or if the above limit does not exist, then f(∈ M) : X → X is not
strictly contractive. A second possibility is PMc = ∅ and PM�c /= ∅ so that PM = PM�c ∪ PMne ∪
PMe ∪ PMr . Then, for any such a σ : T → N

lim
T�t→∞

inf

⎛

⎝kσ(tj )
(
t, tj
) j(t)−1∏

i=1

[
kσ(ti)(ti+1, ti)

]
⎞

⎠ ≥ 0. (2.34)

Now, if limT�t→∞ inf(kσ(tj )(t, tj)
j∏(t)−1

i=1 [kσ(ti)(ti+1, ti)]) > 0, then the same contradiction as

above follows. Otherwise, if limT�t→∞ inf(kσ(tj )(t, tj)
j ∏(t)−1

i=1 [kσ(ti)(ti+1, ti)]) = 0, then either

(kσ(tj )(t1 + T0, tj)
∏j−1

i=1 [kσ(ti)(ti+1, ti)]) < 1 fails, for all T0 ∈ T , or it holds for some T0 ∈ T
but there is no 0 ≤ γ < 1 such that (2.18) holds since it has been assumed that PM satisfies
PMc ∩ PM�c = ∅.

Remark 2.11. Concerning Lemma 2.10, note that fixed points can still exist for f(∈ M) : X →
X even if PMc = ∅. A such a situation can happen, for instance, if a self-map f ∈ M ofX is built
with a switching rule σ : T → N involving above primary functions in a class PM = PM�c /= ∅.
It is well known that a large contraction self-map in a Banach space can possess fixed points
(see, e.g., [6]). However, Lemma 2.10 proves that if PMc = ∅, the strict contraction condition
(2.18) does not hold for any T0 ∈ T.

The mains result of this section follows.

Theorem 2.12. Assume that T is Lebesgue-mesasurable with μ(T) = ∞ and consider a switching
rule σ : T → N which generates f(∈ M) : T ×X → X, with M = M(σ, PM) defined by the class
PM of primary self-maps from T ×X to X satisfying the given assumptions. The following properties
hold.

(i) f(∈ M) : T × X → X has a fixed point under Lemma 2.9 if μ(TMc(σ)) = ∞ and
μ(T \ TMc(σ)) < ∞.

(ii) f(∈ M) : T × X → X has a fixed point if μ(TM�c(σ)) = ∞ and μ (T \ TM�c(σ)) < ∞
and, furthermore, ∃M(< ∞) ∈ R+ such that the boundedness condition

∥
∥f(t∗ + �T0, x(t∗ + �T0)) − x(t∗)

∥
∥ ≤ M; ∀x ∈ X, ∀� ∈ Z0+ (2.35)

holds in the case that f(∈ M) : T ×X → X is not Lipschitzian.

(iii) f(∈ M) : T×X → X has a fixed point if μ(TMc(σ)∪TM�c(σ)) = ∞ and μ(T \(TMc(σ)∪
TM�c(σ))) < ∞ and, furthermore, ∃M(< ∞) ∈ R+ such that the boundedness condition

∥
∥f(t∗ + �T0, x(t∗ + �T0)) − x(t∗)

∥
∥ ≤ M; ∀x ∈ X, ∀� ∈ Z0+ (2.36)
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holds in the case that f(∈ M) : X → X is not Lipschitzian; then f(∈ M) : T ×X → X
has a fixed point.

Proof. (i) Proceed by contradiction by taking into account the set inclusion properties (2.30)
and by assuming that the extended form of (2.18) in Lemma 2.9 to any replacement t1 → t∗

(finite) does not hold. Since μ(T \ TMc(σ)) < ∞ and μ(TMc(σ)) = ∞, there exists a finite t∗ ∈
ST(σ) such that f(t, x(t)) = fσ(t)(t, x(t)) for σ(t) ∈ Nσ(t) ≡ IMcσ(t); for all t(≥ t∗ ∈ ST(σ)) ∈ T,
and for T0 = t∗ + t′ (some finite t′ ∈ T), it follows by complete induction that

∥
∥f(t∗ + �T0, x(t∗ + �T0)) − f

(
t∗ + �T0, y(t∗ + �T0)

)∥
∥

≤ γ
∥
∥f(t∗ + (� − 1)T0, x(t∗ + (� − 1)T0)) − f

(
t∗ + (� − 1)T0, y(t∗ + (� − 1)T0)

)∥
∥

≤ γ�
∥
∥x(t∗) − y(t∗)

∥
∥; ∀x, y ∈ X, ∀� ∈ Z+

(2.37)

for some γ ∈ [0, 1) since σ(t) ∈ IMcσ(t), for all t(≥ t∗) ∈ T which is a contradiction. Then,
Lemma 2.9 holds with T0 = t∗ + t′ for the valid replacement ST(σ) � t1 → t∗(< ∞) ∈ T so that
f(∈ M) : T ×X → X is strictly contractive and has a fixed point.

(ii) Since f : X → X is a large contraction, the real sequence below {g�}�∈Z+
is bounded

monotonically strictly decreasing for any pair x∗ = x(t∗), y∗ = y(t∗)/=x∗ ∈ X since

g� = g�
(
t∗, T0, x∗, y∗) :=

∥
∥f(t∗ + �T0, x(t∗ + �T0)) − f

(
t∗ + �T0, y(t∗ + �T0)

)∥
∥

<g�−1=
∥
∥f(t∗+(� − 1)T0, x(t∗+(� − 1)T0))−f

(
t∗ + (� − 1)T0, y(t∗+(� − 1)T0)

)∥
∥ ∀� ∈ Z+.

(2.38)

Thus, for any prefixed ε0 ∈ R+, ∃δ0 = δ0(ε0) ∈ R+ and �0 = �0(ε0) ∈ Z0 such that

∥
∥f(t∗ + �T0, x(t∗ + �T0)) − f

(
t∗ + �T0, y(t∗ + �T0)

)∥
∥

≤ L
∥
∥x(t∗ + �T0) − y(t∗ + �T0)

∥
∥ ≤ ε0, ∀� ≥ �0

(2.39)

provided that g� = ‖x(t∗ + �T0) − y(t∗ + �T0)‖ is sufficiently close to zero satisfying g� ≤ g�0 ≤
δ0 ≤ ε0/Lwhere L is the Lipschitz constant of the self-map f from T ×X to X, provided to be
Lipschitzian, and any given x∗, y∗ /=x∗ ∈ X. If g� → 0 as � → ∞, then the self-map f from
T × X to X has a fixed point in X and the result is proven. Furthermore, the error sequence
{g�(x∗, y∗) = ‖g�(x∗) − g�(y∗)‖}�∈Z0+

which maps X × X in R0+ is a Cauchy sequence and has
a zero fixed point in R0+. Also, {‖g�(x∗)‖}�∈Z0+

is a Cauchy sequence with a limit in X which
is a fixed point of f(∈ M) : T × X → X. Otherwise, assume that ∃ε ∈ (0, δ0] ∈ R+ such
that {g�}�∈Z0+

is not a Cauchy sequence or, if so, it does not converge to zero while satisfying
g� ≥ ε; for all � ≥ �0. Then, ∃δ = δ(ε) ∈ R+ such that

ε ≤ g�+j ≤ δjg� ≤ δjε0
L

−→ 0 as j −→ ∞; ∀� ≥ �0, ∀j ∈ Z0+. (2.40)

Then, there is a finite sufficiently large j0 = j0(ε) ∈ Z+ such that the above result is a
contradiction for all j( ≥ j0) ∈ Z+. Then, the self-map the Lipschitzian self-map f from
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T ×X → X to X has a fixed point in X. Now, if f(∈ M) : T ×X → X is not Lipschitzian, but
it satisfies the given boundedness alternative condition, then

ε ≤ g�+j ≤ δjg� ≤ δjM −→ 0 as j −→ ∞; ∀� ≥ �0, ∀j ∈ Z0+, (2.41)

which is again a contradiction for for all j(≥ j0) ∈ Z+ such that ε > δj0M concluding that
f(∈ M) : X → X has a fixed point.(iii)Since μ(TMc(σ) ∪ TM�c(σ)) = ∞, then either

(1) μ(TMc(σ)) = ∞∧ μ(TM�c(σ)) < ∞ and then the proof follows from Property (i), or

(2) μ(TMc(σ)) < ∞∧ μ(TM�c(σ)) = ∞ and then the proof follows from Property (ii), or

(3) μ(TMc(σ)) = ∞ ∧ μ(TM�c(σ)) = ∞ and then the proof also follows from Property
(ii).

Remark 2.13 (An interpretation of Theorem 2.12). Theorem 2.12 extends the Banach contrac-
tion principle of strictly contractive maps and the fixed point properties of large contractions
to the case when the self-map is defined via switching-based combination of contractive
primary self-maps as follows. If μ(TMc(σ)) = ∞, then the self-map f from T ×X to X is built
with a set of strictly contractive self-maps from T×X toX on a subset of its domain of infinity
Lebesguemeasure. If, furthermore, μ(T \TMc(σ)) < ∞, then there is a finite t∗ ∈ T (e.g., a finite
time instant if T = R0+) such that all the primary self-maps used to build the self-map f are
strictly contractive for all t ≥ t∗. A conclusion is that the self-map f from T ×X to X is strictly
contractive so that it has a fixed point. A close reasoning leads to the conclusion that the self-
map f from T × X to X is a large contraction if μ(TM�c(σ)) = ∞ and μ(T \ TM�c(σ)) < ∞
or if μ(TMc(σ) ∪ TM�c(σ)) = ∞ and μ(T \ (TMc(σ) ∪ TM�c(σ))) < ∞. In all those cases, the
subset of the domain of T where each primary self-map is activated by the switching rule
σ : T → N are not necessarily connected. In the case when μ(TMc(σ) ∪ TM�c(σ)) = ∞
(Theorem 2.12(iii)) the joint subset of the domain of T where the primary self-maps building
f are either strictly contractive or large contractive has infinite measure, what leads to the
same conclusions about the existence of fixed points as in the two former cases, although
it is not necessarily connected. A counterpart of Theorem 2.12 can be formulated for the
case when T is discrete countable sequence (say, e.g., Z0+). In this case, the finite Lebesgue
measures referred to in Theorem 2.12 are replaced by the cardinals of finite subsequences of
T and the infinity Lebesgue measures are replaced by χ0 (i.e., sequences of countable infinity
many nonnegative integers). The usefulness of the extended results ofTheorem 2.12 relies on
its use on the stability properties of switched dynamic systems with asymptotic convergence
of their state trajectory solutions to a fixed point. They also rely, to a more basic level, on the
fixed point properties of maps which are not necessarily Lipschitz-continuous but being built
with Lipschitz-continuous functions through a switching process.

Remark 2.14. In the case that μ(TMc(σ) ∪ TM�c(σ)) = μ(T \ (TMc(σ) ∪ TM�c(σ))) = ∞ the
existence of a fixed point is not guaranteed under the given conditions. Some “ad hoc”
conditions for the existence of fixed points are given in the next section.

Remark 2.15. If a fixed point exists for a particular self-map f(∈ M) : T × X → X built
with a class PM of N primary self-maps switched according to a rule σ : T → N under the
sufficiency-type conditions of Theorem 2.12, then such a fixed point is unique in the Banach
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space X. The result is directly extendable to complete metric spaces (X, d) what allows to
consider a parallel formulation for the case that the domain of f(∈ M) : T × X → X, that
is ST, is an infinite sequence on nonnegative real numbers. If the formalism is applied on
a compact metric space, then it is not required for large contractions the fulfilment of the
boundedness condition of Theorem 2.12(ii)-(iii) from Edelstein fixed point theorem [8]which
can be proven using the Meir-Keeler theorem [9] as observed in [10].

The following property from T × X to X being a fixed point space relative to a set of
maps [16] is obvious under the conditions which guarantee the existence of at least a fixed
point in X for any f in the class M = M(σ, PM).

Assertion 2.16. The Banach space X is a fixed point space relative to the class of self-maps
M = M(σ, PM)which satisfies any of the properties of Theorem 2.12.

Example 2.17. Consider X = R and a set N of N ∈ Z+ primary self-maps PM all having the
structure

fi(t, x(t)) = k0i − ki
(
t − tj

)
x(ti), x

(
tj
) ∈ X (2.42)

for some given k0i ∈ R, ki : R0+ → R0+ (being piecewise continuous and uniformly bounded
on R0+); i ∈ N, for all t ∈ T . Note that the primary self-maps depend on a switching rule
σ : R0+ → N which is a piecewise constant real function defined as σ(t) = σ(ti), for all
t ∈ [ti, ti+1) ⊂ T where {tj = tj(σ)} ≡ ST ⊂ T ≡ R0+ is the switching sequence. The class M
consists of the piecewise continuous self-maps f on R built as follows:

f(t) ≡ x(t) = fσ(t)(t, x(t)) = k0σ(t) − kσ(t)
(
t − tj

)
x(ti); ∀t ∈ [tj , tj+1

)
, ∀tj ∈ ST. (2.43)

Note that σ(t) = σ(tj) ∈ N = {1, 2, . . . ,N}, for all t ∈ [tj , tj+1), for all tj ∈ ST ⊂ R0+.

If σ(t) = i ∈ N, for all t ∈ [tj , tj+1), then

∣
∣x
(
tj+1
) − y

(
tj+1
)∣
∣

≤ ∣∣kσ(t)
(
tj+1 − tj

)∣
∣
∣
∣x
(
tj
) − y

(
tj
)∣
∣

≤
∏

σ(ti)∈ST(tj )

∣
∣kσ(ti)(ti+1 − ti)

∣
∣
∣
∣x(t1) − y(t1)

∣
∣; ∀tj ∈ ST, ∀ti ∈ ST

(
tj
)
:= ST \ {t1, . . . , tj−1

}
.

(2.44)

Theorem 2.12 is applied as follows. If all the primary self-maps are strictly contractive for the
switching rule σ : R0+ → N, that is, ki(ti+1 − ti) < 1, for all i ∈ N, that is, a sufficiently
fast switching cadence is used, it follows that the real self-map possesses a fixed point
from Banach contraction principle for any switching rule. It is not difficult to see that the
property also holds if the primary self-maps are large contractions or there are mixed large
and strict contractions used by the switching rule to build the self-map f. Each particular
fixed point may depend on the switching rule and X = R is a fixed point space for the class
M of self-maps built in such a way. The property may be generalized by using also primary
nonexpansive maps with associated k(·) having unity absolute upper-bound provided that
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the switching rule involves nonexpansive self-maps being always used on subsets of R0+

of finite Lebesgue measure or, otherwise, combined with contractive primary self-maps both
(alternately) run on sets of infinity Lebesgue measure. If PM has also nonexpansive self maps,
then a fixed point does not exist for all the class M of constructed self-maps so that X = R
is not a fixed point space. Finally, if expansive primary self-maps are also considered, then
a fixed point still exists for switching rules satisfying a condition like that of Lemma 2.9 for
some finite real T0 according to the following constraint:

∣
∣x(T1 + T0) − y(T1 + T0)

∣
∣

≤
∏

σ(ti)∈STg(T1,T0)

∣
∣kσ(ti)(ti+1 − ti)

∣
∣
∣
∣x(T1) − y(T1)

∣
∣ ≤ γ

∣
∣x(T1) − y(T1)

∣
∣ (2.45)

for some real constant γ ∈ [0, 1), where

T1 = T1(�, T0) = t1 + (� − 1)T0; ∀� ∈ Z+,

STg(T1, T0) :=
{
T1, T1(�, T0), t

g

1 (� , T0), t
g

2 (�, T0), t
g
m(�, T0)

}
,

t
g

1 (�, T0) = {min ti : ti ∈ ST(σ), ti > T1(�, T0)},

t
g
m(�, T0) = {max ti : ti ∈ ST(σ), ti < T1(�, T0) + T0}.

(2.46)

The above results are directly extendable to the linear space X ≡ Rn endowed with any
Euclidean norm.

Example 2.18. If the replacements ki(t− ti) → γ(Ti) := 1/ki(t− ti) ≤ γi, i ∈ N, are performed in
(2.42) to define the class of primary self-maps, that is, a sufficiently slow switching cadence
is used, then, the residence interval taken for the next switch after the switch at ti makes to
strictly decrease the function ki(t− ti). As a result, the existence of a fixed point is guaranteed
by any switching rule involving at least a primary self-map generating f : T × R → R or
sufficiently large residence intervals compared with the times where the remaining primary
self-maps are used to generate f : T × R → R.

3. Some Extensions

It is now assumed that the class PM = PMc ∪ PM�c ∪ PMne ∪ PMe ∪ PMr of primary self-maps
from T ×X toX still satisfies weaker assumptions than the given ones in the previous section
as follows.

(1) The real constants γi ∈ [0, 1), i ∈ IMc ⊂ N are not necessarily upper-bounds for
the primary self-maps fi from T × X to X in PMc. Instead, the class PMc is redefined so
that the upper-bounding functions ki(t, t0), for all t ∈ T , for all t0 ∈ T are assumed to be
nonnegative and uniformly upper-bounded by finite constants Ci ∈ R+ (possibly exceeding
or being equal to unity within some subsets of their definition domains) on S. Furthermore,
they are assumed to be asymptotically strictly contractive (i.e., taking asymptotically values being
less than unity) in the precise sense that lim supt→∞ki(t, t0) ≤ γi for some γi ∈ (0, 1). Note that
this condition implies that for any given εi ∈ (0, 1 − γi − δi] ∩Rwith arbitrary δi ∈ (0, 1 − γi) ∩
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R, ∃t∗i = t∗i (εi, γi) ∈ S such that S � t ≥ t∗i , the upper-bounding function ki(t, t0) associated
with fi ∈ PMc satisfies the limiting upper-bounding condition ki(t, t0) ≤ γi + εi ≤ 1 − δi < 1.

Note that the condition lim supT →∞ki(t0 + T, t0) ≤ γi is fulfilled if ki(t0 + T, t0) is
uniformly bounded in [t0, t0 + T] and it is also monotone strictly decreasing on some
[t0 + T ′, t0 + T] ⊆ [t0, t0 + T]. In this case, there is also a subinterval [t0 + T ′ + T ′′, t0 + T] ⊆
[t0 + T ′, t0 + T] ⊆ [t0, t0 + T] in which ki(t0 + T, t) ≤ γi < 1, for all t ∈ [t0 + T ′ + T ′′, t0 + T]. This
condition is important in practice since exponentially stable dynamics such as those in (2.5)
systems fulfil it. Thus, it is possible to construct switching rules which respect a sufficiently
large minimum residence time interval at least at one of their stable parameterizations to
guarantee the existence of a fixed point and the exponential stability to the origin in the
dynamic system is unforced as a result.

(2) The class PM�c is assumed to be the set of asymptotically large contractive primary
self-maps from T × X to X in the sense that Condition C1 for any primary self-map fi from
T ×X to X in the class PM�c is replaced with its asymptotic counterpart:

lim sup
t→ ∞

∥
∥fi(t, x(t)) − fi

(
t, y(t)

)∥
∥ <
∥
∥x(t1) − y(t1)

∥
∥; ∀x, y(/=x) ∈ X, ∀t(> t1), t1 ∈ ST (3.1)

so that ‖fi(t, x(t))− fi(t, y(t))‖ fulfils the strict upper-bounding condition in some subset of T
of infinite Lebesgue measure. The Condition C2 is left unaltered.

(3) The class of noncontractive nonexpansive self-maps PMne from T × X to X is
defined to fulfil a similar condition to the above one by using instead under nonstrict
inequality.

(4) The remaining classes of primary functions are assumed to be as those given in
Section 2.

Although three of the subsets of primary self-maps are redefined under weaker
conditions, the notation of Section 2 is kept for them in order to facilitate the exposition. The
subsequent notation t ∈ STj(σ, PM, a, b), for j ∈ N, stands for switching points of f ∈ Pm the
rule σ acting on the primary class PM of self-maps from T × X to X being within the subset
[a, b) ⊆ T. If the arguments and b are omitted, then t ∈ STj(σ, PM) is understood to be within
any subset of T .

The main result of this section extends Theorem 2.12 as follows.

Theorem 3.1. Under the assumptions in this section, assume also that all the self-maps of the class
PM in X are also uniformly bounded, that T is Lebesgue-measurable with μ(T) = ∞ and consider a
switching rule σ : T → N which generates f(∈ M) : T ×X → X, withM = M(σ, PM) defined by
the set PM of primary self-maps from T ×X to X satisfying all the above assumptions. The following
properties hold.

(i)f(∈ M) : T × X → X has a fixed point if μ(T \ TMc(σ)) < ∞, μ(TMc(σ)) = ∞ and a
minimum finite residence interval Trj being sufficiently large compared to μ(T \ TMc(σ)) is respected
at any ti ∈ STj(σ), for all j ∈ IMc ⊆ N before the next switching in the following precise sense:

[
ti ∈ STj , ∀j ∈ IMc ⊆ N

]

=⇒
[(

ST�(σ) � ti+1 ≥ ti + Trj , ∀�
(
/= j
) ∈ IMc ⊆ N

)
∧ (¬∃t ∈ (ti, ti+1) ∩ STMc(σ))

]

∨ [¬∃t(≥ ti)ST(σ)],

(3.2)
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or there is a finite number of switches with the last switching point being to a primary self-map in
PMc.

(ii)f(∈ M) : T × X → X has a fixed point if μ(TM�c(σ)) = ∞ and μ(T \ TM�c(σ)) < ∞
and, furthermore, ∃M(< ∞) ∈ R+ such that the boundedness condition

∥
∥f(t∗ + �T0, x(t∗ + �T0)) − x(t∗)

∥
∥ ≤ M; ∀x ∈ X, ∀l ∈ Z(0+) (3.3)

holds in the case that f(∈ M) : X → X is not Lipschitzian, then f(∈ M) : X → X has a fixed
point and a minimum finite residence interval Trj being sufficiently large compared to μ(T \TM�c(σ))
is respected at any ti ∈ STj(σ), for all j ∈ IM�c ⊆ N.

(iii)f(∈ M) : T × X → X has a fixed point if μ(TMc(σ) ∪ TM�c(σ)) = ∞ and μ(T \
(TMc(σ) ∪ TM�c(σ))) < ∞ and, furthermore, ∃M(< ∞) ∈ R+ such that the boundedness condition

∥
∥f(t∗ + �T0, x(t∗ + �T0)) − x(t∗)

∥
∥ ≤ M; ∀x ∈ X, ∀� ∈ Z0+ (3.4)

holds in the case that f(∈ M) : T×X → X is not Lipschitzian, then f(∈ M) : T×X → X has a fixed
point providing that a minimum residence interval is respected for at least one of the asymptotically
strictly contractive or asymptotically large contractive self-maps in PM.

Proof. (i) Assume μ(T \ TMc(σ)) < ∞, μ(TMc(σ)) = ∞. Since f ∈ M(σ, PM) is uniformly
bounded piecewise-continuous since all the functions in PM are also uniformly bounded, the
corresponding rate over-bounding functions k : T × T → R0+ are also uniformly bounded.
Then, since μ(T \ TMc(σ)) < ∞, then the following situations can occur.

(1) The last switching occurs at a finite point ti in ST(σ, PM) with switching of the
self-map f ∈ M(σ, PM) from T × X to X to an asymptotically contractive primary self-map.
Also, ti is the left boundary of a connected interval of S being of infinity Lebesgue measure.
Formally: ∃ti ∈ STj(σ, PM) ⊆ STMc(σ, PM) ⊆ ST(σ, PM) such that μ(STj(σ, PM, ti,∞)) = ∞ for
some j ∈ IMc ⊆ N, that is, there is no switching point being larger than the largest switching
point ti in ST under the switching rule σ : T → N. Then,

∥
∥f(t, x(t)) − f

(
t, y(t)

)∥
∥ ≤ k(t, ti)

∥
∥f(ti, x(ti)) − f

(
ti, y(ti)

)∥
∥ ≤ 2Mk(t, ti) ≤ γi + εi < 1 (3.5)

provided that t ≥ ti + Trj for any given positive real constant εi < 1 − γi such that
STj(σ, PM, ti,∞) � ti ≥ t∗ ∈ ST(σ, PM) is sufficiently large but finite since lim supt→∞ki(t, t0) ≤
γi. Thus, the self-map f ∈ M(σ, PM) has a fixed point.

(2) There is no last switching point but after a finite switching points all the switching
points exceeding some sufficiently large finite one involve switches to asymptotically strictly
contractive primary self-maps from T ×X to X.

Then, μ(STj(σ, PM, ti, ti+1)) < ∞ such that ti ∈ STj(σ, PM) and ti+1 = min(t > ti :
t ∈ ST(σ, PM)) ∈ ST�(σ, PM ) for some �(/= j) ∈ IM ⊆ N. First, assume that j /∈ IMc and
�(/= j) ∈ IMc generates the next switching point ti+1 ∈ ST under a primary self-map in PMc

with μ(ST�(σ, PM, ti+1, ti+ 2)) < ∞, and

∑

j∈IMc, tj≥ti
μ
(
ST�

(
σ, PM, tj , tj+1

))
= ∞ =⇒ [μ(T \ TMc(σ)) < ∞∧ μ(TMc(σ)) = ∞]. (3.6)
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This situation can occur of a simply connected subinterval [ti,∞)of TMc. Using a parallel
reasoning to that of case (1) involving complete induction, one gets that ∃ limt→∞‖f(t, x(t))−
f(t, y(t))‖ = 0 since

lim sup
T�t→∞

∥
∥f(t, x(t)) − f

(
t, y(t)

)∥
∥ ≤ lim

Z0+ �j→∞
(
2Mρ

)j = 0 (3.7)

with ρ := max(γj + εj : j ∈ IMc) ≤ 1 − δ provided that tj+1 ≥ tj + Tr�(j) ≥ tj + Tr ≥ ti if tj ∈ ST�

for some � = �(j)(/= �(j − 1)) ∈ IMc ⊆ N with Tr�(j) ≥ Tr > 0 being sufficiently large but finite.
It is again concluded that the self-map f ∈ M(σ, PM) has a fixed point.

(3) There is no last switching point but, after a finite switching point, the sequence
of all the switching points exceeding some sufficiently large finite one contains an infinite
sequence of switching points to primary self-maps from T × X to X which are not
asymptotically contractive. This case cannot occur since then μ(T \TMc(σ)) = ∞ contradicting
the given assumptions.

Property (i) has been fully proven.
Properties (ii)-(iii) are proven in a similar way to their stronger parallel properties in

Theorem 2.12 by using the upper-bounding limiting property of (2.18) for the extended class
of primary self-maps. The detailed proof is omitted.

Corollary 3.2. Theorem 3.1(i) is fulfilled for any switching rule such that the minimum residence
intervals referred to are respected in only one of the asymptotically strictly contractive primary self-
maps. Theorem 3.1(ii) is extendable to the fulfilment of a sufficiently large residence interval by one of
the asymptotically large contractive primary self-maps. Theorem 3.1(iii) is extendable to the fulfilment
of the above property by either one of the asymptotically strictly contractive or one of the asymptotically
large contractive primary self-maps.

Theorem 3.1 addresses the case when the subset of T , where f ∈ M(σ, PM) is defined
via not asymptotically (strict or large) contractive primary self-maps in PM, has a finite
Lebesgue measure; that is, switches in-between primary self-maps can involve no contractive self-
maps over finite intervals. It is furthermore interesting to make that assumption more powerful
by considering that T is the countable union of infinitely many connected subsets of finite
Lebesgue measure whose boundaries are each pair of consecutive switching points. Sets
formed by unions of some finite number of those subsets for consecutive switching points
are assumed to contain at least one asymptotically either strict or large contractive primary
self-map generating f ∈ M(σ, PM). The subsequent result extends Theorem 3.1 to the case when
the conditions of Lemma 2.9 are modified to their asymptotic versions. It is admitted that the sets of
primary self-maps which are not contractive may be asymptotically compensated by the contractive
ones, so that the built f(∈ M) : T × X → X by the switching rule σ : T → N is asymptotically
contractive in some sense to guarantee the existence of a fixed point. Its proof follows directly by
combining a directly extended Lemma 2.9 to its asymptotic version with Theorem 3.1 since
any f(∈ M) : T ×X → X is uniformly bounded on its definition domain.

Corollary 3.3. Assume that all the self-maps of the class PM in X are also uniformly bounded, that T
is Lebesgue-measurable with μ(T) = ∞, and consider a switching rule σ : T → N which generates
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f(∈ M) : T × X → X, with M = M(σ, PM) defined by the class PM of primary self-maps from
T ×X to X satisfying either

lim sup
i→∞

(

kσ(tj )
(
ti + T0, tj

)i+j−1∏

i

[
kσ(ti)(ti+1, ti)

]
)

≤ γ < 1 (3.8)

for some sufficiently large T0 ∈ T or the Condition C2 of Section 2 for large contractions, together with
the (asymptotic) modified condition C1 :

lim sup
t→∞

∥
∥fi(t, x(t)) − fi

(
t, y(t)

)∥
∥ <
∥
∥x(t1) − y(t1)

∥
∥; ∀x, y(/=x) ∈ X, ∀t(> t1), t1 ∈ ST. (3.9)

Then, f(∈ M) : T ×X → X has a fixed point.

Remark 3.4. The results of Sections 2 and 3 are extendable directly to the discrete case for the
sets P and PM by replacing Lebesgue measures with discrete ones.

Example 3.5. Fixed point theory is a useful tool to investigate the stability of dynamic systems
including standard linear continuous-time or discrete systems and time-delay systems [2, 6]
as well as hybrid dynamic systems including coupled continuous-time and discrete-time
subsystems [1]. Now, it is discussed the case of a delay-free continuous-time system under a
switching rule operating among a given set of parameterizations and subject to controlled and
uncontrolled impulses. Consider the linear dynamic unforced time-varying system:

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) + B0σ(t)u0(t), x(0) ∈ Rn,

u(t) =
∑

ti∈ Impc

Kc(ti)δ(t − ti)x(ti); u0(t) =
∑

ti∈Imp0

K0(ti)δ(t − ti),
(3.10)

where Impc and Imp0, which are not required to be disjoint, are the real sequences of
impulsive time instants where feedback control impulses and open-loop (i.e., feedback-free)
control impulses occur, respectively, with the control Dirac distributions being u(t) and u0(t),
respectively, of respective piecewise-constant function matrices of dynamics A(t) = Aσ(t) :
T → Rn×n and control matrix functions B(t) = Bσ(t) : T → Rn× m and B0(t) = B0σ(t) : T →
Rn× m being run by a switching rule σ(t) = σ(tj) ∈ N = {1, 2, . . . ,N}, for all t ∈ [tj , tj+1), for
all tj ∈ ST ⊂ R0+ where ST is the strictly ordered sequence of switching time instants. The
real impulsive amplitude sequences {Kc(ti)}ti∈Impc

and {K0(ti)}ti∈Imp0
of elements in Rn× m

are assumed to be uniformly bounded and can be finite or infinite. An empty or nonempty
sequence of impulsive time instants can occur as follows for some pi ∈ Z+:

{
ti = ti0, ti1, . . . , tipi−1, ti+1

} ⊂ [ti, ti+1); ∀ti, ti+1 ∈ ST(σ), (3.11)

either within any simply connected time interval [ti, ti+1), where ti, ti+1 ∈ ST(σ) are two
consecutive switching points, or within any interval [ti,∞) if the switching rule σ : R0+ ≡
T → N generates a finite sequence ST of switching time instants of last element ti. The
following impulsive constraints are assumed.
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(1) ∃εImp ∈ R+ such that tij+1 − tij ≥ εImp for any two consecutive impulsive time
instants tij , tij+1 ∈ Impc ∪ Imp0, if any, within [ti, ti+1) with ti , ti+1 ∈ ST being any
two consecutive switching time instants. Also, ∃εs ∈ R+ such that ti+ 1 − ti ≥ εs for
any two consecutive switching time instants. The interpretation is that there is no
accumulation point either of switching time instants or of impulsive time instants.

(2) If ti /∈ Impc, then Kc(ti) = 0, and if ti /∈ Imp0, then K0(ti) = 0.

(3) If pi = 1, then there is no t ∈ (Impc ∪ Imp0) ∩ (ti, ti+1) and τi0 = ti+1 − ti.

(4) If pi = 1 and ti /∈ Impc ∪ Imp0, then there is no t ∈ (Impc ∪ Imp0) ∩ [ti, ti+1).

(5) If [ti, ti+1) is of finite Lebesgue measure, then 1 ≤ pi < ∞ (i.e., there is at most a finite
number of impulsive instants in any finite time interval within two consecutive
switching instants).

(6) If there is a finite number of switches generated by the switching law σ : R0+ → N,
so that a finite ti is the last one, with [ti,∞) being of infinite Lebesgue measure then
1 ≤ pi ≤ ∞ (i.e., an infinite or finite number of impulsive instants can occur within
an infinite time interval).

(7) If pi = ∞, then [ti, ti+1) is of infinity Lebesgue measure so that ti+1 = ∞.

The unique state trajectory solution of this dynamic system satisfies

x
(
tij+1
)
= eAσ(ti)τij x

(
t+ij

)
,

x
(
t+ij+1

)
=
(
In + BKc

(
tij
))
x
(
tij+1
)
+ B0K0

(
tij
)
n

=
(
In + BKc

(
tij
))
eAσ(ti)τij x

(
t+ij

)

+ B0K0
(
tij
)
; ∀tij , tij+1 ∈

(
Impc ∪ Imp0

) ⊂ [ti, ti+1); ∀ti, ti+1 ∈ ST,

(3.12)

where τij := tij+1−tij and In is the nth identity matrix. One gets by applying the above relations
recursively for the sequence of tie instants {ti = ti0, ti1, . . . , tipi−1, ti+1 }

x
(
t+i+1
)
=

pi−1∏

j= 0

[(
In + BKc

(
tij
))]

eAσ(ti)τij x
(
t+i
)
+

pi−1∑

j=0

pi−1∏

�= j+1

[
(In + BKc(ti�))eAσ(ti)τi�

]
B0K0

(
tij
)

(3.13)

so that

∥
∥x
(
t+i+1
)∥
∥ ≤ ρcσ(ti)

∥
∥x
(
t+i
)∥
∥ + ρ0σ(ti); ∀ti, ti+1 ∈ ST (3.14)

with

ρcσ(ti) :=

∥
∥
∥
∥
∥
∥

pi−1∏

j=0

[(
In + BKc

(
tij
))
eAσ(ti)τij

]
∥
∥
∥
∥
∥
∥
≤ ρcσ(ti) := Cσ(ti)e

λσ(ti)τi

⎛

⎝
pi−1∏

j=0

[∥
∥In + BKc

(
tij
)∥
∥
]
⎞

⎠,

(3.15)
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where τi := ti+1 − ti =
∑pi−1

j=0 τij and λσ(ti) is the numerical radius λmax(Aσ(ti) + AT
σ(ti)

)/2 (or 2-
matrix measure with respect to the spectral �2-norm) of Aσ(ti) and the fundamental matrix
function is upper-bounded as follows ‖eAit‖ ≤ Cie

λit for any Ai ∈ Rn×n and some real
constants Ci ≥ 1 and λi, for all i ∈ N. Then,

∥
∥x
(
t+i+1
) − y

(
t+i+1
)∥
∥ ≤ ρcσ(ti)

∥
∥x
(
t+i
) − y

(
t+i
)∥
∥ ≤ ρcσ(ti)

∥
∥x
(
t+i
) − y

(
t+i
)∥
∥

≤
i∏

j=1

[
ρcσ(tj )

]∥
∥x
(
t+1
) − y

(
t+1
)∥
∥

≤
i∏

j=1

[
ρcσ(tj )

]∥
∥x
(
t+1
) − y

(
t+1
)∥
∥; ∀ti, ti+1 ∈ ST, ∀x1, ∀y1 ∈ X.

(3.16)

If ti < ∞ is the last switching time instant, then τi = ti+1 = ∞ and

∥
∥x(t) − y(t)

∥
∥ ≤ ρcσ(ti)

∥
∥x
(
t+i
) − y

(
t+i
)∥
∥ ≤ ρcσ(ti)

∥
∥x
(
t+i
) − y

(
t+i
)∥
∥

≤
i∏

j=1

[
ρcσ(tj )

]∥
∥x
(
t+1
) − y

(
t+1
)∥
∥

≤ Cσ(ti)e
λσ(ti)(t−ti)

⎛

⎝
pi−1∏

j=0

[∥
∥In + BKc

(
tij
)∥
∥
]
⎞

⎠

×
i−1∏

j=1

[
ρcσ(tj )

]∥
∥x
(
t+1
) − y

(
t+1
)∥
∥; ∀t ∈ [ti,∞),

(3.17)

and furthermore,

lim sup
t→∞

∥
∥x(t) − y(t)

∥
∥

≤ lim sup
t→∞

⎛

⎝Cσ(ti)e
λσ(ti)

t
pi−1∏

j=0

[∥
∥In + BKc

(
tij
)∥
∥
] i−1∏

j=1

[
ρcσ(tj )

]
⎞

⎠
∥
∥x
(
t+1
) − y

(
t+1
)∥
∥.

(3.18)

Also, one gets for any finite T0 ∈ R+, any p ∈ Z+, for all ti, ti+1 ∈ ST

∥
∥x
(
t+1 +

(
p + 1

)
T0
) − y

(
t+1 +

(
p + 1

)
T0
)∥
∥

≤ Cσ(tμ)e
λσ(tμ)(t−tμ)

⎛

⎝
pμ−1∏

j=0

[∥
∥In + BKc

(
tj
)∥
∥
]
⎞

⎠
μ−1∏

j=ν

[
ρcσ(tj )

]

× Cσ(t1+T0)e
λσ(ti)(tν−t1−T0)

∥
∥x
(
t+1 + pT0

) − y
(
t+1 + pT0

)∥
∥

= kp
∥
∥x
(
t+1 + pT0

) − y
(
t+1 + pT0

)∥
∥,

(3.19)
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where kp = kp(T0, σ) ∈ R+ is defined directly from the above expression, provided that there
is at least one switching time instant within [t1 + pT0, t1 + (p + 1)T0], where

tν = tν
(
p, T0

)
= min

(
t ∈ ST : t ≥ t1 + pT0

)
,

tμ = tμ
(
p, T0

)
= max

(
t ∈ ST : t ≤ t1 +

(
p + 1

)
T0
) ≥ tν

t1 +
(
p + 1

)
T0 > tν ≥ t1 + pT0.

, (3.20)

The case that there is no impulse but one switch within [t1 + pT0, t1 + (p + 1)T0] is included
in the above formula by removing the norms ‖In + BKc(tμj)‖ since the involved p(·) are zero.
The case of no switch-no impulse occurring in [t1 + pT0, t1 + (p + 1)T0] is also particular case
of the above formula (3.19) resulting to be for tν = t1 + pT0

∥
∥x
(
t+1 +

(
p + 1

)
T0
) − y

(
t+1 +

(
p + 1

)
T0
)∥
∥ ≤ Cσ(tν)e

λσ(tν )(t −tν)∥∥x
(
t+1 + pT0

) − y
(
t+1 + pT0

)∥
∥

= kp
∥
∥x
(
t+1 + pT0

) − y
(
t+1 + pT0

)∥
∥.

(3.21)

It follows directly from recursion in (3.21) that for any switching rule σ : R0+ → N if there
exists a T0 = T0(σ) ∈ R+ such that kp = kp(T0, σ) < 1,

∥
∥x
(
t+1 +

(
p + 1

)
T0
) − y

(
t+1 +

(
p + 1

)
T0
)∥
∥ ≤
(

p∏

i=1

[ki]

)
∥
∥x
(
t+1 + T0

) − y
(
t+1 + T0

)∥
∥ (3.22)

so that the state-trajectory solution possesses a fixed point exists since

∃ lim
Z+�p→∞

∥
∥x
(
t+1 + pT0

) − y
(
t+1 + T0

)∥
∥

= lim
R+�t→+∞

∥
∥x
(
t+1 + pT0

) − y
(
t+1 + T0

)∥
∥ = 0; ∀x(t1), y(t1) ∈ R.

(3.23)

It turns out that if there is at least one stability matrixA� ∈ {Ai : i ∈ N}, then there are always
switching rules σ : R0+ → N which lead to a state-trajectory solution possessing a fixed
point. Since C�e

λ�(t−ti) < 1, since λi < 0, for any sufficiently large residence interval (t − ti)
such that σ(ti) = � (i.e., for a sufficiently large time interval free of switches and impulses
previous to the next switch after each switch to the stability matrix A� has happened), then
the associated map for this switching is asymptotically strictly contractive. They can occur
also switches to nonexpansive (λi = 0) or expansive (λi > 0) generated by the switching rule
but a fixed point always exists for such a rule if for some T0 = T0(σ) ∈ R+, there is a dominance
of the switching intervals associated with A� so that kp < 1. In the presence of impulses, the
result is still valid by increasing, if necessary, the residence interval before to the next switch
after switches to the parameterizing matrix A� have happened. It is possible to achieve a
constant kp = kp(T0, σ) < 1 for some T0 since the norm upper-bounding real function of time
C�e

λ�(t−ti) is monotone strictly decreasing related to the residence interval τi = ti+1 − ti.
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Remark 3.6. It is important to point out that it is obvious that the generalization of the given
formalism to switching rules σ : ST → Z+ is direct; that is the codomain Z+ of σ coincides
with the image of σ so that infinitely many distinct primary self-maps are used to construct
f : T × X → X. This implies necessarily that the switching rule generates infinitely many
switches so that the discrete measure of ST is infinity.
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