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Abstract 

 

In the Nanotechnology era, many methods for synthesis of materials with well-

defined nanoscale dimensions (1 nm =  10−9 m) have been developed. As a 

remarkable example, excellent size and shape control has been achieved for the 

synthesis of hard nanoparticles, such as quantum dots, gold nanoclusters or 

metal oxide nanoparticles. Similar control to produce soft nanoparticles based 

on polymers with dimensions below 10 nm has not been possible until just the 

beginning of the 21st Century. Advances in the synthesis of well-defined 

functional polymers through living radical polymerization processes, post-

functionalization techniques, as well as development of highly-efficient intra-

chain coupling reactions have paved the way to reliable production of single-

chain polymer nanoparticles.  

 

The field of single-chain nanoparticles strives to create innovative 

nanostructures while also attempting to mimic biological nanomaterials. Natural 

macromolecules display primary structures with exact monomer sequence 

control allowing for the precise folding into three-dimensional shapes containing 

specific arrangements of functional groups on the surface and exterior. 

Obtaining synthetic nanostructures with the level of complexity seen in nature 

presents a significant challenge, with current systems unable to match the 

precision. Many areas of research including polymers are beginning to bridge the 

gap between synthetic and natural materials. The manipulation of single 

polymer chains, specifically intra-molecular folding into well-defined 
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nanoparticles termed single-chain nanoparticles, or in brief SCNPs, is one 

particular avenue continually gaining interest. This area of research is simple 

conceptually, yet has results in many systems with complex behaviors.  

 

In “Single-chain nanoparticles: exploring novel synthesis routes, basic properties 

and potential applications” we try to made progress in this evolving field by 

exploring novel synthesis routes towards the development of functional single-

chain nanoparticles, and by performing proof-of-concept experiments to show 

their possible use in potential applications. We also provide a deeper knowledge 

about the basic properties of these nano-objects, which is of utmost importance 

to stablish reliable structure-properties relationship.  

 

We start the manuscript with a general introduction about single-chain 

nanoparticles. First, we describe in brief some concepts about polymers and 

nanotechnology. Then, we provide a general overview about the current 

synthesis routes and morphology in solution of single-chain nanoparticles, as 

well as about the potential applications of these functional nano-objects. We 

finish chapter 1 with the objectives of this thesis.  

 

After the introduction, we provide useful information about all the samples as 

well as all the techniques employed in this thesis. In chapter 2 we report on the 

synthesis of all the single-chain nanoparticles employed, including already 

known and new synthesis methods. A large set of techniques has allowed 

extracting information of all the samples investigated, which are all explained in 

chapter 3. 
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In chapter 4 we explore the basic properties of single-chain nanoparticles in 

comparison with their precursor counterparts. We focus on the stability, 

structural and dynamical features in solution. For this purpose, we combine the 

information provided by different techniques. Conventional techniques such as 

size exclusion chromatography and dynamic light scattering are employed to 

unveil the stability of single-chain nanoparticles in solution, while the use of 

scattering techniques –in particular neutron scattering– is needed in order to 

unravel the structure and dynamics of these nano-objects in solution. The study 

of fundamental properties is focused on already known single-chain 

nanoparticles.  

 

In chapter 5 we try to contribute to the design of nano-objects with improved 

capabilities. We present three novel synthesis routes for the preparation of 

functional single-chain nanoparticles and we provide information about their 

structure as well as their emerging properties, obtained by the combination of a 

wide range of techniques. Moreover, we try to demonstrate their use in potential 

applications such as nanomedicine or catalysis by performing proof-of concept 

experiments or combined with molecular dynamics simulations.  

 

Finally, in chapter 6 we summarize the main results and conclusions obtained in 

this thesis. The main general conclusion from this thesis is that a strategy 

combining synthesis, proof-of-concept experiments, simulations and scattering 

techniques could be an ideal approach for the production of single-chain 

nanoparticles endowed with useful functions as well as to disentangle the 

emerging properties of this complex materials.   
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Resumen 

 

En la era de la Nanotecnología, se han desarrollado muchos métodos para la 

síntesis de materiales con dimensiones bien definidas en la nanoescala 

(1 nm = 10−9 m). Un ejemplo notable es el excelente control sobre el tamaño y 

forma que se ha logrado en la síntesis de nanopartículas duras, tales como 

puntos cuánticos, nanopartículas de oro o nanopartículas de óxido metálico. Por 

el contrario, hasta principios del siglo XXI no ha sido posible obtener un control 

similar para producir nanopartículas blandas basadas en polímeros con 

dimensiones inferiores a 10 nm. Los avances en la síntesis de polímeros 

funcionales bien definidos a través de procesos de polimerización viva por 

radicales, técnicas de post-funcionalización, así como el desarrollo de reacciones 

de acoplamiento intra-cadena altamente eficientes, han allanado el camino hacia 

la producción fiable de nanopartículas poliméricas unimoleculares. 

 

El campo de las nanopartículas unimoleculares se esfuerza por crear 

nanoestructuras innovadoras a la vez que intentan imitar a los nanomateriales 

biológicos. Las macromoléculas naturales poseen un control exacto sobre la 

secuencia monomérica presente en sus estructuras primarias, lo que permite el 

plegado muy preciso en formas tridimensionales que contienen disposiciones 

específicas de grupos funcionales en la superficie y el exterior. Uno de los 

desafíos más significativos es la obtención de nanoestructuras sintéticas con el 

mismo nivel de complejidad que el que se halla en la naturaleza, ya que los 

sistemas desarrollados hasta el momento no son del todo capaces de igualar 
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dicha precisión. Muchas áreas de investigación, incluida la ciencia de polímeros, 

están empezando a cerrar la brecha entre los materiales sintéticos y naturales. 

La manipulación de cadenas de polímeros individuales, específicamente el 

plegamiento intra-molecular para dar lugar a nanopartículas bien definidas 

denominadas “nanopartículas unimoleculares”, es una vía de particular interés 

que está en continuo crecimiento. Dicha área de investigación es 

conceptualmente simple, pero posee resultados prometedores en muchos 

sistemas con comportamiento complejo. 

 

En "Nanopartículas unimoleculares: explorando rutas de síntesis novedosas, 

propiedades básicas y aplicaciones potenciales" tratamos de avanzar en este 

campo evolutivo mediante la exploración de nuevas rutas de síntesis para el 

desarrollo de nanopartículas funcionales unimoleculares y mediante la 

realización de experimentos de ‘prueba de concepto’ que sirven para demostrar 

su posible uso en aplicaciones potenciales, tales como nanomedicina. Además, 

queremos proporcionar un conocimiento más profundo acerca de las 

propiedades básicas de estos nano-objetos, ya que es de suma importancia a la 

hora de establecer una relación fiable entre la estructura y sus propiedades.  

 

Empezamos el manuscrito con una introducción general sobre las 

nanopartículas unimoleculares. Primero, describimos brevemente varios 

conceptos sobre los polímeros y la nanotecnología. A continuación, 

proporcionamos un resumen general acerca del estado de arte de las 

nanopartículas unimoleculares, en particular de las actuales rutas de síntesis y la 

morfología que normalmente poseen en disolución, así como de sus posibles 
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usos en aplicaciones potenciales. Finalizamos el capítulo 1 explicando los 

objetivos de esta tesis.  

 

Después de la introducción, proporcionamos información útil acerca de todas las 

muestras utilizadas así como de las técnicas empleadas en esta tesis. En el 

capítulo 2 describimos la síntesis de todas las nanopartículas unimoleculares 

utilizadas, incluyendo rutas ya conocidas y nuevas rutas de síntesis elaboradas 

en este trabajo. La información de todas las muestras investigadas se ha 

obtenido a través del uso de diversas técnicas, bien sean experimentales o de 

simulación, que se explican en el capítulo 3.  

 

En el capítulo 4 exploramos las propiedades básicas de las nanopartíuclas 

unimoleculares y las comparamos con las de sus respectivos polímeros 

precursores. El estudio se centra en investigar su estabilidad, estructura y 

dinámica en disolución. Para este propósito, combinamos información obtenida 

a través de distintas técnicas. El uso de técnicas convencionales como son la 

cromatografía de exclusión por tamaño o la dispersión de luz dinámica son 

suficientes para revelar la estabilidad de las nanopartículas, mientras que el uso 

de técnicas de dispersión –en particular dispersión de neutrones– es 

imprescindible para desenmarañar la estructura y dinámica de estos nano-

objetos en disolución. El estudio de propiedades fundamentales se realiza con las 

nanopartículas que son ya conocidas.  

 

En el capítulo 5 tratamos de contribuir en el diseño de nano-objetos con 

cualidades mejoradas. En particular, presentamos tres rutas de síntesis 

novedosas para la obtención de nanopartículas funcionales unimoleculares y 
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proporcionamos información acerca de su estructura así como de sus nuevas 

propiedades, mediante la combinación de un amplio rango de técnicas. Además, 

para demostrar su potencial uso en aplicaciones como la nanomedicina o 

catálisis, realizamos experimentos de ‘prueba de concepto’ combinados con 

simulaciones de dinámica molecular.  

 

Finalmente, en el capítulo 6 se resumen los principales resultados obtenidos y 

las conclusiones de estas tesis. La conclusión general que destacamos de esta 

tesis es que un método que combine la síntesis, experimentos de ‘prueba de 

concepto’, simulaciones y técnicas de dispersión, podría ser una aproximación 

ideal para la producción de nanopartículas unimoleculares dotadas con 

funciones útiles así como para desenmarañar las propiedades emergentes de 

estos materiales complejos.   
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1.1. Polymers: General Aspects 

The structural units in polymers are macromolecules which are formed by a 

large number of repeating units linked by covalent bonds. The term polymer 

includes not only synthetic materials but also natural macromolecules such as 

proteins or nucleic acids. Their structure-properties relationship has motivated 

a great effort towards developing new synthetic routes over the last decades, in 

an attempt to fulfill the increasing demand of the polymer industry.  

 

The repeat unit is called monomer and the number of monomers in a polymer 

chain determines the degree of polymerization. Polymers, unlike proteins, do not 

have a fixed number of repeat units per chain as a consequence of the imperfect 

methods used to prepare them. As different chains have usually different length, 

the molar mass distribution has to be determined. The most common statistical 

methods to determine it are the number-average method and the weight average 

method.[1] The number average molecular weight (Mn) is obtained by dividing 

the total mass by the number of chains in the ensemble. In other words, it is the 

arithmetic mean of the mass: 

 

𝑀𝑛 =
∑ 𝑁𝑖𝑀𝑖𝑖

∑ 𝑁𝑖𝑖
    (1.1) 

 

where Mi is the mass of the chain and Ni the number of chains of mass Mi. 

 

The weight average molecular weight (Mw) is defined as: 
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𝑀𝑤 =
∑ 𝑁𝑖𝑀𝑖

2
𝑖

∑ 𝑁𝑖𝑖 𝑀𝑖
 (1.2) 

 

Always 𝑀𝑤 > 𝑀𝑛 and the ratio 𝑀𝑤 𝑀𝑛⁄ , called polydispersity index, provides a 

characterization of the width of the molecular weight distribution. Same 

polymers with different polydispersity value can exhibit very different 

properties.  

 

Polymer features are affected not only by the polydispersity index, but also by 

the steric arrangement of the repeating units along the chain, by the chain 

conformations (the spatial organization of the chain as zig-zag, helical, folded 

chain, etc.) and by the chain configuration, also called microstructure. 

Homopolymers are polymers formed by a single type of monomers, while 

polymers which contain different monomeric units are called copolymers. There 

also exist many different architectures in which polymers can be found, like star, 

branched, linear, etc. All these characteristics contribute to the mechanical and 

dynamical features of each specific system.   

 

Since the chemical details are not important for the large scale features of a 

polymer chain, the positions of the monomers (which can be represented as 

beads) can be described by a position vector 𝑟𝑖 (1 < 𝑖 < 𝑁, being 𝑁 the number 

of 𝑖 monomers in each chain). Thus, the bond vectors 𝑟𝑖 − 𝑟𝑖−1(2 < 𝑖 < 𝑁) can be 

used to define the conformation of a chain. The size of the chain is usually 

characterized by the end-to-end vector 𝑅𝑒 , which is the vector connecting the 

first and the last bead or the sum of all 𝑁 bond vectors: 
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𝑅𝑒 = 𝑟𝑁 − 𝑟1 (1.3) 

 

Another magnitude used for the characterization of the size of a polymer chain is 

the radius of gyration 𝑅𝑔, which is defined in terms of the sum of the squared 

distances between the individual beads and the center of mass of the chain 𝑅𝑐𝑚:  

 

𝑅𝑔
2 =

∑ 𝑚𝑖(𝑟𝑖 − 𝑅𝑐𝑚)2𝑁
𝑖=1

∑ 𝑚𝑖
𝑁
𝑖=1

 (1.4) 

 

where 𝑚𝑖 is the mass of the bead and 𝑅𝑐𝑚 is given by: 

 

𝑅𝑐𝑚 =
∑ 𝑚𝑖

𝑁
𝑖=1 𝑟𝑖

∑ 𝑚𝑖
𝑁
𝑖=1

 (1.5) 

 

If the mass of a monomer 𝑚𝑖 is assumed to be constant, Eq. 1.4 can be simplified 

to: 

 

𝑅𝑔
2 =

1

𝑁
∑(𝑟𝑖 − 𝑅𝑐𝑚)2

𝑁

𝑖=1

 (1.6) 

 

For polymers, the squared end-to-end distance and the squared radius of 

gyration are usually averaged over the ensemble of allowed conformations 

giving the mean squared end-to-end distance 𝑅̅𝑒
2 and the mean squared radius of 

gyration 𝑅̅𝑔
2.  
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The dimension of a polymer chain in solution can be also characterized by the 

hydrodynamic radius 𝑅𝐻 , which is defined as the radius of a hypothetical sphere 

that diffuses through a viscous medium at the same rate as the polymer. In other 

words, a linear chain with a hydrodynamic radius 𝑅𝐻 diffuses with the same 

diffusion coefficient as the sphere of radius 𝑅𝐻 . Once the center of mass diffusion 

coefficient 𝐷𝐶𝑀 is measured, the hydrodynamic radius RH can be obtained by the 

Stokes-Einstein law: 

 

𝑅𝐻 =
𝑘𝐵𝑇

6𝜋𝜂𝑠𝐷𝐶𝑀
 (1.7) 

 

where 𝜂𝑠 is the viscosity of the solvent and 𝑘𝐵 the Boltzmann constant.  
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1.2. Nanotechnology 

Nanotechnology is the science that deals with matter at scales of about a 

nanometer, i.e., a thousand millionth of a meter (1 nm =  10−9 m). It is 

commonly defined as the understanding, control, and restructuring of matter on 

the order of nanometers (i.e., less than 100 nm) to create materials with 

fundamentally new properties and functions.[2]  

 

Since nanotechnology was introduced by Nobel laureate Richard P. Feynman 

during his now famous 1959 lecture “There’s Plenty of Room at the Bottom”,[3] 

there have been many revolutionary developments in physics, chemistry and 

biology that have demonstrated Feynman’s ideas of manipulating matter at an 

extremely small scale, the level of molecules and atoms, i.e., the nanoscale.[2] The 

properties of materials change as their size approaches to the nanoscale and as 

the percentage of the surface in relation to the percentage of the volume of a 

material becomes significant.  

 

In nature, a diversity of functional nanoentities result from the self-structuring 

of dynamic individual biomacromolecules at multiscale levels,[4] leading to such 

advanced materials as DNA or viruses. In this sense, nature may serve as a model 

for the building-up of small structures. A nanoparticle is the most fundamental 

component in the fabrication of a nanostructure and is far smaller than the 

world of everyday objects that are described by Newton’s laws of motion, but 

larger than an atom or a simple molecule that are governed by quantum 

mechanics.[5] Different types of nanoparticles have been developed depending on 

their nature; “hard nanoparticles”, usually made by inorganic materials and “soft 
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nanoparticles”, made by organic materials. Excellent size and shape control has 

been achieved for the synthesis of hard nanoparticles, such as quantum dots, 

gold nanoclusters or metal oxide nanoparticles.  

 

Concerning soft nanoparticles, some very promising examples of controlled 

chain compaction via folding/collapse have been demonstrated in recent years 

in the synthetic polymer field.[6-13] Moreover, intriguing examples of soft nano-

objects constructed though the compaction of linear single chains and endowed 

with useful enzyme-mimetic functions have been described.[14-16] Even so, there 

is still a markedly difference from the precise architectural control observed in 

nature. 

 

Thus, the topology and precise morphology found in natural biomacromolecules 

continues to be a powerful driving force towards artificial functional soft nano-

objects.[17] The development achieved in manipulating and visualizing single 

atoms at the atomic level, giving rise to the modern bottom-up technology, paves 

the way to a similar exquisite degree of control at the individual synthetic 

polymeric chain level for producing functional soft nanoentities, through full 

development of what is called “single-chain technology”.[18-19] 

 

1.1.2. Single-Chain Technology 

Synthetic polymer materials are generally seen and studied as a whole. However, 

a polymer chain can be more than a modest component of a larger assembly. 

Indeed, if carefully engineered at the molecular level, a single polymer chain can 

behave as a discrete object with its own characteristics and functions.[18] 

Macromolecules with controlled molecular architectures and also linear polymer 
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chains can today be engineered into single-chain polymer devices, i.e., individual 

molecules with a given function, such as artificial enzymes.  

 

Ultra-small unimolecular soft nano-objects endowed with useful, autonomous 

and smart functions are the long-term valuable output of single chain 

technology.[4] Thus, the precision synthesis of precursors with predefined 

sequences, positionable reactive groups, tailored interactions and useful 

functions is needed in single-chain technology. Within the past few years, 

different soft nano-objects have been constructed via chain compaction by 

means of single-chain technology. Some of these nano-objects are illustrated in 

figure 1.1.  

 

 

Figure 1.1: Illustration of soft nano-objects obtained by means of single-chain technology via 
chain compaction. Examples of dynamic (stimuli responsive) (a), letter-shaped (b) and 
compositionally unsymmetrical (c) single rings; complex multi-rings based on connected rings (d) 
and from pre-formed rings (e); sparse (f) and globular (g) single-chain nanoparticles; single-chain 
dumbbells (h), tadpoles (self-assembly in micelles) (i) and hairpins (j). 
 

Complex 
Multi-Rings

(d) (e)

Single-Chain Nanoparticles (SCNPs)

(f) (g)

Single-Chain Dumbbells

(h)

Single-Chain 
Hairpins

(j)

Single Rings

(a) (b)

(c)

SINGLE-CHAIN 
TECHNOLOGY

Single-Chain 
Tadpoles

(i)
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Within the wide variety of different soft nano-objects, single rings are found to 

be of huge interest, especially dynamic (stimuli-responsive),[20-25] letter-

shaped[26-27] and compositionally unsymmetrical single rings.[28-31] A diversity of 

complex, high-precision multi-ring systems has recently been prepared by 

means of single-chain technology via covalent and supramolecular 

interactions.[32-37]  

 

By means of single-chain technology, individual polymer chains of different 

natures, compositions and molar masses have been folded/collapsed to single-

chain nanoparticles (SCNPs)[6-9, 11-13, 38-39] and tadpoles (monotailed SCNPs).[40-45] 

Single-chain dumbbells[46] and hairpins[47-48] have also been constructed via 

single-chain technology (figure 1.1). 

 

In this thesis, the soft nano-objects studied are single-chain nanoparticles 

(SCNPs). These nanoentieties, while simple in concept, exhibit behaviors far 

more complex than initially anticipated and they offer a wide range of 

possibilities to be used in potential applications.  
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1.3. Single-Chain Nanoparticles (SCNPs) 

Single-chain nanoparticles (SCNPs) are ultra-small soft nano-objects synthesized 

by means of intra-molecular folding/collapse of individual polymer chains 

(figure 1.2). One of the main characteristics of SCNPs is their ultra-small size 

(<20 nm) and consequently their inherent large surface-to-volume ratio.   

 

 

Figure 1.2: Schematic illustration of a linear polymer precursor and a single-chain nanoparticle 
(SCNP) obtained through intra-chain folding/collapse of individual polymer chains at very dilute 
conditions. 

 

The concept of SCNPs constructed via intra-molecular cross-linking of individual 

linear polymer chains was introduced 16 years ago.[49] Research in SCNPs is 

currently at the boundary between polymer science, nanotechnology and 

biology. The folding of individual polymer chains to functional SCNPs is 

reminiscent of protein folding to its functional, native state although current 

SCNPs lack the perfection in sequence, uniformity in size and precise 

morphology found in these natural biomacromolecules.[50]   

 

Polymer 
Precursor

SCNP

Intra-chain 
folding/collapse

(very dilute conditions)
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1.3.1. SCNPs Construction 

The molecular weight of the SCNP precursor polymer and its functionalization 

degree are essential parameters to control SCNP size, in addition to the nature of 

the interactions employed to perform the folding/collapse as well as the solvent 

quality (good solvent, selective solvent).[51-52]  

 

As illustrated in figure 1.3, three main different techniques are involved in the 

synthesis of single-chain nanoparticles.[8]  

 

 

Figure 1.3: Different techniques involved in the construction of single-chain nanoparticles. (i) 
Controlled polymerization, (ii) polymer functionalization, and (iii) intra-chain folding/collapse of 
individual polymer chains. 

 

The first technique is controlled polymerization, allowing the development of 

well-defined single-chain polymeric precursors of controlled molar mass and 

narrow size distribution.  

(i) Controlled 
Polymerization

(ii) Polymer 
Functionalization

(iii) Intrachain
Folding/Collapse

SCNPs



Introduction 

 

13 
 

Polymer functionalization is the second technique involved, which consists of 

decorating the polymeric linear chains with appropriate functional groups for 

the corresponding folding/collapse process. In some cases, the use of this second 

technique can be avoided through the preparation of well-defined polymer 

precursors containing both inert and reactive functional groups randomly 

distributed along the individual chains.  

 

The third fundamental technique is the intra-chain folding/collapse process for 

the efficient transformation of the precursor coils to folded unimolecular 

nanoparticles. The strategies typically used to achieve intra-chain 

folding/collapse can be classified according to the type of chemistry used, as it is 

shown in figure 1.4. 

 

i. Intra-chain homocoupling: Identical functional groups, that are present in 

the linear polymer chain, react between them in a pairwise manner [blue 

beads in figure 1.4(a)].  

 

ii. Intra-chain heterocoupling: Reaction between two (or more) 

complementary functional groups often randomly distributed along the 

same polymer chain [blue and green beads in figure 1.4(b)].  

 

iii. Cross-linker induced collapse: An external multifunctional cross-linker is 

employed to promote SCNP formation [green beads represent the cross-

linking agent in figure 1.4(c)].  
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Figure 1.4: Illustration of different techniques employed for the construction of SCNPs according 
to the type of chemistry used: (a) intra-chain homocoupling, (b) intra-chain heterocoupling, and 
(c) cross-linker induced collapse. 

 

Another way to classify the compaction of SCNPs is through the nature of the 

interactions employed to perform the folding/collapse of individual polymer 

chains; they can be permanent covalent bonds or dynamic (reversible) 

interactions (e.g., hydrogen bonding, metal complexation, dynamic covalent 

bonds).[4]  

 

From the point of view of applications, the nature and degree of the intra-chain 

cross-linking of SCNPs is of great concern. On one hand, irreversible or 

permanent single-chain polymer nanoparticles involve strong intra-chain 

covalent bonds, which endow them with increased stability against thermal 

degradation at high temperatures. On the other hand, reversible single-chain 

polymer nanoparticles are based on the use of relatively weak supramolecular 

interactions and/or dynamic covalent bonds and they can be disassembled back 

(a) Intra-chain 
homocoupling

(b) Intra-chain 
heterocoupling

(c) Cross-linker 
induced collapse
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to individual polymer chains by means of one (or several) appropriate stimulus 

(stimuli). 

 

A significant effort has been recently performed to predict the size reduction 

upon folding/collapse of a precursor polymer chain via dynamic interactions[52] 

or covalent bonds[51] as a function of precursor molar mass (M) and amount of 

functional groups (x). In fact, covalent-bonded SCNPs in solution with similar 

nature, and identical values of M and x than responsive SCNPs do display, on 

average, a higher level of chain compaction. Moreover, in both good and selective 

solvents SCNPs constructed from exactly the same precursor polymer via non-

covalent interactions are expected to show a larger size than SCNPs prepared 

through covalent bonds.[53] 

 

1.3.2. Morphology of SCNPs in Solution 

Concerning the morphology of SCNPs in solution, two limiting conformations 

(sparse and globular) can be obtained depending on the synthesis conditions 

followed, and the nature of the precursor polymer employed and/or external 

cross-linker used. 

 

A. Sparse single-chain nanoparticles 

In general, single-chain nanoparticles formation in good solvent results in 

sparse, non-globular morphologies in solution even by employing highly-

efficient intra-chain cross-linking techniques (e.g., “click” chemistry) or 

supramolecular interactions.[54]  
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The ultimate reason behind this open, non-compact morphology, as revealed by 

molecular dynamics (MD) simulations, is the intrinsically self-avoiding character 

of the polymer precursors in good solvent, which severely restricts the reactions 

between cross-linkers separated by long contour distances (creating long-range 

loops). Consequently, most of the cross-linking events taking place during SCNP 

formation are actually inefficient for global compaction, since they involve cross-

linkers separated by short contour distances.[55]  

 

It is noteworthy that the global conformations exhibited by SCNPs in dilute 

solutions, synthesized in good solvent conditions, are very similar to those 

displayed by certain biomacromolecules, in particular by intrinsically disordered 

proteins (IDPs).[56] IDPs are ubiquitous in nature and responsible of functions of 

utmost relevance in biological systems. Another common feature with IDPs is 

that SCNPs are intrinsically polydisperse both in size and topology, even if they 

are produced by the same chemical route.[54-55, 57-58]  

 

 

Figure 1.5: Illustration of the sparse morphology adopted by single-chain nanoparticles (SCNPs) 
resembling that typical of intrinsically disordered proteins (IDPS).  
 

 

Sparse SCNPs IDPs
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Figure 1.5 illustrates the similar conformations found in sparse SCNPs and IDPs, 

showing locally compact portions connected by flexible segments.[59] This 

finding is especially important because the potential applications of single-chain 

nanoparticles depend on their precise morphology in solution. Consequently, the 

control of the distinct compacted subdomains created inside the SCNPs (i.e., 

pseudo-tertiary structure) is of significant interest.[4] 

 

B. Globular single-chain nanoparticles 

When the folding/collapse process is carried out by more complex synthesis 

routes a global core-shell morphology is usually obtained. This morphology is 

very similar to that displayed by native proteins like enzymes, showing a single 

locally compact portion, as illustrated in figure 1.6.  

 

 

Figure 1.6: Illustration of globular morphology adopted by single-chain nanoparticles as often 
found in enzymes. 

 

Among the complex synthesis routes employed to obtain globular SCNPs, an 

efficient synthesis of permanent SCNPs with an almost globular morphology was 

developed based on the combination of thiol-yne coupling reaction and 

relatively long cross-linkers.[60] The microscopic origin of this substantial 

Globular SCNPs Enzymes
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difference with standard SCNPs was elucidated by MD-simulations. It showed 

that intra-chain bonding mediated by relatively long cross-linkers, combined 

with the use of bifunctional groups in the SCNP precursor largely increases the 

probability of forming long-range loops, which are efficient for global chain 

compaction.[60]  

 

Other approaches to obtain SCNPs displaying nearly globular morphology have 

been recently reported based on self-assembly of neutral[61-63] or charged[64] 

amphiphilic random copolymers.  

 

The above results indicate that single chain technology allows, by proper 

selection of the synthesis route, the construction of SCNPs with a morphology 

resembling that of intrinsically disordered proteins (conventional synthesis 

methods in good solvent) or that showed by native, globular proteins (special 

synthesis methods).[4] The potential applications of SCNPs broaden significantly 

by taking inspiration from the functions of both ordered and disordered 

proteins.[17] 
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1.4. Applications of Single-Chain Nanoparticles 

Because this field is still in its infancy, only a limited number of proof-of-concept 

investigations have been carried out to endow single-chain nanoparticles with 

useful functions. In spite of this limitation, certain preliminary results illustrate 

the possibilities offered by these unimolecular nanoentities for a variety of 

potential applications.  

 

In general, the main advantages of folded/collapsed single chains over their 

linear counterparts are (i) the presence of locally compact, but accessible, 

sites/cavities/zones, (ii) the possibility to bound, temporally or permanently, 

active species, such as drugs or catalyst onto these local pockets, and (iii) their 

reduced size and hydrodynamic volume. Properties (i) and (ii) are useful for 

nanomedicine, catalysis and sensing applications, whereas (iii) is especially 

relevant for applications where a reduction in viscosity is required.[4]  

 

1.4.1. Nanomedicine 

One of the most promising fields of application of nanoparticles in general, and 

single-chain polymer nanoparticles in particular, is the design of engineered 

nano-systems to address diseases and to monitor and to protect human health. 

Nanomedicine can be defined as the use of nanoparticles for diagnosis, 

monitoring of physical and pathologic processes, for therapy and for control of 

biological systems.[65] Nanoparticles, when compared to typical small molecules, 

show a size large enough to avoid rapid clearance through the kidney, but small 

enough to be retained in the body based on a range of physiological changes, 
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morphological and biochemical differences that occur in different tissues in the 

presence of a variety of diseases and disorders. 

 

Nanoparticles can be used to encapsulate toxic, insoluble anti-cancer drug 

molecules and can be functionalized with peptides or antibodies to accumulate 

in tumors by targeting specific biomarkers overexpressed in cancer cells. In this 

sense, an important feature of these nanoparticles should be to display low 

toxicity and high biodegradability. Several cytotoxicity studies have been carried 

out to demonstrate the non-toxic character of a variety of single-chain polymer 

nanoparticles.[66-68] Even if more systematic studies are certainly required, these 

cytotoxicity studies paves the way to the use of SCNPs as biocompatible drug 

delivery systems.[69]  

 

A. Controlled drug delivery systems 

The analogies found in the morphology and inspired by the behavior of carrier 

proteins, the drug-delivery properties of sparse single-chain nanoparticles have 

been recently studied, in particular of “Michael” single-chain polymer 

nanoparticles.[59, 70] They were tested as novel transient-binding disordered 

nanocarriers, from which the controlled delivery in water of both dermal 

protective (folic acid, i.e., vitamin B9) and anticancer (hinokitiol) cargos was 

carried out (figure 1.7).[70]  

 

Another several proof-of-concept experiments have been performed involving 

single-chain polymer nanoparticles as controlled drug delivery nanocarriers of: 

chiral amino acid derivates,[71] peptides,[72] vitamins[59] and small molecule 

drugs.[70, 73-74]  
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Figure 1.7: Simultaneous delivery of both dermal protective (folic acid, i.e., vitamin B9) and 
anticancer (hinokitiol) cargos from single-chain “Michael” nanocarriers mimicking intrinsically 
disordered proteins (IDPs).   

 

B. Image contrast agents 

Single-chain polymer nanoparticles have been evaluated as: image contrast 

agents for magnetic resonance imaging (MRI),[75-76] and gamma emitters for 

single photon emission computerized tomography (SPECT)[68]. In addition, 

several synthetic routes have been followed to construct fluorescent single-chain 

polymer nanoparticles with potential applications in materials science and 

nanomedicine. Some routes rely on the entrapment of fluorescent probes by the 

nanoparticles, while others are based in the conjugation of the probes to the 

nanoparticles via covalent bonds.  

 

Efficient entrapment of fluorescent probes (fluorescein, pyrene, quantum dots) 

has been reported for polynorbornene,[67] polyhydroxyethyl methacrylate[74] and 

polyacrylic acid[77] single-chain polymer nanoparticles, respectively. On the 

contrary, fluorescent nanoparticles based on conjugation to single-chain 

nanoparticle precursors of a variety of fluorophores (polyfluorene, bipyridine, 

pyrene, anthracene, carbazole) have been prepared by using precursors based 

on polyacrylic acid,[76] polynorbornene[78] and polystyrene.[79-82] 
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1.4.2. Catalysis 

Single-chain polymer nanoparticles offer many possibilities for the development 

of catalytic systems, including enzyme-mimic nano-objects [13, 17, 50]: (i) a large 

surface-to-volume ratio which facilitates the diffusion of reagents and products 

to catalytic sites; (ii) two limiting morphologies, sparse and globular, with 

multiple small “local pockets” or a single pocket of larger size, respectively; (iii) 

availability of reversible (responsive) and irreversible (permanent) single-chain 

nanoparticles based on intra-molecular dynamic interactions or covalent bonds, 

respectively.  

 

Main proof-of-concept applications of SCNPs in catalysis include their use as 

nanoreactors for the synthesis of chemical compounds, polymers and 

nanomaterials.  

 

A. SCNPs as nanoreactors for the synthesis of chemical compounds 

Incorporation of insoluble catalysts into single-chain polymer nanoparticles has 

revealed as a useful way to perform efficient chemical synthesis in water, i.e., 

enzyme-like organic chemistry. Many different chemical compounds have been 

synthesized using SCNPs as bioinspired nanoreactors. In fact, the possibility to 

tune the size of the SCNPs, as well as type of intra-molecular cross-linking 

chemistry used and solvent characteristics offer many possibilities for endowing 

SCNPs with enzyme-mimetic activity in both organic and aqueous media.  Table 

1.1 summarizes reactions catalyzed by different single-chain polymer 

nanoparticles.  
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Table 1.1: Reactions catalyzed by different single-chin polymer nanoparticles 

Reaction Solvent 
T 
(℃) 

t 
(h) 

Conv. 
(%) 

TOF 
(h-1) 

Hydrogenation of ketones [14] H2O 40 50 98 20 

Aldol reaction [15] H2O 25 24 99 8 

Reduction of  α-diketones [16] CH2Cl2 RT 0.1 96 5580 

Alkyne dimerization [83] - 60 8 >98 25 

Reduction of secondary amines [84] THF RT 16 >99 0.6 

Allylation of benzophenone [84] THF 35 24 97 8 

Biphenyl formation [84] THF 80 16 >99 0.2 

CuAAC [85] PBS RT 0.2 >99 13 

Mono-depropargylation reaction [85] PBS RT 5 >99 0.2 

Bis-depropargylation reaction [85] PBS RT 25 >99 0.04 

Sonogashira coupling [86] Et2N RT 24 45 21 

Oxidation of secondary alcohols [87] H2O RT 0.07 >99 600 

CuAAC [88] H2O 50 24 >99 16667 

TOF (turnover frequency) = Amount of products (mol)/[Amount of catalyst active sites (mol) x 
time (h)]. RT = Room temperature. THF = Tetrahydrofuran. CuAAC = Cu(I)-catalyzed azide-alkyne 
cycloaddition. PBS = Phosphate buffer (0.01 M). Et2N = Diethylamine. 

 

All these examples illustrate the huge possibilities that SCNPs offer, as efficient 

nanoscale catalysts, for the synthesis of a variety of chemical compounds even 

inside bacteria and mammalian cells.[88]  

 

B. SCNPs as nanoreactors for the synthesis of polymers 

SCNPs have been used as bioinspired nanoreactors for the synthesis of several 

polymers via ring-opening polymerization[16] as well as controlled/living radical 

polymerization.[63, 89]  
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Natural polymerase enzymes use templates (mRNA, DNA) to synthesize 

perfectly defined (in length and sequence) biomacromolecules.[69] Polymerase-

like activity towards tetrahydrofuran (THF) via ring-opening polymerization 

was found for organocatalytic SCNPs containing entrapped B(C6F5)3 

molecules.[16] The term “polymerase-like” was employed to distinguish the 

ability of these SCNPs to polymerize THF in the presence of small amount of 

glycidyl phenyl ether (GPE) which played the role of co-catalyst, from the 

exquisite activity of natural polymerase enzymes [figure 1.8(a)].  

 

 

Figure 1.8: Schematic illustration of the use of SCNPs as bioinspired nanoreactors for the 
synthesis of polymers through: (a) ring-opening polymerization, and (b) controlled/living radical 
polymerization (see text for details).  

 

(b)

(a)
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Metalloenzymes have the ability to catalyze the controlled radical 

polymerization of water-soluble vinyl-type monomers.[90-93] This polymerase 

activity displayed by metalloenzymes was taken as inspiration to prepare 

copper-containing globular SCNPs mimicking their globular morphology and 

living radical polymerization activity [figure 1.8(b)].[63]  

 

C. SCNPs as nanoreactors for the synthesis of nanomaterials 

A diversity of nanomaterials have been synthesized involving single-chain 

nanoparticles as highly-efficient nanoreactors (figure 1.9). SCNPs have been 

employed for the synthesis of gold nanoparticles,[94] quantum dots[77] and carbon 

nanodots.[95] The promising results obtained prompt to the evaluation of single-

chain nanoparticles as nanoreactors for the efficient synthesis of other 

nanomaterials.  

 

 

Figure 1.9: Examples of nanomaterials synthesized by using SCNPs as individual nanoreactors: (a) 
gold nanoparticles (Au-NPs), (b) cadmium sulfide quantum dots (CdS-QDs) and (c) carbon 
nanodots (C-NDs). 

 

(a) (b) (c)
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1.4.3. Sensing 

Single-chain polymer nanoparticles offer interesting possibilities for the 

development of sensors and biosensors. Fluorescent polynorbornene-based 

SCNPs were evaluated as compartmentalized sensors of metal ions. These SCNPs 

were found to be efficient sensors for metal ions, such as Cu(II), due to the 

strong quenching of nanoparticle fluorescence upon metal binding.[78] 

 

Endowing single-chain nanoparticles with biosensing activity (i.e., the capability 

for detection of biological macromolecules) is a promising field of research. In a 

recent work,[96] pyridine-functionalized single-chain nanoparticles were used as 

biosensors. A simple, fast, highly sensitive and robust colorimetric detection of 

zein protein based on the formation of gold nanoparticles in the presence of 

these SCNPs was reported (figure 1.10).  

 

 

Figure 1.10: Photographs of the sensing system based on pyridine-gold-zein interactions 
involving pyridine-functionalized single-chain nanoparticles in the presences of decreasing 
concentrations of zein.  
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1.4.4. Other Uses 

Several other uses of single-chain polymer nanoparticles haven been 

investigated. Initially, SCNPs were evaluated as porogens for microelectronic 

applications.[49, 97]  

 

The use of SCNPs as functional nanoparticles for bioscience of amine-containing 

SCNPs,[67, 98] amino acid-decorated nanoparticles,[81, 99] porphyrin-containing 

SCNPs[85] or SCNPs prepared from a single-chain coumarin-containing 

precursors[100] has been proposed.  

 

Neutral single-chain nanoparticles have been widely investigated as rheology-

improving agents for melts of thermoplastics,[101] elastomeric polymers,[102] and 

nanocomposites.[103-104] Moreover, charged SCNPs have been employed in 

coating formulations.[64, 105-107]  

 

The effect of SCNPs on the dynamics of all-polymer nanocomposites is currently 

the subject of intense interest.[108-110] SCNPs are also promising materials for 

promoting miscibility in immiscible polymer blends, as revealed by several 

theoretical[111-115] and experimental results.[116-117]   

 

In addition, SCNPs have also been employed as reversible hydrogels,[118] 

supramolecular films[119-121] and surfactants.[122]  
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1.5. Aim and Outline of this Thesis  

The aim of this thesis is to explore novel synthesis routes towards single-chain 

nanoparticles endowed with useful functions for their use in potential 

applications, as well as to provide a deeper knowledge about the basic 

properties of these nano-objects. Unravelling the stability, structure and 

dynamics of functional single-chain nanoparticles is of utmost importance to 

establish reliable structure-properties relationship.  

 

In this thesis we report on three different synthesis routes for the preparation of 

single-chain nanoparticles with unique and novel properties to be used in 

potential fields. We provide detailed information about the structure of these 

novel SCNPs by using a wide range of powerful characterization techniques, and 

in some cases combined with molecular dynamics (MD) simulations. Moreover, 

we present proof-of-concept experiments on these functional SCNPs to 

demonstrate their possible use in some applications, like catalysis and 

nanomedicine (drug delivery and fluorescent probes).  

 

Furthermore, we present a study on the stability, structural and dynamical 

features of single-chain nanoparticles in solution, in order to provide a deep 

insight into the basic properties of these functional nano-objects. For this 

purpose, we exploit scattering techniques –in particular neutron scattering–, 

which are specially well suited to realize a significant advance in this novel field, 

and combine these experiments with MD-simulations This study on fundamental 

properties is focused on already known single-chain nanoparticles, i.e., ‘standard 

SCNPS’. Motivated by their analogy with intrinsically disordered proteins, we 
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have also investigated the impact of crowding –an inherent situation in cells– on 

the conformation of these SCNPs.   

 

The thesis is organized as follows. In Chapter 2 the synthesis of all the single-

chain nanoparticles employed in this work is presented. All the experimental 

techniques as well as the details of the measurements and the conditions used 

for the characterization of the samples are described in Chapter 3. The basic 

properties of SCNPs in comparison with their precursor counterparts are 

presented in Chapter 4. Chapter 5 reports on the new synthesis routes 

developed in this thesis, including the complete characterization as well as 

proof-of-concept experiments of these novel single-chain nanoparticles. Finally, 

the conclusions of this thesis are summarized in Chapter 6.  
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2.1. Introduction 

Precisely defined linear polymers folded into functional nanostructures, capable 

of completing complex tasks, are omnipresent in nature.[1] In this sense, an 

obvious research goal becomes apparent: exploiting our understanding of 

biomolecules to mimic this behavior in the laboratory using recent advances in 

controlled polymerization chemistry, polymer functionalization and cross-

linking, as well as the well-known theories of modern polymer physics.  

 

In order to fabricate soft nanomaterials that more closely mimic folded 

biomolecules in structure and activity, the new paradigm in polymer synthesis 

involves the manipulation of single polymer chains to construct ultra-small 

functional unimolecular nano-objects,[2-3] i.e., single-chain nanoparticles (SCNPs). 

SCNPs are individual polymer chains that have been intra-molecularly cross-

linked, usually at very high dilution. Recent reviews provide detailed 

information about the different techniques involved in SCNP construction:[1, 4-12] 

(i) controlled polymerization for the synthesis of SCNP precursor, (ii) polymer 

functionalization, if necessary, and (iii) intra-chain folding/collapse via covalent, 

non-covalent (supramolecular) or dynamic-covalent bonding interactions (see 

figure 2.1).  

 

A vast majority of the cross-linking strategies developed for single-chain collapse 

is made by covalent chemistry. Among them, radical coupling,[13-14] Diels-Alder 

reaction,[15] Bergmann cyclation,[16-19] Glaser-Hay coupling,[20] nitrene cross-

linking,[21-23] Michael addition,[24-26] etc., are frequently used. Covalent cross-

linking delivers irreversible nanoparticles that remain stable and unaffected by 
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external stimuli, thus SCNPs synthesized by covalent interactions lose their 

dynamic nature.   

 

On the contrary, the synthesis of SCNPs via supramolecular (non-covalent) 

interactions and dynamic covalent-bonds offers the possibility to develop 

structurally dynamic or reversible materials, which can adapt their constitution, 

and hence properties, to external stimuli (such as pH, temperature, oxidizing or 

reducing agents, etc.).[27] Different non-covalent bonding-based strategies 

(benzamide dimerization,[28] Cu complexation,[26, 29] amphiphilic random 

copolymer self-assembly,[30] etc.), as well as successful approaches based on 

dynamic covalent bonds (hydrazine bonds,[31-32] disulfide bridges,[33] anthracene 

dimerization,[34] enamine bonds,[35] etc.) have been developed over recent years.  

 

 

Figure 2.1: Schematic illustration of a linear polymer precursor and a single-chain nanoparticle 
(SCNP) obtained through intra-chain folding/collapse, via covalent bond (a), supramolecular 
interaction (b) and dynamic-covalent bond (c). The type of chemistry used is also involved on 
SCNP construction; intra-chain homocoupling (1), intra-chain heterocoupling (2) and cross-linker 
induced collapse (3). 
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The strategies typically used to achieve intra-chain collapse can also be classified 

according to the type of chemistry used (see figure 2.1): intra-chain 

homocoupling, where pendant functional groups can react with each other to 

generate a bond, intra-chain heterocoupling, where two complementary 

functionalities are attached to the polymer chain to promote its intra-molecular 

cross-linking, and the cross-linker induced collapse, which uses a cross-linking 

molecule to bind functional groups in the polymer.[5] Importantly, the method 

chosen for polymer collapse will also in turn affect the overall structure and 

potential properties of the single-chain nanoparticle formed.[36]  

 

This chapter reports on the synthesis of all the single-chain nanoparticles 

(SCNPs) employed in this thesis. In the first part, already known synthetic 

methods toward single-chain nanoparticles (standard SCNPs) are explained, 

while in the second part new synthesis routes developed in this thesis are 

described.   

 

Within the standard synthesis routes, three types of SCNPs starting from the 

same linear precursor are produced, by means of three different synthesis 

methods: covalent bonding (denoted as Mi-SCNPs in scheme 2.1), non-covalent 

interactions (denoted as Cu-SCNPs in scheme 2.1) and dynamic covalent-

bonding (denoted as e-SCNPs in scheme 2.1). The goal is to explore the basic 

properties of these SCNPs using scattering techniques, as will be shown in 

chapter 4.  
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Scheme 2.1: Standard synthesis routes of SCNPs employed in this work by starting from the same 
linear copolymer precursor, involving MMA and AEMA repeating units. MMA = Methyl 
methacrylate. AEMA = (2-acetoacetoxy)ethyl methacrylate. 

 

Copper complexation is also involved in another synthesis route applied to 

amphiphilic precursors with the aim to obtain more compact SCNPs (results will 

be shown in chapter 5). Subsequently, new synthesis routes developed in this 

thesis are described. On the one hand, microwave-assisted synthesis is employed 

to obtain polystyrene (PS) based functional single-chain nanoparticles, with the 

unexpected presence of aldehyde groups along the SCNPs. On the other hand, the 

synthesis of water-soluble poly(vinyl pyrrolidone) single-chain nanoparticles via 

Fenton reaction is reported for the first time. The results obtained for these 

novel SCNPs will be discussed in chapter 5.  
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2.2. Standard Synthesis Routes of SCNPs 

2.2.1. Materials 

Methyl methacrylate (MMA, 99%), (2-acetoacetoxy)ethyl methacrylate (AEMA, 

95%), oligo(ethylene glycol) methyl ether methacrylate (OEGMA, Mn ~ 300 

g/mol), 2,2-azobis(2-methylpropionitrile) (AIBN, ≥98%), trimethylolpropane 

triacrylate (TMT, technical grade), potassium hydroxide (ACS reagent, ≥85%), 

copper (II) acetate (Cu(OAc)2, 98%), ethylenediamine (99.5%), ethyl acetate 

(anhydrous, 99.8 %), 1,4-dioxane (anhydrous, 99.8%), hexane (anhydrous, 

95%), diethyl ether (ACS reagent, anhydrous, >99.0%) and deuterated 

chloroform (CDCl3, 99.96 atom % D, containing 0.03 % (v/v) tetramethylsilane, 

TMS) were purchased from Aldrich and used, unless specified, as received. 2-

Cyanoprop-2-yl-dithiobenzoate (CPDB, ≥97%) and 4-Cyanopentanoic acid 

dithiobenzoate (CPADB) were purchased from Strem Chemicals. Methanol 

(MeOH, synthesis grade), tetrahydrofuran (THF, HPLC grade) and hydrochloric 

acid (37%, extra pure) were purchased from Scharlab. Deionized water obtained 

from a Thermo Scientific apparatus was employed in this work. MMA, AEMA 

and OEGMA were purified by passing through basic alumina before use. 

 

 

Scheme 2.2: Structure of the monomers used for the polymer precursor synthesis. 
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2.2.2. Polymer Precursors 

A. Synthesis of poly(MMA-co-AEMA) copolymers 

In a typical procedure, MMA (1 ml, 9.4 mmol), AEMA (0.6 ml, 3.1 mmol), CPDB 

(6.9 mg, 3.1x10-2 mmol) and AIBN (1.3 mg, 7.8x10-2 mmol) were dissolved in 

ethyl acetate (1.6 ml). The reaction mixture was degassed by passing argon for 

15 min. The copolymerization reaction was carried out at 65 ℃ for 18 h. The 

resulting precursor was isolated by precipitation in methanol and further drying 

under vacuum. (P1: Yield = 59%, Mw (SEC) = 52.5 kg/mol, Mw/Mn = 1.03, 

composition (1H NMR) = 28 % AEMA). Varying the amount of initiator and CTA, 

copolymers P1-P4 were obtained with different molecular weights (from ~50 

kg/mol to ~270 kg/mol) and relatively narrow polydispersity. The main 

characteristics of these copolymers are summarized in table 2.1. 

 

 

Scheme 2.3: Synthesis of poly(MMA-co-AEMA) copolymer precursor via RAFT polymerization 
(see text for details). 
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B. Synthesis of poly(OEGMA-co-AEMA) copolymers 

In a standard procedure, OEGMA (1.1 ml, 4 mmol), AEMA (0.6 ml, 3.2 mmol), 

CPADB (15.2 mg, 5.3×10-2 mmol) and AIBN (1.8 mg, 1.0×10-2 mmol) were 

dissolved in 1,4-dioxane (3 ml). The reaction mixture was degassed by passing 

argon for 15 min. The copolymerization reaction was carried out at 70 ℃ for 24 

h. The resulting pink oil (P4) was isolated by precipitation in hexane (Yield: 

76%). After that, the copolymer was redissolved in a minimal amount of THF 

and added to a large excess of hexane (twice), the residual solvent was 

concentrated and further drying was performed at r.t. under vacuum. 

Copolymers O1-O4 were obtained as pink oils with 11-40 mol% of AEMA 

content, as determined by 1H NMR spectroscopy following reported 

procedures[37]. The main characteristics of these copolymers are summarized in 

table 2.1. 

 

 

Scheme 2.4: Synthesis of poly(OEGMA-co-AEMA) copolymer precursor via RAFT polymerization 
(see text for details).  
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Table 2. 1: Characteristics of P(MMA-co-AEMA) and P(OEGMA-co-AEMA) copolymer precursors. 

Code Copolymer Mw (kg/mol)a Mw/Mna AEMA (mol %)b 

P1 MMA-AEMA 52.5 1.03 28 

P2 MMA-AEMA 123.5 1.11 30 

P3 MMA-AEMA 209.1 1.37 27 

P4 MMA-AEMA 272.1 1.40 30 

O1 OEGMA-AEMA 110.1 1.04 11 

O2 OEGMA-AEMA 90.4 1.10 20 

O3 OEGMA-AEMA 175.0 1.08 35 

O4 OEGMA-AEMA 208.0 1.05 40 

a)As determined by SEC with triple detection (DRI, MALLS and VI detector) in THF at 30 ℃; b)AEMA 
content in the copolymer as determined by 1H NMR spectroscopy.  

 

2.2.3. Single-Chain Michael Nanoparticles (Mi-SCNPs) 

This synthesis method relies on multidirectional self-assembly of individual 

polymeric chains at r.t. driven by Michael addition reactions involving external 

multifunctional acrylate-based cross-linkers. For more details about the 

chemistry involved in the synthesis see Ref. [24] 

 

A. Synthesis of single-chain Michael nanoparticles 

In a typical reaction, P(MMA-co-AEMA) copolymer precursor (P1, 150 mg, 0.31 

mmol), multifunctional cross-linker (TMT, 28.2 mg, 0.10 mmol) and catalyst 

(KOH, 8.9 mg, 0.16 mmol) were dissolved in THF (150 ml) at room temperature. 

The progressive folding/collapse process was followed through simultaneous 

SEC measurements. After reaction completion (3 days), a few drops of 

hydrochloric acid were added to deactivate the catalyst, the mixture was 
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concentrated and the single-chain “Michael” nanoparticles (Mi-SCNPs) were 

isolated by precipitation in diethyl ether and further drying under vacuum. (Mi-

SCNP1: Yield = 65%, Mw (SEC) = 55.1 kg/mol, Mw/Mn = 1.02).   

 

 

Scheme 2.5: Single-chain Michael nanoparticle formation with multifunctional cross-linker (see 
text for details).  

 

2.2.4. Metallo-Folded Single-Chain Nanoparticles (Cu-SCNPs) 

Metallo-folded SCNPs were obtained via intra-chain Cu(II) complexation of 

AEMA units by exploiting the β-ketoester functional groups in the copolymer 

precursors as ligands. On the one hand, poly(MMA-co-AEMA) linear precursor 

was used to obtain Cu-SCNPs[29], resulting only soluble in organic solvents. On 

the other hand, water soluble OEGMA-CuSCNPs were obtained by starting from 

amphiphilic poly(OEGMA-co-AEMA) precursors.[37] Although two different 

copolymer precursors were employed, the folding/collapse mechanism involved 

in the metallo-folded SCNPs was the same, due to the presence of AEMA 

monomer in both copolymers. 
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A. Synthesis of metallo-folded poly(MMA)-based SCNPs 

In a typical procedure, P(MMA-co-AEMA) copolymer precursor (P1, 150 mg, 

0.31 mmol) was dissolved in THF (150 ml) at room temperature. Then, a 

solution of Cu(OAc)2 (14.3 mg, 0,078 mmol) in THF was progressively added, 

and the mixture was maintained under stirring for 24h. Finally, the mixture was 

concentrated and the metallo-folded single-chain nanoparticles (Cu-SCNPs) 

were isolated by precipitation in diethyl ether and further drying under vacuum. 

(Cu-SCNP1: Yield = 77%; Mw (SEC) = 55.9 kg/mol, Mw/Mn = 1.02). 

 

 

Scheme 2.6: Synthesis of poly(MMA)-based metallo-folded single-chain nanoparticles, via intra-
chain Cu(II) complexation of AEMA units 

 

B. Synthesis of metallo-folded poly(OEGMA)-based SCNPs 

Starting from the amphiphilic copolymer poly(OEGMA-co-AEMA), two different 

synthesis procedures involving selective and nonselective solvents, that we call 

“protocols” were used. The protocol I was carried out in THF (which is a good 

solvent for both, OEGMA and AEMA), while the protocol II was carried out in 

water (good solvent for OEGMA, bad solvent for AEMA).  
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a) Synthesis of OEGMA-CuSCNPs by Protocol I: 
 
Typically, poly(OEGMA-co-AEMA) copolymer precursor (O4, 100 mg, 0.126 

mmol) was dissolved in THF (90 ml) at room temperature. Then, a solution of 

Cu(OAc)2 (16 mg, 0.081 mmol Cu) in 10 ml of THF was added, and the mixture 

was maintained under stirring for 24 h. After reaction completion, the system 

was concentrated and precipitated in MeOH (twice) to purify the copper-

containing SCNPs from potential traces of Cu(OAc)2, which is highly soluble in 

MeOH. No traces of Cu(OAc)2 in the samples were detected by 1H NMR and FTIR 

spectroscopy. Finally, the resulting OEGMA-CuSCNPs-I were dried in a vacuum 

oven at r.t. under vacuum (O4-CuSCNPs-I: Yield = 61%, Mw (SEC) = 206.5 

kg/mol, Mw/Mn = 1.05).  

 

 

Scheme 2.7: Synthesis of poly(OEGMA)-based metallo-folded single-chain nanoparticles, via 
protocol I and protocol II (see text for details).  
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b) Synthesis of OEGMA-CuSCNPs by Protocol II: 
 
In a typical reaction, poly(OEGMA-co-AEMA) copolymer precursor (O1, 100 mg, 

0.126 mmol) was dissolved in deionized water (90 ml) at room temperature. 

Then, a solution of Cu(OAc)2 (16 mg, 0.081 mmol Cu) in 10 ml of deionized water 

was added, and the mixture was maintained under stirring for 24 h. After 

reaction completion, the system was freeze-dried, redissolved in THF and 

precipitated in MeOH (twice). No traces of Cu(OAc)2 in the samples were 

detected by 1H NMR and FTIR spectroscopy. Finally, the resulting OEGMA-

CuSCNPs-II were dried in a vacuum oven at r.t. (O1-CuSCNPs-II: Yield = 55%, Mw 

(SEC) = 94.2 kg/mol, Mw/Mn = 1.12).  

 

2.2.5. Reversible Single-Chain Nanoparticles (e-SCNPS) 

In this route the folding/collapse process is achieved by using dynamic covalent 

enamine bonds. β-ketoester functional groups that are present in poly(MMA-co-

AEMA) precursor, undergo an exchange process with ethylenediamine, leading 

to reversible SCNPs formation.[35] Disassembly of the e-SCNPs is possible at low 

pH values.  

 

A. Synthesis of reversible single-chain nanoparticles 

In a typical procedure, P(MMA-co-AEMA) copolymer precursor (P3, 25 mg, 

0.191 mmol) and cross-linker (ethylenediamine, 1.7 μl, 0.026 mmol) were 

dissolved in 25 ml of THF at room temperature. The progressive folding-collapse 

process was followed by simultaneous SEC and SAXS measurements. After 

reaction completion (24 h), the obtained reversible single-chain nanoparticles 
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(e-SCNPS) were characterized with different techniques without further 

purification (e-SCNP3: Mw (SEC) = 207.2 kg/mol, Mw/Mn = 1.33).  

 

 

Scheme 2.8: Synthesis of reversible single-chain nanoparticles, via enamine formation (see text 
for details).  
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2.3. New Synthesis Routes of SCNPs 

2.3.1. Polystyrene-based Single-Chain Nanoparticles 

A. Materials 

Styrene (St, ≥ 99%), 4-(chloromethyl) styrene (CMS, ≥ 90%), sodium azide 

(NaN3, ≥ 99%), dansylhydrazine (98%), 4,4’-Azobis(4-cyanovaleric acid) (ACVA, 

≥ 98%), N-N-Dimethylformamide (DMF, ≥ 99.9%), N-methyl-2-pyrrolidone 

(NMP, ≥ 99%), benzaldehyde (BA, purified by redistillation, ≥99.5%), chloroform 

(CHCl3, ≥ 99.8%) and deuterated chloroform (CDCl3, 99.96 atom % D, containing 

0.03 % (v/v) tetramethylsilane, TMS) were purchased from Aldrich and used, 

unless specified, as received. Methanol (MeOH, synthesis grade) and 

tetrahydrofuran (THF, HPLC grade) were purchased from Scharlab. Benzyl azide 

(BAz, 94%) was purchased from Alpha Aesar. Deionized water obtained from a 

Thermo Scientific apparatus (Barnstead TII Pure Water System) was employed 

in this work. St and CMS were purified by passing through basic alumina. 

 

 

Scheme 2.9: Structures of some compounds used in the current study; styrene (St), chloromethyl 
styrene (CMS), benzaldehyde (BA) and benzyl azide (BAz). 
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B. Synthesis of reference P0 (neat polystyrene)  

The synthesis of neat polystyrene (P0) was carried out by using St (2 ml, 17.4 

mmol) as monomer and ACVA (1.7 mg, 6.1x10-3 mmol) as initiator. The reaction 

mixture was degassed by passing argon for 15 min and then stirred for 3 h at 80 

℃. The resulting homopolymer (P0) was isolated by precipitation in methanol 

and further drying at r.t. under vacuum (Yield: 10 %, Mw (SEC) = 283 kg/mol, 

Mw/Mn = 1.2). 

 

C. Synthesis of poly(styrene-co-chloromethyl styrene) precursors 

In a typical procedure, the copolymerization of St (2 ml, 17.4 mmol) and CMS 

(0.434 ml, 3.1 mmol) was carried out using ACVA (1.7 mg, 6.1x10-3 mmol) as 

initiator. The reaction mixture was degassed by passing argon for 15 min and 

then stirred for 3 h at 80 ℃. After that, the copolymer was redissolved in a 

minimal amount of THF and added to a large excess of methanol. The resulting 

precursor (C21) was isolated by filtration and further dried at r.t. under vacuum 

(C21: Yield: 30 %, Mw (SEC) = 235 kg/mol, Mw/Mn = 1.3). Copolymers C9, C16, 

C21 and C30 were obtained as yellow powders with 9-30 mol% of CMS content, 

as determined by 1H NMR spectroscopy following reported procedures.[38] 

 

 

Scheme 2.10: Synthesis of poly(styrene-co-chloromethyl styrene) copolymers (y=9-30 mol%). 
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D. Synthesis of poly(styrene-co-azidomethyl styrene) precursors 

In a typical reaction, poly(styrene-co-chloromethyl styrene) (C21, 350 mg, 0.64 

mmol CMS) was dissolved in DMF (14 ml) at room temperature. Then, NaN3 

(2eq., 83.2 mg, 1.3 mmol,) was added and the mixture was maintained under 

stirring for 24 h. After reaction completion, the system was concentrated and 

precipitated in a mixture of MeOH/H2O (1:1). Finally, the resulting precursor 

(P21) was dried in a vacuum oven at room temperature (P21: Yield: 90 %, Mw 

(SEC) = 242 kg/mol, Mw/Mn = 1.3). Precursors P9, P16, P21 and P30 were 

obtained as powders with 9 - 30% mol of AMS content.  

 

 

Scheme 2.11: Synthesis of poly(styrene-co-azidomethyl styrene) copolymer precursors. 

 

The complete transformation of chloromethyl to azidomethyl moieties was 

confirmed by 1H NMR spectroscopy, showing s shift of the band placed at 4.5 

ppm corresponding to methylene protons from –CH2-Cl groups to 4.2 ppm upon 

formation of the new –CH2-N3 moieties (figure 2.2). The lack of any residual 

signal at 4.5 ppm confirmed the quantitative replacement of –Cl atoms by –N3 

groups, when excess of NaN3 was used. Figure 2.3 shows the complete 1H NMR 

spectra of the resulting copolymer precursors, P(St-co-AMS), and neat 

polystyrene, as reference, synthesized in this work.  
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Figure 2.2: 1H NMR spectra in CDCl3 of poly(St-co-CMS) (C21) and poly(St-co-AMS) (P21). 

 

 

Figure 2.3: 1H NMR spectra in CDCl3 of neat polystyrene (P0) and poly(styrene-co-azidomethyl 
styrene) precursors (P9, P16, P21 and P30). 
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E. Synthesis of intra-chain cross-linked polystyrene single-chain 

nanoparticles 

In a typical reaction, P(St-co-AMS) copolymer precursor (P21, 50 mg, 0.432 

mmol) was dissolved in DMF or NMP (50 ml) at room temperature. Then, the 

mixture was heated to 200 ℃ under microwave irradiation (300 W, 150 psi) and 

maintained there for 30 min. Then, the system was cooled down to room 

temperature and concentrated in a vacuum line using Schlenk flasks. The 

resulting polystyrene single-chain nanoparticles (PS-SCNPs) were isolated by 

precipitation in a mixture of MeOH/H2O (1:1) and dried in a vacuum oven at 40 

℃ under vacuum (PS-SCNP21: Yield: 57%, Mw (SEC) = 242 kg/mol, Mw/Mn = 1.3). 

 

F. Control experiments with network cross-linked materials 

In a typical procedure, the precursor (P21, 5 mg, 0.0432 mmol) was dissolved in 

CHCl3 (5 ml) at room temperature. Then, the mixture was deposited over a gold-

coated electrode of 20 mm and dried at 80 ℃ under vacuum for 48 h in order to 

remove any residual solvent. The formed film was covered with a gold-coated 

electrode of 15 mm, heated in the DS instrument to 200 ℃ and maintained there 

for 3 h. The resulting network cross-linked material (B21) was found to be 

insoluble in any solvent. 

 

G. Control experiments with benzyl azide  

The same experimental procedure followed for single-chain nanoparticles 

synthesis was carried out with benzyl azide (BAz), but using a solution of 500 

mg of benzyl azide in 50 ml of DMF. After reaction, a portion of the crude 

mixture was concentrated and directly measured by 1H NMR. Another portion of 
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the crude mixture was precipitated in water, centrifuged, isolated and 

redissolved in deuterated chloroform for 1H NMR analysis.  

 

H. Functionalization of PS-SCNP30 with dansylhydrazine (fluorescent probe) 

For functionalization of nanoparticle PS-SCNP30 with dansylhydrazine, 10 mg of 

benzaldehyde-decorated polystyrene single-chain nanoparticles and 4.4 mg of 

dansylhydrazine were dissolved in 1 ml of chloroform and maintained under 

agitation for 20 h. After reaction, the mixture was precipitated in a large excess 

of methanol to remove any amount of unreacted dansylhydrazine and to recover 

the functionalized nanoparticles, which were dried in a vacuum oven at r.t. 

under vacuum. Then, 2 mg of the resulting functionalized nanoparticles were 

dissolved in 1 ml of THF. The resulting solution was placed under UV light 

(wavelength: 365 nm) and showed intense fluorescence. 
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2.3.2. Poly(Vinyl Pyrrolidone) Single-Chain Nanoparticles  

A. Materials 

Poly(vinyl pyrrolidone) (PVP, homopolymers of molecular weight 55 kg/mol 

and 360 kg/mol), hydrogen peroxide solution (H2O2, 30 wt.% in H2O, ACS 

reagent), iron (II) chloride (FeCl2, 98%), sodium phosphate dibasic (Na2HPO4, 

BioXtra, ≥99%), cis-Diammineplatinum(II) dichloride (cisplatin), acetic acid 

(ACS reagent, ≥99.8%), chloroform (CHCl3, ≥ 99.8%), and dialysis tubing 

cellulose membrane (avg. flat width 76 mm, typical molecular weight cut-off = 

14,000) were purchased from Aldrich and used, unless specified, as received. 

Sodium chloride (NaCl, puriss, for HPLC) was purchased from Fluka. Deionized 

water obtained from a Thermo Scientific apparatus (Barnstead TII Pure Water 

System) was employed in this work.  

 

 

Scheme 2.12: Structures of some compounds used in the current study. 

    

B. Synthesis of poly(vinyl pyrrolidone) SCNPs via Fenton reaction 

In a typical procedure, PVP single-chain nanoparticles were produced by mixing 

two solutions (see figure 2.4): solution A containing PVP dissolved in water (50 

mg, 100ml, 0.5 mg/ml) and H2O2 (113 μl, 10 mM), and solution B, containing PVP 

dissolved in water (same concentration and amount as solution A) and FeCl2 
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(63.4 mg, 5 mM), at room temperature. After reaction completion (24 h), the 

mixture was dialyzed for 24 h in order to remove traces of unreacted FeCl2. 

Finally, the system was freeze-dried and PVP single-chain nanoparticles via 

Fenton reaction (PVP-SCNPS) were obtained as white powders. The 

concentration of H2O2 was set as 10 mM or 100 mM and that of FeCl2 as 5 mM or 

10 mM, such that the ratio [H2O2]/[Fe2+] was 1, 2  and 10. Moreover, to evaluate 

the pH influence, PVP solutions were adjusted at pHs 3.5 (acetic acid, 0.1 M) and 

7.5 (sodium phosphate, 0.1 M).  

 

 

Figure 2.4: Schematic representation of the synthesis of PVP-SCNPs via fenton reaction. 

 

C. Cisplatin loaded PVP nanocarriers 

Single-chain PVP nanocarriers, PVP-SCNPs, were loaded with cisplatin (CP) to 

study its potential use for drug delivery. First, a solution of cisplatin (CP) in 

water (5 μg/ml, containing 0.9% of NaCl) was prepared. Then, 1.5 mg of single-

chain PVP nanocarriers were dissolved in 5 ml of the solution containing CP and 
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the mixture was incubated for 24 h in the dark at room temperature. In order to 

purify the CP loaded PVP nanocarries, an extraction with 5 ml of CHCl3 was 

carried out (this process was repeated twice); the chloroform was evaporated 

using a continuous argon air stream and the CP loaded PVP nanocarriers were 

transferred to a flask containing 5 ml of water.  

 

The delivery of cisplatin from the single-chain PVP nanocarriers was determined 

by UV-Vis spectroscopy measurements at 265 nm. To quantify the in vitro 

release of CP from PVP nanocarriers, a dialysis method was used and samples 

were collected during next 96 h. After each time interval, that is, 1 h, 2 h, 24 h, 48 

h and 96 h, the absorbance of each sample was recorded at 265 nm and the 

released CP from PVP nanocarriers was calculated by using the following 

equation: 

 

CP Release (%) =
∆(CPt − CPt=0)

∆(CPt=96h − CPt=0)
     (2.1) 

 

where CPt is the absorbance measured (265 nm) at time t, CPt=0 is the 

absorbance measured at the beginning of the experiment, and CPt=96h is the last 

absorbance measured.  
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3.1. Introduction 

Characterization techniques have played a fundamental role in the development 

of this thesis. A large set of techniques has allowed extracting information 

concerning properties of all the samples investigated in this work. In this 

chapter, a brief description about the experimental techniques and the 

conditions used for the characterization of the samples is provided. Special 

emphasis is made on scattering techniques with a brief background about the 

magnitudes measured followed by a description about the instrumentation 

employed in this thesis. Finally, the details about molecular dynamics 

simulations used in this work are described.  
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3.2. Scattering Techniques 

3.2.1. Introduction 

Scattering techniques are specially well suited to realize a significant advance in 

the understanding of the structural and dynamical properties of SCNPs. 

Scattering experiments provide spatial resolution through the wavevector 

dependence of the measured magnitudes. Using different probes (mainly 

photons and neutrons) and experimental configurations, static and dynamic 

properties can be explored at molecular level. Particularly useful for the 

investigation of complex soft materials –like those containing SCNPs– is the 

application of neutron scattering (NS). Among other advantages of NS like high 

penetrability, two are of crucial importance: the simultaneous accessibility of the 

proper length and time scales together with the possibility of changing the 

scattering contrast at will.  

 

3.2.2. Magnitudes measured by Neutron, X-Ray and Dynamic Light 

Scattering 

Scattering experiments consist of bombarding a given sample with a beam of 

particles and obtain information about the structure and/or dynamics of the 

sample constituents by analyzing the particles scattered out into a solid angle dΩ 

(see figure 3.1).[1-4] The particles used as probes can be of different nature, being 

photons and neutrons the most commonly employed ones. The incident particles 

are characterized by their wavevector 𝑘⃗  which modulus is determined by the 

wavelength 𝜆, 𝑘 =  |𝑘⃗ | =  2𝜋 𝜆⁄ . During a scattering event, the interaction with 

the sample involves a momentum transfer ℏ𝑄⃗  leading to a change from the 
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incident 𝑘⃗  to the final  𝑘′⃗⃗  ⃗ wavevector of the probe. Their difference 𝑄⃗ =  𝑘′⃗⃗  ⃗ −  𝑘⃗    

is called scattering vector. Scattering experiments provide spatial resolution 

through the 𝑄-dependence of the measured magnitudes (usually we investigate 

isotropic systems and the relevant magnitude is just the modulus of the 

scattering vector 𝑄 = |𝑄⃗ |). The spatial scale probed 𝜁 is inversely proportional 

to the 𝑄-value, 𝜁 ~ 2𝜋 𝑄⁄ . This means, tuning the 𝑄-value we can explore 

different spatial scales, ranging from atomic resolution (𝜁 ~ 1Å with 𝑄 of a few 

Å−1) to experiments matching macromolecular dimensions (𝜁 ~ hundreds of 

nanometers with 𝑄 ~ 10−3Å−1).  

 

 

Figure 3.1: Schematic representation of a scattering experiment. 
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The 𝑄-value investigated in an experimental configuration is determined as 

𝑄 = 2𝜋 sin(𝜃 2⁄ ) 𝜆⁄ , being 𝜃 the scattering angle (see figure 3.1)1). Thus, we can 

change the explored 𝑄-value by varying the wavelength of the probe and/or the 

scattering angle. To study big entities, small angle conditions and long 

wavelengths are appropriate, while wide-angle experiments with particles 

characterized by 𝜆 ~ 1Å favor the resolution of atomic details. For instance, the 

use of dynamic light scattering (DLS) is widely spread to get quick information 

about the dimensions of particles in solution. However, finer structural details 

on the macromolecular conformations cannot be resolved by photons in the 

visible spectrum. Thanks to the range of their typical wavelengths, X-Ray (XR) 

and neutrons constitute ideal probes to decipher the structural features at intra- 

and inter-molecular length scales (atomic/monomeric level) by wide angle 

experiments. They are also adequate to determine the macromolecular 

conformation from the analysis of the intensity scattered at small angles. 

 

If the magnitude measured in the experiment is just the number of the scattered 

particles into a solid angle comprised between Ω and Ω +  dΩ relative to the 

number of incident particles –the so-called differential scattering cross section 

𝑑𝜎 𝑑Ω⁄ – we deal with a diffraction experiment giving information about 

structural features of the sample. In more complex –so-called ‘quasielastic’– 

experiments, also the energy 𝐸′ of the scattered particles is analyzed. Changes 

with respect to that of the incident particles, 𝐸, reflect an energy transfer to the 

sample, ℏ𝜔 = 𝐸′ − 𝐸. From this kind of measurements, information about the 

dynamics of the sample can also be extracted. In order to resolve dynamical 

processes in condensed matter, probes with energies comparable to the typical 

                                                             
1) This formula is valid in elastic conditions or for small values of the energy transfer. 
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excitations (meV) have to be used. This is not the case of XR2), but cold and 

thermal neutrons have kinetic energies in this range. Therefore, even the slow 

relaxational motions in soft condensed matter can be detected by a velocity 

change of the neutron. Quasielastic neutron scattering (QENS) experiments 

exploit this capability, providing a unique tool for the investigation of the 

molecular dynamics at the proper length/time scales. 

 

First, the more general and complex formulation of the magnitudes involved in a 

QENS experiment will be presented; taking this as basis, the information 

accessible by other kinds of scattering experiments will be introduced.  

 

In QENS experiments, the double differential scattering cross section 

𝑑2𝜎 (𝑑Ω𝑑ℏ𝜔)⁄  is the measured quantity. This is defined as the number of 

neutrons scattered into a solid angle comprised between Ω and Ω +  dΩ, which 

have experienced a change in energy between ℏ𝜔 and ℏ𝜔 + 𝑑ℏ𝜔, relative to the 

number of incident particles. On the one hand, this magnitude depends on the 

interaction between the atoms in the sample and the probe particles –quantified 

by the so-called scattering length. The scattering length 𝑏𝛼 can be positive, 

negative or complex. Since neutrons interact with the nucleus, for this probe 𝑏𝛼 

depends on the isotope considered (𝛼: H, D, C, O, …) and the relative orientation 

of the neutron-nuclear spin pairs. Table 3.1 shows the mean values of 𝑏𝛼 for the 

isotopes commonly present in soft materials. 

                                                             
2) In some synchrotrons the XR-photon correlation spectroscopy technique is available. 
By means of this technique it is possible to address dynamical processes at large 
scattering vectors and long times; however, the radiation damage produced by the 
intense coherent XR beam employed is usually very important in soft materials.  
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Table 3.1: Values of the average neutron scattering lengths 𝑏̅𝛼 , their squares 𝑏̅𝛼
2 and their 

deviations Δ𝑏𝛼
2̅̅ ̅̅ ̅ for different isotopes 𝛼 

Isotope 𝜶 𝒃̅𝜶 𝒇𝒎⁄  𝒃̅𝜶
𝟐 𝒇𝒎𝟐⁄  𝚫𝒃𝜶

𝟐̅̅ ̅̅ ̅̅ 𝒇𝒎𝟐⁄  

1H -3.7406 13.992 638.78 

2H (D) 6.6710 44.502 16.322 

12C 6.6511 44.237 0 

16O 5.8030 33.675 0 

 

On the other hand, the double differential scattering cross section is determined 

by the (time dependent) distribution of scattering centers in the sample. It can 

be expressed as (see, e. g.,[2]): 

 

𝜕2𝜎

∂Ω∂ℏ𝜔
 ∝  ∑𝑏̅𝛼𝑏̅𝛽𝑆𝑐𝑜ℎ

𝛼𝛽
(𝑄⃗ , 𝜔)

𝛼,𝛽

+ ∑Δ𝑏𝛼
2̅̅ ̅̅ ̅𝑆𝑖𝑛𝑐

𝛼 (𝑄⃗ , 𝜔)

𝛼

. 
(3.1) 

 

There, the indexes 𝛼 and 𝛽 run over all the possible kinds of isotopes in the 

sample (𝛼: H, D, C, O, …). In 𝜕2𝜎 ∂Ω∂ℏ𝜔⁄  we can identify a coherent (‘coh’) and 

an incoherent (‘inc’) contribution. The latter arises from the random distribution 

of the deviations of the scattering lengths from their mean value, Δ𝑏𝛼
2̅̅ ̅̅ ̅ =  𝑏𝛼

2̅̅ ̅ −

 𝑏̅𝛼
2. The features (𝑄⃗  and 𝜔-dependencies) of both contributions are determined 

by the corresponding scattering functions [𝑆𝑐𝑜ℎ
𝛼𝛽

(𝑄⃗ , 𝜔) involving nuclei of kinds 𝛼 

and 𝛽, and 𝑆𝑖𝑛𝑐
𝛼 (𝑄⃗ , 𝜔) involving nuclei of kind 𝛼]. The interpretation of these 

functions is straightforward in terms of the correlation functions defined in the 

van Hove (1954) formalism. These are related, via Fourier transformation, with 

the intermediate scattering functions [𝑆𝑐𝑜ℎ
𝛼𝛽

(𝑄⃗ , 𝑡) and 𝑆𝑖𝑛𝑐
𝛼 (𝑄⃗ , 𝑡)] and the van 

Hove correlation functions [𝐺𝛼𝛽(𝑟 , 𝑡) and its self-part 𝐺𝑠𝑒𝑙𝑓
𝛼 (𝑟 , 𝑡)]:  
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𝑆𝑐𝑜ℎ(𝑖𝑛𝑐)
𝛼𝛽(𝛼)

(𝑄⃗ , 𝑡) =  ℏ ∫𝑆𝑐𝑜ℎ(𝑖𝑛𝑐)
𝛼𝛽(𝛼)

(𝑄⃗ , 𝜔)𝑒𝑖𝜔𝑡𝑑𝜔 (3.2) 

 

𝐺𝑠𝑒𝑙𝑓
𝛼𝛽(𝛼)

(𝑟 , 𝑡) =  
1

(2𝜋)3
 ∫ 𝑆𝑐𝑜ℎ(𝑖𝑛𝑐)

𝛼𝛽(𝛼)
(𝑄⃗ , 𝑡)𝑒−𝑖𝑄⃗ 𝑟 𝑑𝑄⃗  (3.3) 

 

In the classical limit, 𝐺𝛼𝛽(𝑟 , 𝑡) can be written as: 

 

𝐺𝛼𝛽(𝑟 , 𝑡) =  〈
1

𝑁
 ∑ 𝛿{𝑟 − [𝑟 𝑖𝛼(𝑡) − 𝑟 𝑗𝛽(0)]}

𝑁𝛼,𝑁𝛽

𝑖𝛼,𝑗𝛽

〉 (3.4) 

 

Here 𝑟 𝑖𝛼(𝑡) [𝑟 𝑗𝛽(0)] is the position of the vector 𝑖𝑡ℎ atom of kind 𝛼 [𝑗𝑡ℎ atom of 

kind 𝛽] at time = 𝑡 [time = 0] and the sum runs over all the different atoms of 

kinds 𝛼 and 𝛽 [𝑁𝛼(𝑁𝛽): total number of atoms of kind 𝛼(𝛽); 𝑁 = ∑ 𝑁𝛼𝛼 ]. Thus, 

𝐺𝛼𝛽(𝑟 , 𝑡)𝑑𝑟  is the probability that, given a particle of kind 𝛽 at the origin at time 

𝑡 = 0, any particle of kind 𝛼 is in the volume 𝑑𝑟  at position 𝑟  at time 𝑡. It can 

easily be seen that in the static case 𝐺𝛼𝛽(𝑟 , 𝑡 = 0) =  𝛿𝛼𝛽(𝑟 ) + 𝑔𝛼𝛽(𝑟 ), where 

𝑔𝛼𝛽(𝑟 ) is the static pair distribution function. Note that in diffraction 

experiments, scattered particles are counted irrespectively of their energy. This 

is equivalent to perform an integral over the 𝜔-variable, i. e., it corresponds to 

the static 𝑡 = 0 limit. Thus, the accessed magnitude in a diffraction experiment is 

the sum of the partial structure factors weighed by the corresponding scattering 

lengths products. On the other hand, the self-part of the van Hove correlation 

function 𝐺𝑠𝑒𝑙𝑓
𝛼 (𝑟 , 𝑡) is obtained by restricting the correlations considered in Eq. 

3.4 to those relating the positions of a single particle of kind 𝛼 at different times: 
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𝐺𝑠𝑒𝑙𝑓
𝛼 (𝑟 , 𝑡) =  〈

1

𝑁
 ∑𝛿{𝑟 − [𝑟 𝑖𝛼(𝑡) − 𝑟 𝑖𝛼(0)]}

𝑁𝛼

𝑖𝛼

〉  (3.5) 

 

𝐺𝑠𝑒𝑙𝑓
𝛼 (𝑟 , 𝑡) is the Fourier transform of 𝑆𝑖𝑛𝑐

𝛼 (𝑄⃗ , 𝑡) in space: incoherent scattering 

relates to single-particle motions. Equation 3.1 can thus finally be written as: 

 

𝜕2𝜎

∂Ω∂ℏ𝜔
∝ ∑𝑏̅𝛼𝑏̅𝛽 ∫𝑒𝑖𝜔𝑡 〈∑ 𝑒−𝑖𝑄⃗ [𝑟 𝑖𝛼(𝑡)− 𝑟 𝑗𝛽(0)]

𝑖𝛼,𝑖𝛽

〉 𝑑𝑡 +

𝛼,𝛽

+ ∑Δ𝑏𝛼
2̅̅ ̅̅ ̅∫ 𝑒𝑖𝜔𝑡 〈∑𝑒−𝑖𝑄⃗ [𝑟 𝑖𝛼(𝑡)− 𝑟 𝑖𝛼(0)]

𝑖𝛼

〉 𝑑𝑡

𝛼

  

(3.6) 

 

Equation 3.1 (equivalently, 3.6) shows that the weights of the coherent and 

incoherent contributions to the scattered intensity are determined by the 

scattering lengths of the isotopes involved. From table 3.1 it is clear that: 

 

 Due to the large value of Δ𝑏𝐻
2̅̅ ̅̅ ̅, in hydrogen-containing systems the signal is 

dominated by the incoherent scattering from hydrogens, revealing their self-

motions. 

 Substituting H by D this incoherent contribution is drastically reduced and 

differently weighted coherent contributions are obtained. 

 The intensity scattered by fully deuterated samples is mainly coherent and, 

since 𝑏̅𝐷  ≈  𝑏̅𝐶 , all pair correlations are almost equally weighted. 

 There is a very large difference in the average scattering length values of H 

and D (𝑏̅𝐷 = 6.67 𝑓𝑚 vs 𝑏̅𝐻 = −3.74 𝑓𝑚). As it will be shown next, this 

provides a unique tool for investigating soft materials by NS: deuterium 
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labeling. It results in a marked difference in scattering power (contrast) 

between molecules synthesized from normal (protonated) and deuterated 

units. Thus, deuterium labeling techniques can be exploited to ‘stain’ 

molecules and make them ‘visible’ not only in dilute solutions, but also in 

crowded environments, such as concentrated solutions of overlapping 

chains and even in the condensed state. 

 

Many polymer problems depend on the structure and dynamics at mesoscopic 

scales. Considering only scattering at small 𝑄-values, the detailed atomic 

arrangements within e. g. a monomer or a solvent molecule may be neglected 

and a coarse-grained description in terms of the scattering length density (SLD) 

is adequate. The scattering length densities 𝜌𝑀 and 𝜌𝑆 of such scattering units 

(‘monomer’ and ‘solvent’) are defined as  

 

𝜌𝑀 = 
1

𝑣𝑀
 ∑ 𝑏̅𝑗

𝑀

𝑗

;  𝜌𝑆  =  
1

𝑣𝑆
 ∑ 𝑏̅𝑗

𝑆

𝑗

 
(3.7) 

 

where the summation includes the coherent scattering length of all atoms within 

a monomer or a solvent molecule; 𝑣𝑀 and 𝑣𝑆 are the respective molecular 

volumes. The scattering contrast in scattering experiments arises from the 

different scattering length densities of the molecules. The coherent cross section 

of a system of uniform SLD is zero. However, fluctuations may be introduced by 

means of isotopic substitution, thus giving rise to a finite scattering cross section. 

The contrast scattering length density is defined as: 

 

Δ𝜌 =  (𝜌𝑀 − 𝜌𝑆) (3.8) 
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This contrast can be highly enhanced for NS if one of the two scattering units 

(‘monomer’ or ‘solvent’) is deuterated and the other is protonated. Note that the 

same applies if we consider as ‘solvent’ molecules other monomers from 

different chains in a melt. 

 

For non-interacting, incompressible polymer systems the dynamic structure 

factors of Eq. 3.1 may be significantly simplified for small-angle scattering 

conditions. The sums, which in the previous formulation (see Eq. 3.6) have to be 

carried out over all atoms in the sample, can be restricted to only one average 

macromolecule yielding the so-called single chain dynamic structure factor. This 

function shall be denoted as 𝑆𝑐ℎ𝑎𝑖𝑛(𝑄, 𝑡) [𝑆𝑐ℎ𝑎𝑖𝑛(𝑄, 𝜔) in the frequency domain]. 

Under these assumptions, the normalized macroscopic coherent cross section 

(scattering per volume unit) can be expressed as: 

 

𝑑 ∑  

𝑑𝜎𝑑𝜔
=  𝜙Δ𝜌2𝑉2𝑆𝑐ℎ𝑎𝑖𝑛(𝑄,𝜔) (3.9) 

 

with 𝜙 the volume fraction of the labeled polymer and 𝑉 the volume of the 

macromolecule. In a diffraction experiment at small angles (SANS) experiment, 

the static counterpart of Eq. 3.9 is accessed. Thus, with these conditions, SANS on 

diluted solutions of labeled macromolecules reveals the macromolecular form 

factor 𝑆𝑐ℎ𝑎𝑖𝑛(𝑄, 𝑡 = 0) =  𝑆𝑐ℎ𝑎𝑖𝑛(𝑄) [note that the form factor is also usually 

denoted as 𝑃(𝑄)] which contains information about the static intra-molecular 

correlations. It is noteworthy that, as the coherent term represents the 

interference of scattered waves at different nuclei, in concentrated solutions of 

labeled macromolecular ‘objects’ the interference of scattering from different 

‘objects’ is also reflected in the recorded intensity through the structure factor of 
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their centers of mass 𝑆𝐶𝑀(𝑄). For a monodisperse collection of spherically 

symmetric particles (a possible simplified model for e. g. a SCNPs solution), the 

coherent scattering cross section can then be written as: 

 

(
𝑑 ∑(𝑄)

𝑑Ω
)

𝑐𝑜ℎ

=  𝜙Δ𝜌2𝑉2𝑃(𝑄)𝑆𝐶𝑀(𝑄)   (3.10) 

 

where 𝑃(𝑄) is the form factor of the particles.  

 

Furthermore, contrast variation methods can be used to remove a component of 

the scattered intensity by matching its scattering power with that of the medium 

in which it is dispersed and thus removing the fluctuations in SLD which give 

rise to the scattering. The procedure consists of adjusting the average SLD of 

molecules (summed over protonated and deuterated species) until it matches 

the SLD of the other component (see, e. g.,[5-9]). 

 

As above mentioned, quasielastic experiments are not possible with XRs due to 

high values of their typical energies (≈ 𝑘𝑒𝑉 for 𝜆 ≈ 1Å). Conversely, XRs interact 

primarily with the electrons and therefore the strength of interaction of XRs 

with an atom depends on the number of electrons it contains. Thus, the 

equivalent to the above introduced scattering length 𝑏𝛼 for neutron-nucleus 

interaction is the product of the XR scattering length 𝑏𝑒 of a single electron with 

the atomic scattering factor 𝑓(𝑄) of the atom concerned. The atomic scattering 

factor increases linearly with atomic number and decreases with increasing 𝑄. 

This is because the range of atomic electron clouds is comparable to the XR 

wavelength, and as a result rays scattered from different parts of the atom 



Chapter 3 

80 
 

experience a phase difference that increases with increasing scattering angle. 

The intensity recorded in a wide-angle XR scattering (WAXS) experiment thus 

reveals, in analogy to the neutron scattering diffraction experiments, the sum of 

the partial structure factors involving pairs of atoms weighed by the 

corresponding XR-atomic form factor products (that now are 𝑄-dependent). 

Small-angle XR scattering (SAXS) experiments on the other hand are also 

sensitive to inhomogeneities in the scattering power; this time the contrast is 

due to differences in the electronic density. Isotopic labeling is thus not useful 

with SAXS techniques. However, choosing the proper solvents, macromolecular 

solutions might be susceptible to be investigated by this technique, provided 

that enough contrast is achieved between solute and solvent molecules. 

 

Dynamic light scattering (DLS) experiments are very useful to determine 

macromolecular sizes. This technique probes the relaxation of concentration 

fluctuations on mesoscopic time and length scales (the typical wavelengths are 

in the hundreds of nanometers range). The contrast is provided by the refractive 

index increment 𝛿𝑛 𝛿𝑐⁄ . In a homodyne experiment, the measured intensity 

autocorrelation function is given by 

 

〈𝐼(𝑄, 𝑂)𝐼(𝑄, 𝑡)〉

〈𝐼〉2
= 1 + 𝑓𝑐 [

𝑆(𝑄, 𝑡)

𝑆(𝑄, 0)
]

2

  (3.11) 

 

with 𝑓𝑐 an experimental factor and 𝑆(𝑄, 𝑡) the Fourier transform of the density 

correlation function of the scattering medium: 
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𝑆(𝑄, 𝑡) =  
∫  [𝜌(0,0)𝜌(𝑟 , 𝑡)]𝑒𝑖𝑄⃗ 𝑟 𝑑3𝑟 

 

𝑉

〈𝜌〉
  (3.12) 

 

Here 𝜌(𝑟 , 𝑡) is the local density at position 𝑟  at time 𝑡 in the sample. The 

scattering vector 𝑄 for light scattering is given by 𝑄 =  4𝜋𝑛𝑑 sin(𝜃 2⁄ ) 𝜆0⁄ , with 

𝜆0 the wavelength in vacuum and 𝑛𝑑 the refractive index.  

 

3.2.3. Sources and Instrumentation 

Neutron scattering experiments are realized in large facilities including a 

neutron source (either a nuclear reactor –providing a continuous flux– or a 

spallation –pulsed– source) and dedicated instrumentation. Visiting 

http://neutronsources.org/ information about the available and future neutron 

facilities worldwide can be found.  

 

XR instruments may be either laboratory instruments based on an irradiated 

anode source, or located at synchrotron facilities. DLS experiments are very 

spread since laboratory instruments are commercially available at usually 

affordable prices.  

 

In this thesis, small angle (SANS and SAXS) techniques were applied to decipher 

structural details of SCNPs in solution, while neutron spin echo (NSE) 

experiments were performed to investigate their dynamical features. 

Complementary DLS measurements were also performed. This technique was in 

fact also used routinely to determine the size (hydrodynamic radius) of the 

linear precursors and the single-chain nanoparticles obtained through the 

different synthesis routes.  
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A. Small-Angle Instrumentation 

A typical (basic) design of a small-angle diffractometer is shown in figure 3.2. 

The position of the detector can usually be shifted back and forth such that 

different sample-detector distances can be chosen, changing thereby the 𝑄-range 

explored with a given value of the incident wavelength.  

 

 

Figure 3.2: Illustration of small angle scattering 

 

In this thesis, small-angle neutron scattering (SANS) experiments where 

performed on the instrument KWS-2[10] at the Forschungs-Neutronenquelle 

Heinz Maier-Leibnitz in Garching.[11] KWS-2[12] represents a classical pinhole 

SANS instrument where, combining the pinhole mode using different neutron 

wavelengths and detection distances with the focusing mode using MgF2 lenses, 

a wide 𝑄-range between 1 x 10-4 and 0.5 Å-1 can be explored. 

 

The instrument is dedicated to high intensity/wide-𝑄 investigation of 

mesoscopic structures and structural changes due to rapid kinetic processes in 

soft condensed matter, chemistry, and biology.[13] 
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The high neutron flux, comparable with that of the world leading SANS 

instruments, which is supplied by the neutron delivery system (cold source, 

selector, guides)[14-15], and the possibility to use large sample area using 

focussing lenses, enable high intensity and time-resolved studies. 

 

 

Figure 3.3: Illustration of the KWS-2 small angle neutron scattering difractometer 

 

In the SANS experiments performed in this thesis a 𝑄-range between 0.003 and 

0.35 Å-1 was covered, with 𝜆 = 5.27 Å−1 and using three sample-detector 

distances (SSD): 1.15, 5.76 and 19.76 m. The solutions were filled in 2mm thick 

Hellma Quarz cells.  

 

Small-angle X-ray (SAXS) experiments on the assembly of reversible SCNPs were 

conducted on the Rigaku 3-pinhole PSAXS-L equipment at the Centro de Física 

de Materiales in San Sebastian. The MicroMax-002+ X-Ray Generator System 

consists of a microfocus sealed tube source module and an integrated X-Ray 

generator unit, which produces 𝐶𝑢 − 𝐾𝛼  transition photons of wavelength 

𝜆 =  1.54 Å. Flight path and sample chamber are under vacuum. The scattered X-

Rays are detected on a two-dimensional multiwire X-Ray Detector (Gabriel 
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design, 2D-200X). This gas-filled proportional type detector offers a 200 mm 

diameter active area with c.a. 200 mm resolution. SCNPs solutions in THF or 

DMF were filling capillaries of 2 mm thickness, with a SSD of 2 m. The 𝑄-range 

covered was 0.01 ≤ 𝑄 ≤ 0.2 Å−1. 

 

All small angle scattering (SAS) experiments were carried out in transmission 

geometry and at room temperature. After usual calibration of intensities by 

comparison with standard scatterers and background corrections, the 2D-results 

were azimuthally integrated, providing finally the scattered intensity as function 

of wavevector.  

 

B. Neutron Spin Echo 

Neutron Spin Echo (NSE) is a neutron spectroscopic technique sensitive to QENS 

signal. The fundamentals of NSE consist of coding for each neutron individually 

the energy transfer in the scattering process into its spin rotation.[16] Applying 

precession magnetic fields before and after the scattering event, the polarization 

of the neutron depends only on the velocity difference of each neutron 

individually, irrespective of its initial velocity. This technique is unique since it 

delivers the information directly in the time domain, allowing for a 

deconvolution of the experimental results from resolution effects by simple 

division. The time is proportional to 𝐽 𝑥 𝜆3, where 𝐽 is the field integral. For a 

given wavelength, the Fourier time range is limited to short times (typically 2 

ps) by spin depolarization due to vanishing guide field and to long times by the 

maximum achievable field integral. Also, the measuring procedure strongly 

suppresses incoherent contributions. Actually, the magnitude measured in a NSE 

experiment is a normalized function:[16] 
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𝑆̃𝑁𝑆𝐸(𝑄, 𝑡) =  
𝐼𝑐𝑜ℎ𝑆̃𝑐𝑜ℎ(𝑄, 𝑡) − 

1
3
𝐼𝑖𝑛𝑐𝑆̃𝑖𝑛𝑐(𝑄, 𝑡)

𝐼𝑐𝑜ℎ − 
1
3
𝐼𝑖𝑛𝑐

  (3.13) 

 

where 𝑆̃𝑐𝑜ℎ(𝑄, 𝑡) and  𝑆̃𝑖𝑛𝑐(𝑄, 𝑡) are the normalized intermediate pair and self 

correlation functions (they are normalized to their value at 𝑡 = 0). 𝐼𝑐𝑜ℎ and 𝐼𝑖𝑛𝑐 

denote the total (‘static’) coherent and incoherent intensities. The suppression of 

the incoherent signal can be advantageous for many soft matter questions, 

where the dynamic structure factor or the single chain dynamic structure factor 

are on the focus.[16] For details of experimental setup involved in this kind of 

instruments, the reader might be directed to Ref.[5, 16] 

 

In this thesis, neutron spin echo (NSE) experiments were performed at 300 K by 

the J-NSE instrument[17] at the Forschungs-Neutronenquelle Heinz Maier-

Leibnitz in Garching. Using two wavelengths (8 and 12 Å), Fourier times in the 

range 0.1 ≤ 𝑡 ≤ 140 𝑛𝑠 were covered for 𝑄-values in the range: 0.03 ≤ 𝑄 ≤

0.2 Å−1.  

 

 

Figure 3.4: Illustration of the J-NSE neutron spin echo spectrometer 
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Samples (solutions of either the protonated precursors or the protonated SCNPs 

in deuterated solvent) were placed in Hellma cuvettes of 4 mm thickness. In the 

explored 𝑄-range, the scattered intensity is completely dominated by the 

coherent contribution of the macromolecular dynamic structure factor.  

 

C. Dynamic Light Scattering 

Dynamic light scattering (DLS) experiments were performed on a Malvern 

Zetasizer Nano ZS apparatus at 298 K. In this thesis, solutions of polymer 

precursors and SCNPs in different solvents (dDMF, THF and H2O) were 

investigated. At the experimental conditions employed (𝜃 = 173º, 𝜆0 = 633 𝑛𝑚), 

the 𝑄-value explored was 0.00284 Å−1 for dDMF [𝑛𝑑(𝑑𝐷𝑀𝐹) = 1.431], 

𝑄 = 0.00208 Å−1 for THF [𝑛𝑑(𝑇𝐻𝐹) = 1.409] and 𝑄 = 0.00264 Å−1 for water 

[𝑛𝑑(𝐻2𝑂) = 1.330].  

 

 

Figure 3.5: Illustration of  Zetasizer Nano ZS apparatus operation 
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3.3. Other Experimental Techniques 

3.3.1. Size Exclusion Chromatography (SEC) 

Size exclusion chromatography has become an essential tool in polymer science. 

It is a standard technique for determining molar mass averages and molar mass 

distributions of polymers. The principle of SEC is the separation of molecules 

based strictly on their hydrodynamic radius (RH) or volume (VH), rather than 

their molecular weight. Due to limited accessibility of the pore volume within the 

particles of the column packing, polymer molecules are separated according to 

their hydrodynamic volumes, with a faster elution corresponding to the larger 

molecules and the last elution corresponding to the smaller ones, due to these 

smaller molecules can enter into the pores.[18] Figure 3.6 illustrates the 

mechanism of SEC separation.  

 

 

Figure 3.6: Schematic illustration of the principle of SEC.  

 

In a SEC process, the mobile phase (solvent), known as liquid carrier, is 

continuously flowing through the system. When the sample elutes from the 

column, it passes through a series of detectors and the output is often analyzed 
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by a SEC software package on the computer. In this thesis, SEC with triple 

detection was used to determine the molecular weight and polydispersity index 

of polymer precursors and the corresponding SCNPs and to follow the evolution 

of the intra-chain collapse process. Depending on the nature of the polymer, the 

measurements were performed in different SEC devices. 

 

For water-soluble polymers, SEC measurements were performed at 30 ℃ on a 

triple-detection Agilent PL-GPC 50 system -with Agilent light scattering, 

refractive index and viscosimetry detectors- equipped with PL aquagel-OH 

Guard (8μm) and PL aquagel-OH MIXED-H (8μm) columns. Data analysis was 

performed with the Agilent GPC/SEC software. Deionized water (filtered to 

0.2μm) was used as eluent at a flow rate of 1 ml/min. 

 

For other polymers, SEC measurements were performed at 30 ℃ on an Agilent 

1200 system equipped with PLgel 5μm Guard and PLgel 5μm MIXED-C columns, 

a differential refractive index (DRI) detector (Optilab Rex, Wyatt), a multi-angle 

laser light scattering (MALLS) detector (MiniDawn Treos, Wyatt) and a 

viscosimetric (VI) detector (ViscoStar-II, Wyatt). THF was used as eluent at a 

flow rate of 1 ml/min. Data analysis was performed with ASTRA Software 

(version 6.1) from Wyatt. 

 

3.3.2. Nuclear Magnetic Resonance (NMR) Spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful 

and widely used techniques in chemical research for investigating structures and 

dynamics of molecules. The method is based on spectral lines of different atomic 

nuclei that are excited when a strong magnetic field and a radiofrequency 
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transmitter are applied.[19] The nuclei of some atoms have an overall spin with a 

number of possible orientations with equal energy levels. When placed in a 

magnetic field, NMR active nuclei (such as 1H or 13C) exhibit energy splitting, 

therefore, the energy difference between the possible orientations appears. 

Absorption of electromagnetic radiation from the radiofrequency source by the 

atoms/molecules placed in external magnetic field induces energy transfer from 

the lower energy (preferred spin orientation) to higher energy orientation. 

When the spin returns to its preferred orientation (basic level), energy at the 

same frequency level is released, which when measured and processed yields an 

NMR spectrum for the nucleus concerned.[20]  

 

1H-NMR spectra together with 13C-NMR spectra were used to characterize the 

structure of the polymer precursors as well as to identify changes in the 

structure upon SCNPs formation. Moreover, 1H-NMR spectra was used to 

calculate the composition of the copolymers and to obtain the cross-linking 

degree of SCNPs. 1H-NMR and 13C-NMR spectra were recorded at room 

temperature on Bruker spectrometers operating at 500.13 MHz for hydrogen 

nuclei and 125.06 MHz for carbon nuclei, using CDCl3 as solvent in all cases.  

 

3.3.3. Fourier Transform Infrared Spectroscopy (FTIR) 

Fourier transform infrared spectroscopy (FTIR) is a very important technique to 

qualitatively identify organic materials and to determine the molecular 

structure. A FITR spectrometer simultaneously collects high spectral resolution 

data over a wide spectral range. This technique is based on the absorption of the 

electromagnetic radiation by the molecules at specific frequencies (resonant 
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frequencies) that are characteristic of their structure. Thus, the frequency of the 

vibrations can be associated with a particular bond type.[21]  

 

FTIR was employed as a complementary technique to NMR, analyzing the 

disappearance (and appearance) of specific bonds after the intra-chain 

folding/collapse process on SCNPs formation and the formation of network 

cross-linked materials. FTIR spectra were recorded at room temperature on a 

JASCO 3600 FTIR spectrometer. Attenuated total reflection spectra were 

obtained by using 50 scans with 4 cm-1 resolution.  

 

3.3.4. Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis (TGA) is an analytical technique used to determine 

the material’s thermal stability and the fraction of volatile components by 

monitoring the weight change that occurs as a specimen is heated.[22] In these 

experiments, the sample weight is recorded as a function of the temperature in 

air or in an inert atmosphere, such as helium or argon.  

 

In this thesis, TGA measurements were used to observe the decomposition 

temperature of the azide groups present in polymer precursors, as well as to 

compare the thermal stability of SCNPs with their parent precursors. These 

measurements were performed in a Q500-TA Instruments apparatus at a 

heating rate of 10 ℃/min under nitrogen atmosphere from room temperature to 

700 ℃.  
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3.3.5. Differential Scanning Calorimetry (DSC) 

The differential scanning calorimetry (DSC) is a technique that measures the 

difference in the amount of heat required to increase the temperature of a 

sample and an inert reference as a function of the temperature.[23] The heat flow 

difference is related to the temperature changes of the sample, which might 

indicate both physical phase transitions and/or chemical reactions. The 

temperature of both the sample and the reference are increased at a constant 

rate. The basic principle underlying this technique is that when the sample 

undergoes a physical transformation such as phase transitions, more or less heat 

will need to flow to it than the reference to maintain both at the same 

temperature.[24]  

 

Through this technique, the glass transition temperatures of the polymer 

precursors and SCNPs were obtained. Measurements were carried out on ∼ 5 mg 

specimens using a Q2000 TA Instruments in standard mode. A helium flow rate 

of 25 ml/min was used throughout. Measurements were performed by placing 

the samples in sealed aluminum pans, heating to 130 ℃ (SCNPs to 150 ℃) at 10 

℃/min, then cooling to 0 ℃ at 10 ℃/min, and heating back to 130 ℃ (SCNPs to 

150 ℃) at 10 ℃/min. 

 

3.3.6. Broadband Dielectric Spectroscopy (BDS) 

Dielectric spectroscopy is a technique mainly used to study the relaxation 

processes caused by the rotational fluctuations of molecular dipoles. The study 

of the interaction of electromagnetic waves with matter in the frequency regime 

between 10-6 and 1012 Hz is the core of broadband dielectric spectroscopy (BDS). 
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The basis of dielectric relaxation spectroscopy as a tool to investigate molecular 

dynamics is the ‘Fluctuation-Dissipation Theorem’, which states that the 

response of a system in thermodynamic equilibrium to a small applied 

disturbance (linear regime) is the same as its response to a spontaneous 

fluctuation.[25-26] 

 

When materials containing permanent dipoles (with spontaneous fluctuation 

and randomly oriented due to thermal fluctuations) are placed in an alternating 

(sinusoidal) external electric field, the latter distorts the arrangement of 

molecular dipoles which tend to be preferentially oriented in the direction of the 

field.[25] The dipolar orientation depends on the frequency of the applied field, 

and it is related to the dielectric permittivity (𝜀). This parameter characterizes 

the dielectric properties of materials containing polar molecules, and it can be 

interpreted as a measure (on neglecting atomic and electronic polarization) of 

the number of molecules oriented by an external electric field of unit strength. 

Dielectric permittivity is usually written as function of the frequency in the 

complex form:[25] 

 

𝜀∗(𝜔) = 𝜀′(𝜔) − 𝑖𝜀′′(𝜔)  (3.14) 

 

where 𝜀∗ is the complex dielectric permittivity, and 𝜀′ and 𝜀′′ the real and the 

imaginary parts, respectively, being 𝜔 = 2𝜋𝑓.  

 

In this thesis, a broadband dielectric spectrometer, Novocontrol Alpha, was used 

to measure the complex dielectric function covering a frequency range of f = 10−1 

– 106 Hz. The sample capacitor preparation for this setup consisted in an upper 
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gold-coated electrode of 15 mm placed on a prepared film of the sample over a 

20 mm gold-coated electrode. A separation of 100 μm between both electrodes 

was maintained by using a Teflon spacer of small area. The sample cell was set in 

a cryostat, and its temperature was controlled via nitrogen gas jet stream 

coupled with the Novocontrol Quatro controller.  

 

The isothermal dielectric experiments of SCNPs were performed while cooling 

the sample from 147 ℃ to -143 ℃ in steps of 10 ℃. The data reproducibility was 

checked during subsequent heating from -143 ℃ to 147 ℃. The maximum 

temperature for the precursor was set at 127 ℃ to avoid degradation. The films 

were prepared by solvent casting and dried at 120 ℃ under dynamic vacuum for 

48 h, in order to remove any trace of moisture and / or solvent residues. 

 

3.3.7. Ultraviolet-Visible (UV-Vis) Spectroscopy 

Ultraviolet-visible (UV-Vis) spectroscopy refers to absorption spectroscopy or 

reflectance spectroscopy in the ultraviolet-visible spectral region. This means it 

uses light in the visible and adjacent (near-UV and near-infrared [NIR]) ranges. 

The absorption or reflectance in the visible range directly affects the perceived 

color of the chemicals involved. In this region of the electromagnetic spectrum, 

atoms and molecules undergo electronic transitions.[27] 

 

UV-Vis spectroscopy is routinely used in analytical chemistry for the quantitative 

determination of different analytes, such as transition metal ions, highly 

conjugated organic compounds, and biological macromolecules. It measures the 

intensity of light passing through a sample (I) and compares it to the intensity of 

light before it passes through the sample (I0). The ratio (I/I0) is called the 
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transmittance (T) and is usually expressed as a percentage. The absorbance (A) 

is based on the transmittance: 𝐴 = − log (𝑇). 

 

In this thesis, UV-Vis spectroscopy was employed to follow the release of the 

drug cisplatin from SCNPs. The measurements were carried out at 25 ℃ in an 

Agilent 8453A apparatus with a Peltier thermostatic cell holder, T-controller 

89090A.  

 

3.3.8. Microwave-Assisted Synthesis 

Microwave synthesis creates new possibilities in performing chemical reactions. 

Because microwaves can transfer energy directly to the reactive species, so-

called “molecular heating”, they can promote transformations that are currently 

not possible using conventional heat.[28] A microwave is a form of 

electromagnetic energy that falls at the lower frequency end of the 

electromagnetic spectrum, and is defined in the 300 to about 300000 MHz 

frequency range. Within this region of electromagnetic energy, only molecular 

rotation is affected, not molecular structure.[28-29]  

 

Microwave energy consists of an electric field and a magnetic field, though only 

the electric field transfers energy to heat a substance.[29] Microwave heating, as 

shown in figure 3.7(a), is a process where the microwaves couple directly with 

the molecules that are present in the reaction mixture, leading to a rapid rise in 

temperature. Because the process is not dependent upon the thermal 

conductivity of the vessel materials, the result is an instantaneous localized 

superheating of anything that will react to either dipole rotation or ionic 
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conduction, the two fundamentals mechanism for transferring energy from 

microwaves to the substance being heated.[28]  

 

 

Figure 3.7: Schematic illustration of sample heating by microwaves (a) and microwave set-up 
employed in this work (b). 

 

In this thesis, microwave-assisted synthesis was employed to obtain single-chain 

nanoparticles via intra-chain folding/collapse of azide containing copolymer 

precursors. All the reactions were performed in a CEM Discover LabMateTM 

apparatus, equipped with an 80 ml Sealed Vessel Accessory, which has a 

working volume ranging from 15 ml to 50 ml [figure 3.7(b)]. The reactions were 

carried out in N-N-Dimethylformamide (DMF) or N-methyl-2-pyrrolidone (NMP) 

at 200 ℃ for 30 min (300 W, 150 psi).  

 

3.3.9. Ultrasound Irradiation 

Ultrasonic degradation is claimed to be a non-random process, with cleavage 

taking place roughly at the center of the molecule and with degrading rate faster 

with larger molecule.[30] The chemical effects of ultrasound do not come from a 

direct interaction of the ultrasonic sound wave with the molecules in the 

(a)
(b)
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solution. The simplest explanation for this is that sound waves propagating 

through a liquid at ultrasonic frequencies do so with a wavelength that is 

significantly longer than that of the bond length between atoms in the molecule. 

Therefore, the sound wave cannot affect that vibrational energy of the bond, and 

can therefore not directly increase the internal energy of a molecule.[31] Instead, 

sonochemistry arises from acoustic cavitation: the formation, growth, and 

implosive collapse of bubbles in a liquid.[32]  

 

Ultrasound irradiation experiments were performed by using VC505 VibraCell 

ultrasonic processor, equipped with a 1/2’’ tapered microtip. The sonicator is 

capable of delivering 500 watts at a frequency of 20 kHz and the amplitude can 

be varied between 10% and 40%. The SCNPs solution in water was contained in 

a 30 ml flask submerged in an ice bath, in order to avoid an increase in the 

temperature due to the ultrasound irradiation. The irradiation was carried out at 

30% of amplitude with an irradiation pulse of 10 seconds ON / 5 second OFF, 

until the ON irradiation time was 45 min. During the process, 2 ml of reaction 

mixture were withdrawn at certain irradiation times for further analysis by SEC 

and DLS. The same procedure was followed for precursors.  
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3.4. Molecular Dynamics Simulations  

Understanding the behavior of complex systems such as the single-chain 

nanoparticles (SCNPs) is sometimes difficult through direct analysis of the 

experimental data and intuition. Fortunately, the advances in computing allow 

using theoretical models that provide further insight. In particular, molecular 

dynamics (MD) simulations are well suited to obtain valuable information about 

these complex systems.   

 

MD-simulations were carried out to obtain information about the internal 

structure of metallo-folded SCNPs described in chapter 5. A simple bead-spring 

model[33] with implicit solvent was used for the precursor. This consisted of a 

linear backbone of 400 beads, with an attached side group per backbone bead. 

Reactive and unreactive side groups contained one and three beads respectively. 

The number of reactive groups was 100 (i.e., 25 %) and they were randomly 

distributed along the chain contour. Qualitatively, a bead represents a segment 

containing about 5 'big' atoms (C,O,N...) and their bonded hydrogens, with a bead 

diameter 𝜎~5-10 Å.[33] Therefore the selected lengths for the reactive and 

unreactive side groups are qualitatively consistent with the lengths of the AEMA 

and OEGMA groups, respectively. The selected length of the backbone in the 

simulated bead-spring model is also qualitatively consistent with the molecular 

weights of the experimental samples. 

 

The standard FENE potential[33] was used to model bonding between connected 

beads, 
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𝑉𝐹𝐸𝑁𝐸(𝑟) = −15𝜀𝑅0
2 ln[1 − (𝑟 𝑅0𝜎⁄ )2],  (3.15) 

 

with 𝑅0 = 1.5. The non-bonded interactions between any two beads were 

modeled by the following potential:[34] 

 

𝑉𝑛𝑏(𝑟){
𝑉𝑟𝑒𝑝 = 4𝜀[(𝜎 𝑟⁄ )12 − (𝜎 𝑟⁄ )6 + 1 4⁄ ] − 𝜖𝜎                    𝑟 ≤ 21 6⁄ 𝜎

𝑉𝑎𝑡𝑡 = (𝜙𝜖 2⁄ )[cos(𝛼(𝑟 𝜎⁄ )2 + 𝛽) − 1]           21 6⁄ 𝜎 < 𝑟 ≤ 1.5𝜎
0                                                                                                 𝑟 > 1.5𝜎

  (3.16) 

 

By using 𝛼 = 𝜋(2.25 − 21 3⁄ )
−1

 and 𝛽 = 2𝜋 − 2.25𝛼 the potential and forces are 

continuous at every distance 𝑟. We used reduced units 𝜀 = 𝜎 = 1 for the energy 

and length scales. The term 𝑉𝑟𝑒𝑝 is a purely repulsive interaction representing 

excluded volume interactions. The combined contribution of 𝑉𝐹𝐸𝑁𝐸 and 𝑉𝑟𝑒𝑝 

guarantees uncrossability of the bonds.[33] The term 𝑉𝑎𝑡𝑡 is an attractive tail that 

can be tuned by changing the depth 𝜙.[34] 

 

For simulating good solvent conditions (THF-like, protocol I) we only considered 

the exclude volume interactions and switched off the attractive tail (𝜙 = 0) for 

all beads. To simulate selective solvent conditions (water-like, protocol II), we 

assigned solvophobic character to the beads of both the backbone and the 

reactive side groups (denoted as A-beads) and kept the solvophilic character for 

the unreactive side groups (denoted as B-beads). For this purpose we switched 

on the attractive tail for the A-A interactions (𝜙 = 2) and kept pure excluded 

volume (𝜙 = 0) for the A-B and B-B interactions. The used amphiphilic structure 

mimics that of the poly(OEGMA-co-AEMA) copolymers, which consist of an 
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hydrophobic PMMA-backbone, hydrophobic reactive AEMA groups and 

hydrophilic unreactive OEGMA groups.  

 

All simulations were performed under Langevin dynamics[35] at temperature 

𝑇 = 1. The precursors were first equilibrated in good (protocol I) or selective 

solvent (protocol II). In both protocols the irreversible cross-linking of the 

reactive groups was performed following the procedure described in e.g., Ref.[35], 

with a single bonding event allowed for each reactive group. The SCNPs obtained 

by both protocols were re-equilibrated in good solvent (𝜙 = 0 for all beads) and 

finally acquisition runs were carried out for computing observables of interest. 

Several hundreds of independent SCNPs were simulated for statistical averages. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

100 
 

3.5. References 

[1] T. Springer, in Springer Tracts in Modern Physics, Volume 64, Springer Berlin 
Heidelberg, Berlin, Heidelberg, 1972, pp. 1-100. 

[2] S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, 
Clarendon Press, Oxford, 1984. 

[3] M. Bée, Quasielastic Neutron Scattering, Adam Hilger, Bristol, 1988. 

[4] G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering, 
Dover Publication Inc., New York, 1996. 

[5] J. S. Higgins, H. C. Benoit, Polymers and Neutron Scattering, Oxford 
University Press, Oxford, 1997. 

[6] R. J. Roe, Methods of X-Ray and Neutron Scattering in Polymer Science, Oxford 
University Press, New York, 2000. 

[7] G. D. Wignall, Y. B. Melnichenko, Reports on Progress in Physics 2005, 68, 
1761-1810. 

[8] B. Gabrys, Applications of Neutron Scattering to Soft Condensed Matter, 
Gordon and Breach Science Publishers, Amsterdam, 2000. 

[9] P. Lindner, T. Zemb, Neutrons, X-rays and Light: Scattering Methods Applied 
to Soft Condensed Matter, North-Holland Delta Series, Elsevier, 2002. 

[10] A. Radulescu, N. K. Szekely, M.-S. Appavou, Journal of large-scale research 
facilities JLSRF 2015, 1. 

[11] http://www.mlz-garching.de/englisch. 

[12] A. Radulescu, V. Pipich, H. Frielinghaus, M. S. Appavou, Journal of Physics: 
Conference Series 2012, 351, 012026. 

[13] A. Radulescu, N. K. Szekely, M. S. Appavou, V. Pipich, T. Kohnke, V. Ossovyi, S. 
Staringer, G. J. Schneider, M. Amann, B. Zhang-Haagen, G. Brandl, M. 
Drochner, R. Engels, R. Hanslik, G. Kemmerling, J Vis Exp 2016. 

http://www.mlz-garching.de/englisch


Techniques Employed 

 

101 
 

[14] A. Radulescu, A. Ioffe, Nuclear Instruments and Methods in Physics Research 
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 
2008, 586, 55-58. 

[15] A. Radulescu, V. Pipich, A. Ioffe, Nuclear Instruments and Methods in Physics 
Research Section A: Accelerators, Spectrometers, Detectors and Associated 
Equipment 2012, 689, 1-6. 

[16] F. Mezei, Neutron Spin Echo, Lectures Notes in Physics, Vol. 28, Springer-
Verlag Heidelberg, 1980. 

[17] O. Holderer, O. Ivanova, Journal of large-scale research facilities JLSRF 2015, 
1. 

[18] B. Trathnigg, Size-Exclusion Chromatography of Polymers. Encyclopedia of 
Analytical Chemistry, John Wiley & Sons, Ltd, 2006. 

[19] H. Günther, NMR Spectroscopy: Basic Principles, Concepts and Applications in 
Chemistry, John Wiley & Sons, 2013. 

[20] R. Tomovska, A. Agirre, A. Veloso, J. R. Leiza, Characterization Techniques for 
Polymeric Materials in Reference Module in Chemistry, Molecular Sciences 
and Chemical Engineering, Elsevier, 2014. 

[21] P. R. Griffiths, J. A. de Haset, Fourier Transform Infrared Spectrometry, John 
Wiley & Sons, Inc., Hoboken, New Jersey, 2007. 

[22] S. Vyazovkin, Characterization of Materials. Thermogravimetric Analysis, 
John Wiley and Sons, Inc., 2012. 

[23] P. Gill, T. T. Moghadam, B. Ranjbar, Journal of Biomolecular Techniques : JBT 
2010, 21, 167-193. 

[24] G. W. H. Höhne, W. F. Hemminger, H. J. Flammersheim, Differential Scanning 
Calorimetry, Springer-Verlag Berlin Heidelberg, 2003. 

[25] F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy, Springer-Verlag, 
Berlin, 2003. 

[26] R. Kubo, Reports on Progress in Physics 1966, 29, 255-284. 



Chapter 3 

102 
 

[27] D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis, 
Thomson Brooks/Cole, 2007. 

[28] B. L. Hayes, Microwave Synthesis: Chemistry at the Speed of Light, CEM 
Publishing, 2002. 

[29] H. M. Kingston, L. B. Jassie, Introduction to Microwave Sample Preparation: 
Theory and Practice, American Chemical Society, 1988. 

[30] K. S. Suslick, G. J. Price, Annual Review of Materials Science 1999, 29, 295-
326. 

[31] K. S. Suslick, Science 1990, 247, 1439-1445. 

[32] K. S. Suslick, The Chemical Effects of Ultrasound, Vol. 260, Scientific 
American, a division of Nature America, Inc., 1989. 

[33] K. Kremer, G. S. Grest, The Journal of Chemical Physics 1990, 92, 5057-5086. 

[34] T. Soddemann, B. Dünweg, K. Kremer, The European Physical Journal E 
2001, 6, 409-419. 

[35] A. J. Moreno, F. Lo Verso, A. Sanchez-Sanchez, A. Arbe, J. Colmenero, J. A. 
Pomposo, Macromolecules 2013, 46, 9748-9759. 

 



 

 

 

 

CHAPTER 4 
 

 

Exploring Basic Properties  
of SCNPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Exploring Basic Properties of SCNPs 

 

105 
 

4.1. Introduction 

The compaction of individual polymer chains to single-chain nanoparticles 

(SCNPs) is a subject that has attracted significant interest in recent years.[1] 

Research in SCNPs is currently at the boundary between polymer science, 

nanotechnology and biology. In this sense, the folding/collapse of single chains 

to SCNPs is reminiscent of protein folding to its functional, native state although 

it is still very far from the extreme precision found in these natural 

biomacromolecules. Recently, the potential prospects of SCNPs have been 

expanded significantly by taking inspiration from the different morphologies 

displayed by native, globular proteins (e.g., enzymes) and intrinsically 

disordered proteins (IDPs).[2-4] 

 

The folding of isolated non-natural chains can be a reversible or irreversible 

process induced by supramolecular (i.e., non-covalent and dynamic covalent) 

interactions or covalent bonds, respectively.[5-7] Recently, successful proof-of-

concept experiments have been carried out with SCNPs in drug delivery, sensing 

and catalysis applications. From a technological point of view, characterizing the 

stability of SCNPs is an issue of extreme importance for determining their final 

application range. Also, unraveling the actual structure and dynamics of SCNPS 

in solution and, hence, to establish reliable structure-properties relationships is 

obviously at the basis of a rational design of SCNPs with tailor-made properties.  

 

In this context, scattering techniques are especially well suited to realize a 

significant advance in this novel field. Scattering experiments provide spatial 

resolution through the wavevector dependence of the measured magnitudes. 
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Using different probes (mainly photons and neutrons) and experimental 

configurations, static and dynamic properties can be explored at molecular level. 

Particularly useful for the investigation of complex soft materials –like those 

containing SCNPs– is the application of neutron scattering (NS). Among other 

advantages of NS like high penetrability, two are of crucial importance: the 

simultaneous accessibility of the proper length and time scales together with the 

possibility of changing the scattering contrast at will. 

 

In this chapter we explore basic properties of SCNPs in comparison with those in 

the precursor counterparts. We focus on the stability, structural and dynamical 

features in solution. First, a study about the stability of SCNPs against 

degradation induced by ultrasound irradiation is presented. Such investigation is 

based on the determination of the overall sizes of the macromolecules upon 

irradiation, and therefore a combination of conventional techniques as they are 

SEC and DLS has been employed. Then, we exploit small-angle techniques to deal 

with structural aspects of these SCNPs. In this way, not only the chain 

dimensions but also their internal organization is susceptible of being 

investigated. Finally, we face the dynamics of SCNPs in dilute solution. For this 

task, we combine the information provided by DLS on the diffusion coefficient of 

the chain center of mass with the unique insight facilitated by the neutron 

scattering technique on the internal motions of the macromolecules. Thus, with 

these investigations we intend to demonstrate the potential of scattering 

techniques –in particular of NS– to unravel structural and dynamical properties 

of SCNPs in solution (which is extensible to other soft matter systems).  
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4.2. Stability of SCNPs 

4.2.1. Introduction 

SCNPs constructed by means of intra-molecular covalent bonds have permanent 

intra-chain cross-links that affect to a large extent the final compaction degree 

achieved and often endow them with increased stability against thermal 

degradation at high temperatures.[8] Potential applications of these SCNPs 

include their use as additives for conventional thermoplastic materials to 

produce so-called all-polymer nanocomposites,[9] and the development of 

stabilized supported catalysts.[10] In addition to thermal stability, several 

potential applications of covalent-bonded SCNPs in nanomedicine do depend 

critically on their mechanical stability (e.g., artificial synoidal fluids for joint 

lubrication).  

 

In fact, mechanical force has been demonstrated to promote several chemical 

reactions, with sonication experiments illustrating the degradation of a variety 

of natural macromolecules (cellulose, polypeptides, polysaccharides, proteins, 

DNA) and synthetic polymers via force-induced bond rupture.[11] When 

ultrasound is used to apply force to dilute polymer solutions, polymer chain 

scission is observed as a consequence of solvodynamic shear caused by 

cavitation: the nucleation, growth and collapse of bubbles in solution. It is 

generally accepted that the solvodynamic shear elongates the polymer backbone 

leading to scission that generally occurs near the midpoint of the polymer chain, 

where solvodynamic forces are the greatest.[12] Consequently, a progressive 

reduction in the molecular weight (and polymer size) and a certain decrease in 
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chain length polydispersity are often observed during sonication experiments of 

dilute polymer solutions.[11] 

 

The few data reported until now about the mechanical stability of SCNPs under 

ultrasound irradiation[13] led us to carry out sonication experiments for water-

soluble covalent-bonded SCNPs and their corresponding precursor polymer 

under exactly the same conditions. This study demonstrate the superior stability 

against degradation induced by ultrasound irradiation of covalent-bonded 

SCNPs when compared to their parent precursor polymer in water, as 

determined by a combination of size exclusion chromatography (SEC) and 

dynamic light scattering (DLS) measurements. 

 

 

Scheme 4.1: Illustration of the superior stability against degradation induced by ultrasound 
irradiation of SCNPs when compared to their parent precursor polymer, as demonstrated by DLS 
measurements. 
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4.2.2. Ultrasound Irradiation Experiments 

As water-soluble single-chain nanoparticles, we selected poly(vinyl pyrrolidone) 

(PVP) SCNPs (denoted as N1) and their corresponding precursor PVP (P1) of 

high molecular weight (360 kg/mol). The synthesis of both SCNPs and precursor 

are described in ‘Standard and New Synthesis Routes’ in chapter 2.  

 

 

Scheme 4.2: Illustration of the chemical structures of water-soluble PVP SCNPs (N1) and their 
corresponding PVP homopolymer precursor (P1).  

 

As a control experiment, we initially subjected the precursor polymer P1 to 

ultrasound irradiation (details about the ultrasound irradiation experiments are 

described in ‘Techniques Employed’ in chapter 3) in water and monitored the 

evolution of the SEC traces upon ultrasound irradiation as a function of time (see 

figure 4.1). In SEC experiments, macromolecules are separated according to their 

respective hydrodynamic size and consequently molecular weight, where bigger 

macromolecules show shorter SEC retention time than smaller ones.[14]  

 

PVP Precursor (P1) PVP SCNPs (N1)
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Figure 4.1: Evolution of the SEC traces of P1 (a) and N1 (b) with ultrasound irradiation time and 
effect of sonication time on the molecular weight at the peak maximum (Mapp) of P1 and N1 (c). 
The data corresponds to SEC measurements performed in water. 

 

As illustrated in figure 4.1(a) the SEC trace of P1 is found to shift progressively 

towards longer retention times (lower molecular weight/smaller size) upon 

increasing sonication time. This fact can be attributed to degradation by chain 
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scission which reduces progressively the length of the PVP chains. The results 

are in good agreement with prior sonication experiments involving PVP.[15] 

However, the SEC trace of N1 [figure 4.1(b)] showed only a very minor shift even 

after 45 min of sonication, pointing to an excellent stability against degradation 

induced by ultrasound irradiation of the single-chain nanoparticles when 

compared to the linear precursor polymer. The effect of sonication time on the 

molecular weight at the peak maximum (Mapp) for P1 and N1 is displayed in 

figure 4.1(c).  

 

The above SEC results were corroborated by DLS measurements in which the 

average hydrodynamic size (𝑅̅𝐻) of the SCNPs and the parent polymer precursor, 

as well as their complete size distributions were determined as a function of 

ultrasound irradiation time (see figure 4.2). A progressive reduction in the value 

of 𝑅̅𝐻 as a function of sonication time was observed for water-soluble precursor 

polymer P1 [figure 4.2(a)], whereas water-soluble N1 showed no significant 

change even after 45 min of ultrasound irradiation time [figure 4.2(b)] in good 

agreement with the SEC results.  

 

In fact, after 45 min of solvodynamic stress the average size of P1 reduces from 

17.2 to 5.6 nm, while the average size of N1 only from 5.2 to 4.8 nm, which is 

within the experimental error of the DLS technique. Taken together, the SEC and 

DLS results illustrate the superior mechanical stability of single-chain 

nanoparticles against chain scission by ultrasound irradiation. 
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Figure 4.2: Evolution of the distribution of hydrodynamic size of P1 (a) and N1 (b) with 
ultrasound irradiation time as determined by DLS experiments.   

 

Concerning the mechanism of improved mechanical stability of SCNPs when 

compared to linear polymers, it is generally accepted that because chain scission 

is a nonrandom process (with cleavage near the chain center), it is not a thermal 

process.[16] Figure 4.3 shows a comparison of the thermal stability of P1 and N1 

as recorded by thermogravimetic analysis (TGA) measurements. P1 and N1 

(which are highly hygroscopic materials) displayed approximately the same 

thermal stability up to 200 °C, but N1 showed a reduced thermal stability above 

this temperature. Consequently, the improved mechanical stability of N1 to P1 

seems to be unrelated to a thermally activated process. 
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Figure 4.3: Comparison of thermal stability of P1 and N1 as recorded by TGA measurements. They 
display approximately the same behavior up to 200 °C.  

 

Instead of the accepted chain scission mechanism operative in linear 

polymers[11-12] [see scheme 4.3(a)], for SCNPs we suggest here a different 

mechanism involving local loop scission events that accounts for their superior 

stability against degradation by ultrasound irradiation [scheme 4.3(b)]. Hence, 

instead of a reduction in molecular weight/polymer size upon force-induced 

bond rupture as observed for linear polymers, the successive loop scission 

events taking place in SCNPs under ultrasound irradiation will affect only at a 

smaller local scale without giving to global chain cleavage. 
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Scheme 4.3: Cartoon-representation of sonication chain scission mechanism operative in linear 
polymers (a), and proposed mechanism to support the superior stability of single-chain polymer 
nanoparticles against degradation by ultrasound irradiation, involving loop scission events (b). In 
both cases, the fragments involved in force-induced bond rupture are shown in red color. 

 

In particular, the loop scission mechanism explains: 

 

i. The nearly constant molecular weight of the single-chain nanoparticles 

even at large sonication times [figures 4.1(c)] since force-induced bond 

rupture produces fragments that remain bonded to the SCNP. 

 

ii. The nearly constant hydrodynamic size of the single-chain nanoparticles 

even at high ultrasound irradiation times [figures 4.2(b)] since no 

significant change in global size is expected upon a few local loop scission 

events (by the contrary, midpoint chain fragmentation reduces significantly 

the hydrodynamic size due to acute shortening of the chain). 

 
iii. That no thermally activated processes need to be invoked to support the 

excellent stability against degradation induced by ultrasound irradiation of 

SCNPs when compared to their parent linear precursor polymers. 
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Obviously, the loop scission rate will depend on the specific chemical 

composition of the SCNPs since, at the end, scission involves force-induced bond 

rupture that depends on the strength of the bond.[17] 

 

4.2.3. Conclusion 

In summary, we report here the excellent stability against degradation induced 

by ultrasound irradiation of covalent-bonded SCNPs when compared to their 

parent linear precursor polymer, as determined by a combination of SEC and 

DLS measurements in water. Instead of the accepted chain scission mechanism 

operative in linear polymers, we suggest a different mechanism for SCNPs under 

sonication involving local loop scission events that accounts for the observed 

experimental behavior. The increased stability of SCNPs against solvodynamic 

shear offers new opportunities for the development of a new generation of 

mechanically stable ultra-fine soft nanomaterials. Further works including 

computational studies would be of utmost help to support the suggested loop 

scission mechanism and to know the effect of molecular weight, cross-linking 

degree, type of cross-linking chemistry, etc. on SCNP stability under sonication. 
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4.3. Structure of SCNPs 

4.3.1. Introduction 

Up to date, most of the studies determining size reduction and compaction 

effects by ‘standard’ synthesis routes have been performed by SEC and/or DLS. 

An extensive and thorough compilation of size data obtained through both 

techniques for a large number of SCNPs synthesized by different ‘standard’ 

routes pointed to a relatively poor compaction leading to conformations close to 

that of a random coil in good solvent conditions.[18] Thus, SEC and DLS 

experiments suggested that the compaction of SCNPs is much less pronounced 

than the initially aimed and expected complete collapse of the macromolecules 

into globular nanoparticles. However, a complete characterization of the 

macromolecular statistics requires application of scattering techniques able to 

resolve the full form factor including the internal structure of the nanoparticles. 

 

Here, a careful and systematic study by SAS on structural properties in dilute 

solution of SCNPs is presented. In a first step, we have carried out a kinetic SAXS 

study on the macromolecular conformation of SCNPs during the internal cross-

linking synthesis procedure. Thereafter, we have determined the chain 

dimensions and conformation (full form factor) of SCNPs obtained through two 

different synthesis routes and investigated the effects of crowding in the 

macromolecular structure. Prior to the description of these studies, some 

general considerations about the information provided by scattering techniques 

on the macromolecular conformation are presented.  
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4.3.2. The Form Factor of Macromolecules 

The size and conformation of a macromolecule in dilute solution can be 

experimentally determined by small-angle XR and/or neutron scattering 

measurements on samples where contrast between solvent and solute is 

provided. Using deuterated solvents and protonated macromolecules enhances 

the intensity scattered by SANS, while it obviously has no effect on SAXS 

experiments. In general, we can distinguish three different 𝑄-regimes where we 

obtain different kind of information about the macromolecule: 

 

i. At low 𝑄 ≲  1 𝑅̅𝑔⁄  one does not ‘see’ the details of the shape and the 

structure of the macromolecules but only their dimensions. In this regime –

the so-called Guinier domain– one measures the average radius of gyration, 

𝑅̅𝑔. The 𝑄-dependence of the intensity is directly determined by 

𝐼(𝑄 << 1 𝑅̅𝑔⁄ )  ∝ exp[−𝑅̅𝑔
2𝑄2 3⁄ ]. 

 

ii. If we increase the 𝑄 further one ‘sees’ only a part of a macromolecule; the 

scattering does not depend on molecular weight and polydispersity and one 

obtains information about the statistics of the chain. This regime extends 

between 1 𝑅̅𝑔⁄ < 𝑄 < 1 ℓ𝐾⁄  (i.e., spatial scales larger than the Kuhn segment 

ℓ𝐾).  

 

iii. In the region 1 ℓ𝐾⁄ < 𝑄, the local rigidity of the macromolecule is the 

determining factor; if the monomer is thin enough, the chain behaves like a 

rigid rod. This regime extends up to 𝑄-values where 𝑄−1 is of the order of 

the chemical bond. 
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When 𝑄−1 ~ 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑏𝑜𝑛𝑑, the local structure of the chain begins to play a role. 

One is no more in the small angle regime and the experiments are sensitive to 

both, solvent and solute atomic pair correlations. 

 

Of particular interest is region (ii), also called intermediate or fractal regime. It 

can be shown[19-20] that there, the form factor of the macromolecule –and thereby 

the scattered intensity– varies as ~𝑄−1 𝜈⁄ , where 𝜈 is the so-called scaling 

exponent. This exponent determines the dependence of the macromolecular size 

on the number of chain segments, 𝑅̅𝑔~𝑁𝜈, i.e., it reflects the chain compaction. 

The form factor of chains characterized by a scaling exponent 𝜈, where 

〈(𝑅⃗ 𝑗 − 𝑅⃗ 𝑖)
2
〉  = ℓ2|𝑗 − 𝑖|2𝜈, can be described by generalized Gaussian coil 

functions[21] 

 

𝑃(𝑄) =
1

𝜈𝑈
1
2𝜈

𝛾 (
1

2𝜈
, 𝑈) −

1

𝜈𝑈
1
𝜈

𝛾 (
1

𝜈
, 𝑈) (4.1) 

 

with 𝑈 = (2𝜈 + 1)(2𝜈 + 2)𝑄2𝑅̅𝑔
2 6⁄  and 𝛾(𝑎, 𝓍) = ∫ 𝑡𝑎−1𝓍

0
𝑒𝑥𝑝(−𝑡) 𝑑𝑡. For a given 

𝜈-exponent:[22] 

 

𝑅̅𝑒 = √(2𝜈 + 1)(2𝜈 + 2)𝑅̅𝑔 (4.2) 

 

In the case of linear polymers in dilute solution with a good solvent, the 

conformation is a self-avoiding path. The value of the scaling exponent is then 

the Flory exponent, 𝜈𝐹 ≈ 0.59.[20] In the case of a Gaussian chain –like a linear 

macromolecule in bulk or in 𝜃-solvent– the value of the scaling exponent is 

𝜈 ≈ 0.5. 
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4.3.3. Kinetics of Intra-chain Bond Formation 

The standard synthesis of reversible single-chain nanoparticles, e-SCNPs, (see 

chapter 2 for details about the synthesis procedure) was followed by SAXS, 

measuring the form factor of the macromolecule (Mw = 207 kg/mol) during the 

reaction with diamines. First, we considered the typical reaction conditions, i.e., 

at a concentration of 1 mg/ml. Prior to the addition of the cross-linking agent, 

SAXS measurements on the solution of the linear precursor macromolecules 

revealed the expected Flory-value for the scaling exponent 𝜈 = 𝜈𝐹 = 0.59 and an 

average radius of gyration of 14.5 nm. These are the reference values shown at 

the origin in figure 4.4 (reaction time 𝑡𝑅 = 0). Diamines were then added to the 

solution, and patterns were collected with measuring times of 1 h.  

 

 

Figure 4.4: Time evolution of the radius of gyration (circles) and scaling exponent 𝜈 (squares) of 
the macromolecules while bond formation through the reaction with diamine molecules. The 𝜈-
scale on the right covers the range between the globular state (1/3) and the Flory exponent value 
(0.59). Solid lines are fits of Eq. (4.3) to 𝜈-results and of Eq. (4.4) to 𝑅̅𝑔-results. 
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The results were described by Eq. (4.1) delivering the fitting parameters 𝜈 and 

𝑅̅𝑔 shown in figure 4.4. The observed decrease of both the scaling exponent and 

the radius of gyration with increasing 𝑡𝑅 reveals the gradual compaction of the 

macromolecules induced by the reaction with the diamines. The main changes 

occur during the first 15 h approximately. The reaction time dependence of the 

𝜈-exponent can be fitted by an exponential dependence: 

 

𝜈(𝑡𝑅) = (𝜈𝐹 − 𝜈∞)𝑒𝑥𝑝[−(𝑡𝑅 𝜏𝑅⁄ )] + 𝜈∞    (4.3) 

 

That describes its decay from the Flory value at 𝑡𝑅 = 0 to a plateau-value 𝜈∞. 

This value turns out to be ~0.51. We note how far is this value from that 

corresponding to the globular case (1/3, lower limit of the 𝜈-scale in figure 4.4). 

The characteristic time of the reaction 𝜏𝑅 is 5.67 h. The evolution of the average 

radius of gyration can be well described by assuming a chain with a constant 

statistical segment length 𝑏 and a varying scaling exponent 𝜈(𝑡𝑅):[22] 

 

𝑅̅𝑔(𝑡𝑅) =
𝑏

√[2𝜈(𝑡𝑅) + 1][2𝜈(𝑡𝑅) + 2]
 𝑁𝜈(𝑡𝑅) (4.4) 

 

where 𝜈(𝑡𝑅) is parametrized as in Eq. (4.3) with the above given values of the 

parameters involved. The fit of the experimental 𝑅̅𝑔 data corresponds to a chain 

consisting of 52 segments of length 𝑏 = 3.27 𝑛𝑚 (and mass 𝑚𝑏 = 𝑀𝑤 52⁄ ≈

4020𝑔 𝑚𝑜𝑙⁄ ). This value is larger than the length of the Kuhn segment in 

poly(methyl methacrylate) (PMMA)[20] (1.7 nm).  
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As can be seen in figure 4.4, this kind of description works very well for reaction 

times of about 1 day. If the reaction goes on, a further decrease of the exponent 

value is observed (figure 4.5). This is accompanied by an increase of the 𝑄 → 0 

value of the measured intensity (figure 4.5, left scale).  

 

 

Figure 4.5: Evolution with reaction time 𝑡𝑅 of the asymptotic 𝑄 → 0 intensity normalized to its 
value at 𝑡𝑅 ≈ 0 (diamonds) and scaling exponent 𝜈 (squares) of the macromolecules while bond 
formation through the reaction with diamine molecules. Filled symbols: reaction at 1 mg/ml; 
empty symbols: reaction at 4 mg/ml. Solid line is the fit of Eq. (4.3) to 𝜈-results at 1 mg/ml for 
𝑡𝑅 ≲ 30ℎ (see figure 4.4). 

 

This behavior indicates the appearance of some fraction of aggregates in the 

solution. The moderate increase of the intensity means that this fraction cannot 

be very important, but reveals that the solution ceases to exclusively contain 

individual single-chain nanoparticles. After about 20 h, the fraction of remaining 

unreacted diamines that bind to monomers of different macromolecules 
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(through occasional collisions driven by Brownian motion in the solvent) starts 

to be significant. The contribution to the scattered intensity of dimers, trimers, 

etc. that emerge leads to an apparent decrease of the scaling exponent. 

 

This effect becomes more pronounced and starts at much earlier times if the 

precursor concentration is increased, as can be seen from the results obtained 

on the sample at 4 mg/ml (empty symbols in figure 4.5). In this case, already 

after about 6 h the presence of aggregates starts to become evident. Thus, from 

these experiments we can infer that in order to obtain unimolecular SCNPs the 

synthesis has to be carried out at very dilute concentrations and stopped after 

some time of reaction, that in the case of these e-SCNPs is of about 1 day. 

Otherwise, unwanted reactions leading to inter-molecular cross-links may take 

place in the solution. 

 

4.3.4. Form Factor of Standard SCNPs in dilute solution 

A comparative structural characterization of two different types of standard 

SCNPs and linear precursor as reference in solution was carried out. The 

samples explored in this study were single-chain Michael nanoparticles (Mi-

SCNPs, covalent bonds), metallo-folded single-chain nanoparticles (Cu-SCNPs, 

non-covalent interactions) and poly(MMA-co-AEMA) –their random copolymer 

precursor– as reference. For details about the synthesis procedure see chapter 2 

(‘Standard Synthesis Routes’). Two different molecular weights (Mw
High

=

272.1 kg/mol and Mw
Low = 52.5 kg/mol) and solutions at concentrations of 2, 4, 

8 and 25 mg/ml were explored. In all cases deuterated N,N-dimethyl formamide 

(dDMF) was used as solvent to achieve a high contrast for neutron scattering.   
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Table 4.1: Parameters characterizing the molecular weight and form factor of the precursors and 
SCNPs in dilute solution at a concentration of 2 mg/ml 

Sample Mw (kg/mol) Mw/Mn 𝑹̅𝒈 (nm) 𝝂 c* (mg/ml) 

Precursor 272.1 1.40 16.5 0.59 13 

Mi-SCNPs   9.3 0.45 70 

Cu-SCNPs   13.4 0.55 24 

Precursor 52.2 1.03 7.3 0.59 28 

Mi-SCNPs   5.9 0.52 53 

Cu-SCNPs   5.8 0.54 56 

 

Figure 4.6 shows the differential cross sections measured on solutions of Mi-

SCNPs and Cu-SCNPs in comparison with the solution of the linear polymer 

precursor. The considered concentration is very low (4 mg/ml), well below the 

overlap concentration (𝑐∗ = 𝑀𝑤 (2𝑅̅𝑔)
3
𝑁𝐴⁄ , see table 4.1). In this way, there are 

no position-position correlations and the structure factor of the center of mass 

𝑆𝐶𝑀(𝑄), describing the interference of scattering from different particles [Eq. 

(3.10) in chapter 3], can be considered as 1 to a good approximation. Thus, the 

𝑄-dependence of the measured curves is entirely determined by the form factor 

of the dissolved particles 𝑃(𝑄): 

 

(
𝑑 ∑(𝑄)

𝑑Ω
)

𝑐𝑜ℎ

≈ 𝜙Δ𝜌2𝑉2𝑃(𝑄)    (4.5) 

 

A simple inspection of the curves in figure 4.6 reveals a change in the shape of 

the macromolecule: the slope in the intermediate (fractal) regime is clearly 

increased from the precursor case to the Cu-SCNPs and even more to the Mi-

SCNPs. As above mentioned, in this 𝑄-regime the form factor scales as 
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~𝑄−1 𝜈⁄ .[19-20] From the slopes, values of 𝜈 ≈ 0.6, 0.55 and 0.45 are deduced for 

linear precursors, Cu-SCNPs and Mi-SCNPs, respectively. As expected, the scaling 

exponent obtained for the precursors is 𝜈𝐹 ≈ 0.59 (corresponding to a self-

avoiding path). The lower values of 𝜈 observed for the SCNPs reflect compaction 

of the chains and conformations close to random walks.  

 

 

Figure 4.6: Measured intensity by SANS at 4 mg/ml of linear precursor chains (blue) and the 
SCNPs obtained from it by Michael addition (red) and Cu-complexation (green); fit by Eq. (4.5) 
with generalized Gaussian coil form factors [Eq. (4.1)] (lines).   

 

This can be well appreciated in the Kratky representation shown in figure 4.7. In 

this kind of plot, where the scattered intensity is multiplied by 𝑄2, the closeness 

or deviations from a Debye-like function (𝜈 = 0.5) are evidenced. At 

intermediate 𝑄-values, the Debye function shows a plateau in the Kratky 
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swollen behavior with respect to the random coil, and the presence of a 

maximum points to a more compact conformation. The limiting case of the 

equilibrium globule is shown in figure 4.7 as the dotted line. As can be seen in 

this figure, though the SCNPs obtained by Michael addition indeed present a 

maximum in this kind of plot, it is not as pronounced as that expected for a 

globular object. 

 

 

Figure 4.7: Krakty representation of the Mi-SCNPs (red) and Cu-SCNPs (green) data obtained by 
SANS, compared with the cases of a random coil (𝜈 = 0.5, dashed line) and a compact globule 
(𝜈 = 1 3⁄ , dotted line). 

 

Figure 4.6 shows that the experimental form factors of the macromolecules can 

be well described over the whole 𝑄-range investigated by means of generalized 

Gaussian coil functions[21] expressed by Eq. (4.1). These descriptions allow to 

obtain accurate values of the scaling exponent and the average radius of gyration 
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and 9.3 nm for Mi-SCNPs). Thus, accompanying the reduction of the scaling 

exponent, a decrease of the macromolecular size is observed in the SCNPs, and 

these effects are more pronounced for the Mi-SCNPs than for the Cu-SCNPs. The 

compaction is more efficient by the former synthesis route. 

 

As shown previously, the form factors of Mi-SCNPs, Cu-SCNPs and e-SCNPs in the 

intermediate regime exhibit scaling exponents of 0.45, 0.55 and 0.51 

respectively, very far from the scaling exponent expected for globular nano-

objects (𝜈 = 0.33). This means that SCNPs behavior is closer to that of a linear 

chain in a 𝜃-solvent (𝜈 = 0.5). Notably, SCNPs involving permanent bonds (i.e., 

Mi-SCNPs) show smaller scaling exponents –more compaction– than SCNPs in 

which reversible interactions are present (i.e., Cu-SCNPs and e-SCNPs).  

 

As it has been previously commented, in Ref.[18] size data from the literature 

obtained by SEC and/or DLS for a large number of SCNPs in solution, covering 

from covalent to non-covalent bonded SCNPs synthesized in good solvents (30 

different systems, 11 different cross-linking chemistries) have been analyzed 

and provided a comparison with the corresponding data for compact or partially 

swollen globules of the same nature and molar mass. This comparison illustrated 

that, in general, current synthesis techniques do not yield compact globular 

SCNPs. Remarkably, the analysis revealed that SCNPs produced in the usual good 

solvent conditions of synthesis adopt open, sparse morphologies characterized 

by scaling exponents 𝜈 ≈ 0.5 instead of globular conformations. These 

conclusions are now corroborated by this structural study directly addressing 

the chain conformation at a molecular level. 
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Molecular dynamics simulations have elucidated the underlying physical 

mechanism for such sparse morphologies.[23] The synthesis of the SCNPs is 

generally carried out in good solvents, where the linear precursors universally 

adopt self-avoiding conformations.[24] Hence, such conformations mostly favor 

bonding of reactive groups that are separated by short contour distances, 

whereas long-range loops –which are the important ones to lead to global 

compaction– are highly unfrequent. Thus, this mechanism promotes local 

globulation along the chain, but is not efficient for global, large-scale chain 

compaction. Interestingly enough, we note the similarity of the average value of 

the scaling exponent with those reported for intrinsically disordered proteins 

(𝜈 ≈ 0.5).[25] The structural similarity emphasizing the analogies between SCNPs 

and IDPs in dilute conditions can be invoked to consider SCNPs as model 

systems to mimic bio-macromolecules in different environments and situations.  

 

Up to this point, only the results on the lowest concentration measured have 

been discussed. Now, we turn to the SANS experiments performed on Cu-SCNPs 

and Mi-SCNPs at different concentrations. The explored range was restricted to 

values below the overlap concentration 𝑐∗ (see table 4.1). Fits of Eq. (4.5) 

together with Eq. (4.1) to the SANS results delivered concentration-dependent 

values of the scaling exponent and average radius of gyration, as can be seen in 

figure 4.8. An apparent contraction of the SCNPs upon increasing concentration 

could thus be deduced from such an analysis, at least at first sight.  

 

We know, however, that with increasing concentration the interactions between 

the centers of mass of different particles may start to be non-negligible and the 

arising structure factor, 𝑆𝐶𝑀(𝑄), contributes to the measured intensity. 
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Disentangling the form factor and structure factor is not an easy task but we 

made an attempt by SANS combined with MD-simulations. This is explained in 

the following section.  

 

 

Figure 4.8: Apparent scaling exponent (a) and apparent average radius of gyration (b) as function 
of the concentration for the SCNPs in solution investigated by SANS; Cu-SCNPs (green circles) and 
Mi-SCNPs (red squares). Filled symbols are high Mw samples and empty symbols low Mw samples. 
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4.3.5. Crowding the Solutions of SCNPs 

Though the conformational properties of SCNPs at high dilution have been 

actively investigated over recent years, their eventual modification in 

concentrated solutions is an essentially unexplored problem. Still, there are 

indications from other fields of research –in particular from the problem of 

crowding in cellular environments– that suggest that the properties of SCNPs in 

concentrated solutions can significantly differ from those at high dilution.  

 

Inspired by the former analogies with biomolecules, we aimed to investigate the 

conformational properties of SCNPs in concentrated solutions as model systems 

of crowded environments. In this section, we exploit neutron scattering 

selectivity achieved by isotopic (deuterium) labelling and present a SANS 

investigation on the conformational properties of SCNPs in increasingly crowded 

environments. This SANS investigation was conducted in an independent 

experiment on a new set of precursors and SCNPs. Crowding was induced by two 

means, namely by adding either linear polymeric chains or SCNPs, which 

however, turned out to be more complicated revealing the presence of 

aggregates. A systematic complementary study by dynamic light scattering (DLS) 

has been carried out to determine under which conditions aggregation of SCNPS 

takes place and its reversibility. The generalizability of the experimental findings 

is addressed by parallel MD-simulations.  

 

A. SANS on Michael-SCNPs in dilute conditions 

We investigated SCNPs obtained through Michael addition (Mi-SCNPs) starting 

from linear precursors (Prec) consisting of random copolymers of MMA and 

AEMA, namely P(MMA0.71-AEMA0.29). Details about the synthesis are described in 



Chapter 4 

130 
 

‘Standard Synthesis Routes’ in chapter 2. Three different molecular weights for 

precursors were investigated. The molecular weights and polydispersities 

determined by SEC are displayed in table 4.2. 

 

Table 4.2: Chain characteristics and overlap concentrations of precursors and SCNPs obtained 
through Michael addition as determined by SANS on solutions in dDMF at 5 mg/ml. The results on 
the linear PMMA crowders are also shown. 

Sample Mw (kg/mol) Mw/Mn 𝑹̅𝒈 (nm) 𝝂 c* (mg/ml) 

Hi_Prec 271.8 1.42 13.5 0.59 23 (14α) 

Hi_Mi-SCNPs   9.78 0.49 60 

Me_Prec 123.5 1.11 9.97 0.59 26 

Me_Mi-SCNPs   7.21 0.46 68 

Lo_Prec 52.1 1.19 5.91 0.59 52 

Lo_Mi-SCNPs   4.81 0.47 97 

Me_dPMMA 99.1 1.09 10.20 0.59 19 

Lo_dPMMA 9.6 1.11 3.07 0.59 69 
αValue obtained imposing the 𝑅̅𝑔 ∝ 𝑁0.59 law shown in figure 4.9.  

 

A first set of experiments was performed in dilute conditions (5 mg/ml) on 

precursors, SCNPs as well as on the linear deuterated PMMA chains that were 

used to induce crowding in the solutions (see table 4.2). In the later case, the 

solvent was protonated DMF to enhance the contrast for neutrons. The values 

obtained for 𝑅̅𝑔 and 𝜈 are compiled in table 4.2. We also considered linear 

protonated PMMA chains of different molecular weights in deuterated DMF to 

increase the range of molecular weights explored. Figure 4.9 shows the 

macromolecular average size as function of the main-chain length, represented 

by the number of main-chain bonds 𝑁.  
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Figure 4.9: Average radius of gyration obtained from the SANS experiments in high dilution as 
function of the number of main-chain bonds for protonated PMMA (full circles), deuterated PMMA 
(empty circles), copolymer precursor (squares) and Mi-SCNPs (diamonds). The protonated 
polymers were dissolved in deuterated DMF and the deuterated PMMA chains in protonated DMF. 
The lines are fits to power laws with fixed scaling exponents (0.59 for the linear chains and 0.47 
for the SCNPs).   

 

Within the uncertainties, we can see that the results on the linear 

macromolecules collapse on the top of the expected law 𝑅̅𝑔 ∝ 𝑁𝜈𝐹 . This implies 

that the length of the statistical segment for all these polymers is the same, 

independently of the presence of side groups. On the other hand, as in the 

previously investigated Mi-SCNPs presented in the preceding section, a certain 

collapse –characterized by 𝜈 ≈ 0.47, see table 4.2– is achieved through the 

Michael addition method for the different macromolecular sizes investigated 

(see table 4.2 and figure 4.9). As can be seen in figure 4.9, for the single-chain 
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nanoparticles the 𝑁-dependence of the size can be well described by 

𝑅̅𝑔 ∝ 𝑁ν=0.47, i.e., the macromolecular dimensions scale with an average value of 

the scaling exponents obtained for the different molecular weights explored. 

 

B. SANS on Michael-SCNPs in crowding conditions 

1. Crowding with linear polymers 

The effect of crowding the environment on the structure of SCNPs was first 

investigated by using linear polymeric chains (deuterated PMMA) as crowders. 

In a first set of SANS experiments, low-molecular weight chains (𝑀𝑤 ≈

10 kg/mol) were added to dDMF-solutions of the three kinds of Michael SCNPs. 

The concentration of SCNPs, cSCNP, was always kept fixed to cSCNP = 5 mg/ml of the 

total solution. This value is well below the overlap concentration of the SCNPs in 

the three cases (c*SCNP =60, 68 and 97 mg/ml for Hi_Mi-SCNPs, Me_Mi-SCNPs and 

Lo_Mi-SCNPs respectively, see table 4.2). The concentration of the crowder 

(ccrow) was varied between 0 and 395 mg/ml, such that the total polymer 

concentration 𝑐 in the solution increased from 5 mg/ml up to 400 mg/ml.  

 

Given the low contrast between the crowders and the solvent (both deuterated), 

and the high contrast between the protonated SCNPs and the rest of the solution, 

the scattered intensity is overwhelmingly dominated by the contribution of the 

SCNPs against the surrounding medium. Moreover, as cSCNP << c*SCNP, inter-

molecular correlations are expected to be negligible [𝑆𝐶𝑀(𝑄) ≈ 0] and thus the 

results directly reveal the SCNPs form factor in the differently crowded 

solutions. For the intermediate molecular weight SCNPs investigated, figure 4.10 

shows the SANS results for several concentrations. 
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Figure 4.10: Form factor of Mi-SCNPs of Mw = 124 kg/mol (Me_Mi-SCNPs) obtained by SANS on 
solutions in dDMF with increasing low-molecular weight linear dPMMA concentration (0, 65, 220 
and 395 mg/ml); the Mi-SCNPs concentration is always 5 mg/ml. 

 

From the simple inspection of the curves, a decrease of the dimensions and of 

the scaling exponent of the SCNPs with increasing concentration can be directly 

deduced. The description of the results in terms of generalized Gaussian 

functions (Eq. 4.1) delivered the values of 𝑅̅𝑔 and 𝜈 represented in figure 4.11(b) 

as a function of the total polymer concentration in the solutions.  
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Figure 4.11: Average radius of gyration (circles) and scaling exponent (diamonds) of the Mi-
SCNPs of Mw=272 kg/mol (a), Mw=124 kg/mol (b) and Mw=52 kg/mol (c) as function of the total 
concentration. Vertical arrows show the location of the overlap concentration of the crowders 
(dashed) and of the Mi-SCNPs (solid). 
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As can be seen, above a given concentration range, both parameters decrease 

with increasingly crowded environment. The chain size reveals a clear shrink 

and the scaling exponent shows an increasingly compaction upon crowding 

above such concentration range. For high concentrations, values of 𝜈 close to the 

globular limit (𝜈𝑔 = 1 3⁄ ) are reached. The experiments on the solutions with the 

same crowder and SCNPs of different sizes reveal a qualitatively similar 

behavior, as can be seen in figures 4.11(a) and (c). 

 

Two concentrations might be invoked to be key ingredients in this situation: the 

overlap concentration of the SCNPs (c*SCNP) and that of the crowders (c*crow). 

From the 𝑅̅𝑔-values obtained from the SANS experiments in dilute conditions, 

these values were calculated (see table 4.2). They are represented by the arrows 

in figure 4.11. They both are in the range where the crossover from unperturbed 

to collapsed dimensions takes place, within the experimental uncertainties. Since 

for the chosen molecular weight of the crowder the differences between the 

values of its c* and those of the SCNPs are not very large, it is not possible to 

univocally discern which one of the overlap concentrations plays the most 

important role in inducing the collapse of the SCNPs. It seems however that the 

crossover takes place in a concentration range that shifts toward larger values 

with decreasing molecular weight of the SCNPs, pointing to c*SCNP as the most 

plausible candidate for being the key magnitude. 

 

To check this hypothesis we investigated the effects induced by much longer 

crowding chains –thereby with a much smaller overlap concentration c*crow << 

c*SCNP. This was realized for the case of the Me_Mi-SCNPs, namely using dPMMA 

with 𝑀𝑤 ≈ 100 kg/mol. As can be seen in table 4.2, for these chains c*crow = 19 
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mg/ml, more than three-fold lower than c*SCNP. Figure 4.12 shows the 

concentration dependence of the scaling exponent 𝜈 of the SCNPs in the such 

crowded solutions. The compaction degree of the SCNPs is insensitive to 

increase the concentration across c*crow. The crossover to collapsed 

conformation clearly starts at much higher concentrations, in a similar range 

than for the solutions with the low-molecular weight linear PMMA chains, 

coinciding, within the uncertainties, with c*SCNP. 

 

 

Figure 4.12: Scaling exponent of the Mi-SCNPs of Mw = 124 kg/mol in solutions with dPMMA of 
Mw = 100 kg/mol as function of the total concentration. 

 

The construction of master curves for the size and scaling parameter (figure 

4.13) against the reduced variable c/c*SCNP nicely supports this result. For 

building the master curve of the chain dimensions [figure 4.13(a)], we have 

normalized the average radius of gyration of the SCNPs to the value obtained for 
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the solutions without crowders (table 4.2). Since the value of 𝜈 at high dilution 

was very similar for the three molecular weights investigated, this variable was 

not renormalized in figure 4.13(b). The obtained masters demonstrate that c*SCNP 

is the relevant magnitude determining the onset of collapse of the SCNPs. 

 

 

Figure 4.13: Average radius of gyration normalized to its value at the lowest concentration 
investigated (a) and scaling exponent (b) of the Mi-SCNPs as function of the ratio between the total 
concentration and the overlap concentration of the SCNPs. Symbols as in figures 4.11 and 4.12. The 
determination of the chain size in the case of the big crowders was subjected to large uncertainties 
and the corresponding results have been omitted. 
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2. Crowding with SCNPs 

Similar experiments were intended with SCNPs as crowders, as previously 

investigated by MD-simulations in a recent work.[26] Realizing these experiments 

presented however several difficulties. When solutions with high concentrations 

of protonated macromolecules in deuterated solvent are investigated by SANS, 

the scattered intensity reveals not only the form factor of the individual nano-

objects but also the structure factor, which cannot be approximated by unity 

anymore. To prevent this interference term, only few protonated 

macromolecules might be labelled in a deuterated sea –as in the situation 

investigated with dPMMA linear chains as crowders. However, since the 

functionalized AEMA groups and cross-linking agents could not be obtained in 

their deuterated forms, the 'deuterated' SCNPs (dMi-SCNPs) contained a non-

negligible fraction of hydrogenated stuff.  

 

Therefore we performed the experiments dissolving a fixed amount of 

protonated Mi-SCNPs (5 mg/ml) in solutions of dMi-SCNPs and mixtures of 

dDMF and DMF such that the dDMF/DMF ratio matched the dMi-SCNPs 

scattering. To find the matching conditions we first measured the scattering 

from solutions of dMi-SCNPs in different dDMF/DMF ratios. The coherently 

scattered intensity was minimal for a solution with a composition of 70% 

dDMF/30% DMF for the solvent. With this solvent ratio fixed, crowding was 

induced by increasing the concentration in dMi-SCNPs. The molecular weight 

considered in this kind of experiments was 272 kg/mol.  
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Figure 4.14: SANS results on solutions of hydrogenated and deuterated Mi-SCNPs in mixtures of 
dDMF/DMF for different polymer concentrations (see the text) (a) and on a solution of 
hydrogenated Mi-SCNPs in dDMF at 35 mg/ml (b). The inset shows the concentration dependence 
of the scaling exponent obtained from the slopes in the fractal regime (indicated by shadowed 
areas) from the solutions in (a) (solid circles) and in (b) (empty squares). 
 

 

 

0.1

1

10

0.01 0.1

(b)

Q (Å
-1

)

Mi-SCNPs in dDMF

35 mg/ml

I(Q)Q
-1/ eff

(d


(Q
)/

d


)(
cm

-1
)

0.01

0.1

1

10

35 mg/ml
70 mg/ml
200 mg/ml

(a)

I(Q)Q
-1/

Mi-SCNPs in

dMi-SCNPs/DMF/dDMF

eff

(d


(Q
)/

d


)(
cm

-1
)

0.4

0.5

0.6

0.4 0.6 0.8 1 2 3 4


ef

f

c/c*
SCNP



Chapter 4 

140 
 

After background corrections, the results are shown in figure 4.14(a) for some of 

the concentrations investigated. They are supposed to be dominated by the 

contrast between the protonated SCNPs and the surrounding medium, revealing 

the form factor of the protonated macromolecules. Superimposed to the 

expected result for the form factor, for all compositions there is a strong 

additional small-angle contribution which prevents any reliable fit of Eq. (4.1) to 

the experimental data to accurately determine the 𝑅̅𝑔 and 𝜈-values. The low-𝑄 

feature observed is indicative for the presence of extremely large objects in the 

solutions.  

 

To discard the hypothesis that the small angle contribution could be an artifact 

of the kind of isotopic mixtures used, we also measured a solution of 35 mg/ml 

(about half the overlap concentration) of Mi-SCNPs in dDMF. Figure 4.14(b) 

shows that the data obtained are also clearly affected by a strong increase of the 

intensity at small angles. Thus, there seems to be a strong tendency of SCNPs to 

aggregate in concentrated solutions. 

 

From the slope of the curves in the fractal regime at intermediate 𝑄-values we 

defined what we called an effective scaling exponent 𝜈𝑒𝑓𝑓. The inset in figure 

4.14 displays the such obtained values. This parameter somehow should reflect 

the scaling exponent of the single-chain nanoparticles, but could be severely 

affected by (i) uncertainties in the subtraction of the high incoherent 

background; (ii) the low-𝑄 contribution from the aggregates and, in the case of 

the measurements of the Mi-SCNPs in dDMF at 35 mg/ml, by the structure 

factor. 
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C. DLS on solutions crowded with SCNPs 

Given the evidences for the presence of aggregates in the solutions with high 

SCNPs concentrations, a systematic investigation was performed by DLS to 

determine under which conditions the SCNPs aggregate and whether the 

complexes formed are again soluble upon dilution. This study was carried out on 

solutions of Mi-SCNPs of Mw = 124 kg/mol (c*SCNP =68 mg/ml) and Cu-SCNPs of 

Mw = 272 kg/mol (c*SCNP = 37 mg/ml).  

 

First, solutions of different concentrations (5, 10, 20 and 30 mg/ml) were 

prepared. DLS revealed unimolecular features for 𝑐 ≤  20 mg/ml and 

contributions from large objects for 30 mg/ml for the Mi-SCNPs [figures 4.15(a) 

and (b)]; in the case of Cu-SCNPs, isolated macromolecules were found for 

𝑐 ≤  10 mg/ml, while aggregates were present already for 20 mg/ml [figures 

4.15(c) and (d)]. Thus, SCNPs seem to aggregate for concentrations above 

c*SCNP/3 approximately. 

 

In order to check whether the aggregates are soluble again, we started from 

solutions at 200 mg/ml. These were progressively diluted again, up to 5 mg/ml 

in different steps. We found that Cu-SCNPs solutions form gel-like structures in 

the concentration range 200 ≥ 𝑐 ≥ 50 mg/ml [figure 4.16(a)]; at lower 

concentrations (𝑐~30 mg/ml) the system behaves as a viscous liquid and 

becomes liquid-like for 𝑐 ≤ 30 mg/ml, as can be seen in figure 4.16(b).  
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Figure 4.15: DLS results on solutions at 5 mg/ml of Mi-SCNPs (a) and Cu-SCNPs (c) showing 
unimolecular features; aggregates at 30 mg/ml for Mi-SCNPs (b) and at 20 mg/ml for Cu-SCNPs 
(d). Different curves correspond to different measurements performed on the same sample.  

 

However, as it is shown in figure 4.16(c), only after several (~8) days 

unimolecular entities are obtained. Recovering solutions of isolated 

macromolecules turns to be impossible for Mi-SCNPs systems. In this case, the 

aggregates cannot be dissolved, even under high dilution conditions (5 mg/ml), 

as can be seen in figure 4.16(d) and waiting for very long times [figure 4.16(e)]. 
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Figure 4.16: (a) Illustration of Cu-SCNPs solution at 200 mg/ml showing a gel structure. DLS 
results on liquid Cu-SCNPs at 20 mg/ml (b) and recovery of unimolecular entities of Cu-SCNPs at 5 
mg/ml (c). DLS results on Mi-SCNPs at 5 mg/ml displaying the presence of aggregates after 1 day 
(d) and 8 days stirring (e). Different curves correspond to different measurements performed on 
the same sample. 

 

We also diluted the starting 200 mg/ml solutions to 5 mg/ml in one single shot. 

The systems with Cu-SCNPs recovered the unimolecular character after one 

week, as can be seen in figure 4.17(a); however, for Mi-SCNPs solutions waiting 

did not help: even after two weeks the aggregates persisted [figure 4.17(b)].   

 

We note that similar experiments carried out on low-Mw Mi-SCNPs solutions 

gave the same results as those obtained for the Mw = 124 kg/mol Mi-SCNPs 

above described. 
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Figure 4.17: DLS results on solutions diluted to 5 mg/ml in one single shot. (a) Cu-SCNPs after 7 
days stirring and (b) Mi-SCNPs after 15 days stirring. Different curves correspond to different 
measurements performed on the same sample. 

 

SANS and DLS experiments have demonstrated the formation of supramolecular 

aggregates for concentrated solutions of SCNPs, namely for concentrations 

above approx. c*SCNP/3. This aggregation phenomenon is absent in the solutions 

crowded with linear PMMA chains, where the concentrations of SCNPs remains 

low. Thus, SCNPs tend to react with similar entities above a concentration 

threshold. The mechanism presumably consists of inter-molecular reactions 

mediated by functionalized AEMA groups of different SCNPs that do not 

participate in the intra-molecular cross-link network generated during the 

SCNPs synthesis. In concentrated conditions, the probability of close spatial 

proximity between such unreacted groups increases and interactions might 

occur. We note that the creation of a single inter-molecular bond leads already to 

the apparition of a dimer. 
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The reversibility of the aggregation process is determined by the kind of reaction 

involved in the cross-linking synthesis route. Cu-complexation is a reversible 

mechanism leading thus to aggregates of transitory character. On the contrary, 

the covalent nature of the cross-links induced in the synthesis by Michael 

addition leads obviously to also permanent bonds between the functionalized 

groups of different macromolecules, and consequently to irreversibility of the 

aggregation process. 

 

For our experimental investigation on the role of crowding on the morphology of 

SCNPs, this aggregation phenomenon has posed strong difficulties, preventing 

reliable conclusions from the SANS experiments. We note for example that the 

effective values of the scaling exponent deduced from the slope of the SANS 

curves in the intermediate 𝑄-range (denoted as 𝜈𝑒𝑓𝑓) are much higher than 

those obtained from the crowding with linear (and inert) dPMMA crowders. 

Though they present the same tendency to decrease with increasing 

concentration above c*SCNP, we must conclude that they cannot be considered as 

trustworthy. 

 

D. Molecular Dynamics (MD) Simulations 

A simple bead-spring model of the SCNPs in good solvent conditions was 

simulated. A total of 40 SCNPs were generated by irreversible intra-molecular 

cross-linking of linear chains (precursors) with the same number of monomers 

(N=200) and functional reactive groups (40%). Linear chains with different size 

(10, 50 and 800 monomers denoted as LIN10, LIN50 and LIN800, respectively) 

as well as the 200-monomers SCNPs themselves (NP) were used as crowders. 

Figure 4.18 shows the average radius of gyration and the scaling exponent of the 
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simulated SCNPs as function of the total monomer concentration of the solution, 

𝑐.  

 

 

Figure 4.18: Average radius of gyration (a) and scaling exponent (b) of the simulated SCNPs when 
linear precursor chains and SCNPs are used as crowding element, as function of the total monomer 
concentration of the solution. The vertical lines mark the location of the overlap concentration, 𝑐∗, 
of the crowders. 

(a)

(b)
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As can be seen in the figure, both the radius of gyration and the scaling exponent 

remain unperturbed until the total concentration of monomers is above the 

overlap concentration of the SCNPs (𝑐𝑆𝐶𝑁𝑃
∗ ), independently of the size of the 

crowder used. This result supports that the key magnitude determining the 

crossover from an almost unperturbed chain conformations in dilute solutions 

toward a continuous collapse of the macromolecule with increasing crowding is 

the overlap concentration of the SCNPs, c*SCNP.  

 

For large crowders, the value of c* is very small: the chains ‘see’ each other at 

low concentrations, when the number of segments per solution volume unit is 

still very small. Only when the concentration of macromolecular segments 

around a SCNP –in its immediate neighboring region– is high enough, this SCNP 

starts feeling topological interactions with other entities, as when it is 

surrounded by similar SCNP at its own overlap concentration.  

 

An interesting observation from the simulations is that increasing the size of the 

linear crowders at fixed high monomer concentration initially leads to a stronger 

collapse of the SCNPs, but when the crowders become too large (several times 

the SCNP size) this trend is reversed. The microscopic mechanism for such a 

non-monotonicity of the SCNP collapse behavior is not clear, but it might be 

mainly related with the spatial arrangement of the crowder monomers within 

the cloud of the SCNP. By increasing the crowder size, the number of such 

possible arrangements decreases due to connectivity constraints. This leads to 

the depletion of the SCNPs –which need to form more compact configurations 

from the uncrossable long segments of the crowders. When the latter become 

much longer than the SCNP size, there is a relative swelling of the SCNPs with 
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respect to the solutions with shorter crowders. A plausible explanation for such 

a relative swelling might be that when linear crowders are too long the only way 

to pervade the volume occupied by the SCNP is through some threading events. 

 

The simulations suggest that with small linear crowders the effect on the SCNP 

conformation at high concentrations is less important. This could be due to the 

higher adaptability of the smaller chains to the interstices between the SCNPs. 

Therefore, the constraints imposed by these short chains would be less 

pronounced than those exerted by longer linear chains or, even more, by 

equivalent SCNPs, which are internally more rigid than the linear counterparts. 

 

4.3.6. Structure Factor 

Based on the previous results, the decrease of 𝜈 and 𝑅̅𝑔 shown by solutions of 

SCNPs with increasing concentrations in the range below ~c*SCNP/3 (like that 

displayed in figure 4.8) has to be an apparent effect. This effect would be due to 

the fact that, if the concentration is increased, the interactions between the 

macromolecules start to be non-negligible and the structure factor of the centers 

of mass 𝑆𝐶𝑀(𝑄) deviates from unity. Under the hypothesis of unperturbed form 

factor and assuming the validity of Eq. (3.10) (in chapter 3) for our solutions, the 

structure factor of the centers of mass at a given concentration 𝑐, 𝑆𝐶𝑀(𝑄), can be 

calculated as follows: 

 

𝑆𝐶𝑀(𝑄, 𝑐) ≈
𝑐0

𝑐
 

(
𝑑 ∑(𝑄, 𝑐)

𝑑Ω
)
𝑐𝑜ℎ

(
𝑑 ∑(𝑄, 𝑐0)

𝑑Ω
)
𝑐𝑜ℎ

 (4.6) 
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This equation involves the cross sections measured for such concentration 𝑐 and 

that measured at a reference low concentration 𝑐0 –for which 𝑆𝐶𝑀(𝑄, 𝑐0) = 1. We 

have applied Eq. (4.6) to obtain the structure factor of the centers of mass at the 

highest concentration investigated (𝑐=25 mg/ml), considering the lowest 

concentration (2 mg/ml) as reference 𝑐0. The results are shown in figure 4.19. 

The structure factor of the centers of mass of the high-molecular weight SCNPs 

shows appreciable deviations from unity, especially in the low-𝑄 regime. The 

main feature is a very broad peak, which indicates broadly distributed inter-

particle distances.  

 

 

Figure 4.19: Static structure factor of the centers of mass deduced from the SANS measurements 
at 25 mg/ml: Cu-SCNPs (green circles) and Mi-SCNPs (red squares). Filled symbols are high Mw 
samples and empty symbols low Mw samples. Data obtained at 2 mg/ml have been used as 
reference. 
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The results obtained on the low-molecular weight samples are also included in 

figure 4.19. Cu-SCNPs show a much weaker interaction between the SCNPs than 

the low molecular weight Mi-SCNPs and the high molecular weight data at the 

same concentration.  

 

4.3.7. Conclusion 

The application of SANS and SAXS has proved the compaction of the 

macromolecules upon the creation of internal cross-links. In particular, we have 

been able to follow the changes in the chain conformation and dimension during 

bond formation. Despite the patent compaction, the SCNPs obtained by different 

routes exhibit a far from globular topology in good solvent. The origin of the 

sparse conformation observed for SCNPs through conventional synthesis routes 

were rationalized by MD-simulations. Interestingly enough, we note the 

similarity of the average value of the scaling exponent with those reported for 

intrinsically disordered proteins (IDPs). The analogies found between SCNPs 

and IDPs motivated the use of SCNPs as model systems to study crowding 

effects. We note that crowding is inherently present in the cellular environment. 

 

Experimental crowding of SCNPs with increasing concentration of the same 

species leads to unavoidable aggregation of the nano-objects for concentrations 

higher than about c*/3. This phenomenon is attributable to the apparition of 

inter-molecular cross-links between unreacted functionalized monomers. 

Depending on the reversible or irreversible character of the bonds involved in 

the internal cross-linking route followed for the SCNPs creation, the resulting 

agglomerates can be dissolved again or not. 
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For this reason, conclusive experimental observations about the impact of 

crowding on the SCNPs’ conformation can only be extracted from the 

investigation realized on solutions where the macromolecular concentration 

was increased by adding linear non-reactive chains. Complementary MD-

simulations were also considered. The main result from such a joint study 

involving experiments and MD-simulations is the univocal determination of the 

overlap concentration of the SCNPs as the key magnitude determining the onset 

of the crossover from unperturbed morphology at lower concentrations to an 

increasingly collapsed state at higher concentrations. This has been 

demonstrated by experiments on solutions with SCNPs of different sizes 

crowded with linear macromolecules of both, smaller and larger dimensions 

than the SCNPs. These results have been nicely corroborated by extensive MD-

simulations on mixtures of SCNPs and linear chains, covering a large range of 

relative sizes. In addition, free from unwanted inter-molecular cross-linking 

reactions, MD-simulations have extended this investigation to the case where the 

environment of the SCNPs is crowded also with similar entities. 

 

Having established the insensitivity of SCNPs’ conformation to crowding in the 

concentration range c ≤ c*SCNP/3 approximately, we have calculated the static 

structure factor arising from centers of mass correlations from SANS 

measurements. This information is very important in order to perform a proper 

analysis of the dynamic data, as it will be shown in the last section of this 

chapter.  
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4.4. Dynamics of SCNPs  

4.4.1. Introduction 

Though DLS is routinely applied in the home laboratories to characterize the 

center of mass diffusion of SCNPs, the internal dynamics of these 

macromolecules in dilute solution has not been addressed up to now.  Here, we 

present for the first time a study on the chain dynamics of these nano-objects by 

means of scattering techniques. To have a complete picture and be in position of 

a quantitative analysis of the results, three kinds of scattering techniques are 

combined: (i) SANS, to properly characterize the size and conformation of the 

macromolecules, (ii) DLS, to get the center of mass diffusion coefficient (𝑄 → 0 

limit) and (iii) NSE, addressing the dynamics at local length scale strongly 

affected by the internal degrees of freedom.  

 

In a first step, we perform both, a phenomenological and a Zimm model-like 

analysis on the chain dynamics of linear polymer precursor (low molecular 

weight, 52 kg/mol) in solution. These results are used as reference to compare 

to NSE data of Mi-SCNPs and Cu-SCNPs in solution (same Mw as the linear 

precursor). The chain dynamic structure factor of both SCNPs is also described 

by the Zimm model and its modifications. Moreover, we perform an ‘academic 

exercise’ on chain dynamics of high molecular weight (272 kg/mol) Mi-SCNPs 

considering two limiting scenarios for Zimm analysis. The form factor and the 

structure factor of all these samples have been properly determined by SANS, as 

previously described in section 4.3 of this chapter. Prior to the description of the 

dynamical studies, some theoretical approaches concerning the chain dynamics 

of polymers are provided.  
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4.4.2. Chain Dynamics: Theoretical approaches 

At large length scales, coarse-grained theoretical models are adequate to 

describe single chain properties including dynamics. In the bulk, the Rouse 

model is the standard theoretical approach while its extension by considering 

hydrodynamic interactions –the so-called Zimm model– can be applied to 

polymer solutions.  

 

The Rouse model[27] describes the melt chain dynamics considering the 

conformational entropy as the only source for restoring forces which stabilizes 

excursions from equilibrium. The contribution of the surrounding chains is 

introduced as a stochastic background creating also a friction –characterized by 

the friction coefficient 𝜉– on each segment.[24, 27] The 𝑁 beads connected by 

bonds of length ℓ of the coarse-grained Gaussian chain are connected by 

entropic springs. The main variable is the Rouse rate 𝑊, determined by the 

balance between the entropic forces and the friction 𝑊 = 3𝑘𝐵𝑇 (ℓ2𝜉)⁄  (𝑘𝐵: 

Boltzmann constant). The resulting Langevin equation can be solved by 

transforming to the normal (‘Rouse’) coordinates  

 

𝑋 𝑝(𝑡) =
1

𝑁
∑𝑅⃗ 𝑖(𝑡) cos [

𝑝𝜋

𝑁
(𝑖 −

1

2
)]

𝑁

𝑖=1

    (4.7) 

 

where 𝑅⃗ 𝑖(𝑡) is the position vector of the 𝑖𝑡ℎ bead along the chain and 𝑝 is the 

mode number 𝑝 (𝑝 = 0,… ,𝑁 − 1). The zeroth mode gives the position of the 

center of mass of the chain and the others are associated with internal motions 

with a ‘wavelength’ of the order of 𝑁 𝑝⁄ . The mode correlators decay 



Chapter 4 

154 
 

exponentially according to a spectrum of relaxation modes with characteristic 

times 𝜏𝑝 given by: 

 

𝜏𝑝 =
𝜉𝑅̅𝑒

2

3𝜋2𝑘𝐵𝑇𝑝2
=

𝑁2

𝑊𝜋2𝑝2
 (4.8) 

 

The Rouse dynamic structure factor is expressed as: 

 

𝑆𝑐ℎ𝑎𝑖𝑛(𝑄, 𝑡)

𝑃(𝑄)
=

1

𝑁
𝑒𝑥𝑝(−𝑄2𝐷𝐶𝑀𝑡)∑𝑒𝑥𝑝(−

1

6
𝑄2𝐵(𝑛,𝑚, 𝑡))

𝑁

𝑛,𝑚

 (4.9) 

 

in terms of the translational diffusion coefficient 𝐷𝐶𝑀 = 𝑊ℓ4 (3𝑁ℓ2)⁄  and the 

correlators 𝐵(𝑛,𝑚, 𝑡): 

 

𝐵(𝑛,𝑚, 𝑡) = |𝑛 − 𝑚|ℓ2+ 

+
4𝑅̅𝑒

2

𝜋2
∑

1

𝑝2
cos (

𝜋𝑝𝑛

𝑁
)cos (

𝜋𝑝𝑚

𝑁
)

𝑁−1

𝑝=1

[1 − 𝑒𝑥𝑝 (−
𝑡

𝜏𝑝
)] 

 (4.10) 

 

The validity of the Rouse model has been checked by neutron scattering (in 

particular, by NSE[28-29] experiments) on a variety of polymers. It provides a very 

good description of the experimental data, within the range of application. 

However, at local length scales (high 𝑄-values), the Rouse model fails; there, its 

simplifying assumptions cease to be valid and the microscopic details come into 

play. Ingredients like chain stiffness, rotational potentials, local relaxations 

across the rotational barriers leading to an internal viscosity emerge at short 

length scales.[27-28, 30] On the other hand, the model also fails for long chains at 
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long times. The uncrossability of macromolecules leads to topological constrains 

(‘entanglements’) that restrict laterally the chain motions. Such ‘self-

confinement’ effect –responsible in fact for the singular viscoelastic character of 

polymers– is captured by the ‘tube’ concept invoked in the reptation model:[31] 

for long times, chain fluctuations take place within a fictitious tube of diameter 

𝑑𝑡𝑢𝑏𝑒 parallel to the chain profile. NSE experiments on labeled entangled 

polymeric samples have provided the microscopic evidence for the existence of 

such confinement effects.[28] They manifest themselves in more moderate decays 

of the chain structure factor than the Rouse functions, leading to long-time 

plateaus in 𝑆𝑐ℎ𝑎𝑖𝑛(𝑄, 𝑡) from which 𝑑𝑡𝑢𝑏𝑒-values can be extracted. 

 

The Zimm model[32] is the standard theoretical framework to describe the chain 

dynamics of flexible polymers in dilute solution.[24, 28] It is the counterpart of the 

Rouse model, where the chain beads are also affected by hydrodynamic 

interactions. In this case, the mode correlators are given by 

 

𝜏𝑝
𝑍 =

𝜂𝑅̅𝑒
3

√3𝜋𝑘𝐵𝑇
𝑝−3𝜈  (4.11) 

 

where 𝜂 is the viscosity of the solvent. Note that this expression considers the 

general case of a generic scaling exponent 𝜈 (𝜈 = 𝜈𝐹 in good solvent). The Zimm 

dynamic structure factor is still expressed by Eq. (4.9), now in terms of the 

correlators 𝐵(𝑛,𝑚, 𝑡) = 𝐵𝑍(𝑛,𝑚, 𝑡): 
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𝐵𝑍(𝑛,𝑚, 𝑡) = |𝑛 − 𝑚|2𝜈ℓ2+ 

+
4𝑅̅𝑒

2

𝜋2
∑

1

𝑝2𝜈+1
cos (

𝜋𝑝𝑛

𝑁
)cos (

𝜋𝑝𝑚

𝑁
)

𝑁−1

𝑝=1

[1 − 𝑒𝑥𝑝 (−
𝑡

𝜏𝑝
𝑍)] 

 (4.12) 

 

Regarding the center of mass diffusion, for a linear polymer chain in good 

solvent (𝜈 = 𝜈𝐹) the Zimm model predicts 𝐷𝐶𝑀
𝑍 = 0.203𝑘𝐵𝑇 (𝜂𝑅̅𝑒)⁄ .[32] As in the 

case of the melt, deviations from Zimm-like dynamics are found at local length 

scales in e.g. polyisobutylene[33] and, more markedly, for rigid polymers like 

polynorbornenes.[34] In fact, only for extremely flexible polymers like 

poly(dimethyl siloxane)[33] or polyisoprene[34] the bare Zimm model seems to 

work properly up to high 𝑄-values. To a large extent, the deviations can be 

attributed to dynamical stiffness.[30, 33-35] The internal friction originated from 

diverse sources –e. g. internal barriers, side-chain interactions, hindered 

dihedral rotations, or even hydrogen bonding– was implemented in the so-called 

Rouse/Zimm model with internal friction (RIF/ZIF) by Khatri and McLeish.[36] 

This ingredient is represented by a relaxation time 𝜏𝑖 which is added to the time 

of each mode in Eq. (4.8) or (4.11), respectively. The resulting characteristic time 

for the 𝑝𝑡ℎ-mode in the polymeric solution thus becomes 𝜏𝑝
𝑍𝐼𝐹 = 𝜏𝑝

𝑍 + 𝜏𝑖.  

 

4.4.3. Chain Dynamics of Linear Precursor in Solution 

A. Phenomenological approach 

In order to obtain good signals by the NSE technique, the concentration 

investigated was 25 mg/ml. Figure 4.20(a) shows the DLS results of the 

precursor (Mw = 52 kg/mol) in solution, at the concentration measured by NSE. 

A single exponential function –assuming thereby a single diffusion coefficient– 



Exploring Basic Properties of SCNPs 

 

157 
 

accounts rather well for the functional form of the decay (see lines describing 

the data). Applying inverse Laplace transformation (e.g. the CONTIN program) 

(see, e.g.[37]) it is possible to extract an underlying distribution of diffusion 

coefficients 𝑔[log(𝐷𝐶𝑀)], assuming: 

 

𝑆(𝑄, 𝑡)

𝑆(𝑄, 0)
= ∫𝑔[log(𝐷𝐶𝑀)]exp[−𝐷𝐶𝑀𝑄2𝑡]𝑑[log(𝐷𝐶𝑀)]  (4.13) 

 

For linear polymers, the origin of this distribution is the polydispersity in mass. 

Figure 4.20(b) shows the such deduced distribution. It is very narrow, in 

agreement with SEC results (see table 4.1) and the DLS data are well 

approximated by a single exponential. The average value of the diffusion 

coefficient for the linear polymer precursor is 𝐷𝐷𝐿𝑆 = 5.77 Å2 𝑛𝑠⁄ .  

 

 

Figure 4.20: (a) DLS results on solutions of a PMMA-AEMA precursor. Line is the fit of single 
exponential function. (b) Distribution function of diffusion coefficients deduced from a CONTIN 
analysis of the experimental data; the line is just connecting points. 
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Now we turn to the more local length scales explored by the NSE experiments. 

The 𝑄-range investigated by this technique (0.03 ≤ 𝑄 ≤ 0.20Å−1) corresponds 

to the regime 1 𝑅̅𝑔⁄ ≈ 0.02Å−1 < 𝑄. The NSE results on the linear precursor are 

presented in figure 4.21(a), where they are described, as a first rough 

approximation, by single exponential functions: 

 

𝑆𝑐ℎ𝑎𝑖𝑛(𝑄, 𝑡)

𝑃(𝑄)
= exp[−𝐷𝑒𝑓𝑓(𝑄)𝑄2𝑡]  (4.14) 

 

This simple parametrization allows for a first quantification of the dynamics of 

the sample through the effective diffusion coefficient parameter 𝐷𝑒𝑓𝑓(𝑄) and 

provides a rough idea about the nature of the contributions at the different 

length scales explored. As can be appreciated, exponential functions do not 

accurately reproduce the functional form of the single chain dynamic structure 

factors, which show a more stretched behavior, but could be considered as a 

rough first approximation to the problem. The parameter 𝐷𝑒𝑓𝑓(𝑄) deduced from 

the fits is represented as function of momentum transfer in figure 4.21(b) and 

compared with the center of mass diffusion coefficient determined from the DLS 

experiments, 𝐷𝐷𝐿𝑆. 𝐷𝑒𝑓𝑓(𝑄) clearly shows 𝑄-dependent values larger than those 

determined by DLS. This enhanced mobility can be attributed to the 

contributions of internal modes (superimposed to the translational motion), that 

become apparent when exploring the proper length scales by NSE.  
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Figure 4.21: (a) NSE-results on precursor solutions at the different 𝑄-values indicated in Å−1. 
Lines are fits of single exponentials to the experimental data. (b) Wave-vector dependence of the 
effective diffusion coefficient 𝐷𝑒𝑓𝑓 deduced from the fits to the NSE-results. Empty symbol 

correspond to the value obtained for the diffusion coefficient from DLS measurements 𝐷𝐷𝐿𝑆 at the 
same concentration (25 mg/ml).  

 

B. Analysis in terms of the Zimm model  

The NSE results on linear macromolecules were analyzed in terms of the Zimm 

model. Fixing the experimentally determined value for 𝐷𝐶𝑀 from the DLS study, 

the dynamic structure factor predicted by the Zimm model [Eqs. (4.9) with 

(4.12) and (4.11)] was calculated for a linear chain of 𝑁 = 370 beads mapping 

the ‘effective’ monomers in the precursor [since this is a copolymer, we defined 

an ‘effective’ monomer as a (MMA0.63AEMA0.37) unit]. The value of 𝑅̅𝑒 = 19.2 𝑛𝑚 

was deduced from Eq. (4.2) by using the SANS information (𝑅̅𝑔 = 7.3 nm and 𝜈 =

59). The resulting theoretical curves are shown in figure 4.22. They describe well 

the experimental data for the two lowest 𝑄-values investigated, but for 

𝑄 ≳ 0.06Å−1 the model predicts a much more pronounced decay of the dynamic 
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structure factor. Obviously, approaching local length scales the dynamics 

strongly deviates from pure Zimm behavior.  

 

 

Figure 4.22: Fits of the Zimm model to the NSE results on the precursor solution at the different 

𝑄-values indicated in Å−1. 

 

The above introduced ZIF model (Eqs. (4.9) and (4.12) with 𝜏𝑝 = 𝜏𝑍𝐼𝐹 = 𝜏𝑝
𝑍 + 𝜏𝑖) 

successfully describes the precursor data [figure 4.23(a)] by choosing 𝜏𝑖 =

47 𝑛𝑠. The internal friction ingredient may also easily be introduced by 

restricting the modes contributing to the chain relaxation, i.e., considering in Eq. 

(4.12) modes up to a given maximum mode number 𝑝𝑚𝑎𝑥. This mode cutoff 

could be interpreted in terms of virtually rigid subcoils with all internal modes 

suppressed.[34] A good description (very similar to that obtained by the ZIF 

model) for the precursor is found by applying 𝑝𝑚𝑎𝑥 = 4 [figure 4.23(b)]. This 

maximum mode number allows the estimation of the size of the virtually stiff 
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chain sections; their average end-to-end radius would be given by 𝑟̅𝑒
𝑠𝑡𝑖𝑓𝑓

=

𝑅̅𝑒𝑝𝑚𝑎𝑥
−𝜈 ,[34] i.e., 𝑟̅𝑒

𝑠𝑡𝑖𝑓𝑓
= 8.5 nm. As we have previously seen, the statistical 

segment of the precursor has the same length as pure PMMA. For PMMA, the 

Kuhn length is 1.7 nm.[20] The dynamic rigidity thus extends over much larger 

length scales than the static stiffness of the chain. 

 

 

Figure 4.23: Fits of the different models to the NSE results on the precursor solutions at the 
different 𝑄-values denoted in Fig. 4.22. (a) Zimm model with internal friction and (b) Zimm model 
restricted to the modes corresponding to the longest wavelengths, up to 𝑝𝑚𝑎𝑥. 

 

The Zimm characteristic times used in the three approaches are represented in 

figure 4.24 as function of the wavelength of the mode, 𝑁 𝑝⁄ . In the ZIF model, the 

drastic effect imposed by the mode cutoff 𝑝𝑚𝑎𝑥 (equivalent to freeze the modes 
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relaxation where internal friction dominates. This crossover occurs when 

𝜏𝑝
𝑍 ≈ 𝜏𝑖 .  

 

 

Figure 4.24: Characteristic times of the Zimm modes as function of the scaling variable 𝑁 𝑝⁄  
deduced for the precursor in solution. Only modes with mode-number below or equal to 4 
highlighted as filled symbols would substantially contribute. Solid lines represent the 
characteristic times for the ZIF model. Dotted arrows mark the value of 𝜏𝑖  and the location of the 
crossover from solvent- to internal friction dominated relaxation for the precursor. 

 

From this analysis, we can conclude that the dynamics of the linear precursor 

macromolecules in solution exhibits severe deviations from the pure Zimm-like 

behavior. These deviations could be attributed to internal friction effects that are 
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along the chain, that are expected to hinder even more the conformational 

transitions of the polymer. 

 

4.4.4. Chain Dynamics of SCNPs in solution 

A. Phenomenological approach 

Low molecular weight Mi-SCNPs and Cu-SCNPs in solution (same molecular 

weight as the previously presented precursor, Mw = 52 kg/mol) were measured 

by NSE at the same concentration as the linear precursor (25 mg/ml). The NSE 

experimental results of both single-chain nanoparticles are presented together 

in figure 4.25(a), where they are described by single exponential functions. As 

can be seen, the dynamic structure factor of Michael single-chain nanoparticles 

(Mi-SCNPs) decay at characteristic times systematically longer than those of 

copper single-chain nanoparticles (Cu-SCNPS).  

 

The obtained effective diffusion coefficients, 𝐷𝑒𝑓𝑓(𝑄), from the fits are 

represented as function of momentum transfer in figure 4.25(b) and compared 

to the linear precursor. The center of mass diffusion coefficient determined from 

the DLS experiments, 𝐷𝐷𝐿𝑆, is also included for all the samples. Their values are 

rather similar. Contrarily, the 𝐷𝑒𝑓𝑓(𝑄)-values deduced from NSE are 

systematically smaller in the case of the Cu-SCNPs than in the linear precursors, 

and even shorter in the case of Mi-SCNPs, indicating the slowing down of the 

dynamics upon internal cross-link of the macromolecules in the 𝑄-range covered 

by the NSE experiments. Moreover, the difference seems to be amplified with 

increasing wave-vector. Thus, the impact of cross-linking in the dynamical 

features is clearly revealed by NSE. It becomes enhanced when exploring local 
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length scales, where the internal degrees of freedom of the macromolecule play a 

relevant role. 

 

 

Figure 4.25: (a) NSE-results on Mi-SCNPs (filled circles) and Cu-SCNPs (empty triangles) solutions 

at the different 𝑄-values indicated in Å−1. Lines are fits of single exponentials to the experimental 
data. (b) Wave-vector dependence of the effective diffusion coefficient 𝐷𝑒𝑓𝑓 deduced from the fits 

to the NSE-results; precursor (blue diamonds), Mi-SCNPs (red circles) and Cu-SCNPs (green 
triangles). Empty symbols correspond to the values obtained for the diffusion coefficient from DLS 
measurements 𝐷𝐷𝐿𝑆 at the same concentration (25 mg/ml). 

 

It is clear that the dynamic structure factor of macromolecules in the NSE 

window has two contributions: one from the translational diffusion and another 

one from the relaxation of the internal modes. Moreover, in general, the 

translational diffusion coefficient of particles in solution depends on 𝑄 and 

concentration. It can be written as 

 

𝐷𝐶𝑀(𝑄, 𝑐) =
𝐷0𝐻(𝑄, 𝑐)

𝑆𝐶𝑀(𝑄, 𝑐)
  (4.15) 
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where 𝐷0 is the self-diffusion coefficient at infinite dilution and 𝐻(𝑄, 𝑐) is the 

hydrodynamic factor. The hydrodynamic factor is not easy to obtain and some 

approximations have to be made. We assume that is 𝑄-independent: 

𝐻(𝑄, 𝑐) ≈ 𝐻(𝑐) –a hypothesis which is usually justified.[25, 38] Then, for a given 

concentration the product 𝐷0𝐻(𝑄, 𝑐) = 𝐷0𝐻(𝑐) is a constant. Taking into 

account Eq. (4.15), under this condition the product 𝐷𝐶𝑀(𝑄, 𝑐)𝑆𝐶𝑀(𝑄, 𝑐) is the 

same independently of the 𝑄-value considered, and, if we are able to determine 

it for a given 𝑄, it will be known for other 𝑄-values. In particular we can consider 

the case 𝑄 → 0. This is the situation in the DLS experiments. From the DLS 

experiments we have obtained 𝐷𝐷𝐿𝑆(𝑐) = 𝐷𝐶𝑀(𝑄 ≈ 0, 𝑐) for the concentration 

investigated in the NSE experiments. On the other hand, from the SANS 

measurements we have determined the structure factor of the centers of mass 

𝑆𝐶𝑀(𝑄, 𝑐) also at this concentration (figure 4.19). Thus, the diffusion coefficient 

at any other 𝑄-value can be written as: 

 

𝐷𝐶𝑀(𝑄, 𝑐) =
𝐷𝐷𝐿𝑆(𝑐)

𝑆𝐶𝑀(𝑄, 𝑐)
𝑆𝐶𝑀(𝑄 ≈ 0, 𝑐)

 
 (4.16) 

 

The obtained results are displayed in figure 4.26(a). The weak minimum at 

𝑄 ≈ 0.05 Å−1 mirrors the broad maximum of the structure factor of the centers 

of mass. This kind of deGennes-like renormalization reflects the slowing down of 

the collective diffusion at length scales corresponding to equilibrium inter-

particle distances and thus where the correlations between particles are most 

pronounced.  
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Figure 4.26: (a) Wave-vector dependence of the diffusion coefficient of the center of mass 
deduced for the Mi-SCNPs (red circles) and Cu-SCNPs (green triangles) from DLS (empty symbols) 
and SANS measurements as 𝐷𝐶𝑀(𝑄) = 𝐷𝐷𝐿𝑆𝑆𝐶𝑀(𝑄 → 0) 𝑆𝐶𝑀(𝑄)⁄ . In (b) the difference between 
𝐷𝑒𝑓𝑓 and the translational diffusion coefficients is represented for the precursor (blue diamonds), 

Mi-SCNPs (red circles) and Cu-SCNPs (green triangles). 

 

The difference between the effective diffusion coefficients and the translational 

diffusion coefficients ∆𝐷 = 𝐷𝑒𝑓𝑓 − 𝐷𝐶𝑀 is represented in figure 4.26(b). This 

quantity represents to a first approach the importance of the internal degrees of 

freedom in the decay of the dynamic structure factor. The internal dynamics of 
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both SCNPs seems thus to be strongly suppressed with respect to that of the 

precursor for 𝑄-values higher than 0.08 Å-1 and, in particular, above 0.1 Å-1. 

 

B. Analysis in terms of the Zimm model 

In principle, the Zimm model and its modified versions are not directly 

applicable to a SCNP with topology different from that of a linear chain. 

However, we can still try to describe the dynamic structure factor of the Mi-

SCNPs and Cu- SCNPs in the following way: 

 

i. For the translational contribution, we use the center of mass diffusion 

coefficient 𝐷𝐶𝑀 above determined from the SANS and DLS experiments [Eq. 

(4.16), figure 4.26(a)]. We recall that its 𝑄-dependence accounts for inter-

macromolecular interactions. 

ii. For the internal motions, we map the macromolecule to an effective linear 

chain with the same scaling exponent (𝜈 = 0.52 and 𝜈 = 0.54) and 

dimension (𝑅̅𝑔 = 5.9 nm, 𝑅̅𝑒 = 14.7 nm and 𝑅̅𝑔 = 5.8 nm, 𝑅̅𝑒 = 14.7 nm) as 

deduced from SANS for the Mi-SCNPs and Cu-SCNPs, respectively. Coarse-

grained MD-simulations justify such a mapping of the large-scale dynamics 

of the topologically complex SCNPs to the Zimm dynamics of an effective 

linear chain.[39]  

 

With these two assumptions, the Zimm scenario has been applied to the NSE 

results on the SCNPs solutions. The resulting curves considering the simplest 

version of the Zimm model are shown in figure 4.27(a) and figure 4.27(d). As in 

the case of the linear precursor, the description is reasonable for low 𝑄-values 

but definitely fails by approaching local length scales.  
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Figure 4.27: Fits of different models to the NSE results on the Mi-SCNPs (left panels) and Cu-

SCNPs (right panels) solutions at the different 𝑄-values denoted in Å−1. (a) and (d): full Zimm 
model; (b) and (e): Zimm model with internal friction; (c) and (f): Zimm model restricted to the 
modes corresponding to the longest wavelength, up to 𝑝𝑚𝑎𝑥. 
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As can be seen in figure 4.28, the characteristic times for both SCNPs follow a 

weaker mode-number dependence (due to the smaller value of the scaling 

exponent) and are shorter in the long wavelength 𝑁/𝑝 region (due to the smaller 

dimensions) than those of the precursor. The first Zimm mode 𝑝 = 1 

corresponds to the rotational relaxation time. For the Cu-SCNPs it amounts to 

206 ns (204 ns for Mi-SCNPs), while in the linear precursor this time is 461 ns. 

 

We have also used the two modified versions of the Zimm model trying to 

improve the description of the dynamic structure factor of the SCNPs. If the ZIF 

model is applied a reasonable overall description of the data is achieved with 

𝜏𝑖 = 77ns for Mi-SCNPs [see figure 4.27(b)] and 𝜏𝑖 = 87ns for Cu-SCNPs [see 

figure 4.27(e)]. These times are about twofold that obtained for the linear 

precursor. The 𝑝-dependent characteristic times are displayed in figure 4.28. 

The presence of internal cross-links shifts the crossover from internal-friction 

dominated relaxation to solvent-friction driven dynamics toward larger 

wavelengths for both SCNPs.  

 

Finally, considering a cutoff for the mode summation, we obtain a satisfactory 

agreement with 𝑝𝑚𝑎𝑥 = 2 for Mi-SCNPs and Cu-SCNPs [see figure 4.27(c) and 

figure 4.27(f); the used characteristic times are represented as filled symbols in 

figure 4.28]. Thus, the internal dynamics of the internally cross-linked 

macromolecules is extremely hindered. Here, the virtually rigid subcoils would 

span over about 𝑟̅𝑒
𝑆𝑡𝑖𝑓𝑓

≈ 10 nm –a large fraction of the macromolecules, taking 

into account their typical size 𝑅̅𝑒 = 14.7 nm. We note that the reflected rigidity is 

more marked than in the precursor, as it is shown in the schematic illustration 

included in figure 4.28.  
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Figure 4.28: Schematic illustration of the virtually rigid subcoils that are present in precursor 
(blue) and SCNPs (red). Characteristic times of the Zimm modes as function of the scaling variable 
𝑁 𝑝⁄  deduced for the Mi-SCNPs (red circles) and Cu-SCNPs (green triangles) in solution. Precursor 
data (blue diamonds) is also included as reference. Only-modes with mode-number below or equal 
to 2 (Mi-SCNPs and Cu-SCNPs) and 4 (precursor) highlighted as filled symbols would substantially 
contribute. Lines represent the characteristic times for the ZIF model for the Mi-SCNPs (red), Cu-
SCNPs (green) and precursor (blue). Dotted arrows mark the value of 𝜏𝑖  and the location of the 
crossover from solvent- to internal-friction dominated relaxation. 
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In summary, from this comparative analysis of the dynamics of both single-chain 

nanoparticles (Mi-SCNPs and Cu-SCNPs) and precursors in terms of similar 

theoretical approximations we can deduce a clear impact of the internal cross-

linking on the chain dynamics. This is roughly the same independently of the 

particular internal cross-linking mechanism employed for the nanoparticle 

formation. The differences observed in the NSE spectra seem to arise from the 

distinct 𝑄-dependence of the diffusion coefficient, i.e., from the interactions 

between different SCNPs reflected in the structure factor.  

 

We now compare the dynamical features, revealed by NSE for our Mi-SCNPs and 

Cu-SCNPs, with those reported from the same kind of experiments for IDPs, in 

particular for the myelin basic protein (MBP) in D2O.[25] In that work, a ZIF 

analysis was also carried out. Systematic deviations with respect to this model 

were found. In addition, a value of the characteristic time for internal friction 

was obtained, which was larger than that of the first mode of the pure Zimm 

model. From this finding, the breakdown of the Zimm model in that IDP was 

concluded. The slowing down of MBP motions with respect to a Gaussian 

polymer behavior was attributed to the fact that the protein is not completely 

unfolded, but retains a compact core and a folded secondary structure content of 

44%.  

 

As it has been mentioned above, the closeness of the 𝜈-exponents in both kinds 

of macromolecules, IDPs and SCNPs, points to a similar degree of compaction. 

Recently, the analogies between their topological disorder and the common 

presence of locally compact, weakly deformable regions (domains) connected by 

flexible disordered chain segments have been discussed.[26] It could be expected 
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that the existence of such internal compartmentation would in both cases lead to 

a high internal friction. We note that the reported value of the characteristic time 

for internal friction in MBP (𝜏𝑖 = 82 ns) is nearly identical to that obtained here 

for the Mi-SCNPs (𝜏𝑖 = 77 ns ) and for the Cu-SCNP (𝜏𝑖 = 87 ns), supporting this 

hypothesis.  

 

On the other hand, due to the much smaller size of MBP (𝑅̅𝑔 ≈ 3.4 nm), even if 

the solvent viscosity in the protein solution is more than twofold higher than in 

our systems, the longest Zimm characteristic times in MBP are much shorter. In 

particular, the rotational time corresponding to the first mode is 𝜏𝑝=1 = 74 ns 

for MBP and 204 ns for the Mi-SCNPs (206 ns for Cu-SCNPs). Thus, while for the 

small IDPs the overwhelming contribution of the internal friction prevents the 

application of the Zimm model or its more sophisticated versions, some of the 

later –like the ZIF– might still be plausible simplified scenarios for describing the 

dynamics of SCNPs in solution, as far as the dimensions of the nanoparticles are 

large enough. 

 

4.4.5. An ‘Academic Exercise’: Exploring the Limiting Scenarios for 

Zimm Analysis 

In the structural study of SCNPs above described, the experiments performed 

under crowding conditions revealed that the form factor remains constant at 

dilute conditions, i.e., below the overlap concentration. In the light of these 

results, we have applied the Zimm model and its modified versions to SCNPs in 

solution by considering that the form factor is not changing with the 



Exploring Basic Properties of SCNPs 

 

173 
 

concentration, and that the structure factor is not constant, which makes the 

diffusion coefficient 𝑄-dependent, as described by Eq. (4.16).  

 

However, without a detailed structural investigation on the crowding effects, it is 

not possible to unambiguously discern between that situation or an alternative 

scenario considering that the SCNPs changed their shape and size upon 

increasing concentration leading, to the observed reduction of the characteristic 

form factor parameters (figure 4.8) without appreciable interactions among 

them (uncorrelated center of mass positions). Though this extreme case now can 

be discarded, it is constructive to show the differences obtained when the two 

limiting cases are considered. This study gives an idea of the robustness of the 

application of the Zimm-based models and the sensitivity of the values of the 

different parameters involved on the assumptions made in the analysis 

procedure.  

 

With this idea in mind, in this part of the chapter we apply the whole Zimm 

model by considering these two limiting scenarios: (i) the same conditions as 

with the already analyzed SCNPs, i.e., the structure factor is 𝑄-dependent and the 

form factor is the one obtained at high dilution, namely 𝑃(𝑄)0; (ii) the structure 

factor is constant, 𝑆𝐶𝑀(𝑄) = 1, so the diffusion coefficient is independent of 𝑄. 

Thus, taking into account Eq. (4.16), the diffusion coefficient is the one 

determined by DLS, 𝐷𝐶𝑀(𝑄, 𝑐) = 𝐷𝐷𝐿𝑆(𝑐). In this case, the form factor is the one 

measured at the same concentration that the NSE experiments were performed, 

𝑃(𝑄)𝑐.  
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Both scenarios are applied to NSE measurements on high Mw (272 kg/mol) Mi-

SCNPs at 25 mg/ml. For this sample, the value of 𝐷𝐷𝐿𝑆(𝑐) was 3.38Å2/ns. The 

results of the SANS experiments can be found in figure 4.8. We first realize about 

the quite different pictures of the system invoked in both cases: in the first 

scenario, nano-objects of 𝑅𝑔
0 = 9.3nm (𝑅𝑒

0 = 22nm) with a scaling exponent 𝜈0 = 

0.46 interacting through the static structure factor shown in figure 4.19 are 

considered. This structure factor corresponds to broadly distributed inter-

particle distances with an average value of about 15 nm. In the second scenario, 

the nanoparticles are sensitively compacted (𝜈𝑐 ~ 0.41) and smaller (𝑅𝑔
𝑐  = 6.2 

nm); their positions would not show an appreciable correlation pattern, i.e., they 

would be as a ‘gas’ of SCNPs. We now apply the different models based on Zimm 

dynamics to both cases. 

 

In the first scenario, Eq. (4.16) was applied to obtain the 𝑄-dependent values for 

the diffusion coefficient, 𝐷𝐶𝑀(𝑄, 𝑐). The resulting curves considering the simplest 

version of the Zimm model are shown in figure 4.29(a), and, not surprisingly, the 

model fails. If the ZIF model is applied a good description of the data is achieved 

with 𝜏𝑖 = 120 ns [figure 4.29(b)] and finally, considering the ‘mode-cutoff’ 

model, we obtain a satisfactory agreement with 𝑝𝑚𝑎𝑥 = 4 [figure 4.29(c)]. In this 

case, the size of the virtually stiff chain sections is 𝑟̅𝑒
𝑠𝑡𝑖𝑓𝑓

= 11.6 nm, which 

covers half the size of the average end-to-end distance of the SCNPs.  
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Figure 4.29: Fits of different models to the NSE results on the high Mw Mi-SCNPs solutions at the 

different 𝑄-values denoted in Å−1. Results obtained for 1st scenario (left panels) and 2nd scenario 
(right panels). (a) and (d): full Zimm model; (b) and (e): Zimm model with internal friction; (c) and 
(f): Zimm model restricted to the modes corresponding to the longest wavelength, up to 𝑝𝑚𝑎𝑥. 
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For the second scenario the Zimm model was applied fixing for all 𝑄-values the 

experimentally determined value for 𝐷𝐶𝑀 (𝐷𝐷𝐿𝑆). As expected, the simplest 

version of the model fails [figure 4.29(d)].  The ZIF model in figure 4.29(e) 

successfully describes the Mi-SCNPs data by choosing 𝜏𝑖 = 124 ns. Moreover, 

cutting the modes to a maximum number of 2, 𝑝𝑚𝑎𝑥 = 2, a reasonable 

description of the data is also obtained [figure 4.29(f)]. Here, the virtually rigid 

subcoils would span over about 𝑟̅𝑒
𝑠𝑡𝑖𝑓𝑓

= 10.6 nm, a large fraction of the 

macromolecule, even larger than in the first scenario, taking into account that in 

this case the typical size is 𝑅𝑒
𝑐 = 14.1 nm.  

 

The Zimm characteristic times used in the three approaches are represented in 

figure 4.30 as function of the wavelength of the mode, 𝑁 𝑝⁄ , for both scenarios. 

The characteristic times for the second scenario follow a weaker mode-number 

dependence (due to the smaller value of the scaling exponent) and are shorter in 

the long wavelength 𝑁/𝑝 region (due to the smaller dimensions) than those for 

the first scenario. Interestingly, we found that the internal friction, 𝜏𝑖, and the 

size of the virtually rigid subocoils, 𝑟̅𝑒
𝑠𝑡𝑖𝑓𝑓

, is nearly the same in both cases. 

However, the modes that would substantially contribute to the chain relaxation 

are different, due to the fact that the dimensions of the macromolecule 

considered in the 2nd scenario are smaller.  
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Figure 4.30: Characteristic time of the Zimm modes as function of the scaling variable 𝑁/𝑝 
deduced for the Mi-SCNPs in solution: 1st scenario (red) and 2nd scenario (gray). Only modes with 
mode-number below or equal to 4 (1st scenario) and 2 (2nd scenario) highlighted as filled symbols 
would substantially contribute. Lines represent the characteristic times for the ZIF model for both 
scenarios. Dotted arrows mark the value of 𝜏𝑖  and the location of the crossover from solvent- to 
internal-friction dominated relaxation. 

 

A comparative summary of the results and the interpretation of the modes that 

are involved in each scenario are illustrated in figure 4.31. From this 
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dynamic rigidity of the macromolecule are very much the same for both 
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different in both scenarios. As it is illustrated in figure 4.31, the rotation of the 
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modes would contribute to the overall dynamics in scenario 1. In fact, only one 

internal mode in addition to the overall rotation would be active in the second 

scenario; this mode is also characterized by a much shorter time than the 

counterpart in scenario 1 (see figure 4.30). However, the absolute value of the 

size of the virtually frozen segments in both cases would be rather similar. 

Finally, we note that the zeroth mode gives the position of the center of mass of 

the chain. Applying the theoretical approximation for the diffusion coefficient, 

𝐷𝐶𝑀
𝑍 = 0.203𝑘𝐵𝑇 (𝜂𝑅̅𝑒)⁄ , we obtain a rather close value to the one measured by 

DLS (3.38 Å2 ns⁄ )  in the 1st scenario (𝐷𝐶𝑀
𝑍 = 4.5  Å2 ns⁄ ), while that deduced 

from the second scenario (7.3 Å2 ns⁄ ) is by far overestimated and unrealistic.  

 

 

Figure 4.31: Schematic illustration of the modes involved in the chain relaxation and its 
interpretation for the 1st scenario (left) and the 2nd scenario (right). 
 

Scenario 1: Scenario 2: 
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Thus, taking into account this result together with the structural investigation 

above described, we think that the more realistic situation is the 1st scenario, i.e., 

the form factor remains unperturbed at dilute conditions (below the overlap 

concentration), and the structure factor is not constant, so that inter-particle 

interactions have to be considered.  

 

4.4.6. Conclusion 

We have presented the first experimental investigation on the dynamic structure 

factor of SCNPs in solution. The comparison of the results on both type of SCNPs, 

Cu-SCNPs and Mi-SCNPs, and their precursor reveals a clear impact of the 

internal cross-links on the dynamics. This is reflected in an important slowing 

down on the internal modes revealed by the microscopic insight provided by 

neutron spin echo (NSE).  

 

The data have been analyzed in terms of theoretical approximations based on 

the Zimm model. Internal friction is a major ingredient in the dynamics, even for 

the linear precursor chains. This can be attributed to the rigidity of the PMMA-

AEMA backbone, enhanced by the presence of AEMA monomers. The internal 

friction clearly increases in the SCNPs. It is noteworthy the similarity with the 

dynamical behavior reported for solutions of the myelin basic protein (MBP) in 

D2O. Thus, the behavior of SCNPs and intrinsically disordered proteins (IDPs) is 

similar not only regarding the macromolecular static properties but also the 

dynamical features, as determined by scattering techniques.  

 

A comparative study applying the Zimm model to high molecular weight Mi-

SCNPs data reveals that the internal friction deduced is roughly independent of 
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the assumptions made about the impact of crowding on chain conformation and 

static structure factor. However, as previously concluded in the structural study, 

the more realistic picture to describe the chain dynamics is obtained by 

assuming that the form factor remains unperturbed below the overlap 

concentration and the diffusion coefficient is affected by a deGennes-like 

narrowing reflecting the inter-particle interactions.  
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5.1. Introduction 

Single-chain polymer nanoparticles are one of the most promising outputs of 

emerging single-chain technology (scheme 5.1).[1] The folding/collapse of single 

polymer chains to single-chain polymer nanoparticles (SCNPs) is reminiscent of 

the folding of proteins to their native, functional state.[2-4] The morphology of 

SCNPs in solution is expected to affect activity and selectivity, for instance, 

during catalysis or in sensing applications. As explained previously, two limiting 

molecular architectures were found, as schematically illustrated in scheme 5.1.  

 

 

Scheme 5.1: Illustration of: sparse single-chain polymer nanoparticle (a) and globular single-chain 
polymer nanoparticle (b). 

 

On one hand, synthesis of single-chain polymer nanoparticles in good solvent 

gives rise, in general, to non-globular sparse nano-objects [scheme 5.1(a)]. Since 

under such circumstances most of the cross-linking events taking place during 

single-chain polymer nanoparticle formation are inefficient for global 

compaction, a “pearl necklace” conformation is actually obtained showing locally 

compact portions of the chain connected by flexible segments. This particular 

morphology resembles that observed in intrinsically disordered proteins 

(a) (b)
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(IDPs)[5] and has inspired some recent proof-of-concept applications of single 

chain polymer nanoparticles.  

 

On the other hand, globular nanoparticles [scheme 5.1(b)] mimicking the typical 

conformation of enzymes have been synthesized by involving special precursors 

and techniques, such as a combination of multi-functional reactive groups and 

relatively long cross-linkers,[6] self-assembly of individual chains of neutral 

amphiphilic random copolymers[7] and self-assembly of charged amphiphilic 

random copolymers.[8] Both morphologies are of great interest for the 

development of potential applications of single-chain polymer nanoparticles.  

 

Remarkably, sparse single-chain polymer nanoparticles show the presence of 

multiple locally compact, but accessible, sites/cavities/zones, so-called “local 

pockets” [scheme 5.2(a)], whereas globular single-chain polymer nanoparticles 

display, on average, a single pocket of larger size [scheme 5.2(b)]. The possibility 

to anchor, either temporally or permanently, active species like catalyst or drugs 

onto these local pockets paves the way to some bioinspired applications of 

single-chain polymer nanoparticles. 

 

 

Scheme 5.2: Sparse single chain nanoparticles (a) show the presence of multiple locally compact, 
but accessible, sites/cavities/zones, so-called “local pockets”, whereas globular SCNPs (b) show a 
single pocket of larger size. 

(a) (b)
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Single-chain polymer nanoparticles are poised to make major contributions to a 

wide range of fields, from nanomedicine to sensing, catalysis, and other diverse 

uses (figure 5.1). The field of single-chain polymer nanoparticles is a relatively 

new one: irreversible single-chain polymer nanoparticles were first described in 

2001,[9] whereas reversible ones were first disclosed in 2008.[10] Consequently, 

the main applications of single-chain polymer nanoparticles reported in the last 

decades cover mainly proof-of-concept experiments, which however 

demonstrate the huge possibilities of single-chain polymer nanoparticles for 

these fields.  

 

 

Figure 5.1: Main applications of single-chain polymer nanoparticles, including new applications 
introduced in this thesis (*).    
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This chapter describes the novelty of the properties and potential applications of 

single-chain nanoparticles, as well as new synthesis routes developed in this 

thesis. Concerning potential applications we have considered SCNPs for catalysis 

and SCNPs for nanomedicine (drug delivery and fluorescent probes).  

 

Hence, based on a previously reported synthesis, an unexplored pathway for 

tuning the internal structure of metallo-folded single-chain nanoparticles is 

described, which paves the way for tuning the catalytic properties of this SCNPs 

(Cu-SCNPs in figure 5.1). Next, a new microwave-assisted synthesis route 

leading to PS based SCNPs with an unexpected functionality is explained. As it 

will be shown, this functionality is used to endow these SCNPs with fluorescent 

properties (PS SCNPs in figure 5.1). Finally, a highly-efficient synthesis for the 

preparation of PVP SCNPs able to encapsulate and release drugs is presented 

(see figure 5.1).  
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5.2. Internal Structure of Metallo-Folded SCNPs 

5.2.1. Introduction 

The SCNP folding/unfolding process has been followed mainly by dynamic light 

scattering (DLS), size exclusion chromatography (SEC), Fourier transform 

infrared (FTIR), among others. More recently, atomic force microscopy (AFM)-

based single-molecule core spectroscopy[11] has been employed to acquire 

information about the stability of the internal folding structures of 

supramolecular SCNPs via AFM-induced mechanical unfolding. Also, the effect of 

solvent quality and temperature on the coil-to-globule transition has been 

investigated for SCNPs with a chiral internal secondary structure.[12]  

 

However, the tuning of the internal structure of the SCNPs has remained an 

unsolved issue. Control over the spatial distribution of internal catalytic sites in 

metallo-folded SCNPs should be beneficial for the rational design of improved 

catalytic soft nano-objects. Several strategies have been developed to synthesize 

Ru-,[13] Rh-,[14] Cu-,[15-17] Pd-,[18-19] Ir-/Ni-[20] and Fe-[21] containing SCNPs. To the 

best of our knowledge, no attempt to modulate the internal structure of metallo-

folded SCNPs was carried out previously.  

  

5.2.2. Objective 

Our objective is to investigate an unexplored pathway for tuning the internal 

structure of metallo-folded SCNPs. The method is based on the use of 

amphiphilic random copolymers and two different synthesis procedures 

involving selective and nonselective solvents, that we call “protocols”. Protocol I 
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involves the conventional SCNP synthesis via intra-chain metal complexation in 

good solvent. Protocol II is based on the use of amphiphilic random copolymers 

and transfer –after SCNP formation via intra-chain metal complexation– from 

selective to good solvent conditions (see scheme 5.3).  

 

 

Scheme 5.3: Tuning the internal structure of metallo-folded SCNPs by using amphiphilic random 
copolymers and two different synthesis procedures involving nonselective (Protocol I) and 
selective (Protocol II) solvents.  

 

The size, morphology and spatial distribution of catalytic sites in SCNPs derived 

from protocols I and II have been determined by combining results from size 

exclusion chromatography (SEC), small-angle X-ray scattering (SAXS) and 

molecular dynamics (MD) simulations of a bead-spring model.  

 

5.2.3. Results and Discussion 

A. Size of SCNPs Synthesized by Protocols I and II 

A series of amphiphilic poly(oligo(ethylene glycol) methyl eyher metacrylate-co-

2-acetoacetoxy ethyl methacrylate), poly(OEGMA-co-AEMA), random 

copolymers having different AEMA content, high molar mass and low molar 

mass dispersity were synthesized, by optimizing a previously reported 
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procedure.[17] The poly(OEGMA-co-AEMA) copolymers (so-called precursors) 

were folded/collapsed to SCNPs via intra-chain copper(II) complexation at a 

concentration of 1 mg/ml using two different protocols. Once the Cu complex is 

formed, no significant Cu-ligand exchange is expected (for more details about the 

synthesis see ‘Standard synthesis routes’ in chapter 2). 

 

In protocol I, the synthesis was carried out in good solvent conditions (THF), 

while in protocol II SCNP formation was performed in water, which is a good 

solvent for OEGMA, but a bad solvent for AEMA. In this situation, the precursor is 

expected to form a core-shell structure with AEMA groups in the core.[17] After 

performing the synthesis in water, further solvent transfer of the resulting 

single-chain nanoparticles to THF was carried out.  

 

The main characteristics of the four used samples of poly(OEGMA-co-AEMA) 

copolymer (denoted as Ox, with x = 1-4), the SCNPs synthesized in THF (denoted 

as Ox-SCNP-I) and the SCNPs synthesized in water and transferred to THF 

(denoted as Ox-SCNP-II) are summarized in table 5.1 The data have been 

determined from SEC with triple detection (differential refractive index (DRI), 

multi-angle laser light scattering (MALLS) and viscosimetric (VI) detectors).  

 

As can be seen in table 5.1, upon increasing the AEMA content in Ox the relative 

reduction in the average values of the radius of gyration, 𝑅̅𝑔, and hydrodynamic 

radius, 𝑅̅𝐻 , for both Ox-SCNP-I and Ox-SCNP-II, becomes more apparent. The 

SCNPs produced by protocol II showed slightly lower values of 𝑅̅𝑔 and 𝑅̅𝐻 , when 

compared to their counterparts produced by protocol I [see table 5.1 and figure 

5.2(a)]. 
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Table 5.1: Characteristics of the amphiphilic random poly(OEGMA-co-AEMA) copolymers 
investigated in this work (denoted as Ox) and the corresponding metallo-folded SCNPs obtained by 
protocol I (denoted as Ox-SCNP-I) and protocol II (denoted as Ox-SCNP-II). 

Sample AEMAa 
(mol%) 

Mwb 
(kg/mol) 

Mw/Mnb 𝑹̅𝒈
b 

(nm) 

𝑹̅𝑯
b 

(nm) 
|∆𝑹̅𝒈|c 

(%) 

|∆𝑹̅𝑯|d 
(%) 

O1 11 110.1 1.04 12.6 7.9   

O1-SCNP-I  100.3 1.16 11.1 7.0 12 11 

O1-SCNP-II  94.2 1.12 11.0 7.0 13 11 

O2 20 90.4 1.10 9.5 7.1   

O2-SCNP-I  103.4 1.09 8.3 6.6 13 7 

O2-SCNP-II  88.1 1.07 8.2 6.3 14 11 

O3 35 175.0 1.08 15.6 9.8   

O3-SCNP-I  172.2 1.13 11.8 8.1 24 17 

O3-SCNP-II  174.6 1.04 11.3 8 28 18 

O4 40 208.0 1.05 16.4 11   

O4-SCNP-I  200.3 1.07 13.4 8.4 18 24 

O4-SCNP-II  206.5 1.05 9.1 8.2 45 26 

a)AEMA content in the copolymer as determined by 1H NMR spectroscopy. b)As determined by SEC 
with triple detection (DRI, MALLS and VI detectors) in THF at 30 ºC. c)|∆Rg| =|[Rg(Ox) - Rg(Ox-
SCNP)]/Rg(Ox)| × 100. d)|∆RH| =|[RH(Ox) – RH(Ox-SCNP)]/RH(Ox)| × 100 

 

Therefore, we can conclude that SCNPs synthesized in water from poly(OEGMA-

co-AEMA) copolymers (adopting a core-shell structure in water[17]) are 

significantly swollen when transferred to THF, even those with high AEMA 

content (see next section).  

 

Similar to previous works involving amphiphilic random copolymers,[12, 22] we 

found that SCNP formation involving protocol II can be carried out up to 100 

mg/ml without any aggregation of the resulting SCNPs [see figure 5.2(b)]. This 

can be attributed to the core-shell structure adopted by the precursor in water. 
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The steric stabilizing effect of the oligo(ethylene glycol) methyl ether branches 

from OEGMA units efficiently isolate the AEMA units, preventing inter-particle 

coupling events. Interestingly enough, the average hydrodynamic size of O4-

SCNP-II synthesized at 100 mg/ml was found to be slightly lower than that for 

O4-SCNP-II synthesized at 10 mg/ml, and in turn lower than that for O4-SCNP-II 

nanoparticles prepared at 1 mg/ml [figure 5.2(b)]. We can tentatively attribute 

this progressive size reduction upon increasing the precursor concentration to 

steric crowding effects.[23] Under crowding, cross-linking between functional 

groups that are far apart in the chain takes place, leading to improved global 

compaction.   

 

 

Figure 5.2: (a) Size exclusion chromatography (SEC) traces (MALLS detector) of precursor O4 
(blue curve), metallo-folded SCNPs synthesized from precursor O4 directly in THF (O4-SCNP-I, red 
curve), and SCNPs synthesized from precursor O4 in water and transferred to THF (O4-SCNP-II, 
green curve). (b) SEC traces (MALLS detector) of precursor O4 (blue curve) and O4-SCNP-II 
synthesized in water at: 1 mg/ml (green curve), 10 mg/ml (grey curve) and 100 mg/ml (black 
curve). 
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B. Morphology of SCNPs Synthesized by Protocol I and II 

Based on previous works, SCNPs synthesized by protocol I are expected to 

possess relatively sparse morphology in solution. However, two possibilities 

exist for the SCNPs synthesized by protocol II. If the synthesis leads to tight 

internal cross-linking, it might be expected that upon transfer from water to THF 

the SCNP core-shell structure will be weakly altered. If tight cross-linking is not 

produced, significant swelling of the SCNPs is expected since THF is a good 

solvent for both OEGMA and AEMA. In that case O-SCNP-II in THF will be sparse 

nano-objects similar, but presumably not identical, to the SCNPs synthesized 

directly in THF by protocol I.  

 

We have performed SAXS measurements to determine, unambiguously, the form 

factor, 𝑃(𝑄), of O4, O4-SCNP-I and O4-SCNP-II, all them in THF. As illustrated in 

figure 5.3(a), the precursor in THF shows a SAXS form factor corresponding to 

polymer chains in good solvent. This is demonstrated by the observed scaling 

behavior in the fractal (intermediate) regime,[24] 𝑃(𝑄) ~ 𝑄−1 𝜈⁄ , showing a value 

of ν = 0.59 (Flory exponent for a polymer in good solvent[24]). Concerning the 

SCNPs synthesized by protocol I, they show a value of ν = 0.52 displaying only a 

modest degree of compaction. According to SAXS, SCNPs synthesized by protocol 

II do not either display a compact, globular conformation in THF (ν = 0.33 for 

globules) but, instead, a sparse morphology with a value of ν = 0.48.  

 



The Novel SCNPs Synthesized: Emerging Properties and Potential Applications 

 

197 
 

 

Figure 5.3: (a) Form factor from SAXS of precursor O4 (blue circles), metallo-folded SCNPs 
synthesized from O4 directly in THF (O4-SCNP-I, protocol I, red circles) and metallo-folded SCNPs 
synthesized from O4 in water and transferred to THF (O4-SCNP-II, protocol II, green circles). (b) 
Form factor from MD-simulations of the precursor (blue circles) and the SCNPs synthesized trough 

protocol I (red circles) and II (green circles). Lines are fits to power laws 𝑃(𝑄)~𝑄1 𝜈⁄ . The 
corresponding values of ν are indicated. In all cases, the data are represented vs. the dimensionless 
𝑄𝑅̅𝑔. To facilitate visualization, ordinates have been scaled by arbitrary factors. 

 

The SAXS results were in good agreement with those obtained from MD-

simulations in which SCNP synthesis by protocol I and II were simulated [see 

figure 5.3(b) and chapter 3 for details about the molecular dynamics simulation 

experiments]. It is worth nothing that, though both protocols I and II produce 

sparse SCNPs (ν ≈ 0.5), the SCNPs obtained by protocol II are more compact at 

local scales. This feature is manifested after the fractal regime by the much 

sharper decay of 𝑃(𝑄) in O-SCNP-II (figure 5.3).  
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C. Internal Structure of SCNPs Synthesized by Protocol I and II 

The good agreement obtained between SAXS and MD-simulations motivates us 

to have a closer insight on the internal structure of SCNPs synthesized by 

protocols I and II. This is possible from the MD-simulations. Typical snapshots 

from MD-simulations of representative O-SCNP-I and O-SCNP-II are given in 

figure 5.4(a) and figure 5.4(c). The corresponding spatial distribution of the 

catalytic sites is provided in figure 5.4(b) and figure 5.4(d), respectively.  

 

As can be clearly observed, O-SCNP-I displays a relatively homogeneous spatial 

distribution of catalytic sites along the nanoparticle. Conversely, O-SCNP-II 

shows clusters of catalytic sites. This is a consequence of the spatial distribution 

of the reactive groups in the core of the precursor at the selective solvent. They 

already form clusters in the precursor and intra-molecular cross-linking creates 

bonds preferentially between close groups of the same cluster. Due to the 

permanent character of the bonds, the formed clusters survive in the swollen O-

SCNP-II when it is finally transferred to a good solvent.  

 

The clustering can be better appreciated when comparing the radial distribution 

function 𝑔(𝑟) of the catalytic sites for O-SCNP-I and O-SCNP-II [see figure 5.4(e)], 

𝑔(𝑟) =
1

𝜌
〈∑ 𝛿(𝑟 − 𝑟𝑖)𝑖≠0 〉. The positions 𝑟𝑖 used for computing 𝑔(𝑟) are not those 

of the linked beads, but of the centers of the corresponding bonds. In this way, 

𝑔(𝑟) does not include the trivial peak associated with the bond distance between 

linked beads.  
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Figure 5.4: (a) Typical snapshot from MD-simulations of a SCNP synthesized directly in a good 
solvent (protocol I). (b) Same as (a), but only the catalytic sites are displayed. (c) Typical snapshot 
from MD-simulations of a SCNP synthesized in a selective solvent and then transferred to good 
solvent (protocol II). (d) Same as (c), but only the catalytic sites are displayed, showing their 
spatial arrangement into clusters. In panels (a-d), backbone beads are depicted in yellow. Side 
group beads are depicted in turquoise (unreactive) and grey (reactive). (e) Radial distribution 
function of the catalytic sites of the SCNPs synthesized by protocol I and II. Distance r is given in 
units of the bead diameter. 
 

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70

SCNP-I
SCNP-II

4


r2
g

(r
)

r

(c)

(a) (b)

(d)

(e)



Chapter 5 

200 
 

In the case of the O-SCNP-I, the relatively homogeneous arrangement of the 

catalytic sites is confirmed by the unstructured, almost Gaussian shape exhibited 

by 𝑔(𝑟) [red color in figure 5.4(e)]. Rather different features are found in the 

𝑔(𝑟) of O-SCNP-II [green color in figure 5.4(e)]. A clear maximum is observed at 

a distance of r ≈ 4σ (with σ the bead diameter, σ ≈ 5-10 Å, see chapter 3), 

confirming the existence of clusters of catalytic sites. By integration of 𝑔(𝑟) up to 

the minimum after the peak, we estimate a typical number of 12 catalytic sites 

(12 bonds) per cluster. The Gaussian behavior is only recovered at large scales. 

Some structure in 𝑔(𝑟) is still observed at r ≈ 15σ (note the shoulder after the 

second peak), indicating some degree of correlation between neighboring 

clusters in O-SCNP-II.  

 

Thus, MD-simulations confirmed that the internal structure of metallo-folded 

SCNPs synthesized by protocols I and II is rather different. 

 

5.2.4. Conclusion 

We have investigated an unexplored pathway for tuning the internal structure of 

metallo-folded SCNPs, as a first step toward the rational design of improved 

catalytic soft nano-objects. The method is based on the use of amphiphilic 

random copolymers and transfer after SCNP formation from selective to good 

solvent conditions (protocol II) versus conventional SCNP synthesis in good 

solvent (protocol I).  

 

By combining different results from SEC with triple detection, SAXS and MD-

simulations, we have obtained a clear picture of the size, morphology in solution 

and spatial distribution of catalytic sites (internal structure) of metallo-folded 
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SCNPs synthesized by the former protocols. A relatively uniform spatial 

distribution of catalytic sites along the nanoparticle was observed for SCNPs 

synthesized by the conventional protocol I. Conversely, SCNPs obtained by the 

protocol II show clusters of catalytic sites. This work paves the way for tuning 

the catalytic properties of metallo-folded soft nano-objects based on SCNPs.  
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5.3. PS-based SCNPs by Microwave-Assisted Synthesis 

5.3.1. Introduction 

Thermal decomposition of organic azides with loss of molecular nitrogen 

generates highly reactive and poorly discriminating species, i.e. nitrenes, which 

can participate in a large number of chemical reactions.[25-28] Short-lived nitrenes 

are quickly stabilized upon intra-molecular rearrangement via e.g. Schmidt or 

Curtius rearrangement, inter-molecular cycloaddition to alkenes or inter-

molecular insertion into sp3 C–H bonds or N–H bonds, among other reactions. 

Nitrene chemistry –even being known since the 19th century[29]– remains highly 

attractive for developing new materials with improved characteristics in spite of 

the complexity of the possible reaction products.[29-31] 

 

Recent advances in nitrene chemistry include new alkene difunctionalization 

reactions, cascade reactions and heterocycle synthesis based on catalytic nitrene 

transfers.[32-34] Additionally, cross-linking of azide-containing materials via azide 

decomposition has recently been used for the stabilization of initially soluble 

organic thin films in high-performance semiconductor devices,[35-36] for 

nanoscale patterning in nanolithography[37-38] and for synthesis of fluorescent 

polymer nanoparticles.[39-40] However, precise chemical characterization of the 

resulting structures was difficult due to a lack of solubility of the resulting cross-

linked materials. In spite of the significant studies made in nitrene chemistry, 

azide decomposition via microwave-assisted synthesis has not been investigated 

in detail.  
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5.3.2. Objective 

The aim of this work is to investigate the microwave-assisted decomposition of 

azide-containing polystyrene (PS) copolymers at high dilution to promote intra-

chain cross-linking towards novel single-chain nanoparticles (scheme 5.4). As 

control experiments, we have also investigated azide thermal decomposition in 

the melt of exactly the same precursors. 

 

 

Scheme 5.4: Synthesis of novel single-chain nanoparticles based on microwave-assisted (m.w.) 
decomposition of azide-containing copolymer precursors at high dilution 

 

The chemical structures resulting upon azide decomposition in the melt state 

and dissolved at high dilution have been analyzed by means of a combination of 

characterization techniques including proton (1H) and carbon (13C) nuclear 

magnetic resonance (NMR) spectroscopy in solution, infrared (IR) spectroscopy, 

small-angle X-ray scattering (SAXS) and dielectric spectroscopy (DS),[41-42] 

among other ones.  

 

 

m.w.

High dilution



Chapter 5 

204 
 

5.3.3. Results and Discussion 

Varying amounts of the azide functionality (9, 16, 21 and 30 mol%) were 

incorporated into random copolymers of styrene and chloromethyl styrene of 

similar molecular weight (242 to 316 kg/mol), relatively narrow polydispersity 

(1.2 to 1.4) and similar size (13 to 14 nm in hydrodynamic radius) through a 

simple nucleophilic substitution reaction with sodium azide in DMF at room 

temperature for 24 h.[37] The characteristics of the resulting azide-containing 

precursors denoted as P9, P16, P21 and P30 are summarized in table 5.2. A 

sample of neat PS material having no azide functional groups, denoted as P0, was 

also synthesized as a control for DS measurements (for details about the 

synthesis see ‘New Synthesis Routes’ in chapter 2). 

 

Table 5.2: Characteristics of control P0 and precursors P9, P16, P21 and P30. 

Code xa (mol%) Mwb (kg/mol) Mw/Mn c 𝑹̅𝑯
d (nm) Tge (°C) 

P0 0 282.8 1.2 14.5 103 

P9 9 259.5 1.3 13.5 100 

P16 16 315.7 1.4 13.8 97 

P21 21 241.7 1.3 13.6 95 

P30 30 274.8 1.3 14.1 63 
a)Azide content as determined by 1H NMR spectroscopy; b)Molecular weight as Determined by SEC 
with triple detection (DRI, MALLS and VI detector) in THF at 30 ℃; c)Polydispersity index 
d)Average hydrodynamic radius measured by DLS in DMF at 25 ℃; e)Glass transition temperature 

 

Initial experiments by thermogravimetric analysis (TGA) revealed that the azide 

groups decompose in the melt with nitrogen evolution at temperatures above 

200 °C [figure 5.5(a)]. As expected, the resulting network materials were found 

to be insoluble in any solvent as a consequence of inter-chain cross-linking 

taking place in the melt upon azide decomposition (200 °C, 3 h). 
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Figure 5.5: (a) Typical TGA curve of P(St-co-AMS) precursor (P21) showing the initial 
decomposition of azide groups at 200°C. (b) IR spectra of precursor P21, network cross-linked 
material B21 and intra-chain cross-linked single-chain nanoparticles NP21. 

 

For the azide-containing precursors, the characteristic stretching vibration band 

of azide groups at 2094 cm−1 was observed by IR spectroscopy [blue color in 
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figure 5.5(b)]. After azide thermal decomposition in the melt state, the analysis 

by IR spectroscopy of the resulting insoluble sample [green color in figure 

5.5(b)] showed the complete disappearance of the azide vibration band and the 

presence of a new vibration band centered on 1640 cm-1, arising from –NH– 

groups in the cross-linked segments of the material [scheme 5.5(a)].  

 

 

Scheme 5.5: (a) Inter-molecular cross-linking of precursor chains in the melt. (b) Intra-molecular 
cross-linking of precursor single chains in highly diluted DMF or NMP solution. 

 

In order to avoid inter-molecular cross-linking and obtain individual SCNPs, the 

microwave-assisted decomposition of the azide-containing polystyrene 

copolymers dissolved in N,N-dimethylformamide (DMF) or N-methylpyrrolidone 

(NMP) was carried out at high dilution [scheme 5.5(b)]. Chain compaction,[43-47] 

which is a signature of nanoparticle formation, was confirmed by size exclusion 

chromatography (SEC), dynamic light scattering (DLS) and SAXS measurements 

(figure 5.6).  
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Figure 5.6: Intra-chain cross-linked single-chain nanoparticles (NP21, red color) and its 
corresponding linear precursor (P21, blue color) showing chain compaction measured by different 
techniques. (a) SEC traces (MALLS detector), where SCNPs have longer retention time than 
precursor, thus showing a reduction in hydrodynamic volume; (b) Size distribution by intensity 
measured by DLS, where SCNPs display smaller hydrodynamic size; (c) SAXS form factors, where 
SCNPs have smaller values of the scaling exponent (obtained from the intermediate regime as 
(𝑄) ∝ 𝑄−1 𝜈⁄  ) than precursor, which reflects the compaction of the chain upon internal cross-link. 
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The results shown in figure 5.6 correspond to NP21, but chain compaction was 

also observed for NP9, NP16 and NP30. As an example, a clear reduction in the 

average hydrodynamic size (𝑅̅𝐻) was observed for all the single-chain 

nanoparticles by comparing data from precursors (table 5.2) and SCNPs (table 

5.3). 

 

Table 5.3: Characteristics of single-chain nanoparticles NP9, NP16, NP21 and NP30 

Code xa (mol%) ya (mol%) Mw (kg/mol) Mw/Mn 𝑹̅𝑯 (nm) Tg (°C) 

NP9 0.5 4.3 259.7 1.3 11.4 110 

NP16 2.4 6.8 309.8 1.3 11.0 114 

NP21 1.1 9.9 241.9 1.3 9.6 123 

NP30 4.5 12.8 274.0 1.3 9.7 132 
a)Residual azide content as determined by 1H NMR spectroscopy; b)Aldehyde content as 
determined by 1H NMR spectroscopy. 

 

For these SCNPs, we also investigated their properties of bulk samples. Intra-

chain cross-linking upon azide decomposition gives rise to a significant increase 

in the glass transition temperature of the bulk of nanoparticles (table 5.3) with 

respect to that of the corresponding precursor (table 5.2) due to severely 

hindered segmental chain mobility in the former case.[39, 48-52] When compared to 

the network cross-linked material (Tg = 60 °C), intra-chain cross-linked 

nanoparticles show several distinctive features by IR spectroscopy [red color in 

figure 5.5(b)]: (i) a new intense IR vibration band at about 1700 cm−1 which is 

indicative of the presence of carbonyl groups in the nanoparticles, (ii) a shift to 

1650 cm−1 of the –NH– vibration band from the cross-linked chemical segments 

(scheme 5.5) and (iii) incomplete decomposition of the azide functionalities after 

the microwave treatment (200 °C, 30 min) (figure 5.5 and table 5.3). 
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1H NMR and 13C NMR spectra in solution confirmed the additional presence of 

aldehyde groups in the intra-chain cross-linked nanoparticles (figure 5.7). 

Hence, peaks that can be attributed to aldehydic protons and carbons were 

observed at 9.8 ppm and 192 ppm, respectively.  

 

 

Figure 5.7: (a) 1H NMR and (b) 13C NMR spectra in CDCl3 of precursor P21 and intra-chain cross-
linked single-chain nanoparticles NP21. 

 

As illustrated in table 5.3, both the aldehyde content in the SCNPs and the 

corresponding Tg increase with an increase in azide content in the precursor. No 

signals from potential enamine products were detected by IR, 1H NMR and 13C 

NMR spectroscopy. Instead, the blue shift of the –NH– vibration band and the 
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shoulder in the >C=O band observed in figure 5.5(b) for the SCNPs are 

suggestive of the involvement of aldehyde/amine hydrogen bonding interactions 

in the neat material. These directional interactions, in addition to the intra-chain 

cross-linking, could contribute to the significant increase in glass transition 

temperature of the single-chain nanoparticles when compared to the precursors. 

 

To further elucidate the precise origin and nature of the aldehyde groups in the 

intra-chain cross-linked nanoparticles, DS measurements were performed. We 

hypothesized that signals arising from the products of nitrene chemistry upon 

azide decomposition, if active, should be easily detected by DS, due to the 

negligible DS signal of PS at low temperatures.[53-54] 

 

Figure 5.8 illustrates the dielectric spectra corresponding to P0 (reference with 

0 mol% of azide groups), azide-containing precursor P21, network cross-linked 

material B21 and intra-chain cross-linked nanoparticles NP21 and NP9. The 

spectrum of sample NP9 was normalized by a factor 21/9 showing that the 

resulting DS signal is approximately proportional to the initial amount of azide 

groups in the precursor. This is a clear indication that aldehyde groups were 

generated from a fraction of the total amount of azidomethyl units of the 

precursor. Consequently, the combined DS, IR and NMR results strongly suggest 

that the SCNPs were decorated with benzaldehyde pendants. 
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Figure 5.8: Dielectric spectra at T = -93 °C of P0 (as a reference), precursor P21, network cross-
linked material B21 and single-chain nanoparticles NP21 and NP9. *Spectrum of NP9 was 
normalized to that of NP21 by multiplying the loss factor (tan δ) by 21/9. 

 

In fact, the dielectric spectrum of a mixture of P0 (neat PS) and neat 

benzaldehyde provided compelling evidence of the presence of benzaldehyde 

pendants in the nanoparticles [figure 5.9(a)]. Hence, the strong dielectric signal 

of the nanoparticles at low temperature can be attributed to the rotation around 

the phenyl ring of the benzaldehyde pendant which is known to possess a strong 

electric dipole moment (μ = 3.14 D).[55] 

 

According to figure 5.8, these benzaldehyde pendants are highly sensitive DS 

probes when compared to either amine groups of the cross-linked chemical 

segments or azide pendant moieties of the precursor. Based on the Arrhenius 

law, a plot of the frequency at the peak maximum (fmax) vs. inverse of 
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temperature (1 𝑇⁄ ) allows one to determine the activation energy (Ea) for the 

rotation around the phenyl ring of the benzaldehyde pendants in the 

nanoparticles [figure 5.9(b)]. The value of Ea obtained, 8.1 ± 0.1 kcal mol−1, is 

similar to that observed for systems with hydrogen bonds of weak strength,[56] 

i.e., 1–15 kcal mol−1 and, hence, consistent with the presence of aldehyde/amine 

hydrogen bonding interactions in the NP9, NP16, NP21 and NP30 samples. It is 

worth of mention that benzaldehyde cannot form enamines with secondary 

amines. 

 

 

Figure 5.9: (a) Tan δ normalized to its maximum value at T = -123 °C of NP21 (green symbols) and 
a mixture of P0 and neat benzaldehyde (black symbols). (b) Arrhenius plot giving the activation 
energy for the rotation around the phenyl ring of the benzaldehyde pendants in nanoparticles NP9, 
NP16, NP21 and NP30. 
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instead of DMF. Figure 5.10(a) shows the IR spectra of NP21 synthesized in DMF 

(red) and NMP (grey); in both cases the presence of carbonyl groups (intense 

band at 1700 cm-1) and –NH– groups (1650 cm-1) is observed. Similarly, figure 

5.10(b) displays 1H NMR spectra of both samples having the same characteristics 

peaks, as indicated. Hence, the potential role of DMF as formylation agent[57-60] 

can be ruled out.  

 

 

Figure 5.10: Intra-chain cross-linked single chain nanoparticles NP21 synthesized in DMF (red) 
and NMP (grey). (a) IR spectra of both samples; (b) 1H NMR in CDCl3. 

 

0

0.01

0.02

0.03

0.04

0.05

10001200140016001800

SCNPs in DMF
SCNPs in NMP

Wavenumber (cm
-1

)

A
b

s 
(a

.u
.)

(a)

(b)



Chapter 5 

214 
 

A tentative mechanism of aldehyde formation during azide thermolysis in DMF 

or NMP is provided in scheme 5.6(a), involving nitrene formation, followed by 

Schmidt rearrangement and imine hydrolysis during work up in the single-chain 

nanoparticle isolation step. Such a plausible mechanism is supported by 

previous observation of azide decomposition under UV light exposure with 

aldehyde generation[61-62] and control experiments with benzyl azide (synthesis 

details are described in chapter 2). In these control experiments, no signs of 

aldehyde groups were detected when benzyl azide was directly analyzed 

without further purification after microwave irradiation, and only signals 

coming from –NH– groups were present (blue color in figure 5.11). On the 

contrary, if benzyl azide was treated with water, the presence of signals from 

aldehyde groups was clearly observed by 1H NMR (green color in figure 5.11).  

 

 

Figure 5.11: 1H NMR spectra in CDCl3 of benzyl azide (red), benzyl azide after m. w. reaction 
without treatment with water (blue) and benzyl azide after m. w. reaction and treatment with 
water (green). 

 

In the present system, nitrene insertion into aromatic C–H bonds also takes 

place leading to intra-chain cross-linking [scheme 5.6(b)].  
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Scheme 5.6: Aldehyde-decorated soft nanoparticles from azides: (a) proposed mechanism of the 
formylation reaction. (b) Nitrene insertion into C-H bonds leading to intra-chain cross-linking. 

 

As a consequence, aldehyde-decorated ultrafine soft nanoparticles are easily 

obtained through this new route. To illustrate the versatility of the aldehyde 

functionality, fluorescent SCNPs were obtained by reaction of the benzaldehyde 

pendants with dansylhydrazine (figure 5.12). 

 

 

Figure 5.12: Fluorescent SCNPs obtained after functionalization of aldehyde pendants of NP30 
with dansylhydrazine. 
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5.3.4. Conclusion 

We have discovered a new and unexpected route towards the straightforward 

synthesis of aldehyde-decorated ultrafine soft nanoparticles based on 

microwave-assisted decomposition of azide-containing precursors in DMF or 

NMP at high dilution. It is worth of mention that the aldehyde functionality is 

absent upon azide thermal decomposition in the melt of exactly the same 

precursor. This finding opens new avenues for the rapid and efficient generation 

of functional ultrafine single-chain nanoparticles with potential use in material 

science, sensing and biotechnology. Moreover, the facile decoration of other 

different supports with aldehyde functional groups following this route can be 

envisioned. It is worth also emphasizing that this is one of the first investigations 

on a bulk system of SCNPs, and also that a non-conventional technique in this 

field –dielectric spectroscopy (DS)– has been employed.  
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5.4. Poly(Vinyl Pyrrolidone) SCNPs via Fenton Reaction 

5.4.1. Introduction 

Hydroxyl radicals, highly reactive species, have been used as initiators for cross-

linking reactions. In the presence of polymer macromolecules bearing labile 

hydrogen atoms they react to produce macroradicals. If favorably positioned, 

these radicals may undergo recombination leading to a covalent cross-link.[63]  

 

The Fenton reaction, known for more than a century, is a process that relies on 

the reduction of hydrogen peroxide at the expense of Fe2+ ions.[64-66] The 

hydroxyl radicals generated by Fenton reaction [Eq. (5.1)] are expected to have 

the same behavior as the hydroxyl radicals produced by high-energy radiation or 

by photolysis of H2O2. Fenton reagents have been used as radical initiator in 

vinylic polymerization or grafting for more than 50 years.[67-70] These reagents 

have been also used to initiate cross-linking[71] and prepare hydrogels.[63, 72-74]   

 

Fe2+  +   H2O2   →   Fe3+  +   OH−  +  OH•    (5.1) 

 

During the last decade there has been a growing interest in the potential use of 

soft nanoparticles as carriers for targeting drugs. Unfortunately, most of the 

current synthesis routes to stable single-chain nanoparticles suffer from 

different shortcomings, such as the use of extremely high temperatures, 

requirement of severe anhydrous conditions, or necessity of exotic, 

noncommercial monomers, which severely limit their potential applications in 

some promising fields (e.g., nanomedicine).[75] In this sense, the subject of 

interest in this field is the use of biocompatible, nontoxic and nonantiagenic 
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polymers, such as poly(vinyl pyrrolidone) (PVP), to produce SCNPs with these 

useful biological properties. PVP is a valuable water-soluble polymer with a large 

commercial use in medicine.  

 

5.4.2. Objective 

Our objective here is to develop a novel, facile and a higly-efficient method to 

obtain biocompatible poly(vinyl pyrrolidone) (PVP) based single-chain 

nanoparticles via Fenton reaction. This synthesis process has been achieved by 

starting from commercially available water-soluble PVP homopolymers and by 

using reactive oxygen species (ROS) for the intra-chain folding/collapse process 

of individual polymer chains. As it will be shown, since the resulting PVP SCNPs 

present potential features to be used in nanomedicine (water-soluble, 

biocompatible and non-toxic), an experiment to exploit these SCNPs as 

controlled drug-delivery nanocarriers has been performed. 

 

 

Scheme 5.7: (a) Intra-chain folding/collapse of individual PVP polymer chains to SCNPS via 
Fenton reaction. (b) Drug encapsulation and (c) delivery from PVP SCNPs. 
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5.4.3. Results and Discussion 

Hydroxyl radical is the most reactive radical among the reactive oxygen species 

(ROS). Its reaction with PVP is expected to generate macroradicals centered in 

three possible positions, taking into account the labiality of the hydrogen atoms 

present in its structure (see scheme 5.8). Generally, the rate of hydrogen 

abstraction is dependent on the dissociation energy of the X-H bond to form the 

radical. Basic thermodynamic calculations show that C-H bonds α-positioned to a 

heteroatom or a carbonyl are lower in energy, mainly due to the stabilization of 

the radical product. From the 5 possible C-H bonds in PVP structure, two of them 

do not fall into this category and are considered much less reactive.[63]  

 

 

Scheme 5.8: PVP macroradicals formed by Fenton reaction 

 

Within the three possibilities shown in scheme 5.8, the most favorable PVP 

macroradical obtained by Fenton reaction is the second case. Then, PVP water 

soluble single-chain nanoparticles will be formed via intra-chain coupling of 

these radicals, as is illustrated in scheme 5.9. Experimentally, the intra-chain 
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cross-linking of the individual poly(vinyl pyrrolidone) linear chains to single-

chain nanoparticles was performed in water, at room temperature in the 

presence of hydroxyl radicals (generated by Fenton reaction), and at very dilute 

conditions (0.5 mg/ml) in order to avoid inter-molecular cross-linking processes 

(all details about the synthesis are described in ‘New Synthesis Routes’ in 

chapter 2).  

 

 

Scheme 5.9: Illustration of the synthesis at high dilution of water-soluble poly(vinyl pyrrolidone) 
single-chain nanoparticles (PVP SCNPs) via intra-chain coupling (step ii) of radicals generated by 
Fenton reaction (step i). 

 

Figure 5.13 (upper panels) shows the systematic shift in SEC traces (MALLS 

detector) towards longer retention time during the synthesis of low molecular 

weight (Mw = 55 kg/mol) (a) and high molecular weight (Mw = 360 kg/mol) (b) 

PVP SCNPs. The noticeable shift observed in both cases is a consequence of the 

progressive reduction in hydrodynamic size and, consequently, in apparent 

molar mass (Mpapp) with reaction time (table 5.4).[76] After 72 h, a significant 

H2O H2O
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increase in retention time, and consequently a reduction in hydrodynamic 

volume, was achieved so we decided to stop the reaction, and set it as the 

optimum reaction time.  

 

 

Figure 5.13: Upper panels: Evolution of the SEC traces with reaction time [from left to right: 0 h, 
24 h, 48 h and 72 h, color code indicated in (a)] for low Mw SCNPs (a) and high Mw SCNPs (b). 
Lower panels: Size distribution evolution with reaction time [color code indicated in (a)] measured 
by DLS for low Mw SCNPs (c) and high Mw SCNPs (d). 
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A simple inspection in SEC traces suggested the absence of inter-molecular 

cross-linking and thus the formation of PVP SCNPs was only happening via intra-

chain cross-linking of linear polymer chains. The absence of inter-particle 

aggregation was also confirmed through dynamic light scattering (DLS) 

measurements, showing a monomodal particle size distribution during the 

whole synthesis process for both, low molecular weight [figure 5.13(c)] and high 

molecular weight SCNPs [figure 5.13(d)]. Moreover, from DLS measurements a 

reduction in hydrodynamic volume was also observed; SCNPs display smaller 

hydrodynamic radius than the polymer precursor (table 5.4).  

 

Table 5.4: Data of high Mw and low Mw PVP-SCNPs obtained during the synthesis process. 

Reaction 
time 

Mpapp (kg/mol)a 
High Mw 

RH (nm)b 
High Mw 

Mpapp (kg/mol)a 
Low Mw 

RH (nm)b  
Low Mw 

0 h 360.2 18.9 55.1 5.2 

24 h 14.7 5.3 7.6 4.1 

48 h 9.1 4.1 6.5 3.8 

72 h 6.7 3.3 5.3 2.9 

a)Apparent molecular weight as determined by SEC in water; b)Hydrodynamic radius as 
determined by DLS in water at 25 ℃. 

 

It is well known that efficiency of the Fenton reaction depends on relative 

concentrations on the Fenton reagents, i. e., [H2O2 Fe2+⁄ ] ratio, and pH.[66]  PVP 

SCNPs were successfully obtained when the reaction was carried out in acidic 

medium (pH = 3.5) and the ratio of [H2O2 Fe2+⁄ ] was 2 (results shown above). 

However, no SCNPs were obtained when the ratio was increased to 10, probably 

due to the high amount of PVP macroradicals formed, which would promote 

inter-molecular cross-linking and hence aggregation. We also performed another 

reaction in acidic medium where the ratio [H2O2 Fe2+⁄ ] was 1, but no enough 
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madroradicals were formed to promote intra-chain folding/collapse of PVP 

polymer chains.  

 

Moreover, to evaluate the pH influence, we carried out a reaction in basic 

medium (pH = 7.5) with the ratio [H2O2 Fe2+⁄ ] = 2. Dynamic light scattering 

(DLS) measurements on PVP of high molecular weight showed that after 24 h of 

reaction in basic medium, polymer chains formed aggregates with a 

hydrodynamic radius of ~200 nm (figure 5.14).  

 

 

Figure 5.14: Size distribution evolution with reaction time measured by DLS for high Mw PVP at 
pH = 7.5 and [H2O2]/[Fe2+] = 2. 

 

The equation 5.1 above described suggests that the presence of H+ is favorable 

for the decomposition of H2O2, indicating the necessity of the acid environment 

to produce hydroxyl radicals in a Fenton system.[64] At higher pH, the oxidation 

efficiency of Fenton’s reagent may decrease due to the transition of iron from a 

hydrated ferrous ion to a colloidal ferric species, Fe(OH)2. In the latter form, iron 
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catalytically decomposes the H2O2 into oxygen and water, without forming 

hydroxyl radicals, leading to a heterogeneous dispersion and thus promoting 

aggregation.  

 

One of the most promising fields of application of single-chain polymer 

nanoparticles is the design of engineered nano-systems to address diseases and 

to monitor and to protect human health. Ideally, the resulting nanocarriers 

should display low toxicity, high biodegradability, appropriate capacity to 

encapsulate different anti-cancer drugs and tunable control of drug release 

kinetics. In this sense, we have investigated the drug-delivery properties of PVP 

SCNPs synthesized by Fenton reaction of cisplatin drug. Cisplatin (CP) is a widely 

used anticancer agent[77-78] that has been shown to be highly effective in the 

treatment of testicular, ovarian, breast, bladder, lung and head and neck cancer.  

 

 

Scheme 5.10: Illustration of the delivery of cisplatin drug from PVP single-chain nanoparticles. 

 

Hence, cisplatin-loaded poly(vinyl pyrrolidone) single-chain nanoparticles were 

placed in distillated water (scheme 5.10) and a dialysis method was used to 

investigate their controlled delivery properties (all details about the preparation 

of cisplatin loaded PVP SCNPs are described in chapter 2). Figure 5.15(a) shows 

the absorbance increase in in UV-vis spectrum at 265 nm with time due to the 

H2O
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cisplatin release from PVP SCNPs, and figure 5.15(b) illustrates cisplatin release 

time profile during 96 h deduced from UV-vis measurements.  

 

 

Figure 5.15: (a) Evolution of the UV-vis spectrum at 265 nm with time (0h, 1h, 2h, 24h, 48h an 
96h, color code indicated in the figure) due to cisplatin release from PVP SCNPs. (b) Cisplatin 
delivery curve in % from PVP SCNPs, obtained from UV-vis measurements.   
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The complete delivery of cisplatin from PVP single-chain nanoparticles was 

observed to take place in 96 h, but almost the 75% of CP was released in the first 

24 h [figure 5.15(b)]. These promising results indicate that PVP based single-

chain nanoparticles have a great potential as a biocompatible material with a 

high efficiency in drug encapsulation and delivery.  

 

5.4.4. Conclusion 

In summary, we have developed a new and highly-efficient strategy for the 

preparation of water-soluble, biodegradable and non-toxic poly(vinyl 

pyrrolidone) single-chain nanoparticles via Fenton reaction. Moreover, we have 

demonstrated the potential use of PVP single-chain nanoparticles as drug 

nanocarriers, showing their appropriate capacity to encapsulate and release the 

drug cisplatin. Thanks to their biocompatibility, these PVP nanocarriers are 

expected to be applicable in promising fields, such as nanomedicine. 
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6.1. Conclusions 

Significant advances have been carried out in recent years in the field of single-

chain technology allowing the construction of a variety of single-chain soft nano-

objects via chain compaction (i.e., chain folding/collapse). One of the most 

promising outputs of single-chain technology is single-chain polymer 

nanoparticles. In this thesis we have made progress in this evolving field 

exploring basic properties of these nano-objects and developing novel synthesis 

routes towards functional single-chain nanoparticles.  

 

First, we have gained valuable and deeper knowledge about the basic properties 

of single-chain nanoparticles, in comparison with those of the precursor 

counterparts. We have performed a complete study about their stability, 

structure and dynamics in solution combining different techniques. Particularly 

important has been the application of neutron scattering due to two additional 

advantages: (i) to match the right length and time scales simultaneously and (ii) 

to offer the possibility of selectively labeling the components of a complex 

material. The following outcomes about the basic properties of SCNPs may be 

particularly highlighted: 

 

 We have found a superior stability against degradation induced by 

ultrasound irradiation for covalent-bonded SCNPs when compared to their 

parent linear precursor polymer. We have proposed a new mechanism 

under sonication involving loop scission events, which explains the 

excellent stability observed for these nano-objects, instead of the typical 

chain scission mechanism operative in linear polymers. The increased 
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stability of SCNPs offers new opportunities for the development of a new 

generation of mechanically stable ultra-fine soft nanomaterials.   

 

 Regarding the structural investigation, we have applied SAS techniques to 

determine the macromolecular size and conformation of SCNPs in solution. 

With these studies we have proved: (i) the collapse with respect to the 

linear precursor, providing direct microscopic evidence and quantification 

of the efficiency of the different synthesis routes applied; (ii) the sparse 

morphology of the usually obtained SCNPs in dilute solutions, rather similar 

to that exhibited by intrinsically disordered proteins; (iii) the unavoidable 

aggregation of SCNPs with increasing concentration of the same species, 

and the recovery of unimolecular solutions upon dilution only for SCNPs 

obtained by reversible cross-link; (iv) the identification of the overlap 

concentration of SCNPs as the key magnitude determining the crossover 

from unperturbed chain conformation in dilute conditions toward a 

collapse of the macromolecule with increasing crowding.  

 

 As for the dynamics, we have presented the first experimental investigation 

of the dynamic structure factor of SCNPs in solution. The unique 

information provided by NSE on the internal macromolecular dynamics has 

been analyzed in terms of theoretical approximations based on the Zimm 

model. We have proved that: (i) the internal dynamics for SCNPs in solution 

is extremely hindered with respect to that of the linear counterparts; (ii) 

the similarities of SCNPs with the behavior of intrinsically disordered 

proteins also from a dynamic viewpoint; (iii) the most realistic scenario to 

describe the experimental observations in the range of concentrations here 
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investigated considers unperturbed form factor and a 𝑄-dependent 

diffusion coefficient, reflecting the inter-molecular interactions of the 

entities in solution.  

 

Furthermore, trying to contribute to the design of nano-objects with improved 

capabilities, we have presented three novel synthesis routes for the preparation 

of functional single-chain nanoparticles and we have demonstrate their possible 

use in potential applications like catalysis or nanomedicine, either by means of 

proof-of-concept experiments or molecular dynamics simulations. The main 

results about the novel SCNPs obtained can be summarized as follows: 

 

 We have developed a method for tuning the internal structure of metallo-

folded SCNPs by using amphiphilic random copolymers and two different 

synthesis procedures (protocols). The combination of different results from 

SEC, SAXS and MD-simulations led us to obtain a clear picture of the size, 

morphology in solution and spatial distribution of catalytic sites (internal 

structure). We found a relatively homogeneous spatial distribution of 

catalytic sites along the SCNPs synthesized by one of the protocols, while 

SCNPs obtained by the other protocol showed clusters of catalytic sites. 

These results pave the way for tuning the catalytic properties of metallo-

folded soft nano-objects based on SCNPs.  

 

 While investigating the microwave-assisted decomposition of azide-

containing polymers at high dilution, we have discovered an unexpected, 

straightforward route to obtain aldehyde decorated ultrafine single-chain 

nanoparticles. Fluorescent SCNPs were obtained thanks to the presence of 
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aldehyde groups distributed along the surface of the nanoparticle. This 

finding opens new avenues for the rapid and efficient synthesis of 

functional SCNPs with potential use in material science, sensing and 

biotechnology.  

 

 We have used Fenton reaction to promote intra-chain homocoupling of 

poly(vinyl pyrrolidone) (PVP) polymer chains towards water-soluble, 

biocompatible and non-toxic PVP single-chain nanoparticles. We have 

performed successful experiments with these SCNPs to exploit their use as 

controlled drug-delivery nanocarriers, in particular with the drug cisplatin. 

Thanks to their valuable features, these soft nano-objects are expected to be 

applicable in promising fields, such as nanomedicine.  

 

Finally, from this thesis we can conclude that an interdisciplinary strategy 

combining synthesis, proof-of-concept experiments, simulations, and scattering 

techniques can be considered as the ideal approach for the production of single-

chain polymer nanoparticles endowed with useful and smart functions, as well 

as to disentangle the emerging properties of SCNPs-based materials.  
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