
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2009, Article ID 670314, 34 pages
doi:10.1155/2009/670314

Research Article
On the Characterization of Hankel and
Toeplitz Operators Describing Switched Linear
Dynamic Systems with Point Delays

M. De la Sen

IIDP, Faculty of Science and Technology, University of the Basque Country, Campus of Leioa (Bizkaia),
Aptdo, 644-Bilbao, Spain

Correspondence should be addressed to M. De la Sen, manuel.delasen@ehu.es

Received 5 March 2009; Accepted 26 May 2009

Recommended by Ülle Kotta

This paper investigates the causality properties of a class of linear time-delay systems under
constant point delays which possess a finite set of distinct linear time-invariant parameterizations
(or configurations) which, together with some switching function, conform a linear time-varying
switched dynamic system. Explicit expressions are given to define pointwisely the causal and
anticausal Toeplitz and Hankel operators from the set of switching time instants generated from
the switching function. The case of the auxiliary unforced system defined by the matrix of
undelayed dynamics being dichotomic (i.e., it has no eigenvalue on the complex imaginary axis)
is considered in detail. Stability conditions as well as dual instability ones are discussed for this
case which guarantee that the whole system is either stable, or unstable but no configuration of
the switched system has eigenvalues within some vertical strip including the imaginary axis. It is
proved that if the system is causal and uniformly controllable and observable, then it is globally
asymptotically Lyapunov stable independent of the delays, that is, for any possibly values of
such delays, provided that a minimum residence time in-between consecutive switches is kept
or if all the set of matrices describing the auxiliary unforced delay—free system parameterizations
commute pairwise.
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1. Introduction

The stabilization of dynamic systems is a very important issue since it is the first requirement
for most of the applications. Powerful techniques for studying the stability of dynamic
systems are Lyapunov stability theory and fixed point theory which can be easily extended
from the linear time invariant case to the time varying one as well as to functional differential
equations, as those arising for instance from the presence of internal delays, and to certain
classes of nonlinear systems [1, 2]. Dynamic systems which are of increasing interest are
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the so-called switched systems which consist of a set of individual parameterizations and a
switching function which selects along time the particular parameterization to be activated
during a subsequent time interval. Switched systems are essentially time varying by nature
even if all the individual parameterizations are time invariant due to the operation mode of
the switching function. The major interest of such systems arises from the fact that some
real word existing systems are able to change their parameterizations to better adapt to
their environments. Another important interest of some of such systems relies on the fact
that changes of parameterizations through time can lead to benefits in certain applications
while maintaining global stability [3–13]. The properties of uniform exponential stability,
robust exponential stability, and ultimate boundedness are very important in dynamic
systems as discussed in [4] under structured perturbations in the context of a variational
control system. The interest of stabilization of dynamic systems has been of interest in many
applications including, for instance, optimal control, switching control, switched dynamic
systems, systems parameterized within polytopes, and functional systems including time
delay systems, see, for instance, [6–27]. On the other hand, time delay dynamic systems are
very important in the real life for appropriate modelling of certain biological and ecological
systems, and they are present in physical processes implying diffusion, transmission,
teleoperation, population dynamics, war and peace models, and so forth (see, for instance,
[1, 2, 12–18]). Linear switched dynamic systems are a very particular case of the dynamic
system proposed in this manuscript. A switched system can result, for instance, from the
use of a multimodel scheme, a multicontroller scheme, a buffer system, or a multiestimation
scheme (see, for instance, [3, 17, 19–24, 28, 29]). For instance, a (nonexhaustive) list of papers
with deal with some of these questions related to switched systems follows.

(1) In [15], the problem of delay-dependent stabilization for singular systems with
multiple internal and external incommensurate delays is focused on. Multiple
memory-less state feedback controls are designed so that the resulting closed-loop
system is regular independent of delays, impulse free, and asymptotically stable.

(2) In [28], the problem of the N-buffer switched flow networks is discussed based on
a theorem on positive topological entropy.

(3) In [19], a multimodel scheme is used for the regulation of the transient regime
occurring between stable operation points of a tunnel diode-based triggering
circuit.

(4) In [20, 21], a parallel multiestimation scheme is derived to achieve close-loop
stabilization in robotic manipulators whose parameters are not perfectly known.
The multiestimation scheme allows the improvement of the transient regime
compared to the use of a single estimation scheme while achieving at the same
time closed-loop stability.

(5) In [22], a parallel multiestimation scheme allows the achievement of an order
reduction of the system prior to the controller synthesis so that this one is of reduced
order (then less complex) while maintaining closed-loop stability.

(6) In [23], the stabilization of switched dynamic systems is discussed through
topologic considerations via graph theory.

(7) The stability of different kinds of switched systems subject to delays has been
investigated in [11–13, 17, 24, 29].

(8) The stability switch and Hopf bifurcation for a diffusive prey-predator system is
discussed in [6] in the presence of delay.
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(9) A general theory with discussed examples concerning dynamic switched systems
is provided in [3].

A class of integrodifferential impulsive periodic systems is investigated in [5] on a Banach
space through an impulsive periodic evolution operator. The results in this paper emphasize
the importance of evolution operators for analysis of the solution of integrodifferential
systems. The dynamic system under investigation is a linear switched system subject to
internal point delays and feedback state-dependent impulsive controls which is based on
a finite set of time varying parametrical configurations and switching function which decides
which parameterization is active during a time interval as well as the next switching time
instant. Explicit expressions for the state and output trajectories are provided together with
the evolution operators and the input-state and input-output operators under zero initial
conditions. The causal and anticausal Toeplitz as well as the causal and anticausal Hankel
operators are defined explicitly for the case when all the configurations have auxiliary
unforced delay-free systems being dichotomic (i.e., with no eigenvalues on the complex
imaginary axis); the controls are square-integrable, and the input-output operators are
bounded. It is proven that if the anticausal Hankel operator is zero independent of the
delays and the system is uniformly controllable and uniformly observable independent of
the delays then the system is globally asymptotically Lyapunov’s stable independent of the
delays. Those results generalize considerably some previous parallel background ones for the delay-free
and switching-free linear time- invariant case [25]. The paper is organized as follows. Section 2
discusses the various evolution operators valid to build the state-trajectory solutions in the
presence of internal delays and switching functions operating over a set of time invariant
prefixed configurations. Stability and instability are discussed from Gronwall’s lemma [29]
for the case when the auxiliary unforced delay-free system possesses only dichotomic time
invariant configurations. Analytic expressions are given to define such operators as well as
the input-state and input-output ones under zero initial conditions. Section 3 discusses the
input-state and input-output and operators if the input is square-integrable and the state
and output are also square-integrable. Related to those operators proved to be bounded
under certain condition, the causal and anticausal state-input and state-output Hankel
and the causal and anticausal state-input and state-output Toeplitz operators are defined
explicitly. The boundedness of the state-input/output operators is proven if the controls are
square-integrable and the matrices of all the active configurations of the auxiliary-delay free
system are dichotomic for the given switching function. The causality and anticausality of
the switched system are characterized, and some relationships between the properties of
causality, stability, controllability, and observability are also proven.

Notation 1. Z,R, and C are the sets of integer, real, and complex numbers, respectively.
Z+ and R+ denote the positive subsets of Z, respectively, and C+ denotes the subset of

C of complex numbers with positive real part.
Z− and R− denote the negative subsets of Z, respectively, and C− denotes the subset of

C of complex numbers with negative real part.

Z0+ := Z+ ∪ {0}, R0+ := R + ∪ {0}, C0+ := C+ ∪ {0},
Z0− := Z− ∪ {0}, R0− := R− ∪ {0}, C0− := C− ∪ {0}.

(1.1)

Given some linear space X (usually R or C) then C(i)(R0+, X) denotes the set of functions of
class C(i). Also, BPC(i)(R0+, X) and PC(i)(R0+, X) denote the set of functions in C(i−1)(R0+, X)



4 Abstract and Applied Analysis

which, furthermore, possess bounded piecewise continuous constant or, respectively,
piecewise continuous constant ith derivative on X.

The set of linear operators from the linear space X to the linear space Y are denoted
by L(X,Y ), and the Hilbert space of n norm-square Lebesgue integrable real functions
on R is denoted by Ln

2 ≡ Ln
2(R) and endowed with the inner product L2-norm ‖f‖Ln

2
:=

(
∫∞
−∞‖f(τ)‖22dτ), for all f ∈ Ln

2 , where ‖ · ‖2 is the �2-vector (or Euclidean) norm and its
corresponding induced matrix norm. Ln

2 [α,∞) the Hilbert space of n norm-square Lebesgue
integrable real functions on [α,∞) ⊂ R for a given α ∈ R which is endowed with the norm
‖f‖Ln

2 [α,∞) := (
∫∞
α ‖f(τ)‖22dτ), for all f ∈ Ln

2[α,∞). Ln
2+ := {f ∈ Ln

2 : f(t) = 0, for all t ∈ R−}
and Ln

2− := {f ∈ Ln
2 : f(t) = 0, for all t ∈ R+} are closed subspaces of Ln

2 := {f ∈ Ln
2 : f(t) =

0, for all t ∈ R−} → Ln
2 of respective supports R0+ and R0−. Then, Ln

2 = Ln
2+ ⊕ Ln

2−.
In denotes the nth identity matrix.
λmax(M) and λmin(M) stand for the maximum and minimum eigenvalues of a definite

square real matrix M = (mij).
σ : R0+ → N := {1, 2, . . . ,N} is the switching function which defines the

parameterization at time t of a switched dynamic system among N possible time invariant
parameterizations. στ,t(:= σ | [0, t)) : [0, t)(⊂ R0+) → Nτ,t ⊂ N is the partial switching
function with its domain restricted to [τ, t]. σt is a notational abbreviation of σ0,t.

The point constant delays are denoted by hi ∈ [0, h], for all i ∈ q ∪ {0} and are, in
general, incommensurate, and h0 = 0.

2. The Dynamic System Subject to Time Delays

Consider the following class of switched linear time-varying differential dynamic system
subject to q distinct internal incommensurate point delays 0 = h0 < h1 < h2 < · · · < hq = h:

ẋ(t) =
q∑

i =0

Ai(t)x(t − hi) + B(t)u(t), y(t) = C(t)x(t) +D(t)u(t), (2.1)

where hi ∈ (0,∞); for all i ∈ q := {1, 2, . . . , q}, x(t) ∈ Rn, u(t) ∈ Rm, and y (t) ∈ R
p
are the state,

input (or control) and output (or measurement) vectors, respectively, and

Ai(t) ∈ Ai :=
{
Aij ∈ Rn×n : j ∈ N

}
, B (t) ∈ B :=

{
Bj ∈ Rn×m : j ∈ N

}
,

C(t) ∈ C :=
{
Cj ∈ Rp×n : j ∈ N

}
, D(t) ∈ D :=

{
Dj ∈ Rp×m : j ∈ N

}
,

(2.2)

where i ∈ q ∪ {0} := {0, 1, 2, . . . ,N}, fulfilling that Ai(τ), Bi(τ), Ci(τ) and Di(τ) are piecewise
constant such that they are constant either in (t − T, t] or in [t, t + T), for all t ∈ R0+ and
some fixed T ∈ R+. The system (2.1) has two auxiliary unforced systems which are useful for
stability analysis defined as follows.

(i) The zero-delay auxiliary unforced switched system (2.1): ẋ(t) = (
∑q

i=0 Ai (t))x(t); y(t) =
C(t)x(t) is the particular system arising when all the delays of (2.1) are zero.
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(ii) The delay-free unforced auxiliary switched system: ẋ(t) = A0(t)x(t − hi); y(t) = C(t)x(t)
is the particular system arising when all the matrices describing delayed dynamics
in (2.1) are zero.

A well known important property is that, in the case of one single configuration,
(i.e., the system does not switch among a set of them) the global stability of the above
auxiliary systems leads to necessary conditions for stability independent of the delays [26].
The physical interpretation is that the dynamic system (2.1) is a switched system under some
(piecewise constant) switching function σ : R0+ → N, which generates a strictly ordered
sequence of switching time instants STσ := {ti : ti+1 ≥ ti + T, for all i ∈ N0(⊃ {1}) ⊂ Z+, t1 ∈
R0+}, and which might be equivalently rewritten, since Ai(t) = Aiσ(t), for all i ∈ N ∪ {0},
B(t) = Bσ(t), C(t) = Cσ(t), D(t) = Dσ(t) via the switching function σ : R0+ → N, as

ẋ(t) =
q∑

i=0

Ai(t)x(t − hi) + B(t)u(t)

=

(
q∑

i = 0

Ai(t)

)

x(t) +
q∑

i = 1

(Ai(t)x(t − hi) −Ai(t)x(t)) + B(t)u(t),

(2.3)

y(t) = C(t)x(t) +D(t)u(t), (2.4)

where x : R0+ ∪ [−h, 0) → X ⊂ Rn is the state-trajectory solution, which is almost
everywhere time differentiable on R0+ and satisfies (2.3), subject to bounded piecewise
continuous initial conditions on [−h, 0), that is, x = ϕ ∈ BPC(0)([−h, 0],Rn). It is assumed
that σ(t) = j ∈ N, for all t ∈ R− ∪ [0, t1), t1 ∈ STσ , being the first switching instant generated
by the switching function σ : R0+ → N; that is, there is a time invariant parameterization
belonging to the given set on (−∞, t1]. The above assumption has an obvious real meaning
for the general cases where the control is nonzero on R−. The unique mild solution of the
state-trajectory solution, which exists on R0+ according to Picard-Lindeloff theorem for any
given ϕ ∈ BPC(0)([−h, 0],Rn) and any u ∈ BPC(0)(R,Rm), may be calculated on any time
interval [α, t] ⊂ R on nonzero measure by first decomposing the interval as a disjoint union
of connected components defined by its contained sequence of switching time instants as

[α, t] = [α, tk] ∪
⎛

⎝
⋃

i∈N̂t(α)

[tk+i, tk+i+1]

⎞

⎠ ∪
[
tk+1+Nt(α), t

]
, (2.5)

where N̂t(α) := Nt(α) ∪ {0}; Nt(α) := {i ∈ N : SIσ � ti ≤ t}, tk+i ∈ STσ , for all i ∈ Nt(α) and
tk+Nt(σ)+1 ∈ STσ . Note that σ(t−

k
) = j(tk)/=σ(t+

k
) = j(tk+ 1) ∈ N, for all tk, tk+1 ∈ STσ . Then, the

state trajectory solution is

x(t) = (Φxh(α))(t) + (Γuα)(t)

= Φ(t, α)x(α) +
q∑

i =1

∫ t

α

Φ(t, τ)Ai(τ)x(τ − hi)dτ +
∫ t

α

Φ(t, τ)B(τ)u(τ)dτ,
(2.6)
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where, although the evolution operators between any two time instants τ, t > τ depends on
the corresponding partial switching function στ,t, the simpler notation Φ(t, τ) is preferred
instead for Φστ,t(t, τ) for the sake of simplicity. This simplified notation criterion will be used
when no confusion is expected together with the former one Mσ(t) → M(t) for all the
matrices of the individual parameterizations. The output trajectory solution is

y(t) = (CΦxh(α))(t) + (CΓuα +D)(t)

= C(t)

[

Φ(t, α)x(α) +
q∑

i=1

∫ t

α

Φ(t, τ)Ai(τ)x(τ − hi)dτ +
∫ t

α

Φ(t, τ)B(τ)u(τ)dτ

]

+D(t)u(t),

(2.7)

for all t(≥ α), α ∈ R, subject to initial conditions ϕ ∈ BPC(0)([−h, 0],Rn), where
(1) xh(α) is the strip of state-trajectory solution on [α − h, h]which takes values ϕ(t) if

t = α − h < 0
(2) the evolution operator in Φ ∈ L(Rn × R,Rn) is defined pointwisely by

(Φxh(α))(t) := Φ(t, α)x(α) +
q∑

i=1

∫ t

α

Φ (t, τ)x(τ − hi)dτ, ∀t(≥ α), α ∈ R, (2.8)

so that (Φxh(0))(t) := Φ(t, 0)x(0) +
∑q

i=1

∫ t
0 Φ(t, τ)Ai(τ)x(τ − hi)dτ is the unforced response

in [0, t], where the matrix function Φ ∈ C(0)(R × R,Rn×n) is a fundamental matrix of the
dynamic differential system which is everywhere differentiable and has almost everywhere
continuous time-derivative on R with bounded discontinuities on the set STσ and is defined
on the interval [α, t] ⊂ R as

Φ(t, α) = eA0(tk+Nt(α)+1
)(t−tk+Nt(α)+1

)

⎛

⎝
k+Nt(α)∏

i=1

[
eA0(tk+i)(tk+i+1−tk+i)

]
⎞

⎠eA0(α)(tk−α), (2.9)

and the above matrix function products are defined to the left, and
(3) the input-state and input-output operators in Γ ∈ L(Rm × R,Rn)and Γo ∈ L(Rm ×

R,Rp), respectively, Γo := CσΓ +Dσ , are defined pointwisely by

(Γuαt)(t) :=
∫ t

α

Φ(t, τ)B(τ)u(τ)dτ =
∫ t

−∞
Φ(t, τ)B(τ)uαt(τ)dτ

(Γouαt)(t) :=
∫ t

α

C(t)Φ(t, τ)B(τ)u(τ)dτ +D(t)u(t)

=
∫ t

−∞
C(t)Φ(t, τ)B(τ)uαt(τ)dτ +D(t)u(t), ∀t (≥ α), α ∈ R0+,

(2.10)
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where

uαt(τ) :=

⎧
⎨

⎩

u(τ), ∀τ ∈ [α, t],

0, ∀τ ∈ R \ [α, t],
(2.11)

so that

(Γuαt)(t) :=
∫ t

α

Φ(t, τ)B(τ)u(τ)dτ,

(CΓuαt +D)(t) :=
∫ t

α

C(t)Φ(t, τ)B(τ)u(τ)dτ +D(t)u(t)

(2.12)

are, respectively, the unforced state and output responses in [α, t]. The state and output
trajectory solutions (2.6), or (2.7), under (2.8)–(2.10), subject to the output equation in (2.1)
are identically defined by

x(t) = Z(t, α)x(α) +
q∑

i=1

∫α

α−hi

Z(t, τ)x(τ)dτ +
∫ t

−∞
Z(t, τ)B(τ)uαt(τ)dτ,

y(t) = C(t)

(

Z(t, α)x(α) +
q∑

i=1

∫α

α−hi

Z(t, τ)x(τ)dτ +
∫ t

−∞
Z(t, τ)B(τ)uαt(τ)dτ

)

+D(t)u(t),

(2.13)

with initial conditions x = ϕ ∈ BPC(0)([−h, 0],Rn), so that x(0) = ϕ(0), Z(t, α) ∈ C(0)(R ×
R,Rn×n) is an everywhere differentiable matrix function on R+, with almost everywhere
continuous time-derivative except at time instants in SIσ , which satisfies

Ż(t) =
q∑

i=0

A(t)Z(t − hi, 0) (2.14)

on R+ whose unique solution satisfies Z(t, α) = 0, for all α(< t), t ∈ R, and is defined by

Z(t, α) = Φ(t, α)

[

In +
q∑

i=1

∫ t

α

Φ(α, τ)Ai(τ)Z(τ − hi, α)dτ

]

, ∀t(≥ α), α ∈ R (2.15)

on any time interval [α, t] ⊂ R0+. Now, take α = 0, and consider that the input u(t) is defined
on R. Then, the combination of (2.7) with the substitution of (2.13) in the delayed state and
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output-trajectory solutions yields

x(t) = Φ(t, 0)

(

In +
q∑

i=1

∫ t

0
Φ(0, τ)Ai(τ)Z(τ − hi, 0)dτ

)

x(0)

+
q∑

i=1

q∑

j=1

∫ t

0

∫0

−hj

Φ(t, τ)Ai(τ)Z
(
τ − hi, γ

)
ϕ
(
γ
)
dγ dτ

+
∫ t

−∞
Φ(t, τ)B(τ)u(τ)dτ +

q∑

i=1

∫ t

0

∫ τ−hi

−∞
Φ(t, τ)Ai(τ)Z

(
τ − hi, γ

)
B
(
γ
)
u
(
γ
)
dγ dτ

= Φ(t, 0)

(

In +
q∑

i=1

∫ t

0
Φ(0, τ)Ai(τ)Z(τ − hi, 0)dτ

)

x(0)

+
q∑

i=1

q∑

j=1

∫ t

0

∫0

−hj

Φ(t, τ)Ai(τ)Z
(
τ − hi, γ

)
ϕ
(
γ
)
dγ dτ

+
∫ t

−∞
Φ(t, τ)

[

B(τ)+
q∑

i=1

∫ t

−∞
Φ
(
0, γ
)
Ai

(
γ
)
Z
(
γ−hi, τ

)
B(τ)

(
U(τ)−U(γ−hi

))
dγ

]

u(τ)dτ,

y(t) = Cσ(t)

[

Φ(t, 0)

(

In +
q∑

i=1

∫ t

0
Φ(0, τ)Ai(τ)Z(τ − hi, 0)dτ

)

x(0)

+
q∑

i=1

q∑

j=1

∫ t

0

∫0

−hj

Φ(t, τ)Ai(τ)Z
(
τ − hi, γ

)
ϕ
(
γ
)
dγ dτ +

∫ t

−∞
Φ(t, τ)B(τ)u(τ)dτ

+
q∑

i=1

∫ t

0

∫ τ−hi

−∞
Φ(t, τ)Ai(τ)Z

(
τ − hi, γ

)
B
(
γ
)
u
(
γ
)
dγ dτ

]

+D(t)u(t)

= C(t)

[

Φ(t, 0)

(

In +
q∑

i=1

∫ t

0
Φ(0, τ)Ai(τ)Z(τ − hi, 0)dτ

)

x(0)

+
q∑

i=1

q∑

j=1

∫ t

0

∫0

−hj

Φ(t, τ)Ai(τ)Z
(
τ − hi, γ

)
ϕ
(
γ
)
dγ dτ

+
∫ t

−∞
Φ(t, τ)

[

B(τ) +
q∑

i=1

∫ t

−∞
Φ
(
0, γ
)
Ai

(
γ
)
Z
(
γ − hi, τ

)

×B(τ)(U(τ) −U
(
γ − hi

))
dγ

]

u(τ)dτ

]

+D(t)u(t),

(2.16)

where U(t) is the unit step (Heaviside) function. The following result is concerned with
sufficient conditions of asymptotic stability and exponential stability of the switched delayed
system (2.1), (2.3), based on Gronwall’s lemma, which will be then useful to define the
Hankel and Toeplitz operators.
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Theorem 2.1. The following properties hold.
(i) The unforced dynamic system (2.1), (2.3) is globally asymptotically stable independent of

the sizes of the delays if the switching function σ : R0+ → N is such that

∃ lim
t→∞

∏

ti∈STσ (t)

[

K0σ(ti)

(

1 +
eρ0σ(ti)h − 1

ρ0σ(ti)

(
q∑

i=1

∥
∥Aiσ(ti)

∥
∥
2

) )

× e−(ρ0σ(ti)−K0σ(ti)
∑q

i=1 ||Aiσ(ti)||2)(ti+1−ti)
]

= 0,

(2.17)

where R+ � K0σ(ti) = K0j(≥ 1) ∈ {K01, K02, . . . , K0N} and R+ � ρ0σ(ti) ∈ {ρ01, ρ02, . . . , ρ0N} if
σ(ti) = j ∈ N are real constants such that ‖eA0it‖2 ≤ K0ie

−ρ0it, for all i ∈ N (i.e., all the matrices
in the set A0 are stable) with STσ (t) := {ti ∈ STσ : ti ≤ t} and ts(t)+1 := t if t /∈STσ , where
s(t) := cardSTσ (t).

(ii) The unforced dynamic system (2.1), (2.3) is globally exponentially stable independent of
the sizes of the delays if the switching function σ : R0+ → N is such that A0j are all stable matrices
satisfying ρ0j > K0σ(ti)

∑q

i=1 ‖Aij‖2, for all j ∈ N, and the residence time at each switching instant
satisfies maxti∈STσ (ti+1 − ti) ≥ T with its lower-bound T being sufficiently large according to the
respective absolute values |ρ0j | of the stability (or convergence) abscissas of A0j (i.e., − ρ0j < 0 if all
the eigenvalues of A0j are distinct and −ρ0j + ε, ε → 0+, otherwise), for all j ∈ N and the norms of

the matrices Aij ( for all i ∈ q, j ∈ N).
(iii) The unforced dynamic system (2.1), (2.3) is globally exponentially stable independent

of the sizes of the delays if the switching function σ : R0+ → N is such that at least one A0j is a
stable matrix satisfying ρ0j > K0σ(ti)

∑q

i=1 ‖Aij‖2, and furthermore, maxti,ti+1∈STσ (ti+1 − ti : σ (ti) =
j) is sufficiently large compared to

∑
ti,ti+1∈STσ max(ti+1 − ti : σ(ti)/= j, σ(ti+1)/= j), according to the

constants K0j ( for all j ∈ N), the absolute values of the stability abscissas of A0k ( for all k ∈ N),
and norms of Aij ( for all i, j ∈ N). If there is only a stable matrix A0j in the set A0. If there is a
unique stable matrix A0j , for some j ∈ N, then the switched system is globally exponentially stable
only if the switching function is such that

∑
tk ,tk+1∈STσ (tk+1 − tk : σ(tk) = j) has infinite measure. If

there is a unique stable matrix A0j for some j ∈ N and if the sequence of switching instants STσ is
finite, then the switching function is such that σ(tk) = j for the last switching instant tk.

(iv) If A0 = A0− ∪ (A0+ ∪ A0±) where A0− /= ∅, A0+ and A0± are the sets of stable, unstable,
and critically stable matrices in the set A0 then the switched system is globally exponentially stable
independent of the sizes of the delays if the switching function σ : R0+ → N is such that∑

ti,ti+1∈STσ (ti+1 − ti : σ(ti) = j, A0j ∈ A0−) is sufficiently large compared to
∑

ti,ti+1∈STσ (ti+1 − ti :
σ(ti) = j, σ(ti+1) = k,A0j , A0k /∈A0−) according to the constants K0j ( for all j ∈ N), the absolute
values of the stability abscissas of A0k ( for all k ∈ N) and norms of Aij ( for all i, j ∈ N).

Proof. (i) One gets from (2.7) by using Gronwall’s lemma [29]

‖x(t)‖2 ≤
∏

ti∈STσ(t)

[

K0σ(ti)

(

1 +
e
ρ0σ(ti)h − 1
ρ0σ(ti)

(
q∑

i=1

∥∥Aiσ(ti)
∥∥
2

))

×e− (ρ0σ(ti)−K0σ (ti)
∑q

i=1 ||Aiσ(ti)||2)(ti+1−ti)
]

sup
−h≤τ≤0

∥∥ϕ(τ)
∥∥
2,

(2.18)
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then property (i) follows by simple inspection that it is guaranteed that ‖x(t)‖2 → 0 as t → ∞
since the function of initial condition is bounded on its definition domain.

(ii) It follows directly from the above formula since the upper-bounding function
of ‖x(t)‖2 is of exponential order with decay rate (−ρ0j) < 0, provided that ρ0j >

K0σ(ti)
∑q

i=1 ‖Aij‖2, for all j ∈ N, provided that the minimum residence time maxti∈STσ (ti+1 −
ti) ≥ T is sufficiently large. Properties (iii) and (iv) are direct extensions of Property (ii) for
the cases when only one delay-free matrix of dynamics is stable or when only a nonempty
subset of them are stable matrices, respectively.

Theorem 2.1 extends known previous ones concerning asymptotic stability of the
switched system if all the matrices of the set A0 are stable and the switching function is
subject to a sufficiently large residence time in-between any two consecutive switches. A
dual result to Theorem 2.1(i)–(iii) is Theorem 2.2 below for instability when all the matrices
in the set A0 are unstable with no stable or critically stable eigenvalues (i.e., all the matrices
A0j , for all j ∈ N, are antistable) and the absolute convergence abscissas of −(A0j), for all j ∈
N, are sufficiently large compared to the norms of the matrices of delayed dynamics. Note
that although the matrices of delay-free dynamics be antistable, any of the parameterizations
of the whole delayed system (2.1), (2.3) can be antistable since it is well known that any
time invariant delayed system possessing a principal term in its characteristic polynomial has
any unstable value at finite distance and there exists only a finite number of modes within
each vertical strip. As a result, the number of unstable eigenvalues is finite, and since the
system possesses infinitely many eigenvalues [24], one concludes that the system cannot be
antistable.

Theorem 2.2. The following properties hold.
(i) The unforced dynamic system (2.1), (2.3) is globally unstable independent of the sizes of

the delays if the switching function σ : R0+ → N is such that

∃ lim
t→∞

∏

ti∈STσ(t)

[∣∣∣∣∣
K̃0σ(ti)−K0σ(ti)

eρ0σ(ti)h−1
ρ0σ(ti)

∣∣∣∣∣

(
q∑

i=1

∥∥Aiσ(ti)
∥∥
2

)

× e(|ρ̃0σ(ti)|−K0σ(ti)
∑q

i=1 ||Aiσ(ti)||2)(ti+ 1−ti)
]

= ∞,

(2.19)

where R+ � K̃0σ(ti) ≤ K0σ(ti) ∈ {K̃01, K̃02, . . . , K̃0N} and R− � ρ̃0σ(ti) ∈ {ρ̃01, ρ̃02, . . . , ρ̃0N}, with
|ρ̃0j | ≤ |ρ0j | (with K̃0j ≤ K0j and ρ̃0j being located or close to the minimum real part of the eigenvalues
of A0j and ρ0j , for all j ∈ N, defined in Theorem 2.1) if σ(ti) = j ∈ N are real constants such that

‖eA0it‖2 ≥ K̃0ie|ρ̃0i|t, for all i ∈ N (i.e., all the matrices in the set A0 are antistable and then unstable)
with STσ(t) := {ti ∈ STσ : ti ≤ t} and ts(t)+1 := t if t /∈STσ , where s(t) := cardSTσ(t).

(ii) The unforced dynamic system (2.1), (2.3) is globally exponentially unstable independent of
the sizes of the delays if the switching function σ : R0+ → N is such thatA0j are all unstable matrices
satisfying |ρ̃0j | > K0σ(ti)

∑q

i=1 ‖Aij‖2 for all j ∈ N, and the residence time at each switching instant
satisfies maxti∈STσ (ti+1 − ti) ≥ T with its lower-bound T being sufficiently large according to the
respective absolute values |ρ0j |of the stability abscissas of the stable matrices (−A0j) (i.e., −|ρ0j | < 0
if all the eigenvalues of A0j are distinct of positive real parts and −|ρ̃0j | + ε ≤ −|ρ0j | + ε, ε → 0+,
otherwise), for all j ∈ N and norms of Aij ( for all i, j ∈ N).

(iii) The unforced dynamic system (2.1), (2.3) is globally exponentially unstable independent
of the sizes of the delays if the switching function σ : R0+ → N is such that at least one A0j is a
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stable matrix satisfying |ρ0j | > K0σ(ti)
∑q

i=1 ‖Aij‖2, and furthermore, maxti,ti+1∈STσ (ti+1 − ti : σ(ti) =
j) is sufficiently large compared to

∑
ti,ti+1∈STσ max(ti+1 − ti : σ(ti)/= j, σ(ti+1)/= j), according to the

constants K0j ( for all j ∈ N), the absolute values of the stability abscissas of A0k ( for all k ∈ N)
and norms of Aij ( for all i, j ∈ N). If there is only a stable matrix A0j in the set A0. If there is a
unique stable matrix A0j , for some j ∈ N, then the switched system is globally exponentially stable
only if the switching function is such that

∑
tk,tk+1∈STσ (tk+1 − tk : σ(tk) = j) has infinite measure. If

there is a unique stable matrix A0j for some j ∈ N and if the sequence of switching instants STσ is
finite, then the switched system is globally exponentially stable if the switching function is such that
σ(tk) = j for the last switching instant tk.

A combination of Theorems 2.1 and 2.2 will be used in Section 3 to guarantee the
boundedness of the input-state and the input-output operators of the switched system. The
following result is direct from the fact that if the system is exponentially stable then its
Euclidean norm possesses an upper bound of exponential order with negative decay rate
so that the state and output trajectory solutions are in Ln

2 and Lp

2, respectively. As a result,
the input-state Γ and input-output Γ0 operators are members of L(Lm

2 ,L
n
2) and L(Lm

2 ,L
p

2 ),
respectively, that is, linear and then bounded.

Proposition 2.3. If any of the properties of Theorem 2.1(i)–(iii) hold for a given switching function
σ : R0+ → N then the unforced state and output trajectory solutions (Φxh(α)) ∈ Ln

2[α,∞) and
(CΦxh(α)) ∈ Lp

2[α,∞), for all α ∈ R0+, respectively. Thus, Φ ∈ L(Rn × [−h, 0],Ln
2[α,∞)) and

(CΦ) ∈ L(Rn × [−h, 0],Lp
2[α,∞)) which are then linear bounded operators since the switched system

is either globally asymptotically stable or globally exponentially stable. In particular, Φ ∈ L(Rn ×
[−h, 0],Ln

2) and (CΦ) ∈ L(Rn × [−h, 0],Lp
2).

If, in addition, u ∈ Lm
2 [α,∞) for some α ∈ R then the respective forced solutions fulfil (Γuα) ∈

Ln
2[α,∞) and (Γou) ∈ Lp

2[α,∞), for all α ∈ R0+, which are then bounded operators. Thus, Γ ∈
L(Lm

2 [α,∞),Ln
2[α,∞)) and Γo ∈ L(Lm

2 [α,∞),Lp

2[α,∞)).
If u ∈ Lm

2+ then the respective forced solutions fulfil (Γ+u) ∈ Ln
2+ and (Γo+u) ∈ Lp

2+,
respectively, so that Γ+ ∈ L(Lm

2+,L
n
2+) and Γo+ ∈ L(Lm

2+,L
p

2+). Equivalently, if u ∈ Lm
2 ∩

BPC(0)(R0+,Rm), that is, u(t) = 0, for all t ∈ R−, then Γ+ ∈ L(Lm
2+,L

n
2+) and Γo+ ∈ L(Lm

2+,L
p
2+).

Equivalently, if u ∈ Lm
2 ∩ BPC(0)(R0+,Rm), then Γ ∈ L(Lm

2 ,L
n
2) and Γo+ ∈ L(Lm

2 ,L
p

2).
If Theorem 2.2 holds and u ∈ Lm

2−, then the respective forced solutions fulfil (Γ−u) ∈ Ln
2−

and (Γo−u) ∈ Lp

2− so that Γ− ∈ L(Lm
2−,L

n
2−) and Γo− ∈ L(Lm

2−,L
p

2−). Equivalently, if u ∈ Lm
2 ∩

BPC(0)(R0−,Rm), then Γ ∈ L(Lm
2 ,L

n
2) and Γo+ ∈ L(Lm

2 ,L
p

2).

Proof. The first part concerning the unforced solution follows directly from Theorem 2.1(i)–
(iii). The respective linear operators are bounded. The second part follows by taking
into account the above properties in Theorem 2.1 and the square-integrability of u on its
appropriate definition domains.

If the system is globally asymptotically stable, then it is possible to restrict the domain and
image Lm

2 and Ln
2 of Γ+ to L

m
2+ and L

n
2+, respectively, for vector functions u ∈ Lm

2+ such that (Γ+u) ∈ Ln
2+,

since their support isR0+ and (Γu)(t) = 0, for all t ∈ R0−, and then to define a restricted operator Γ+ ∈
L(Lm

2+,L
n
2+). In the same way, it is possible to define a restricted operator (CΓ +D)+ ∈ L(Lm

2+,L
p

2+).
Similarly, it is possible to define Γ− ∈ L(Lm

2−,L
n
2−) and (CΓ +D)− ∈ L(Lm

2−,L
p

2−) of usefulness for
vector functions u ∈ Lm

2− if the system is unstable.
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3. Input-State and Input-to-Output Operators of the Switched System
and Hankel and Toeplitz Operators Ry ≡ R±

This section investigates the input-state and input-output operators Γ[0,t] : Rm × [0, t] →
Rn × [0, t] and Γo[0,t] : Rm × [0, t] → Rp × [0, t] of the switched system (2.1), and explicit
expressions defining them are given. Then, if the input is a square-integrable realm-vector on
R, further conditions for Γ ∈ L(Lm

2 , L
n
2) and Γo ∈ L(Lm

2 , L
p

2) are investigated and weaker ones
are also given for ΓRy ∈ L(Lm

2 [Ry], Ln
2[Ry]) or ΓoRy ∈ L(Lm

2 [Ry], L
p

2[Ry]) with Ry ⊂ R being
a bounded real interval, in particular for Ry ≡ R±. Finally, The Hankel and Toeplitz causal
and anticausal operators are investigated concerning the cases Ry ≡ R±. Two different sets
of assumptions, the first one being less restrictive, are now given to be used when deriving
some of the results of this section.

Assumption 3.1. u ∈ Lm
2 ∩ BPC(0)(R,Rm), and the matrices A0j are dichotomic (i.e., they have no

eigenvalues on the imaginary axis) while they have stable and antistable diagonal blocks A−
0j and A+

0j

of the same respective orders n− and n+, for all j ∈ N, which satisfy minj∈N(|ρ0j |, |ρ̃0j |) ≥ ε ∈ R+.
Furthermore, the norms of all the matrices of delayed dynamics are less than ε so that Theorem 2.1
(resp., Theorem 2.2) holds if all the matrices in the set A0 are stable (resp., antistable).

Assumption 3.2. Assumption 3.1 holds and, furthermore, the matricesA0j are simultaneously block
diagonalizable through the same transformation matrix; for all j ∈ N.

Note that if Assumption 3.1 hold then no configuration of the switched system has
eigenvalues within the open vertical strip (−ε, ε) × R of the complex plane from Theorems
2.1 and 2.2. Furthermore, there exist nonunique coordinate transformations Tj , for all j ∈ N,
such that

Ã0j = TjA0jT
−1
j = Block Diag

[
Ã−

0j , Ã
+
0j

]
, (3.1)

where Ã−
0j is stable (i.e., all its eigenvalues are in C0−) and of order n−, and Ã+

0j is antistable

(i.e., all its eigenvalues are in C0+) and of order n+ = n − n−, for all j ∈ N. Note also that if
Assumption 3.2 holds, then Tj = T , for all j ∈ N. After a linear change of variables x̃(t) =
T(tk)x(t), for all t ∈ [tk, tk+1) with tk, tk+ 1 ∈ STσ , such that σ(tk) = j and T(tk) = Tj , for some
j ∈ N, the system (2.1)may be described as follows:

˙̃x(t) =
q∑

i=0

Ãi(t)x̃(t − hi) + B̃(t)u(t), y(t) = C̃(t)x̃(t) + D̃(t)u(t), (3.2)

for all t ∈ [tk, tk+1), where

Ãi(t) = Ãik ∈ Ãi :=
{
Ãij ∈ Rn×n : j ∈ N

}
, B̃(t) = B̃k ∈ B̃ :=

{
B̃j ∈ Rn×m : j ∈ N

}
,

C̃(t) = C̃k ∈ C̃ :=
{
C̃j ∈ Rp×n : j ∈ N

}
, D̃(t) = D̃k ∈ D̃ :=

{
D̃j ∈ Rp×m : j ∈ N

}
,

(3.3)
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for some k ∈ N such that σ(t) = k subject to (3.1) and (3.4) below:

Ãi(t) = Ãij = TjAijT
−1
j =

⎡

⎣
Ã−−

ij Ã−+
ij

Ã+−
ij Ã++

ij

⎤

⎦, ∀i ∈ q ∪ {0}, and some j ∈ N, (3.4)

B̃(t) = B̃j = TjBj =

⎡

⎣
B̃−
j

B̃+
j

⎤

⎦ = C̃(t) = C̃j = Tj CjT
−1
j = Block Diag

[
C̃−

j , C̃
+
j

]
, D̃(t) = D̃j = Dj,

(3.5)

for all i ∈ q ∪ {0} and some for all j ∈ N,where

Ã−
0j ∈ Rn−×n− , Ã−

0j ∈ Rn+×n+ , Ã−−
ij ∈ Rn−×n− , Ã−+

ij ∈ Rn−×n+ , Ã+−
ij ∈ Rn+×n− ,

Ã++
ij ∈ Rn+×n+ , B̃−

j ∈ Rn−×m, B̃+
j ∈ Rn+×m, C̃−

j ∈ Rp×n− , C̃+
j ∈ Rp×n+ ,

∀i ∈ q ∪ {0}, ∀j ∈ N.

(3.6)

The subspaces χ−(A0j) = Im T−1
j

[
In−
0

]
and χ+(A0j) = Im T−1

j

[
0
In+

]
are independent of Tj

and are called, respectively, the stable and antistable subspaces of A0j , for all j ∈ N,
which are complementary, that is, Rn = χ−(A0j) ⊕ χ+(A0j), for all j ∈ N, so that Rn =
χ−(A0(t)) ⊕ χ+(A0(t)), for all t ∈ R+

0 . The projections on those subspaces are given by the
respective formulas:

Π−
j = T−1

j

[
In− 0

0 0

]

Tj , Π+
j = T−1

j

[
0 0

0 In+

]

Tj , ∀j ∈ N,

Π−(t) = T−1(t)

[
In− 0

0 0

]

T(t) = T−1
j

[
In− 0

0 0

]

Tj ,

Π+(t) = T−1(t)

[
In− 0

0 0

]

T(t) = T−1
j

[
In− 0

0 0

]

Tj ,

(3.7)

and Π±
jk

= Π±(t) = Π±(tk) for some jk ∈ N such that σ(t) = jk; for all t ∈ [tk, tk+1) for each
tk, tk+1 ∈ ST(σ). Thus, from (2.13)–(2.15), and α = 0, one gets directly

˙̃x(t) = T(t)x(t) = Z̃(t, 0)T(0)x(0) +
q∑

i=0

∫0

−hi

Z̃(t, τ)T(τ)x(τ)dτ +
∫ t

−∞
Z̃(t, τ)B̃(τ)u(τ)dτ,

(3.8)
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with initial conditions x̃ = ϕ̃ = T(0)ϕ ∈ BPC(0)([−h, 0],Rn), so that x̃(0) = ϕ̃(0), Z̃(t, 0) ∈
C(0)(R0+,Rn×n) is an everywhere differentiable matrix function on R0+, with almost
everywhere continuous time-derivative except at time instants in SIσ , which satisfies:

˙̃Z(t) = T(tk)Ż(t) =
q∑

i=0

Ãi(tk)T(t − hi)Z(t − hi, 0), ∀t ∈ [tk, tk+1), ∀tk ∈ ST(σ), (3.9)

on R+, since σ(t) = σ(tk), for all t ∈ [tk, tk+1), whose unique solution satisfies Z(t, 0) = 0, for
all t ∈ R−, and is defined by

Z̃(t, 0) = T(t)Z(t, 0) = Φ̃(t, 0)

[

In +
q∑

i=1

∫ t

0
Φ̃(t, τ)Ãi(τ)T(τ − hi)Z(τ − hi, 0)dτ

]

, ∀t ∈ R0+.

(3.10)

Then,

eÃ0(t)t = T(t)eA0(t)tT−1(t) = Block Diag
[
eÃ

−
0 (t)t, eÃ

+
0 (t)t
]
, (3.11a)

so that

Φ̃(t, tk) = eÃ0(tk)(t−tk) = T(tk)Φ(t, tk)T−1(tk)

= Block Diag
[
Φ̃−(t, tk), Φ̃+(t, tk)

]

= Block Diag
[
eÃ

−
0 (tk)(t−tk), eÃ

+
0 (tk)(t−tk)

]
,

(3.11b)

Z̃(t, tk) = T(t)Z(t, tk)T−1(t) = Tσ(t)Z(t, tk)T−1
σ(t), (3.11c)

for all t ∈ [tk, tk+1), with σ(t) = σ(tk) = jk ∈ N, for all t ∈ [tk, tk+1), for all tk, tk+1 ∈ STσ since

eÃ0j t = Tje
A0j tT−1

j = Block Diag
[
eÃ

−
0j t, eÃ

+
0j t
]
,

Φ̃(t, tk) = TjΦ(t, tk)T−1
j ; Z̃(t, tk) = TjZ(t, tk)T−1

j ,

(3.12)

for all t ∈ [tk, tk+1), for all tk ∈ ST(σ) provided that σ(t) = σ(tk) = j = jk ∈ N, and
the transformations also apply on the evolution operators when performing the change of
variables.

The input-state and input-output operators obtained in (2.13), (2.16), and (2.15), by
taking into account (3.5), are now defined explicitly in the subsequent result for a switching
function σ : R0+ → N. Note that the input-state operator depends on the state variable
transformations while the input-output operator does not depend on the state variables, that
is, it does not depend on the matrices Tσ(t).
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Lemma 3.3. The input-state and input-output operators have the following pointwise expressions:

(Γu)(t) =
∫ t

−∞
Z(t, τ)B(τ)u(τ)dτ

=
∫ t

−∞
Φ(t, τ)

[

B(τ)+
q∑

i=1

∫ t

−∞
Φ
(
0, γ
)
Ai

(
γ
)
Z
(
γ−hi, τ

)
B(τ)

(
U(τ)−U(γ−hi

))
dγ

]

u(τ)dτ

(3.13a)

=
∫ t

−∞
Z(t, τ)Π−(τ)B(τ)u(τ)dτ −

∫∞

t

Z(t, τ)Π+(τ)B(τ)u(τ)dτ (3.13b)

=
∫ t

−∞
Φ(t, τ)

[

Π−(τ)B(τ) +
q∑

i=1

∫ t

−∞
Φ
(
0, γ
)
Ai

(
γ
)
Z
(
γ − hi, τ

)
Π−(τ)B(τ)

×(U(τ) −U
(
γ − hi

))
dγ

]

u(τ)dτ

−
∫∞

t

Φ(t, τ)

[

Π+(τ)B(τ) +
q∑

i=1

∫ t

−∞
Φ
(
0, γ
)
Ai

(
γ
)
Z
(
γ − hi, τ

)
Π+(τ)B(τ)

×(U(τ) −U
(
γ − hi

))
dγ

]

u(τ)dτ,

(3.13c)

(Γou)(t) =
∫ t

−∞
C(t)Z(t, τ)B(τ)u(τ)dτ +D(t)u(t)

=
∫ t

−∞
C(t)Φ(t, τ)

[

B(τ) +
q∑

i=1

∫ t

−∞
Φ
(
0, γ
)
Ai

(
γ
)
Z
(
γ − hi, τ

)
B(τ)

×(U(τ) −U
(
γ − hi

))
dγ

]

u(τ)dτ +D(t)u(t)

(3.14a)

=
∫ t

−∞
C(t)Z(t, τ)Π−(τ)B(τ)u(τ)dτ −

∫∞

t

C(t)Z(t, τ)Π+(τ)B(τ)u(τ)dτ +D(t)u(t)

(3.14b)

=
∫ t

−∞
C(t)Φ(t, τ)

[

Π−(τ)B(τ) +
q∑

i=1

∫ t

−∞
Φ
(
0, γ
)
Ai

(
γ
)
Z
(
γ − hi, τ

)
Π−(τ)Bσ(τ)

×(U(τ) −U
(
γ − hi

))
dγ

]

u(τ)dτ

−
∫∞

t

C(t)Φ(t, τ)

[

Π+(τ)B(τ) +
q∑

i=1

∫ t

−∞
Φ
(
0, γ
)
Ai

(
γ
)
Z
(
γ − hi, τ

)
Π+(τ)B(τ)

×(U(τ) −U
(
γ − hi

))
dγ

]

u(τ)dτ +D(t)u(t).

(3.14c)
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Proof. It follows directly since the forced solutions of (2.16)-(2.15) may be recalculated by
direct manipulation of the integrals as follows:

∫ t

−∞
Φ(t, τ)B(τ)u(τ)dτ +

q∑

i=1

∫ τ−hi

−∞

∫ t

0
Φ(t, τ)Ai(τ)Z

(
τ − hi, γ

)
B
(
γ
)
u
(
γ
)
dγ dτ

=
∫ t

−∞
Φ(t, τ)B(τ)u(τ)dτ

+
q∑

i=1

∫ t

−∞

∫ t

0
Φ(t, τ)Ai(τ)Z

(
τ − hi, γ

)
B
(
γ
)(
U
(
γ
) −U(τ − hi)

)
u
(
γ
)
dτ dγ

=
∫ t

−∞
Φ(t, τ)Bσ(τ)(τ)u(τ)dτ

+
∫ t

−∞

q∑

i=1

∫ t

0
Φ(t, τ)Ai(τ)Z

(
τ − hi, γ

)
B(τ)

(
U
(
γ
) −U(τ − hi)

)
u
(
γ
)
dτ dγ

=
∫ t

−∞
Φ(t, τ)B(τ)u(τ)dτ

+
∫ t

−∞

q∑

i=1

∫ t

0
Φ
(
t, γ
)
Ai(τ)Z

(
γ − hi, τ

)
B(τ)

(
U(τ) −U

(
γ − hi

))
u(τ)dγ dτ.

(3.15)

Now (3.13c)–(3.14c) are further expanded by using the transformation of state
variables and the contribution of each interswitching time intervals. The subsequent
auxiliary useful notation convention is used to write the mathematical expressions in a
very comprehensive way. It is taken into account that there are no switching instants at
negative time, that the current time t may be or not to be a switching instant and that
the transformation of variables are given by a nonsingular matrix Tσ(t) which takes a finite
number ofN values and which is constant within the semiopen time interval in-between any
two consecutive switching instants:

t0 = −∞, ti ∈ R0+ :

⎧
⎪⎪⎨

⎪⎪⎩

ti ∈ STσ, ∀i ∈ k(t) if tk(t) = t ∈ STσ,

ti ∈ STσ, ∀i ∈ k(t) − 1 if tk(t) = t /∈ STσ,

∀i ∈ k(t), t∞ = ∞,

(3.16)

where k : R0+ → N is a discrete valued function which takes only a finite number of positive
integers according to the switching function used.
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Lemma 3.4. The input-state and input-output operators have the following expressions:

(Γu)(t) =
k(t)∑

j=1

∫ tj

tj− 1

Φ̃−(t, τ)

[

B̃−(tj−1
)
+

q∑

i=1

k(t)∑

�=1

∫ t�

t�−1

(
Φ̃
(
0, γ
)
Ã(t�−1)Z̃

(
γ − hi, τ

)
B̃−(tj−1

))−

×(U(τ) −U
(
γ − hi

))
dγ

]

u(τ)dτ

−
∞∑

j=k(t)

∫ tj+ 1

tj

Φ̃+(t, τ)

[

B̃
+(
tj−1
)
+

q∑

i=1

k(t)∑

�=1

∫ t�

t�−1

(
Φ̃
(
0, γ
)
Ãi(t�−1)Z̃

(
γ − hi, τ

)
B̃
(
tj−1
))+

×(U(τ) −U
(
γ − hi

))
dγ

]

u(τ)dτ,

(Γou)(t) =
k(t)∑

j=1

∫ tj

tj−1
C̃−(t)Φ̃−(t, τ)

[

B̃−(tj−1
)
+

q∑

i=1

k(t)∑

�=1

∫ t�

t�−1

(
Φ̃
(
0, γ
)
Ãi(t�−1)Z̃

(
γ − hi, τ

)
B̃
(
tj−1
))−

×(U(τ) −U
(
γ − hi

))
dγ

]

u(τ)dτ

−
∞∑

j=k(t)

∫ tj+ 1

tj

C̃+(t)Φ̃+(t, τ)

[

B̃−(tj−1
)
+

q∑

i=1

k(t)∑

� = 1

∫ t�

t�−1

(
Φ̃
(
0, γ
)
Ãi (t�−1)Z̃

(
γ−hi, τ

)
B̃
(
tj−1
))+

×(U(τ) −U
(
γ − hi

))
dγ

]

u(τ)dτ +D(t)u(t).

(3.17)

Proof. It follows directly from Lemma 3.3 by using (3.5), (3.7), and (3.11b), since (3.10),
(3.11a), (3.11b), and (3.11c) hold, where

Φ̃
(
0, γ
)
Ãi

(
γ
)
Z̃
(
γ − hi, τ

)
B̃(τ)

= T(t)Φ
(
0, γ
)
Ai

(
γ
)
Z
(
γ − hi, τ

)
B(τ) =

⎡

⎢
⎣

(
Φ̃
(
0, γ
)
Ãi

(
γ
)
Z̃
(
γ − hi, τ

)
B̃(τ)

)−

(
Φ̃
(
0, γ
)
Ãi

(
γ
)
Z̃
(
γ − hi, τ

)
B̃(τ)

)+

⎤

⎥
⎦,

(3.18)

for all γ ∈ [tj , tj+1), σ(γ) = σ(tj), t0 = −∞, tj ∈ STσ for j ∈ N0 ⊂ N.

Lemmas 3.3 and 3.4 will be then used for the explicit definition of the Hankel and
Toeplitz operators of the input-state and input-output operators. The following result is
useful as an auxiliary one for a subsequent specification of Lemmas 3.3 and 3.4 either for
the general case or for the cases when either Assumptions 3.1 or 3.2 hold.
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Lemma 3.5. The following properties hold.
(i) ∃ T(t, τ) : R2

0 → Rn×n dependent on the switching instants STσ on [τ, t) ⊂ R0+ (i.e.,
T(t, τ) = Tστ,t depends on the partial switching function στ,t : [τ, t) → Nτ,t ⊂ N) such that

Φ̃(t, τ) = Block Diag
[
Φ̃−(t, τ), Φ̃+(t, τ)

]
= T(t, τ)Φ(t, τ)T−1(t, τ), (3.19)

which is nonsingular for any finite arguments irrespective of Assumption 3.1, where στ,t(:= σ |
[τ, t)) : [τ, t)(⊂ R0+) → Nτ,t ⊂ N is the partial switching function with its domain restricted
to [τ, t). Φ̃−(t, τ) and Φ̃+(t, τ) are, in general, of time interval-dependent sizes n−(τ, t), n+(τ, t),
respectively.

(ii) If Assumption 3.1 holds, then

Φ̃(τ, ti) = Block Diag
[
Φ̃−(τ, ti), Φ̃+(τ, ti)

]
= T(ti)Φ(τ, ti)T−1(ti)

= Block Diag
[
eÃ

−
0 (ti)(τ−ti), eÃ

+
0 (ti)(τ−ti)

]
, ∀τ ∈ [ti, ti+1), ∀ti, ti+1 ∈ STσ,

(3.20)

with the first and second square matrix function blocks being convergent and divergent, respectively,
and of associate time invariant sizes n−, n+.

(iii) If Assumption 3.2 holds, then (ii) holds with constant Tσ(t) = T , for all t ∈ R0+.
(iv) If Assumption 3.2 holds, and all the matrices in the set A0 defining the switched system

by the partial switching function up to time t defined as σt ≡ σ0,t(:= σ | [0, t)) : [0, t) → Nt ⊂ N
commute, so that Tσ(t) = T , then

Φ̃(t, τ) = Block Diag
[
Φ̃−(t, τ), Φ̃+(t, τ)

]
= TΦ(t, τ)T−1 (3.21)

= Block Diag
[
e
∑k(t)

i=1 Ã
−
0 (ti−1)(ti− ti−1), e

∑k(t)
i=1 Ã

+
0 (ti−1)(ti−ti−1)

]
, (3.22)

for all t, τ ∈ R0+, for all ti, ti+1 ∈ STσt . Furthermore,

Φ̃±(t, τ)
(
Φ̃
(
0, γ
)
Ãi

(
γ
)
Z̃
(
γ − hi, τ

)
B̃(τ)

)±
= Φ̃±(t, γ

)(
Ãi

(
γ
)
Z̃
(
γ − hi, τ

)
B̃(τ)

)±
, (3.23)

in (3.16) and (3.17) subject to (3.22).
(v) If both assumptions of Property (vi) hold and all the matrices in the set Ai (for all i ∈ q)

defining the switched system by the partial switching function up to time t have a block diagonal
structure with two block matrices of common sizes n− and n+, thenZ(t, τ) is block diagonalizable with
two nonzero square matrix blocks of time invariant sizes n− and n+, for all τ ∈ R\(t,∞), for all t ∈ R.
Furthermore,

(
Φ̃(t, τ)Ãi(τ)Z̃

(
γ − hi, τ

)
B̃(τ)

)±
= Φ̃±(t, τ)Ã±

i (τ)Z̃
±(γ − hi, τ

)
B̃±(τ); ∀t, τ ∈ R, (3.24)

in (3.16) and (3.17).

Proof. (i) It follows directly from the fact that any real matrix has a Jordan diagonal form.
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(ii), (iii) They follow directly from the fact that the matrix function Φ(τ, ti) is
an exponential matrix function of A0σ(ti) within interswitching time intervals which is
block diagonalizable under the same similarity transformation and with the same block
diagonal matrices sizes as the matrix A0(ti), the stable (antistable) block diagonal matrix
Ã

−
0 (ti)(τ − ti)(Ã

+
0 (ti)(τ − ti)) generating a convergent (divergent) exponential matrix function

Φ̃−(τ, ti)(Φ̃+(τ, ti)).
(iv) Its first part follows from (2.9) since for any real constants α, β and any A0j ∈ A0

which commute, eA0j1α · eA0j2β = e(A0j1α+A0j2β), for all j1,2 ∈ Nt. Its second part follows from the
semigroup property of Φ(t, τ).

(v) It follows from (2.9) and (2.15), both being block diagonal with two non-zero
square block matrices of corresponding identical time invariant sizes, respectively, n− and
n+, under the given assumptions since the matrices Ai, for all i ∈ q, are diagonalizable with
identical two square matrix blocks of identical sizes.

If all the matrices in the set A0 are dichotomic, namely, they have no critically stable
eigenvalues, then they admit a similarity transformation to a block diagonal form with only
stable and instable eigenvalues. Under some extra assumptions related to the switching
function to require a minimum residence time at each parameterization of the switched
system, it may be proved that the input-state/output operators of the solution are bounded
operators. Now, denote by Pr

± : Lr
2 → Lr

2± the usual orthogonal projections of Lr
2 onto Lr

2±.
Those projections are useful to describe the input-state and input-output operators for
positive or negative times when the input is least square-integrable either for the negative
or positive real semiaxis. The subsequent previous results are direct.

Lemma 3.6. Γ+ : Lm
2+ → Ln

2+ and Γ0+ : Lm
2+ → Lp

2+ are linear bounded, equivalently continuous,
operators if any of the properties Theorem 2.1(i)–(iii) holds, and Γ+ : Lm

2− → Ln
2− and Γ0+ : Lm

2− → Lp

2−
are linear bounded, equivalently continuous, operators if any of the properties in Theorem 2.2 holds.

Proof. It turns out from applying the Cauchy-Schwartz inequality to the sate/output-
trajectory solutions that if the system is globally asymptotically stable and the input is an
original (i.e., it is identically zero for t ∈ R−) and, furthermore, square-integrable, then the
state and output trajectory solutions are identically zero for t ∈ R− and square-integrable on
R0+. As a result, both linear operators are bounded and, equivalently, continuous. The second
result is a dual one to the first result.

Note that, compared to Γ ∈ L(Lm
2 ,L

n
2) and Γo ∈ L(Lm

2 ,L
p

2), the input-state operators
Γ+ : Lm

2+ → Ln
2+ and input-output Γo+ : Lm

2+ → Lp

2+ (identified with the so-called causal
Toeplitz operator if the input is an original vector function) have domains restricted from Lm

2
to Lm

2+ and projected images from Ln
2 , respectively, L

p

2, onto Ln
2+, respectively, L

p

2+, provided
that Γ ∈ L(Lm

2 ,L
n
2) and Γo ∈ L(Lm

2 ,L
p

2). In the same way, the input-state operators Γ− :
Lm
2− → Ln

2− and input-output Γo− : Lm
2− → Lp

2− have domains restricted from Lm
2 to Lm

2−
and projected images from Ln

2 , respectively, L
p

2, onto Ln
2+, respectively, L

p

2+, provided that
Γ ∈ L(Lm

2 ,L
n
2) and Γo ∈ L(Lm

2 ,L
p

2). Note also that Lemma 3.6 only gives sufficiency-type
conditions of boundedness of those operators based on results of Theorems 2.1, 2.2. The
following definitions are related to four important input-to-sate and input-output operators
which are obtained from the operators Γ ∈ L(Lm

2 ,L
n
2) and Γo ∈ L(Lm

2 ,L
p

2) subject to domain
restrictions and orthogonal projections of their images since they act on half axis Lebesgue
spaces Lm,np

2± .
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Definition 3.7. Let Γ ∈ L(Lm
2 ,L

n
2) be bounded, so that Γo ∈ L(Lm

2 ,L
p

2) is also bounded. We
define the following:

(1) the causal input-output Hankel operator (or, simply causal Hankel operator) HΓo :
Pp
+Γo|Lm

2− = Pp
+ΓoP

m
− with symbol Γo,

(2) the anticausal input-output Hankel operator (or, simply anticausal Hankel
operator) ĤΓo : P

p
−Γo|Lm

2+
= Pp

−ΓoPm
+ with symbol Γo,

(3) the causal input-output Toeplitz operator (or, simply causal Toeplitz operator) TΓo :
Pp
+Γo|Lm

2+
= Pp

+ΓoPm
+ with symbol Γo,

(4) the anticausal input-output Toeplitz operator (or, simply anticausal Toeplitz
operator) T̂Γo : P

p
−Γo|Lm

2− = Pp
−ΓoP

m
− with symbol Γo,

(5) the causal input-state Hankel operator HΓ : Pn
+Γ|Lm

2− = Pn
+ΓP

m
− with symbol Γ,

(6) the anticausal input-state Hankel operator ĤΓ : Pn
−Γ|Lm

2+
= Pn

−ΓPm
+ with symbol Γ,

(7) the causal input-state Toeplitz operator TΓ : Pn
+Γ|Lm

2+
= Pn

+ΓP
m
+ with symbol Γ,

(8) the anticausal input-state Toeplitz operator T̂Γ : Pn
−Γ|Lm

2− = Pn
−ΓP

m
− with symbol Γ.

The input-output Hankel and Toeplitz operators (see Definitions 3.7 [1–4]), or simply
Hankel and Toeplitz operators, are of wide use for the particular case of delay-free systems
with single parameterizations, then being delay-free linear time invariant systems (see, for
instance, [25]). Definition 3.7 and Lemmas 3.3, 3.4 define extensions of those operators to
describe the input-state/output trajectories of the time delayed switched system (2.1). The
subsequent result related to the state and output trajectory solutions of the switched system
(2.1) are described by the input-sate and input-output Hankel and Toeplitz operators.

Theorem 3.8. The following properties hold under Assumption 3.1:
(i) TΓo + ĤΓo = ΓoPm

+ , so that TΓo = Pp
+ΓoPm

+ if and only if ĤΓ0 = Pp
−ΓoPm

+ = 0, with

(ΓoPm
+ u)(t) =

∫ t

0
C(t)Z(t, τ)B(τ)u(τ)dτ +D(t)u(t), (3.25)

T̂Γo +HΓo = ΓoPm
− , so that T̂Γo = Pp

−ΓoP
m
− if and only ifHΓo = Pp

+ΓoPm
− = 0, with

(ΓoPm
− u)(t) =

∫0

−∞
C(t)Z(t, τ)B(τ)u(τ)dτ +D(t)u(t), (3.26)

(ii) TΓ + ĤΓ = ΓPm
+ , so that TΓ = Pp

+ ΓPm
+ if and only if ĤΓ = Pp

−ΓPm
+ = 0, with

(ΓPm
+ u)(t) =

∫ t

0
Z(t, τ)B(τ)u(τ)dτ, (3.27)

T̂Γ +HΓ = ΓPm
− , so that T̂Γ = Pp

− ΓPm
− if and only ifHΓ = Pp

+ΓPm
− = 0, with

(ΓPm
− u)(t) =

∫0

−∞
Z(t, τ)B(τ)u(τ)dτ, (3.28)
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(iii) (ĤΓ0u)(t) = 0,

(TΓou)(t) =
(
Pp
+ΓoP

m
− u
)
(t)

=
∫ t

0
C(t)Z(t, τ)B(τ)u(τ)dτ +D(t)u(t)

=
∫ t

0
C̃(t)Z̃(t, τ)B̃(τ)u( τ )dτ + D̃(t)u(t)

=
k(t)∑

j=1

∫ tj

tj−1
C
(
tj−1
)
[

Φ(t, τ)B
(
tj−1
)
+

q∑

i=1

k(t)∑

�=1

∫ t�

t�−1
Φ
(
t, γ
)
Ai(t�−1)Z

(
γ − hi, τ

)

×B(tj−1
)(
U(τ) −U

(
γ − hi

))
dγ

]

u(τ)dτ +D(t)u(t)

=
k(t)∑

j=1

∫ tj

tj−1
C̃
(
tj−1
)
[

Φ̃(t, τ)B̃
(
tj−1
)
+

q∑

i=1

k(t)∑

�=1

∫ t�

t�−1
Φ̃
(
t, γ
)
Ãi(t�−1)Z̃

(
γ − hi, τ

)

×B̃(tj−1
)(
U(τ) −U

(
γ − hi

))
dγ

]

u(τ)dτ

+ D̃(t)u(t), ∀t ∈ R0+.

(3.29)

The last expression being valid if t1 = 0 since t0 = −∞. If t1 > 0, then the given switching sequence
STσ may be redefined as t1 → 0, ti+1 → ti, . . . for all i ≥ 1 with the switching function initialized
as σ(t) = σ(t0) = −∞, for all t ∈ (−∞, t2], so that the switched system is not modified and the above
expression is valid for the causal Toeplitz operator:

(TΓou)(t) = 0,
(
ĤΓou

)
(t) =

(
Pp
−ΓoP

m
+ u
)
(t)

= −
∫∞

0
C̃+(t)

(
Z̃(t, τ)B̃(τ)

)+
u(τ)dτ

= −
∞∑

j=k(t)

∫ tj+1

tj

C̃+(t)

[

Φ̃+(t, τ)B̃+(tj
)
+

q∑

i=1

k(t)∑

�=1

∫ t�

t�−1

(
Φ̃
(
t, γ
)
Ãi(t�−1)Z̃

(
γ − hi, τ

)
B̃
(
tj
))+

×(U(τ) −U
(
γ − hi

))
dγ

]

u(τ)dτ, ∀t ∈ R0−,

(3.30)

with the switching time instants being redefined with t1 = 0, so that σ(t) = σ(−∞), for all t ∈
(−∞, t2], as above, in the case that the first switching time instant is nonzero:
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(iv) (T̂Γou)(t) = 0,

(HΓou)(t) =
(
Pp
+ΓoP

m
− u
)
(t)

=
∫0

−∞
C(t)Z(t, τ)B(τ)u(τ)d

=
∫0

−∞
C̃(t)Z̃(t, τ)B̃(τ)u(τ)dτ

=
∫0

−∞
C(−∞)

[

Φ(t, τ)B(−∞) +
q∑

i=1

∫0

−∞
Φ
(
t, γ
)
Ai(−∞)Z

(
γ − hi, τ

)

×B(−∞)
(
U(τ) −U

(
γ − hi

))
dγ

]

u(τ)dτ

=
∫0

−∞
C̃(−∞)

[

Φ̃ (t, τ)B̃(−∞) +
q∑

i=1

∫0

−∞
Φ̃
(
t, γ
)
Ãi(−∞)Z̃

(
γ − hi, τ

)

×B̃(−∞)
(
U(τ)−U(γ − hi

))
dγ

]

u(τ)dτ, ∀t ∈ R0+,

(3.31)

(HΓou)(t) = 0,

(
T̂Γou

)
(t) =

(
Pp
−ΓoP

m
− u
)
(t)

=
∫ 0

−∞
C(t)Z(t, τ)B(τ)u(τ)dτ +D(t)u(t)

=
∫0

−∞
C̃(t)Z̃(t, τ)B̃(τ)u(τ)dτ + D̃(t)u(t)

=
∫0

−∞
C−(−∞)

[

Φ−(t, τ)B−(−∞) +
q∑

i=1

∫0

−∞

(
Φ
(
t, γ
)
Ai(−∞)Z

(
γ − hi, τ

)
B(−∞)

)−

×(U(τ) −U
(
γ − hi

))
dγ

]

u(τ)dτ +D(t)u(t)

=
∫0

−∞
C̃−(−∞)

[

Φ̃−(t, τ)B̃−(−∞) +
q∑

i=1

∫0

−∞

(
Φ̃
(
t, γ
)
Ãi(−∞)Z̃

(
γ − hi, τ

)
B̃(−∞)

)−

×(U(τ) −U
(
γ − hi

))
dγ

]

u(τ)dτ+D̃(t)u(t), ∀t ∈ R0−

(3.32)
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(v)(ĤΓu)(t) = 0,

(TΓu)(t) = (Pn
+ΓP

m
− u)(t) =

∫ t

0
Z(t, τ)B(τ)u(τ)dτ =

∫ t

0
Z̃(t, τ)B̃(τ)u(τ)dτ

=
k(t)∑

j=1

∫ tj

tj−1

[

Φ(t, τ)B
(
tj−1
)
+

q∑

i=1

k(t)∑

�=1

∫ t�

t�−1
Φ
(
t, γ
)
Ai(t�−1)Z

(
γ − hi, τ

)

×B(tj−1
)(
U(τ) −U

(
γ − hi

))
dγ

]

u(τ)dτ

=
k(t)∑

j=1

[

Φ̃(t, τ)B̃
(
tj−1
)
+

q∑

i=1

k(t)∑

�=1

∫ t�

t�−1
Φ̃
(
t, γ
)
Ãi(t�−1)Z̃

(
γ − hi, τ

)

×B̃(tj−1
)(
U(τ) −U

(
γ − hi

))
dγ

]

u(τ)dτ, ∀t ∈ R0+.

(3.33)

The last expression being valid if t1 = 0 since t0 = −∞. If t1 > 0, then the given switching sequence
STσ may be redefined as t1 → 0, ti+1 → ti, . . . for all i ≥ 1 with the switching function initialized as
σ(t) = σ(t0) = − ∞, for all t ∈ (−∞, t2], so that the switched system is not modified and the above
expression is valid for the causal input-state Toeplitz operator:

(TΓu)(t) = 0,
(
ĤΓu

)
(t) = (Pn

−ΓP
m
+ u)(t) = −

∫∞

0

(
Z̃(t, τ)B̃(τ)

)+
u(τ)dτ

= −
∞∑

j=k(t)

∫ tj+1

tj

[

Φ̃+(t, τ)B̃+(tj
)
+

q∑

i=1

k(t)∑

�=1

∫ t�

t�−1

(
Φ̃
(
t, γ
)
Ãi(t�−1)Z̃

(
γ − hi, τ

)
B̃
(
tj
))+

×(U(τ) −U
(
γ − hi

))
dγ

]

u(τ)dτ, ∀t ∈ R0−,

(3.34)

with the switching time instants being redefined with t1 = 0, so that σ(t) = σ(t0) = σ(−∞), for all
t ∈ (−∞, t2], as above, in the case that the first switching time instant is nonzero:

(vi)(T̂Γu)(t) = 0,

(HΓu)(t) = (Pn
+ΓP

m
− u)(t) =

∫0

−∞
Z(t, τ)B(τ)u(τ)d =

∫0

−∞
Z̃(t, τ)B̃(τ)u(τ)dτ

=
∫0

−∞

[

Φ(t, τ)B(−∞) +
q∑

i=1

∫0

−∞
Φ
(
t, γ
)
Ai(−∞)Z

(
γ − hi, τ

)

×B(−∞)
(
U(τ) −U

(
γ − hi

))
dγ

]

u(τ)dτ
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=
∫0

−∞

[

Φ̃(t, τ)B̃(−∞) +
q∑

i=1

∫0

−∞
Φ̃
(
t, γ
)
Ãi(−∞)Z̃

(
γ − hi, τ

)

×B̃(−∞)
(
U(τ) −U

(
γ − hi

))
dγ

]

u(τ)dτ, ∀t ∈ R0+,

(3.35)

(HΓu)(t) = 0,

(
T̂Γu

)
(t) = (Pn

−ΓP
m
− u)(t) =

∫0

−∞
Z(t, τ)B(τ)u(τ)dτ =

∫0

−∞
Z̃(t, τ)B̃(τ)u(τ)dτ

=
∫0

−∞

[

Φ(t, τ)B(−∞) +
q∑

i=1

∫0

−∞
Φ
(
t, γ
)
Ai(−∞)Z

(
γ − hi, τ

)

×B(−∞)
(
U(τ) −U

(
γ − hi

))
dγ

]

u(τ)dτ

=
∫0

−∞

[

Φ̃(t, τ)B̃−(−∞) +
q∑

i=1

∫0

−∞
Φ̃
(
t, γ
)
Ãi(−∞)Z̃

(
γ − hi, τ

)

×B̃(−∞)
(
U(τ) −U

(
γ − hi

))
dγ

]

u(τ)dτ, ∀t ∈ R0−.

(3.36)

Proof. It follows directly from Lemmas 3.3, 3.4, and Definition 3.7 by noting that Γ ∈ L(Lm
2 ,L

n
2)

and Γo ∈ L(Lm
2 ,L

p

2) are bounded operators fromAssumption 3.1 since all configurations of the
switched system have no critically stable eigenvalues and, furthermore, no stable or unstable
ones within the open vertical strip (−ε, ε) × R ⊂ C from Theorems 2.1 and 2.2.

Note that, if Assumption 3.2 holds, then Theorem 3.8 holds with a constant transfor-
mation of coordinates T ∈ Rn× n in (3.4), (3.5), that is,

Ã(t) = Ãσ(tk) = TA(t)T−1 = TAσ(tk)T
−1,

B̃(t) = B̃σ(tk) = TB(t) = TBσ (tk), C̃(t) = C̃σ(tk) = C(t)T−1 = Cσ(tk)T
−1,

(3.37)

for all t ∈ [tk, tk+1), for all tk, tk+1 ∈ STσ, for all t ∈ [t�,∞) if t� ∈ STσ and there is no STσ �

t > t� so that card(STσ) < ∞. Theorem 3.8 can be specified as follows under Assumption 3.2
provided that each matrix of delayed dynamics has two block diagonal expressions of the
same orders as those of A0.

Corollary 3.9. Assume that all the matrices in the set of configurations Ai (for all i ∈ q ∪ {0}) are
block diagonal with two matrix blocks matrices of orders n− and n+ identical to those of the stable and
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antistable blocks of the matrices in the set A0 consisting of the N of delay-free matrices of dynamics.
Thus, Theorem 3.8 has the following particular expressions for the anticausal (input-output) Hankel
and input-state Hankel operators provided that Assumption 3.2 hold:

(
ĤΓu

)
(t) = −

∫∞

0
Z̃+(t, τ)B̃(τ)+u(τ)dτ

= −
∞∑

j=k(t)

∫ tj+1

tj

[

Φ̃+(t, τ)B̃+(tj
)
+

q∑

i=1

k(t)∑

�=1

∫ t�

t�−1
Φ̃+ (t, γ

)
Ã+

i (t�−1)Z̃
+(γ − hi, τ

)

× B̃+(tj
)(
U(τ) −U

(
γ − hi

))
dγ

]

u(τ)dτ ; ∀t ∈ R0−,

(3.38)

so that (ĤΓou)(t) = C̃+(t)(ĤΓu)(t), for all t ∈ R0−, with the switching time instants being redefined
with t1 = 0, so that σ(t) = σ(t0) = σ(−∞), for all t ∈ (−∞, t2], as above, in the case that the first
switching time instant is nonzero.

Proof. It follows directly from Theorem 3.8 and Lemma 3.5(iii)-(iv) since the matrix functions
Φ(t, τ) and Z(t, τ)maintain a two block diagonal structure with matrices of orders n− and n+

from (3.11a), (3.11b), and (3.11c).

Definitions of causality and anticausality follow.

Definition 3.10. A bounded input-output linear operator Γo : Lm
2 → Lp

2 is said to be causal
(anticausal) if the anticausal Hankel operator is zero, that is, ĤΓo = 0 (if the causal Hankel
operator is zero, i.e., HΓo = 0).

Definition 3.11. The switched system (2.1) is said to be causal (anticausal) if ĤΓo = 0 (HΓo = 0)
provided that Γo : Lm

2 → Lp

2 is bounded.

Definition 3.12. A bounded input-state linear operator Γ : Lm
2 → Ln

2 is said to be causal
(anticausal) if ĤΓ = 0 (HΓ = 0).

A direct result from Definitions 3.10–3.12 is the following.

Assertion 3.13. If Γ : Lm
2 → Ln

2 is bounded and causal (anticausal) then the switched system
(2.1) is causal (anticausal) but the converse is not true, in general.

Theorem 3.14. The following properties hold under Assumption 3.1 for a given switching function
σ : R0+ → N provided that it obeys a minimum residence time between consecutive switches which
exceeds some appropriate minimum threshold.

(i) Γo : Lm
2 → Lp

2 is bounded independent of the delays, and if all the matrices of delay-free
dynamics in the set A0 are stable, then the system (2.1) is globally asymptotically stable and causal
independent of the delays.

(ii) If ĤΓo : Lm
2 → Lp

2 is zero independent of the delays and the switched system (2.1)
is uniformly controllable and uniformly observable independent of the delays then it is globally
asymptotically Lyapunov’s stable independent of the delays.
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(iii) If ĤΓ : Lm
2 → Ln

2 is zero independent of the delays and the switched system (2.1) is
uniformly controllable independent of the delays then it is globally asymptotically Lyapunov’s stable
independent of the delays.

Proof. (i) Γo : Lm
2 → Lp

2 is bounded from Assumption 3.1, Theorems 2.1 and 2.2 if there
is a sufficiently large residence time for the given switching function since there is an
eigenvalue-free open vertical strip including the imaginary complex axis for any delays.
Thus, all the configurations of the switched system are dichotomic independent of the delays
if the switching function is subject to a minimum residence time exceeding an appropriate
threshold. From Theorem 3.8 (i) and (iv), the system is causal if the anticausal Hankel
operator is zero, namely, (ĤΓou)(t) = −∫∞0 C̃+(t)(Z̃(t, τ)B̃(τ))

+
u(τ)dτ = 0, for all u ∈ Lm

2+,
for all t ∈ R0−. Property (i) follows since if A0 is a set of stable matrices then the switched
system is globally asymptotically stable independent of the delays from Theorem 2.2 and
Assumption 3.1 and causal from (ĤΓou)(t) = 0, for all u ∈ Lm

2+, for all t ∈ R0−. The
above factorization exists since 0 ≤ n+(t) < ∞ (the number of unstable eigenvalues of
any configuration of (2.1) is finite) since the characteristic quasipolynomials of all the
configurations have a principal term in view of the structure of (2.1), [17]. Since the system
is uniformly observable, then the following contradiction is stated if n+(t)/= 0:

(
ĤΓou

)
(t) =

∫∞

0
C̃+(t)

(
Z̃(t, τ)B̃(τ)

)+
u(τ)dτ = 0

=⇒ 0 =
∫∞

0

(
Z̃(t, τ)B̃(τ)

)+
u(τ)dτ

≥
�∑

i=1

∫ ti+1

ti

(
Z̃(t, τ)B̃(τ)

)+(
Z̃(t, τ)B̃(τ)

)+T
g(ti)dτ /= 0, ∀t ∈ R0−,

(3.39)

provided that the control u(τ) = (Z̃(t, τ)B̃(τ))
+T
g(ti), for all τ ∈ [ti, ti+1), for all ti, ti+1 ∈ STσ

for {0/=Rn
� g(ti) = o(1/‖(Z̃(t, τ)B̃(τ))‖L2[ti,ti+1))}

∞
0
. The contradiction follows since ti+1 ≥ ti+T

for some T ∈ R0+ so that the controllability Grammian
∫ ti+T0
ti

(Z̃(t, τ)B̃(τ))(Z̃(t, τ)B̃(τ))
+T
dτ , for

all τ ∈ [ti, ti+1) is positive definite, for all ti, ti+1 ∈ STσ for some constant T0 ∈ R0+ (independent
of ti) and for all ti ∈ STσ if the system (2.1) is uniformly controllable. Thus, n+(t) = 0, and
Property (ii) follows. Property (iii) follows in a similar way by neglecting the controllability
condition since

(
ĤΓu

)
(t) =

∫∞

0

(
Z̃(t, τ)B̃(τ)

)+
u(τ)dτ = 0. (3.40)

The following result strengths Theorem 3.14 since Assumption 3.2 allows to maintain
all the eigenvalues strictly outside the imaginary axis independent of the delays via arbitrary
switching (see Theorems 2.1 and 2.2).

Corollary 3.15. If Assumption 3.2 holds, then Theorem 3.14 holds for an arbitrary switching
function, that is, without requiring a minimum residence time in-between any two consecutive active
parameterizations.
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Theorem 3.14 has the following simpler version for zero and small delays which
follows from the continuity of the eigenvalues with respect to the delays. It is not required
that the matrices describing the delayed dynamics of the various configurations have
sufficiently small norms compared with the minimum absolute stability abscissa among the
configurations associated with the delay-free dynamics defined by the set A0.

Theorem 3.16. Assume that

(a) the set of Assumption 3.1 holds except the stability conditions in Theorem 2.1 (i.e., there
is no requirement on the smallness of the norms of the matrices describing the delayed
dynamics of the various configurations of the switched system),

(b) a switching function σ : R0+ → N is given which respects a minimum residence time
between consecutive switches exceeding some appropriate minimum threshold.

Then, the following properties hold.

(i) If Γo : Lm
2 → Lp

2 is bounded for some switching function σ : R0+ → N and if all the
matrices of delay-free dynamics in the setA0 are stable, then the system (2.1) is globally asymptotically
stable and causal for hi ∈ [0, h), for all i ∈ q for some sufficiently small h ∈ R+.

(ii) If ĤΓo : Lm
2 → Lp

2 is zero and the switched system (2.1) is uniformly controllable and
uniformly observable for hi ∈ [0, h), for all i ∈ q for some sufficiently small h ∈ R+, then it is
globally asymptotically Lyapunov’s stable for hi ∈ [0, h), for all i ∈ q.

(iii) If ĤΓ : Lm
2 → Ln

2 is zero and the switched (2.1) is uniformly controllable for hi ∈ [0, h),
for all i ∈ q for some sufficiently small h ∈ R+, then it is globally asymptotically Lyapunov’s stable for
hi ∈ [0, h), for all i ∈ q.

The following result follows from Theorem 3.16 under Assumption 3.2 in the same
way as Corollary 3.15 is a consequence of Theorem 3.14.

Corollary 3.17. If Assumption 3.2 holds, then Theorem 3.16 holds for an arbitrary switching
function, that is, without requiring a minimum residence time in-between any two consecutive active
parameterizations.

The condition of the auxiliary unforced delay-free system being dichotomic can be
removed to conclude global asymptotic stability under causality and uniform controllability
and observability as proved in the sequel.

Corollary 3.18. If the switched system (2.1) is causal, uniformly controllable, and uniformly
observable independent of the delays for a given switching function, then it is globally asymptotically
stable independent of the delays.

Proof. Define the truncated linear operator Γot : Lm
2t → Lp

2t for arbitrary (but finite) t ∈ R in the
same way as Γo : Lm

2 → Lp

2 where Lr
2t := {f ∈ Lr

2 : f(τ) = 0, for all τ ∈ (−∞, t) ∪ (t,∞)} is the
set of square-integrable r-real vector functions of compact support [−t, t]. Note that the linear
operator Γot is bounded for any finite time “t” irrespective of the spectrum of the system. If
the system is causal, uniformly observable, and uniformly controllable, then for some point
nonsingular n-transformation matrix function T(t, ·) : [t, t + T0] → Rn×n (see Lemma 3.5(i)),
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a matrix function Z̃(t, τ) being similar to Z(t, τ), may be calculated leading to

(
ĤΓou

)
(t) = 0,

=⇒
(
ĤΓu

)
(t) =

∫∞

0

(
Z̃(t, τ)B̃(τ)

)+(
Z̃(t, τ)B̃(τ)

)+T
u(τ)dτ = 0

≥
∫ t+T0

t

(
Z̃(t, τ)B̃(τ)

)+(
Z̃(t, τ)B̃(τ)

)+T
g(t)dτ = 0,

(3.41)

for some any finite t ∈ R0+, some constant T0 ∈ R+, and some g ∈ L2,t+T0 ⊃ L2,t+δ, for all

δ ∈ [0, T0], chosen so that 0/=u(τ) = (Z̃(t, τ)B̃(τ))
+T
g ∈ L2,t+T0 , for all τ ∈ [t, t + T0]. The

superscript “+” now includes the contribution of the finite number of unstable and critically
unstable modes (since the system is not assumed to be dichotomic), and the integrand is a
square matrix function of piecewise constant order n+ : [t, t + T0] → Z0+, for any finite real t.
Such a matrix order function is finite, since the whole number of critically stable and unstable
modes is always finite since all the configurations of the switched system have a principal
term in its characteristic quasipolynomial. This, together with the finiteness of T0, implies that

the controllability Grammian
∫ t+T0
t (Z̃(t, τ)B̃(τ))

+
(Z̃(t, τ)B̃(τ))

+T
g(t)dτ may be decomposed

in a finite sum of matrices of constant order n+(t) := max(n+(τ) : τ ∈ [t, t + T0]) completed if
necessary with zero blocks for the remaining terms in the sum, the number of additive terms
being the number of discontinuities in n+(τ) plus one. This leads again to a contradiction as
in Theorem 3.14 and the causal system being uniformly controllable and observable cannot
possess critically unstable and unstable modes.

4. Example

Consider the second-order switched system of state vector x(t) subject to scalar input u(t)
and output y(t) and one single delay h1 ∈ [0,∞):

ẋ(t) = A0σ(t)x(t) +A1(t)x(t − h1) + e1u(t) =
1∑

i=0

Ai(t)x(t − hi) + e1u(t),

y(t) = eT1x(t),

(4.1)

and h0 = 0, where the control matrix is e1 = (1, 0)T which is the 1th unity vector in R2, and
A0(t) = A01 ∨A02, for all t ∈ R0+, where:

A01 =

[−1 0.5

0 −3

]

, A02 =

[−2.5 2

0 −1.6

]

, (4.2)

subject to any function of initial conditions x = ϕ ∈ BPC(0)([−h, 0],R2), a control u ∈
BPC(0)(R,R), and a switching function σ : R0+ → 2 = {1, 2} which defines the sequence
of switching instants {ti} for the matrix function of delay-free dynamics. In this system the
delay-free matrix function of dynamics is of piecewise continuous entries equal to those
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of A01 or A02, and the matrix of delayed dynamics is A1(t) =
[
−2.5 a(t)
0 −1.6

]
with a(t) = 2 +

1/(1 + t)ω/10 with ω = [t] = Integer Part(t). This system is asymptotically stable independent
of the size of the delay h1 for any switching function σ(t), [30, 31]. Note that the system is
parameterized by dichotomic stability matrices A0i and A1(t); i = 1, 2, for all t ∈ R0+ since all
the three matrices are stable so that they do not have any critical stable eigenvalues. Finally,
note that the above system is more general than that proposed in (2.1) sinceA1 : R0+ → R2 is
piecewise continuous with discontinuity points at Z0+. In particular, it can be interpreted as
within the class (2.1) if

(a) the switching function σ0 ≡ σ : R0+ → 2 := {1, 2} generates some arbitrary real
sequence STσ0 := {t0i ∈ R0+} governing switches in the delay free dynamics between
the matrices A01 and A02;

(b) the switching function σ1 : t ∈ R0+ → [t] generates switches in the matrix function
A1 : R0+ → R2 at switching time instants STσ1 := {t1i ∈ Z0+} so that

A1σ1(t) = A1(t) =

⎡

⎢⎢
⎣

−2.5 2 +
1

(1 + t)[t]/10

0 −1.6

⎤

⎥⎥
⎦. (4.3)

Thus, the dynamic switched system (4.1) is equivalently written with the two above
potentially distinct switching functions as

ẋ(t) =
1∑

i=0

Aiσi(t)x(t − hi) + e1u(t), y(t) = eT1x(t). (4.4)

The fundamental matrix of (2.9) onR0+ is defined recursively by products of matrix functions
of the form Φ(t, τ) = Φ(t, t0i)Φ(t0i, τ), for all t0i ∈ STσ0 , for all t ∈ [t0i, t0,i+1), for all t ∈ [0, t0i]
where

Φ1(t, t0i) ≡ Φ(t, t0 i) =

[
e−(t− t0i) 0.25

(
e−3(t−ti) − e−(t−ti)

)

0 e−3(t−t0i)

]

, (4.5)

if σ0(t) = σ0(ti) = 1, for all t ∈ [t0i, t0,i+1), and

Φ2(t, t0i) ≡ Φ(t, t0 i) =

[
e−2.5(t− t0i) 0.25

(
e−2.5(t−ti) − e−1.6(t−ti)

)

0 e−1.6(t−t0i)

]

, (4.6)

if σ0(t) = σ0(ti) = 2, for all t ∈ [t0i, t0,i+1), and Φ(t, τ) is defined from the two above identities
with the replacement t0i → τ if τ ∈ (t0i, t).
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In the same way, the input-state and input-output operators of (2.10) are defined as
follows:

(Γu0t)(t) =
∫ t

0
Φ(t, τ)e1u(τ)dτ

=

(∫ t

t0k(t)

Φ(t, τ)u(τ)dτ +
k(t)∑

i=1

∫ t0i

t0,i−1
Φ(t, τ)u(τ)dτ

)

e1

=
∫ t

t0k(t)

(
e−(t−τ)γσ0(τ) + e−2.5(t−τ)

(
1 − γσ0(τ)

)
, 0
)T

u(τ)dτ

+
k(t)∑

i=1

∫ t0i

t0,i−1

(
e−(t−τ)γσ0(τ) + e−2.5(t−τ)

(
1 − γσ0(τ)

)
, 0
)T

u(τ)dτ,

(Γou0t)(t) =
∫ t

0
eT1Φ(t, τ)e1u(τ)dτ

+
k(t)∑

i=1

∫ t0i

t0,i−1

(
e−(t−τ)γσ0(τ) + e−2.5(t−τ)

(
1 − γσ0(τ)

))
u(τ)dτ, ∀t ∈ R0+,

(4.7)

subject to u0t(t) = u(t), for all t ∈ R0+, and u0t (t) = 0, for all t ∈ R−, since the input-output
interconnection gain is zero; that is, D = 0 and the output and control vectors are C = B =
e1 = (1, 0)T , where k(t) = max(t0i ∈ STσ0 : R0+ � t0i ≤ t) is the largest switching instant not
exceeding the current time t, and γσ0 : [t0i, t0,i+1) ∩ R0+ → {1, 0} is a binary indicator function
defined as γσ0(τ) = 1 if σ0(ti) = 1 and γσ0(τ) = 0 if σ0(ti) = 2, for all τ ∈ [t0i, t0,i+ 1). Thus,
the matrix function of (2.15)which defines the solution of the homogeneous system on R0+ is
given by

Z(t, 0) = Φ(t, 0) +
∫ t

0
Φ(t, τ)A1(τ)Z(τ − h1, 0)dτ, ∀t ∈ R0+, (4.8)

subject to Z(t, 0) = 0, for all t < 0, and Φ(t, τ) = γσ0(τ)Φ1(t, τ) + (1 − γσ0(τ))Φ2(t, τ), for all
t, τ(≤ t) ∈ R0+, (4.5), (4.6), which are obtained from A0i (i = 1, 2), and the definition of
A1(t) in this example. If the control input u(t) is in L2, then the output y(t) is also in L2

independent of the delay h1 ∈ [0,∞) and for any switching function σ : R0+ → 2 = {1, 2}
since the system (4.1), subject to the given matrices A0i, A1(t), i = 1, 2, is stable independent
of the delay and for arbitrary switching. Since A0i (i = 1, 2) are stability matrices, the
transformation matrices Ti = I2 (i = 1, 2) then A0i = Ã0i (i = 1, 2), A1(t) = Ã1(t), e1 =
C = B = C̃ = B̃ in (3.1)–(3.5). Now, the Definition 3.7 yields to the following particular
application of Theorem 3.8 for this example since Assumption 3.1 holds and the input-state
and input-output operators are bounded operators. It is found, as expected since all the
matrices are stable, that the anticausal input-output and input-state Hankel operators are zero
on R0+.
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(1) The anticausal input-output Hankel and causal input-output Toeplitz operators on R0+ are

(
ĤΓ0u

)
(t) = 0,

(TΓou)(t) = (P+ΓoP−u)(t) = eT1

(∫ t

0
Z(t, τ)u(τ)dτ

)

e1

=
k(t)∑

j=1

∫ tj

tj−1
eT1

[

Φ(t, τ)e1 +
k(t)∑

�=1

∫ t�

t�−1
Φ
(
t, γ
)
A1(t�−1)Z

(
γ − h1, τ

)
e1

×(U(τ) −U
(
γ − h1

))
dγ

]

u(τ)dτ, ∀t ∈ R0+.

(4.9)

The last expression being valid if t1 = 0 since t0 = −∞. If t1 > 0, then the given switching
sequence STσ may be redefined as t1 → 0, ti + 1 → ti , . . . , for all i ≥ 1 with the switching
function initialized as σ(t) = σ(t0) = −∞, for all t ∈ (−∞, t2] so that the switched system is not
modified and the above expression is valid for the causal Toeplitz operator.

(2) The anticausal input-output Hankel and causal input-output Toeplitz operators on R0− are

(
ĤΓou

)
(t) = (P−ΓoP+u)(t) = −

∫∞

0
eT1

(
Z̃(t, τ)e1

)+
u(τ)dτ = (TΓou)(t) = 0, ∀t ∈ R0−, (4.10)

as above, in the case that the first switching time instant is nonzero.
(3) The anticausal input-output Toeplitz and causal Hankel input-output operators on R0+ are

(
T̂Γou

)
(t) = 0, ∀t ∈ R0+,

(HΓou)(t) = (P+ΓoP−u)(t) =
∫0

−∞
C(t)Z(t, τ)B(τ)u(τ)dτ

=
∫0

−∞
eT1

[

Φ(t, τ)e1 +
∫0

−∞
Φ
(
t, γ
)
A1 (−∞)Z

(
γ − h1, τ

)
e1

×(U(τ) −U
(
γ − h1

))
dγ

]

u(τ)dτ, ∀t ∈ R0+.

(4.11)

(4) The anticausal input-output Toeplitz and causal Hankel input-output operators on R0− are

(
T̂Γou

)
(t) = (P−ΓoP−u)(t) =

∫0

−∞
C(t)Z(t, τ)B(τ)u(τ)dτ

=
∫0

−∞
eT1

[

Φ−(t, τ)e1 +
∫0

−∞

(
Φ−(t, γ

)
A1 (−∞)Z

(
γ − h1, τ

)
e1
)−

×(U(τ) −U
(
γ − h1

))
dγ

]

u(τ)dτ, ∀t ∈ R0−,

(HΓou)(t) = 0, ∀t ∈ R0−.

(4.12)
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(5) The anticausal input-state Hankel and causal input-state Toeplitz operators on R0+ are
(
ĤΓu

)
(t) = 0, ∀t ∈ R0+,

(TΓu)(t) = (Pn
+ΓP−u)(t) =

∫ t

0
Z(t, τ)B(τ)u(τ)dτ

=
k(t)∑

j=1

∫ tj

tj−1

[

Φ(t, τ)e1 +
k(t)∑

�=1

∫ t�

t�−1
Φ
(
t, γ
)
A1(t�−1)Z

(
γ − h1, τ

)
e1

×(U(τ) −U
(
γ − h1

))
dγ

]

u(τ)dτ, ∀t ∈ R0+.

(4.13)

The last expression being valid if t1 = 0 since t0 = −∞. If t1 > 0, then the given switching
sequence STσ may be redefined as above.

(6) The anticausal input-state Hankel and causal input-state Toeplitz operators on R0− are

(
ĤΓu

)
(t) = (Pn

−ΓP+u)(t) = 0, (TΓu)(t) = 0, ∀t ∈ R0−, (4.14)

with the switching time instants being redefined with t1 = 0, so that σ(t) = σ(t0) = σ(−∞), for
all t ∈ (−∞, t2], as above, in the case that the first switching time instant is nonzero.

(7) The causal input-state Hankel and anticausal input-state Toeplitz operators on R0+ are

(HΓu)(t) = (Pn
+ΓP−u)(t) =

∫0

−∞
Z(t, τ)B(τ)u(τ)dτ,

=
∫0

−∞

[

Φ(t, τ)e1 +
∫0

−∞
Φ
(
t, γ
)
Ai (−∞)Z

(
γ − hi, τ

)
e1

×(U(τ) −U
(
γ − h1

))
dγ

]

u(τ)dτ, ∀t ∈ R0+,

(
T̂Γu

)
(t) = 0, ∀t ∈ R0+.

(4.15)

(8)The causal input-state Hankel and anticausal input-state Toeplitz operators on R0− are

(HΓu)(t) = 0, ∀t ∈ R0−,
(
T̂Γu

)
(t) = (Pn

−ΓP−u)(t) =
∫0

−∞
Z(t, τ)B(τ)u(τ)dτ

=
∫0

−∞

[

Φ(t, τ)e1 +
∫0

−∞
Φ
(
t, γ
)
A1(−∞)Z

(
γ − h1, τ

)
e1

×(U(τ) −U
(
γ − h1

))
dγ

]

u(τ)dτ, ∀t ∈ R0−.

(4.16)

Note that the bounded input-output and input-state linear operators Γ0 : L2 → L2 and Γ :
L2 → Ln

2 are causal since the respective anticausal Hankel operators are zero.
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