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1. Introduction

Time-delay dynamic systems are an interesting field of research in dynamic systems and
functional differential equations because of intrinsic theoretical interest because the formal-
ism lies in that of functional differential equations, then infinite dimensional, and because
of the wide range of applicability in modelling of physical systems, like transportation
systems, queuing systems, teleoperated systems, war/peace models, biological systems,
finite impulse response filtering, and so forth [1–4]. Important particular interest has been
devoted to stability, stabilization, and model-matching of control systems where the object
to be controlled possess delayed dynamics and the controller is synthesized incorporating
delayed dynamics or its structure may be delay-free (see, e.g., [1, 4–14]). The properties
are formulated as either being independent of or dependent on the sizes of the delays.
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An intrinsic problem which increases the analysis complexity is the presence of infinitely
many characteristic zeros because of the functional nature of the dynamics. This fact
generates difficulties in the closed-loop pole–placement problem compared to the delay-
free case [14], as well as in the stabilization problem [2, 4–6, 8–11, 13, 15–20], including
the case of singular time-delay systems where the solution is sometimes nonunique, and
impulsive, because of the dynamics associated to a nilpotent matrix, [15]. The properties
of the associated evolution operators have been investigated in [2, 6, 11]. Interesting recent
results on infinite dimensional Banach spaces are given in [21–24]. In particular, the existence
of periodic solutions of semilinear evolution equations with time lags is investigated in [21].
In [22], a class of linear impulsive periodic systems with time-varying generating operators
on a Banach space is considered. The set of impulsive periodic motion controllers that are
robust to parameter drift are synthesized for a given periodic motion. The research in [23]
is devoted to investigate the existence and the global asymptotic stability of a periodic PC-
mild solution for the T -periodic logistic system with time-varying generating operators and
T -0-periodic impulsive perturbations on Banach spaces. In [24], a close problem is solved
based on a generalized Gronwall’s lemma. In [25], the robust stability of a variational control
problem is solved by providing the stability radius. Also, the approximation properties of
the homogeneous system associated with a class of linear elliptic differential equations with
periodic coefficients is investigated in [26].

This paper is devoted to obtain results relying on a comparison and an asymptotic
comparison of the eigensolutions between a nominal (unperturbed) functional differential
equation involving wide classes of delays and a perturbed version (describing the current
dynamics) with some appropriate assumptions smallness in the limit on the perturbed
functional differential equation. The nominal equation is defined as the limiting equation
of the perturbed one since the parameters of the last one converge asymptotically to those
of its limiting counterpart. The problem is of interest in practice since the perturbations
related to a nominal model in dynamic systems very often occur during the transients while
they are asymptotically vanishing in the steady-state or, in the most general worst case,
they grow at a smaller rate than the solution of the nominal differential equation. In this
context, the nominal differential equation may be viewed as the limiting equation of the
perturbed one. The comparison between the solutions of the limiting differential equation
and those of the perturbed one based on Perron-type results have been studied classically for
ordinary differential equations and, more recently, for the case of functional equations [27–
29]. Particular functional equations of interest in real-life problems are those involving both
point and distributed delays, the last ones potentially include Volterra-type terms, [2, 5–7, 30].

Notation

The following sets are used through the manuscript:

R0+ := R+ ∪ {0}, R+ := {z ∈ R : z > 0}, R0− := R− ∪ {0}, R− := {z ∈ R : z < 0},
C0+ := {z ∈ C : Re z ≥ 0}, C0− := {z ∈ C : Re z ≤ 0}, C− := {z ∈ C : Re z < 0},

Z0+ := Z+ ∪ {0}, Z+ := {z ∈ Z : z > 0},
(1.1)

where R, C, and Z are the sets of real, complex and integer numbers, respectively, The
complex imaginary unity is i =

√−1.
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A finite subset of j consecutive positive integers starting with 1 is denoted by j :=
{1, 2, . . . , j}. The set R−h := [−h, 0) ∪ R0+ will be used to define the solution of functional
differential equations on R0+ including its initial condition in [−h, 0].

C(i)(R0+,Rm
0+) is the set of m-vector real functions of class C(i) and definition domain

R0+ and PC(i)(R0+,Rm
0+) is the set of m-vector real functions in C(i−1)(R0+,Rm

0+) whose ith
derivative is piecewise continuous. Similar sets of functions are defined when the ranges
are complex as C(i)(R0+,Cm

0+) and PC(i)(R0+,Cm
0+).

For the delayed system, T : [0,∞) → L(X) is the inverse Laplace transform of
the resolvent mapping ̂T(s), which is holomorphic where it exists, with X being the real
Banach space of n-vector real functions endowedwith the supremumnorm on their definition
domain defined for any such a complex or real vector function φ of definition domain D by
|φ|α = supτ∈D

(‖φ(τ)‖α
) · ‖ · ‖α denoting any vector or induced matrix norm, that is, α = 1

for the �1-norm, α = ∞ for the �∞-norm, and so forth. Similar notations are used for the
corresponding matrix-induced norms. In particular, α = 2 stands for �2 (or spectral) vector
and corresponding induced matrix norms, which coincides with the Euclidean norm for
vectors. The Euclidean (or Froebenius) norm is denoted by the unsubscripted symbol ‖ · ‖
so that ‖ · ‖ = ‖ · ‖2 for vectors but not for matrices. In the case of vectors, the Euclidean norm
coincides with its �2-norm.

The unsubscripted symbol | · | is used for absolute values of real, complex, and integer
numbers, as usual. It is said that the delays associated with Volterra-type dynamics are
infinitely distributed because the contribution of the delayed dynamics is made under an
integral over [0,∞) as t → ∞, that is, x (t − τ − h′

i) acts on the dynamics of x(t) from τ = 0 to
τ = t for finite t and as t → ∞.

Dom(H) is the definition domain of the operator H and sp(A) is the spectrum (i.e.,
the set of distinct eigenvalues) of the square matrix A. The matrix measure of the norm-
dependent complex-valued matrix A is defined by κα(A) := limδ→ 0+(‖In + δA‖α − δ)/δ ≥
Reλi(A), for allλi ∈ sp(A).

Also, ¬, ∨, ∧ are logic symbols for negation, disjunction, and conjuction of logic
propositions.

2. Problem Statement and Basic First Results

Consider the following linear nominal functional differential systems with point and, in
general, both Volterra-type and finite distributed delays:

.
x (t) = Lxt ≡

m
∑

i=0

Aix
(

t − hi

)

+
m′
∑

i=0

∫ t

0
dαi(τ)Aαix

(

t − τ − h′
i

)

+
m′+m′′
∑

i=m′+1

∫ t

t−h′
i

dαi(t − τ)Aαix(τ),

(2.1)
.
x (t) = Lxt + f

(

t, xt

)

≡
m
∑

i=0

Aix
(

t − hi

)

+
m′
∑

i=0

∫ t

0
dαi(τ)Aαix

(

t − τ − h′
i

)

+
m′+m′′
∑

i=m′+1

∫ t

t−h′
i

dαi(t − τ)Aαix(τ) + f
(

t, xt

)

,

(2.2)
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f(t, xt) =
m
∑

i=0

˜Ai(t)x
(

t − hi

)

+
m′
∑

i=0

∫ t

0
dαi(τ) ˜Aαi(t)x

(

t − τ − h′
i

)

+
m′+m′′
∑

i=m′+1

∫ t

t−h′
i

dαi(t − τ) ˜Aαi(τ)x(τ) + f0
(

t, xt

)

.

(2.3)

Equation (2.1) is the limiting equation of the perturbed equation (2.2), subject to (2.3), for
f(t, xt) → 0 as t → ∞ under the following technical hypothesis.

H.1: The initial conditions of both differential equations (2.1) and (2.2) are real n-vector
functions φ ∈ Ce(−h) where Ce(−h) := {φ = φ1 + φ2 : φ1 ∈ C(−h), φ2 ∈ B0(−h)}, φ(0) = x0,
with C(−h) := {C0([−h, 0], X)}; that is, the set of continuous mappings from [−h, 0] into the
Banach spaceX with norm φα := |φ|α = Sup{‖φ(t)‖α : −h ≤ t ≤ 0}; ‖ ·‖ denoting the Euclidean
norm of vectors in Cn and matrices in Cn×n, and B0(−h) := {φ : [−h, 0] → X} is the set of real-
bounded vector functions on X endowed with the supremum norm having support of zero
measure. Roughly speaking, φ ∈ B0(−h) if and only if it is almost everywhere zero except at
isolated discontinuity points within [−h, 0]where it is bounded. Thus, φ ∈ Ce(−h) if and only
if it is almost everywhere continuous in [−h, 0] except possibly on a set of zero measure of
bounded discontinuities. Ce(−h) is also endowed with the supremum norm since φ = φ1+φ2,
some φ1 ∈ C(−h), φ2 ∈ B0(−h) for each φ ∈ Ce(−h). In the following, the supremum norms
on L(X) are also denoted with | · |.

Close spaces of functions are C(R−h) := C([−h,∞),Cn) which is the Banach
space of continuous functions from [−h,∞) into Cn endowed with the norm |φ|α =
sup−h≤τ<∞(‖φ(τ)‖α); for all φ ∈ Ce(−h) := C([−h, 0),Cn) being an initial condition, for some
given vector norm ‖ · ‖α. Note that for t ∈ R0+, the solution which satisfies (2.2), subject to
(2.3), is in Ce(R0+) := C(R0+,Cn), the Banach space of continuous functions from R0+ into Cn

which satisfies (2.2)-(2.3), ∀φ ∈ Ce(−h), endowed with |φ|α = sup0≤τ<∞(‖φ(τ)‖α).
Thus, L : Ce(R−h) → Cn is a bounded linear functional defined by the right-hand-side

of (2.1).
H.2: All the operatorsAk (0 ≤ k ≤ m), Aαk (0 ≤ k ≤ m′+m′′) are in L(X) := L(X,X), the

set of linear operators on X, of dual X∗ and hk, and h′
� (k = 1, 2, . . . , m; � = 0, 1, . . . , m′ +m′′)

are nonnegative constants with h0 = h′
0 = 0 and h := Max(Max1≤i≤n(hi), Max1≤i≤m′+m′′(h′

i)).
H3: The linear operators Aαi ∈ L(X), with abbreviated notation Aα0 = Aα, are

closed and densely defined linear operators with respective domain and range D(Aαi) and
R(Aαi) ⊂ X (i = 0, 1, . . . , m′ + m′′). The functions αi ∈ C0([0,∞),C) ∩ BV loc(C+) (i =
0, 1, . . . , m′) and αi ∈ C0([−h, 0),C) (i = 0, 1, . . . , m′ + m′′) being everywhere differentiable
with possibly bounded discontinuities on subsets of zero measure of their definition domains
with

∫∞
0 e

vt|dαi(t)| < ∞ some nonnegative real constant v (i = 0, 1, . . . , m′). If αi(·) is a matrix
function αi : [0,∞] × X∗ → L(X,X∗) then it is in C0([0,∞), Cn×n) ∩ BV loc(Cn×n

+ ) with
∫∞
0 e

νt|dαi(t)| < ∞ and its entries being everywhere time-differentiable with possibly bounded
discontinuities on a subset of zero measure of their definition domains.

H.4: It is assumed that f0 : R0+ × C(R−h) → Cn and h0 = h′
0 = 0,

x
C(R−h)
t :=

⎧

⎨

⎩

x : [−h, τ) −→ X, τ ≤ t,

0, τ > t,
(2.4)
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satisfying x(t) = φ(t), for all t ∈ [−h, 0], is a string of the solution of (2.2)-(2.3). Other strings
of the solution trajectory of interest in this manuscript are xC(R0+)

t which point-wise defined by
x(t) within the interval [0, t] and zero, otherwise, and subject to the constraint xt = φt within
[max(−h, t−h), t], ∀t ∈ R0+ and being zero outside this interval. Finally, xt denotes the solution
string within [t − h, t] point-wise defined by the solution x(t) to (2.2)-(2.3) for each t ∈ R−h
being zero outside [t − h, t] and subject to the constraint xt = φt within [max(−h, t − h), t] for
any real t ≤ h and being zero outside this interval.

Ai and Aαk and ˜Ai : [0,∞) → Cn×n and ˜Ai : [0,∞) → Cn×n (k = 0, 1, . . . , m; k =
0, 1, . . . , m′ + m′′) belong to the spaces of constant real matrices and real matrix functions,
respectively. The last ones are also unbounded operators on a Banach space of n-vector
real functions x ∈ X endowed with the supremum norm where the vectors of point

and distributed constant delays are: ̂h := (0, h1, h2, . . . , hm) and ̂h′ =
(

̂h′T
1 : ̂h′T

2

)T
:=

(

0, h′
1, h

′
2, . . . , h

′
m′ : h′

m′+1, h
′
m′+2, . . . , h

′
m′+m′′

)T , respectively, with hi ≥ 0 and h′
k

≥ 0 (k =
1, 2, . . . , m′ +m′′) and being, respectively, point and distributed delays, with h0 = h′

k = 0, A0 ≡
A, Aα and α0(·) ≡ α(·). The first m′ distributed delays are associated with Volterra-type
dynamics. In other words, the infinitely distributed delays give contributions

∫ t

0dαi(τ)Aαix(t−
τ − h′

i)with finite real constants h′
i with (i = 1, 2, . . . , m′) to

.
x (t)which are point delays under

the integral symbol. The functions αi : [0,∞) → C and αk : �0, h′
k� → C are continuously

differentiable real functions within their definition domains except possibly on sets of zero
measure where the time-derivatives have bounded discontinuities. All or some of the αi(·)
may be alternatively matrix functions αi : [0, t] → Cn×n(i = 0, 1, . . . , m′) for t ∈ R+ and
αi : �0, h′

k
� → Cn×n(i = m′ + 1, m′ + 2 . . . , m′ + m′′) with αi(0) = 0; i = 0, 1, . . . , m′ + m′′.

On the other hand, the perturbation vector function f(t, xt) in (2.2), defined in (2.3), with
respect to the limiting (2.1), is defined by the function f : R0+ × C(R−h) → Cn×n which
describes a perturbed dynamics associated with the delays plus a perturbation function
f0 : R0+ × C(R−h) → Cn×n which is not included in the remaining terms of the function f
in (2.3). Note that both the delayed differential systems (2.2)-(2.3) and its limiting version
(2.1) are very general since it includes point-delayed dynamics, like, for instance, in typical
war/peace models or the so-called Minorski’s problem appearing when controlling the
lateral dynamics of a ship [2]. It also includes real constants h′

i (i = 0, 1, . . . , m′), with
h′
0 = 0, associated with infinitely distributed delayed contributions to the dynamics. Such

delays are relevant, for instance, in viscoelastic fluids, electrodynamics, and population
growth [1, 5, 8]. In particular, an integro-differential Volterra-type term is also included
through h′

0 = 0. Apart from those delays, the action of finite-distributed delays characterized
by real constants h′

i (i = 0, 1, . . . , m′ + m′′) is also included in the limiting equation (2.1)
and in (2.3). That kind of delays is well known, for instance, in econometric models
related to production rate [8]. The integrability of the αi(·)-functions (or matrix functions)
on [t − h′

i, t] follows since their definition domain is bounded. The technical hypothesis
H1–H4 guarantee the existence and uniqueness of the solution in C(R0+) := C(R0+,Cn)
of the functional differential systems (2.1) and (2.2)-(2.3) for each given initial condition
φ ∈ Ce(−h).

Take Laplace transforms in (2.1) by using the convolution theorem and the relations
dα(τ) =

.
α (τ)dτ . It follows that dα̂i(s) = sα̂i(s) − αi(0), where ̂f(s) := Lapf(t) denotes the

Laplace transform of f(t). Thus, the unique solutions of both the limiting (2.1) and that of
(2.2)-(2.3) in C(R0+), subject to (2.3); for all t ∈ R0+, for the same given initial conditions
φ ∈ Ce(−h) are, respectively, defined by



6 Abstract and Applied Analysis

y(t) = T(t, 0)x
(

0+
)

+
∫0

−h
T(t, τ)φ(τ)U(τ)dτ, (2.5)

x(t) = T(t, 0)x
(

0+
)

+
∫0

−h
T(t, τ)φ(τ)U(τ)dτ +

∫ t

0
T(t, τ)f(τ, xτ)dτ, (2.6)

whereU(t) is the unit step (Heaviside) function and T(t, τ) is the evolution operator, [2, 6, 31],
of the linear (2.1) whose Laplace transform, everywhere it exists, is given by the resolvent:

̂T(s) := LapT(t, 0) =

[

s

(

In −
m′
∑

i=0

α̂i(s)Aαie
−h′

is −
m′+m′′
∑

i=m′+1

α̂i(s)Aαi

(

1 − e−h
′
is
)

)

−
m
∑

i=0

Aie
−his + α(0)Aα +

m′
∑

i=0

αi(0)Aαie
−h′

is
m′+m′′
∑

i=m′+1

αi(0)Aαi

(

1 − e−h
′
is
)

]−1
.

(2.7)

As usual, it is said though the manuscript that (2.1) is the limiting equation of (2.2)-(2.3)
irrespective of the fact that f(t, xt) converges or not to zero as t → ∞. The evolution
operator is a convolution operator so that T(t, τ) = T(t − τ, 0) = T(t − τ) if the Volterra-type
dynamics is zero or if the associate differentials in the Riemann-Stieltjes integrals dαi(t) = χidt
with χi being real constants. In this case, the limiting linear functional differential equation
is, furthermore, time-invariant. Note that the limiting (2.1) is guaranteed to be globally
exponentially uniformly stable if and only if ̂T(s) exists within some region including
properly the right-complex plane. In other words, if it is compact for Re s > −α0, for some
r constant α0 ∈ R located to the right of all the real parts of all the zeros of det ̂T−1(s) (also
often called the characteristic zeros of the limiting (2.2) or, simply, its eigenvalues), since then
all the entries of its Laplace transform T(t) decay with exponential rate on R0+ for φ ∈ Ce(−h)
and then |x(t)| decays with exponential rate on R+. The main result addressed in [2, 7–10]
relies on the investigation of the global uniform exponential stability of (1). The stability
of the limiting system (2.1) is investigated in [5, 6], provided that any auxiliary system
formed with any of the additive parts of the dynamics of (2.1), has such a property and
provided that an impulsive-solution-dependent input exists. The compactness of the relevant
input-output and input-state operators under forcing external inputs and impulsive forcing
terms is also investigated in [6]. The basic mathematical tool used in those papers is that the
unique solution of the homogeneous (2.1) for each function of initial conditions φ ∈ Ce(−h)
may be equivalently written in infinitely many cases by first rewriting (2.1) by considering
different “auxiliary” reference homogeneous systems plus additional terms considered as
forcing actions. The objective of this paper is to compare the solutions (2.1), (2.2), subject to
(2.3), of the limiting and current functional differential equations (2.1) and (2.2) by using a
Perron-type result using a similar technique as that used in [28]. The subsequent theorem
is a generalization of a classical Perron-type theorem for ordinary differential equations to
(2.2), subject to (2.3) compared to (2.1) (see [1, Chapter IV, Theorem 5] and [28, Theorem 1.1]
for functional differential equations which include several kinds of delays such as point and
distributed delays and Volterra-type dynamics with infinite delays. The result extends the
perturbation term to include constant upper-bounding terms in the perturbation functional
(2.3) and characteristic zeros of the limiting (2.2) (i.e., zeros det ̂T−1(s)) of multiplicity greater
than unity (being degenerated or non-degenerated) in the limiting dynamics defined by (2.1).
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Theorem 2.1. Let x be a solution of (2.2), subject to (2.3), on R0+ subject to initial conditions φ ∈
Ce(−h) such that

∣

∣f(t, xt)
∣

∣

α ≤ γα(t)
∣

∣xt

∣

∣

α +K0α, t ∈ R0+ (2.8)

for some norm-dependent K0α ∈ R0+ where γα ∈ C(0)(R0+,R0+)is also norm-dependent and satisfies
∫ t+1
t ((tϑk−1)/(ϑk!))e

βσktγα(s)ds → 0 as t → ∞, where β = 0 if there is no Volterra term in (2.1)
and β = 1, otherwise, and σk are the real parts of the zeros of det ̂T−1(s) of the limiting (2.2) with
respective multiplicities ϑk. Then, the following properties hold:

(i)

lim
t→∞

∫ t+1

t

gα(s)

(

∣

∣

∣

∣

f
(

s, xs

)

xs

∣

∣

∣

∣

α

−K0α

)

ds = 0, (2.9)

where gα ∈ PC(0)(R0+,R0+) is an indicator function defined by

gα(t) =

⎧

⎪

⎨

⎪

⎩

0 if γ0α(t) =
∣

∣

∣

∣

f
(

t, xt

)

xt

∣

∣

∣

∣

α

−K0α ≤ 0,

1 otherwise.
(2.10)

(ii) The real numbers μk = μk(x) = limt→∞(log |xt|)/tk exist and are norm-independent and
finite, for all k ≥ k1 and some integer k1 ≥ 1 with μk = 0, ∀k > k1 or limt→∞ebtx(t) = 0, b ∈ R.
If μk1 ≥ 0 or if (2.8) holds with K0α = 0, then either μk1 it is the real part of a zero of det ̂T

−1(s), for
which the resolvent ̂T(s) trivially exists and it is bounded, or limt→∞ebtx(t) = 0, for all b ∈ R.

(iii) Assume that all the zeros of det ̂T−1(s) have real negative parts and (2.8) holds only for
some constants K0R+. Then, either the limits μk = μk(x) = limt→∞(log |xt|)/tk = 0 exist, ∀k ≥ k1,
some integer k1 ≥ 1, and furthermore, μ1 is not trivially the real part of a characteristic zero of (2.2),
or limt→∞ebtx(t) = 0, ∀b ∈ R.

Proof. (i) From (2.8), γα(t) ≥ max(0, |f(t, xt)/xt|α − K0α) = gα(t)(0, |f(t, xt)/xt|α − K0α) ≥ 0 so
that

0 = lim
t→∞

∫ t+1

t

γα(s)ds ≥ lim sup
t→∞

∫ t+1

t

gα(s)
(∣

∣

∣

∣

f
(

s, xs

)

xs

∣

∣

∣

∣

α

−K0α

)

ds ≥ 0

=⇒ ∃ lim
t→∞

∫ t+1

t

gα(s)
(∣

∣

∣

∣

f
(

s, xs

)

xs

∣

∣

∣

∣

α

−K0α

)

ds = 0,

(2.11)

and property (i) has been proved.
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(ii) From (2.8), |f(t, xt)|α = γα(t)|xt|α +K0α −ωα(t), t ∈ R0+, some ωα ∈ PC(0)(R0+,R0+).
Then, one gets from (2.6)-(2.7),

∥

∥x(t)
∥

∥

α ≤ K1(α)
tν−1

ν!

[

eμt
∥

∥x
(

0+
)∥

∥

α +
∣

∣

∣

∣

eμt(1 − eμh)
μ

∣

∣

∣

∣

(|φ|α +K0α
)

+ βmax
(

1, eμt
)

sup
0≤τ≤t

(∣

∣xt

∣

∣

α

)

(

jt
∑

l=0

∫�+1

�

γα(s)ds +
∫ t

jt

γα(s)ds

)]

(2.12)

from the limiting hypothesis on the integral of the function γα, for any arbitrary small real
norm-dependent constant εα ∈ R+, there exists a finite t0 ∈ Z+ ( only for a simple constructive
proof easily extendable to t0 ∈ R+), dependent on εα and the given α-norm, such that one gets
from (2.12) by taking initial conditions at t0:

∥

∥x(t)
∥

∥α ≤ K1(α)

(

t − t0
)ν−1

ν!

[

eμ(t−t0)
∥

∥x(t+0 )
∥

∥

α +
∣

∣

∣

∣

eμ(t−t0)
(

1 − eμh
)

μ

∣

∣

∣

∣

(|φ|α +K0α
)

+ βεα
(

1, eμt
)

sup
t−t0≤τ≤t

(∣

∣xt

∣

∣

α

)

]

(2.13)

with μ being the real part of a characteristic zero of ̂T−1(s) of multiplicity ν and jt = max(z ∈
Z0+ : t ≥ jt) is dependent on t. Note that, if the solution x(t) is unbounded for the given
initial conditions, then there exist, by construction, a finite and t0 ∈ Z+ and a subsequence
x(tk) valued at the real increasing sequence {tk}∞0 (then tk → ∞ as k → ∞) such that
‖x(tk)‖α = supt−t0≤τ≤tk(|xτ |α) so that from (2.13) and for some bounded vector function gα ∈
PC(0)(R0+,R0+),

∥

∥x
(

tk
)∥

∥

α = sup
tk−t0≤t≤tk

(∣

∣xt

∣

∣

α

)

≤ (1 − βεαK1(α)
)−1
(

K1(α)

(

tk − t0
)v−1

v!

×
[

eμt(tk−t0)
∥

∥x
(

t0
+)∥
∥

α +
∣

∣

∣

∣

eμ(tk−t0)
(

1 − eμh
)

μ

∣

∣

∣

∣

(|φ|α +K0α
)

])

(2.14)

provided that εα is sufficiently small to guarantee 1 > εαK1(α) in the case that β = 1
and independently of εα if β = 0. Furthermore, if μ/= 0 then μ > 0 if the solution is
unbounded since, otherwise, suptk−t0≤t≤tk(|xt|α) is bounded from (2.8) which contradicts the
made assumption that it is unbounded. The equivalent contrapositive proposition to the
last above one is that if suptk−t0≤t≤tk(|xt|α) is uniformly bounded then μ ≤ 0. Equivalently,
if furthermore μ = 0, then ν = 1 (i.e., μ is the real part of a simple real characteristic zero of
̂T−1(s) associate with the limiting equation (2.2) or there are two simple complex conjugate
ones with real part μ). Otherwise, some unbounded lower-bound may be obtained similarly
to (2.13) with the replacement of one of the plus signs in the right-hand-side terms with a
minus sign affecting some unbounded term caused by (t − t0)

ν−1/ν! → ∞ as t → ∞ if ν /= 1.
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This implies that the solution is unbounded which contradicts the fact that it is bounded.
Note from (2.13) that if μ > 0 then real increasing sequence {tk}∞0 of (2.13):

sup
tj−t0≤≤tk

(∣

∣xtj

∣

∣

α

)

= K1(α)

(

tk − t0
)ν−1

ν!

[

eμ(tk−t0)
∥

∥x
(

t+0
)∥

∥α +
∣

∣

∣

∣

eμ(tk−t0)(1 − eμh)
μ

∣

∣

∣

∣

(∣

∣φ
∣

∣

α +K0α
)

+ βεα sup
tk−t0≤τ≤tk

(∣

∣xtk

∣

∣

α

)

]

− gα
(

t0, tk
)

≤ (1 − βεαK1(α)
)−1
(

K1(α)

(

tk − t0
)ν−1

ν!

×
[

eμ(tk−t0)
∥

∥x
(

t+0
)∥

∥

α +
∣

∣

∣

∣

eμ(tk−t0)
(

1 − eμh
)

μ

∣

∣

∣

∣

(∣

∣φ
∣

∣

α +K0α
)

]

− gα(t0, tk)
)

(2.15)

which takes the form suptk−t0≤t≤tk (|xt|α) = ((tk − t0)ν−1/ν! )eμ(tk−t0)M − gα(t0, tk), where M ∈
R0+ depends on t0 (finite), K1α, K0α, β, εα, |φα| , and the α-norm, for some bounded vector
function gα ∈ PC(0)(R0+,R0+) which depends on t0, the initial conditions, β and εα, provided
that εα is sufficiently small to guarantee 1 > εαK1(α), in the case that β = 1, and independently
of εα if β = 0. Assume that the solution X(t) is not a trivial solution what is guaranteed if
limt→∞ebtx(t)/= 0, for all b ∈ R. Then, it follows from (2.15) that lim suptk−t0≤t≤tk(ln |xt|α/tν) =
μ > 0 for sufficiently large t0 ∈ Z0+, irrespective, of the α-norm, since limt→∞(ln gα(t0, t)/tν) =
0 for any α-norm. By taking Z0+ � t0 → ∞, it follows that limt→∞(ln |xt|α/tν) = μ > 0. The
result may be also extended to the case μ = 0, since then, the solution is either unbounded
(for some initial conditions and multiplicity ν > 1of the characteristic zero of ̂T−1(s) whose
real part is μ), or it is bounded (in particular, always if ν = 1 for μ = 0). As a result, if μ ≥ 0
and there is no b ∈ R such that ebtx(t) converges to zero as t → ∞, then

lim
t→∞

ln
∣

∣xt|α
tν

= μ, lim
t→∞

ln
∣

∣xt|α
tν+�

= μ; ∀� ∈ Z+ since
∫ t+1

t

tϑk−1

ϑk!
eβσktγα(s)ds −→ 0 as t −→ ∞

(2.16)

for all the characteristic zeros of the limiting equation (2.2) . If (2.8) holds, in particular, with
K0α = 0, then the above result is also valid from (2.15) for a negative value of μ. Property (ii)
has been proved.

(iii) If (2.8) does not hold for K0α = 0 and all the characteristic zeros of the limiting
equation (2.2) have negative real parts then it follows by using a close reasoning to that used
in (ii) that the solution cannot converge asymptotically to zero but it is uniformly bounded
from (2.15) since

∫ t+1
t tϑk−1/ϑk! eβσktγα(s)ds → 0 as t → ∞ and such an integral is bounded,

for all t ∈ R+. Thus, μk = 0, for all k ≥ k1 and μk1 is not the real part of a characteristic zero of
the limiting equation (2.2) since it is not a negative real number.

The real limit μk1 of Theorem 2.1(ii)-(ii), provided that it exists, is called the
strict Lyapunov exponent of the solution of (2.2)-(2.3) with the perturbation function
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f(t, xt), subject to the hypotheses of Theorem 2.1, which is the real part of an eigenvalue
(or characteristic zero) of the limiting equation (2.1) if either it is positive or if it takes any
arbitrary value in the case that (2.8) holds forK0α = 0 (Theorem 2.1(ii)). If all the characteristic
zeros of (2.1) have negative real parts but (2.8) is not fulfilled with K0α = 0 then the strict
Lyapunov exponent, if it exists, is zero so that it is not the real part of a characteristic zero of
the limiting equation (2.1) (Theorem 2.1(iii)). The main extension of Theorem 2.1 for the very
general functional differential equation (2.2)-(2.3) with respect to parallel previous results
(see [27, Chapter IV, Theorem 5 for ordinary differential equations]; [28, Theorem 1.1, for
functional differential equations] and [29]) is that the perturbation function in (2.8) is not
vanishing for bounded solutions or slightly growing solutions since any bounded functions
are primarily admitted as perturbations in (2.2). The extension concerning the result in [27]
is restricted to the form of (2.1) which involves a wide type of delayed dynamics involving,
in general, any finite numbers of point delays, finite-distributed, delays and delays generated
by Volterra-type dynamics.

A notation for the subsequent lemma and theorem is the following (see [3, Chapter 7]).
If Λ is a finite set of eigenvalues of (2.1), then PΛ and QΛ denote the generalized eigenspace
associated with Λ and the corresponding complementary subspace of C(R0+), respectively.
The phase space C(R0+) is decomposed byΛ into the direct sum C(R0+) = PΛ(R0+)⊕QΛ(R0+).
The projections of the solution x ∈ C(R0+) of (2.2), subject to (2.3), for any initial condition
φ ∈ Ce(−h), onto the above subspaces are denoted by xPΛ(R0+) and xQΛ(R0+), respectively,
∀t ∈ R0+. Note that, although the initial conditions of (2.2)-(2.3) are in general in Ce(−h),
the corresponding unique solution of (2.2), subject to (2.3), for t ∈ R0+ are in C(R0+). The
whole solutions in R−h which includes any given initial condition φ ∈ Ce(−h) then satisfying
x(t) = φ(t), ∀t ∈ [−h, 0], and the differential equation (2.2), subject to (2.3), for t ∈ R0+ are in
Ce(R−h) = PΛ(R−h) ⊕ QΛe(R−h) where QΛe(R−h) is the complementary subspace of PΛ(R−h)
in Ce(R−h). The projections of the solution onto those subspaces are xPΛ(R−h) and xQΛe(R−h),
respectively, ∀t ∈ R−h. The following technical result follows.

Lemma 2.2. Assume that the initial condition of (2.2)-(2.3) is x(t) = φ(t), ∀t ∈ [−h, 0] for any
given φ ∈ Ce(−h). The unique solution of (2.2), subject to (2.3) on R0+, and identified with φ(t) ∀t ∈
[−h, 0], satisfies with unique decompositions:

xt+h = x
PΛ(R0+)
t+h + x

QΛ(R0+)
t+h ; ∀t ∈ R0+,

xt = x
PΛ(R−h)
t + x

QΛe(R−h)
t ; ∀t ∈ R0+,

x0 = φ
PΛ(R−h)
0 = φ

PΛ(R0+)
0 = φ

PΛ(R0+)
0 = x

PΛ(R−h)
0 + x

QΛe(R−h)
0 = φ

PΛ(R−h)
0 + φ

QΛe(R−h)
0 .

(2.17)

Proof. The first relation follows from C(R0+) = PΛ(R0+) ⊕ QΛ(R0+), and the superposition
principle for linear systems building the solution for t(≥ h) ∈ R0+ by projecting the function of
initial conditions into the complementary subspaces PΛ(R0+) and QΛ(R0+) in C(R0+) subject
to the constraint x(t) = φ(t), for all t ∈ [−h, 0]. The second relation follows from Ce(R−h) =
PΛ(R−h)⊕QΛe(R−h) again from the superposition principle with x(t) = φ(t), for all t ∈ [−h, 0].
The third relation follows from x0 = x(0) = φ(0) and the superposition principle applied to
the solution at t = 0.

The intuitive meaning of Lemma 2.2 is that for t ≥ 0, x(t) is decomposed uniquely
as a sum of a function in PΛ(R0+) and another one in its complementary in C(R0+), even
for initial conditions in Ce(−h), rather than in the more restrictive set C(−h). However, the
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complementary set QΛe(R−h) of PΛ(R−h) in C(R−h) replaces QΛ(R0+) t ≤ 0, since x0 = φ0 for
any given φ ∈ Ce(−h). Note that x(R−h)

t
= φ

PΛ(R−h)
t + φ

QΛe(R−h)
t , ∀t ∈ R0+ is untrue except for

φ ∈ C(−h).

Theorem 2.3. Let x be a solution of (2.2)-(2.3) satisfying the hypotheses of Theorem 2.1 with a finite
strict Lyapunov exponent μ(x) = μk1 = μ. Consider generalized eigenspaces P0(R0+) = PΛ0(R0+),
P1(R0+) = PΛ1(R0+) andQ(R0+) = QΛ(R0+) for t ∈ R0+ and, also, generalized eigenspaces P0(R−h) =
PΛ0(R−h), P1(R−h) = PΛ1(R−h) andQe(R−h) = QΛe(R−h) for t ∈ R−h, where the spectral sets Λ0, Λ1

and Λ each generating the two corresponding eigenspaces, are defined by,

Λ0 = Λ0(μ) :=
{

λ : det ̂T−1(λ) = 0, Reλ = μ
}

, (2.18)

Λ1 = Λ1(μ) :=
{

λ : det ̂T−1(λ) = 0, Reλ > μ
}

, (2.19)

Λ = Λ0 ∪Λ1 = Λ(μ) :=
{

λ : det ̂T−1(λ) = 0, Reλ ≥ μ
}

. (2.20)

Then, the following properties hold,
(i)

(i.1) Λ0 /=∅, Λ/=Φ if μ ∈ R0+,

(i.2) Λ0 /=∅ if μ ∈ R and, furthermore, (2.8) holds with K0α = 0,

(i.3) Λ = Λ0 = Λ1 = ∅ if all the eigenvalues of (2.1) have negative real parts and, furthermore,
(2.8) does not hold with K0α = 0,

(i.4) Λ1 = ∅ if any of the following conditions hold:

(1) No eigenvalue of (2.1) is in R0+,

(2) No eigenvalue of (2.1) is in R+ and, furthermore, (2.8) does not hold with K0α = 0,

(3) (2.8) holds with K0α = 0.

(ii) The solution of (2.2) under arbitrary initial conditions φ ∈ Ce(−h), subject to a
perturbation function (2.3), satisfies,

xt+h = x
P0(R0+)
t+h + x

P1(R0+)
t+h + x

Q(R0+)
t+h ; ∀t ∈ R0+,

xt = x
P0(R−h)
t + x

P1(R−h)
t + x

Qe(R−h)
t ; ∀t ∈ R0+,

x0 = φ
P0(R−h)
0 = x

P0(R0+)
0 = φ

P0(R0+)
0 = x

P0(R−h)
0 + x

P1(R−h)
0 + x

Qe(R−h)
0 = φ

P0(R−h)
0 + x

P1(R−h)
0 + φ

Qe(R−h)
0 .

(2.21)

(iii) The solution of (2.2) under arbitrary initial condition φ ∈ Ce(−h), subject to a
perturbation function (2.3), satisfies,

x
P1(R0+)
t+h = O

(∣

∣x
P0(R0+)
t+h

∣

∣

)

, x
Q(R0+)
t+h = O

(∣

∣x
P0(R0+)
t+h

∣

∣

)

, xt+h = O
(∣

∣x
P0(R0+)
t+h

∣

∣

)

; ∀t ∈ R0+

x
P1(R−h)
t = O

(∣

∣x
P0(R−h)
t

∣

∣

)

, x
Qe(R−h)
t = O

(∣

∣x
P0(R−h)
t

∣

∣

)

, xt = O
(∣

∣x
P0(R−h)
t

∣

∣

)

; ∀t ∈ R0+

(2.22)
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Furthermore, if (2.8) holds with K0α = 0 then, as t → ∞:

x
P1(R0+)
t+h = o

(∣

∣x
P0(R0+)
t+h

∣

∣

)

, x
Q(R0+)
t+h = o

(∣

∣x
P0(R0+)
t+h

∣

∣

)

, xt+h = o
(∣

∣x
P0(R0+)
t+h

∣

∣

)

; ∀t ∈ R0+

x
P1(R−h)
t = o

(∣

∣x
P0(R−h)
t

∣

∣

)

, x
Qe(R−h)
t = o

(∣

∣x
P0(R−h)
t

∣

∣

)

, xt = o
(∣

∣x
P0(R−h)
t

∣

∣

)

; ∀t ∈ R0+
(2.23)

(iv) The solution of the limiting equation (2.1) satisfies (2.23) as t → ∞.
(v) The solution of (2.2), under arbitrary initial conditions φ ∈ Ce(−h) and subject to a

perturbation function (2.3), satisfies:

xt+h = xP0
t+h + xP1

t+h + x
Q
t+h; ∀t ∈ R0+

xt = xP0
t + xP1

t + x
Qe

t ; ∀t ∈ R0+

(2.24)

which is identical to

xt = xP0
t + xP1

t + x
Q
t ; ∀t ∈ R−h (2.25)

under the restriction φ ∈ C(−h) for the initial conditions with x(t) = φ(t). Also,

xP1
t = O

(∣

∣xP0
t

∣

∣

)

, x
Q
t = O

(∣

∣xP0
t

∣

∣

)

, xt = O
(∣

∣xP0
t

∣

∣

)

; ∀t ∈ R0+, ∀φ ∈ Ce(−h). (2.26)

If (2.8) holds with K0α = 0 then, as t → ∞:

xP1
t+h = o

(∣

∣xP0
t

∣

∣

)

, x
Q
t+h = o

(∣

∣xP0
t+h

∣

∣

)

, xt = o
(∣

∣xP0
t+h

∣

∣

)

; ∀t ∈ R0+, (2.27)

which leads to

xP1
t = o

(∣

∣xP0
t

∣

∣

)

, x
Q
t = o

(∣

∣xP0
t

∣

∣

)

, xt = o
(∣

∣xP0
t

∣

∣

)

; ∀t ∈ R0+ (2.28)

under the restriction φ ∈ C(−h) for the initial conditions with x(t) = φ(t).The solution of the limiting
equation (2.1) satisfies (2.27)-(2.28) as t → ∞.

Proof. Properties (i) are direct consequences of Theorem 2.1 [(ii)-(iii)] as follows. property
(i.1) follows by noting that det ̂T−1(λ) = 0 for some λ ∈ C implies that λ is a characteristic zero
of (2.1) of nonnegative real part from (2.7). Assume that μ ∈ R0+∧Λ0 = ∅ ⇔ ̂λ := max(Re(λ) :
λ ∈ CZ)/=μ ≥ 0 where CZ ⊂ C is the set of characteristic zeros of the limiting equation
(2.1). Thus, if ̂λ/=μ = 0, then the current equation (2.2)-(2.3) is bounded while the limiting
one (2.1) is either globally asymptotically stable or unstable so that they cannot converge
asymptotically to each other which is a contradiction so that Λ ⊃ Λ0 /=∅. If ̂λ/=μ > 0 then the
current equation is unstable which implies that the limiting one should satisfy 0 < μ/= ̂λ > 0
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to be also unstable but the asymptotic convergence of their respective solutions to each
other is only possible if ̂λ = μ > 0. Thus, again Λ ⊃ Λ0 /=∅ and property (i.1) has been
proven. On the other hand, K0α = 0 ⇒ ̂λ = μ ⇒ Λ0 /=∅ and property (i.2) is proven. Also,
Λ = Λ0 = Λ1 = ∅ ⇒ λ < μ. Since, in addition, (2.2)-(2.3) is the limiting equation of (2.1) then
λ < μ < 0 and K0α > 0. Therefore, K0α = 0 and property (i.3) have been proven. Property (i.4)
follows from:

Λ1 = ∅ =⇒ ̂λ ≤ μ < 0 ∨ (̂λ ≤ μ = 0 ∧K0α = 0
) ∨ (0 < ̂λ ≤ μ > 0 ∧K0α = 0

)

(2.29)

in order to the solutions of (2.2)-(2.3) and (2.1) to asymptotically to converge to each other.
Property (i) has been fully proven.

Property (ii) is a direct consequence of Lemma 2.2 since Λ0 and Λ1 are disjoint sets
which implies that

C(R0+) = P0(R0+) ⊕ P1(R0+) ⊕QΛ(R0+),

Ce(R−h) = P0(R−h) ⊕ P1(R−h) ⊕QΛe(R−h).
(2.30)

Property (iii) is directly proven as follows. Equations (2.22) are a direct consequence of
property (ii). On the other hand, (2.23) are a direct consequence of (2.22) if (2.8) holds for
K0α = 0 so that property (iii) follows.

Property (iv) follows from property (iii) as particular case for f(t, xt) = 0; ∀t ∈ R−h
in (2.3).

Property (v) is a direct consequence of Properties (i)–(iv) In particular, the relative
growing properties of “O”-type of the various parts of the solution of (2.2)-(2.3) are
embedded from property (iii) into similar properties for the solution strings of length h. The
part of property (v) concerning the relative growing properties of “o”-type of the various
parts of the solution of (2.2)-(2.3) and that concerning the limiting equation follows directly
under a close reasoning.

Note that in Theorem 2.3, the various results obtained for “Landau small-o” notation,
referred to limits as t → ∞ imply, as usual, that parallel results for “Landau big-O” notation
stand for all t ∈ R0+ but the converse is not true. The results concerning “Landau big-
O” notation in Theorem 2.3(iii) for the perturbed functional equation (2.2)-(2.3) are new
for the studied class of functional equations, related to the background literature, since the
perturbation function is allowed to take bounded nonzero values even if the limiting equation
is globally asymptotically stable and it is not requested to grow asymptotically at most
linearly with xt. The results concerning “Landau big-O” notation imply that the solution
of the perturbed functional equation is uniformly bounded for any bounded function of
initial conditions of the given class for all time so that the functional differential equation
is globally uniformly Lyapunov stable provided that the perturbation (2.3) satisfies the given
hypotheses. A technical result concerning the boundedness of the evolution operator, which
will be then useful to derive further results, and stability properties of the differential systems
(2.1) and (2.2)-(2.3) follows.
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Theorem 2.4. The following properties hold:
(i) The evolution operator of the limiting functional differential equation (2.1) satisfies the

subsequent relations.

∥

∥T(t, 0)
∥

∥

α ≤ K1(α)
∥

∥In
∥

∥

α max
(

1,
tv−1

ν!
eμt
)

; ∀t ∈ R0+ (2.31)

∣

∣T(t, 0)
∣

∣

α ≤ K1(α)
∥

∥In
∥

∥

α max

(

1,
tv−1

ν!
eμt max

(

1,
ν−2
∑

i=0

t1−v+ihv−1−ieμh
))

; ∀t ∈ R0+ (2.32)

∥

∥Ṫ(t, 0)
∥

∥

αK2(α)sup
0≤τ≤t

∣

∣T
C(R0+)
τ

∣

∣

α; ∀t ∈ R0+ (2.33)

|T(t, 0)|α ≤ K2(α)sup
0≤τ≤t

∣

∣T
C(R0+)
τ

∣

∣

α (2.34)

≤ K1(α)K2(α)‖In‖α max

(

1,
tν−1

ν!
eμt max

(

1,
ν−2
∑

i=0

t1−ν+ihν−1−ieμh
))

; ∀t ∈ R0+.

(2.35)

Proof. (i) The evolution operator satisfies the limiting functional differential equation (2.1):

.

T (t, 0) =
m
∑

i=0

AiT(t − hi, 0) +
m′
∑

i=0

∫ t

0
dαi(τ)AαiT(t − h′

i, τ) +
m′+m′′
∑

i=m+l

∫0

h′
i

dαi(τ)AαiT(t, τ) (2.36)

for t ∈ R0+ subject to initial conditions T(0, 0) = In (i.e., the nth identity matrix) and
T(t, 0) = 0, t ∈ [−h, 0). Thus, it satisfies also the unforced (2.2) (i.e., for γα = |φ|α = K0α = 0).
This leads directly to (2.31). However, (2.32) follows by using the Newton binomial to
expand ((t + h)ν−1/ν!)eμ(t+h) and the fact that the maximum of the real exponential function
within the real interval [0, t] is reached at the boundary. Equation (2.33) follows by the
inspection of (2.36) for some norm-dependent K2(α) ∈ R+ which depends on the various
matrices of parameters of the limiting functional differential equation (2.1). Equation (2.34)
follows from (2.33) and (2.36). Finally, (2.35) follows from (2.34) and (2.32). Property (i) has
been proved.

(ii) For sufficiently small constant (βεα), the evolution operator as a function of time is
of exponential order whose norm time-function satisfies:

‖T(t, 0)‖α = sup
tkt0≤t≤tk

(∣

∣xt

∣

∣

α

)

≤ (1 − βεαK1(α)
)−1
(

K1(α)

(

tk − t0
)ν1

ν!
[

eμ(tk−t0)
∥

∥In
∥

∥

α

]

)

,

(2.37)
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which converges exponentially to zero as t → ∞ if the strict Lyapunov exponent μ is
negative. In this case, the limiting differential functional equation is globally uniformly
exponentially Lyapunov stable whose solution satisfies asymptotically:

∥

∥x(tk)
∥

∥

α = sup
tk−t0≤t≤tk

(∣

∣xt|α
)

≤ (1 − βεαK1(α)
)1

×
(

K1(α)

(

tk − t0
)ν−1

ν!

[

eμ(tk−t0)
∥

∥x
(

t+0
)∥

∥

α +

∣

∣

∣

∣

∣

eμ(tkt0)
(

1 − eμh
)

μ

∣

∣

∣

∣

∣

(|φ|α
)

])

,

(2.38)

so that it converges exponentially to zero as t → ∞ for any admissible function of initial
conditions. The differential equation (2.2), subject to (2.3) is globally uniformly Lyapunov
stable if μ ≤ 0 and its solution satisfies:

∥

∥x
(

tk
)∥

∥

α = sup
tk−t0≤t≤tk

(∣

∣xt

∣

∣

α

)

≤ (1 − βεαK1(α)
)−1

×
(

K1(α)

(

tk − t0
)ν−1

ν!

[

eμ(tk−t0)
∥

∥x
(

t+0
)∥

∥

α +

∣

∣

∣

∣

∣

eμ(tk−t0)
(

1 − eμh
)

μ

∣

∣

∣

∣

∣

(|φ|α +K0α
)

])

,

(2.39)

for large t and converges exponentially to zero (i.e., it is globally uniformly exponentially
Lyapunov stable) if μ < 0 and the perturbation function has an upper-bounding function
with K0α = 0.

(ii) It follows directly from (2.12).

The evolution operator T : R0+ × Cn → Cn explicits the solutions of the limiting
equation (2.5) and the perturbed one (2.6) for each function of initial conditions. Then, let
(Ts(t))t∈R0+

be the solution semigroup of the linear autonomous equation (2.1), which is
unique for t ∈ R0+ for each φ ∈ Ce(−h) and whose infinitesimal generator is A satisfying
.
ϕ= Aϕ, ∀ϕ ∈ Dom(A) := {ϕ ∈ Ce(R−h) : ∃ .

ϕ∈ C(R0+), ∀t ∈ R0+ ∧
.
ϕ (0) = Lϕ(0)}. Thus,

the string xt(φ) = (Tsφ)(t) of the solution of the limiting functional differential equation (2.1)
within [t − h, t] is defined from (2.5) as follows:

xt(φ) =
(

Tsφ
)

(t) := T(t − θ, 0)x(0+) +
∫0

−h
T(t − θ, τ)φ(τ)U(τ)dτ, ∀θ ∈ [0,min(t, h)],

xt(φ) =
(

Tsφ
)

(t) = 0, ∀θ ∈]0,min(t, h)[:= [0,min(t, h)] ∩ R0+, ∀t ∈ R0+;
(2.40)
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and the corresponding solution string of the perturbed functional differential equation (2.2)-
(2.3) is then defined follows:

xt(φ) =
(

Tsφ
)

(t)

:= T(t − θ, 0)x
(

0+
)

+
∫0

−h
T(t − θ, τ)φ(τ)U(τ)dτ

+
∫ t

0
T(t − θ, τ)f

(

τ, xτ

)

dτ, ∀θ ∈ [0,min(t, h)],

xt(φ) =
(

Tsφ
)

(t) = 0, ∀θ ∈ [0,min(t, h)] ∩ R; ∀t ∈ R0+.

(2.41)

The transposed equation associated with (2.1) is

.
y (t) = L∗yt

:=
m
∑

i=0

y
(

t − hi

)

A∗
i +

m′
∑

i=0

∫ t

0
y
(

t − τ − h′
i

)

A∗
αi
dα∗

i (τ) +
m′+m′′
∑

i=m′+1

∫ t

t−h′
i

y(τ)A∗
αi
dα∗

i (τ),
(2.42)

where the superscript ∗ denotes the adjoint operators of the corresponding un-superscripted
ones. In particular, for matrices, it denotes the conjugate transposes of the corresponding un-
superscripted ones. Thus, y(t) is a n-dimensional complex row vector. The phase space for
(2.42) onR0+ isC′(R0+) := C(R0+,Cn∗). Corresponding spaces of functions taking into account
themore general spaces for initial conditions areC′(h) := C([0, h],Cn∗

),C′
e(h) := C([0, h],Cn∗

)
and C′(R−h) := C(R−h,Cn∗

). Let Λ be a finite set of eigenvalues of (2.1) and let ΦΛ be a basis
for the generalized eigenspace PΛ, [27, 28]. Then, there exists a square n-matrix BΛ, with
sp(BΛ) = sp(Λ), such that the subsequent relations hold:

AΦΛ = ΦΛBΛ, ΦΛ(τ) = ΦΛ(0)eBΛτ (∀τ ∈ [−h, 0]), T(t, 0)ΦΛ = ΦΛe
BΛt. (2.43)

The relations (2.43) yield via direct computation property (i) of the subsequent result since
BΛ commutes with eBΛt. Property (ii) is a direct consequence of (2.36) subject to T(0, 0) = In
and T(t, 0) = 0 for t < 0.

Proposition 2.5. The two following properties hold.

(i) The following relations hold, for all t ∈ R0+:

T(t, 0)ΦΛBΛ = ΦΛe
BΛtBΛ = ΦΛBΛe

BΛt = AΦΛe
BΛt = AT(t, 0)ΦΛ,

.

T (t, 0)ΦΛBΛ = ΦΛB
2
Λe

BΛt = AΦΛBΛe
BΛt = A2ΦΛe

BΛt = AΦΛe
BΛtBΛ

= ΦΛBΛe
BΛtBΛ = T(t, 0)ΦΛB

2
Λ = T(t, 0)AΦΛBΛ = A2T(t, 0)ΦΛ

= AT(t, 0)ΦΛBΛ = AT(t, 0)AΦΛ.

(2.44)
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(ii) The evolution operator of the solution of (2.1) is uniquely given by

T(t, 0) = eA0t

(

In +

[

∫ t

0
e−A0τ

(

m
∑

i=1

AiT
(

t − hi, τ
)

+
m′
∑

i=0

∫ τ

0
dαi(θ)AαiT

(

τ − h′
i, θ
)

+
m′+m′′
∑

i=m′+1

∫0

h′
i

dαi(θ)AαiT(τ, θ)

)

dτ

])

(2.45)

for all t ∈ R0+ with T(0, 0) = In and T(t, 0) = 0 for t ∈ [−h, 0].

Equations (2.43)–(2.45) are useful for the asymptotic analysis of comparison of the
solutions of (2.2)-(2.3) with that of its limiting equation obtained from (2.1) which follows.
The solutions of PΛ can be extended to ∀t ∈ R by T(t, 0)ΦΛa = ΦΛe

BΛta, where a is
of dimension compatible with the order of ΦΛ. Let QΛ be the complementary eigenspace
to PΛ. Now, use appropriate notations for the corresponding subspaces on R0+ and their
extensions to R−h to consider more general initial conditions (on Ce(−h)) for (2.1) and (2.2)-
(2.3) than bounded continuous functions in a Banach space leading to the uniquely defined
decompositions Ce(R−h) = PΛ(R−h)⊕QΛe(R−h) and C(R0+) = PΛ(R0+)⊕QΛ(R0+). Then, given
a function of initial conditions φ ∈ Ce(−h) the decomposition φ0 = φt|t=0 = φ

PΛ(R−h)
0 + φ

QΛe(R−h)
0

is unique. Also, the unique solution of (2.1) and that of (2.2), subject to (2.3), are uniquely
decomposable in R0+ as

xt+h = x
PΛ(R0+)
t+h + x

QΛ(R0+)
t+h , (2.46)

x
PΛ(R0+)
t+h = ΦΛ

(

ΨΛ, xt+h
) ∈ PΛ

(

R0+
)

, x
QΛ(R0+)
t+h = xt+h − x

PΛ(R0+)
t+h ∈ QΛ

(

R0+
) ∀t ∈ R0+,

(2.47)

via the direct sum of subspaces C(R0+) = PΛ(R0+) ⊕ QΛ(R0+). The solution iincluding initial
conditions defined by x(t) = φ(t) for t ∈ [−h, 0] is uniquely decomposable in R−h as

xt = x
PΛ(R−h)
t + x

QΛe(R−h)
t , (2.48)

x
PΛ(R−h)
t = ΦΛ

(

ΨΛ, xt

) ∈ PΛ
(

R−h
)

, x
QΛe(R−h)
t = xt − x

PΛ(R−h)
t ∈ QΛe

(

R−h
) ∀t ∈ R0+

(2.49)

via the direct sum of subspaces Ce(R−h) = PΛ(R−h) ⊕QΛe(R−h).
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3. Asymptotic Behavior and Asymptotic Comparison

The string solution (2.6) of (2.2)-(2.3) for θ ∈ [t − h, t], point-wise defined by x(t) = φ(t),
t ∈ [−h, 0], any given φ ∈ Ce(−h), and

x(t + θ) = T(t + θ, 0)x
(

0+
)

+
∫0

−h
T(t + θ, τ)φ(τ)U(τ)dτ +

∫ t+θ

0
T(t + θ, τ)f

(

τ, xτ

)

dτ,

∀θ ∈ [−h, 0], t ≥ h,

(3.1)

may be expressed equivalently via the solution semigroup of the limiting equation (2.1) as

xt(φ, θ) = x∗
t (φ, θ) +

∫ t+θ

0
d
[

K(t + θ, τ)
]

f
(

τ, xτ

)

=
(

Ts(t, 0)φ
)

(θ) +
∫ t

0
d
[

K(t + θ, τ)
]

f
(

τ, xτ

)

= T(t + θ, 0)φ
(

0+
)

+
∫0

−h
T(t + θ, τ)φ(τ)U(τ)dτ +

∫ t+θ

0
T(t + θ, τ)f

(

τ, xτ

)

dτ,

(3.2)

where x∗
(·) : [t − h, t] × Cn × [−h, 0] → Cn, defined by

x∗
t (φ, θ) =

(

Ts(t, 0)φ
)

(θ)

:= T(t + θ)φ
(

0+
)

+
∫0

−h
T(t + θ, τ)φ(τ)U(τ)dτ, ∀θ ∈ [−h, 0], t ≥ h,

(

Ts(0, 0)φ
)

(θ) = x0(φ, θ) = φ(θ), ∀θ ∈ [−h, 0],

(3.3)

with x(0) = φ(0) is the unique solution of the limiting equation (2.1), and the kernel K(t, ·) :
[0, t] → Cn of Ts(t, 0), ∀t ∈ R0+ is defined by

K(t, s)(θ) =
∫s

0
X(t + θ − τ)dτ, ∀θ ∈ [−h, 0], ∀t ∈ R0+, (3.4)

where X is the fundamental matrix of (2.1) with initial values X0(0) = In and X0(θ) = 0,
∀θ ∈ [−h, 0]. The following technical result holds.
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Lemma 3.1. The following relations hold:

xt = xt(φ, θ) = xPΛ
t + x

QΛ
t , R+ � t ≥ h, (3.5)

xPΛ
t =

(

Ts(t, 0)φPΛ
)

(θ) +
∫ t

0

(

Ts(t, τ)f
(

τ, xτ

)PΛ
)

(θ)dτ

=
(

Ts(t, 0)φPΛ
)

(θ) +
∫ t

0

(

Ts(t, τ)X
PΛ
0

)

(θ)f
(

τ, xτ

)

dτ

= T(t + θ, 0)φPΛ
(

0+
)

+
∫0

−h
T(t + θ, τ)φPΛ(τ)U(τ)dτ

+
∫ t

0
T(t + θ, τ)XPΛ

0 f
(

τ, xτ

)

dτ,

(3.6)

x
QΛ
t =

(

Ts(t, 0)φQΛ
)

(θ) +
∫ t

0

(

Ts(t, τ)f
(

τ, xτ

)QΛ
)

(θ)dτ, R+ � t ≥ h

=
(

Ts(t, 0)φQΛe
)

(θ) +
∫ t

0

(

d[K(t, τ)]QΛ
)

(θ)f
(

τ, xτ

)

, R+ � t ≥ h,

(3.7)

xt =
(

Ts(t, 0)
(

φPΛ + φQΛe
))

(θ) +
∫ t

0

(

Ts(t, τ)X
PΛ
0 +

(

d[K(t, τ)]QΛ
))

(θ)f
(

τ, xτ

)

dτ,

R+ � t ≥ h,

(3.8)

where

XPΛ
0 = ΦΛΨΛ(0), K(t, τ)QΛ = K(t, τ) −ΦΛ

(

ΨΛ, K(t, τ)
)

. (3.9)

Also, the following relations hold for φ ∈ Ce(−h), for all ε ∈ R+, being sufficiently
small:

∣

∣T(t, 0)φPΛ
∣

∣ ≤ M1e
(μ−ε)t∣

∣φPΛ
∣

∣,
∣

∣T(t, 0)XPΛ
0

∣

∣ ≤ M1e
(μ−ε)t; ∀t ∈ R0−, (3.10a)

∣

∣T(t, 0)φQΛe
∣

∣ ≤ M1e
(μ−ε)t∣

∣φQΛe
∣

∣, ∀t ∈ R0+, (3.10b)

for some M1 = M1(ε) ∈ R+ irrespective of the multiplicity of the eigenvalue of the limiting
equation (2.1)whose real part is μ.
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Proof. Equations (3.5)–(3.7) hold for any R0+ � t ≥ h from Theorem 2.3, the definition of the
setΛ in Theorem 2.1, (2.20), Lemma 2.2, and (2.46)–(2.49). To obtain (3.5)–(3.7), the following
identities are used:

∫ t+θ

0

(

Ts(t, τ)f
(

τ, xτ

)PΛ
)

(θ)dτ =
∫ t

0

(

Ts(t, τ)X
PΛ
0

)

(θ)f
(

τ, xτ

)

dτ

=
∫ t

0
T(t + θ, τ)XPΛ

0 f
(

τ, xτ

)

dτ,

∫ t

0

(

Ts(t, τ)f
(

τ, xτ

)PΛ
)

(θ)dτ =
∫ t+θ

0

(

Ts(t, τ)f
(

τ, xτ

)PΛ
)

(θ)dτ

=
∫ t

0

(

Ts(t, τ)X
PΛ
0

)

(θ)f
(

τ, xτ

)

dτ,

(3.11)

since f(τ, xτ) = 0 for τ < 0 and T(t, τ) = 0 for τ > t and θ ∈ [−h, 0]. Equation (3.8) follows
directly by substitution of (3.6), and (3.7) into (3.5). The norm relations (3.9) hold directly
from (3.5)–(3.7) through (3.8).

It turns out that for any φ ∈ Ce(−h), the above relations hold also for any t ∈ R−h by
replacing QΛ → QΛe in (3.5)–(3.7). Equation (3.9) also holds for t ∈ R−h since φ ∈ Ce(−h)
is bounded. The second relation in (3.5) may be rewritten as |T(t, 0)φQΛ | ≤ M1e

(μ−ε)t for any
R0+ � t ≥ h and extended to any t ∈ R0+ if φ is continuous on its definition domain [−h, 0].
A direct consequence of Lemma 3.1, (3.8) and Proposition 2.5 is that if xPΛ

t = ΦΛu(t), for all
t ∈ R0+ then u is a solution of the ordinary differential equation

.
u (t) = BΛu(t)+ΨΛ(0)f(t, xt),

[28], which is given explicitly by:

u(t) = eBΛt

(

u(0) +
∫ t

0
e−BΛτΨΛ(0)f

(

τ, xτ

)

dτ

)

= eBΛtu(0) +
∫ t

0
eBΛ(t−τ)ΨΛ(0)f

(

τ, xτ

)

dτ

= Φ−1
Λ T(t, 0)ΦΛu(0) +

∫ t

0
Φ−1

Λ T(t, τ)ΦΛΨΛ(0)f
(

τ, xτ

)

dτ

= Φ−1
Λ

(

T(t, 0)ΦΛu(0) +
∫ t

0
T(t, τ)ΦΛΨΛ(0)f

(

τ, xτ

)

dτ

)

(3.12)

for u(0) =
∫0
−he

BΛ(t−τ)φ(τ)dτ so that

xPΛ
t = ΦΛu(t)

= T(t, 0)ΦΛu(0) +
∫ t

0
T(t, τ)ΦΛΨΛ(0)f

(

τ, xτ

)

dτ,

.
u (t) = BΛΦ−1

Λ T(t, 0)ΦΛu(0) +
∫ t

0
BΛΦ−1

Λ T(t, τ)ΦΛΨΛ(0)f
(

τ, xτ

)

dτ + ΨΛ(0)f
(

t, xt

)

= Φ−1
Λ

(

.

T (t, 0)ΦΛu(0) +
∫ t

0

.

T (t, τ)ΦΛΨΛ(0)f
(

τ, xτ

)

dτ

)

+ ΨΛ(0)f
(

t, xt

)

.

(3.13)
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It is now proved that the asymptotic difference function between some eigensolution of (2.1),
that is, a finite sum of solutions of (2.1) corresponding to the set Λ0(μ) of the form p(t)eλt,
where p is a Cn-valued polynomial and λ ∈ Λ0(μ), and some corresponding solution of (2.2)-
(2.3) grows non faster than linearly with the norm of the solution of the limiting equation
(2.1), [32]. If γ(t) converges to zero exponentially then the asymptotic difference function
between both solutions has strict Lyapunov exponent smaller than that of the corresponding
limiting eigensolution. As a result, a solution of (2.2)-(2.3) is of the same exponential order as
that of its limiting equation for sufficiently large time. Define the set of distinct eigenvalues
of the limiting equation (2.1) as

CE :=
{

λjμi ∈ C : Reλjμi = μi,det
(

̂T−1(λμi

))

= 0; ∀j ∈ InCEi ⊂ Z+, ∀i ∈ InCER ⊂ Z+
}

. (3.14)

It is obvious that the cardinal of CE may be infinity (since (2.1) is a functional differential
equation), but always numerable. The also denumerable subsets InCEi and InCER of the
set of positive integers are indicator sets for all distinct members of CE with real part
μi and for all the distinct real parts of the members of CE, respectively. It follows that
Card(CE) =

∑

i∈InCER
Card InCEi ≤ χ0. The total number of eigenvalues taking account for

their multiplicities νij ; ∀j ∈ InCEi, ∀i ∈ InCER, is

ϑ =
∑

i∈InCER

∑

j∈InCEi

νijCard InCEi ≥ Card(CE) =
∑

i∈InCER

Card InCEi. (3.15)

In particular, Card(CE) = χ0 (χ0 standing for infinity denumerable cardinal as opposite to
a non-numerable infinity cardinal typically denoted by ∞) or Card(CE) is finite. The above
definition relies on the fact distinct (non real) eigenvalues λjμi of (2.1), ∀j ∈ InCEi can have
identical real part. Similar sets of eigenvalues of (2.1) as those in (2.18)–(2.20)may be defined
being associated to each member of CE as follows:

Λ0
(

μi

)

:=
{

λ ∈ CE : Reλ = μi

}

;

Λ1
(

μi

)

:=
{

λ ∈ CE : Reλ > μi

}

;

Λ
(

μi

)

= Λ0
(

μi

) ∪Λ1
(

μi

)

:=
{

λ ∈ CE : Reλ ≥ μi

}

.

(3.16)

The following result holds concerning an asymptotic comparison of eigensolutions of (2.1)
with the corresponding associated solution of (2.2) and (2.3) under a special form of the
perturbation function.

Theorem 3.2. Suppose that at least one λμ ∈ CE has real part μ being identical strict Lyapunov
exponent of some solution of (2.2) under (2.3). Suppose also that f(t, xt) satisfies the hypotheses
of Theorem 2.1. Then, a solution of (2.2)-(2.3) satisfies x(t) = y(t) + O(ect), ∀t ∈ R0+ and any
R � c > μ. Also, x(t) = y(t) + O(tν−1eμt) for any f(t, xt) satisfying the hypotheses of Theorem 2.1
with ν being the largest multiplicity among those of all distinct λμ ∈ CE.

Assume, in addition, that K0α = 0 for any norm α and γ : R0+ → R0+ satisfies γ(t) =
o(e−at) as t → ∞ for some a ∈ R+ (i.e., γ(t) → 0 as t → ∞ exponentially). Then, ∃ ε ∈ R+



22 Abstract and Applied Analysis

and a nontrivial eigensolution of (2.1) corresponding to the set Λ0(μ) such that x(t) = y(t) +
o(e(μ−ε)t) as t → ∞.

Proof. Note that for any norm α, xt = O(|xP0(R−h)
t |α); ∀t ∈ R0+ [Theorem 2.3(ii)] with

Ce(R−h) = PΛ(R−h) ⊕ QΛe(R−h), PΛ(R−h) = PΛ0(R−h) ⊕ PΛ1(R−h) with PΛ0(R−h) being the
eigenspace associated with Λ0(μ) for t ∈ R−h. For t ≥ h, the related direct sum decomposition
C(R0+) = PΛ(R0+) ⊕ QΛ(R0+), PΛ(R0+) = PΛ0(R0+) ⊕ PΛ1(R0+) since may be used for the
eigensolutions of (2.1) since the solution is time-differentiable for t ∈ R0+. Thus, x(t) = O(ect)
and y(t) = O(ect) so that x(t) − y(t) = O(ect) for any given perturbation function f(t, xt)
satisfying the constraints of Theorem 2.1 and all R � c > μ = Reλμ, λμ ∈ CE.

If all λμ ∈ CE are simple then x(t) − y(t) = O(ect), R � c ≥ μ = Reλμ for any given
perturbation function f(t, xt) satisfying the constraints of Theorem 2.1.

Otherwise (i.e., at least one λμ ∈ CE is not simple), x(t) − y(t) = O(pλu(t)e
μt) = O(ect)

for some R− � c > μ with pλu : [0, t] → Cn being a polynomial of degree ν equating
the largest multiplicity among those of all distinct λμ ∈ CE.

The first part of the result has been fully proved. Now, note that (3.8) in Lemma 3.1
can be equivalently rewritten as

xt − yt =
∫ t

0

(

Ts(t, τ)X
PΛ
0 +

(

d[K(t, τ)]QΛ
))

(θ)f
(

τ, xτ

)

dτ, R+ � t ≥ h. (3.17)

Also, if γ(t) = o(e−at) as t → ∞ and since |xt| = o(e(μ+ε)t) as t → ∞, irrespective of the
multiplicity of λμ, from the definition of the strict Lyapunov exponent, one gets by using
γ(τ)|xτ | ≤ MγMxe

(μ+ε−α)τ from (2.8) with K0α = 0 (since γ(t) = o(e−at) → 0 as t → ∞) and
(3.10b):

∣

∣

∣

∣

∫ t

0

(

d[K(t, τ)]QΛ
)

(θ)f
(

τ, xτ

)

dτ

∣

∣

∣

∣

α

≤ M2(α)e(μ−ε)t
∫∞

0
e(2ε−α)τ dτ

≤ M2(α)
α − 2ε

e(μ−ε)t = o
(

e(μ−ε)t
)

, ∀t ∈ R0+,

(3.18)

∣

∣

∣

∣

∫ t

0
Ts(t, τ)X

PΛ
0 (θ)f

(

τ, xτ

)

dτ

∣

∣

∣

∣

α

≤ M3(α)e(μ−ε)t
∫∞

0
e(2ε−α)τ dτ

≤ M2(α)
α − 2ε

e(μ−ε)t = o
(

e(μ−ε)t
)

, ∀t ∈ R0+

(3.19)

since ‖XPΛ
0 (θ)‖α = ‖ΦΛΨΛ(θ)‖α = ‖ΦΛ(0)ΨΛ(0)e2BΛθ‖α < ∞, ∀θ ∈ [−h, 0] provided that 0 <

ε < α/2. Then, xt − yt = o(e(μ−ε)t) as t → ∞, ∀ε ∈ R+ satisfying 0 < ε < α/2.

Remark 3.3. An important observation follows. Note that the error between any eigenso-
lutions of the limiting equation (2.1) and the associated solution of (2.2)-(2.3) satisfying
xt − yt = o(e(μ−ε)t) as t → ∞ if γ(t) = o(e−at) as t → ∞ and K0α = 0 for sufficiently small
ε ∈ R+ (proven in Theorem 3.2) does not imply that xt = o(e(μ−ε)t),yt = o(e(μ−ε)t) as t → ∞ if
γ(t) = o(e−at) as t → ∞ for sufficiently small ε ∈ R+.

The asymptotic behaviors if γ(t) = o(e−at) and K0α = 0 as t → ∞ are as follows:

yt = o
(

eμt
)

, xt = yt + o
(

e(μ−ε)t
)

= o
(

eμt
)

+ o
(

e(μ−ε)t
)

= o
(

eμt
)

, as t → ∞, (3.20)
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for sufficiently small ε ∈ R+ if λμ ∈ CE is real simple or there are two λμ1,2 ∈ CE simple
complex conjugate ones. In the above, equations, yt = o(eμt), xt = o(eμt) hold even if K0α /= 0
provided that λμ fulfils some of the above constraints. Furthermore,

yt = o
(

ect
)

, xt = yt + o
(

e(μ−ε)t
)

= o
(

ect
)

+ o
(

e(μ−ε)t
)

= o
(

ect
)

, as t → ∞, (3.21)

for sufficiently small ε ∈ R+ and all real c > μ = Reλμ if λμ ∈ CE is multiple (i.e., of
multiplicity greater then unity). Also, xt − yt = O

(

ect
) ⇒ xt = O

(

ect
) ∧ yt = O

(

ect
)

, t ∈ R0+,
c > μ = Reλμ irrespective of the multiplicity of λμ for any generic perturbation function
f(t, xt) satisfying the hypothesis of Theorem 2.1. However, the above implication is true for
any arbitrary such a function and c = μ, only if λμ is an eigenvalue of multiplicity unity of the
limiting equation (2.1).

Theorem 3.2 leads directly to the subsequent stability result by taking also into account
Remark 3.3.

Corollary 3.4. Suppose that there exists a (nonnecessarily unique) λμ ∈ CE with μ < 0 being the
strict Lyapunov exponent of some solution of (2.2) under (2.3) and that Λ0(μ) = Λ(μ); that is,
Λ1(μ) = ∅. Suppose also that f(t, xt) satisfies the hypotheses of Theorem 2.1 and, furthermore,K0α =
0 (for any α-norm) and γ(t) = o(e−at) as t → ∞ for some a ∈ R+. Then, ∃ε ∈ R+ such that any
solutions of (2.1) and (2.2)-(2.3) satisfy:

x(t) = y(t) + o
(

e−(|μ|+ε)t
)

−→ y(t) −→ o
(

tν−1e−|μ|t
)

−→ o
(

e
−|c|t) −→ 0 exponentially as t −→ ∞,

(3.22)

for some R− � c ≥ μ with ν being equal to the largest multiplicity of among those of all distinct
λμ ∈ CE. The above relations hold with c = μ if and only if all the eigenvalues of (2.1) satisfying the
given assumptions are simple. As a result, both functional equations (2.2)-(2.3) and its limiting one
are globally asymptotically Lyapunov stable with exponential stability.

Proof. Theorem 3.2 applies for c > μ with |λμ| being the spectral radius and μ < 0 the spectral
(or stability) abscissa, that is, there is no member of CE with real part to the right of μ <
0 since Λ1(μ) = ∅. If all such λμ ∈ CE are simple then the result applies also for c ≥ μ
(see Remark 3.3). Define the bounded real nonnegative function V : [t0,∞) × Cn → R0+ as
V (t, x(t)) := ‖x(t)‖22 for any finite t0 ∈ R0+. Note that V (t, 0) = 0 and V (t, x(t)) are strictly
monotonically increasing with ‖x(t)‖. It follows from (2.2)-(2.3) that ∃ .

V∈ PC(1)([t0,∞) ×
Cn,R), point-wise defined by

.

V
(

t, x(t)
)

:= 2
.
x
∗(t)x(t), and

0 ≤ V
(

t, x(t)
)

= V
(

t0, x(t0)
)

+
∫ t

t0

.

V
(

τ, x(τ)
)

dτ

≤ Ke−2|c|(t−t0) −→ 0 exponentially as t −→ ∞
(3.23)

Then, ∃limt→∞
∫ t

t0

.

V (τ, x(τ))dτ = 2 limt→∞
∫ t

t0

.
x
∗(τ)x(τ)dτ = −V (t0, x(t0)) ≤ 0which is

finite since t0 is finite and the solution to (2.2)-(2.3) is everywhere continuous on its definition
domain. By assuming ¬∃t0 ∈ R0+ such that

.

V (t, x(t)) ≤ 0, t ∈ [t0,∞) then ¬∃limt→∞
∫ t

t0

.

V



24 Abstract and Applied Analysis

(τ, x(τ))dτ = −V (t0, x(t0)) ≤ 0 which is a contradiction to the already proven existence of
such a limit. As a result, ∃t0 (being sufficiently large but finite) ∈ R0+ such that

.

V (t, x(t)) ≤ 0,
∀t ∈ [t0,∞) and

.

V (t, x(t)) < 0 on some (non-necessarily connected) subinterval of infinite
measure of [t0,∞) with

.

V (t, x(t)) → 0 as t → ∞ then necessarily there is a connected
terminal subinterval [t′0,∞) ⊂ [t0,∞) of infinitemeasurewhere

.

V (t, x(t)) < 0. Thus, V (t, x(t))
is nonnegative and converges exponentially to zero with nonpositive time-derivative which
also converges to zero within some interval of infinite measure. As a result, V (t, x(t)) is a
Lyapunov function with negative time-derivative within a connected real interval of infinite
measure which has zero limit.

Note that the limiting differential functional equation is, furthermore, globally
uniformly asymptotically Lyapunov stable under the asymptotic stability conditions of
Corollary 3.4. Note that K0α > 0 (for any α-norm) in (2.3) implies that K0α′ > 0 for any
other norm α′ and conversely. Also, K0α = 0 ⇔ K0α′ = 0. The above result is concerned with
global asymptotic stability with exponential decay rate. Global uniform Lyapunov stability
(i.e. boundedness of solutions with a common upper-bound for all time for any bounded
function of initial conditions) holds under weaker conditions; that is, K0α > 0 and μ = 0 if
λμ ∈ CE associated with the strict Lyapunov exponent have unity multiplicities or if they
have any multiplicities but K0α = 0. The precise related stability result follows which proofs
follows directly from Corollary 3.4 and Theorem 3.2.

Corollary 3.5. Suppose that there exists at least one λμ ∈ CE with μ ≤ 0 being the strict Lyapunov
exponent of some solution of (2.2) under (2.3) and that Λ0(μ) = Λ(μ); that is, Λ1(μ) = ∅. Suppose
also that f(t, xt) satisfies the hypotheses of Theorem 2.1 with K0α ≥ 0 (for any α-norm) and γ(t) =
o(e−at) as t → ∞ for some a ∈ R+. Then, ∃ε ∈ R+ such that any solutions of (2.1) and (2.2)-(2.3)
satisfy

x(t) = y(t) +O
(

e−|μ|t
) −→ y(t) −→ O

(

e−|μ|t
)

, ∀t ∈ R0+. (3.24)

As a result, the limiting equation (2.1) as well as (2.2)-(2.3) are both globally uniformly Lyapunov
stable if all λμ ∈ CE have any multiplicities and μ < 0 or if they have all unity multiplicities and μ = 0.
Equations (2.1) and (2.2)-(2.3) are both globally Lyapunov asymptotically stable with exponential
decay rate if μ < 0 and K0α = 0, satisfying:

x(t) = y(t) + o
(

e−|μ|t
) −→ y(t) −→ o

(

pλu(t)e
−|μ|t) −→ o

(

e−|c|t
) −→ 0

exponentially as t −→ ∞,
(3.25)

for some R− � c ≥ μ with pλu : [0, t] → Cn being a polynomial of degree equal to the largest
multiplicity of all such distinct λμ ∈ CE. The above relations hold with c = μ if and only if all the
eigenvalues of (2.1) satisfying the given assumptions are simple, [32].

A parallel result to Theorem 3.2 obtained under weaker conditions on the perturbation
function (2.3) follows.

Theorem 3.6. Suppose that at least one λμ ∈ CE has real part μ being identical strict Lyapunov
exponent of some solution of (2.2) under (2.3). Suppose also that f(t, xt) satisfies the hypotheses of
Theorem 2.1. Suppose, in addition, that K0α = 0 for any norm α, and γ : R0+ → R0+ satisfies either
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∫∞
0 t

ν−1γ(t)dt < ∞ or γ(t) ≤ o(t1−ν) as t → ∞, with the inequality being strict if ν = 1, where ν is the
largest multiplicity among those of all distinct λμ ∈ CE. Then, ∃ε ∈ R+ and a nontrivial eigensolution
of (2.1) corresponding to the set Λ0(μ) such that x(t) = y(t) + o(eμt) as t → ∞.

Furthermore, x(t) = o(tν−1eμt) and y(t) = o(tν−1eμt).

Proof. One gets for sufficiently small ε ∈ R+ from
∫ t

0t
ν−1γ(t)dt < ∞ and Theorem 3.2, (3.18)-

(3.19) and K0α = 0:

∣

∣

∣

∣

∣

∫ t

0

(

d
[

K(t, τ)
]QΛ
)

(θ)f
(

τ, xτ

)

dτ

∣

∣

∣

∣

∣

α

≤ M4(α)eμt
∫

0
∞e−μτe(ε−μ)τe(ε+μ)τ

τ (ν−1)/2
(

τ (ν−1)/2γ(τ)
)

dτ

≤ M4(α)eμt
[

∫∞

0

(

e2(2ε−μ)τ

τν−1

)

dτ

]1/2[∫∞

0
τν−1γ2(τ)dτ

]1/2

≤ M5(α)eμt
[

∫∞

0

(

e2(2ε−μ)τ

τν−1

)

dτ

]1/2

, ∀t ∈ R0+,

(3.26)

where M5(α) ≥ M4(α)Sup0≤t<∞(γ(t)) which is a finite real constant since γ(t) is continuous
on R0+ and has zero limit as t → ∞ so that it is uniformly bounded. Now, if μ ∈ R+ for
R+ � ε ∈ (0, μ/2), R− � d > b := (2ε − μ)ν ∈ R− and R0+ � t ≥ t0 := e(d−b)/(ν−1):

∫∞

t 0

(

e2(2ε−μ)τ

τν−1

)

dτ ≤
∫∞

t 0
e−|d|τdτ ≤ 1

|d| = (μ − 2ε)ν < ∞,

∫ t0

0

(

e2(2ε−μ)τ

τν−1

)

dτ ≤ M6 < ∞
(3.27)

since t0 is finite. Now from (3.27) into (3.26):

∣

∣

∣

∣

∣

∫ t

0

(

d
[

K(t, τ)
]QΛ
)

(θ)f
(

τ, xτ

)

dτ

∣

∣

∣

∣

∣

α

≤ M5(α)
(
√

M6 +
√

(μ − 2ε)ν
)

eμt = o
(

eμt
)

as t −→ ∞

(3.28)

if μ ∈ R+. If μ ∈ R0− then (3.10a) and (3.10b) of Lemma 3.1 may be replaced for μ ∈ R0− by
taking ε = 0 with

∣

∣T(t, 0)φPΛ
∣

∣ ≤ M1t
ν−1e−|μ|t

∣

∣φPΛ
∣

∣,
∣

∣T(t, 0)XPΛ
0

∣

∣ ≤ M1t
ν−1e−|μ|t; ∀t ∈ R0−, (3.29)

∣

∣T(t, 0)φQΛe
∣

∣ ≤ M1t
ν−1e−|μ|t

∣

∣φQΛe
∣

∣; ∀t ∈ R0+. (3.30)
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By using (3.30), (3.26)may be replaced μ ∈ R0− with

∣

∣

∣

∣

∣

∫ t

0

(

d
[

K(t, τ)
]QΛ
)

(θ)f
(

τ, xτ

)

dτ

∣

∣

∣

∣

∣

α

≤ M4(α)
∫ t

0
e−|μ|(t−τ)(τν−1γ(τ))dτ

≤ M4(α)
∫∞

0
τν−1γ(τ)dτ ≤ M7(α) < ∞, ∀t ∈ R0+.

(3.31)

On the other hand,
∫∞
0 t

ν−1γ(τ)dτ < ∞ ⇒ γ(t) = o(1/tν−1) as t → ∞ so that one gets for
μ ∈ R0− from Theorem 3.2, (3.18), since the integrals in (3.27) are bounded:

∣

∣

∣

∣

∣

∫ t

0

(

d
[

K(t, τ)
]QΛ
)

(θ)f
(

τ, xτ

)

dτ

∣

∣

∣

∣

∣

α

≤ M4(α)eμt
∫ t

0
τ1−νeε(2τ−t)dτ

≤ 2M4(α)eμt
∫2t

0

(

τ

2

)1−ν
eε(τ−t)dτ

≤ 2M4(α)eμt
∫∞

0

(

τ

2

)1−ν
eε(τ−t)dτ

≤ M8(α)eμt = o(e−|μ|t) as t −→ ∞, irrespective of the normα.

(3.32)

As a final result, |∫ t0(d[K(t, τ)]QΛ)(θ)f(τ, xτ)dτ |α = o(eμt) as t → ∞, ∀μ ∈ R, and,
furthermore, |∫ t0(d[K(t, τ)]QΛ)(θ)f(τ, xτ)dτ |α = O(eμt), ∀μ ∈ R0−, ∀t ∈ R0+, irrespective of the
norm α. Similar properties follow under close proofs for |∫ t0Ts(t, τ)XPΛ

0 (θ)f(τ, xτ)dτ |α. Thus,
xt − yt = o(eμt) as t → ∞ by using the above results in (3.26) and xt − yt = O(eμt), ∀t ∈ R0+.
The properties x(t) = o(tν−1eμt) and y(t) = o(tν−1eμt) of the solutions of (2.1) and (2.2)-(2.3)
under the given hypotheses follow directly by using the appropriate reasoning quoted from
Remark 3.3.

Lyapunov stability properties in terms of boundedness of the solutions and their
asymptotic or exponential convergence to the equilibrium obtained from Theorem 3.6 are
immediate as given in the following direct result.

Corollary 3.7. Corollaries 3.4-3.5 also apply “mutatis-mutandis” under the assumptions of
Theorem 3.6.

4. Some Direct Consequences and Applications

Some particular cases of the functional differential equations (2.1) and (2.2)-(2.3) are of
interest concerning stability issues as follows.
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4.1. Functional Differential Equations with Point Delays

The functional differential equation (2.2) can be equivalently described in the absence of finite
distributed delays and Volterra-type dynamics by the n-the order system of n functional first-
order differential equations:

.
x (t) =

m
∑

i=0

Aix
(

t − hi

)

+ f
(

t, xt

)

, (4.1)

where h0 = 0. Its limiting differential system is defined in the same way from (4.1) for
a perturbation function f(t, xt) ≡ 0. The generic form of such a function is given in (2.2)
and can include nonzero dynamics of finite-distributed delays and Volterra-type dynamics.
Thus, ̂T(s) = (sIn − ∑m

i=0Aie
−his)−1 everywhere the inverse exists. Remember for later use

that a matrix-valued function G : C0+ → Cr×m is in the Hardy space H∞ if it is analytic
in C+, limσ→ 0+G(σ + iω) = G(iω) for almost all ω ∈ R0+ and ‖G‖∞ := sups∈C0+

σ(G(s)) =
supω∈Rσ(G(iω)) < ∞ with σ(G) denoting the largest singular value of G. Also, RH∞ is
a the subset of H∞ of real-rational matrix valued functions then being proper and stable
(i.e., they have no more zeros than poles and all the poles are in C−), [33]. Note that the
used norm notation ‖G‖∞ for G ∈ H∞ is similar to the notation for �∞-matrix/vector
norms but no confusion is expected from the different context of use. If G(s) = G∗(s∗) then
‖G‖∞ := supω∈R0+

σ(G(iω)).
The following result holds.

Theorem 4.1. The following properties hold.
(i) The limiting differential system associated with (4.1) is globally asymptotically stable

independent of the delays (i.e., hi ∈ R0+ (∀i ∈ m) if A0 is a stability matrix and there exists
βi ∈ R+ (∀i ∈ m) such that

∑m
i=1β

2
i = 1, and

∥

∥

∥

∥

∥

(

iωIn −
∑m

i=0
Ai

)−1
[

β−11 A1, . . . , β
−1
r Am

]

∥

∥

∥

∥

∥

2

< 1, ω ∈ R0+, (4.2)

or

∥

∥

[

β−11 A1, . . . , β
−1
r Am

]∥

∥

2 < −κ2(A0). (4.3)

This implies as a result that κ2(A0) < 0 and that any matrix (A0 +
∑

i∈JkAi) is a stability matrix,
∀Jk ⊆ m, where Jm :=

⋃

k∈smJk is the union of all the sm denumerable sets obtained by combining
members of m (i.e., Jm is the set of parts of m).

(ii) If property (i) holds, thenA0 = A0 +ρIn is a stability matrix for all R0+ � ρ ∈ [0, ρ0) with
ρ0 := 1/‖A−1

0 ‖
2
. The differential system (4.1) is globally asymptotically stable independent of the size
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of the delays with stability (or spectral) abscissa of at least −ρ0 := −min(ρ01, ρ02) < 0, with

ρ01 :=
1

∥

∥A−1
0

∥

∥

2

, (4.4)

ρ02 :=
1

∥

∥

∥

(

sIn −
∑m

i=0Ai

)−1∥
∥

∥

∞

= sup
s∈C0+

σ

((

sIn −
m
∑

i=0

Ai

)−1)

= sup
ω∈R0+

σ

((

iωIn −
m
∑

i=0

Ai

)−1)

,

(4.5)

provided that:

(a) A0 is a stability matrix,

(b) Equation (4.2) holds for some βi ∈ R+ (∀i ∈ m) such that
∑m

i=1β
2
i = 1

or if ρ ∈ [0, κ2(A0)) and, furthermore,

∥

∥�β−11 A1, . . . , β
−1
r Am�

∥

∥

2 < −κ2
(

A0
)

+ ρ < 0 (4.6)

so that the limiting differential system (4.1) is globally asymptotically stable independent of the delays
with stability abscissa of at least −κ2(A0) < 0.

Proof. (i) Property (i) follows from the results in [4, Proposition 4.8] with (4.2). Note that
hi = 0, ∀i ∈ m, the (delay-free) system (4.1) is globally asymptotically stable so that ‖(sIn −
∑m

i=0Ai)
−1‖∞ < ∞ so that ‖(sIn −

∑m
i=0Aie

−his)−1‖∞ < ∞. Then, the limiting differential system
associated with (4.1) is globally asymptotically stable independent of the delays if Equation
(4.2) holds which is obtained by guaranteeing the inverse below on C0+ under a necessary
and sufficiency-type text on the complex imaginary axis:

(

sIn −
m
∑

i=0

A
ie
−his

)−1
=

(

m
∑

i=0

Ai

(

1 − e−his
)

)−1(

sIn −
m
∑

i=0

Ai

)−1
. (4.7)

(ii) Since property (i) holds, then (4.2) holds so that there exist βi ∈ R+ (∀i ∈ m) (which
are in general distinct from those in property (i) but we keep the same notation) such that
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∑m
i=1β

2
i = 1, and for any R0+ � ρ ∈ [0, ρ02), ∀ω ∈ R0+:

∥

∥

∥

∥

∥

(

sIn −
m
∑

i=0

Ai

)(

In − ρ

(

sIn −
m
∑

i=0

Ai

)−1)−1
[

β−11 A1, . . . , β
−1
r Am

]

∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

(

iωIn −
m
∑

i=0

Ai

)(

In − ρ

(

iωIn −
m
∑

i=0

Ai

)−1)−1
[

β−11 A1, . . . , β
−1
r Am

]

∥

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

∥

(

iωIn −
m
∑

i=0

Ai

)−1
[

β−11 A1, . . . , β
−1
r Am

]

∥

∥

∥

∥

∥

2

⎛

⎜

⎝

1

1 − ρ
∥

∥

∥

(

iωIn −
∑m

i=0Ai

)−1∥
∥

∥

2

⎞

⎟

⎠ < 1

(4.8)

and the aboveH∞-norm exists if ‖(sIn −
∑m

i=0Ai)
−1‖∞ < ∞ from Banach Perturbation Lemma,

[34]. On the other hand, if A0 is stability matrix then A0 + ρIn is still a stability matrix if (4.4)
holds by applying the min max computation approach for the eigenvalues of A0 + ρIn which
are larger than those of A0 since the identity matrix is positive definite. As a result, if global
asymptotic stability independent of delays holds then it also holds with stability abscissa
−ρ0 < 0. The first part of property (ii) has been proven. The second part follows by replacing
(4.3) with

∥

∥�β−11 A1, . . . , β
−1
r Am�

∥

∥

2 < −κ2
(

A0 + ρIn
) ≤ −κ2

(

A0
)

+ ρ < 0. (4.9)

Through the use of the properties of the matrix measure [4, 34]. Theorem 4.1 can be
directly combined with Corollaries 3.4-3.5 as follows.

Corollary 4.2. Assume that the functional limiting differential system (4.1) satisfies Theorem 4.1.
Thus, both the perturbed and the nominal functional differential systems have a negative strict
Lyapunov exponent which satisfies μ ≤ −min(ρ01, ρ02, κ2(A0)) < 0. The solution of (4.1), subject to
(2.3) with the hypotheses in Theorem 2.1, and that of its limiting differential system are both globally
asymptotically stable independent of the delays.

If, furthermore, γ : R0+ → R0+ satisfies one of the subsequent conditions:

(a) γ(t) = o(e−at) as t → ∞,

(b)
∫∞
0 t

ν−1γ(t)dt < ∞ as t → ∞,

(c) γ(t) ≤ o(t1−ν) as t → ∞,

then any solution of the perturbed functional differential system (4.1) fulfils either Corollaries 3.4-3.5
to Theorem 3.2 (under the condition (a)) or Corollary 3.7 to Theorem 3.6 (under the condition (b) or
the condition (c)).

A parallel result to Theorem 4.1(i) relies on the subsequent remark.
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Remark 4.3. Note that (4.2) holds if

∥

∥

∥

∥

∥

(

sIn −A0
)

(

In −
(

sIn −A0
)−1
(

m
∑

i=0

Ai

))(

In − ρ

(

sIn −
m
∑

i=0

Ai

)−1)−1

× [β−11 A1, . . . , β
−1
r Am

]

∥

∥

∥

∥

∥

∞
< 1, ∀s ∈ C0+,

(4.10)

provided that ((iωIn −A0)(In − (iωIn −A0)
−1(
∑m

i=0Ai)))
−1 exists, ω ∈ R0+. That inverse exists

provided that A0 is a stability matrix, as it has been assumed, since then it has no imaginary
eigenvalues or real ones at the origin and, furthermore,

∥

∥

∥

∥

∥

(

sIn −A0
)−1
(

m
∑

i=1

Ai

)∥

∥

∥

∥

∥

∞
≤ a0 < 1,

ρ

∥

∥

∥

∥

∥

(

sIn −
m
∑

i=0

Ai

)−1∥
∥

∥

∥

∥

∞
≤ ρ

∥

∥

∥

∥

∥

(

sIn −A0
)−1
(

m
∑

i=1

Ai

)∥

∥

∥

∥

∥

∞
≤ ρa0 ≤ b0 < 1,

∥

∥

∥

∥

∥

(

(

iωIn −A0
)

(

In −
(

iωIn −A0
)−1
(

m
∑

i=0

Ai

)))−1
[

β−11 A1, . . . , β
−1
r Am

]

∥

∥

∥

∥

∥

2

< 1, ∀ω ∈ R0+

(4.11)

provided that ((iωIn −A0)(In − (iωIn −A0)
−1(
∑m

i=0Ai)))
−1

exists, ∀ω ∈ R0+. Such an inverse
exists provided that A0 is a stability matrix, as it has been assumed, since then it has no
imaginary eigenvalues or real ones at the origin and, furthermore, ‖(sIn −A0)

−1(
∑m

i=1Ai)‖∞ ≤
a0 < 1. Then, the system (4.1) is globally asymptotically stable independent of the delays
if ‖(sIn −A0)

−1(
∑m

i=1Ai)‖∞ ≤ a0 < 1 (what implies that A0 is a stability matrix) and
‖[β−11 A1, . . . , β

−1
r Am]‖2 < a−1

0 . The most general constraint (4.8) is guaranteed with any
R0+ � ρ < a−1

0 if ‖[β−11 A1, . . . , β
−1
r Am]‖2 < (1 − pa0)/a0 which guarantees global asymptotic

stability independent of the delays of the limiting differential system of (4.1) and A0 is a
stability matrix of spectral abscissa of at least −ρ < 0.

4.2. Functional Differential Equations with Mixed Finite Point and
Time-Varying Distributed Delays

Assume that (2.2)-(2.3) consist of a single finite constant point delay h1 ≥ 0 and a single
distributed time-varying one h : [−1, 0] → R0+ leading to the functional differential system:

.
x (t) =

1
∑

i=0

Aix
(

t − hi

)

+
∫0

−1
dα(τ)x(t − h(τ)) + f

(

t, xt

)

(4.12)
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with h0 = 0. The perturbation function is defined by (2.3) and satisfies the hypothesis of
Theorem 2.1. The limiting equation is defined for identically zero perturbation function.
Equation (4.12) is equivalent to:

.
x (t) =

(

A0 +A1 + α(0) − α(−1))x(t) +A1
(

x
(

t − h1
) − x(t)

)

+
∫0

−1
dα(τ)(x(t − h(τ)) − x(t)) + f

(

t, xt

)

,
(4.13)

so that the characteristic equation of the limiting equation is:

det
(

sIn −A0 −A1e
−h1s −

∫0

−1
λ(τ)dα(τ)

)

(4.14)

= det
(

sIn −
(

A0 + α(0) − α(−1)) −A1e
−h1s −

∫0

−1
λ(τ)dα(τ)

)

(4.15)

= det
(

sIn −
(

A0 +A1 + α(0) − α(−1)) −A1
(

e−h1s − 1
) −
∫0

−1
λ(τ)dα(τ)

)

= 0, (4.16)

for any continuous function λ(t)mapping [−1, 0] on the unit circle centred at the origin of the
complex plane provided that α is non-atomic at zero. The following result is concerned with
the global asymptotic stability of the differential system (4.12).

Theorem 4.4. The following properties hold.

(i) Assume that A0 is a stability matrices, so that ∃ρ1 ∈ R+: κ2(A0) ≤ −ρ1 < 0. Thus, if

1
∥

∥A1
∥

∥

2 +
∥

∥

∫0
−1λ(τ)dα(τ)

∥

∥

2

∥

∥

(

sIn −A0 − ρ1In
)−1∥
∥

∞ < 1, (4.17)

then the limiting equation associated with (4.12) is globally asymptotically stable
independent of the delays.

(ii) Assume that A0 and (A0 + α(0) − α(−1)) are both stability matrices, so that ∃ρ2 ∈ R+:
κ2(A0 + α(0) − α(−1)) ≤ −ρ2 < 0. Thus, if

1
∥

∥A1
∥

∥

2 +
∥

∥α(0)
∥

∥

2 +
∥

∥α(1)
∥

∥

2

∥

∥

(

sIn −A0 − α(0) + α(−1) − ρ2In
)−1∥
∥

∞ < 1, (4.18)

then the limiting equation associated with (4.12) is globally asymptotically stable
independent of the delays.
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(iii) Assume that A0 + A1 + α(0) − α(−1) is stability matrix so that ∃ρ3 ∈ R+: κ2(A0 + A1 +
α(0) − α(−1)) ≤ −ρ3 < 0. Thus, if

1
2
∥

∥A1
∥

∥

2 +
∥

∥α(0)
∥

∥

2 +
∥

∥α(1)
∥

∥

2

∥

∥

(

sIn −A0 −A1 − α(0) + α(−1) − ρ3In
)−1∥
∥

∞ < 1,

(4.19)

then the limiting equation associated with (4.12) is globally asymptotically stable
independent of the delays.

Proof. Property (i) is direct by using a similar reasoning to that in Theorem 4.1 by extending a
result in [4, Section 4.4.5] for a single distributed delayed dynamics, the limiting differential
system associated with (4.12) is globally asymptotically stable if and only if for any
noncharacteristic zero of the limiting equation, det(sIn − A0 − A1e

−hs − ∫0−1λ(τ)dα(τ))/= 0,
∀s ∈ C0+, or equivalently, if the inverse below exists for ∀s ∈ C0+ by using the rearrangement
(4.14),

(

sIn −A0 −A1e
−hs −

∫0

−1
λ(τ)dα(τ)

)−1

=
(

(

sIn −A0 − ρ1In
)

(

In −
(

sIn −A0 − ρ1In
)−1
(

A1e
−hs +

∫0

−1
λ(τ)dα(τ)

))−1)
.

(4.20)

Such an inverse exists within C0+ under the conditions in property (i) so that the evolution
operator exists T(t, 0) since its associate resolvent exists and it is compact in C0+. Properties
(ii)-(iii) are direct alternative sufficient conditions to those involved in property (i) by using
similar rearrangements for an inverse matrix as (4.20) by using (4.15) and (4.16), respectively,
instead of (4.14).

A parallel result to Corollary 4.2 now follows from Theorem 4.4.

Corollary 4.5. Assume that the functional limiting differential system of (4.12) satisfies any of the
Properties of Theorem 4.4. Thus, both the limiting and the perturbed functional differential equation
have a negative strict Lyapunov exponent satisfying μ ≤ −ρ < 0 with ρ equalizing the corresponding
ρi (i = 1, 2, 3). Corollary 4.2 holds “mutatis-mutandis.”

The extension of Theorem 4.4 and Corollary 4.5 to the case of multiple point and
distributed delays is direct and then omitted.

5. Example

Consider the second-order linear functional equation with point time-delay h:

ẍ(t) = −α(t) .
x (t) − β(t)

.
x (t − h) − γ(t)x(t) −ω(t)x(t − h)

= −α0
.
x (t) − β0

.
x (t − h) − γ0x(t) −ω0x(t − h) + f

(

t, xt

)
(5.1)
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subject to arbitrary bounded initial conditions within the proposed class, where the
disturbance is

f
(

t, xt

)

=
(

α0 − α(t)
) .
x (t) +

(

β0 − β(t)
) .
x (t − h) +

(

γ0 − γ(t)
)

x(t) +
(

ω0 −ω(t)
)

x(t − h),
(5.2)

and the limiting equation is

ÿ(t) = −α0
.
y (t) − β0

.
y (t − h) + γ0y(t) −ω0y(t − h), (5.3)

provided that α(t) → α0, β(t) → β0, γ(t) → γ0, and ω(t) → ω0 as t → ∞. Note that the
perturbation term (5.2) satisfies (2.8) of Theorem 2.1. The differential equation and limiting
differential equation may be rewritten equivalently as the following second-order dynamic
systems of respective state vectors zx(t) = (x1(t), x2(t))

T and zy(t) = (y1(t), y2(t))
T ,

.
zx(t) = A0yzx(t) +A1yzx(t − h) + zf

(

t, zxt
)

= A0(t)zx(t) +A1(t)zx(t − h),
.
zy(t) = A0yzy(t) +A1yzy(t − h),

(5.4)

where

A0y =

[

1 1

−γ0 −α0

]

; A1y =

[

1 1

−ω0 −β0

]

; zf(t, zxt) =

[

0

f(t, xt)

]

,

A0(t) =

[

1 1

−γ(t) −α(t)

]

; A1(t) =

[

1 1

ω(t) −β(t)

]

.

(5.5)

The eigenvalues ofA0y are α1,2 = (−α0 ∓
√

α2
0 − 4γ0)/2 so thatA0y is a stability matrix if α0 > 0

and γ0 > 0. The limiting equation (5.3) is globally stable independent of the delay size if
κ2(T−1A0yT) < ‖T−1A1yT‖2 for at least one second-order nonsingular state transformation
matrix T , where κ2(·) and ‖ · ‖2 are the 2-matrix measure with respect to the �2-norm, [4],
and �2-norm of the matrix (·), respectively. The use of a similarity transformation is usually
necessary by the fact that the matrix measure is norm-dependent and it can be positive
even for stability matrices for some norms and the stability property is independent of any
performed similarity transformation on the state variables in the linear time- invariant case,
[4, 5, 11]. Now, choose as state transformation matrix the nonsingular Vandermonde matrix
T = [ 1 1

α1 α2
] which defines the diagonal stability matrix A0yd = T−1A0yT , being similar to A0y,

which possesses a negative 2-matrix measure κ2(A0yd) = −α0 < 0. In this case,

A1yd = T−1A1yT =
1

α2 − α1

[

ω0 + β0α1 ω0 + β0α2

ω0 + β0α1 ω0 + β0α2

]

, (5.6)
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and the limiting equation is globally asymptotically Lyapunov stable independent of the
delay size h if

∣

∣κ2
(

A0yd
)∣

∣ = α0 >
∥

∥A1yd
∥

∥

2

=
√

λmax
(

AT
1ydA1yd

)

=

(

2 + β0
(

α2 − α1
))∣

∣ω0 + β0α1
∣

∣

α2 − α1

=

(

β0 +
2

√

α2
0 − 4γ0

)∣

∣

∣

∣

∣

ω0 −
β0
(

α0 +
√

α2
0 − 4γ0

)

2

∣

∣

∣

∣

∣

,

(5.7)

where λmax(·) denotes the maximum eigenvalue of the (·)-positive semidefinite matrix. From
(5.7), the limiting equation (5.3) is globally asymptotically stable independent of the delay
size if α0 ≥ 4γ0, γ0 > 0, and either

ω0 >
1
2
max

(

α0

(

β0 +
√

α2
0 − 4γ0

)

, β0
(

α0 +
√

α2
0 − 4γ0

))

(5.8)

or

β0
(

α0 +
√

α2
0 − 4γ0

)

2
≥ ω0 >

2β0 − α0

2

√

α2
0 − 4γ0, (5.9)

the second one provided that β0α0 + (α0 −β0)
√

α2
0 − 4γ0 > 0. Consider the following two cases.

(1) Assume α(t) = α0; ∀t ∈ R0+. For some chosen finite T0 ∈ R0+, define:

β
(

T0
)

: = max
t≥T0

∣

∣˜β(t)
∣

∣; γ
(

T0
)

:= max
t≥T0

∣

∣γ̃(t)
∣

∣; ω
(

T0
)

:= max
t≥T0

∣

∣ω̃(t)
∣

∣,

˜β(t) : = β(t) − β0; γ̃(t) := γ(t) − γ0; ω̃(t) := ω(t) −ω0.

(5.10)

The three above functions converge asymptotically to zero as time tends to infinity. Then, the
solution of the differential equation (5.1), subject to (5.2), converges asymptotically to that of
its limiting equation (5.3) if α2

0 ≥ γ0 + γ(T0) and (5.8) is replaced with

ω0 > ω
(

T0
)

+
1
2
max

(

α0

(

β0 + β
(

T0
)

+
√

α2
0 − 4

(

γ0 − γ
(

T0
))

)

,

(

β0 + β
(

T0
))

(

α0 +
√

α0 − 4
(

γ0 − γ
(

T0
))

))

.

(5.11)
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Another convergence condition of the solution of (5.2)-(5.3) to the limiting solution can
be directly obtained from (5.9). The limiting differential equation (5.3) has a dominant
eigenvalue λ of real part:

0 > Reλ = μ ≥ κ2
(

A0d
) − ∥∥A1d

∥

∥

2 −max
t≥T0

∥

∥ ˜A0d(t)
∥

∥

2 −max
t≥T0

∥

∥ ˜A1d(t)
∥

∥

2 (5.12)

with K0α > 0 related to the perturbation (5.3), so that Λ/=∅ according to (2.20) and
Theorem 2.3(i2), and the strict Lyapunov exponent μ defined in Theorem 2.3 satisfying the
above lower-bound, and

˜A0d(t) = T−1
[

0 0

−γ̃(t) 0

]

T, ˜A1d(t) = T−1
[

0 0

−ω̃(t) −˜β(t)

]

T ; ∀t ∈ R0+. (5.13)

(2) Now, assume β(t) = β0, γ(t) = γ0, ω(t) = ω0; ∀t ∈ R0+, and α(T0) := maxt≥T0 |α(t) −
α0|; ∀t ∈ R0+. Then, the solution of the differential equation (5.1), subject to (5.2), converges
asymptotically to that of its limiting equation (5.3) independent of the delay size if α2

0 ≥
γ0 + γ(T0) and (5.8) is replaced with

ω0 >
1
2
max

(

(

α0 + α
(

T0
))

(

β0 +
√

(

α0 + α
(

T0
))2 − 4γ0

)

,

β0
(

α0 +
√

(

α0 + α
(

T0
))2 − 4γ0

))

.

(5.14)

In this case, 0 > Reλ = μ ≥ κ2(A0d) − ‖A1d‖2 − α(T0). Another convergence condition
independent of the delay size can easily be got from (5.9). Conditions for asymptotic
convergence of the solution to that of its limiting differential equation for the case of complex
eigenvalues can be obtained straightforwardly.
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