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A B S T R A C T

There is currently little understanding on whether retrieval of proper names differs in midlife compared to young
adulthood and if so, whether the age differences in this ability are associated with differences in structural
integrity of the cerebral cortex. To answer these questions, we studied retrieval of proper names in 115 cog-
nitively healthy middle-aged persons (49.7,± 3.2), comparing their performance on a tip-of-the-tongue (TOT)
task with that of 68 young persons (25.4,± 3.5) from the Cam-Can data repository (http://www.mrc-cbu.cam.
ac.uk/datasets/camcan/). Grey matter (GM) density and cortical thickness were used as indices of structural
integrity of the cerebral cortex. The middle-aged (MA) group experienced more TOTs during proper names
retrieval than young adults (YA), (t=3.789, p < .005) and had considerably less GM density and cortical
thickness across a range of brain areas bilaterally. Small clusters in left BA 45 and right BA 44 (cortical thickness)
and in right BA 40 (volumetry) revealed group differences when accounting for TOTs. However, we observed no
correlations between MA’s TOT scores and GM volumes or cortical thickness of the brain regions typically
reported as implicated in retrieval of proper names: left anterior temporal lobe, left insula, and left superior and
middle temporal gyri.

1. Introduction

Research on the effects of aging on the brain and cognition in
neurologically intact persons has traditionally focused on adults aged
60 years or more, despite the evidence suggesting that neurocognitive
decline begins in the early 20s (Salthouse, 2010). Gradual changes in
the brain that typically begin in early adulthood include reduction in
the brain’s overall size and weight, grey and white matter regional
volume reduction and integrity deterioration, expansion of cerebral
ventricles and sulci, cortical thinning, changes in functional con-
nectivity, myelin integrity, concentration and receptor density of neu-
rotransmitters, accumulation of neurofibrillary tangles, reduced sy-
naptic density, and so forth (Giorgio et al., 2010; Lindenberger, 2014;
Marstaller, Williams, Rich, Savage, & Burianova, 2015; Salat et al.,
2004; Salthouse, 2009). Some cognitive functions appear to be more
resilient to aging than others. For instance, vocabulary and general
knowledge may continue to grow past the age of 60, whereas proces-
sing speed, memory, executive function and problem solving typically
begin to deteriorate in early adulthood (Ackerman, 2008; Salthouse,
2010).

One domain particularly vulnerable to aging is knowledge of proper
names. Knowledge of proper names serves an important cognitive
function: it helps us to identify an entity despite its different manifes-
tations or different contexts in which it appears, which in turn allows us
to structure the world around us (Van Langendonck, 2007). More im-
portantly, proper names allow us to achieve a unique reference even
when our knowledge about the entity in question is limited (Burks,
1951). Cognitively healthy elderly persons have difficulties when re-
trieving proper names, with increased occurrences of tip-of-the-tongue
states (Burke, MacKay, Worthley, & Wade, 1991; Cohen & Burke, 1993;
Huijbers et al., 2016; James, 2006; Salthouse & Mandell, 2013; Shafto,
Burke, Stamatakis, Tam, & Tyler, 2007; Shafto, Stamatakis, Tam, &
Tyler, 2009). A tip-of-the-tongue (TOT) state is a metacognitive state in
which a person is aware of his/her failure to retrieve the target word
accompanied by a strong feeling that the sought for target is within
reach. Difficulty in retrieving proper names was also found in persons
with neurological conditions, such as Alzheimer’s disease (Semenza,
Nichelli, & Gamboz, 1996), Parkinson’s disease and advanced multiple
sclerosis (Semenza, 2009), after language-dominant temporal lo-
bectomy (Tsukiura et al., 2002), and in aphasia due to brain injury
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(Miceli et al., 2000; Semenza & Zettin, 1988, 1989). In contrast to word
retrieval deficits caused by brain damage, TOT experiences involve only
a temporary inability to recall a specific word. However, even a tem-
porary and only occasional inability to access knowledge of proper
names, as in TOT states, is frustrating and indicates that there is
something peculiar about proper names that makes them susceptible to
forgetting.

Philosophical, linguistic, and neuropsychological theories agree that
proper names have a special status in language. The long tradition of
philosophical thinking on proper names involves debates regarding the
question of how proper names name, i.e. whether they have meaning/
sense or whether they are directly referential expressions (e.g. Frege,
1892/1949; Katz, 1977; Kripke, 1980; Mill, 1843; Russell, 1905; Searle,
1958, among others). As a linguistic category, proper names belong to
language universals. Unlike verbs, which name events and states (De
Almeida & Manouilidou, 2015), and unlike common nouns, which de-
note categories of objects, proper names refer to unique entities, such as
persons, animals, places, buildings, brands, languages, and currencies.
Thus, proper names lack the meaning in the sense in which common
nouns have meanings. In some languages, they also differ in morpho-
syntax and may follow different syntactic rules (Alego, 1973;
Longobardi, 2005; Van Langendonck, 2007). Given the peculiar nature
of proper names, it is not surprising that they figure differently than
other semantic classes in memory (Bartlett, 1932). In general, proper
names are more susceptible to forgetting than common nouns (Hanley,
2011; Salthouse & Mandell, 2013; Semenza, 2009; Semenza et al.,
1996), even in case of name-occupation homophones (e.g., Baker-baker,
Potter-potter), which cannot be explained by differences in phonological
form or frequency of occurrence (Cohen & Burke, 1993).

Some findings indicate that there exists a dedicated area for re-
trieval of proper names (Damasio, Grabowski, Tranel, Hichwa, &
Damasio, 1996; Gorno-Tempini et al., 1998; Shafto et al., 2007), but
there is currently no consensus on which area it is. One model promotes
the notion of the critical role of the left anterior temporal lobe (ATL) in
the retrieval of proper names (Abel et al., 2015; Damasio et al., 1996;
Mehta et al., 2016; Tsukiura et al., 2002). Evidence supporting this
model comes from a series of studies involving brain-damaged and
neurologically intact subjects, using a range of methods, from positron
emission tomography (PET), functional magnetic resonance imaging
(fMRI), electrocorticography to diffusion tensor imaging. Another
model, which is based on PET evidence obtained from six healthy male
subjects, argues for an amodal semantic network distributed across the
left anterior and posterior extrasylvian temporal cortex (Gorno-Tempini
et al., 1998). The model allows a degree of modularity within the
network, with some areas being differentially involved in specific types
of processing (e.g. faces, words, objects). For example, it was suggested
that the anterior middle temporal gyrus (MTG) and superior temporal
gyrus (STG) are the areas supporting retrieval of famous persons’ names
(Gorno-Tempini et al., 1998). A third model, based on f/MRI evidence,
suggests that the left insula plays a critical role in retrieval of names and
that increased TOT states during proper names retrieval indicate diffi-
culties with phonological access to the mental lexicon (Shafto et al.,
2007). The disparate research findings suggest that the fundamental
question of neurobiological underpinnings of proper name retrieval has
not been entirely resolved.

So far, most research on age-related decline in proper name retrieval
has been focused on elderly persons, leaving largely unexplored the
question of whether this cognitive ability is already affected in midlife.
Given the evidence suggesting that increased age negatively affects
proper name retrieval (Burke et al., 1991; James, 2006), in the present
study we wanted to determine whether the ability to retrieve proper
names would differ in midlife compared to young adulthood and if so,
whether these differences would be related to differences in grey matter
(GM) density and cortical thickness. We tested for age-differences in
cortical thickness in addition to GM density because growing evidence
indicates that cortical thinning is also an important index of atrophy in

aging (Im et al., 2008; Lemaitre et al., 2010; Panizzon et al., 2009), with
global cortical thinning becoming apparent by the third decade of life
(Salat et al., 2004). Furthermore, considering previous findings in-
dicating that left ATL, left MTG, STG and left insula support retrieval of
proper names (Damasio et al., 1996; Gorno-Tempini et al., 1998; Shafto
et al., 2007), we wanted to determine whether GM density and cortical
thickness of these specific regions in middle-aged persons would be
related to their ability to retrieve proper names. In general, greater GM
density and thicker cortex have been associated with better cognitive
performance, but associations between reduced density and normal
cognition were also found. (For example, a negative correlation be-
tween GM density in the caudate nucleus and general intellectual
ability in cognitively normal young people was reported by Frangou,
Chitins, and Williams (2004).) Magnetic resonance imaging (MRI) al-
lows in vivo studying of brain morphometrics, permitting insights into
structural brain differences and possible associations between regional
volumetric as well as cortical thickness properties and behavioral
measures of proper names retrieval.

Thus, we studied retrieval of proper names in a sample of 115
cognitively healthy middle-aged persons (MA) (mean age 49.7,± 3.2),
comparing their performance on a tip-of-the-tongue (TOT) task with
that of a group of 68 young adults (YA) (mean age 25.4,± 3.5). In
addition to comparing the two groups’ performance on the TOT task,
we explored group differences in overall GM density and cortical
thickness obtained from MRI data, and tested for possible associations
between volumes as well as cortical thickness of the regions that were
previously identified as supporting proper names retrieval – left ATL,
MTG, STG, and insula – and MA group’s performance on the TOT task.

2. Materials and methods

2.1. Participants

Data used in the preparation of this work were obtained from the
Cambridge Center for Ageing and Neuroscience (Cam-Can) data re-
pository, available at http://www.mrc-cbu.cam.ac.uk/datasets/
camcan/. The study followed the recommendations of the Helsinki
Declaration on studies involving human subjects and was approved by
the local ethics committee (see Shafto et al., 2014; Taylor et al., 2017
for details on the Cam-Can protocol). Cognitive and structural neuroi-
maging data were retrieved for 183 cognitively healthy subjects, in-
cluding 115 middle-aged persons (age range 45–55 years, mean age
49.7,± 3.2) and 68 young adults (age range 18–30 years, mean age
25.4,± 3.5). There were no statistically significant differences in
gender distribution between the groups (Pearson Chi-Square,
χ2= 0.157, p= .692). However, the original sample was reduced
during image preprocessing (Section 2.3) due to removal of the images
with an overall covariance below two standard deviations, which left a
total of 168 subjects (MA=102, mean age 49.7 ± 3.3; YA=66, mean
age 25.3 ± 3.5; t (1 6 6)= 46.066, p < .005). The sample reduction
did not affect the gender distribution pattern (MA: 48 females, 54
males; YA: 29 females, 37 males; Pearson Chi-Square, χ2= 0.165,
p= .684, n.s.). The groups did not differ considerably in the total in-
tracranial volume (t (1 6 6)=−0.054, p= .95, n.s.).

2.2. Behavioral data: tip-of-the-tongue task

In the tip-of-the-tongue task, participants were presented with 50
pictures of faces that represented famous people (actors, musicians,
politicians, etc.). The task was to name a person upon seeing a picture.
The pictures were presented in a pseudorandom order. Before each
trial, a fixation cross was presented for 1000ms, which was followed by
a picture that remained on the screen for 500ms. The task allowed
three categories of responses: “know” response, i.e. retrieval of the
name, “don’t know” response if they did not know who the person on
the picture was, and a TOT response, meaning they knew who the
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person was but could not retrieve the name (see Shafto et al., 2014 for
more details on the task). In the present study, we focus on the number
of TOT states in each group, hypothesizing that it will be higher in the
MA than in the YA group. For completeness, we report the groups’
“know” and “don’t know” responses. Note that in the scoring phase, the
“know” responses were subdivided into “know-correct” and “know-in-
correct” responses, which allows further insights into participants’
metacognition regarding proper names.

2.3. MRI data acquisition and preprocessing

MRI data was collected at a single site (MRC-CBSU) using a 3T
Siemens TIM Trio scanner with a 32-channel head coil, as described in
Shafto et al. (2014) and Taylor et al. (2017). Briefly, high resolution
structural T1-weighted images were obtained using a Magnetization
Prepared RApid Gradient Echo (MPRAGE) sequence, with the following
parameters: Repetition Time (TR)= 2250ms, Echo Time
(TE)= 2.99ms, flip angle= 9 degrees, field of view
(FOV)= 256×240×192mm, voxel size 1× 1×1mm, GRAPPA
acceleration factor= 2, acquisition time=4min and 32 s.

Imaging data was processed using Statistical Parametric Mapping
(SPM8, Wellcome Trust Center for Neuroimaging), including VBM8
(http://dbm.neuro.uni-jena.de/vbm/) and SPM Masking (Ridgway
et al., 2009) toolboxes, implemented in MATLAB R2007a (MathWorks,
Natick, MA). Structural T1-weighted images were first realigned so that
the origin of each T1 scan was set to the AC/PC line. The realigned
structural T1-weighted images were then segmented into six tissue
classes (grey matter, white matter, cerebrospinal fluid partitions, skull,
soft tissue outside the brain, and air/other stuff outside the head) by
using New Segment in SPM8. Non-linear deformations for warping all
grey matter (GM) and white matter (WM) images were obtained in
DARTEL (Ashburner, 2007). The DARTEL-imported versions of GM and
WM maps were used in the next step to generate flow fields and a series
of average templates to which the data were iteratively aligned. The
final template, which was registered to MNI (Montreal Neurological
Institute) space by an affine transformation, and the flow fields ob-
tained in the previous step were applied to the native GM maps. The
spatially normalized GM maps were smoothed using an 8mm full-
width-at-half-maximum (FWHM) Gaussian kernel, with the smoothed
and spatially normalized images preserving amount so that areas that
expanded during warping were correspondingly reduced in intensity.
After checking the data quality and sample homogeneity, to improve
the homogeneity we removed the maps with an overall covariance
below two standard deviations, which left a total of 168 subjects
(Section 2.1).

For the statistical model in SPM, we created an explicit mask instead
of applying a default criterion that all subjects should have voxel in-
tensity above a certain pre-specified threshold. The mask was created
using the SPM Masking Toolbox, following an operator-independent
strategy that allows an optimal threshold to be found when creating a
binarized average image (Ridgway et al., 2009).

Estimates of cortical thickness (CT) were obtained from cortical
surface reconstructions, which were computed from T1 images using
FreeSurfer (v. 6.0, http://surfer.nmr.mgh.harvard.edu/), following the
protocol described elsewhere (Dale, Fischl, & Sereno, 1999; Fischl &
Dale, 2000; Fischl, Sereno, & Dale, 1999). Briefly, the preprocessing
steps followed the recommendations available on the FreeSurfer web-
site (http://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferAnalysis
PipelineOverview) and included: skull-stripping, registration, intensity
normalization, Talairach transformation, tissue segmentation, and sur-
face parcellation. The resulting surface maps were visually inspected for
any inaccuracies before finally calculating cortical thickness, i.e. the
distance from the GM-WM to GM-CSF (cerebrospinal fluid) boundaries
at each vertex. Thus obtained cortical thickness maps were smoothed
using a Gaussian kernel with a full-width half-maximum of 10mm and
submitted to statistical analyses.

2.4. Definition of regions of interest

Regions of interest (ROIs) included left ATL, MTG, STG and insula.
The volumetric ROIs were defined using WFU PickAtlas (Maldjian,
Laurienti, & Burdette, 2004; Maldjian, Laurienti, Burdette, & Kraft,
2003) incorporated in SPM 8. They were coregistered to a T1-weigthed
normalized image and resampled to 1.5×1.5×1.5mm voxels to
match the voxel size of the preprocessed GM maps. Individual GM
volumes of the ROIs were extracted from the warped, smoothed GM
images by summing up modulated GM voxel values within the re-
spective ROI. Since the proportion of GM depends on the brain size
(Lüders, Steinmety, & Jänecke, 2002), the obtained GM volumetric ROI
values were normalized by estimated total intracranial volume (TIV) to
correct for different brain sizes in statistical analysis. TIV was calcu-
lated as the sum of total volumes of the GM, WM, and CSF partitions.

Cortical thickness ROIs were defined based on the Desikan-Killiany
atlas (Desikan et al., 2006) and, like the volumetric data, also included
left ATL, MTG, STG and insula. Average thickness values of the ROIs
were calculated automatically as part of the FreeSurfer analysis pipe-
line. These ROI values were not normalized by TIV, because cortical
thickness has been shown to be independent from head size (Barnes
et al., 2010; Panizzon et al., 2009). The average cortical thickness va-
lues extracted from these regions were entered in SPSS 22 (Statistical
Package for Social Science) (IBM SPSS Statistics for Windows, Version
22.0, Armonk, NY, USA, IBM Corp. Released 2013) for further analysis.

2.5. Statistical analyses

The preprocessed GM volumetric maps of the two groups were en-
tered in a full-factorial ANOVA in SPM8 with the age groups (MA, YA)
as a between-subject factor, TOT scores as a covariate of interest, and
TIV and gender as covariates of no interest. Gender was included as a
nuisance variable because of the evidence suggesting gender differences
in GM volumes of regions such as insula as well as in overall proportion
of GM in the brain (e.g., Barnes et al., 2010; Raz et al., 1997; Ruigrok
et al., 2014). The results were assessed at a statistical threshold of 0.05,
corrected for multiple comparisons by using familywise error (FWE)
rate, at a cluster size of k≥ 20 contiguous voxels. Since VBM data is
known to be nonstationary, leading to false positive results in smooth
regions even when the true signal is absent and, conversely, preventing
detection of true positive clusters in rough regions (Ashburner &
Friston, 2000; Hayasaka, Phan, Liberzon, Worsley, & Nichols, 2004;
Worsley, Andermann, Koulis, MacDonald, & Evans, 1999), the resulting
T-maps were corrected for nonstationary smoothness following the
protocol described by Kurth, Gaser, and Luders (2015).

Statistical analysis of cortical thickness maps was performed using a
GLM model in FreeSurfer, with the contrasts set to test the same hy-
pothesis as the model for the volumetric data described above and the
significance threshold at p < .05, but applying a false discovery rate
(FDR) instead to correct for multiple comparisons.

Further analyses were performed in SPSS. The values extracted from
the ROIs were compared between the groups using analysis of covar-
iance (ANCOVA), with each ROI’s value as dependent variable, the age
group as a fixed factor, and gender as a covariate of no interest.
Pearson’s correlation test was used to establish possible associations
between the values of each ROI and TOT scores in the MA group. An
alpha level of 0.05 was set for all statistical tests, except for the cor-
relation test, for which the significance threshold was set at 0.01 after
correcting for multiple comparisons using a Bonferroni correction. All
tests were two-tailed.

3. Results

3.1. Behavioral results

The two groups differed considerably in the retrieval of proper
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names, with the MA group experiencing more TOT states (mean
12.6,± 6.6) than the YA group (mean 9 ± 5.3), t (166)= 3.789,
p < .005. The MA group also produced more “know-incorrect” re-
sponses (mean 5.1 ± 3.4) than the YA group (mean 2.9 ± 2.4), t
(166)=−4.578, p < .005. However, the YA group produced sig-
nificantly more “don’t know” responses (mean 22.1 ± 11.3) than the
MA group (mean 10.5 ± 8.6), t (166)= 7.353, p < .005. They also
produced considerably less “know-correct” responses (mean
15.2 ± 9.4) than the MA group (20.2 ± 9.8), t (166)=−3.250,
p= .001. The groups’ means for each type of response are displayed in
a supplementary graph (S-Fig. 1).

3.2. Neuroimaging whole-brain-based findings

Consistent with previous findings on age-associated reduction in
grey matter volume and cortical thinning, we found differences in both
metrics of structural integrity in a range of areas, with the MA group
having less density and thinner cortex relative to the YA group. More
specifically, clusters with less GM density in MA were found in the right
supramarginal gyrus, angular gyrus, superior temporal and occipital
gyri bilaterally, in the prefrontal region, cingulate gyrus and the cere-
bellum (Fig. 1).

Furthermore, clusters with significantly less thickness in MA were
found in the insula bilaterally, left fusiform gyrus, superior parietal,
superior frontal and middle temporal areas, and in the right precentral,
postcentral, and posterior cingulate areas (Fig. 2).

Considering TOT scores, an effect of age was found in left BAs 8 and
9, and in right BAs 40 and 7 in GM density data. However, after cor-
recting for multiple comparisons at the cluster level (Kurth et al., 2015),
only the clusters in the right hemisphere survived (Fig. 3).

Additionally, the cortical thickness data revealed two small clusters
indicating an interaction between age and TOTs: in the left pars tri-
angularis (peak voxel corresponding to Talairach coordinates X=−47,
Y= 34.6, Z=−7.5), and in the right pars opercularis (peak voxel
corresponding to Talairach coordinates X=51.9, Y=7.1, Z=3.5)
(Fig. 4).

3.3. Regions-of-interest-based findings

After adjusting for gender and using a Sidak correction for multiple
comparisons, pairwise comparisons of the estimated marginal means of
the extracted volumetric ROI values revealed a statistically significant
group difference only in one ROI: left superior temporal gyrus, F
(1,164)= 5.793, p= .017, ηp2= 0.03). The same model revealed sta-
tistically significant group differences in cortical thickness in all four
ROIs: left superior temporal gyrus, F (1,164)= 37.663, p < .005,
ηp2= 0.187; left middle temporal gyrus, F (1,164)= 22.997, p < .005,

ηp2= 0.123; left temporal pole, F (1,164)= 3.869, p= .05,
ηp2= 0.023; and left insula, F (1,164)= 26.088, p < .005,
ηp2= 0.137.

However, there were no statistically significant associations be-
tween either the volumetric ROI values or cortical thickness ROI values
and TOT scores in the MA group.

4. Discussion

The present data suggests that cognitively healthy middle-aged
people experience significantly more TOT states when retrieving proper
names than young adults. They also retrieve more incorrect names,
believing that they have retrieved the correct ones. Young people ap-
pear to have more awareness when they do not know names, and in this
particular study they were less familiar with the famous people on
pictures.

The age-related differences in the present sample suggesting less GM
density and cortical thickness in the MA group across a range of areas
are consistent with previous findings on the effects of aging on struc-
tural integrity of the cerebral cortex (Raz et al., 1997; Raz et al., 2005;
Salat et al., 2004; Salthouse, 2009, 2010). When accounting for TOTs
and regressing out gender and TIV using GM volumetric data obtained
in VBM analyses, we found an effect of age in a small cluster in the right
inferior parietal lobe (BAs 40, 7), while the cortical thickness data re-
vealed a small cluster in the left pars triangularis (BA 45) and in the
right pars opercularis (BA 44). However, the present data does not
suggest significant correlations between the MA group’s TOT scores and
neither the volumes nor cortical thickness of the left ATL, STG, MTG,
and insula.

Looking at other sources of evidence on the neural basis of proper
naming, we find that studies on aphasia with a selective deficit for
proper names due to brain damage do not support the notion of unique
neural substrate for proper names. Instead, they reveal a heterogeneous
lesion distribution, implicating the left thalamus, left parieto-occipital
lobe, left internal capsule, left fronto-temporal and the left temporal
lobe (Fery et al., 1995; Luccelli & De Renzi, 1992; Miceli et al., 2000;
Moreaud, Pellat, Charnallet, Carbonnel, & Brennen, 1995; Semenza &
Zettin, 1989). As an example, the left temporal pole was spared, while
inferolateral and inferomedial temporal regions were damaged in pa-
tient APA, who suffered from selective anomia for the names of famous
people, without the comparable disorders for other proper names or
common nouns (Miceli et al., 2000). Although name retrieval deficits
due to brain damage involve intricacies not present in TOT states
during name retrieval in healthy people, the heterogeneity of areas
associated with proper naming deficit cannot be neglected when ad-
dressing the neural basis of proper naming.

Furthermore, the complexity of TOT experiences implies that these

Fig. 1. Group differences in GM density, showing areas with significantly more (p < .05 FWE) density in the YA group.
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states are likely supported by a range of brain areas, which may be
preferentially implicated in different aspects of TOT states. TOT states
cannot be reduced to failed attempts to access the mental lexicon, be-
cause they also contain a person’s awareness of their inability to re-
trieve a word (e.g. name) as well as the impression that the target word
is within reach. In addition to accessing and searching the long term
memory (semantic memory, including “individual semantics”
[Semenza, 2009]), these states require sufficient attention resources to
support selection and inhibition processes, working memory to sustain
retrieved representations and support comparisons of the retrieved
word with the picture used as a cue to the target name, generation of
additional cues that may prompt retrieval, metacognitive monitoring
and engaging strategies that may facilitate retrieval (Koriat &
Nussinson, 2014; Schwartz & Metcalfe, 2014). Indeed, previous findings
on the critical role of the left temporopolar area emphasize the semantic
aspect of name retrieval (Abel et al., 2015; Damasio et al., 1996;
Tsukiura et al., 2002), whereas the findings indicating the role of insula
in TOTs relate to its phonological aspect (Shafto et al., 2007, 2009).
Other brain areas are expected to contribute to other aspects of TOTs,
such as anterior cingulate cortex participating in metacognitive mon-
itoring (Huijbers et al., 2016). The implication of left BA 45, right BA 44
and right BA 40 in TOT states in the present data might indicate gen-
eration of additional cues to prompt retrieval, such as attempting to
recall a famous person’s name based on information on their occupa-
tion.

Previous studies on verbal fluency indicate a functional segregation
of Broca’s area (left BAs 44 and 45), with BA 45 supporting category

fluency and BA 44 supporting letter fluency (Katzev, Tuescher, Hennig,
Weiller, & Kaller, 2013; Okada et al., 2013; Paulesu et al., 1997). These
findings have been interpreted as indicating that BA 45 may contribute
to the retrieval of words through their meaning, and BA 44 via an ar-
ticulatory code (Amunts et al., 2004; Paulesu et al., 1997). Our cortical
thickness data are compatible with this view, suggesting that sub-
stantial cortical thickness age-differences in left BA 45 and right BA 44
are related to more TOTs in the MA group. This interpretation is based
on the assumption that the contribution of right hemisphere regions to
language function increases with increased age (Obler et al., 2010).

The role of right BA 40 in the present findings is less clear. The left
supramarginal gyrus has been implicated in a range of language-related
functions, including syntax. While the syntactic theory of proper names
developed by Longobardi (2005) nicely explains deficits in proper name
retrieval at the sentence level (see Semenza, 2009 for a review), it is not
clear how to extend its applicability to contexts not involving sentences,
without resorting to, for instance, propositional inner speech. On the
other hand, the role of SMG in executive processes during proper name
retrieval would better explain its association with TOTs. For instance,
SMG was found to support resolving ambiguity in the mapping between
sensory inputs and motor outputs in word processing (Oberhuber et al.,
2016).

That naming with proper names cannot be confined to a single re-
gion and requires a larger network of areas instead (Miceli et al., 2000;
Semenza, 2006; Semenza, 2011) is also supported by findings on the
role of white matter tracts in this cognitive function. Susceptibility of
the prefrontal white matter to aging may lead to disconnections within

Fig. 2. Areas with clusters showing statistically significant (p < .05 FDR) group differences in cortical thickness, with YA having more thickness than MA.

Fig. 3. Clusters showing significant (p < .05 FWE) effect for age accounting for TOT and regressing out TIV and gender.

V. Kljajevic, A. Erramuzpe Brain and Cognition 120 (2018) 26–33

30



the networks supporting speed of processing, episodic memory, and
executive functions (Gunning-Dixon, Brickman, Cheng, & Alexopoulos,
2010). Since slowing in processing speed is key feature of cognitive
aging, it seems plausible that this general slow-down in processing may
occasionally affect proper name retrieval in healthy people, preventing
timely binding of multiple processes or representations and leading to
TOT states. Looking specifically at the anatomical connectivity sup-
porting language, we find that changes in white matter microstructure
integrity of the uncinate fasciculus (UF) and inferior longitudinal fas-
ciculus (ILF) have been associated with retrieval of names of unique and
non-unique entities respectively (Mehta et al., 2016). Both fasciculi
support the ventral stream for language, where UF connects the anterior
temporal lobe and orbito-frontal cortex, and ILF connects the occipital
lobe with the temporal pole (Kljajevic, 2014). Furthermore, an awake
surgery study involving 18 patients who underwent removal of a left
hemisphere glioma (either frontal or temporal glioma) reported that the
patients with the UF resection were significantly impaired in naming
famous faces and objects in comparison with patients without removal
of the UF when assessed three months after the surgery (Papagno et al.,
2011). The present finding on the involvement of BAs 44, 45 and 40
opens the question of whether the dorsal connectivity within the lan-
guage network too might play a role in TOT states during proper
naming, in particular segment III of the superior longitudinal fasciculus,
which links Broca’s area with inferior parietal lobe, including BA 40.

Several limitations of the present study should be acknowledged.
First, the cross-sectional design precludes making inferences on changes
caused by aging. One could object that the pattern of age-related dif-
ferences observed in the present sample does not have to coincide with
the pattern of changes that would have been obtained in a longitudinal
study. For different reasons, both cross-sectional and longitudinal ap-
proaches to cognitive aging are insufficiently equipped to handle the
full complexity of relations within “age-brain-cognition triangle” (Raz &
Lindenberger, 2011; Salthouse, 2011). (For instance, an issue in long-
itudinal studies is practice effects.) Note, however, that the observed
pattern of more TOT states, and less GM density and cortical thickness
in the MA group relative to YA is consistent with previous findings on
neuro-cognitive changes due to Aging (Section 1).

Second, we did not account for some variables that might be re-
levant for the observed neuro-cognitive differences. For instance, edu-
cation has a critical role in cognitive reserve, alongside other factors
such as socio-economic status (Sperling, Mormino, & Johnson, 2014) or
bilingualism (Gold, Johnson, & Powell, 2013), and variation in cogni-
tive reserve has been related to differential vulnerability of cognitive
functioning. Vascular risk factors such as hypertension or genetic fac-
tors, such as apolipoprotein E 4/4 (ApoE ε4), which have deleterious

effect on the aging brain (Raz et al., 2005), may have further con-
tributed to the heterogeneity of the present study sample. Indeed, large
individual variation within age groups that appears to increase with
increased age has been often considered the main source of doubt
whether age itself could be a sufficient explanatory variable of observed
changes (Martin et al., 2014; Salthouse, 2010).

Third, the structural integrity differences indicating less density and
thickness in the MA group raise the possibility of neuropathology in this
group. Previous studies have shown that atrophy is typical of the aging
brains, even when they remain free from dementia (Jack et al., 2014;
Lindenberger, 2014). Atrophy reflects neuronal injury or neurodegen-
eration, i.e. a progressive shrinkage and loss of neurons that impairs
neuronal function (Jack et al., 2012, 2016). Since we do not have in vivo
evidence indicating absence of Alzheimer’s pathology in the present
sample, we cannot rule out the possibility that some of our MA subjects
harboured Alzheimer’s pathology, although middle-age as defined in
the present study (45–55 years of age) does not represent a high-risk
factor for age-related neurodegenerative diseases such as Alzheimer’s
disease (AD) (Jack et al., 2014). Regardless, even in cognitively intact
persons with positive AD-biomarkers, such as increased cortical amy-
loid load (Dubois et al., 2007, 2010, 2014; Jack et al., 2010; Sperling
et al., 2011), atrophic changes are less pronounced than for example
regional hypometabolism (Kljajevic, Grothe, Ewers, & Teipel, 2014),
and increased amyloid load – not atrophy – was found to be associated
with word retrieval deficits in such subjects (Papp et al., 2015). The
mechanisms underlying cognitive decline in a typically aging brain
(Bülow & Söderqvist, 2014; Harrison, Weintraub, Mesulam, & Rogalski,
2012; Rowe & Kahn, 1987) differ from those leading to AD (Fjell et al.,
2010; Morrison & Hof, 1997) and the present study rests on the as-
sumption that it involved a typical rather than a pathological sample.

Finally, the ROIs in our study were selected based on previous
neuroimaging findings and defined by using WFU PickAtlas (volu-
metric) and Desikan-Killiany atlas (cortical thickness) (Section 2.4).
Still, anatomical boundaries of a specific ROI do not necessarily confine
a function and aging processes affecting GM density and cortical
thickness do not necessarily follow anatomical boundaries of a region.
Without using the exact same clusters that were described in these
previous studies and relying on an atlas instead, the definition of ROIs is
bound to a degree of approximation.

In conclusion, our data suggests that the ability to retrieve names is
worse in middle-aged cognitively healthy subjects than in cognitively
healthy young people. Consistent with previous findings, we found less
GM density and cortical thickness in middle-aged relative to young
subjects in a range of areas. However, we found no evidence suggesting
significant correlations between the higher TOT scores in the MA group

Fig. 4. Results of cortical thickness analyses showing small, significant (p < .05 FDR) clusters (circled) for the effect of age accounting for TOT and regressing out gender: left pars
triangularis (BA 45) (left panel), and right pars opercularis (BA44) (right panel).
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and GM volumes or cortical thickness in the left ATL, STG, MTG, and
insula, which have been found to support retrieval of proper names.
Instead, we observed associations between left BA 45, right BA 44, right
BA 40, and TOT states, which implicate a wider network of areas in
TOTs during proper naming.
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