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ARTICLE INFO ABSTRACT

Keywords: Tequila elaboration leaves two main byproducts that are undervalued (bagasse and leaves). Organosolv pulping
Blue agave and Total Chlorine Free bleaching were integrated to obtain cellulose fibers from agricultural waste which
Organosolv consisted of blue agave bagasse and leaf fibers; together they represent a green process which valorizes biomass

Cellulose nanocrystals

waste. The obtained celluloses were characterized by FT-IR, colorimetry, and SEM and their extraction yields
Cellulose nanofibers

were evaluated. These celluloses were used to produce cellulose nanocrystals and cellulose nanofibers. First, an
acid hydrolysis was performed in a sonication bath to induce cavitation during the reaction to produce cellulose
nanocrystals. Then a high-pressure homogenization was selected to produce cellulose nanofibers. These nano-
celluloses were characterized by powder XRD, Nanosizer, zeta potential, NMR, and electronic microscopy.
Results showed that cellulose from organosolv pulps bleached with TCF bleaching is suitable for nanocellulose
production. Moreover, the use of a new step to separate cellulose nanocrystals resulted in yields almost doubling
traditional yields, while the rest of the properties remained within the expected.

1. Introduction

Blue agave (Agave tequilana Weber var. azul) is one of the most
abundant agricultural products in Mexico, in which tequila is produced
from this plant. The core of the plant represents up to 54% on a wet
weight basis (Iniguez-Covarrubias, Diaz-Teres, Sanjuan-Duenas,
Anzaldo-Hernandez, & Rowell, 2001) of the blue agave plant and is
cooked and milled for tequila production. Bagasse is the residue left
after the core is cooked, shredded and milled thus being an undervalued
by-product with a high amount of cellulose and lignin. Leaves can be up
to 36% and are in general left in the field after being cut yearly (Jima in
Mexican Spanish); this trimming is done annually to enhance the
growth of the core while most of the leaves are cut during the core
harvesting. Total year production was (in thousands of tons) 788.2 in
2014, 788.9 in 2015 and 941.8 in 2016 as stated by the Tequila Council
(National Regulator Council for Tequila Industry, 2017).The manage-
ment of the waste of tequila industry has attracted the interest of re-
searchers, and the obtention of value-added products from blue agave
wastes has proved the suitability of such raw material as a lig-
nocellulosic source (Fernandez-Rodriguez, Gordobil, Robles, Gonzalez-
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Alriols, & Labidi, 2017; Tronc et al., 2007). Pulp for paper has been
obtained from blue agave having similar properties than those of
commercial paper (Idarraga, Ramos, Zuniga, Sahin, & Young, 1999;
Iniguez-Covarrubias et al., 2001).

Removal of lignin from lignocellulosic fibers is the first step in the
obtention of cellulose. Industrially, cellulose pulp is obtained using two
stages: pulping and bleaching. The most commonly used method is the
Kraft process, which provides high pulp yields, but can generate sulfide
derivatives that may be linked to cellulose and represent an environ-
mental problem during disposal. In this sense, environmental friendly
pulping processes have emerged in last decades, such as organosolv
(O1) methods. Moreover, the organosolv process is a sulfur-free
method, based on the extraction of lignin by its dissolution in organic
solvents at high temperature and pressure, the low viscosity of the or-
ganosolv white liquors favors the penetration into the fibers, allowing
that a high lignin fraction can be dissolved. Moreover, after the pulping
stage, the solvent could be recovered by distillation (Fernandez-
Rodriguez et al., 2017).

After pulping, some residual lignin remains in the fibers and is
usually removed in oxidative bleaching reactions. For many years, the
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main bleaching reactions have involved chlorinated reagents (Cl,, ClO»,
and NaOCl), but nowadays chlorine is avoided in most pulp types be-
cause of its negative environmental effects (Bajpai, 2004; Fillat et al.,
2017; Nelson, 1998).Current bleaching sequences include the use of
chlorine dioxide in Elemental Chlorine-Free (ECF) sequences (Gierer,
1982; Lachenal et al., 2005; Mateo, Chirat, & Lachenal, 2005). The
other family of bleaching sequences is the Total Chlorine Free (TCF)
bleaching, which avoids releasing chlorine derivates into the waste
streams or atmosphere. Residual lignin degradation with hydrogen
peroxide is based on the action of the radicals produced during single
electron transfers between hydrogen peroxide and catalysts or as a re-
sult of thermal cleavage of the oxygen—oxygen bond (Gellerstedt &
Pettersson, 1982; Gierer, 1982; Siiss & Nimmerfroh, 1996). Some ap-
proaches have been made to assembly organic-based pulping with TCF
bleaching sequences to develop greener cellulose-extraction processes
(Alonso, Parajo, & Yanez, 2003; Shatalov & Pereira, 2007), however, so
far these researchers have included the use of chemicals (acetic acid,
HCl, anthraquinone, methanol, etc.) which may fit within the organo-
solv processes (organic solvent) but not in the environmentally-friendly
processes, therefore the present study aims to integrate an ethanol-
water organosolv pulping with a TCF bleaching to obtain a fully green
cellulose pulp.

Recent studies have been focused on developing micro and na-
noscale cellulosic materials trying to reduce the size of the cellulose
fibers to a size range in which their properties vary considerably. These
materials have wide applications as can be biomedicine, pharmacy and
materials science (Aranda-Garcia, Gonzalez-Nunez, Jasso-Gastinel, &
Mendizabal, 2015; Garcia, Gandini, Labidi, Belgacem, & Bras, 2016;
Gatenholm & Klemm, 2010; Henriksson, Henriksson, Berglund, &
Lindstrom, 2007; Lavoine, Desloges, Dufresne, & Bras, 2012). Nano-
cellulose production can be achieved either by mechanical treatments,
(Chen et al., 2011; Hettrich, Pinnow, Volkert, Passauer, & Fischer,
2014; Iwamoto, Abe, & Yano, 2008; Lee, Chun, Kang, & Park, 2009);
chemical processes (Herrera, Téllez-Luis, Gonzélez-Cabriales, Ramirez,
& Vazquez, 2004; Moran, Alvarez, Cyras, & Vazquez, 2008); or by en-
zymatic techniques; or even combinations of the above (Eichhorn,
2011; Jonoobi, Harun, Shakeri, Misra, & Oksman, 2009). For blue
agave byproducts, cellulose nanofibers (Ponce-Reyes et al., 2014;
Robles, Salaberria, Herrera, Fernandes, & Labidi, 2016)and cellulose
nanocrystals (Espino et al., 2014) have been produced and used in di-
verse applications, but the specific properties of cellulose nanoparticles
from blue agave have not been fully studied yet.

In this research, the production of cellulose nanoparticles from two
side-streams from tequila production (blue agave bagasse and leaves)
was studied to give value-added to these materials. Two main innova-
tions were made regarding previous works. The first part of the work
was focused on the use of a fully environmentally-friendly process for
the separation of the cellulose fibers from the original biomass by
combining an organosolv pulping and a TCF bleaching sequence, both
of which have not yet been fully studied as an assembly. Afterwards,
two different methods were followed to produce nanocellulosic pro-
ducts: nanofibers and nanocrystals. The second being a sonochemical
hydrolysis in acid media to produce cellulose nanocrystals (CNC), with
the introduction of a physical particle separation method which pro-
vides better yields and homogeneousness than traditional centrifuge-
based particle separation. Mechanical defibrillation with high-pressure
homogenization (HPH) was used to produce cellulose nanofibers (CNF).
The obtained nanoparticles were analyzed in their physicochemical
properties to determine the potential valorization of these byproducts
into high value-added cellulose nanoparticles.

2. Experimental
2.1. Materials

Blue agave (Agave tequilana Weber var. azul) leaves and bagasse
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fibers, which were provided by Finca Noctitlan, Jalisco, Mexico, were
used as feedstock in this work. Leaves were cut mature fresh from the
plant and then decorticated to scrape off the epidermis and pithy ma-
terial from the line fiber and then rinsed and dried. Bagasse was col-
lected after core cooking and milling and was also rinsed and dried.

2.2. Cellulose isolation

2.2.1. Organosoly delignification treatment

An ethanol-water (70:30 v/v) organosolv treatment (Or) was car-
ried out in order to extract lignin from fibers; the method followed
according to the chemical composition of the raw material: temperature
was set at 200 °C with pressure being stabilized at ~ 30 bar; agitation
was set at 150 rpm and the reaction was performed during 90 min
(Gordobil, Egiiés, Llano-Ponte, & Labidi, 2014). Liquid fraction was
separated via filtration and the solid fraction was washed several times
until remaining black liquor was eliminated.

2.2.2. Total chlorine-free bleaching

An industrial type of Total Chlorine Free bleaching process was
performed on the pretreated fibers (Ibarra, Camarero, Romero,
Martinez, & Martinez, 2006). In the present work, TCF sequence was
done as follows: (1) Alkali oxygen stage (O») performed twice, with
water at pH 11 stabilized using NaOH and 0.2 wt% MgSO, to neutralize
remaining metals, this was performed under a 6 bar oxygen atmosphere
at 98 °C during 60 min. (2) Peroxide stage with a secondary chelating
reaction (Pg) using 3M H,0,, at pH 11 with 1:5 (w/v) pentetic acid
(DTPA) as chelant, reaction was performed for 120 min at 105 °C and
(3) alkaline peroxide stage (Po) using a 3 M H,0, solution at pH 11 and
0.2 wt% MgSO, at 98 °C during 150 min under 6 bar O, atmosphere.
Bleached pulp was washed several times until neutral pH after each
stage and then oven dried at 50 °C for 24 h (Li, Lee, Lee, & Youn, 2011).
Pulping and bleaching were carried out in a 4L stainless steel batch
reactor with electronically controlled stirring, pressure, and tempera-
ture.

2.3. Nanocellulose production

2.3.1. Cellulose preparation

Prior to elaborating cellulose nanofibers or cellulose nanocrystals,
bleached cellulose fibers were milled with a Retsch mill using a 1 mm
sieve and then kept inside a conditioning chamber with no humidity at
25°C.

2.3.2. Sonochemical acid hydrolysis enhanced with sonication

Acid hydrolysis was performed to cellulose by using 10.2 M H,SO,
(1:15 w/v) solution at 45 °C during 60 min inside an Elmasonic Elma S
70 H sonication bath as present in Fig. 1. In this process, cavitations
were induced at 37 kHz, the use of cavitations during hydrolysis as an
incorporated process instead of being a 2-step process is a recent ap-
proach which has proven to produce more homogeneous CNC while
reducing production times(Barbosa et al., 2016; Guo, Guo, Wang, &
Yin, 2016). The reaction was stopped with cold distilled water (1:3 v/
v), the non-hydrolyzed fraction was separated with a sintered glass
Buchner-funnel (grain No.1), after which the filtrate was concentrated
and washed twice by using a nylon membrane (0.45 pm) combined with
a sintered glass Buchner-funnel (grain No. 3) obtaining a wet mat which
was dispersed in distilled water to a 10 wt% and a pH of 5. CNC were
further dialyzed to distilled water until neutral pH was stabilized. CNC
suspension was adjusted to a 3 wt% solution by direct sonication for
10 min at 20 °C and kept at 5°C (Garcia de Rodriguez, Thielemans, &
Dufresne, 2006).

2.3.3. Mechanical defibrillation
Cellulose nanofibers were produced with a Niro-Soavi Panda high-
pressure homogenizer; milled fibers were first dispersed in a water
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suspension (1:100g: mL) and then passed several times through a
homogenizer by increasing the pressure until ~ 1000 bar were achieved
at which suspension was passed with constant flow-rate during 90 min.
CNF suspensions were adjusted to 5wt% and kept at 5 °C.

2.4. Fiber characterization

Chemical analysis of the blue agave fibers was performed to de-
termine the amount of cellulose available for further extraction. This
characterization was carried out according to standard methods (TAPPI
T204cm-07, 2007; TAPPI T207cm-08, 2008; TAPPI T222 om-11, 2011;
TAPPI T211 om-12, 2012; Wise, Murphy, & D’Addieco, 1946). Infrared
spectra were recorded on a PerkinElmer Spectrum Two FT-IR Spectro-
meter equipped with a Universal ATR accessory with internal reflection
diamond crystal lens. The defined range was from 600 to 4000 cm ™!
and the resolution 8 cm ™. For each sample, 20 scans were recorded.
Color properties of the different treatments were measured with an X-
Rite 500 series colorimeter over 10 different regions of each composite,
RGB profile was made for the final surface layer of each composite. SEM
images were obtained with a Scanning electron microscope JEOL JSM-
6400 with field emission cathode, with a lateral resolution of 10-11 A
at 20kV.

2.5. Nanocellulose characterization

Cellulose nanoparticles were dry measured to control the yield of
each treatment after hydrolysis by using Eq. (1):

Y= MCXMT

B Mg X Mo (1)

Where Mc is the mass of dried cellulose nanoparticles (Freeze-dried and
then kept inside a desiccator); My is the mass of the total suspension, Mg
is the mass of the suspension sample before drying and My is the cel-
lulose mass before hydrolysis (CNC) or homogenizing (CNF).

Atomic force microscopy images were obtained operating in tapping
mode with a NanoScope Illa, Multimode TM-AFM from Digital
Instruments-Veeco scanning probe microscope equipped with an in-
tegrated silicon tip cantilever with a resonance frequency of 300 kHz.
To obtain representative results, different regions of the samples were
scanned.

Particle size and zeta potential were measured inside Malvern Z
nanosizer equipment, the refractive index for cellulose was considered
at 1.47, measurements were performed at 25 °C. For size analysis, 0.1 g/
L of cellulose suspension were put inside a disposable plastic cuvette
performing 13 scans with an incidence angle of 173° repeated three
times for each sample. For zeta potential nanocrystal suspensions were
put inside Malvern folded capillary zeta cell and measured using the
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Fig. 1. Visual flowchart of the CNF/CNC
production processes.
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Smoluchowski model (x-a = 1.50) 10 scans were performed and 3
specimens of each sample were measured (von Smoluchowski, 1903).

X-ray powder diffraction was measured to evaluate the crystallinity
of the nanocellulose samples; patterns were collected with a Panalytical
Phillips X’Pert PRO multipurpose diffractometer, with samples mounted
on a zero background silicon wafer fixed in a generic sample holder,
using monochromatic CuK, radiation (A = 1.5418 f\) in a 26 range
from 5 to 50 with step size of 0.026 and 80 s per step of at room tem-
perature. Cellulose crystallinity was measured from the powder dif-
fraction by using the Segal method, this method is easily implemented
with data from a powder diffractometer, and despite the objections, it is
still widely used as it constitutes a fast and easy tool to analyze and
compare qualitatively different cellulose structures (French & Santiago
Cintrén, 2013). To achieve this index, the Iy diffraction, which is
associated with the main crystalline domain, and the maximum of the
scatter of the amorphous cellulose, which has its highest intensity
around 26 = 18° are used. Segal relative crystallinity index is given by
the following equation:

Loo — I
Cr.Lega = 100 x 20— 21

(2)
For a more reliable crystallinity index, peak fitting method was used
to determine the ratio of the fitted crystalline area to the total reflection
area including the amorphous contribution with the extracted back-
ground (Wada & Okano, 2001). Selected peaks correspond to the 1-10,
110, 200 and 004 Miller indices corresponding to cellulose I mono-
clinic unit cell. Apparent crystallinity was estimated with Eq. (3):

Itot

Cr.Ipeak fitting = 100
26 28 26 262
y S, Simod26 + [0 7 Sio d20 + [ Sao d20 + [ Soos d26

d2g
jc‘ue Stor d26

3

In which the sum of the areas correspondent to the diffraction of
crystalline planes is assumed to be the area of the crystalline region,
being 26, and 20, the limits of the fitted signal for the corresponding
crystalline domains (S1.10, S110, S200, So04); While Sy, corresponds to the
total area (Ahvenainen, Kontro, & Svedstrom, 2016; Hult, Iversen, &
Sugiyama, 2003; Terinte, Ibbett, & Schuster, 2011). Least square
iterations were done until coefficient of determination R? = 0.997 was
achieved, which corresponds to a 99.7% accurate fitting.

Crystallite domain sizes were estimated with the Scherrer equation
using the peaks corresponding to the crystalline regions as given by Eq.

(4):

i 4)

| = —
HthCOSG
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With k being the Scherrer constant most adjusted to the nanocrystal
shape (0.86), A the wavelength (1.5418 A), Hpy; corresponds to the
breadth or full width at half maximum intensity (FWHM) for the cor-
responding peak and 0 is half the Bragg angle at peak maximum given
in radians (Scherrer, 1918; Ungar & Gubicza, 2007; Warren, 1969).

The 'C NMR spectrometry was performed using an AVANCE-500
Digital NMR spectrometer, at a frequency of 250 MHz with an acqui-
sition time of 0.011 s, at room temperature. The spectrum was recorded
over 32 scans and water was used as a solvent for all the nanocelluloses.
The NMR crystallinity index was determined by separating the C, re-
gion of the spectrum into crystalline and amorphous peaks, and cal-
culated by dividing the area of the crystalline peak by the total area
assigned to the C4 peak as shown in Eq. (5):

93
Sdx
87

93
Sdx
0

Cr.Iymr = 100 X
()

In which S represents the intensity at a given chemical shift F(8); x
corresponds to the chemical shift, the crystalline assignment for the Cy4
region was considered the region between 87-93 ppm and the total C,
region was set between 80 and 93 ppm (Newman, 2004).

3. Results and discussion

Fig. 2 show the chemical composition of blue agave bagasse and leaf
fibers was determined by TAPPI standards and is presented fully in the
supplementary data. Cellulose is the main component in both leaves
(63.10%) and bagasse (54.60%), in bagasse fibers cellulose and hemi-
celluloses are lower in content due to the sugar degradation that occurs
during the tequila production in which blue agave cores are milled and
cooked, extracting a considerable part of the sugars for the further al-
cohol production (Arrazola and de, 1969), this also makes these results
to differ from other chemical compositions evaluated for blue agave
bagasse (Alonso-Gutiérrez and de la, 2005; Satyanarayana et al., 2013)
as the extraction process and the maturity of the plant are unpredictable
variables. On the other hand, cellulose from leaf fibers is similar to
those reported by previous works (Ifiguez-Covarrubias et al., 2001;
Satyanarayana et al., 2013), the high cellulose content and low lignin of
the blue agave, in general, makes it a desirable cellulose source.

Scanning electron images of the raw material were acquired to
analyze the morphology of the fibers (supplementary data); leave fibers
present a rounded cross-section, while that of bagasse fibers is rather
rectangular; this phenomenon is caused by the mechanical beating to
which bagasse fibers are subjected during juice extraction (milling)
during tequila production; however widths are within the same range,
with an average width of 50 um. Leaf fibers are longer (70-100 cm)
while bagasse fibers rarely reach over 20 cm; color also differs as it is
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further analyzed.

Fig. 3 shows the infrared spectra of the bagasse and the leaf fibers
through each treatment. It can be observed the gradual disappearance
of wavenumbers that are characteristic to lignin; the main bands which
intensity is lost are at ~1610 cm ™! corresponding to the aromatic ring
vibration (C=C stretch), another aromatic ring vibration at
~1500 cm ™! and the C—C deformation at ~1450 cm™'. On the other
hand, bands that are characteristic of cellulose present a sharper defi-
nition, this is evident especially in case of the free v(OH) band at
3500-3000 cm ™!, the groups at ~2900 cm ™~ ‘and ~ 2860 cm ™' corre-
sponding to v(C—H) and v(CH,) symmetrical stretching of cellulose. In
the 1500-500 cm ™! region, it can be pointed the higher resolution of
peaks at ~1335cm™!, corresponding to glycosidic V(C—0—C),
~1280cm™! of 8(CH,) bending of crystalline cellulose (Garside &
Wyeth, 2003; Xu, Yu, Tesso, Dowell, & Wang, 2013).

In Fig. 4 the process yields after each process are presented as the
output of solid matter after each process divided by the input of solid.
For a better understanding of the cellulose recovering, two more yields
are displayed: the overall yield (Oy) which is the total amount of cel-
lulose obtained from each gram of fibers and was 40% for bagasse and
51% for leaves, and the relative yield (Ry) which is the relation be-
tween the overall yield and the amount of cellulose present in the raw
material as calculated by TAPPI standards. Ry shows that after Or and
TCF it was recovered the 72% of the cellulose present in the bagasse
and 81% of the cellulose of the leaf fibers, with mayor cellulose losses
occurring during Ot and the double oxygen stage, as high temperatures
and the presence of sodium hydroxide may have depolymerized cellu-
lose chains to glucose. Ot yields are in both cases higher than those
obtained in similar works, which have been reported around 50%
(Palomo-Briones et al., 2017; Pérez-Pimienta et al., 2017). Process
yields at peroxide stages (Pq and Py) are above 90% mainly because the
mayor lignin and hemicellulosic fractions have been already solubilized
but also because of the lesser aggressiveness of these treatments to the
cellulosic fibers.

Fig. 4 also shows the color properties of the fibers after each
treatment along with their simulated solid color obtained from the re-
sulting Lab coordinates. It is to highlight that the final cellulose fibers
present good luminosity values (L*) which are 93.66 for the bagasse
and 94.61 for the leaves, these results are above industrial require-
ments, which demand between 93 and 95 L*. Organosolv treatment
darkened the color regarding the original material, this feature has been
observed in similar works that use organosolv treatments on natural
fibers (Watkins, Nuruddin, Hosur, Tcherbi-Narteh, & Jeelani, 2015) and
it can be associated with the presence of polyphenolic chromophores
originated from the ring-opening of lignin chains (Castellan & Grelier,
2016). Bleached bagasse had higher value for both a* and b* than leaf
fibers (0.64 and 0.14 for a*, and 6.88 and 4.29 respectively), these

Blue agave leaves

Fig. 2. Visual aspect and SEM images of the fibers before and after the bleaching.
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Blue agave bagasse
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Fig. 4. Yields and color appearance parameters corresponding to Lab* space (AL*, Aa* and Ab*) as well as chrominance (AC*), hue (Ahab) and color difference (AE*) of blue agave
bagasse (c) and blue agave leaves (d) through pulping and bleaching. Process yield corresponds to the yield after each process, overall yield corresponds to the amount of cellulose
obtained related to the biomass used and relative yield corresponds to the obtained cellulose compared to the cellulose content as obtained from TAPPI methods. Beside each name the
corresponding color solid is represented as simulated by RGB color space. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

numbers (+a* and +b*) are related to red-yellow colors which can be
due to either residual lignins or to chromophores appearing because of
glucose oxidation (Castro et al., 2011; Mosca Conte et al., 2012). The
initial darkening after organosolv is further reverted during bleaching,
chroma presents reductions from initial values (25 for bagasse and 18
for leaves) which were further reduced (7 for bagasse and 4 for leaves)
after bleaching, chroma is related to the intensity of colors, grayscale
colors lack chroma as they are closer to the L™ /L™ axis of the CIEL*-
C*h*(a*b*) tridimensional space.

Fig. 5 shows AFM images of the obtained nanoparticles. During
processes, bagasse fibers were easier to process either CNC or CNF, as
the processes of tequila production eased the cellulose fractionation
during both treatments and resulted, under identical conditions, in
cellulose nanoparticles of smaller dimensions than those obtained from

298

leaf fibers; this can be confirmed with size ranges presented in the lower
part of Fig. 5, in which CNCy, and CNFy, present larger dimensions. The
action of sulfuric acid in the cellulose fibers allowed the isolation of
CNC with an average width of 33 = 13nm and length 350 = 153 nm
with a very homogeneous morphology, which is due to the retention of
particles with bigger size by the Buchner filter funnel cellulose se-
paration CNCg are significantly smaller than CNC under the same
conditions The use of hydrogen peroxide has been reported as an in-
fluential factor in the determination of fiber morphology after treat-
ment, as it weakens the fiber structure by oxidizing low chain carbo-
hydrates (Topalovic et al., 2007; Zeronian & Inglesby, 1995). While this
situation is often counterproductive for pulp and fabrics, it makes TCF
fibers desirable for nanocellulose production as the feasibility to obtain
smaller fibers under same conditions makes them more competitive. In
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Fig. 5. AFM images of the elaborated cellulose nanoparticles. The lower part of the figure presents the corresponding size ranges as obtained with the Nanosizer.

case of CNF, the action of HPH allowed to tear microfibrillated cellulose
into single nanofibers or groups of 2-3 nanofibers attached; in this case,
shape is less constant as fibers are presented sometimes separated in
one of their ends but still attached in the other (branching), this occurs
because mechanical isolation methods do not eliminate amorphous
cellulose that can still be left after the bleaching processes, anyhow the
average length was 607 + 85nm and the average width 68 *= 22nm.

Fig. 6 presents CNC and CNF yields (Oy and Ry) as obtained from
Eq. (1), crystallinity indices, zeta potential ({por), and crystallite region
sizes as approximated by Scherrer equation. Oy is the yield of cellulose
nanoparticles after hydrolysis or homogenization and Ry is the yield of
cellulose nanoparticles referred to the original cellulose content, this is
important as this value shows the expected cellulose nanoparticles that
can be obtained from the initial cellulose after cellulose loses or de-
gradation after each treatment. As acid hydrolysis dissolves non-crys-
talline regions of the cellulose structures, yields of cellulose nanocrys-
tals are lower than those of cellulose nanofibers, which in contrast
present lower crystallinity indexes with either crystallinity evaluation
method. Leaf fibers have the highest yields, with 93.84% for CNF;, and
60.84% for CNC;, while CNCg had 50.23% and CNFy 86.24%. Bagasse
fibers were less resistant to chemical hydrolysis and presented more
degradation, as the auto-hydrolysis done during tequila production had
already influenced the fiber morphology. It is to highlight that CNC
yields obtained by passing the suspension through different sintered

=
=

glass plates were between 50 and 60%, which is between the commonly
referred yields (ranging between 5 or 6% up to 80% depending on the
process and the source), but better than yields traditionally obtained via
acid hydrolysis and centrifugation, which is between 20 and 40%
(Trache, Hussin, Haafiz, & Thakur, 2017). Crystallinity index was cal-
culated using Segal method (Cr.Isy;) which is the easiest way to qualify
crystallinity indexes and therefore the most widely used but, as ex-
plained before, with low accuracy and, therefore crystallinity indices
obtained with the peak fitting method (Cr.Ipr) and with NMR method
(Cr.Iymr) are also presented, as they represent more accurate crystal-
linity values. Crystalline indices show little differences between the
different methods, but they concur with previous works in which Segal
index is lower than that of peak method. In general, crystallinity shows
higher indexes for CNC than for CNF obtained, which is related to the
elimination of paracrystalline and amorphous cellulose during hydro-
lysis in which glucose chains are dissolved from the main fibrils. Zeta
potential presented values that are characteristic of CNC and CNF re-
spectively; with CNC presenting more stability than CNF because of
residual sulfur particles attached to the —OH groups on the cellulose
surface that may remain after hydrolysis (Abitbol, Kloser, & Gray,
2013). Previous works have also achieved stable cellulose nanoparticles
(Han, Zhou, Wu, Liu, & Wu, 2013; Tonoli et al., 2012).

Normalized diffraction patterns (Fig. 7) show similar shapes which
are similar to those published elsewhere for cellulose I crystalline
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allomorphs (Horikawa & Sugiyama, 2009) with two main overlapped
signals at 26 = 14-16° and 26 = 20-24° and a small signal at 26-34°.
Fitted curves showed peaks associated with cellulose corresponding to
1-10, 110, 200 and 004 crystalline planes, which are present in all the
cases with different intensity and broadening. A general assumption for
this analysis is that increased amorphous contribution is the main
contributor to peak broadening. However, more than a crystalline dis-
order (amorphous content), there are other intrinsic factors that influ-
ence peak broadening, such as crystallite size and the anisotropy of the
shape of the crystallites (Popa & Balzar, 2008)-not to be confused with
an anisotropic distribution- as there have been reported non-uniform
strains within the crystal (Park, Baker, Himmel, Parilla, & Johnson,
2010). However, the presence of hidden ‘humps’ or ‘halos’ which is
more visible in CNF, is without any doubt due to amorphous presence.
CNC samples have more defined shapes with the peak due to 200 plane
being well defined and broad (smaller crystallites) while CNF have
scattered diffractions with more differences between each other; and
the characteristic halo between 26 = 10-15°, which corresponds to
low-crystalline cellulose as it has been stated in other works, this typical
‘hump’ starts at 26 ~ 12° and has its main height at 26 ~ 19.92° which
corresponds to typical amorphous contribution of native cellulose
(Boissou et al., 2014).

Nuclear magnetic resonance chemical shifts are presented in Fig. 8,
most of them correspond to nanocellulose NMR reported by other re-
searches (Lee et al., 2013), however, it is difficult to compare results as
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Fig. 8. NMR analysis of cellulose nanoparticles.
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the spectral morphology and particularities differ from species to spe-
cies (Kono et al., 2002). CNC, signal has a different shape in the C4 and
Ce regions, with a less intense signal in the accessible fibril surface
region (80-90 ppm) and with the Ia and If peaks more pronounced,
which may imply a reduction in the paracrystalline region, which can
be corroborated with the Cr.I in Fig. 4. On the other hand, the amor-
phous Cg region has a double peak with increased intensity than that of
the crystalline region (61-63 ppm). CNC, chemical shifts also present
some similarities with Cellulose II NMR analysis, especially in case of
the C; double peak which is not present in the rest of the signals (Mittal,
Katahira, Himmel, & Johnson, 2011); this presence of Cellulose II is also
seen in the XRD (peak at ~12° 20) and it might be attributed to
amorphous cellulose I being dissolved during the acid hydrolysis.

4. Conclusions

Native cellulose was extracted from byproducts generated during
tequila production with processes known by their low environmental
impact but which are not widely used because of the properties which
traditionally attributed to those processes by the industry. However, to
elaborate CNF and CNF, the use of organosolv and TCF resulted in fibers
with high potential. Cellulose nanoparticles obtained from such cellu-
loses resulted in high production yields (particularly in case of CNC),
while their analyzed properties were within the expected criteria (di-
mensions, colloidal stability, and crystallinity) and represent a suitable
valorization for rather undervalued side-streams. Differences between
bagasse fibers and leave fibers are visible at large scale, but as the fiber
size is reduced, these differences decrease significantly. Therefore, blue
agave byproducts are a good source to produce value-added products as
cellulose nanocrystals and cellulose nanofibers from either leaves or
bagasse.
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