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Abstract

Voice Activity Detection (VAD) is an essential task in expert systems that rely

on oral interfaces. The VAD module detects the presence of human speech and

separates speech segments from silences and non-speech noises. The most pop-

ular current on-line VAD systems are based on adaptive parameters which seek

to cope with varying channel and noise conditions. The main disadvantages of

this approach are the need for some initialisation time to properly adjust the

parameters to the incoming signal and uncertain performance in the case of

poor estimation of the initial parameters. In this paper we propose a novel on-

line VAD based only on previous training which does not introduce any delay.

The technique is based on a strategy that we have called Multi-Normalisation

Scoring (MNS). It consists of obtaining a vector of multiple observation likeli-

hood scores from normalised mel-cepstral coefficients previously computed from

different databases. A classifier is then used to label the incoming observation

likelihood vector. Encouraging results have been obtained with a Multi-Layer

Perceptron (MLP). This technique can generalise for unseen noise levels and

types. A validation experiment with two current standard ITU-T VAD algo-

rithms demonstrates the good performance of the method. Indeed, lower classi-

fication error rates are obtained for non-speech frames, while results for speech

frames are similar.
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1. Introduction

Voice activity detection (VAD) is a very important part of expert systems

based on speech interfaces. Using VAD, audio signals are split into autonomous

speech segments before being passed to the subsequent modules. Two kinds of

errors must be considered: silence or noise segments being passed as speech (the5

non-speech error rate) and speech segments being misclassified as silences and

then not being passed to the processing system (the speech error rate). Both

must be kept low of course, but their importance depends on the needs and

design of the expert system using the VAD.

VAD is typically the first module employed in acoustic processing systems.10

It is profusely used in the development of all kinds of expert systems. In Mporas

et al. (2010) the authors use Automatic Speech Recognition (ASR) technology

with a VAD to develop a dialogue system in a motorcycle environment. Principi

et al. (2015) describe an integrated system for processing voice emergency com-

mands using a VAD followed by ASR. VAD and ASR technologies constitute the15

core of the speech interface in a system using a serious game to support therapy

for mental disorders in Kostoulas et al. (2012). All these systems, based on ASR,

require a very low ratio of lost speech frames in order for all the meaningful au-

dio frames to be available to the recogniser. On the other hand, if non-speech

segments are passed as speech the recogniser will still be able to detect them,20

as they typically have a silence (or non-speech) model. The main purpose of

VAD in ASR interfaces is to eliminate long silences and split the audio stream

into shorter, manageable segments. Additionally computation time is reduced

and consequently so is the decoding response time.

ASR is not the only technology that requires a good VAD module. Tirumala25

et al. (2017) identify VAD as one of the research areas for speaker recognition.

For instance, VAD is included in an intelligent porch system where people are

identified by their voices before entering the house (Kuan et al., 2012). VADs

are also an important module in speaker segmentation and clustering systems,

such as the diarisation system presented in Mart́ınez-González et al. (2017). In30
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addition, VAD is an essential module in expert systems that include emotion

identification (Alonso et al., 2015). For speaker and emotion recognition systems

the VAD employed requires a very low number of erroneously classified silence

or noise frames, since silences or noise frames do not convey emotion or the

speaker’s identity. A high non-speech error rate will thus lower the performance35

of the system. If however some speech frames are lost, the system will still be

able to perform correctly.

Current VADs can be tuned to behave closer to one mode or to the other,

though the ideal behaviour would of course be to reduce both non-speech and

speech error rates as far as possible.40

When the oral interface of an expert system picks up audio signals by means

of different devices and in different environments, the VAD has to cope with

different recording conditions, channel characteristics and noise levels. This is

in fact the greatest challenge for the current ASR systems (Virtanen et al.,

2012). VAD systems currently adapt different parameters to adjust to changing45

background noise conditions. However, this approach has its shortcomings:

on the one hand, there is a need for an initialisation time over a segment to

adjust the parameters, which introduces an undesirable delay. On the other

hand, any incorrect estimation of the parameters will lead to uncertainty in the

performance of the system (Graf et al., 2015). Training the VAD beforehand is50

one way to avoid the initial adaptation, but the trained system should be able

to generalise to unseen channels or background noises. On-line VAD decision

making is still a challenge.

From the point of view of acoustic features, very different parameters have

been investigated: periodicity measure (Tucker, 1992; Hautamäki et al., 2007),55

zero-crossing rate (Benyassine, 1997), pitch (Chengalvarayan, 1999), Short Term

Energy (STE) (Rabiner & Sambur, 1975) and Long Term Energy (LTE) (Ghosh

et al., 2011; Ma & Nishihara, 2013), spectrum analysis (Woo et al., 2000; Marz-

inzik & Kollmeier, 2002), cepstral distance (Pollak & Sovka, 1995), Linear Pre-

dictive Coding (LPC) (Nemer et al., 2001) and combinations of different features60
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(Tanyer & Özer, 2000). More recent research has been focused on using mul-

tiple features to train a statistical model or classifier using machine learning

techniques rather than on exploring more discriminative new acoustic features,

which was the traditional trend.

Both Gaussian Mixture Models (GMM) and Hidden Markov Models (HMMs)65

have been tested in the context of VAD. In Tatarinov & Pollák (2008), speech

and non-speech segments are modelled by two HMMs. A simple grammar is

used to model transitions from one HMM to the other and voice detection be-

comes a task of finding the best path through a recognition network. It is shown

that a simple HMM-based VAD functions properly when clean signals are con-70

sidered. In Kingsbury et al. (2002) the same HMM strategy is followed to deal

with background noise, but acoustic features and normalisation operations are

used along with the results conveyed by the HMMs. In Veisi & Sameti (2012)

several noisy HMMs are trained to detect different noisy non-speech segments.

In this paper we also use the approach of scores generated by the HMMs.75

Varela et al. (2011) addresses the problem of far-field speaker interference

in human-machine oral interaction. A decision tree (DT) is trained using the

scores of speech/non-speech HMMs and additional information related to far-

field speech. A Support Vector Machine (SVM) is used in Enqing et al. (2002)

to discriminate between speech and non-speech, and improved versions include80

Signal to Noise Ratio (SNR) information as in Ramirez et al. (2006a,b). Hybrid

SVM/HMM architectures are also proposed for VAD in Tan et al. (2014) to

retain the discriminative and non-linear properties of SVM while modelling the

inter-frame correlation through a HMM. Results show a better performance for

the SVM-based VAD system. However, relatively high speech error rates are85

still obtained. Our proposed VAD outperforms this technique and obtains a

speech error rate more than three times lower.

More recently, neural networks (NN) have appeared in the literature of VAD

approaches. For instance, Hughes & Mierle (2013) uses a recurrent neural net-

work (RNN) with perceptual linear prediction (PLP) features testing clean sig-90

nals. Convolutional neural networks (CNN) are also used in Thomas et al. (2014)
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with mel-spectral coefficients, but adaptation with supervised data is needed for

unseen channels. In Obuchi (2016) feature vectors consisting of log-mel filter-

bank energies are fed into a DT, an SVM and a CNN classifier. However, in

this VAD approach several parameters must be adjusted to adapt to different95

noise conditions.

Regarding on-line performance, the current deep learning approaches tend to

have very long inference times, mainly because neural network architectures are

normally designed to be as complex as possible without considering real-time

limitations (Sehgal & Kehtarnavaz, 2018). An exception is the system intro-100

duced in Zhang & Wu (2013), where a collection of different acoustic features

are used to train a deep-belief neural network (DBNN). Extensive experimen-

tal results where different types of noise are tested show that it outperforms

several reference VADs, even in real time. Nevertheless, this system has to

compute almost 300 features in each frame, which increases system complexity.105

By contrast, our approach seems to get better results and is much simpler.

In this paper we present a simple but highly effective VAD based on a method

that we have called Multi-Normalisation Scoring (MNS). This consists of classi-

fying multiple observation likelihoods generated by an HMM trained with nor-

malised Mel-Frequency Cepstral Coefficients (MFCC) corresponding to silence110

audio segments. Our proposed VAD technique makes use of a classifier which

is trained beforehand, so that only a classification task needs to be performed

when a new incoming speech frame arrives. This means that results are ob-

tained on-line frame by frame and there is no need to adjust any parameter, so

no initialisation period is needed. Furthermore, in comparison with two current115

standard ITU-T VAD algorithms, our VAD has proved to perform much better

in labelling non-speech frames and to obtain similar results in labelling speech

frames without increasing computing time. The VAD has been tested for differ-

ent types of noise, as well as several SNR. The results show that our proposed

VAD technique is able to generalise. However, noises not seen during training120

provoke a slight decrease in the results.
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Section 2 describes the general architecture of the VAD system proposed in

this paper. Section 3 describes the MNS method and its motivation. Section

4 provides a short overview of the databases used. To assess the performance

of the new VAD, several databases have been chosen in an attempt to cover125

a variety of contexts and use a considerable amount of test speech material.

The results of different experiments (under both clean and noisy conditions)

are shown in Section 5. Section 6 describes a validation experiment comparing

the results with two standard VADs, and some conclusions are finally drawn in

Section 7.130

2. General architecture of the system

The on-line VAD technique proposed in this paper consists of three core

blocks, as shown in Fig. 1. The input to the system is a vector of MFCCs

obtained from the current signal frame, and the output is a VAD label: speech

or non-speech.135

Figure 1: General architecture of the on-line VAD technique proposed here.
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The three core blocks are:

1. Cepstral normalisation module: the acoustic features (MFCCs) of the incom-

ing signal frame are normalised using different normalisation factors.

2. MNS-based MLP (VAD classifier) module: this module classifies a vector ob-

tained by our proposed Multi-Normalisation Scoring (MNS) method, using140

a Multi-Layer Perceptron (MLP).

3. Decision-making module: this implements a finite-state automaton to make

immediate decisions in order to cope with glitches and enhance the results.

Block 2 implements the method presented here, and is described through-

out the paper. Blocks 1 and 3 are described in more detail in the following145

subsections.

2.1. Cepstral normalisation

Cepstral normalisation is essential to develop the VAD proposed in this pa-

per. Indeed, as demonstrated in earlier works (Westphal, 1997), the observation

likelihoods generated by the silence GMM trained with normalised MFCCs fol-150

low a fairly discriminative pattern for speech and non-speech frames. The VAD

proposed in this work takes advantage of this characteristic.

Overall, parameter normalisation is indispensable to create robust acoustic

models and cope with audio signals captured in different environments. The

spectral subtraction approach of Boll (1979) is well established in the ASR field155

for compensating for the differences (channels, background noise, etc.) in the

incoming signals. However, the most common practice is to perform CMVN

(Cepstral Mean and Variance Normalisation) on the extracted features, as it

outperforms spectral subtraction techniques (Garner, 2011).

As explained in Huang et al. (2001), the mean of an MFCC over N frames160

conveys the spectral characteristics of the current microphone and room acous-

tics. At the limit, when N −→∞ for each utterance, the means from utterances

from the same recording environment can be expected to be the same. Thus,

cepstral mean normalisation (CMN) permits the removal of a stationary, linear
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channel transfer function; and variance normalisation (CVN) helps to compen-165

sate for the reduction of the variance of the MFCCs due to additive noise.

The classic CMVN approach (Liu et al., 1993, 1994) seeks to estimate mean

and variance vectors per cepstral feature (MFCC). The feature vectors are then

shifted and scaled by the estimated means and variances, so that each normalised

feature has zero mean and unit variance. An effective solution for calculating170

reliable means and variances is to estimate them using the whole utterance (off-

line performance). This utterance-based normalisation can result in undesirable

delays, since utterance processing cannot begin until the last frame arrives. In

time-synchronous (or on-line) systems, windows of a minimum length of 150-

200 ms are typically used as a compromise between the quality of the estimated175

means and variances and the latency. Once an initial value is estimated, some

type of recursive normalisation is usually applied in which the long-term esti-

mates for the means and variances of the cepstral features are incrementally

updated.

The initial values for means and variances can be estimated using the first180

M frames (and then adapting recursively). Correct estimation of these initial

values depends heavily on whether these M frames contain speech or not. If

there is no speech in them, computed variance values will be very small, which

will strongly amplify the amplitude of the normalised signal, and vice versa. In

consequence, a good estimation of the initial values for means and variances is185

of the utmost importance. This issue can be overcome by using the method

introduced in this paper, which is based on applying multiple normalisation

factors to cepstral features. This enables decisions to be made frame by frame

with no need to use a window.

2.2. Decision-making module190

As the decision of speech/non-speech is made frame by frame, very short

segments labelled as speech can appear in the output of the VAD. These short

segments usually correspond to noises and glitches and degrade the performance

of the following processing system. In an off-line implementation there is usually
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post-processing, but on-line implementation means making immediate decisions.195

In our on-line implementation, a classic state-diagram is implemented (see Fig.

2). Two parameters are considered: minimum speech duration (Tmin speech)

and minimum silence duration (Tmin sil), which set the minimum number of

frames that a segment must contain to be considered as speech or silence (non-

speech), respectively. As can be seen in the figure, if the VAD changes its state200

from non-speech to speech (or vice versa) in a given frame, the next Tmin speech

frames (or Tmin sil) are also analysed. If the result of checking these frames

matches the state of the current frame, a state change is made; otherwise it is

assumed that there has been a glitch and the VAD does not change its state.

Obviously, this method adds a short delay each time a state change is found,205

but no delay is added when the same state is maintained. This enables the

system to completely recover during non-transitional segments.

Figure 2: State-diagram for the on-line implementation of the decision-making module for

glitch-removal.

For the experiments carried out in this paper, a minimum segment duration

of 15 frames was empirically chosen for both Tmin speech and Tmin sil.
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3. The basis of the MNS method210

3.1. Observation likelihood

In speech recognition, audio segments corresponding to the same recognition

unit (word, phone, triphone etc.) are gathered and processed in order to extract

acoustic features (typically MFCCs) from them and train a different acoustic

model for each unit. HMM is a very popular acoustic model, since it not only215

models the likelihood of a new observation vector but also the sequentiality of

the observations.

Observation likelihoods are generated by GMMs, each of which corresponds

to an HMM state. For an observation vector ot, the observation likelihood bj of

a GMM at the jth state is calculated as shown in eq. 1.220

bj(ot) =

M∑
m=1

cjmN (ot;µjm,Σjm) (1)

where M is the number of mixture components, cjm is the weight of the mth

component and N(·;µ,Σ) is a multivariate Gaussian with mean vector µ and

covariance matrix Σ.

3.2. The observation likelihood of the central state of a three-state silence HMM

The central state in a three-state HMM is a priori the most stable state of225

the model, since the left and right states have to cope with transitions between

models. It makes sense to assume that the same goes for the silence HMM,

where states at the ends have to model transitions between silence and speech.

An illustrative example is provided in Fig. 3, which shows the log-likelihoods

generated by the GMM of each HMM state (s0, s1 and s2) through an utterance230

composed of three words (notice the mouth click just before the second word).

The observation likelihood curve generated by the central-state (s1) GMM seems

much more discriminative than the ones at the ends, which are more irregular.
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Figure 3: Spectrogram of an utterance consisting of three words (top) and observation log-

likelihoods over time (frames) generated in the left state (s0), central state (s1) and right

state (s2) of the silence HMM trained with normalised MFCCs (bottom).

3.3. The Multi-Normalisation Scoring (MNS) method

The MNS method consists of generating multiple observation likelihood235

scores by normalising the MFCCs using means and variances computed from

different speech datasets obtained under different recording conditions. The

observation likelihood vectors thus obtained can characterise the behaviour of

the speech and non-speech frames in different conditions. As an illustrative

example, Fig. 4 shows the behaviour of the scores obtained by normalising a240

signal picked up from near (B signal, top) and another from afar (E signal, bot-

tom) with the pre-calculated means and variances obtained from four datasets

recorded simultaneously at four distances: close (B), desktop (C), medium (D)

and far (E) (for more details about the code names see Section 4).

Assuming that the differently normalised scores of the non-speech segments245

follow a pattern (see score vector si in Fig. 4), it is likely that the speech scores
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Figure 4: Spectrogram and central-state silence HMM observation log-likelihoods of a B signal

(top) and an E signal (bottom) over time (frames) for different normalisation modes using

pre-calculated means and variances from datasets B, C, D and E. The vertical narrow box

marks the vector of scores in frame i.

do likewise. If so, only a good classifier would be needed to detect those patterns

and classify the vector as belonging to a speech or non-speech frame.
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4. Speech databases

Four speech databases have been used in this study. Firstly, we used the250

Basque Speecon-like database (Odriozola et al., 2014), specifically the close-

talk channel, to train the HMM for silence frames. Using this HMM, an MLP

was trained by applying the MNS method to the files of the Basque Speecon-

like database and a subset of the Spanish Speecon database used in an ECESS

evaluation campaign of voice activity and voicing detection (Kotnik et al., 2008).255

The latter contains four channels or datasets corresponding to different recording

distances: C0, C1, C2 and C3.

The initial VAD experiment was performed by testing the files from a third

database: the TIMIT Acoustic-Phonetic Continuous Speech Corpus (Garofolo

et al., 1993). The second VAD experiment was carried out by testing the system260

with noisy signals. For that purpose, the Noisy TIMIT speech database (Ab-

dulaziz & Kepuska, 2017) was considered, in particular the babble noise dataset

and white noise dataset Test blocks. Each dataset comprises 10 subsets each of

which corresponds to a different SNR (from 50 to 5 dB, in 5 dB steps). For

the third VAD experiment, 4 of these 10 subsets (35, 25, 15 and 5 dB) were265

also included in the training material to train a new MLP, with the purpose of

making the system more robust against noise. The files tested were the same

as in the second experiment.

Finally, the results were compared using two standard VAD algorithms, and

the same files as in experiments 2 and 3 were tested: the Test blocks of the270

babble noise and the white noise datasets of the Noisy TIMIT speech database.

Table 1 shows the main characteristics of the databases and the channels of

each database used for this research. Each channel’s code name as indicated in

the table is used hereinafter.

5. MNS-based VAD experiments275

The VAD accuracy experiments carried out in this study consist of assess-

ing the ability of the system to discriminate between speech and non-speech
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Table 1: Main characteristics of the databases (and channels) used in this paper.

Database Basque Speecon-

like

Spanish Speecon -

ECESS

TIMIT Noisy TIMIT

Code R A B C D E F G H

Channels used Close-

talk

Desktop

mic

very

close

(C0)

close

(C1)

medium

(C2)

far

(C3)

Headset-

mounted and

far-field mic

babble

noise

(50-5 dB)

white

noise

(50-5 dB)

Language Basque Spanish English (USA) English (USA)

Environment Office Office, public place,

entertainment, car

Studio Studio + additive

noise

Speakers 230 60 630 630

Files / speaker 316 17 10 600

Total content (h) 109.95 1.41 5.37 322.2

Speech content (%) 47.90 51.77 86.57 86.57

Labelling Phonetic Forced

Alignment

Manually Manually From TIMIT

Sample rate 16 kHz 16 kHz 20 kHz (down-

sampled 16 kHz)

16 kHz

segments in terms of the non-speech error rate (ER0) and speech error rate

(ER1). These two rates are computed as the fractions of the non-speech frames

and speech frames that are incorrectly classified (N0,1 and N1,0, respectively)280

as a proportion of the number of real non-speech frames and speech frames in

the whole database (Nref
0 and Nref

1 , respectively), as shown in equation 2. In

addition, the TER (total error rate) is also computed as the quotient between

the total number of incorrectly classified frames and the total number of frames

(equation 3).285

ER0 =
N0,1

Nref
0

× 100;ER1 =
N1,0

Nref
1

× 100 (2)
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TER =
N0,1 +N1,0

Nref
0 +Nref

1

× 100 (3)

The silence HMM was trained using the R database. Acoustic parameters

include 13 MFCCs and 13 first and 13 second order derivatives, and they were

modelled with 32 mixture GMMs. The audio signals were windowed into 25

ms length frames picking up a frame each 10 ms. For the training of the si-

lence HMM, these parameters were normalised using the means and variances290

computed from the files belonging to the same session (all the utterances corre-

sponding to the same speaker).

Different classifiers were tested to see whether the scores obtained using the

MNS method were valid, and the best results were obtained using a Multi-Layer

Perceptron (MLP) (Widrow et al., 1988; Delashmit & Manry, 2005), a classifier295

that can distinguish data that are not linearly separable (Collobert & Bengio).

For these experiments, MLPs were trained using WEKA (Waikato Environment

for Knowledge Analysis), a popular free, open-source software written in the

Java language for data-mining tasks (Holmes et al., 1994; Hall et al., 2009).

5.1. MNS-based VAD experiment using an MLP300

To prepare the data to train the MLP, 1 020 files of each of the datasets

R, A, B, C, D and E were considered. All the files were processed to obtain

observation likelihoods (generated by the central-state GMM of the three-state

silence HMM trained with dataset R), after normalising the MFCCs using the

means and variances precomputed from each dataset. Thus, vectors of 6 scores305

were generated from the frames of all the files belonging to each dataset. Al-

together, 3 096 632 score vectors were obtained, 49.08 % of which correspond

to speech and 50.92 % to non-speech, i.e. they are well balanced (for further

details, see Table 3).

The MLP used for this task contains 6 nodes in the input layer (one for310

each score) and 2 nodes in the output layer (one for each category: speech and
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non-speech). Half the sum of both node amounts (4 nodes) were chosen for the

hidden layer.

To test the MNS-based MLP, a separate database was chosen: dataset F

(TIMIT ). All the files (6 300) from this dataset were processed in on-line mode;315

i.e. MFCCs were normalised on-line with the means and variances computed

from subsets R, A, B, C, D and E, giving a vector of 6 scores frame by frame.

Then each score vector was classified by the MLP. The results of this experiment

are shown in Table 2.

Table 2: TER, ER0 and ER1 of the on-line VAD experiment on the TIMIT corpus.

TER ER0 ER1

4.98 19.68 2.70

The results of the on-line MNS method proposed in this work can be con-320

sidered as quite good when compared with other VADs, as shown in Section

6. ER1 is low, which means that speech frames are quite correctly classified,

so very few of them would be left out. However, ER0 is quite high, with most

of the errors being made at the ends of the speech segments. This means that

almost one in five non-speech frames would pass on to the speech processing325

system.

5.2. MNS-based VAD experiment in noisy conditions

The MNS technique introduced in the previous section must be evaluated by

testing noisy speech files in order to assess the robustness. For that purpose, two

noisy datasets were considered: G (babble noise) and H (white noise), the most330

natural noises for a system hosted on a remote server. Both datasets contain

10 subsets with different SNRs, ranging from 50 to 5 dB in 5 dB steps.

The experiment consisted of testing the same MLP used in the previous

section (trained with clean signals) with the files corresponding to the Test

blocks of datasets G and H (noisy signals): in total, 25 200 files (1 260 files in335
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each of the corresponding 20 different SNR subsets). Fig. 5 shows the error

rates obtained for both babble noise signals (orange dotted lines) and white

noise signals (grey dotted lines) at different SNRs. As a benchmark, the results

presented in Table 2 when testing dataset F (clean signals) are also shown in

the figure, as horizontal black dotted lines.340

Figure 5: Error rates obtained by testing all the SNR subsets of datasets G and H (noisy

signals) when the MLP is trained using clean signals (dotted lines) and clean and noisy signals

(solid lines); error rates obtained by testing clean signals are also shown as horizontal lines

for reference (black dotted line).

The results show that testing noisy signals affects VAD performance: the

ER1 curve deteriorates in general, and the ER0 results show a more irregular

behaviour. Note the high ER0 values obtained for white noise at the low-

est SNRs, probably due to the fact that white noise introduces energy at all

frequencies and the MLP tends to classify all the frames as speech frames. Gen-345

erally speaking, some deterioration was to be expected, since the scores used to

train the MLP come from clean signals. That is why a new MLP was trained
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using scores obtained from noisy signals, as described in the next section. It

should also be noted that the TER curve looks like the ER1 curve, due to the

fact that the G and H signals from the TIMIT database contain more speech350

(86.57%) than non-speech (see Table 1).

5.3. Training the MLP with noisy signals

In this new experiment, noisy signals were included in the MLP training

process. For this purpose, 4 subsets from each dataset G and H were chosen:

the 35, 25, 15 and 5 dB (specifically, their Train blocks). Thus, the MLP355

training data now include the signals from the Train blocks of each of these 8

subsets, together with the files used in the MLP training process in the previous

experiment. The results indicate whether the MLP is able to generalise when

classifying signals with different SNRs.

Since the TIMIT database is unbalanced in terms of the amount of speech360

and non-speech frames (see Table 1), a large number of speech frames were

randomly discarded from the Train block files. Table 3 shows the total numbers

of frames used per dataset.

Table 3: Datasets and numbers of frames considered to train the MLP with noisy signals.

R, A B, C, D, E G, H TOTAL

non-speech fr 299 972×2 244 211×4 190 052×8 3 097 204

speech fr 234 628×2 262 647×4 244 003×8 3 471 868

Total fr 534 600×2 506 858×4 434 055×8 6 569 072

The score vectors now contain 14 elements: 6 scores obtained from the clean

signals, and 4 from each of the subsets with noisy signals. Thus, the MLP365

configuration selected for this experiment is this: 14 nodes in the input layer, 2

nodes in the output layer, and 8 nodes for the hidden layer.

The files tested are the same ones as in the previous experiment (see Sub-

section 5.2). Fig. 5 shows the error rates obtained at different SNRs for both

babble noise signals (orange solid lines) and white noise signals (grey solid lines).370
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In the light of the results, there is an improvement in ER1 at all levels

of noise, for both dataset G and dataset H, even when testing clean signals.

Regarding ER0, the improvement is remarkable for white noise at high noise

levels. The big improvement in ER1 together with the imbalance of the database

results in an overall improvement in TERs.375

To show the impact of using noisy signals on the results obtained by testing

clean signals, Table 4 presents the results of the experiment performed under

clean conditions (see Table 2) along with the results obtained in this last ex-

periment for the cleanest signals (50 dB subset). The results are actually even

slightly better now.380

Table 4: TER, ER0 and ER1 of the VAD experiment including noisy signals in the training

process.

TER ER0 ER1

Exp. with clean signals 4.98 19.68 2.70

Exp. with noisy signals
babble noise 50 dB 3.73 19.57 1.32

white noise 50 dB 3.63 18.26 1.40

5.4. Generalisation to other types of noise

We have shown that the MLP trained with 4 subsets (the 35, 25, 15 and 5

dB) of each dataset G and H is able to generalise results for the rest of SNR

values. However, seeking to learn whether the MLP trained with noisy signals

can also generalise for other types of noises, we tested the MLP trained with385

noisy signals (see Subsection 5.3) with signals containing other types of noise.

So now the test set comprises the files from the Test blocks of datasets G (babble

noise) and H (white noise) along with the files belonging to the same Test blocks

of the datasets blue, pink, red and violet (1260 files in each SNR subset; 12 600

in each dataset).390

Figure 6 shows the TERs obtained at different SNRs for the various noise

types. For SNRs equal to or greater than 35 dB there is no degradation when
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signals that have unseen noises are tested. For smaller SNRs, the deterioration

is not very large: the maximum is for violet noise, which degrades by about

7 points at 15 dB with respect to both references. For red noise, the system395

actually behaves better than when the reference noises are tested.

Figure 6: TERs obtained by testing all the SNR subsets of all types of noise of the Noisy

TIMIT, using the MLP trained with signals containing babble noise and white noise.

6. Final experiments

Two on-line VAD algorithms standardised by ITU-T (International Telecom-

munication Union - Telecommunication Standardization Sector) were tested to

check the validity of the VAD technique proposed here. The algorithms belong400

to series G (Transmission systems and media, digital systems and networks),

where G.710 - G.729 are devoted to Coding of voice and audio signals. The

first algorithm is G.720.1 (, ITU), which is actually a Generic Sound Activity

Detector (GSAD) that can operate on 8 or 16 kHz audio input, with a VAD

module. The second algorithm is G.729 (, ITU), an 8 kbit/s speech coder that405

manages 8 kHz input signals, which relies on a VAD module described in its

Annex B (also known as G.729b). Both systems use a 10-ms frame length and

frame shift, and no look-ahead is needed (no delay, just the frame duration).
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Further details are provided in Table 5 for both ITU systems1 and our proposed

VAD technique.410

Note that the computation time is the average time per file needed by each

system in a test where 10 080 files are processed, using the same computer

and under the same conditions. It can vary from one computer to another,

but it gives some idea of the ratios between them. Additionally, regarding the

hangover scheme, the G.729b and our proposed VAD technique follow a similar415

state machine, and introduce a delay while it is decided whether there is a

change or not. In the case of G.720.1 a conservative scheme is followed, where

active indicators are emitted until a silence segment is detected.

Table 5: Comparison of some important parameters of the VAD in G.720.1 (ITU-T), the

G.729b algorithm (ITU-T) and our proposed VAD technique.

G.720.1 VAD G.729b Prop. method

Bandwidth (kHz) 8, 16 8 16

Frame duration / shift (ms) 10 / 10 10 / 10 25 / 10

Computation time (ms per file) 26.8 34.87 30.7

Smoothing No Yes Yes

Initialization (No. frames) 200 inactive 32 0

To test the VADs, the same data were used as in Sections 5.2 and 5.3. To

test the G.729 coder VAD, the files had to be down-sampled to 8 kHz. Fig. 7420

shows the error rates obtained by the two ITU algorithms (dotted and dashed

lines) and our proposed VAD technique (solid lines): TER (top), ER0 (bottom

left) and ER1 (bottom right) testing the Test blocks of both datasets G and H.

Regarding the ER0, our proposed VAD technique lets at most 20 % of non-

speech frames pass as speech. The minima of both ITU systems are over 30 %,425

1The software for both systems can be downloaded from the ITU website: http://www.itu.

int/rec/T-REC-G.720.1-201001-I and http://www.itu.int/rec/T-REC-G.729-201206-I,

respectively.
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Figure 7: Error rates obtained using the ITU-T G.720.1 and G.729b standard VADs testing all

the SNR subsets of datasets G and H, along with the results of the proposed VAD technique

(solid lines).

and they show a significant increase as SNR gets lower, especially for babble

noise signals. This means that many non-speech frames are classified as speech

when signals are noisy.

With regard to the ER1, the results for G.720.1 and our proposed VAD

technique are quite similar for babble noise. For white noise the results are430

similar for low-noise signals, but our proposed technique performs better on the

noisiest data. In the case of G.729b, our proposed VAD obtains better results

for SNR higher than 25 dB. At 10 and 5 dB, G.729b gets better results for

babble noise and the MNS-based VAD for white noise.

In general, ER1 results obtained by the ITU algorithms and the MNS-based435

VAD are comparable for high SNR signals. By contrast, for low SNR signals
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the results show different behaviour for babble noise and white noise. For babble

noise, G.720.1 gets similar results, and G.729b gets better results. For white

noise, better results are obtained by the MNS-based system. Nevertheless, it is

worth noting that ER0 values are very high for the two ITU algorithms, which440

means that both systems tend to classify non-speech frames as speech when

testing noisy signals.

In conclusion, our proposed VAD technique gets better TER at all noise

levels. Due to the imbalance between the amount of speech and non-speech

frames, the TER curves are similar in shape to those obtained for ER1 but are445

shifted proportionally by ER0. One of the advantages of the ITU systems is

that they can adapt to different noise conditions on-line; however, they need

an initialisation time to adjust the main parameters. In comparison, our MNS-

based system is able to generalise for noise types that are not included in the

training process and it requires no initialisation time, since the results do not450

depend on any previous frame.

7. Conclusions and future work

In this paper, we introduce a novel VAD that can be trained beforehand,

so that it does not need any adaptive parameters or therefore any initialisa-

tion time to adjust those parameters. The VAD technique is based on the455

multi-normalisation scoring (MNS) method. MNS is based on generating an

observation likelihood vector for each frame using the central-state GMM of a

three-state silence HMM and normalising the cepstral features with different

sets of means and variances. Thus, a classifier (a MLP) is trained using the

vectors obtained from both speech frames and non-speech frames.460

The performance of our proposed VAD technique when it is trained with

noisy signals (babble noise and white noise) from different SNRs is better overall

than the performance of the ITU-T standard systems G.720.1 and G.729b, since

the classification error is considerably lower for non-speech and is comparable for

speech segments. This makes our technique useful for both systems that require465
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low speech error rates and systems that require low non-speech error rates.

Furthermore, our VAD seems to generalise the results properly for intermediate

SNRs and the unseen noise types tested, which makes the system robust to

different noise levels and types.

One of the greatest advantages of the MNS-based technique is that it per-470

forms on-line, making decisions frame by frame, with no need to analyse the

neighbouring frames or the frames of a segment (or file) to which it belongs.

In addition, the use of observation likelihoods as the basis of a VAD is also

interesting due to its great simplicity. In a system where HMMs are used (as in

an ASR system), the proposed VAD requires very little extra processing. The475

main disadvantage could be how the VAD behaves with unseen noises: it seems

to be able to generalise results, but the error rate increases somewhat at some

SNRs. Further research is needed to determine how the system could perform

a proper generalisation.

A future research direction could be the analysis of the observation likeli-480

hoods obtained from a speech GMM (or several GMMs). It would be interesting

to see whether their incorporation deteriorates or improves the results. Acous-

tic models of speech are more diverse than those for silence, so the research

should include the analysis of the various patterns obtained for different speech

phones or phone groups. Additionally, several (noisy) silence GMMs trained485

with different noisy signals could also be considered. Indeed, all the work intro-

duced here was carried out based on a single GMM trained with clean signals.

Obtaining more score vectors from different silence GMMs might provide more

stable results.

Further research is also needed to analyse the generalisation of results when490

processing audio signals containing unseen noises. Indeed, the ability to gener-

alise is one of the keys of the proposed VAD technique, since it does not contain

any adaptive parameters which can help to adjust the system to different noise

types and levels. The impact of including different types of noise and different

combinations of them in the training data must be examined in depth to obtain495

a use that is as universal as possible.
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Another possible research direction could be to test different classifiers in

addition to MLPs. Recurrent Neural Networks (RNN) seem to be a good can-

didate since they can model sequential data with time dependences between

feature vectors. This might add robustness to the proposed MNS-based VAD500

technique.

A challenging research direction would be to use our VAD technique in the

field of acoustic event detection. It would be interesting to see how our proposed

VAD behaves in scenarios where not only speech but noises of other kinds are

presented and must be detected. An in-depth analysis would be required to505

identify what adaptations the VAD system would need.

Finally, in regard to the most practical aspect, the system needs to be tested

in a real expert system. It needs to be implemented in a real-world application

where an assessment must be carried out. This would give clues as to the real

performance of our proposed VAD technique.510
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Hautamäki, V., Tuononen, M., Niemi-Laitinen, T., & Fränti, P. (2007). Im-
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