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Los alcaloides constituyen una importante familia de compuestos de origen 

natural que poseen, entre otros, átomos de nitrógeno en su esqueleto hidrocarbonado. 

Muchos de los componentes de esta extensa familia se han empleado por la industria 

farmacéutica debido a sus excelentes propiedades y características, siendo utilizados 

en campos tan diversos como la lucha contra la malaria, analgésicos, sedantes e 

incluso como agentes anticancerígenos. Un elevado porcentaje de estas moléculas 

poseen anillos o unidades de pirrolidina o piperidina como base fundamental de su 

estructura. Un ejemplo lo constituyen los alcaloides de la familia Securinega 

(pertenecientes a la familia Euphorbiaceae), los cuales se han empleado para el 

tratamiento de enfermedades tales como la poliomielitis o la esclerosis lateral 

amiotrófica, entre otras. 

Uno de los principales objetivos de la química sintética es el de intentar 

sintetizar compuestos naturales como los descritos anteriormente. En las últimas 

décadas, la catálisis organometálica ha demostrado ser una poderosa y versátil 

herramienta para lograr tal objetivo, utilizando para ello una gran variedad de 

complejos organometálicos. En concreto, los ligandos tipo ferrocenilo han demostrado 

una gran versatilidad como catalizadores en reacciones asimétricas.  

Nuestro grupo de investigación tiene una amplia experiencia en el ámbito de 

ligandos ferrocenilo, habiendo sintetizado los ligandos de ferrocenil prolina NH-D-

EhuPhos-83a y NMe-L-EhuPhos-85. Estos compuestos han resultado ser eficientes 

en reacciones de cicloaddición (3+2) entre -iminoésteres y nitroalquenos para 

generar los cicloaductos exo-82 y endo-84 con excelentes excesos enantiomericos 

(ver Esquema 1). De este modo, se han sintetizado derivados de prolinas no-naturales 

densamente sustituidas con un elevado enantiocontrol.  

 

Esquema 1. Síntesis enantioselectiva de las los cicloaductos endo-84 y exo-82 mediante el empleo de 

los ligandos ferrocenil prolina 85 y 83a. 
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En vista de estos resultados, en el segundo capítulo de esta tesis se ha 

ampliado la familia de ligandos tipo ferrocenil prolina realizando variaciones 

estructurales frente a los ligandos previamente descritos. Adicionalmente, se ha 

llevado a cabo la preparación de los correspondientes complejos de Au(I). 

Las reacciones de cicloadición representan una ruta versátil para la síntesis de 

compuestos cíclicos con un alto grado de estereoselectividad. Por ello, se planteó 

como objetivo principal de este segundo capítulo la evaluación de la versatilidad de los 

ligandos y complejos de tipo ferrocenil pirrolidina en reacciones de cicloadición (2+1) y 

en reacciones inter- e intramoleculares de cicloadición (3+2) enantioselectivas. 

Las reacciones de cicloadición (2+1) dan lugar principalmente a ciclopropanos 

que pueden ser empleados como building blocks en la síntesis de productos naturales, 

y además pueden presentar diversas aplicaciones farmacéuticas. Dentro de  la 

síntesis de ciclopropanos, la estrategia más utilizada ha sido la reacción entre  

alquenos y diazocompuestos catalizada por metales de transición. Los ligandos de tipo 

ferrocenilo NH-D-EhuPhos-83a y NMe-L-EhuPhos-85 fueron utilizados en 

combinación con una variedad de sales metálicas en la reacción entre los diazo 

compuestos (EDA y MEDA) y alquenos heterocíclicos (tales como indeno o 2.3-

benzofurano). Aunque el uso de sales de rodio(II) produjese únicamente la síntesis de 

trans-ciclopropanos solo se pudieron obtener los productos racémicos. 

Por otro lado, el interés para sintetizar de compuestos tricíclicos que contienen 

un anillo pirrolidina unido a un cromeno nos  condujo a la evaluación de nuestros 

ligandos en reacciones intramoleculares de cicloadicion (3+2) enantioselectiva. Las 

estructuras de tipo cromeno[4,3--b]pirrol constituyen un objetivo particularmente 

interesante debido a sus propiedades biológicas. Por ello, la reacción intramolecular 

de la imina 119 fue evaluada en diferentes condiciones de reacción, observándose un 

exceso enantiomérico máximo de un 60% para el producto endo-120 cuando se 

empleó el ligando NH-TB-D-EhuPhos-83b en combinación con la sal AgClO4 bajo las 

condiciones descritas en el Esquema 2. La libertad conformacional que presenta la 

imina 119 puede explicar la presencia del dimero-121 al producirse un procesos 

competitivo ente una cicloadición de tipo intramolecular o intermolecular. 

 

Esquema 2. Reacción de cicloadición intramolecular (3+2) enantioselectiva que permite las síntesis de los 

productos endo-120 y dimero-121.  

 En vista de los resultados obtenidos para la versión intramolecular, se diseñó 

una nueva estrategia para la síntesis asimétrica de compuestos tricíclicos que 
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incorporan una estructura tipo cromenopirrolidina. De este modo, el empleo como 

dipolarófilo del compuesto 3-nitro-2H-cromeno-122 en la reacción intermolecular de 

cicloadición (3+2) enantioselectiva con diferentes -iminoésteres dio lugar en 

presencia del ligando NH-TB-D-EhuPhos-83b a los cromeno[3,4-c]pirrolidinas 123 y 

123’ con un elevado enantiocontrol (hasta 97% ee). La configuración absoluta para los 

compuestos enantiopuros se estudio mediante el análisis por difracción de rayos-X de 

los cristales correspondientes. Además, se demostró el alcance de la reacción 

mediante variaciones estructurales generando así compuestos con excelentes valores 

de ee. 

 Dado que los compuestos sintetizados 123 y 123’ guardan cierta analogía con 

los cromenopirazoles desarrolados por Jagerovic et al., los cuales presentan actividad 

cuando se unen a los receptores cannabinoides CB1 y CB2, se testó la afinidad de los 

cicloaductos 123a y 123’a. Desafortunadamente, no se alcanzó el mínimo de 

desplazamiento de radioligando que mide la afinidad requerido para pasar a siguientes 

evaluaciones. Posteriormente, se consideró incrementar la lipofilicidad de los 

incorporando una cadena alifática en los cicloaductos para mejorar la afinidad con los 

receptores cannabinoides (ver Esquema 3). Los resultados de afinidad hacia los 

receptores CB1 y CB2 de estos compuestos están siendo evaluados en la actualidad 

por el grupo de Jagerovic.   

 
Esquema 3. Reacción de cicloadición intermolecular (3+2) enantioselectiva que permite las síntesis de los 

productos 123k y 123’k. 

 

 La configuración absoluta de los cicloaductos enantiopuros obtenidos dio lugar 

a la necesidad de realizar un análisis tanto computacional como experimental del 

mecanismo de esta reacción. Los estudios preliminares indican que se trata de una 

reacción por etapas. Además de la adición de Michael y la posterior reacción de aza-

Henry, que suelen mostrar las cicloadiciones de este tipo, la inversión de configuración 

del carbono asimétrico del cromeno en  al grupo fenilo podría ocurrir mediante un 

proceso de isomerización mediado por el  grupo nitronato del intermedio Michael. El 

estudio computacional del mecanismo unimolecular de isomerización postulado hasta 

la fecha ha demostrado la inviabilidad de este proceso, debido a las altas energías de 

activación observadas. En la actualidad, se están estudiando computacionalmente 

otros posibles mecanismos que puedan explicar dicho proceso de isomerización. 
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El tercer capítulo de esta tesis tiene como objetivo la síntesis total de alcaloides 

de la familia de Securinega. Generalmente, las estrategias empleadas se basan en el 

uso de derivados de piperidina o pirrolidina (anillo A) como reactivos de partida, 

seguidos de la formación del anillo butenolida (anillos CD) y la posterior ciclización 

intramolecular para dar lugar a la formación de sistemas azabiciclo[3.2.1]octano.  

 

Esquema 4. Estrategia general descrita para la síntesis total de alcaloides de Securinega. 

 

La síntesis total de los alcaloides de la familia Securinega se propuso de una 

manera colectiva y divergente teniendo como intermedio clave una lactona bicíclica. 

Previamente se ha descrito una lactona similar como intermedio en varias síntesis 

totales, además de haber sido propuesta como posible intermedio en la biosíntesis de 

la Securinina.  

La estrategia a seguir propuesta por nuestro grupo parte de la 

desaromatización del fenol 310 para generar la correspondiente 2,5-ciclohexadienona 

que a su vez evolucionó a través de una reacción de oxa-Michael intramolecular la 

cual dio lugar al compuesto 326 (ver Esquema 5). Tras diferentes transformaciones 

químicas la lactona-324 fue sintetizada. La síntesis en cinco etapas se puede llevar a 

cabo de manera eficiente, realizando una sola purificación por columna cromatográfica 

obteniéndose así el compuesto-324 con un rendimiento global del 17%. 

 

 

Esquema 5. Síntesis de 324, empleado como intermedio clave en la síntesis total de los alcaloides. 
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Una vez obtenido este resultado, se sugirió una ruta sintética para la obtención 

de la lactona-324 en una manera enantiopura (reacción de oxa-Michael en Esquema 

5). Para ello, se evaluaron los diferentes ligandos tipo ferrocenil prolina en presencia 

de sales metálicas obteniéndose en todos los casos la lactona-324 en su forma 

racémica. Asimismo, diferentes organocatalizadores fueron empleados en la misma 

reacción. El mejor resultado se obtuvo al emplear el ácido fosfórico R-TRIP (17% de 

ee para la lactona-324) como organocatalizador. 

En vista de estos resultados, se propuso una síntesis alternativa, en la que la 

quiralidad se podría transmitir mediante la reacción de desimetrización para formar 

1,4-dioxanos. El empleo de diaminas quirales mostró un buen enantiocontrol para la 

generación del dioxano, pero desafortunadamente no se pudo obtener el producto 

deseado.  

 En lo que respecta a la síntesis racémica de estos productos naturales, la 

lactona-324 reaccionó con la correspondiente azida 342a-b (de 6 o 5 miembros) 

permitiendo el acceso a los precursores de los anillos pirrolidina y piperidina de estos 

alcaloides. La posterior formación de la imina mediante una reacción Staudinger/aza-

Wittig, la aminación reductiva de ésta y la reacción tipo aza-Michael generó los 

productos protegidos que incorporan un sistema de azabiciclo[2.2.2]octano. Una última 

etapa de desprotección dio lugar a los cuatro productos naturales (Esquema 6). 

 

Esquema 6. Síntesis total divergente y modulable que permite acceder cuatro alcaloides de Securinega. 

 

 Los productos que se pueden clasificar como alcaloides de tipo neosecurinina, 

es decir, aquellos que incluyen en su estructura una unidad de piperidina, se 

obtuvieron con rendimientos globales alrededor del 1-2% y en una proporción 

diastereomerica de 55:45. Los datos físicos y de espectroscopia de RMN descritos en 

literatura ayudo a la identificación de los productos naturales (±)-Virosina B y (±)-

Virosina A, respectivamente. 

Asimismo, los productos naturales (±)-Niruroidina y (±)-Bubbialidina fueron 

obtenidos en una proporción diastereomérica de 75:25 y con rendimientos globales 
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similares. Estas moléculas se encuentran dentro de los alcaloides de tipo 

neonorsecurinina, ya que presentan una pirrolidina como anillo fusionado al azabicíclo 

[2.2.2]octano. Se realizaron estudios computacionales para justificar la relación 

diastereoimérica obtenida experimentalmente. Los cálculos DFT demostraron que la 

etapa limitante es la de aminación reductiva. La diferencia de energía libre entre los 

estados de transición es de  0.98 kcal/mol, que predice una proporción de 81:19 a 

favor del ataque por la cara Si (para dar como producto mayoritario la (±)-Niruroidina). 

Este valor está en concordancia con el valor obtenido experimentalmente de 75:25. 

En conclusión se ha desarrollado una síntesis divergente y colectiva de 

alcaloides de Securinega, en 10 etapas de reacción con un rendimiento global de 0.7 a 

1.7% en la que se pueden obtener los productos naturales (±)-Virosina B, (±)-

Virosina A, (±)-Niruroidina y (±)-Bubbialidina. 
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Les alcaloïdes sont des molécules organiques constituant une famille 

importante de substances naturelles hétérocycliques azotées. Généralement 

biologiquement actives (activités antipaludéenne, anti-cancéreuse, analgésique, 

sédative…), ces molécules sont structurellement complexes, et présentent 

fréquemment de nombreux centres stéréogènes incorporés dans des motifs 

pipéridiniques, ou encore pyrolidiniques. Ces singularités structurales, combinées à 

leurs diverses activités biologiques, font donc de ces composés des cibles de choix 

pour l’industrie pharmaceutique. 

 

Un des principaux objectifs de la chimie de synthèse est la mise au point de 

méthodes permettant d’accéder de façon concise et efficace à des structures 

hydrocarbonées (naturelles) complexes. Au cours des dernières décennies, la catalyse 

organométallique, de grâce à la grande variété de complexes disponibles, s'est avérée 

être un outil puissant et polyvalent pour atteindre cet objectif. En particulier, les ligands 

du type ferrocényle ont montré une grande versatilité en tant que catalyseurs dans des 

réactions asymétriques. 

 

Notre groupe de recherche a une expérience dans la synthèse et l'emploi de 

ligands ferrocényles, et deux de nos ligands, le NH-D-EhuPhos-83a et le NMe-L-

EhuPhos-85, se sont révélés efficaces dans des réactions de cycloaddition [3+2] entre 

les -iminoesters et les nitroalcènes, pour générer les pyrrolidines exo-82 et endo-84 

avec d'excellents excès énantiomériques (voir Schéma 1). Ce travail a donc conduit à 

l’obtention de prolines non-naturelles densément substituées.  

 

 

Schéma 1. Synthèse énantiosélective de cycloadduits endo-84 et exo-82 catalysée par les ligands de 

ferrocényle-proline 85 et 83a. 
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Les cycloadditions sont probablement les transformations permettant l’accès à 

la complexité moléculaires le plus rapide. La grande efficacité observée de nos ligands 

ferrocényles nous a donc incité à évaluer leurs performances dans des réactions 

énantiosélective de cycloaddition [2+1] et dans de réactions de cycloaddition intra- et 

intermoléculaires [3+2].  

La cycloaddition énantiosélective [2+1] est la réaction la plus souvent décrite 

pour accéder à des cyclopropanes, motif structuraux très utiles en synthèse totale de 

produits naturels, mais aussi en tant que pharmacophore induisant fréquemment des 

propriétés biologiques intéressantes. La mise en réaction d’alcènes et de composés 

diazoïques catalysée par des métaux de transition en présence des ligands 

ferrocényles NH-D-EhuPhos-83a et NMe-L-EhuPhos-85 a conduit à la synthèse 

exclusive de trans-cyclopropanes. Cependant, seuls des produits racémiques ont été 

obtenus. 

 

D'autre part, l'intérêt de synthétiser des composés tricycliques contenant un 

cycle pyrrolidine attaché à un chromène nous a conduits à l'évaluation de nos ligands 

dans des réactions de cycloaddition énantiosélective intramoleculaire [3+2]. La 

fragment chromène[4,3-b]pyrrole est particulièrement intéressante en raison de ses 

propriétés biologiques. Par conséquent, la réaction intramoléculaire de l'imine 119 a 

été évaluée sous différentes conditions. Contrairement aux essais de 

cyclopropanation, un excès énantiomérique de 60% a été observé pour le produit 

endo-120, lorsque la réaction est catalysée par le ligand NH-TB-D-EhuPhos-83b en 

présence de AgClO4 (Schéma 2). Notons que la liberté conformationnelle de l'imine 

119 peut expliquer la formation du dimère-121 dans le cadre de processus compétitifs 

impliquant une cycloaddition de type intramoléculaire ou intermoléculaire. 

 

Schéma 2. Réaction de cycloaddition intramoléculaire [3 + 2] énantiosélective qui conduit aux produits 

tricycliques endo-120 et dimère-121. 

 

Compte tenu des résultats obtenus pour la version intramoléculaire, une 

nouvelle stratégie a été développée pour la synthèse asymétrique de composés 

tricycliques incorporant une structure de type chroménopyrrolidine. Ainsi, une réaction 

de cycloaddition intermoléculaire énantiosélective [3+2] entre le 3-nitro-2H-chromène 

et différents -iminoesters a été réalisée en présence du ligand NH-TB-D-EhuPhos-

83b. Cette réaction a donné lieu à la formation à des chromène[3,4-c]pyrrolidines 123 

et 123' avec un énantiocontrol élevé (jusqu'à 97% ee). Notons que la configuration 
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absolue de ces composés énantiomères a a pu être déterminée par analyse de 

diffraction des rayons X des cristaux correspondants. 

Puisque les composés synthétisés 123 et 123’ ont une certaine analogie structurale 

avec les chroménopyrazoles développées par l’équipe du Dr. Jagerovic, l'affinité de 

nos nouveaux chromène [3,4-c]pyrrolidines pour les récepteurs cannabinoïdes a été 

testée. Malheureusement, les résultats obtenus n'ont pas montré d’intéractions 

significatives avec ces récepteurs. Par la suite, nous avons envisagé d'augmenter la 

lipophilie de nos composés en leur incorporant une chaîne aliphatique afin d'améliorer 

leurs affinités avec ces récepteurs cannabinoïdes (voir Schéma 3). Ces composés 

sont actuellement testés au sein du laboratoire du Dr. Jagerovic pour évaluer leurs 

affinités aux récepteurs CB1 et CB2. 

. 

 

 

Schéma 3. Réaction de cycloaddition enantiosélective [3 + 2] pour la synthèse des produits 123k et 123'k 

portant une chaîne aliphatique. 

 

La configuration absolue des cycloadduits 123 et 123’ a donné lieu à la 

nécessité d'effectuer à la fois une analyse computationnelle et une analyse 

expérimentale du mécanisme de cette réaction. Des études préliminaires indiquent que 

le processus est par étapes (stepwise). En plus de l'addition de Michael et de la 

réaction aza-Henry, l'inversion de la configuration du carbone asymétrique en  du 

groupe phényle du chromène pourrait se produire par un procédé d'isomérisation 

médié par le groupe nitronate de l'intermédiaire de Michael. L'étude DFT du 

mécanisme unimoléculaire d'isomérisation postulé à ce jour a démontré la non viabilité 

de ce procédé en raison des énergies d'activation élevées. Des calculs 

supplémentaires, y compris des corrections énergétiques associées à des énergies de 

dispersion non covalentes et à des effets de solvant, sont actuellement en cours. 
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L'objectif principal du troisième chapitre de cette thèse est la synthèse totale 

des alcaloïdes de Securinega. En général, les stratégies employées pour la synthèse 

de ces alcaloïdes sont basées sur l'utilisation de dérivés de pipéridine ou de pyrrolidine 

(cycle A) comme réactifs de départ, suivie de la formation du fragment buténolide 

(cycle CD) et d'une cyclisation intramoléculaire finale pour donner naissance à La 

formation de systèmes azabicyclo[3.2.1]octane (Schéma 4). 

 

Schéma 4. Stratégie générale décrite pour la synthèse totale des alcaloïdes de la famille Securinega. 

 

Notre objectif était une synthèse collective de ces produits naturels basée sur la 

formation d'une lactone intermédiaire bicyclique. Notons que des lactones similaires 

ont déjà été proposées en tant qu'intermédiaire dans certaines synthèses totales 

rapportées. 

La stratégie suivie est basée sur la désaromatisation du phénol 310 pour 

générer la 2,5-cyclohexadiénone-325 correspondante. Une réaction d´oxa-Michael 

intramoléculaire donne alors accès au composé 326 (voir Schéma 5) qui, après 

réduction sélective de la cétone au borohydrure de sodium et protection de l’alcool 

secondaire, permet d’isoler l’intermédiaire clé 324. Cette synthèse est très efficace, 

peut être réalisée par un opérateur en 8h de travail de paillasse à l’échelle du multi-

gramme, ne nécessite qu’une seule purification, et conduit à un rendement global de 

17%. 

  

 

Schéma 5. Synthèse de 324, intermédiaire clé dans la synthèse totale d'alcaloïdes Securinega. 
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Plusieurs tentatives de synthèse asymétrique de la lactone 324 ont été 

réalisées. La stratégie directe repose sur une désymétrisation de la 2,5-

cyclohexadienone méso par réaction d’oxa-Michael énantiosélective. Les ligands 

ferrocényles en combinaison avec des métaux de transition ont été évalués pour cette 

transformation. Malheureusement, toutes les tentatives ont conduit à un mélange 

racémique de lactone-324. De plus, l'emploi de différents types d'organocatalyseurs 

n’a permis aucune amélioration significative; meilleurs résultats ayant été obtenus par 

l'utilisation d'acide phosphorique chiral de type (R)-TRIP (17% ee). 

Au vu de ces résultats, une autre approche asymétrique, par synthèse 

énantiosélective de 1,4-dioxanes par désymmetrization oxa-Michael, a montré un bon 

enantiocontrole (jusqu'à 86% ee) en présence de diamines chirales. Malheureusement, 

les efforts pour générer l'intermédiaire lactone ont échoué en raison de l'impossibilité 

d’élimination fragment 1,4-dioxane. 

Nonobstant notre incapacité à produire l’intermédiaire clé de façon 

énantiosélective, la synthèse racémique de quatre alcaloïdes Securinega a été 

entamée. Ainsi, la mise en réaction de l’énolate de la lactone 324 avec les aldéhydes 

342a et 342b a permis d’accéder, aux cycles pyrrolidinique et pipéridiniques des 

Niruroidine, Bubbialidine, Virosines A et B. En effet, la formation de l'imine par réaction 

de Staudinger/aza-Wittig, l'amination réductrice et la réaction terminale de type aza-

Michael ont généré les produits naturels protégés incorporant un système 

azabicyclo[2.2.2]octane. Une étape finale de déprotection permet alors d’isoler les 

produits naturels (Schéma 6). 

 

 

Schéma 6. Synthèse totale divergente et modulable donnant accès à quatre alcaloïdes Securinega. 

 

Les produits classés comme alcaloïdes de type neosecurinine, ceux qui 

comprennent dans leur structure une unité pipéridine, ont été obtenus avec des 

rendements globaux d'environ 1-2% et dans un rapport diastéréoisomérique de 55:45.  
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La (±)-Niruroidine et la (±)-Bubbialidine ont été obtenus de façon similaire 

dans un rapport diastéréoisomèrique de 75:25. Des études computationnelles ont été 

réalisées pour justifier le rapport diastéréoisomérique obtenu expérimentalement. En 

effet, l'étude des états de transition optimisés de l’amination réductrice pour chaque 

composé a montré une différence d'énergie relative libre de 0,98 kcal/mol. Cette 

différence énergétique relative libre se réfère à un rapport de 81:19 en faveur de 

l'attaque par rapport à la face Si (conduisant à (±)-Niruroidine comme produit majeur); 

une valeur proche du rapport 75:25 obtenu expérimentalement. 

En conclusion, une synthèse collective des alcaloïdes de Securinega a été 

développée en 10 étapes avec un rendement global de 0.7 à 1.7% pour les quatre 

produits naturels (±)-Virosine B, (±)-Virosine A, (±)-Niruroidine et (±)-Bubbialidine. 
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Acronyms and Abreviations 

 

Ac acetyl 

AcOEt ethyl Acetate 

ACN acetonitrile 

B Base 

BINAP (2,2’-bis(diphenylphosphino)-1,1’-binaphtyl) 

BINOL 1,1’-bi-2-naphtol 

BOX (bis)-oxazoline 

br broad 

tBu tert-butyl 

cat. catalyst 

CB1 cannabinoid receptor 1 

CB2 cannabinoid receptor 2 

CNS central nervous system 

COSY correlation spectroscopy 

Cbz carbenziloxy 

CSA camphorsulfonic acid 

Cp cyclopentadienyl 

d doublet (NMR) 

DCC N,N-dicyclohexylcarbodiimide 

DCE dichloroethane 

DCM dichloromethane 

dd double doublet (NMR)  

deg degrees 

DFT density functional theory 

DIPEA N,N-diisoproylethylamine 

DMF N,N-dimethyl formamide 

DMSO dimethyl sulfoxide 

d. r. diastereoisomeric ratio 


9-THC 

9-tetrahydrocannabinol 

E electrophile 

ee enantiomeric excess 

ECS endocannabinoid system 

EDA ethyl diazoacetate 
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EDG electron-donating group 

e.d. excess diastereosiomeric 

EI (ESI) electrospray ionization 

ent enantiomer 

equiv. equivalents 

Et ethyl 

EWG electron-withdrawing group 

Fc ferrocenyl 

FMO frontier molecular orbital 

FTIR fourier transform infrared spectroscopy 

g gram (s) 

GABA -aminobutiric acid 

GABAA R GABA receptor A 

h hour 

HOMO highest occupied molecular orbital 

HPLC high pressure /performance liquid chromatography 

HMRS high resolution mass spectrometry 

HSQC heteronuclear single quantum coherence 

Hz Hertz 

INT intermediate 

J coupling constant 

kcal kilocalories 

Ln ligand 

LUMO lowest unoccupied molecular orbital 

m multiplet (NMR) 

m-CPBA meta-chloroperoxybenzoic acid 

Me methyl 

MEDA methyl ethyl diazoacetate 

MO molecular orbital 

mg miligram 

mmol milimol 

min minute 

mL mililiter 

MS mass spectrum 

MS  molecular sieves 

n.d.  not determined 
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NMR nuclear magnet resonance 

NOESY nuclear overhauser spectroscopy 

Nu nucleophile 

P product 

PG protecting group 

Ph phenyl 

ppm parts per million 

iPr iso-propyl 

p-TSA para-toluenesulfonic acid 

Py pyridine 

R arbitrary substituent 

r.t. room temperature 

s singlet (NMR 

t time 

T temperature 

t triplet (NMR) 

TBS tert-butyldimethylsilyl 

TS transition state 

TFA trifluoroacetic acid 

THF tetrahydrofuran 

TLC thin layer chromatography 

(R)-TRIP 3,3’-bis(2,4,6-triisoproylphenyl)-1,1’-binaphtyl-2,2’-

diyl hydrogen phosphate 
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1.1 Chirality 

 

Chirality is an inherent characteristic of matter; it is present when one object is 

non-superposable to its mirror image.1 Molecular chirality refers to a molecule which 

incorporates a stereogenic element and suffers of an absence of reflection symmetry. 

Life itself depends on chirality, since most of the physiological processes emerge from 

precise molecular interactions, where a chiral receptor recognizes and discriminates 

between two enantiomers. This fact justifies the important role that chiral molecules 

play in different fields of science and technology.  

 

Figure 1.1. Enantiomers of lactic acid as mirror images. 

 

Receptors in the organism interact with small molecules that have an specific 

absolute configuration. This fact is in concordance with the different pharmacological 

activity that each enantiomer shows. Therefore, it is not surprising that in the last 20 

years organic chemistry has been focused on the development of enantiomerically 

pure compounds.2 

 A clear example that shows the importance of enantiopurity in pharmaceutical 

industry is Ethambutol, a drug described and used in the treatment of tuberculosis. 

Indeed, this drug was used since 1960’s as a racemic mixture. Unfortunately, it was 

found that its L-enantiomer was responsible for visual disorders in patients while the D-

enantiomer exhibited the desired therapeutic effects. In any case, it has been reported 

that the long-term use of the D-enatiomeric form can give rise to a real risk of severe 

visual issues, possibly due to its double isomerization to L-Ethambutol.3  

 

                                                           
1
 a) Avalos, M.; Babiano, R.; Cintas, P.; Jiménez, J. L.; Palacios, J. C. Tetrahedron Asymmetry 2000, 11, 

2845-2874. b) Heilbronner, E.; Dunitz, J. Reflections on Symmetry; VHCA: Basel, 1993. c) The New 

Ambidextrous Universe; Gardner, M. W. H. & Co.: New York, 1990. d) Hoffmann, R. The Same and Not 

the Same; Columbia University Press: New York, 1995. e) H. Brunner, Rechts oder links in der Natur 

und anderswo;  Wiley-VCH: Weinheim, 1999. 
2
 Noyori, R. Adv. Synth. Catal. 2003, 345, 15-32. 

3
 Lim, S.-A. Ann Acad. Med. Singapore 2006, 35, 274-278. 
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.  

Figure 1.2. On the left enantiomeric form used as drug against tuberculosis and on the right its enantiomer 

involved in provoking blindness. 

 

1.2 Strategies for the obtention of enantiomerically pure 

compounds (EPC)  

The importance of enantiomerically pure compounds has given a boost to the 

research of new strategies for their synthesis. In this area, three main strategies have 

been developed as it is gathered in Figure 1.3. 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. General strategies for the attainment of enantiopure compounds.  

 

1.2.1    Resolution of racemates 

Resolution of racemates was first discovered by Prof. Pasteur in 1848, when he 

was able to separate manually two kinds of crystals of racemic tartaric acid salts.4 Most 

of the resolutions go through the conversion of a racemate into a diastereomeric salt, 

using an enantiomer of a chiral compound. The different physical and chemical 

properties of the diastereisomers make them easily separable after conventional 

techniques (chromatography, crystallization…). Kinetic resolution is based on the 

different reaction rates of both enantiomers, where the one with higher reaction rate is 

chemically modified while the other remains intact and can thus be recovered. The 

                                                           
4
 Pasteur, L. C. R. Hebd. Séánc. Acad. Sci. Paris 1848, 26, 535-539. 
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main drawback of this method is that yields are limited to 50 %. This latter limitation 

can be resolved if there is a method to promote in situ racemization of the less reactive 

enantiomer into the most reactive one. If the required methodology is available, 

standard kinetic resolution allows converting a racemic mixture into a single 

enantiopure product. This strategy is called dynamic kinetic resolution (DKR).5,6  

 

1.2.2 Chiral Pool 

In the chiral pool strategy enantiomerically pure compounds are produced by a 

sequence of chemical transformations starting from chiral compounds extracted from 

natural sources (amino acids, carbohydrates, hydroxy acids and terpenes).7 This 

strategy requires many synthetic steps when the abundance of natural sources is not 

enough for the demand of enantiomerically pure compounds. However, most of the 

biologically active products synthesized in industry are obtained this way.  

 

1.2.3 Asymmetric synthesis 

Asymmetric synthesis relies on the stereocontrolled conversion of a prochiral 

substrate into a chiral product with one or more stereogenic centers. Chiral compounds 

can transfer their chirality using chiral auxiliaries in stoichiometric amounts or 

employing catalysts in substoichiometric amounts. 

 

 

1.2.3.1 Chiral auxiliaries and chiral reagents 

 

According to this strategy, chiral auxiliaries are organic compounds which can 

be introduced into the substrates to generate new stereogenic centers via 

intramolecular asymmetric induction. At the end of the reaction the auxiliary is removed 

under conditions that will not cause the loose of the chirality. The possibility to recover 

the chiral auxiliary is important taking into account that they are used in stoichiometric 

amounts. Normally their preparation has to be easy and not expensive. Some chiral 

auxiliaries are very well known because they are efficient in many different reactions. 

Evans’ oxazolidinones or Oppolzer’s sultames are typical chiral auxiliaries.5  

 

 

1.2.3.2 Asymmetric catalysis 

 

Asymmetric catalysis is a process in which an enantiopure molecule named 

catalyst, employed in substoichiometric amount, induces chirality to a prochiral 

substrate during the reaction. In this strategy the catalyst activates the substrate in 

                                                           
5
 Muñoz-Torrero, D.; Haro, D.; Valles, J. Recent Advances in Pharmaceutical Sciences II, Transworld 

research network, Kerala, 2012. 
6
 Caddick, S.; Jenkins, K. Chem. Soc. Rev. 1996, 25, 447-456. 

7
 Christmann, M.; Brase, S. Asymmetric Synthesis: More Methods and Applications; First Edition. Wiley-

VCH, Weinheim, 2012. 
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order to increase the reaction rate by lowering the activation energy. This methodology 

presents the advantage of producing one single enantiopure compounds even with the 

use of 1% of catalyst amounts. Thus, from a synthetic point of view, this kind of 

reactions has a high atomic economy and can give rise to products with a high 

enantiomeric excess.7 

 

Relying on the nature of the catalyst, the asymmetric catalysis can be divided in 

three fields: 

 

1. Biocatalysis: This type of catalysis is performed mainly by enzymes. 

These biomolecules are capable to catalyze many reactions in regio- 

and enantioselective fashion under soft conditions. The main drawback 

of this kind of asymmetric induction is its high specificity for the substrate 

and the need of an aqueous media, since most enzymes are not 

compatible with many organic substrates.8  

 

2. Organocatalysis: It is a type of catalysis performed by purely organic 

molecules in total absence of metals in the active site. The use of 

organocatalysts in enantioselective reactions has received considerable 

attention in the last twenty years, and now its relevance is comparable to 

classical catalysis employing trasition metals.9 Many organocatalysts are 

non-toxic, robust, and commercially available. Nowadays there is a huge 

number of organocatalysts capable of carrying out many different 

reactions, which demonstrates its great versatility, but they are limited 

because of the need to use, in most cases, more quantity of catalyst 

than in the traditional organometallic catalysis.10  

 

3. Organometallic catalysis: This kind of catalysis employs well defined 

organometallic complexes as catalyst in order to accelerate different 

types of reactions. Moreover, it offers the possibility to modulate the 

ligand, changing the environment around the metal, can lead not only to 

the improvement of the reactivity, but also the diastereo- and 

enantioselectivity depending on the targeted reaction.2 Compared to 

organocatalysis, smaller catalyst loadings are usually required and one 

sole complex can catalyze different types of reactions. 

 

Therefore, Knowles11, Noyori2,12 and Sharpless13 were awarded with the Nobel 

Prize of Chemistry due to their contributions in the field of asymmetric synthesis, more 

specifically in asymmetric catalytic hydrogenations and asymmetric catalytic oxidations, 

respectively. 

                                                           
8
 Patel, R. N. Coord. Chem. Rev. 2008, 252, 659-701. 

9
 Dalko, P. I.; Moisan, L.  Angew. Chem., Int. Ed. 2004, 43, 5138-5175. 

10
 Alemán, J.; Cabrera, S. Chem. Soc. Rev. 2013, 42, 774-793. 

11
 a) Knowles, W. S. Adv. Synth. Catal. 2003, 345, 3-13. b) Knowles, W. S. Angew. Chem,. Int. Ed. 2002, 

41, 1998-2007. 
12

 Noyori, R. Angew. Chem. Int. Ed. 2002, 41, 2008-2022. 
13

 Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2024-2032. 
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1.3 Chiral ligands in organometallic catalysis  

 In organometallic catalysis, the possible success of a certain ligand depends on 

its geometrical, steric and electronic properties. These properties can affect the 

reactivity of the reaction and the selectivity of the metallic center.  

 For example, chiral bidentate ligands tend to form more rigid organometallic 

intermediates that often enable excellent enantioinduction. On the other hand, a limited 

number of monodentate ligands14 have exhibited successful results in terms of 

diastereo- and enantioinduction.  

 

1.3.1 Bidentate ligands possesing C2 symmetry  

 In the last 50 years, a great variety of catalysts, which present C2 symmetry, 

have been developed but just some of them, such a BINAP15, have been used in a 

wide range of reactions.16   For instance, BINAP in combination with metallic sources of 

Rh, Ir and Cu, is capable of catalyzing asymmetric hydrogenation reactions and 

generation of C-C bonds with excellent enantiomeric excesses. In addition to BINOL17, 

BINAP incorporates a C2 stereogenic axis. This type of ligands presents coordination to 

the metallic centre through identical heteroatoms. In addition to these ligands, 

TADDOL18, MeDUPHOS19, Evans’ bisoxazolines20, and Salen21 type ligands are 

included in this group (Fig. 1.4).  

                                                           
14

 a) Teichert, J. F.; Feringa, B. L. Angew. Chem., Int. Ed. 2010, 49, 2486-2528. b) Eberhardt, L.; 

Armspach, D.; Harrowfield, J.; Matt, D. Chem. Soc. Rev. 2008, 37, 839-864. c) Erre, G.; Enthaler, S.; 

Junge, K.; Gladiali, S.; Beller, M. Coord. Chem. Rev. 2008, 252, 471-491. d) Xie, J.-H.; Zhou, Q.-L. Acc. 

Chem. Res. 2008, 41, 581-593. 
15

 Berthod, M.; Mignani, G.; Woodward, G.; Lemaire, M. Chem. Rev. 2005, 105, 1801-1836. 
16

 a) Pfaltz, A. Asymmetric Synthesis 2007, 131-135. b) Pfaltz, A.; Drury III, W. J. Proc. Nat. Acad. Sci. 

USA 2004, 101, 5723-5726. c) Yoon, T. P.; Jacobsen E. N. Science 2003, 299, 1691-1693. 
17

 Soriente, A.; de Rosa, M.; Villano, R.; Scettri, A. Curr. Org. Chem. 2004, 8, 993-1007. 
18

 Seebach, D.; Beck, A. K.; Heckel, A. Angew. Chem., Int. Ed. 2001, 40, 92-138. 
19

 Burk, M. J.; Stammers, T. A.; Straub, J. A. Org. Lett. 1999, 1, 387-390. 
20

 a) McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151-4202. b) Basak, R. Synlett, 2003, 1223-

1224. 
21

 a) Cozzi, P. Chem. Soc. Rev. 2004, 33, 410-421. b) Katsuki, T. Chem. Soc. Rev. 2004, 33, 437-444. c) 

Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421-431. 
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Figure 1.4. Main chiral ligands containing C2 symmetry outlined due to their success in several asymmetric 

reactions. 

 

1.3.2 Bidentate ligands without C2 symmetry 

These bidentate ligands are coordinated to the metallic center through two 

different heteroatoms, which causes a distinct electronic environment. For example, in 

systems with P, N coordination22, phosphine acts as a -acceptor and nitrogen atom 

behaves as -donor. QUINAP23 and phosphine-oxazolines24 are the most 

representative examples of this group of ligands. 

 

 

Figure 1.5. Chiral ligands containing different heteroatoms. QUINAP incorporates axial chirality and PHOX 

central chirality. 

 

 

                                                           
22

 a) Kostas, I. P. Curr. Org. Syn. 2008, 5, 227-249. b) Guiry, P. J.; Saunders, C. P. Adv. Synth. Catal. 

2004, 346, 497-537. 
23

 Alcock, N. W.; Brown, J. M.; Hulmes, D. I. Tetrahedron: Asymmetry 1993, 4, 743-756. 
24

 a) Koch, G.; Pfaltz, A. Tetrahedron: Asymmetry 1996, 7, 2213-2216. b) Pfaltz, A.; Acta Chem. Scand. 

1996, 50, 189-194. c) Langer, T.; Helmchen, G. Tetrahedron Lett. 1996, 37, 1381-1384. d) Wiliams, J. 

M- J. Synlett 1996, 705-710. e) Newman, L. M.; Williams, J. M. J.; McCague, R.; Potter, G. A. 

Tetrahedron: Asymmetry 1996, 7, 1597-1598. f) Baldwin, I. C.; Wiliams, J. M. J. Tetrahedron: Asymmetry 

1995, 6, 1515-1518. g) Dawson, G. J.; Williams, J. M. J.; Coote, S. J. Tetrahedron Lett. 1995, 36, 461-

462. 
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1.3.3 Chiral ligands containing a ferrocene structure 

 Since ferrocene was discovered in 195125, the interest for this compound has 

grown in different areas of chemistry and materials science. With the emergence of 

asymmetric catalysis the so-called sandwich compounds have become of great 

importance.26 For example, Xiliphos (bidentate P,P-ferrocenyl ligand) is employed in 

combination with iridium for an industrial asymmetric hydrogenation process, in which 

10.000 tons/year of (S)-metolachlor herbicide precursor are produced.27 

The importance of ferrocene relies on the following inherent characteristics:28  

1. Rigidity: ferrocene presents two cyclopentadienyl rings coordinated to the iron 

atom as 5 ligands. This provides the whole complex a unique enviroment with 

considerable structural rigidity. 

 

2. Easy derivatization: the cyclopentadienyl rings carry a partial negative charge 

which makes the complex highly susceptible to electrophilic substitution by a 

great variety of donor groups. 

 

3. Planar chirality (disubstituted derivatives): when two different functionalities are 

introduced in the Cp rings the ferrocene moiety exhibits planar chirality (Fig. 6)  

 

4. Steric Bulkiness: This feature plays a relevant role in terms of stereo- and 

enantiocontrol. Ferrocene usually behaves as a bulky substituent. 

 

5. Other stereo-electronic properties: the partial charge of the Cp rings mentioned 

before gives ferrocene a donor character. In addition the iron atom may interact, 

in some cases, with other metals used in the catalytic system. 

 

6. Stability: ferrocene ligands are usually thermally stable and resistant to oxygen 

and moisture. 

 

7. The starting materials required for the preparation of Ferrocenyl derivatives are 

cheap and readily available. 

 

  

Figure 1.6. Rp and Sp assignment for chiral disubstituted ferrocenes. 

                                                           
25

 Kealy, T. J.; Pauson, P. L. Nature, 1951, 168, 1039-1040. 
26

 Gomez, R.; Adrio, J.; Carretero, J. C.; Angew. Chem., Int. Ed. 2006, 45, 7674-7715. 
27

 a) Blaser, H.-U. Adv. Synth. Catal. 2002, 344, 17-31. b) Blaser, H.-U. ; Brieden, W.; Pugin, B.; Spindler, 

F.; Studer, M.; Togni, A. Top. Catal. 2002, 19, 3-16. 
28

 Dai, L.-X.; You, S.-L.; Deng W.-P.; Hou, X.-L. Acc. Chem. Res., 2003, 36, 659-667. 
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Ferrocene derivatives can be mono-, di-, tri-29 or tetra-substituted in both Cp 

rings. The nature of the heteroatoms can also be varied, being P,P and P,N containing 

ligands the most frequent. P,S type ligands exist as well. For example Fesulphos type 

ligands are well-known in many chiral transformations.30 

 In general, the most studied ligands have been the 1,2-substituted ones, which, 

incorporate planar chirality by themselves. The functionalization of this type of ligands 

has permitted to find derivatives which contain planar and central chirality by 

introduction of a new stereogenic center (Fig. 1.7). 

 

Figure 1.7. A brief example of 1,2-disubstituted ferrocene ligands XI to XV. 

 

The most employed methodology for the synthesis of 1,2-disubstituted 

ferrocenes which incorporate planar chirality is the ortho-metalation of Ugi’s amine XVI 

(Scheme 1.1). Ortho-lithiation proceeds with high diastereoselectivity in position 2 (not 

in 5). Final addition of the adequate electrophile affords the PPFA ligand.31 

 

 

Scheme 1.1. Generation of disubstituted ferrocene by orto-lithiation of Ugi’s amine. 

 

  Ligands like Josiphos-XIII, Taniaphos-XIV and Walphos-XV (Fig. 1.7) can be 

synthesized by means of different reactions starting from Ugi’s amine-XVI.32,33,34 As an 

                                                           
29

 Hierso, J.-C.; Ivanov, V. V.; Amardeil, R.; Richard, P.; Meunier, P., Chem. Lett. 2004, 33, 1296–1297. 
30

 a) García Mancheño, O.; Priego, J.; Cabrera, S.; Gómez Arrayás, R.; Llamas, T.; Carretero, J. C. J. Org. 

Chem. 2003, 68, 3679-3686. b) Priego, J.; García Mancheño, O.; Cabrera, S.; Gómez Arrayás, R.; 

Llamas, T. Carretero, J. C. Chem. Commun. 2002, 2512-2513. 
31

 Hayashi, T.; Mise, T.; Fukushima, M.; Kagotani, M.; Nagashima, N.; Hamada, Y.; Matsumoto, A.; 

Kawakami, S.; Konishi, M.; Yamamoto, K.; Kumada, M. Bull. Chem. Soc. Jpn. 1980, 53, 1138-1151. 
32

 Togni, A.; Breutel, C.;  Schnyder, A.;  Spindler, F.; Landert, H.; Tijani, A. J. Am. Chem. Soc. 1994, 116, 

4062-4066. 
33

 a) Ireland, T. ; Tappe, K.; Grossheimann, G.; Knochel, P. Chem. Eur. J. 2002, 8, 843-852. b) Spindler, 

F.; Malan, C.; Lotz, M.; Kesselgruber, M.; Pittelkow, U.; Rivas-Nass, A.; Briel, O.; Blaser, H.-U.; 

Tetrahedron: Asymmetry, 2004, 15, 2299-2306. 
34

 Sturm, T.; Weissensteiner, W.; Spindler, F. Adv. Synth. Catal. 2003, 345, 160-164. 
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alternative to this amine, other chiral ortho-directing groups can be used, such as 

oxazolines35, sulfoxides36 and ketals37. 

 Ferrocene ligands have been used as chiral assistants in a wide variety of metal 

catalyzed reactions such as reduction of alkenes, ketones and imines, 1,2-additions to 

carbonyl containing compounds and imines, conjugated additions and (4+2) and (3+2) 

cycloaddition reactions. They offer a wide range of possibilities just by simple 

modulation of the functional groups.26 Therefore, sandwich compounds can be used in 

organometallic catalysis as efficient tools for the asymmetric synthesis of complex 

biological systems and molecules present in nature. 

  

1.4 Nitrogen in natural products and drugs 

 Alkaloids are molecules present in nature containing nitrogenous heterocyclic 

rings. Within these compounds, amine moiety is present as the most common 

functional group, conferring to these molecules their basic character.  

 Nitrogen atoms of alkaloids contribute directly to the biological properties of 

these molecules: 1) the lone pair of the nitrogen acts as a proton acceptor; 2) hydrogen 

in primary or secondary amines acts as a proton donor. In many cases, an alkaloid 

scaffold is inserted into more complex molecules in order to enhance the biological 

activities.38 

 

1.4.1 Pyrrolidine and Piperidine scaffolds  

 Pyrrolidine and piperidine are cyclic secondary amines that belong to the family 

of saturated heterocycles. Remarkably, both are very important building blocks in 

Medicinal and Synthetic chemistry.  In particular, pyrrolidine is a well known 

heterocycle in organocatalysis.39 

 Pyrrolidine and piperidine moieties have been widely reported in the literature 

as drugs or drug precursors and alkaloids. Some of the most popular heterocycles are 

gathered in Fig. 1.8. Cocaine is a CNS stimulant and induces feeling of happiness with 

loss of reality. Morphine, on the other hand, is an opiate found in plants and animals, 

which is also a CNS agent used as ultimate pain killer.40 Paroxetine, as other drugs 

from nortropane family, exhibits high potency and selectivity for serotonin transporters, 
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b) Rebière, F.; Riant, O.; Ricard, L.; Kagan, H. B. Angew. Chem., Int. Ed. 1993, 105, 644-646. 
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so it is used as antidepressant and against panic disorders.41 (–)-Epibatidine is an 

alkaloid that has shown analgesic properties and is an agonist of nicotine. On the other 

hand, Atropine is an anticholinergic drug, helpful in the treatment of loose of memory.42 

(+)-Hygroline and Fagomine are several examples of alkaloids containing the five-

membered and six-membered scaffolds, respectively.43 

 

Figure 1.8. Some of the most common pyrrolidine and piperidine containing drugs and natural products. 

 

 Within the most popular drugs incorporating a piperidine ring, we can find 

Penfluridol44 and Risperidone45 as antipsychotics; Donepezil46, which can be used in 

the treatment of neurogenerative diseases such as Alzheimer; Trihexyphenidyl45 a drug 

employed for the therapy against Parkinson disease, and (±)-Halofuginone47, a 

compound that exhibited promising properties as antimalarial and anticancer agent.  

 Some pyrrolidine containing compounds which have shown certain activity are: 

Nicotine48, which serves as defense of plants against fungi, insects and animals; 

Moxifloxacin49, which is an antibiotic for respiratory tract infections (sinusitis, 
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pneumonia, chronic bronchitis…); Ramipril40 is used in the inhibition of angiotensin-

converting enzyme (ACE; Lincomycin40 is an antibiotic for certain gram-(+) infections. 

Finally, Avanafil38 has been described for the treatment of erectile dysfunction. 

 The synthesis of several pyrrolidine derivatives has been performed by (3+2) 

cycloaddition reactions. One example is the asymmetric synthesis of pyrrolidines XXVI 

(Fig 1.9). These molecules, depending on the length of the alkyl chain in  to the 

nitrogen have two possible activities. If the chain is short (n=0) then the molecules 

inhibit the VLA-4/VCAM-1 interaction, which results in potent antimetastatic in vivo 

activity against melanoma.50 When n>0 these molecules inhibit the LFA-1/ICAM-1 

interaction, which plays a key role in psoriasis, rheumatoid arthritis as well as various 

types of cancer metastasis like melanoma, lymphoma and colon carcinoma (Fig. 1.9).51 

 

Figure 1.9. VLA-4/VCAM-1 inhibition or LFA-1/ICAM-1 inhibition agent depending on value of n.  

 

 Spirooxindole alkaloids are natural products exhibiting biological activity. 

Spirotryprostatin B arrests cell cycle at G2/M phase and non-natural spirooxindoles 

have shown inhibition of p53-MDM2 protein-protein interaction, which is critical for the 

cellular tumor suppression activity of protein p-53.52 In addition, it has been reported 

that this type of molecule increased mortality of zebrafish embryos.53 

 

Figure 1.10. Natural and non-natural spirooxindoles. 
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 Pyrrolizidine and indolizidine alkaloids are also part of bicyclic compounds 

including pyrrolidine or piperidine frameworks. (–)-Pyrrolam A, a pyrrolizidine with 

carcinogenic and mutagenic nature, is an example of naturally occurring toxic 

compounds. The inherent biological properties that this family exhibits have promoted 

the total synthesis of (–)-Supinidine and (–)-Petasinecine. Swainsonine is a 

polyhydroxy substituted indolizidine which presents anticancer and anti-HIV activity and 

works as glycosidase enzyme inhibitor.43a,b 

 

 

Figure 1.11. Pyrrolizidine and indolizidine natural occurring alkaloids. 

 

 

1.4.2 Securinega alkaloids 

 Regarding to piperidine and pyrrolidine derivatives there is a group of bases 

which comprise an indolizidine (Securinine type) or pyrrolizidine (Norsecurinine type) 

heterocycle and a -unsaturated lactone motif which results in a highly rigid and 

complex skeleton. Compounds with this structure are called Securinega alkaloids, 

since they were first isolated from Securinega Suffruticosa plant. The first isolated 

compound in 1956 by Murav’eva et al., named Securinine, is the most abundant in 

nature (Fig. 1.12).54 Since then, more than 50 compounds of this family have been 

isolated and characterized. 

 

 

Figure 1.12. First isolated alkaloid from Securinega family. 

 

Plants from the Euphorbiaceae family have been widely used in Chinese and 

Amazonian folk medicine, and are rich in such alkaloid-type natural products. More 

specifically, alkaloids extracted from their twigs, leaves and roots have shown a wide 
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range of biological properties. The interest of this family has boosted different studies 

on its chemistry, synthesis and pharmaceutical properties.55 

 

1.4.2.1 Securinega alkaloids: structural classification 

 These compounds contain the previously described indolizidine and 

pyrrolizidine scaffold. During the last years 30 new compounds have been isolated and 

characterized.55a 

   As a general rule, Securinega alkaloids are polycyclic compounds, usually 

tetracyclic, which contain a pyrrolidine or piperidine ring (A ring), which is fused with an 

azabicyclo octane system (B and C rings) and a butenolide moiety (D ring). Two 

skeleton types can be distinguished depending on the A ring size: norsecurinane 

skeleton (pyrrolidine) or securinane skeleton (piperidine) (Fig. 1.13) 

 

Figure 1.13. Classification depending on the size of the A ring of the alkaloid. 

 

When the alkaloid comprises an azabicyclo[3.2.1]octane system (BC) and a 

piperidine ring (A), we are referring to Securinine. Some examples of this type of 

alkaloids are depicted in Figure 1.14.  

 

Figure 1.14. Securinine type alkaloid examples. 
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On the contrary, when the alkaloids incorporate a pyrrolidine ring and an 

azabicyclo[3.2.1]octane system we make reference to norsecurinine type compounds 

(see Fig.1.15).  

 

 

Figure 1.15. Some examples of Norsecurinine type alkaloid. 

 

Additionally, if the molecule contains an azabicyclo[2.2.2]octane system (BC), 

and A is a pyrrolidine or piperidine scaffold, they are called neosecurinane (Fig 1.16) or 

neonorsecurinane (Fig. 1.17) type of alkaloids, respectively. 

 

 

Figure 1.16. Neosecurinine type alkaloids, contain azabicyclo[2.2.2]octane system (BC) and a pipiperidine 

ring. 
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Figure 1.17. Neonorsecurinane type alkaloids, containing azabicyclo[2.2.2]octane (BC) system and 

pyrrolidine ring. 

 

In addition, dimeric, trimeric and tetrameric compounds have been 

characterized too, termed according to the nature of the oligomeric group and generally 

containing a norsecurinine scaffold. Some other unique structures have been isolated 

and characterized containing a pentacyclic backbone featuring a 7-oxa-1-

azabicyclo[3.2.1]octane ring system (Virosaine A and B, Fig 1.17). 
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Figure 1.17. Miscelaneous alkaloids and oligomeric species. 

 

1.4.2.2 Ocurrence and biological activity of Securinega alkaloids 

 Securinega alkaloids are secondary metabolites possible to find in the plants of 

Euphorbiaceae family. Plants from Securinega (or Flueggea) and Phyllantus56 genus 

were the first ones to show the presence of these tetracyclic compounds. Later, these 

alkaloids were also isolated from Margaritaria, Breynia (Euphorbiaceae) and 

Zygogynum pauciflorum (Winteraceae).57 

Securinine was the first isolated alkaloid of the family. This compound was 

isolated from shrub of Securinega suffruticosa, Margaritaria indica, Phyllanthus niruri, 

S. suffruticosa var. amamiensis, Phyllanthus discoides and Phyllanthus discoideus.55a 
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Securinine structure was determined in 1963 by chemical and spectroscopic studies 

and verified by X-ray chrystallography in 1965 as a hydrobromide ammonium salt.58 

Free base crystals were obtained in 1995 and absolute configuration of this structure 

matched perfectly with its enantiomer Virosecurinine.59 Finally, Thadani and coworkers 

were able to obtained suitable crystals for Securinine, and thus, absolute configuration 

was elucidated. In addition, X-ray diffraction studies confirmed the chair conformation 

of the piperidine ring and also the planar geometry of the butenolide moiety with 

respect to the double bond.60 These compounds are known to be convulsive agents. In 

particular, Securinine is known to inducing ``strychnine like´´ seizures. For this reason, 

it was clinically used in Russia as CNS stimulating drug.58 

GABAA receptor (GABAAR) is a ligand-gated ion channel that admits chloride 

upon binding of the -aminobutiric acid (GABA) and can be modulated by several 

endogenous or therapeutically important agents.61 Therefore, in response to the 

binding of GABA, GABAAR channels present an ``open´´ conformation that permits the 

passing of chloride across the cell membranes, and thus, the neuronal excitability of 

the central nervous system is depressed.62 This way, anxiety, sleeping disorders, and 

convulsing disorders have been treated with different agonists that can enhance the 

action of GABA or increase the concentration of GABA at the receptor. On the other 

hand, antagonists that bind the GABA site of the receptor block the inhibitory action of 

GABAAR. For example, Bicuculline is a competitive antagonist of these receptors and 

its action mimics epilepsy. Other antagonists that decline the signaling of GABA 

receptors can lead to hyperactive neurological disorders such as insomnia and anxiety. 

 

 

 
 

Figure 1.18. GABAA receptor representation and transport of chloride through the cellular membrane. 

Figure taken from review Brunton et al. ref 63. 
63 
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Some studies carried out with Securinine and Dihydrosecurinine showed that 

both are selective antagonists of GABAA receptors in mammalian CNS. They present 

affinity for GABAA binding recognition in brain membranes of rats and specifically 

reduce the inhibitory effect of GABAA on the firing of neurons of spinal cord of rats. 

Even they showed weaker effect than Bicuculline, Securinine salts are much more 

soluble in water and they are stable in a wider range of pH.64,65 Related to this 

antagonist behavior, Securinine has been used in clinical treatment for multiple 

sclerosis, amyotrophic lateral sclerosis (ALS) and poliomyelitis.60 

 

Table 1. Securinine induced activity against different cancer cell lines and antimicrobial activity. 

 

 

 

 

 

 

 

 

 

 Securinine has shown in vivo activity in mice against acute myeloid leukemia 

HL-60 cell line. In addition, in vitro studies for HL-60, THP-1 and OCI-AML3 cell lines 

were performed.66 Moreover, it was reported to induce growth inhibition and apoptosis 

in human colon SW480 and apoptosis in human colon HCT-116 cell lines in micromolar 

range.55a Recently, Ratovelomana-Vidal and coworkers have reported that introduction 

of acetylenic group bearing an aromatic chain in C-14 position (-unsaturation) of 

securinine leads to an increase of growth inhibition against HCT-116 cancer cell line 

(Fig 1.19). Furthermore, two of the compounds resulted to be highly cytotoxic in four 

different tumoral lines (HCT-116, colon; A-375, melanoma; HL-60 leukemia; and A549, 

lung).67 
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Cancer cell line IC50
55a 

LD50
55a

 

HCT116 p53 – (human colon cancer)  17.5 M 

HCT116 p53 + (human colon cancer)  50  M 

SW480 (human colon cancer) 19.1 M  

KB (human epidermoid carcinoma) 10.0 M  

L1210 (murine lymphomia) 8.8  M  

HL60 (human leukemia) (72 h) 18.9 M  

Antimicrobial activity IC50
55a

  

Plasmodium falciparum (antiplasmodial)  24.7 M  

MIC against  Enterococcus faecium  4.6 mM  
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Figure 1.19. Efficient cytotoxic activity of securinine derivatives against several tumoral cell lines. 

 

 Furthermore, Securinine has been reported to inhibit ACE (angiotensins-

coverting enzyme) so it can be used in hypertension. Securinine and Virosecurinine 

have shown antibacterial activity against Escherichia coli, Enterococcus faecium, 

Pseudomonas aeruginosa, Mycobacterium smegmatis and Staphylococcus 

aureousy.55a 

Securinega virosa plant was used in Asia for the treatment of pain, inflammation 

and cancer. From this plant, several alkaloids of the family were isolated, but special 

attention was paid to Virosecurinine and Viroallosecurinine. In vitro cytotoxic activity 

against P-388 lymphocytic leukemia cells induced by Virosecurinine and 

Viroallosecurinine was reported, exhibiting ED50 = 2.9 and 0.9 µg/mL respectively.68,69  

 Flueggea virosa plant (Roxb. ex Willd.) has shown to contain a wide variety of 

alkaloids possesing interesting structural features. For example, alkaloids with a unique 

cage type compounds are present in the twigs of these plants. These compounds 

present an unprecedented 7-oxa-1-azabicyclo [3.2.1] octane scaffold and were named 

as Virosaine A and Virosaine B (see Fig 1.17). Furthermore, two additional compounds 

presenting an octacyclic skeleton were discovered.70 

Flueggine A presents an isoxazolidine scaffold, whereas Flueggine B, on the 

contrary, includes two indolizidine rings. Both are considered as dimeric species 

belonging to the oligomeric group of Securinega family (see fig 1.17). Both compounds 

were tested on the inhibitory growth effect of three different human breast cancer cell 

lines: MCF-7, MDA-MB-231 and MCF-7/ADR. Flueggine B showed significant results in 

the inhibition on growth of MCF-7 (IC50 = 135 ± 5 nM) and MDA-MB-231 (IC50 = 147 ± 3 

nM). In contrast, Flueggine A showed modest values for the same cell lines.71 
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1.4.2.3 Biosynthesis of Securinega alkaloids 

 Alkaloids from Securinega family have shown distinctive tetracyclic backbones 

comparing to other alkaloids obtained from natural sources. Due to the large 

abundance of Securinine the biosynthetic pathway of it has been principally studied. 

These studies mainly consisted in degradation and feeding experiments by 

administration of radiolabeled precursors. 

 Elucidation of the biosynthetic pathway was dependent on two features: the 

origin of the piperidine ring and the synthetic process leading to the CD rings (which 

includes -unsaturated lactone). By extrapolation with other piperidine alkaloids it 

was proposed that A ring could derive from lysine. It was reported that lysine could be 

transformed into cadaverine and finally could lead to -piperideine. Radioactive 14C 

lysine and 1,5-14C cadaverine were incorporated into the plant, and it was observed 

that proportion of labeled carbons was equally distributed in the piperidine ring, 

confirming the origin of A ring.72 

 Scheme 1.2 presents a plausible biosynthetic pathway for Securinine proposed 

by Parry.  The origin of CD ring was elucidated by means of experiments with 

radioactive tyrosine and phenylalanine. As a result, it was established that CD ring is 

generated from tyrosine.73 As lysine showed to suffer a decarboxylation to give 

cadaverine, one of the hypotheses suggests that it could be possible in the 

biosynthesis to observe a second decarboxylation right after the reaction between C 

and A rings that affords compound LXIX. Mechanism of union between the C and A 

moieties remains still unknown nowadays. Compound LXX would possibly present a 

decarboxylation and a following oxidation, which would tend to be followed by an oxa-

Michael reaction giving compound LXXI. This molecule already includes the fused CD 

ring structure. Aminoalcohol LXXII would undergo through a subsequent nucleophilic 

substitution which gives rise to Securinine-XXXIII.74 

In 1984, bicyclic lactones (–)-Menisdaurilide-LXXIV and (–)-Aquilegiolide-LXXV 

were isolated from Aquileguia atrata, besides of their presence in plants of the genus 

Securinega and Phyllantus. In literature, there is no biosynthetic route proposed for 

these lactones but, as they resemble to another natural product called rengyolone, their 

origin is presumed to be in shikimic acid. Due to the structural similarity of the CD rings, 

bicyclic lactones were suggested as intermediates in the biosynthesis of Securinine by 

Font and coworkers.75 Actually, the plausible biosynthetic route proposed by Font 

corresponds with previous labeling experiments. The main difference for the route of 

Font comparing to the one proposed by Parry is that the piperidine (A ring) would be 

directly coupled to bicyclic compound LXXIII which includes already CD fused rings. In 

line with Parry’s proposal, corresponding aminoalcohol LXXII would react via a 

nucleophilic substitution to produce Securinine.75 
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Scheme 1.2. Plausible biosynthesis of Securinine proposed by Parry and coworkers. 

 

Scheme 1.3. a) Plausible biosynthesis of Securinine proposed by Font and coworkers. b) Bicyclic lactones 

(–)-Menisdaurilide-LXXIV and (–)-Aquilegiolide-LXXV. 
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1.5 Endocannabinoid system and cannabinoid ligands 

 

 Medicinal use of plant Cannabis Sativa has a millenarian history, starting from 

2600 B.C. in the Chinese empire. Taking cannabis was recommended for rheuma, 

relief of cramps and menstrual pain. However, it was not until the end of nineteenth 

century when its great therapeutic potential was shown to the Western world.76 Three 

major compounds of marijuana are 9-tetrahydrocannabinol (9-THC), cannabinol 

(CBN) and cannabidiol (CBD) (Fig 1.20). Unlike 9-THC, the last two composes are 

non-psycotropic phytocannabinoids.77 These active constituents of Cannabis Sativa 

have been widely used as drugs and medicines.78 

 

Figure 1.20. Classical cannabinoid ligands and components of Cannabis Sativa. 

 

 On the other hand, the endogenous cannabinoid system (ECS) includes 

cannabinoid receptors, endocannabinoids (such as 2-arachidonoyl glycerol, 

anandamide), and enzymes for the synthesis and inactivation (reuptake and 

degradation) of previous endocannabinoids. The name of the system was attributed to 

the fact that the first ligand to have effect on the receptors was the psychoactive 

compound of cannabis 9-THC. This system is implicated in a growing number of 

physiopathological conditions in the central nervous system (CNS) and peripheral 

system, as it is also involved in a broad range of functions. In addition, it has shown to 

be implicated in appetite, metabolic functions, food intake, neuroprotection, modulation 

of nociception, antitumor effects and immune and inflammatory responses. For these 

reasons, it is an attractive target for the development of new drugs which act as ligands 
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M.; Gómez-Ruiz, M.; Pinto, D. C. G. A.; Goya, P., ChemMedChem 2012, 7, 452–463. 
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and interact with the corresponding receptors.79 The importance of the mentioned 

interaction between the ECS and endocannabinoids or cannabinoid ligands relies on 

the cannabinoid receptors. 

 Cannabinoid receptors are G-protein coupled receptors (GPCR) which are 

integral membrane proteins characterized by seven hydrophobic transmembrane 

helices and connected by three intracellular and three extracellular loops.80 Two types 

of cannabinoid receptors were identified. CB1 receptor was the first one cloned and is 

mainly expressed in the CNS, while CB2 receptors are preferentially found in 

peripheral immune cells and tissues. Determination of the latter receptors has been 

lagged due to their low abundance. In a few tissues both CB1 and CB2 receptors have 

been found.  

CB1 receptors mediate in the inhibition processes of release of several 

neurotransmitters, such as acetylcholine, noradrenaline, dopamine, -aminobutiric acid, 

glutamate, D-aspartate, etc. They possess one or more allosteric sites that can be 

targeted by different ligands that, in turn, can enhance or inhibit activation of the 

receptor by exogenous administration or endogenous release of direct agonist.81 CB2 

receptors have been studied in a lesser extent. However, their targeting has become 

very important in order to avoid undesired CNS related adverse effects generated by 

the activation of CB1 receptors.  

 Several cannabinoid ligands that bind CB1 and CB2 receptors have been 

discovered and synthesized in the last 30 years. On one hand, non-selective 

cannabinoid ligand Nabilone (synthetic analogue of 9-THC, also known as Cesamet®) 

was the first licensed medicine to be used in the suppression of nausea and vomiting 

for patients treated from chemotherapy and chronic pain.81 

 Some molecules have shown significant selectivity toward CB1 or CB2 

receptors. This fact is of great importance in order to induce different biological 

responses. For example, diarylpirazole SR141716 showed remarkable selectivity 

toward CB1 receptor as an antagonist.82 Therefore, it was marketed for obesity 

treatment and called Rimonabant (Acompliat®). Unfortunately, after its 

commercialization several cases of suicides and depression were reported and the 

sales of this medicine were halted. This is a notable example of the CNS side effects 

related to the binding of CB1 receptors. 
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 a) Salo, O. M. H.; Raitio, K. H.; Savinainen, J. R.; Nevalainen, T.; Lahtela-Kakkonen, M.; Laitinen, J. T.; 

Järvinen, T.; Poso, A., J. Med. Chem. 2005, 48, 7166–7171. b) Scrima, M.; Di Marino, S.; Grimaldi, M.; 
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Figure 1.21. Structure of Nabilone, first licensed medicine, and Rimonabant, antiobesity agent. 

 

More recently, Jagerovic described the synthesis of chromenopyrazoles 

inspired by the structure of Cannabinol. This kind of compounds demonstrated 

selectivity for CB1 receptor, probably due to the pyrazole moiety. The effect of 

compound XXVI in peripheral CB1 receptors was confirmed by measuring its 

nociceptive response for orofacial pain in rat model.83 

Later, additional structural modifications of chromenopyrazole LXXXI were 

implemented, which gave rise to the synthesis of 36 different derivatives covering 

structural diversity. Among these compounds chromenoisoxazole PM226-LXXXII 

showed great affinity for CB2 receptor as agonist. In addition, PM226-LXXXII has been 

tested in acute inflammatory phase of the TMEV model (Theiler’s murine 

encephalomyelitis virus), its administration reducing significantly microglial activation.84  

 

Figure 1.22. XXVI chromenopirazole and chromenoisoxazole PM226, tested in acute inflammatory phase 

of TMEV model. 
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2.1 Cycloaddition reactions 

Cycloaddition reactions are pericyclic reactions in which two new -bonds are 

generated as the result of the addition of two -systems. Diels-Alder reactions and 1,3-

dipolar cycloadditions are the most characteristic type of cycloaddition reactions and 

represent a versatile route for the synthesis of cyclic compounds with a high degree of 

stereoselectivity.1 

 

In order to understand the stereochemistry of this type of reactions it is 

necessary to explain the possible addition modes for the two unsaturated systems. 

Therefore, it has been considered a suprafacial approach if molecular orbitals (MOs) of 

one conjugated system are added to the other on the same face (see Fig. 2.1). On the 

contrary, if addition of MOs occurs through opposite faces is termed as an antarafacial 

approach. Antarafacial overlap in cycloaddition reactions would need a long flexible 

conjugated system, therefore, almost all pericyclic cycloaddition reactions occur 

through a suprafacial addition mode.1b 

 

 

Figure 2.1. Suprafacial and antarafacial approach for cycloaddition reactions.  

 

 Other classification depends on the transition state of the cycloaddition. As it is 

depicted in fig. 2.2 MOs can approach in a suprafacial mode but can undergo through 

two different transition states, endo or exo. Considering that a -system bears a certain 

substituent (-R), an endo attack is referred to a transition state in which the substituent 

of a -system is oriented toward the other-system. On the contrary, it is considered 

an exo attack when the substituent is oriented away from a second -system during the 

transition state of the reaction.1a 

                                                
1
 a) Fleming, I., Pericyclic Reactions., Oxford University Press, Oxford, 1999. b) Kumar, S.; Kumar, V.; 

Singh, S. P., Pericyclic Reactions: A Mechanistic and Problem-Solving Approach, Elsevier Academic 

Press, London, 2015. 



CHAPTER  2 
 

48 
 

 

Figure 2.2. Exo and endo attack, respectively. 

 

 In addition to the possible approaches and transition states involved in 

cycloaddition reactions other parameters are of great importance to understand their 

possible stereochemistry and viability. Woodward and Hoffman’s concept of 

conservation of orbital symmetry is one of the bases for the development of a method 

to predict the feasibility of cycloadditions reactions. Therefore, orbital symmetry 

correlation diagram method permits predicting thermally or photochemically allowed 

cycloadditions by identifying the symmetry properties of the MOs during the bond 

forming and breaking with respect the symmetry elements (C2 and Afterwards, 

correlation diagrams are drawn, and MOs are connected to their products, this way 

predicting symmetry allowed or symmetry forbidden processes. 

 On the other hand, perturbation molecular orbital (PMO) method predicts the 

feasibility of cycloaddition reaction by studying the supra- or antarafacial approach of 

the conjugated systems and the electrons involved (4n+2 or 4n) in the reaction process 

as well as the aromaticity of the transition state. 

 Additionally, in the frontier molecular orbital (FMO) method the viability of the 

cycloaddition depends on the symmetry properties of highest occupied molecular 

orbitals (HOMO) of one reactant and lowest unoccupied molecular orbital (LUMO) of 

the other. A favorable bonding is allowed if the lobes of the HOMO and LUMO orbitals 

participating present the same phases. Selection rules for cycloadditions by FMO 

method are showed in Table 1.1a 

 

Table 1. FMO method permits to predict required conditions for pericyclic cycloadditions to happen. 

Number of e
-
 Stereochemical mode of action 

 
Reaction condition 

4n 
Supra-supra 

Antara-antara 
h

4n 
Supra-antara 
Antara-supra 

Thermal 

4n+2 
Supra-supra 

Antara-antara 
Thermal 

4n+2 
Supra-antara 
Antara-supra 

h 
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2.1.1 (2+1) Cycloaddition Reactions 

Cyclopropanes have emerged as interest compounds because of their 

biological and pharmaceutical properties, as well as they are valuable building blocks. 

Their synthesis has been extensively studied through (2+1) cycloaddition reactions 

involving alkenes (2 pairs of electrons) and carbenes (sole electron pair). Transition 

metals are usually involved in the formation of the carbenoid species. Asymmetric 

synthesis of cyclopropanes usually requires the combination of these transition metals 

with a variety of chiral ligands. 

 

 

Scheme 2.1. General (2+1) cycloaddition reaction of alkenes with carbenoids in order to give rise to 

desires cyclopropanes. 

 

2.1.1.1 Importance of cyclopropanes in nature and chemistry 

Cyclopropane ring is present in a large amount of natural products, insecticides 

and pharmaceutical drug candidates. Furthermore, cyclopropanes are versatile 

intermediates due to their reactivity, which makes them important building blocks in 

organic chemistry. Actually activated cyclopropane rings are important synthons as 

they act as electrophiles. Multi-substituted cyclopropanes have shown several 

pharmaceutical applications such as, antibacterial, antifungal, antiviral, anticancer, 

antitumoral, antimicobacterial and more properties.2 For example, Pyrethrums 4A 

extracted from Chrysanthemum cinerariafolium and C. coccineum plants have 

exhibited insecticidal activities (Fig. 2.3). 

 

 

Figure 2.3. Pyrethrums examples pirethrine A and B. 

 

 Betulins and derivatives with a cyclopropane moiety have shown excellent 

cytotoxic activities against human melanoma Colo38 and Bro cell lines and human 

ovarian carcinoma CaOv cell line.3 Five new pestaloficiols A-E have shown inhibitory 

                                                
2
 Ajay Kumar, K., Int. J. Pharm. Pharm. Sci. 2013, 5, 454–459. 

3
 Symon, A. V.; Veselova, N. N.; Kaplun, A. P.; Vlasenkova, N. K.; Fedorova, G. A.; Liutik, A. I.; 

Gerasimova, G. K.; Shvrts, V.I. Bioorg. Khim. 2005, 31, 320-325. 
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effects on HIV-1 replication in C8166 cells.4 As well phenyl cyclopropyl methanones 

were synthesized and evaluated for their activity against tuberculosis H37 Rv, showing 

in vitro MICs ranging from 25 to 3.125 g/mL.5 

Curacin A is a natural product which exhibited cytotoxic activity against L1210 

leukemia cell line and CA46 for Burkitt lymphoma cell lines. Cilastatin and ambruticin 

also are some of the natural occurring products containing cyclopropane moiety; 

cilastatin inhibits the activity of -lactam antibiotic imipenem and ambruticin present 

oral activity against histoplasmosis and coccidiomycosis fungal infections.6 

 

 

Figure 2.4. Naturally occurring examples of cyclopropane compounds. 

 

2.1.1.2 Metal catalyzed cyclopropanation reactions between alkenes and 

diazocompounds 

Among all the methods to prepare cyclopropanes, addition to an alkene of a 

carbene coming from a diazo compound has been widely studied in the last decades. 

At first, the formation of these compounds was accomplished either thermally or 

photochemically, but the use of transition-metal catalysts led to the control of the 

selectivity of the reaction. In a typical olefin cyclopropanation, olefin reacts with a diazo 

compound in the presence of a catalyst. Substitution on the olefins leads to two 

possible diastereisomers, cis and trans. Each diastereisomer can give rise in turn to 

two enantiomers. However, in most of the cases, the same catalyst that promotes the 

cyclopropanation reactions can yield non-desired side reactions.  

                                                
4
 Liu, L.; Tian, R.; Liu, S.; Chen, X.; Guo, L.; Che, Y., Bioorganic Med. Chem. 2008, 16, 6021–6026. 

5
 Dwivedi, N.; Tewari, N.; Tiwari, V. K.; Chaturvedi, V.; Manju, Y. K.; Srivastava, A.; Giakwad, A.; Sinha, S.; 

Tripathi, R. P., Bioorg Med Chem Lett., 2005, 15, 4526–4530. 
6
 Donaldson, W. A., Tetrahedron 2001, 57, 8589–8627. 
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Scheme 2.2. Catalytic cycle for the olefin cyclopropanation reaction with diazoacetate compounds in 

presence of transition metals, and homocoupling side reaction. 

 

 It is well known that the reaction occurs through a metallocarbene intermediate, 

which is formed between the catalyst precursor and the diazo compound. As the 

homocoupling reaction takes place very fast, in order to avoid this reaction and 

promote the formation of the three membered rings, slow addition of the diazo 

compound into the catalyst/olefin solution is employed.7 Since the development by 

Nozaki and Noyori in 1966 for the first enantioselective intermolecular cyclopropanation 

reaction using coper(II) salt and salicyladimine as ligand, this methodology has 

emerged as the most efficient and direct routes to obtain optically active 

cyclopropanes. Since then, several chiral ligands have been developed.7,8 

 Although good to excellent enantioselectivities are usually observed, 

diastereocontrol of the reaction has found to be more difficult. It was thought that the 

interaction between the metallocarbene and the olefin takes place far from the chiral 

induction area, and thus, is responsible for this lack of diastereocontrol. 

 However, in the last two decades a wide variety of catalysts have been reported 

to be able to induce a good to excellent selectivity toward cis or trans adducts. Some 

other variables that can affect the final outcome are the substituents of the diazo 

compound, and the substituents of alkene.7 

 

 

 

 

 

 

 

                                                
7
 Caballero, A.; Prieto, A.; Díaz-Requejo, M. M.; Pérez, P. J., Eur. J. Inorg. Chem. 2009, 1137–1144. 

8
 a) Doyle, M. P.; Protopopova, M. N., Tetrahedron 1998, 54, 7919–7946. b) Lebel, H.; Marcoux, J.-F.; 

Molinaro, C.; Charette, A. B., Chem. Rev. 2003, 103, 977–1050. c) Bartoli, G.; Bencivenni, G.; Dalpozzo, 

R., Synthesis, 2014, 46, 979–1029. 
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2.1.1.3 Chiral ligands and transition metals in enantioselective cyclopropanation 

Several transition metals have been studied and each one has shown 

interesting properties depending on the chiral ligand. Cu, Rh, Ru, Co, Os, Fe, Pd, Pt 

and Ir have been reported to catalyze (2+1) cycloaddition reactions.  

 

 

Scheme 2.3. Olefin cyclopropanation reaction with diazoacetate and cis/trans cyclopropanes. 

 

 Regarding to trans selectivity, copper ligands have shown the widest scope, 

while rhodium catalyst are very efficient but not as trans selective. Ruthenium catalysis 

also has exhibited good diastereoselectivity but in a narrower scope. Instead, cobalt 

catalysts have preferred cis selectivity but the structures of the ligands are more 

complex.8b 

 Starting from copper catalyzed processes, ligands like salicyladimines, 

semicorrins, bis(oxazolines) and bipyridines are efficient ligands (see Fig. 2.5). Since 

1986, when Pfaltz9 discovered the high enantiocontrol induced by semicorrin ligand 16 

for reaction with styrene, even more effective ligands have been developed. Many 

bis(oxazoline) and related bidentate ligands have been reported. Copper complex of 

bis(oxazoline) 17 discovered by Evans has demonstrated excellent results in styrene 

reaction and with 1,1-disubstituted alkenes. Further reactions with cyclic silyl enol 

ethers, furans and vinyl fluorides have also been described.8b,10 Masamune developed 

bis(oxazoline) ligand 18, which was not efficient for cyclopropanation of styrene but 

turned out to be good enough for trisubstituted and unsimetrically 1,2-disubstituted 

alkenes.11 Some bipyridine derived ligands 1912, 2013 and diamine 2114 gave also good 

results.8b Bisazaferrocene ligand 22 gave very high enantioselectivities with 

monosubstituted alkenes.15 

                                                
9
 Fritschi, H.; Leutenegger, U.; Pfaltz, A. Angew.Chem., Int. Ed. 1986, 25, 1005-1006. 

10
 Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc. 1991, 113, 726-728. 

11
 Lowenthal, R. E.; Masamune, S. Tetrahedron Lett. 1991, 32, 7373-7376. 

12
 Ito, K.; Katsuki, T. Tetrahedron Lett. 1993, 34, 2661-2664. 

13
 Kwong, H.-L.; Lee, W.-S.; Ng, H.-F.; Chiu, W.-H.; Wong, W.-T. J. Chem. Soc. Dalton Trans. 1998, 21, 

1043-1046. 
14

 Kanemasa, S.; Hamura, S.; Harada, E.; Yamamoto, H. Tetrahedron Lett. 1994, 35, 7985-7988. 
15

 Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 10270-10271. 
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Figure 2.5. Successful ligands and complexes in copper catalyzed styrene cyclopropanation reaction.  

 

In general, ruthenium carbenes are less reactive than copper and rhodium 

ones. Aryl alkenes are efficiently converted into the corresponding cyclopropanes but 

they are not that efficient for alkyl substituted alkenes. First cyclopropanation with a 

ruthenium Pybox complex 25 was reported by Nishiyama (Fig. 2.6). Excellent results 

were reported for trans cyclopropanes.16 Apart from Pybox systems, ruthenium 

porphyrin 2617 and Schiff bases like 2718,19 produced excellent enantio- and 

diastereocontrol. On the other hand, Mezzeti and Katsuki reported some ruthenium 

based catalysts, like 28, which showed good to excellent cis diastereoselectivity.20 

                                                
16

 Nishiyama, H.; Itoh, Y.; Matsumoto, H.; Park, S.-B.; Itoh, K. J. Am. Chem. Soc. 1994, 116, 2223-2224. 
17

 Lo, W.-C.; Che, C.-M.; Cheng, K.-F.; Mak, T. C. W. J. Chem. Soc., Chem. Commun. 1997, 1205-1206. 
18

 Munslow, I. J.; Gillespie, K. M.; Deeth, R. J.; Scott, P. J. Chem. Soc., Chem. Commun. 2001, 1638-

1639. 
19

 Tang, W.; Hu, X.; Zhang, X. Tetrahedron Lett. 2002, 43, 3075-3078. 
20

 a) Stoop, R. M.; Bauer, C.; Setz, P.; Wörle, M.; Wong, T. Y. H.; Mezzetti, A. Organometallics, 1999, 18, 

5691-5700. b) Uchida, T.; Irie, R.; Katsuki, T. Synlett, 1999, 1793-1795. 
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Ruthenium Salen complexes 29 showed to be highly enantioselective in the 

cyclopropanation of 1,1-disubstituted alkenes with ethyl diazoacetate.21 

 

Figure 2.6. Ruthenium-complexes for olefin cyclopropanation reaction using Salen type ligands, Schiff 

bases and porphiryns. 

 

 Cyclopropanation of olefins catalyzed by cobalt complexes was the first 

enantioselective reaction reported, even though the ee values were low.22 Yamada 

developed an excellent ligand 30 for the trans selective cyclopropanation of 

monosubstituted alkenes.23 Katsuki published the synthesis of different ligands that 

exhibited trans or cis selectivity; trans selective Salen cobalt complex 31 catalyzed 

reaction of styrene showing excellent enantiosectivity.24 Cis selective synthesis of 

enantiopure cyclopropanes employing monosubstituted alkenes catalyzed by cobalt 

and Salen ligand 32 demonstrated its efficiency. However, when disubstituted alkenes 

were used the enantiocontrol was excellent but the diastereoselectivity slightly 

decreased.25 

                                                
21

 Miller, J. A.; Jin, W. C.; Nguyen, S. T. Angew.Chem.,, Int. Ed. 2002, 41, 2953-2956. 
22

 Nozaki, H.; Moriuti, S.; Takaya, H.; Noyori, R. Tetrahedron Letters, 1966, 5239-5244. 
23

 Ikeno, T.; Sato, M.; Yamada, T. Chem. Lett. 1999, 1345-1346. 
24

 Fukuda, T.; Katsuki, T. Synlett, 1995, 825-826. 
25

 Ito, Y. N.; Katsuki, T. Bull. Chem. Soc. Jpn. 1999, 72, 603-619. 



CYCLOADDITIONS REACTIONS 

55 
 

 

Figure 2.7. Cobalt-complexes 30-32 showed excellent results for the catalytic alkene cyclopropanation 

reaction. 

 

 Rhodium complexes have been extensively studied in intermolecular 

cyclopropanation reactions. This is the reason why literature reports a large number of 

rhodium-based chiral complexes. These ligands can be classified in two groups: 

dirhodium(II) carboxylates and dirhodium(II) carboxamidates. Rhodium complexes are 

very reactive, but different results have been observed in terms of diastereoselectivity. 

Even with the use of sterically hindered diazoesters they did not show similar results 

and tendencies with respect to other transition metals.8b  

For example, complex 34a (see Fig. 2.8) permitted to develop a 

chemoselective, enantioselective and trans-selective protocol for intermolecular 

cyclopropanation of alkenes and sterically hindered diazoesters. The scope of the 

reaction with different substituted cyclic and acyclic alkenes and benzofurans showed 

great diastereo- and enantioselective for the formation of corresponding 

cyclopropanes.26 The same methodology with 33a-c and derivatives, led to the reaction 

of vinyldiazomethanes in the presence of different alkenes to form highly 

diastereoselective and enantioselective cyclopropanes. Furthermore, it was 

successfully applied to the synthesis of the four stereisomers of 2-

phenylcyclopropanamino acid.27 

 In addition, complex 34d, has been successfully used for the proper activation 

of electron-deficient alkenes reacting with vinyldiazoacetates and aryldiazoacetates to 

obtain highly diastereocontrolled and enantiocontrolled (2+1) cycloadducts. In this 

case, cyclopropanes can be obtained from acrylates and acrylamides but unsaturated 

                                                
26

 Deangelis, A.; Dmitrenko, O.; Yap, G. P. A.; Fox, J. M., J. Am. Chem. Soc. 2009, 131, 7230–7231. 
27

 Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J., J. Am. Chem. Soc. 1996, 118, 

6897–6907. 
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aldehydes led to the formation of epoxides.28 Other applications of rhodium complexes 

are collected in different reviews.8 

 

 

Figure 2.8. Some of the rhodium complex examples showing the extensive variety of catalysts. 

 

 Cobalt (II) porphyrins have emerged as efficient and potent catalysts in 

diastereo- and enantioselective cyclopropanations.29 Efficient diastereoselective 

cyclopropanation of olefins with EDA and mediated by iridium (III) porphyrin complexes 

has been described.30 In addition, a highly trans-selective -methylstyrene reaction has 

been performed with iron porphyrin complex with good enantioselectivities (97:3 

trans/cis, eetrans up to 87 %). This iron porphyrin catalyst has shown outstanding TON 

and TOF values.31 

 Diastereocontrol of transition metal catalyzed cyclopropanations has proved to 

be a difficult task. The trans-favored enantioselective reaction has been more studied 

than the cis-selective one. Among complexes formed with metals of group IX, cobalt 

and rhodium have been the most studied. Iridium in combination with Salen type 

ligands including an aryl ligand in apical position led to air-stable iridium (III) complex 

36 (see Fig. 2.9). Moreover, when reaction proceeded at -78°C totally cis-selective 

cyclopropanes were synthesized with a 95 to 99% of ee. Interestingly, indene and 

                                                
28

 Wang, H.; Guptil, D. M.; Varela-Alvarez, A.; Musaev, D. G.; Davies, H.M. Chem. Sci. 2013, 4, 2844-

2850. 
29

 Doyle, M. P. Angew.Chem., Int. Ed. 2009, 48, 850-852. 
30

 Anding, B. J.; Ellern, A.; Woo, L. K. Organometallics, 2012, 31, 3628-3635. 
31

 Intrieri, D.; Le Gac, S.; Caselli, A.; Rose, E.; Boitrel, B.; Gallo, E. Chem. Commun. 2014, 50, 1811-1813.  
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benzofuran derived optically active cyclopropanes were highly cis selective.32 

 Ferrocenyl ruthenium complex 37 was also highly cis-selective when 

Ru(DMSO)4Cl2 was used as metallic source. They exhibited up to 99% of diastereo- 

and enantiomeric excess. In this publication the authors demonstrated that the 

metal/ligand ratio had a great impact on diastereocontrol.33 

 Rhodium (I) NHC catalyst 38 has showed impressive results in small catalytic 

loads for the highly cis-selective cyclopropanation of alkenes. The nature on the 

diazocompound and the alkene did not affect the diastereoselectivity of the reaction. 

Biologically interesting 2,5-dihydrofuran and benzofuran cyclopropane derivatives were 

also synthesized in good to excellent yields.34 

 

 

Figure 2.9. Cis-selective 36-38 complexes and Ru(II)-PheOX complex 39. 

 

 Recently, Ru(II)-Pheox type complexes 39 have been developed and have 

resulted to be very efficient in asymmetric cyclopropanation of electron deficient olefins, 

                                                
32

 a) Kanchiku, S.; Suematsu, H.; Matsumoto, K.; Uchida, T.; Katsuki, T. Angew.Chem., Int. Ed. 2007, 46, 

3889-3891. b) Suematsu, H.; Kanchiku, S.; Uchida, T.; Katsuki, T. J. Am. Chem. Soc. 2008, 130, 10327-

10337. 
33

 Hoang, V. D. M.; Reddy, P. A. N.; Kim, T-J. Tetrahedron Lett. 2007, 48, 8014-8017. 
34

 Rosenber, M. L.; Vlasana, K.; Gupta, N. S.; Wragg, D.; Tilset, M. J. Org. Chem. 2011, 76, 2465-2470.  
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including vinyl carbamates, allenes, and -unsaturated carbonyl compounds. 

Cyclopropanation of styrene showed its tendency to produce trans-cyclopropanes with 

excellent enantioselectivity.35 

 

2.1.2 1,3-dipolar Cycloaddition Reactions 

1,3-dipolar or (3+2) cycloaddition is a very common and versatile route for the 

synthesis of five membered ring heterocyclic compounds.1b,36 Moreover, concerted 

(3+2) cycloadditions are reactions with a great potential in the formation of new chiral 

centers in organic molecules.36 As this type of processes belong to the pericyclic 

reactions when they are concerted, they present an aromatic transition state of six -

electrons in which one of the components embeds four -electrons along three atoms 

and it is named 1,3-dipole, and the other component is a two -electrons containing 

element called dipolarophile.37 Therefore, (3+2) cycloadditions are formal [4s+2s] 

processes and are thermally allowed according to Woodward and Hoffman orbital 

symmetry rules.1 

 

Scheme 2.4. General thermal reaction between 1,3-dipoles and a dipolarophiles. 

 

The 1,3-dipole component includes at least  one central heteroatom of the total 

three atoms. Typically, they can be represented by four zwitterionic resonance 

structures for allyl type dipoles: the first two present an octet structure in which the 

positive charge is located on the central atom and the negative charge is distributed 

over the two terminal atoms; the other two are sextet structures in which two of the four 

-electrons are localized in the central atom (scheme 2.5).1b,38 

 

 

Scheme 2.5. Resonance hybrid structures of 1,3-dipoles. 

                                                
35

 Chanthamath, S.; Iwasa, S., Acc. Chem. Res. 2016, 49, 2080–2090. 
36

 Kobayashi, S.; Jørgensen, K. A.; Eds. Cycloaddition Reactions in Organica Synthesis, Wiley-VCH, 

Weinheim, 2001. 
37

 Carruthers, W. Cycloaddition Reactions in Organic Synthesis, ed. Pergamon Press, Oxford, 1990. 
38

 Huisgen, R. J. Org. Chem. 1976, 41, 403-419. 
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2.1.2.1 Azomethine ylides in 1,3-dipolar cycloadditions 

 

Azomethine ylides are planar dipoles that include a nitrogen atom in central 

position and two terminal sp2 carbon atoms. Their cycloaddition reaction with alkenes 

provides the formation of pyrrolidine rings which can allow to the formation of four new 

stereogenic centers in one synthetic step.39 Pyrrolidine rings are interesting scaffolds 

found in organocatalysis (Proline derivatives), pharmaceuticals and alkaloids (see 

Chapter 1). 

 

Scheme 2.6. General (3+2) cycloaddition between imines (as precursors of azomethine ylides) and 

alkenes to yield pyrrolidines. 

 

Because of their unstable nature, azomethine ylides are usually prepared in situ 

formation starting from their precursors.  Different processes are developed such as 

ring opening of aziridines, desylylation, prototropy/metallo-azomethine ylides of amino 

acids derived imines, decarboxylative condensation of amino acids, deprotonation of 

iminium and more.39 

 

General stereoselectivity of 1,3-dipoles has been mentioned depending upon 

the configuration of the dipolarophile. Stereochemistry related to the additional 

positions is determined by the dipole geometry. In the case of azomethine ylides we 

can find four types of dipoles. Stereochemistry in 2,5 of the pyrrolidine stems from of 

the geometry of the ylide, which it can be W and U for cis disubstituted pyrrolidines or 

S-shaped for 2,5-trans disubstituted ones.40 

 

 

Figure 2.10. Azomethine ylide dipole geometries. 

 

Ylides can be NH-ylides, N-substituted or N-metalated species. Generally, they 

can be classified as stabilized, metal-stabilized and non-stabilized azomethine ylides, 

depending on the presence of a electron-withdrawing group (EWG) in terminal carbon 

of the dipole. Stabilization comes from a larger negative charge delocalization and 

consequent additional resonant forms due to the EWG.40  

                                                
39

 Husinec, S.; Savic, V., Tetrahedron Asymmetry 2005, 16, 2047–2061. 
40

 Pandey, G.; Banerjee, P.; Gadre, S. R., Chem. Rev. 2006, 106, 4484–4517. 
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The diastereoselectivity provided by N-metalated azomethine ylides depends on 

the EWG and the orientation of the substituents of the dipole. Thus, when the EWG 

and the substituent in position 5 are cis to each other, the cycloadducts obtained will be 

endo and if they are in trans the generation of cycloadducts exo will be achieved. As 

mentioned before, the approach of the dipole to the dipolarophile occurs suprafacially, 

which means that configuration of the initial dipolarophile will be retained. 

 

 

 

Scheme 2.7. General reaction for azomethine ylide precursor and alkenes. 

  

 Experimental and computational studies on the stereochemistry of the reaction 

between N-metalated azomethine ylides and nitroalkenes permitted to find out the 

origin of the stereocontrol. The studies provided a model for the dependence of 

diastereoselectivity with the metallic source employed. For instance, lithium promoted 

formation of endo adducts, whereas silver salts in the presence of tertiary bases in 

general favor the preferential formation of exo compounds.41 

 Mechanistically, Huisgen¡Error! Marcador no definido. and Firestone42 

proposed two different pathways for 1,3-dipolar cycloadditions. Huisgen proposed a 

supra-supra pericyclic mechanism in a concerted manner while Firestone was in favor 

of a stepwise mechanism involving a diradical intermediate. Afterwards, in collaboration 

with Houk,43 Firestone accepted Huisgen’s theory of concerted mechanism. Later it 

was found that 1,3-dipolar cycloaddition reactions can go thorugh a stepwise 

mechanism depending on the nature of the dipole and dipolarophile.44 

                                                
41

 a) Ayerbe, M.; Arrieta, A.; Cossío, F. P.; Linden, A., J. Org. Chem. 1998, 63, 1795–1805. b) Nyerges, 

M.; Rudas, M.; Tóth, G.; Herényi, B.; Kádas, I.; Töke, L., Tetrahedron 1995, 51, 13321-13330. 
42

 a) Firestone, R. A.; Tetrahedron 1977, 33, 3009-3039. b) Firestone, R. A., J. Org. Chem.  1972, 37, 

2181-2191. 
43

 Houk, K. N.; Firestone, R. A.; Munchausen, L. L.; Mueller, P. H.; Arison, B. H.; García, L. A., J. Am. 

Chem. Soc. 1985, 107, 7227–7228. 
44

 a) Huisgen, R.; Mloston, G.; Lagnhals, E. J. Org. Chem. 1986, 51, 4085-4087. b) Neumann, F.; Lambert, 

C.; Schleyer, P. V. R., J. Am. Chem. Soc. 1998, 120, 3357-3370. 
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Scheme 2.8. Endo-selective stepwise mechanism proposed by Cossío for 1,3-dipolar cycloaddition 

between metal stabilized azomethine ylide and nitroalkenes. 

 

 Azomethine ylides are HOMO controlled dipoles and the incorporation of a 

EWG group to the dipolarophile shows an energy decrease in the LUMO-dipolarophile. 

Furthermore, Cossío and coworkers discovered that stabilization of the ylide by 

transition metals made the reaction with electron-deficient alkenes to go through a 

stepwise process instead of a concerted one.45  

The mechanism is described in Scheme 2.8 employing silver acetate and 

triethylamine as base. The first reaction step is a conjugated Michael type nucleophilic 

attack of the -carbon of the azomethine ylide, in situ generated from the 

corresponding -iminoester, to the -carbon of nitroalkene. In a second reaction step 

zwitterionic intermediate 52 cyclized through an intramolecular aza-Henry reaction to 

afford the final heterocycle 54. 

 

2.1.3 Asymmetric 1,3-dipolar cycloadditions of azomethine ylides 

 

2.1.3.1 Diastereoselective reactions 

In diastereoselective reactions chirality can be transferred by incorporating a 

chiral auxiliary into the azomethine ylide which is later eliminated in order to obtain the 

desired enantiopure product. First example of chiral induction between a chiral 

azomethine ylide and an achiral alkene was carried out by Padwa et al. in 1985.46 

                                                
45

 a) Vivanco, S; Lecea, B.; Arrieta, A.; Prieto, P.; Morao, I.; Linden, A.; Cossío, F.P., J. Am. Chem. Soc. 

2000, 122, 6078-6092. b) de Cozár, A.; Cossío, F.P., Phys. Chem. Phys., 2011, 13, 10858-10868. 
46

 Padwa. A; Chen, Y. Y.; Chiacchio, U.; Dent, W., Tetrahedron 1985, 41, 3529-3535.  
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Several examples were reported afterwards, some dipoles have been of great interest 

due to the excellent diastereoselectivities obtained.47 

Najera has used a strategy with chiral acrylates as dipolarophiles to synthesize 

inhibitors of hepatitis C virus RNA-dependent RNA polymerase. 1,3-dipolar 

cycloaddition was carried out using AgOAc and toluene as solvent affording selectively 

endo adducts.48 Cossío et al. developed a diastereoselective synthesis of pyrrolidines 

using chiral nitroalkenes as dipolarophiles (Scheme 2.10). Total diastereocontrol of the 

reaction was observed. In addition the obtained cycloadducts were derivatized in order 

to synthesize new inhibitors of interaction between VLA-4/VCAM-1 and later for LFA-

1/ICAM. These compounds have shown antimetastasic activity in vivo against colon 

cancer and melanoma.49 

 

Scheme 2.10. Diastereoselective 1,3-dipolar  cycloaddition reaction with chiral nitroalkenes using 

AgOAc.
49

 

 

2.1.3.2 Enantioselective 1,3-dipolar cycloaddition reactions 

Enantioselective 1,3-dipolar cycloaddition reactions have emerged as the most 

powerful process to synthesize optically active five-membered heterocycles. This 

approach has demonstrated several advantages, highlighting the use of chiral catalysts 

in substoichiometric amounts. In fact, azomethine ylides as dipoles that react with 

electron-deficient dipolarophiles catalyzed by chiral Lewis acids is the most convergent 

and versatile strategy for enantioselective synthesis of highly functionalized 

pyrrolidines. Metal-stabilization of azomethine ylides is the key for the required 

conformational restriction in order to discriminate between enantiotopic faces during 

reaction.39,50 

 

                                                
47

 a) Gothelf, K. V; Jørgensen, K. A., Chem. Rev. 1998, 98, 863–909. b) Pandey, G.; Banerjee, P.; Gadre, 

S. R., Chem. Rev. 2006, 106, 4484–4517. 
48

 Nájera, C.; Retamosa, M. de G.; Sansano, J. M.; De Cózar, A.; Cossío, F. P., European J. Org. Chem. 

2007, 5038–5049. 
49

 a) Zubia, A.; Mendoza, L.; Vivanco, S.; Aldaba, E.; Carrascal, T.; Lecea, B.; Arrieta, A.; Zimmerman, T.; 

Vidal-Vanaclocha, F.; Cossío, F. P., Angew. Chem., Int. Ed. 2005, 44, 2903–2907. b) Zimmerman, T.; 

Zubia, A.; Vara, Y.; Martin, E.; Sirockin, F.; Mendoza, L.; Vidal-Vanaclocha, F.; Cossio, F. P.; Blanco, F. 

J., J. Med. Chem. 2013, 56, 735–747. 
50
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- Intermolecular enantioselective 1,3-dipolar cycloaddition reactions 

Many enantiopure ligands have been reported to promote catalytically 

intermolecular (3+2) cycloadditions between N-metalated azomethine ylides and -

deficient alkenes. Selected examples are depicted in Scheme 2.11 and Scheme 2.12. 

They have been successfully employed in order to give rise to highly functionalized 

enantiopure pyrrolidines.  

 

Scheme 2.11. Selected examples of first efficient ligands in enantioselective (3+2) cycloaddition reactions 

and ligands that showed excellent enantiocontrol in combination with silver salts.  
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Grigg and coworkers developed the first enantioselective 1,3-dipolar reaction 

using naphtyl derived iminoesters and acrylate as dipolarophile but using a 

stoichiometric amount of ephedrine-derived ligand 58 with cobalt as metallic source 

(see scheme 2.11).51 Later, Zhang and coworkers described the first catalytic 

enantioselective reaction between several dipolarophiles and a variety of azomethine 

ylide precursors using employing xilil-FAP-59.52 Jørgensen found out that the use of 

Zn(OTf)2 as metallic source in combination with chiral tBu-bis(oxazoline)-60 catalyzed 

asymmetrically the reaction between aryl glycine derived iminoesters and various 

acrylates.53 

Silver catalyzed enantioselective (3+2) cycloaddition reactions have been 

described as efficient, high yielding and fast reactions (see Scheme 2.11). 

Preferentially, they are able to afford endo cycloadducts, usually in a total 

diastereoselective and enantioselective fashion. Chen et al. employed ligand (Sa)-

QUINAP-61 for the enantioselective (3+2) cycloaddition reaction of tert-butyl acrylate 

with aryl -iminoesters.54 In addition, ferrocenyloxazoline ligand  62 reported by Zhou 

and coworkers exhibited excellent results for the formation of highly functionalized 

pyrrolidines.55  

Najera described an enantioselective synthesis using AgClO4/ (Sa)-BINAP-63 

system in the reaction between aryl -iminoesters and N-methyl maleimide.56 The 

same group reported the use of monodentate (Sa,R,R)-phosphoramidite-AgClO4 

complex 64 which was found to be efficient for a wide range of enantioselective 1,3-

dipolar cycloaddition reactions.57 Kobayashi published the efficient combination of 

ligand (R)-DTBM-segphos-65 with AgHDMS in order to generate selectively exo-48 

derivatives.58 

Copper catalyzed 1,3-dipolar cycloaddition reactions tend to afford exo-

cycloadducts (see Scheme 2.12). Zhang described the enantioselective synthesis of 

pyrrolidines by using FOXAP ligand 66 using as metallic source CuClO4 which showed 

excellent results for acrylates as dipolarophiles.59 Fesulphos-67 is a ferrocenyl ligand 

synthesized by Carretero et al., which in combination with [Cu(CH3CN)4]ClO4 gave 

excellent results for the endo-adduct formation of phenylmaleimide derivatives. Later, 

this ligand showed a great versatility for dipolarophiles.60 CuOAc/ClickFerrophos-68 

                                                
51

 Allway, P.; Grigg, R., Tetrahedron Lett. 1991, 32, 5817–5820. 
52

 Longmire, J. M.; Wang, B.; Zhang, X., J. Am. Chem. Soc. 2002, 124, 13400–13401. 
53

 Gothelf, A. S.; Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A., Angew. Chemie. Int. Ed. 2002, 41, 4236–

4238. 
54

 Chen, C.; Li, X.; Schreiber, S. L., J. Am. Chem. Soc. 2003, 125, 10174–10175. 
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 Zeng, W.; Zhou, Y. G., Org. Lett. 2005, 7, 5055–5058. 
56

 a) Nájera, C.; Retamosa, M. de G.; Sansano, J. M., Org. Lett. 2007, 9, 4025–4028. b) Nájera, C.; 

Retamosa, M. de G.; Sansano, J. M.; Cózar, A. de; Cossío, F. P., Tetrahedron Asymmetry 2008, 19, 

2913–2923. 
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European J. Org. Chem. 2009, 5622–5634. 
58

 Yamashita, Y.; Imaizumi, T.; Kobayashi, S., Angew.Chem., Int. Ed. 2011, 50, 4893–4896. 
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 Gao, W.; Zhang, X.; Raghunath, M., Org. Lett. 2005, 7, 4241–4244. 
60

 a) Cabrera, S.; Arrayás, R. G.; Carretero, J. C., J. Am. Chem. Soc. 2005, 127, 16394–16395. b) 
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tandem catalyzed 1,3-dipolar cycloaddition was enantioselective for a large diversity of 

dipolarophiles and almost exclusively exo-adducts were obtained. 61 

 

 

Scheme 2.12. Ligand examples that resulted efficient in combination with copper salts for the 

enantioselective (3+2) cycloaddition reactions.  

 

. Arai and coworkers reported the synthesis of PyBidine-Cu(OTf)2 complex 69 

which was capable of catalyzing  (3+2) cycloaddition reactions between azomethine 

ylides and substituted nitroalkenes with high endo-selectivity and excellent 

enantiomeric excess (Scheme 2.12).62 Therefore, the same complex was able to 

catalyze the diastereoselective exo’-adduct formation of tricyclic molecules by 

enantioselective (3+2) cycloaddition reaction between glycine derived iminoesters and 

3-nitroindoles.63 Studies on the reactivity of fullerenes as dipolarophiles led to the 

                                                
61
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efficient combination of Cu(OTf)2 and ligand (R)-DTBM-segphos-65 capable of 

catalyzing first trans-diastereoselective synthesis of enantiopure fulleropyrrolidines, 

compounds of great importance in biomedicine and material science.64 Novel 

enantioselective copper and ligand 70 catalyzed (3+2) cycloaddition reaction of 

azomethine ylides with -trifluoromethyl -disusbtituted enones has been described, 

showing high efficiency, diastereo- and enantiocontrol.65 

 

- Intramolecular enantioselective 1,3-dipolar cycloaddition reactions 

Enantioselective intramolecular (3+2) cycloaddition reactions have been studied 

in a lesser extent. The fact that both the dipole and the dipolarophile are tethered 

makes the reaction more favorable in terms of entropy and usually only one 

regioisomers is energetically available.66 In addition, another advantage of the 

intramolecular cycloaddition reaction is that it is effective for electron-rich 

dipolarophiles. Therefore, the intramolecular fashion presents high regio- and 

stereoselectivity and the ability to generate complex bicyclic or larger ring systems in 

few steps. 

Among different tricyclic pyrrolidines that can be synthesized via intramolecular 

(3+2) cycloaddition reaction, scaffolds derived from chromeno[4,3-b]pyrrole (Scheme 

2.13) constitute a particularly interesting target because of their biological properties. 

 

 

Scheme 2.13.  Synthesis of hexahydrochromeno[4,3-b]pyrroles by intramolecular (3+2) cycloaddition 

reaction  between alkenes and stabilized N-metalated azomethine ylides. X = -OR
3
, -NHR

4
; M = Ag, Cu. 
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Different syntheses of racemic chromenopyrrolidines have been reported using 

this approach. Some of the molecules thus obtained exhibited interesting antitubercular 

activity with good MIC results.67 

Silver mediated intramolecular cycloaddition afforded racemic chromeno[4,3-

b]pyrrolidines, which after appropriate derivatization exhibited partial agonist activity on 

TRPV-1 cation channel, which has a relevant effect on chronic pain diseases.68 The 

pharmacophore presents a colored coding for the structural subdivisions (see Scheme 

2.14),  

 

Scheme 2.14. Intramolecular non-enantioselective cycloaddition reaction to afford TRVP-1 partial 

agonists.
68

 

 

 The first enantioselective intramolecular cycloaddition reaction of azomethine 

ylides was reported by Pfaltz in 2005.69 These authors obtained excellent 

enantioselectivities by using Ag(I)/PHOX catalyst at low temperature. 

 

Scheme 2.15. First enantioselective intramolecular reaction catalyzed by AgOAc and PHOX-79 ligand.
69 

 

 

 Since then, there has not been described any other asymmetric synthesis of 

these compounds using organometallic catalysis although it has been reported that 

using chiral phosphoric acid organocatalysts substituted tricycles similar to 78 are 

obtained with good to excellent enantioselectivities.70  
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- Previous work developed with Ferrocenyl-Prolines 

A new family of ferrocenyl-pyrrolidine ligands has been developed by Cossío 

and coworkers. These novel enantiopure ligands incorporate densely substituted 

unnatural prolines and 1,2-disubstituted ferrocenyl ligands. Compounds of this type 

permit the interplay between the four chiral centers of the pyrrolidine ring and the 

planar chirality of the ferrocenyl diphenylphosphine moiety. 

These catalytic systems were employed in 1,3-dipolar cycloaddition reactions 

between glycine derived iminoesters 43 and nitrostyrene 81. Although Ag(I) salts were 

tested, the best results were obtained when Cu(I) salts were used.71  

When [Cu(CH3CN)4]PF6 was used along with ferrocenyl-proline ligand 83a, 

which bears a –NH pyrrolidine, reaction between 80 and nitroalkenes 81 resulted in the 

diastereoselective exo-82 pyrrolidine formation with good yield and excellent 

enantiomeric excess of 97%. Instead, the same reaction catalyzed by N-Me substituted 

ligand 85 led to cycloadducts endo-84 in 92% ee. These results were confirmed by 

DFT studies.  endo-TS1 transition state showed that in the case of the reaction 

catalyzed by ligand 85 Cu(I) interacted with phosphine moiety, and with the nitrogen 

and oxygen atoms of the azomethine ylide. No interaction of Cu(I) with the N-

susbtituted nitrogen of ligand was observed, which offers a coordination vacancy that 

can be occupied by the oxygen of the nitro group of the dipolarophile. Hence, efficient 

blockage of the (2Re, 5Si) prochiral face resulted in the formation of cycloadducts 

endo-84.  

In the case of ligand 83a, as it can be observed in exo-TS2 (Scheme  2.16), 

interaction of copper with azomethine ylide is similar to TS1 but in this case the NH 

moiety of the pyrrolidine ring interacts with the Cu(I) center, thus saturating its 

coordination sphere and promoting the formation exo-82, in which the two 

electronwithdrawing groups (the phenyl and the nitro moieties) are away to each other.  

 This preliminary work led to the formation of highly functionalized unnatural 

pralines which inspired the design of a totally new family of organocatalysts that have 

shown excellent results in enantioselective aldol and Michael reactions.72 Some of the 

unnatural proline derivatives have been tested for their use as proteasome inhibitors 

and theraupethic agents in order to prevent or treat cancer, neurodegenerative 

diseases, autoimmune diseases or viral infections.73  
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Scheme 2.16. Ferrocenyl-proline ligand catalyzed enantioselective (3+2) cycloaddition reactions using 
copper as metallic source. Below computational studies of transition state for endo-84 and exo-82 adduct 
formation are represented. TS figures taken from publication of Cossio et al., ref 71 (L-3a equals to ligand 
85 and D-3b equals to 83a).  

 

Furthermore, the stepwise mechanism for the reactions depicted in Scheme 

2.16 demonstrated that bis(spiropyrrolidine) compounds can be obtained by 

consecutive frustrated and completed (3+2) cycloadditions. Some of these novel 

compounds showed interesting biological activities in micromolar range.74 
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2.2 Objectives  

 

On the basis of the results provided by the discussed ferrocenyl-proline ligands 

previously reported by our research group, we proposed the synthesis of new 

ferrocenyl-proline ligand derivatives and their use in combination with a variety of metal 

sources in order to generate catalytic systems from enantioselective (2+1) and (3+2) 

cycloadditions. In particular, the main objectives of this Chapter focused on the 

following reactions: 

1)  (2+1) Cycloadditions between heterocyclic alkenes and diazo compounds in 

order to obtain substituted cyclopropanes.  

 

2) Intramolecular enantioselective (3+2) cycloadditions reaction as a interesting 

approach in the synthesis of enantiopure tricyclic chromeno[4,3-b]pyrrolidine 

compounds. 

 

3) Intermolecular enantioselective (3+2) cycloaddition reactions in the presence of 

new dipolarophiles like nitrochromenes, in order to provide an access to 

enantiopure tricyclic chromeno[3,4-c]pyrrolidines. 

  

 

Scheme 2.17. Main reactions as objective to be catalyzed by ferrocenyl-proline ligands and different 

metallic salts. 
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2.3 Novel Ferrocenyl-proline ligand derivatives 

First of all, diphenylphosphine ferrocenecarboxaldehyde 99 was synthesized as 

reported by Kagan et al.75 Protection of ferrocene 92 followed by transacetalyzation 

reaction with a chiral S-(–)-butanetriol 94 gave dioxanes 95. Methylation, ortho-lithiation 

and introduction of the diphenylphosphine group led to 98, which suffered a Brønsted 

acid catalyzed deprotection to obtain the desired 1,2-disubstituted ferrocenyl 

carboxaldehyde 99. 

 

 

Scheme 2.18. Synthesis sequence reported by Kagan for ferrocenyl carboxaldehyde, precursor of 

ferrocenyl proline ligands. 

 

The strategy for the synthesis of ferrocenyl-proline ligand 83a relied on the 

condensation of the glycine ester 100a and aldehyde 99 to form imine 101a (see 

Scheme 2.19). Subsequent (3+2) cycloaddition reaction between imine 101a and (E)-

nitrostyrene 81 yielded ligand NH-D-EhuPhos-83a in good yield and complete region-, 

diastereo- and enantiocontrol.71 This procedure was extended to imines 101b-c. Thus, 

(3+2) cycloaddition between these imines and dipolarophile 81 in the presence of LiBr 

and Et3N yielded with excellent selectivity cycloadducts NH-TB-D-EhuPhos-83b and 

NH-Bn-D-EhuPhos-83c.  
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CHAPTER  2 
 

72 
 

 

Scheme 2.19. Transformation of ferrocenylcarboxaldehyde 99 into hybrid ferrocenyl-proline ligands 83a-c. 

 

Interestingly, in model reaction, ligand 83b showed excellent enantiocontrol in 

presence of [Cu(CH3CN)4]PF6 at room temperature, whereas ligand 83a showed 

similar result at lower reaction temperatures . This fact could be related to the large 

steric hindrance applied by the tert-butyl group of the ester, thus probably blocking one 

enantiotopic face more efficiently. Hence, cycloadducts exo-82 was obtained at room 

temperature in a 75% yield with a 92% of ee (Scheme 2.20). 

 

 

Scheme 2.20. Enantioselective (3+2) cycloaddition reaction at room temperature catalyzed by ligand    

NH-TB-D-EhuPhos-83b. 

 

 Gold complexes 102-d were synthesized in order to study their efficiency in 

intermolecular 1,3-dipolar cycloaddition reactions. These compounds synthesized 

under inert atmosphere by reacting with Me2SAuCl were obtained with good yields as 

yellow solids (Scheme 2.21). Previous formation of active cationic species of gold(I) 

was required before their use in catalysis.  
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Scheme 2.21. Synthesis of various Au(I) ferrocenyl-proline complexes.  

 

Catalytic (3+2) cycloaddition reaction was carried out by in situ activation of 

gold(I) complexes 102a-d using AgSbF6. These complexes were capable of producing 

cycloadducts endo-84 and exo-82 in lower yields than obtained for copper catalyzed 

reactions. The temperature and the solvent effects were studied in order to achieve 

high enantiocontrol of the reaction. Unfortunately, none of the tested Au(I) complexes 

provided efficient enantiocontrol (up to 20% ee) in the (3+2) cycloaddition reaction 

between glycine iminoester 80 and nitrostyrene 81 (Scheme 2.22).  

 

 

Scheme 2.22. Gold(I) complexes 102a-d catalyzed  (3+2) cycloaddition between iminoester 80 and 

dipolarophile 81. 
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2.4 (2+1) cycloadditions reactions catalyzed by ferrocenyl-

proline ligands and transition metals  

 

Ethyldiazoacetate (EDA), is the most common diazo compound due to its 

relative stability and easy manipulation. In (2+1) cycloadditions between EDA and 

alkenes cyclopropanes can be obtained by previous formation of metallocarbene 104. 

At the same time, metallocarbene 104 can react with another molecule of EDA and 

lead to a non-desirable homocoupling reaction showing the formation of diethyl 

fumarate and diethyl maleate (Scheme 2.39).  

 

Scheme 2.23. Catalytic cycle for (2+1) cycloaddition between EDA and alkenes in presence of metallic 

complexes.  

 

 In order to evaluate the reactivity of EDA with different alkenes, different 

combinations of metallic sources and heterocyclic alkenes were investigated. Indene, 

benzofuran, indole and thianaphtene were selected as model substrates. The reactions 

were monitorized by 1H NMR spectroscopy of the crude reaction mixtures. The 

reactions of indene and benzofuran in the presence of [Cu(CH3CN)4]PF6 showed the 

disappearance of the starting material and formation of a new compounds, although 

diethyl fumarate and diethyl maleate were present in significant quantities. Ag(I) and 

Au(I) did not show similar reactivities with EDA. In some cases Ag(I) salts exhibited 

some reactivity, such as with indene, but there was no full conversion of the starting 

material into the final product. It is worth to note that reaction of EDA and heterocyclic 

alkenes in the absence of transition metals did not evolve at all. 
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Scheme 2.24. Possible (2+1) and C-H insertion reactions from alkene 109-112 and EDA. 

 

 Thus, [Cu(CH3CN)4]PF6 salt was selected to be used in combination with 

ferrocenyl-proline ligands on the efforts to afford cyclopropanes.  2,3-Benzofuran 109 

(X = O) (Table 2, entries 1 and 2) afforded the corresponding cyclopropane, yielding 

solely the trans diastereoisomer. Similar results were obtained either when 83a or 85 

were used as ligands. Indene 110 (X = CH2) showed the presence of a trans/cis 

mixture in a 75:25 ratio when ligand 83a catalyzed the reaction (Table 2, entry 3). In 

these case, the chemical yields of adducts 109 and 110 were low and significant 

amounts of diethyl fumarate and maleate were observed. Although in these reactions 

both (2+1) cycloaddition and carbene insertion between C-H bonds can be expected 

(see Scheme 2.24), only homocoupling products and (2+1) cycloadducts were 

observed. 

The use of ligand 85 resulted in the sole formation of trans isomer (Table 2, 

entry 4). Indole 111 (X = NH) (Table 2, entry 5) and tianaphtene 112 (X = S) (Table 2, 

entry 6) showed no conversion into the desired products in the presence of Cu(I) and 

ferrocenyl-proline ligands . 

Unfortunately, none of the isolated cyclopropanes showed any enantiomeric 

excess induced by Cu(I)-ferrocenyl complexes during the reaction. Two hypothesis for 

the lack of enantiocontrol were considered: 1) The Cu(I) coordination sphere could be 

complete during the generation of metallocarbene. Therefore, the chiral ligand does not 

behave as a bidentate ligand; 2) ferrocenyl-proline ligands do not provide a suitable 

environment for the enantioselective cyclopropanation of alkenes. 

 As a consequence, we envisioned the possibility of changing EDA by a more 

hindered diazo compounds in order to improve the enantiocontrol. Since methyl 

ethyldiazoacetate (MEDA) is known to exhibit less reactivity than EDA, lower formation 

of non-desirable byproducts from homocoupling reaction could be expected. 
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Table 2. Different heterocyclic substrates in the reaction with EDA catalyzed by Cu(I) and ferrocenyl-proline 

ligands. 

 

Entry Alkene Metal Ligand Product 

 
d.r.

a 

 
Yield (%) 

ee
b
 

trans/cis trans cis 

1 

 

Cu(CH3CN)4PF6 83a 

 
 

100:0 10 - Rac. 

2 

 

Cu(CH3CN)4PF6 85 

 
 

100:0 11 - Rac. 

3 

 

Cu(CH3CN)4PF6 83a 

 
 

75:25 24 3 Rac. 

4 

 

Cu(CH3CN)4PF6 85 

 
 

100:0 27 - Rac. 

5 

 

Cu(CH3CN)4PF6 85 n.r. - - - - 

6 

 

Cu(CH3CN)4PF6 83a n.r. - - - - 

         
a
Diastereoimeric ratio was determined by 

1
H NMR spectroscopy. 

b
Enantiomeric excess was determined by 

chiral Daicel OD-H column for HPLC, n-Hexane:
i
PrOH 99:1, flow 1.0-0.5 ml/min,  = 220, 254 nm. n.r = no 

reaction. 
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Table 3. Screening of different transition metals in the reaction between indene and MEDA. 

 

  

 

 

 

 

 

 

 

 

  

The results obtained for the reaction of indene 110 in presence of MEDA are 

collected in Table 3. Although Cu(I)/83a system catalyzed the reaction (Table 3, entry 

1) affording trans-114a in a 30% yield, dirhodium tetraacetate (Table 3, entry 2) 

exhibited best yield for the synthesis of same compound. On the contrary, ZnCl2 

demonstrated low conversion into compound 114 observed by 1H NMR of the crude 

reaction mixture. All attempts with further metallic sources failed to produce (2+1) 

cycloadduct:  FeCl2, AgOAc, Au(I) complex 102a and Ru(PPh3)3Cl2.  

Therefore, Rh2(OAc)4/83a complex was the most efficient system to carry out 

(2+1) cycloaddition between indene 110 and MEDA. The use of other rhodium salts 

and different temperatures were studied, but no significant difference was observed in 

the yield either in the enantiocontrol of the reaction. 

 

Entry Metal Ligand 

d.r.
b 

trans/cis
 

Yield (%) 

trans cis 

1 Cu(CH3CN)4PF6 83a 100:0 30 - 

2 Rh2(OAc)4 83a 100:0 50 - 

3
c
 ZnCl2 83a 100:0 n.d. - 

a
Best conversion was for dirhodium tetraacetate with 100%, 2.1/1 equiv. of 

83a/dirhodium tetraacetate used.
 b

Diastereoimeric ratio was determined by 
1
H NMR. 

c
ZnCl2 catalyzed carbene transfer reaction showed a small conversion but the 

product was possible to identify by 
1
H NMR.

 d
Byproducts from homocoupling reaction 

of MEDA were not present. 
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Figure 2.11. Extended 
1
H NMR spectrum of compound trans-114a. It presentscharacteristic signal of 

methyl group at 0.79 ppm. 

 

Spectroscopic data of trans-114a revealed its relative configuration. The methyl 

group of this compound was observed at 0.79 ppm, a higher field than the commonly 

observed one. This suggests that the methyl group is in the positive shielding cone of 

the phenyl group of the indene (see Fig. 2.11). 

 

 

Figure 2.12. HPLC chromatogram of compound trans-114a using chiral IC column under the following 

conditions: iso-Propanol/n-hexane 1:99 flow = 0.5 mL/min, tr1= 15.08 min, tr2 = 15.80 min, = 220 nm. 
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Hb 
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The determination of the enantiomeric excess was performed by HPLC coupled 

to a mass spectrometer in which the enantiomers were separated by the use of chiral 

column Daicel Chiralpak IC. Unfortunately, HPLC and mass analysis of compound 

trans-114a revealed the racemic nature of the molecule under all the reaction 

conditions described before. An example for the formation of racemic trans-114a by 

using Rh2(OAc)4 in combination with ligand 83a is gathered in Figure 2.12.  

 

 

2.5 Ferrocenyl-proline ligand catalyzed intramolecular (3+2) 

cycloaddition reactions 

 

2.5.1 Synthesis of  the precursor for the access to tricyclic compounds 

First of all imine precursor 119 was synthesized starting from salicylaldehyde 

115. Williamson reaction of compound 115 and 116 afforded aldehyde 117 in a low 

yield. Aldehyde condensation with glycine methyl ester hydrochloride 118 allowed the 

synthesis of imine 119 in good yield. 

 

Scheme 2.25. Williamson reaction of compound 115 and condensation of aldehyde 117 into imine 119. 

 

 Racemic synthesis of chromen[4,3-b]pyrrolidine endo-120 was performed using 

AgOAc in stoichiometric amount using N,N-diisopropylamine as base and acetonitrile 

as solvent at room temperature.76 This racemic compound was used as a reference in 

the studies on the enantioselective intramolecular (3+2) cycloaddition (vida infra). 

 

Scheme 2.26. Racemic synthesis of (±)-endo-120 adduct, formation of tricyclic [4,3-b] 

chromanopyrrolidine. 
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 Barr, D. A.; Grigg, R.; Gunaratne, H. Q. N.; Kemp, J.; McMeekin, P.; Shridharan, V., Tetrahedron 1988, 
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2.5.2 Intramolecular enantioselective (3+2) cycloaddition reaction and proposed 

reaction mechanism 

 First attempts for the intramolecular (3+2) cycloaddition reaction using 

ferrocenyl-proline catalysts showed the formation of two products in 50:50 ratio. 

Physical and spectroscopic data for cycloadduct endo-120 were identical to those 

reported in literature.77  

On the other hand, the second compound isolated was supposed to be an exo-

cycloadduct due to the chemical shifts observed for the methyl group of the ester. 

Subsequently, it was possible to obtain a suitable crystal for this exo-cycloadduct, 

which was analyzed by X-ray diffraction. In addition, compound was obtained as a 

dimer, whose X-ray diffraction analysis can be observed in Figure 2.13. Structure 

observed was similar to the one reported by Pfaltz.77  

 

Figure 2.13. ORTEP diagram with thermal ellipsoids in a 50% probability for molecule dimer-121.  

 

 The formation of dimeric cycloadduct dimer-121 can be rationalized taking into 

account the double character of imine 119 as source of N-metalated azomethine ylide 

and as a dipolarophile. This compound has a considerable conformational freedom 

around the Ph-O-CH2 moiety. Thus, if we define the dihedral angles  and  as 

depicted in Scheme 2.27 we can get the two different situations. When  0 deg and 

 180 deg, the intermediate azomethine ylide INT1 (Scheme 2.27) adopts the closed 

conformation required for the intramolecular (3+2) cycloaddition (concerted and 

stepwise) and it can yield endo-120.  

In contrast, when  180 deg and  0 deg, the open conformation of 

azomethine ylide INT2 precludes the intramolecular (3+2) cycloaddition and favors an 
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 Stohler, R.; Wahl, F.; Pfaltz, A., Synthesis  2005, 1431–1436. 
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intermolecular process through a crossed interaction between 1,3-dipole of one 

molecule of INT2 and the dipolarophile moiety of the other component, as it is is 

depicted in Scheme 2.27. As a consequence, in this second case the dimeric 

cycloadduct dimer-121 will be obtained. The relative abundance of this latter 

compound suggests that the conformational freedom of 119 should result in similar 

proportion of azomethine ylides INT1 and INT2. Probably only under high dilution 

conditions (in which low conversions and large reaction times would be observed) the 

formation of dimer-121 could be avoided or, at least minimized. 

 

Scheme 2.27. Proposed inter- and intramolecular (3+2) cycloaddition mechanism of compound 119 to 

yield either endo-120 and dimer-121. 
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2.5.3 Optimization of enantioselective intramolecular reaction conditions 

The results summarized in Table 4 show at first the effect of metallic salts of 

group XI. Au(I), Cu(I) and Ag(I) salts (Table 4, entries 1-3) were tested in the 

intramolecular (3+2) cycloaddition reaction of 119 in the presence of DIPEA and 

acetonitrile at room temperature. 

Table 4. Screening of metallic salt and ligands in the intramolecular cycloaddition reaction of 119. 

 

Entry Ligand Metallic salt 
endo-120/ 

dimer-121 

Yield
a
(%) ee

b
(%) 

endo-120 dimer-121 endo-120 exo-121 

1 102c
c 

Au(I)/BARF n.r. n.r. n.r. n.d. n.d. 

2 83b Cu(CH3CN)4PF6 n.r. n.r. n.r. n.d. n.d. 

3 83b AgClO4 50:50 33 40 30 Rac. 

4 83a AgClO4 50:50 8 15 25 Rac. 

5 83c AgClO4 50:50 16 30 Rac. Rac. 

6 85 AgClO4 50:50 23 40 Rac. Rac. 

7 83b AgOAc 60:40 30 25 20 Rac. 

8 83b AgSbF6 55:45 27 36 15 Rac. 

9 83b AgOTf 50:50 17 37 9 Rac. 

10 83b AgPF6 50:50 18 38 15 Rac. 

a
Yield determined from isolated product after purification. 

b
 Enantiomeric excess was measured by HPLC: 

IB column; endo cycloadducts: 95:5 Hex:
i
PrOH, 1 mL/min,  = 277 nm; exo cycloadducts: 75:25 Hex:

 

i
PrOH, 1 mL/min,  = 233, 273 nm. 

c
Gold(I) complex 102c’s structure is present in scheme 2.21. n.d. = not 

determined. n.r. = no reaction. 
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 Silver complexes showed the formation of two products whereas gold and 

copper complexes did not react. Ligand 83b and silver perchlorate catalyzed (3+2) 

intramolecular reaction led to the formation of adduct endo-120 which showed 30 % of 

ee (Table 4, entry 3). 

Different ferrocenyl ligands were tested in the intramolecular (3+2) cycloaddition 

reaction. Ligand 83a or 83b showed similar ee values for endo-120, although the 

enantiocontrol obtained with 83b was slightly higher (Table 4, entries 3 and 4). In 

comparison, ligands 85 and 83c (Table 4, entries 5 and 6) bearing N-methyl and -

benzyl groups respectively, destroyed the enantiomeric excess. Owing to the slight 

improvement induced by tert-butyl ester group of ligand 83b, it was selected for further 

studies. 

Considering the enantiomeric excess and diastereocontrol demonstrated by 

different silver (I) salts (Table 4, entries 3 and 7 to 10) AgClO4 showed best 

enantiocontrol of the reaction (Table 4, entry 3). Although, the endo/exo 

diastereocontrol obtained with AgOAc was slightly better favoring endo-120 product 

formation slightly (table 4, entry 7), improvement of the enantiomeric excess was 

priorized for the optimization of the process. It is worth it to note that dimer-121 was 

found to be racemic in all cases. Following the optimization process of the 

intramolecular reaction solvent effect was studied (Table 5, entries 1-5).  

As it can be observed in Table 5, toluene and DCM exhibited better 

enantioselectivities comparing to the rest of solvents (Table 5, entries 2 and 4). 

Distinctively, THF exhibited better diastereocontrol but the enantiomeric excess was 

found to be the lowest (Table 5, entry 3).  

Screening at different temperatures was carried out in order to improve the ee 

of the reaction. When reaction was carried out in toluene, at -80°C, reaction showed a 

conversion smaller than 5% after 60 h of reaction (Table 5, entry 7). When the reaction 

was carried out using toluene, at -40°C total conversion of the starting material was 

observed and best enantiomeric excess of 60% was achieved for endo-120 (Table 5, 

entry 8). Interestingly, CH2Cl2 showed conversion of just 50 % after 48 h at -40°C, but 

endo-120 adduct was isolated with 60% of ee (Table 5, entry 9).  

At last, influence of the type of base was analyzed. AgOAc was employed 

instead of AgClO4 as it can act as source of coordinating metal, and the release of 

AcO- can act as base (Table 5, entry 9). Et3N was also employed as base of the 

reaction observing similar results as when DIPEA acted as base (Table 5, entry 10). 

 Unfortunately, under the best reaction conditions, endo-120 adduct was 

obtained with a maximum enantiomeric excess of 60% ee. We concluded that 

ferrocenyl-proline ligands were able to induce a moderate enantiomeric excess for the 

intramolecular (3+2) cycloaddition of imine 119. 
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Table 5. Solvent, base and temperature effect in enantiocontrol of intramolecular reaction. 

 

Entry Solvent 
Base     

(5 mol%) 
T (°C) 

Reaction 

Time (h) 

endo-120/ 

dimer-121 

Yield
a
(%) ee

b
(%) 

120 121 120 121 

1 CH3CN DIPEA r.t. 16 50:50 33 40 30 Rac. 

2 Toluene
 

DIPEA r.t. 16 60:40 47 50 40 Rac. 

3 THF DIPEA r.t. 16 65:35 20 20 20 Rac. 

4 CH2Cl2 DIPEA r.t. 16 60:40 35 63 50 Rac. 

5
c 

DMF DIPEA r.t. 16 50:50 n.d. n.d. n.d. n.d. 

6 Toluene
 

DIPEA -80°C 60 - - - -. - 

7 Toluene
 

DIPEA -40°C 48 n.d. Conv. >99% 60 Rac. 

8 CH2Cl2 DIPEA -40°C 84 n.d. Conv. = 50% 60 Rac. 

9
d 

Toluene
 

AgOAc -40°C 48 60:40 Conv. >99% 57 Rac. 

10 Toluene Et3N -40°C 48 60:40 Conv. >99% 60 Rac. 

All reactions performed using 5 mol% of AgClO4 and 5.2 mol% of 83b. 
a
Yield determined from isolated 

products after purification and conversion determined by 
1
H NMR spectroscopy. 

b
 Enantiomeric excess 

was measured by HPLC: IB column; endo-120: 95:5 Hex:
i
PrOH, 1 mL/min,  = 277 nm; dimer-121: 75:25 

Hex:
 i
PrOH, 1 mL/min,  = 233, 273 nm. 

c
Almost no conversion of the reaction. 

d
AgOAc (5 mol%) was 

used as base and as metallic source. n.d. = not determined. 
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2.6 Intermolecular enantioselective (3+2) cycloadditions 

catalyzed by Ferrocenyl-proline ligands and transition metals 

 
2.6.1 Synthesis of 3-nitrochromene and optimization of reaction conditions  

We prepared 2-aryl-3-nitrochromers by means of the procedure reported by  

Wang and coworkers. These authors have recently synthesized 2-aryl-3-nitro-2H-

chromenes starting from readily available starting materials such as salicylaldehyde 

and nitrostyrene derivatives.78 Pyrrolidine and benzoic acid are present in 30 mol% as 

catalyst/cocatalyst and the reaction is carried out under reflux of EtOH. Mechanistically, 

an oxa-Michael reaction followed by a Henry reaction and dehydration affords 

Compound 122 is obtained after oxa-Michael addition of the phenyl moiety of 115, 

followed by a Henry addition/elimination sequence. 

 

 

Scheme 2.28. 2-phenyl-3-nitrochromene 122 synthesis. 

 

To the best of our knowledge, enantioselective (3+2) cycloadditions of -

iminoesters with 3-nitrochromenes as dipolarophiles in enantioselective fashion has not 

been studied previously. Thus, following our interest in the synthesis of tricyclic 

molecules of biological interest via (3+2) cycloadditions, we decided to study the 

reaction between bicyclic dipolarophile 122 and N-metalated azomethine ylides derived 

from imines, taking into account the previous work developed with ferrocenyl-proline 

ligands.71 

 Screening of ligands was performed at room temperature. The diastereomeric 

ratios, conversions of the reaction and enantiomeric excesses of the crude reaction 

mixtures were compared in order to select the best ligand for this reaction (Table 6, 

entries 1 to 4). 1H NMR analysis of the reaction mixtures showed two major products, 

which similar spectroscopic data led us to consider them as diastereisomers 165a and 

165’a. Further studies of elucidation of the structure of these compounds will be 

explained in next section. 

  Ligand 83a showed moderate diastereomeric ratio, good conversion and 

moderate enantiomeric excess for the reaction (Table 6, entry 1). Comparing ligand 

83a versus ligand 83b (Table 6, entry 2), the latter demonstrated better results in terms 

of diastereo- and enantiocontrol and a slightly higher conversion.  
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Table 6. Optimization of model reaction between iminoester 80a and dipolarophile 122. 

 

Entry Ligand/Additive 
Temperature 

(°C) 
123a/ 123’a Conversion (%)

a
 

ee
b
(%) 

123a 123’a 

1 83a r.t. 68:32 60 50
c 

n.d. 

2 83b r.t. 80:20 75 65
c
 (45) n.d. 

3 85 r.t. >99:1 65 33
c 

n.d.. 

4
d 

102c/BARF r.t. 55:45 29 n.d. n.d. 

5 83b 40°C. 85:15 70 33 n.d. 

6 83b 0°C. 60:40 n.d. 77 73 

7 83b -20°C. 52:48 84 89 67 

8 83b -40°C. 46:54 85 73 40 

a
Conversion determined by 

1
H NMR spectroscopy. 

b
 Enantiomeric excess was measured by HPLC: 

IB column 95:5 Hex:
i
PrOH, 1 mL/min,  = 233 nm. 

c
Enantiomeric excess measured for the crude, in 

parenthesis after purification. 
d
Reaction with Au(I) was carried out for 76 h without further conversion 

no [Cu(CH3CN)4]PF6. n.d. = not determined. 

 

 Although ligand 85 showed full diastereocontrol favoring formation of 123a 

exclusively, poor enantiomeric excess was observed. Activation of gold (I) complex 

102c promoted the conversion of imine 80a into 123a and 123’a but even after 76 h of 

reaction conversion was just 29%. In summary, ligand 85b exhibited best results at 

room temperature, probably due to the steric hindrance created by the spinning of tert-

butyl group of the ester. 

 The effect of the temperature on the enantio- and diastereocontrol was also 

studied. It was observed that when the reaction was carried out from higher to lower 

temperatures the diastereocontrol decreased considerably while enantiocontrol rose up 

(Table 6, entry 2 and entries 5 to 9). Hence, the optimal temperature selected for the 

model reaction was -20°C (Table 6, entry 7). At this temperature the reaction presented 
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no diastereocontrol, although, both diastereisomers were isolated with acceptable 89% 

and 67% enantiomeric excesses, respectively. 

 

2.6.2 Relative and absolute configuration of diastereisomers 

In the model reaction two diastereisomers were synthesized and under 

optimized reaction conditions both isomers were found to be present in equal amounts 

(see Table 6). Cycloadduct 123a was first analyzed by 1H NMR spectroscopy.  

 

Figure 2.14. 
1
H NMR spectrum for diastereisomer 123a and representative signals of pyrrolidine ring. 

 

 Signals corresponding to the pyrrolidine are shown in Figure 2.14. With 

exception of the singlet at 5.58 ppm which was unequivocally assigned to H1, all the 

signals of adduct 123a were assigned by COSY and HSQC-correlation (see Annex I). 

Owing to the coupling constants and multiplicities observed for proton at 4.16 ppm we 

assumed it was the proton in  to the ester group, H4. Assignment of signals at 4.97 

and 4.16 ppm, respectively, was made by comparing the respective coupling constants. 

It is well known that pyrrolidines in nearly envelope conformation present a J-cis > J-

trans in the flat part of the envelope. In view of that, proton at 4.97 ppm presents a 

large coupling constant of 10.74 Hz. Therefore, it can be concluded that proton H4 and 

the one at 4.97 ppm are in cis disposition. On the other hand, coupling constant of 3.77 

Hz was measured for the proton signal at 4.79 ppm, which was assumed to be 

compatible with a trans disposition with respect to H4. 2D-HSQC correlation 

experiments showed that proton at 4.79 ppm was adjacent to carbon at 46.2 ppm. This 

permitted us to assign this signal as H5. Hence, relative configuration of the pyrrolidine 

H5 

-NH 
H4 

-CO2Me 

H3 

H1 
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ring in compound 123a was assigned. Configuration of H1 was not possible to 

determine from these spectroscopic data. 

We were able to obtain suitable crystals of enantiopure compound 123a which 

were studied by X-ray diffraction. The absolute configuration of cycloadduct 123a was 

assigned for all asymmetric carbons C1, C2, C3, C4, C5 as S, R, R, R, S, respectively. 

(see Annex III). The ORTEP diagram is shown in Figure 2.15. 

 

 

Figure 2.15. ORTEP diagram with thermal ellipsoids in a 50% probability for cycloadduct 123a. 

 

Additionally, the second diastereisomer was analyzed by 1H NMR. In this case 

protons H4 (5.00 ppm) and H5 (5.06 ppm) were found to be in cis disposition to each 

other since their coupling constants are 9.57 and 10.02 Hz, respectively. Interestingly, 

the methoxy signal of the ester, which was placed at 4.03 ppm for 123a, now is 

observed at 3.36 ppm. This effect is related to the inversion of configuration observed 

in the H4 proton. In this case we were not able to obtain suitable crystals of 123’a for 

their study by X-ray diffraction.  

In view that we could not elucidate the structure for compound 123’a we carried 

out the enantioselective (3+2) cycloaddition reaction between tert-butyl iminoesters and 

dipolarophile 122. Compounds 123b and 123’b were obtained with high enantiomeric 

excesses (see Scheme 2.29). 
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Figure 2.16. 
1
H NMR spectrum for diastereisomer 123’a and representative signals for pyrrolidine ring 

protons. 

Figure 2.17. ORTEP diagram with thermal ellipsoids in a 50% probability for molecule 123’b. 
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Scheme 2.29. Synthesis of tert-butyl ester cycloadducts 123b and 123’b by (3+2) cycloaddition reaction. 

 

Suitable crystals were obtained for compound 123’b, and thus, they were 

studied by X-ray diffraction analysis. Compound 123’b showed the same configuration 

found for compound 123a but with an inversion of configuration in the asymmetric 

carbon  to the ester group (compare C4 of Fig 2.19 and Fig 2.17). Thus, 123’b 

revealed absolute configuration for asymmetric carbons C1, C2, C3, C4 y C5 as S, R, 

R, S y S, respectively (see Annex III).  

Regarding to the structure, tert-butyl ester group is placed in the positive 

shielding cone of the phenyl group of the chromene, similarly methyl group could be 

placed as well for compound 123’a. This effect would justify the displacement of the –

CO2Me signal to higher field.  

On the basis of these studies we concluded that the configuration of major 

enantiomers of cycloadducts 123a and 123’a is the one shown in Table 6. 

 

2.6.3 Synthesis of -iminoesters 80a-i and aryl chromene derivative 128 

In order to enlarge the scope of the reaction several substitution patterns were 

explored. For that, it was necessary to synthesize several -iminoester derivatives, as 

well as different dipolarophiles.  

 

 

Scheme 2.30. Synthesis of glycine derived -iminoester compounds 80a-i. 
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 -Iminoesters 80a-i were synthesized starting from their corresponding 

aldehyde and glycine ester. In general aldehydes were totally converted into the 

respective imines with good to excellent yields. All imines were stored at -4°C. Vanillin-

125 reacted with 126 in presence of benzylamine and acetic acid to afford nitroalkene 

127 in a moderate yield. Following the synthetic procedure described by Liu78 

chromene 128 was obtained in low yield. 

 

Scheme 2.31. Synthesis of nitroalkene 127 and modulated dipolarophile 128. 

 

2.6.4 Scope of the reaction: chromeno[3,4-c]pyrrolidine derivatives 

The scope of this reaction was analyzed under the previously optimized 

reaction conditions. The substitution pattern of the azomethine ylide was first analyzed. 

In addition, substitutions in the ester and on the 2-aryl group of the chromene were 

studied. All the results obtained are collected in Table 7. 

As we have previously discussed in the elucidation of the stereochemistry of the 

reaction, installation of a tert-butyl group instead of a methyl ester showed a similar 

stereochemical outcome (Table 7, entry 1 and entry 2). However, the presence of a 

tert-butyl group slightly favors the formation of adduct 123b compared to methylester 

cycloadduct. Moreover, enantiomeric excess for both diastereisomers increased, 

obtaining for 123b a 97% ee. 

The effect of different electron-donating and electron-withdrawing groups placed 

in para-position of the aromatic ring was also analyzed. Methoxy is a strong activating 

group and when it was introduced in para-position showed higher reactivity was 

observed in terms of the conversion of the reaction (Table 7, entry 3). On the other 

hand,  para-fluorophenyl as electron-withdrawing group presented lower reactivity with 

a maximum conversion of 47% (Table 7, entry 5). Reaction with a para-nitrophenyl 

group was tried but small conversion was observed and isolation of products was not 

possible.  

No diastereocontrol was observed either for para-fluorophenyl or other 

substitution patterns (Table 7, entries 3-10). The enantiomeric excesses observed for 

both strong electron-donating and electron-withdrawing groups were good to excellent 

(Table 7, entries 3-6). The compound bearing the most electron-donating para-

methoxyphenyl moiety showed the highest enantiomeric excess (91% ee, Table 7, 

entry 3). Lower ee values were observed for cycloadducts 123e and 123’e possessing 

a para-fluorophenyl substituted tricycles (83% ee, Table 7, entry 5).  
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Reactions with different aromatic frameworks were studied as well. 2-Naphtyl 

moiety behaved similar to phenyl containing compounds in terms of reactivity, 

diastereo- and enantiocontrol (Table 7, entry 7). 2-Furyl substituted compound, on the 

other hand, exhibited excellent enantiomeric excess for cycloadduct 123h (Table 7, 

entry 8). However, introduction of 2-thiophenyl moiety in the tricyclic compound 

decreased considerably the enantiocontrol (Table 7, entry 9).  

 

Tabla 7. Scope of the reaction with different substituents. 

 

Entry R
1 

R
2 

R
3 Conv. 

(%)
a
 

d.r.
a
 Product 

Yield
b
(%) ee

c
(%) 

123 123’ 123 123’ 

1 Ph Me Ph 85 52:48 a 32 31 89 67 

2 Ph 
t
Bu Ph 76 63:37 b 24 15 97 89 

3 4-MeO-Ph Me Ph 90 48:52 c 22 16 91 72 

4 4-Me-Ph Me Ph 74 48:52 d 27 24 89 77 

5
 

4-F-Ph Me Ph 47 46:54 e 22 22 83 68 

6 4-OH-Ph Me Ph 70 45:55 f 14 16 85 68 

7 2-naphtyl Me Ph 66 51:49 g 27 32 84 58 

8 2-furyl Me Ph 83 45:55 h 21 27 97 71. 

9
 

2-thiophenyl
 

Me Ph 71 50:50 i 21 26 63 64 

10 Ph Me 4-OH-3-MeO-Ph 49 45:55 j 15 18 90 44 

All reactions were performed starting from 0.34 to 0.29 mmol of corresponding imine. 
a
Conversion and 

diastereomeric ratio were determined by 
1
H NMR of crude reaction. 

b
Yield was determined from isolated 

product after purification. 
c
 Enantiomeric excess was measured by HPLC with different chiral columns (see 

experimental part) in  = 233 nm. 

 

If chromene 128 was employed as dipolarophile, bearing a para-hydroxy-meta-

methoxyphenyl ring on it, lower reactivity was observed (Table 7, entry 10). 

Enantiomeric excess for 123j was excellent, but in contrast 123’j isomer showed a 
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dramatic decrease on the enantiomeric excess compared to model reaction using 

chromene 122 (Table 7, compare entry 1 with entry 10). 

 

2.6.5 Cannabinoid receptor affinity of chromeno[3,4-c]pyrrolidines 

In view of the similarity of our developed structures with chromenopyrazoles 

reported by Jagerovic that have shown interesting results in the binding of CB1 and 

CB2 receptors, our compounds were sent to analyze their affinity abilities.79 

Radioligand displacement studies were performed with molecule (±)-123a (racemic), 

123a (89% ee) and 123’a (67% ee). The results obtained by Jagerovic and coworkers 

(Instituto de Química Médica, Madrid) are described in Table 8.  

 

Tabla 8. Affinities measured for chromenopyrrolidines 123a and 123’a. 

 

Entry Compound e.r. % Affinity CB1
a 

% Afinidad CB2
a 

1 (±)-123a 50:50 57 55 

2 123a 94.5:5.5 50 44 

3 123’a 83.5:16.5 41 39 

a
Average of three experiments run three times in different dates. Compounds were tested at 40M 

 

 

 Compound (±)-123a showed best affinity toward both CB2 and CB1 receptors 

although it was a racemic mixture. Unfortunately, compounds that displace radioligand 

must show a percentage superior to 70% in order to measure the affinity in increasing 

concentrations of the compound. Thus, it was considered that compounds do not bind 

to CB1 and CB2 receptors or they bind both receptors with an affinity constant (Ki ) that 

requires concentrations higher than 40 M. 

  

                                                
79

 a) Cumella, J.; Hernández-Folgado, L.; Girón, R.; Sánchez, E.; Morales, P.; Hurst, D. P.; Gómez-Cañas, 

M.; Gómez-Ruiz, M.; Pinto, D. C. G. A.; Goya, P.; Martin, M. I.; Fernández-Ruiz, J.; Silva, A. M. S; 

Jagerovic, N., ChemMedChem, 2012, 7, 452–463.  b) Morales, P.; Gómez-Cañas, M.; Navarro, G.; 

Hurst, D. P.; Carrillo-Salinas, F. J.; Lagartera, L.; Pazos, R.; Goya, P.; Reggio, P. H.; Guaza, C.; Franco, 

R.; Fernández-Ruiz, J.; Jagerovic, N., J. Med. Chem. 2016, 59, 6753–6771. 
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 We considered that it would be possible to improve the affinity of our 

cycloadducts for both receptors by increasing their lipophilicity. Therefore, we decided 

to introduce a para-pentyloxy group at the phenyl moiety.  

 

In a first step corresponding aldehyde 124i was synthesized quantitatively by 

Williamson reaction using n-pentyl iodide 129 in the presence of K2CO3 and 18-Crown-

6 ether. Then, aldehyde 124i reacted with glycine methyl ester hydrochloride 100a to 

afford azomethine ylide precursor 80j in quantitative yield 

 

 

Scheme 2.32. Williamson reaction that permitted introduction of alkyl chain that led to the formation of 
aldehyde 124i and its condensation with glycine ester hydrochloride 100a to provide azomethine ylide 

precursor 80j. 

 

 Finally, [Cu(CH3CN)4]PF6/ligand 83b catalyzed (3+2) cycloaddition afforded 

compounds 123k and 123’k with no diastereocontrol and 86% conversion. Both 

diastereisomers exhibited the best enantiomeric excesses obtained to date for this type 

of chromane derivatives. It seems that the presence of the alkoxy chain results in an 

improved enantiocontrol. 

 

Scheme 2.33.  Synthesis of compounds 123k and 123’k that bear an alkoxy chain by (3+2) cycloaddition 

reaction. 
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 Diastereisomers 123k and 123’k were sent to test their affinity toward CB1 and 

CB2 receptors. The results obtained with these molecules are being carried out at the 

laboratory of Jagerovic’s group.  

 

2.6.6 Preliminary experimental and computational studies on the configuration 

of chromene stereogenic center for endo and endo’ cycloadducts 

The enantioselective (3+2) cycloaddition reaction of azomethine ylides with 3-

nitro-2-phenyl-2H-chromene afforded the formation of two cycloadducts 123 and 123’. 

These compounds only differ in the absolute configuration of a chiral center. For this 

reason, further considerations about the mechanism insights were carried out. 

3-nitro-2-phenyl-2H-chromene was employed as a racemic mixture in the 

reaction with different -iminoesters. This nitro compound presents an asymmetric 

carbon not involved in the cycloaddition reaction. Because of this, it could be expected 

that in the generation of compounds 123 and 123’ this carbon would present both R 

and S configurations. Instead, X-ray structures of the isolated products showed 

exclusively S configuration in this carbon (see Figures 2.17 and 2.15, carbon C1, 

ORTEP diagram). In order to shed light on the mechanism of this reaction some 

experimental and computational studies were performed. 

We analyzed the behavior of enantiomerically pure chromene in order to 

observe a possible improvement on the selectivity of the (3+2) cycloaddition reaction. 

For that, racemic mixtures of chromene were purified by semipreparative HPLC. S-

enantiomer was successfully isolated and its configuration was confirmed by X-ray 

diffraction analysis of the crystal (see Annex III). Unfortunately, all attempts to obtain R-

enantiomer pure were not successful. Instead, an enantio-enriched mixture of it was 

obtained (20:80 S/R). 

Subsequently, S-122 or R-enantio-enriched mixture of 122, respectively, were 

employed as dipolarophiles under the previously optimized (3+2) cycloaddition 

conditions. The results obtained were similar to those observed with the racemic 

mixture. Therefore, no preferential formation of one of the cycloadducts was observed. 

As a consequence, a plausible mechanism for the reaction must involve the 

isomerization of the asymmetric carbon (C1) of the chromene reagent. 

 

Scheme 2.34. (3+2) cycloaddition reaction with S-122 or enantio-enriched R-122, afforded both 

diastereisomers equally. 
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We performed DFT calculations on the azomethine ylide and 3-nitro-2-phenyl-

2H-chromene reaction mechanism in order to identify any possible isomerization 

process on carbon C1 during the (3+2) cycloaddition reaction.  

 

Scheme 2.35. Proposed formation of cycloadducts and possible unimolecular isomerization pathway. Free 

activation and free relative energies of each process are in kcal/mol and calculated at B3LYP/ 6-31G(d) 

&LANDL2DZ level of theory. 

 

Initially we considered a simplified model system that does not involve the 

ferrocenyl-proline ligand and focuses only on the W-shaped azomethine ylide. Within 

the proposed mechanism of N-metalated (3+2) cycloaddition reaction (see Scheme 

2.8), the process would start with the coordination of copper(I) with azomethine ylide 

and nitro group of the dipolarophile. Since the dipolarophile is a racemic mixture we 

need to consider two pseudo-diastereomeric reactive complexes Rc(R) and Rc(S), one 

for each enantiomer (Scheme 2.36).  

At this point, each reactive complex Rc(R) or Rc(S) reacts through a Michael 

addition yielding zwitterionic intermediates Int-(R) and Int-(S). These intermediates 

could react via aza-Henry intramolecular cyclization giving rise to compounds 123a and 

Pyrr-(R), respectively.  
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Besides, zwitterionic intermediates R and S bear a nitronate group that can give 

rise to the enolether intermediate Int-iso, in which the chiral information of electrophiles 

(R)- or (S)-122 is lost. Therefore, unimolecular isomerization of phenylchromene 

intermediates was envisaged prior to the second step of the stepwise (3+2) reaction, 

normally the intramolecular aza-Henry cyclization. 

The whole reaction profile for the model system is depicted in Scheme 2.36. In 

all the process free activation energies and free relative energies are given in kcal/mol 

(fully optimized structures of all TS are depicted in Fig. 2.18 and Fig. 2.19). As far as 

the energetic profile of our proposed mechanism is concerned, the free activation 

energy associated with the initial Michael step of Rc(S) is 5.0 kcal/mol less energetic 

than its R counterpart. This can be attributed to the steric hindrance of the phenyl 

group of (R)-122 in TS1R, to be compared with the distal position of this group in less 

energetic TS1S saddle point (Figure 2.18). 

Once the corresponding intermediates are formed, the activation barrier 

associated with the second aza-Henry step is also lower for the S-chromene derivative. 

In this case, this barrier is slightly lower than the one associated with the first Michael 

step. Therefore, as soon as Int-(S) is formed it would be prompted to go through 

cyclization and give rise to 123a. 

 

Figure 2.18. Fully optimized transition states associated with the Michael and aza-Henry steps depicted in 

Scheme 2.35 obtained at B3LYP/ 6-31G(d) &LANDL2DZ level of theory. 
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On the other hand, the free activation energy for cyclization step of Int R is 

slightly higher than the one of the first step. In this case, Int R could isomerizes to Int-

(S) before the aza-Henry step. 

In view of these results, we analyzed the isomerization process that could 

connect both zwitterionic intermediates. We initially postulated an intramolecular 

process in which Int-(R) could be transformed into Int-(S) through intermediate Int-iso 

bearing a planar C=C double bond and no asymmetric carbons. The chief geometric 

features of saddle points TSisoR and TSisoS that connect intermediates Int-(R) and    

Int-(S) are gathered in Figure 2.19. Our results showed that the activation energy 

associated with the proton shifts for both intermediates are quite high (Scheme 2.36, 

TSisoR and TSisoS). 

 

Figure 2.19. Fully optimized transition states associated with the proposed isomerization unimolecular 

process obtained at B3LYP/ 6-31G(d) &LANDL2DZ level of theory.  

 

 Since these calculations involve a model simplified system, completion of the 

coordination sphere of the Cu(I) center could affect the energy balance of the process. 

In addition, neither energy correction associated with non-covalent dispersion energies 

nor solvent effects (that could stabilize these polar species) were considered, 

Additional calculations including these factors are being conducted in our group. 
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2.7 Conclusions 

 

 Ferrocenyl-proline/[Cu(CH3CN)4]PF6 catalyzed (2+1) cycloaddition reactions of 

heterocyclic alkenes  with ethyl diazoacetate afforded racemic cyclopropanes in 

low yield.  

 

 Ligand 83a in combination with dirhodium tetraacetate was able to yield new 

tricyclic compound trans-114a in a 50% yield, but with no enantiomeric excess. 

 

 AgClO4 and 83b ligand catalyzed intramolecular (3+2) cycloaddition reaction 

afforded a maximum of 60% ee for tricyclic chromeno [4,3-b] pyrrolidine endo-

120, whereas dimer-121 was racemic in all the cases. 

 

 The presence of dimer-121 is rationalized by the conformational freedom of Ph-

O-CH2 moiety in imine 119. This fact, conferred a plausible mechanistic 

explanation in which inter- and intramolecular processes are compete to yield 

dimer-121 and cycloadduct endo-120, respectively. 

 

 Ligand 83b was employed along with [Cu(CH3CN)4]PF6 in order to catalyze new 

intermolecular (3+2) cycloaddition reaction between glycine derived iminoesters 

80a-j and chromenes 122 and 129 with no diastereocontrol but in good to 

excellent enantiomeric excesses. Different substitution patterns were analyzed 

in the aromatic position of the azomethine ylide, ester group of the azomethine 

ylide and substitution in the aromatic ring of dipolarophile. The absolute 

configuration of compounds 123a and 123’a was established by X-ray 

diffraction. 

 

 Compounds (±)-123a and 123a (racemic and enantiopure) and 123’a 

(enantiopure) were tested in a preliminary affinity test as possible cannabinoid 

ligands. Racemic compound (±)-123a exhibited best percentage of radioligand 

displacement but still not enough for a considerable binding to CB1 and CB2 

receptors. Compounds 123k and 123’k demonstrated an excellent enantiomeric 

excess by introducing a pentyloxy chain as subtituent in para position to the 

phenyl of the azomethine ylide (>99% and 93% ee, respectively). Experiments 

of binding toward cannabinoid receptors for these two compounds are under 

analysis. 

 

 Preliminary computational and experimental studies indicate that the reaction is 

stepwise. Aside the conjugate Michael-like step and the intramolecular aza-

Henry cyclization, configuration inversion of the chiral carbon of the chromene 

moiety can occur through isomerization and equilibration via nitronate moiety of 

the reaction intermediate.  Unfortunately, free activation energies associated 

with the isomerization process are elevated for a unimolecular process.  

Additional calculations including energy corrections associated to non-covalent 

dispersion energies and solvent effects are being conducted. 
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2.8 Experimental part 

2.8.1  General remarks  

All reactions were carried out under a nitrogen or argon atmosphere with dry 

solvents under anhydrous conditions, unless otherwise noted. All the glassware has 

been previously dried in an oven at 90°C. Room temperature is related to around 20-

25°C. Reactions at 0°C were carried out using an ice bath; reactions from -78°C to -

10°C were carried out using a cryostat with acetone. 

Diethyl ether (Et2O) and toluene were obtained by passing commercially 

available dry, oxygen-free formulations through activated alumina columns from a SPS 

(solvent purification system) machine. Dry methanol (MeOH), dry acetonitrile (ACN) 

and Et3N were obtained by distillation over calcium hydride. Tetrahydrofuran (THF) was 

distilled over sodium and benzophenone and used directly. Ethyl acetate (EtOAc), 

diethyl ether (Et2O), dichloromethane (DCM) and n-hexane were purchased at the 

highest commercial quality and used without further purification, unless otherwise 

stated. Reagents were purchased at the highest commercial quality and used without 

further purification, unless otherwise stated. Yields refer to chromatographically and 

spectroscopically (1H NMR) homogeneous materials, unless otherwise noted. 

Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm 

E. Merck silica gel plates (60F-254). Ethanolic solution of phosphomolybdic acid, 

aqueous cerium molybdate and aqueous potassium permanganate were used as 

developing agents. E. Merck silica gel (60, particle size 40-63 μm) was used for column 

chromatography. 

 

 NMR spectra were recorded on Bruker Avance Ultrashield spectrometer of 

400 MHz and 500 MHz, and were calibrated using residual undeuterated solvent as an 

internal reference.  

 

 Infrared spectra were recorded between 4000 and 400 cm-1 on an Alpha 

Bruker FT-IR spectrometer with a single reflection ATR module.  

 

High-Resolution Mass Spectra (HRMS). SGIker services (Central Service of 

Alava, and Central Service of Bizkaia, University of the Basque Country) performed the 

mass analysis on a LC/QTOF, Agilent mass spectrometer using electrospray ionization 

sources and a Water Chromatography model, UPLC-DAD-QTOF of Waters, using 

electrospray ionization (ESI), respectively.  
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Analytical High Performance Resolution Chromatography (HPLC) 

experiments were performed using Daicel Chiralpack IA, IB, IC, OD-H and OJ-H 

columns (250 x 4.6 mm I.D) which contain a chiral stationary phase. The equipment 

was the following: Waters chromatograph 2487 with a dual wavelength UV 

detectorusing as eluent mixtures of iso-propanol and n-hexane.  

  

Optical rotation coefficient,    
 , was measured at 589 nm (sodium line) in a 

digital polarimeter JASCO P-2000. T is referred to the temperature of measurement .  

 

X-ray diffraction analysis. Intensity data were collected on an Agilent 

Technologies Super-Nova diffractometer, which was equipped with monochromated Cu 

kα radiation (λ = 1.54184 Å) and Atlas CCD detector (SGIker service, Service of 

Bizkaia). Measurement was carried out at 100.00 K with the help of an Oxford 

Cryostream 700 PLUS temperature device. Data frames were processed (united cell 

determination, analytical absorption correction with face indexing, intensity data 

integration and correction for Lorentz and polarization effects) using the Crysalis 

software package.80 The structure was solved using Superflip81 and refined by full-

matrix least-squares with SHELXL-9782. Final geometrical calculations were carried out 

with Mercury83 and PLATON84 as integrated in WinGX85.  

 

Elemental analysis of samples was measured using a Euro EA Elemental 

Analyzer (CHNS) from EuroVector, by SGIker service (Central Service of Bizkaia, 

University of the Basque Country). 

 

Computational methods. All the calculations reported in Chapter 2 were 

performed by Density Functional Theory (DFT),86 using the hybrid three-parameter 

functional denoted as B3LYP.87 The standard 6-31G(d) basis set88 as implemented in 

                                                
80

 CrysAlisPro, Agilent Technologies,Version 1.171.37.31 (release 14-01-2014 CrysAlis171.NET)(compiled 

Jan 14 2014,18:38:05).   
81

 Palatinus L., Chapuis G., J. Appl. Cryst. 2007, 40, 786 .  
82

  Sheldrick, G. M., Acta Cryst. 2008, A64,112; Sheldrick, G. M., ActaCryst. 2015, C71, 3.   
83

 M;acrae, C. F., J. Appl. Cryst. 2008, 41, 466. 
84

 A. L. Spek (2010) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The 

Netherlands; A. L. Spek, J. Appl. Cryst. 2003, 36, 7.   
85

 Farrugia, L. J., J. Appl. Cryst. 1999, 32, 837.   
86

 Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules, Oxford, New York 1989. 
87

 (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789. (b) Becke, A. D. J. Chem. Phys 

1993, 98, 1372–1377. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. 
88

 Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab initio Molecular Orbital Theory, Wiley, New 

York, 1986; pp. 76-87 and references cited therein. 
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the Gaussian0989 was used to describe hydrogen, carbon, nitrogen and oxygen atoms. 

Copper atom was described by the Hay-Wadt effective core potential (ECP)90 including 

double- valence and LanL2DZ basis set.91 All stationary points were characterized by 

harmonic analysis. Reactants, intermediates and cycloadducts have positive definite 

Hessian matrices. Transition structures show only one negative eigenvalue in their 

diagonalized force constant matrices, and their associated eigenvector were confirmed 

to correspond to the motion along the reaction coordinate. Thermal corrections to 

Gibbs free energies (TCGE) at 298 K were computed at the same level and were not 

scaled. 

 

2.8.2 Ferrocenyl-Proline ligand synthesis: 

 

2.8.2.1 Procedure for synthesis of NMe-L-EhuPhos-85 

(2S,3S,4R,5S)-Methyl-5-((Sp)-2-(diphenylphosphino)ferrocenyl)-1-methyl-4-nitro-3-

phenylpyrrolidine-2-carboxylate. (85)92  

In a dried flask a mixture of((Sp)-2-(diphenylphosphino)) 

ferrocenecarboxaldehyde 99 (0.46 g, 1.15 mmol), sarcosine 

methyl ester hydrochloride  (0.21 g, 1.50 mmol), Et3N (0.21 mL, 

1.50 mmol), trans-β-nitrostyrene 81 (0.22 g, 1.50 mmol) and 

MgSO4 were placed and dissolved in toluene. Mixture was 

stirred at reflux of toluene until full conversion.  Reaction was 

monitored by TLC (thin layer chromatography) and reaction showed completion in 5-6 

hours. After that, mixture was filtered through a pad of Celite and evaporated under 

reduced pressure. Flash column chromatography was practiced in a mixture of eluent 

EtOAc/n-hexane = 20:80 in order to obtain 378 mg of ligand 85 as a yellow solid in a 

52% yield. 1H NMR (500 MHz, CDCl3) (ppm) = 7.75 – 7.68 (m, 2H), 7.43 – 7.34 (m, 

5H), 7.26 – 7.19 (m, 6H), 7.08 – 7.04 (m, 2H), 5.42 (t, J = 7.7 Hz, 1H), 5.20 (dd, J = 

8.0, 5.0 Hz, 1H), 4.48 (t, J = 2.4 Hz, 1H), 4.46 (d, J = 1.1 Hz, 1H), 4.40 (t, J = 7.8 Hz, 

1H), 4.35 (d, J = 8.4 Hz, 1H), 4.33 – 4.29 (m, 1H), 3.84 (s, 5H), 3.33 (s, 3H), 2.92 (s, 

3H).  

                                                
89

 Frisch, M. J. et al. Gaussian 09, Revision B.01; Gaussian, Inc., Wallingford CT, 2009. 
90

 Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299-303. 
91

 McIver, J. W.; Komornicki, A. K. J. Am. Chem. Soc. 1972, 94, 2625-2633. 
92

 Conde, E.; Bello, D.; de Cozar, A.; Sanchez, M.; Vazquez, M. A.; Cossio, F. P., Chem. Sci. 2012, 3, 

1486–1491. 



CYCLOADDITIONS REACTIONS 

103 
 

2.8.2.2 General procedure for synthesis of ferrocene ligands 83a-c 

Synthesis of ligands 83a-c was performed in two steps. In the first one, 

corresponding amine hydrochloride 100a-c (1 equiv.) was dissolved in DCM, in 

presence of MgSO4 and Et3N (1.1 equiv.). After stirring at room temperature for 1 hour, 

((Sp)-2-(diphenylphosphino)) ferrocenecarboxaldehyde 99 (1 equiv.) was added and 

reaction was stirred for 16 to 24 hours at room temperature. Then, reaction mixture 

was filtered in order to remove MgSO4 and mixture was washed with H2O (2 x 20 mL) 

and extracted three times with 20 mL of DCM.  Collected organic layers were dried over 

Na2SO4 and solvent was evaporated under reduced pressure. Corresponding imine 

was obtained as oil, and it was used without further purification.  

(Sp)-2-(Diphenylphosphino)-[(2-methoxy-2oxoethyl)iminomethyl]ferrocene (101a)92  

0.30 g of ((Sp)-2-(diphenylphosphino))ferrocenecarboxaldehyde 

99 (0.75 mmol) were placed and 0.32 g of imine 101a as an 

orange oil were obtained, yield = 92%. 31P NMR (202 MHz, 

CDCl3)  (ppm)= -22.26 (s). 1H NMR (500 MHz, CDCl3) (ppm) 

= 8.48 (d, J = 2.9 Hz, 1H), 7.55 (d, J = 7.6 Hz, 2H), 7.41 (d, J = 5.6 Hz, 4H), 7.27 – 7.21 

(m, 3H), 7.15 (d, J = 7.6 Hz, 2H), 5.20 (s, 1H), 4.56 (d, J = 2.7 Hz, 1H), 4.32 (d, J = 

15.8 Hz, 1H), 4.15 (s, 4H), 3.91 (s, 1H), 3.73 (s, 3H). 

 

(Sp)-2-(Diphenylphosphino)-[(2-tertbutoxy-2oxoethyl)iminomethyl]ferrocene (101b) 

0.20 g of Sp)-2-(diphenylphosphino)) ferrocenecarboxaldehyde 

99 (0.50 mmol) were used and 0.23 g of imine 101b as a yellow 

solid obtained, yield = 90 %. 1H NMR (500 MHz, CDCl3) (ppm) 

= 8.45 (d, J = 2.9 Hz, 2H), 7.59 – 7.53 (m, 4H), 7.45 – 7.37 (m, 4H), 7.24 (dt, J = 4.1, 

1.5 Hz, 3H), 7.16 – 7.10 (m, 3H), 5.22 (dt, J = 2.9, 1.5 Hz, 1H), 4.55 (t, J = 2.6 Hz, 1H), 

4.22 (s, 1H), 4.18 (d, J = 1.4 Hz, 1H), 4.14 (s, 5H), 4.03 (d, J = 1.0 Hz, 1H), 3.90 (dt, J 

= 2.4, 1.2 Hz, 1H), 1.47 (s, 9H). 

(Sp)-2-(Diphenylphosphino)-[methyl-(S,E)-2-(ethylideneamino)-phenylpropanoate] 

ferrocene (101c) 

Imine 101c was obtained as a yellow solid, always in a 

quantitative yield. 1H NMR (500 MHz, CDCl3) (ppm) = 8.26 (d, 

J = 2.8 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.38 (d, J = 6.5 Hz, 3H), 

7.33 – 7.28 (m, 2H), 7.25 – 7.18 (m, 6H), 7.12 (m, J = 2H), 5.05 
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(s, 1H), 4.47 (t, J = 2.7 Hz, 1H), 4.12 (dd, J = 9.8, 4.5 Hz, 1H), 3.84 (d, J = 4.9 Hz, 5H), 

3.56 (s, 3H), 3.31 (dd, J = 13.8, 4.5 Hz, 1H), 3.15 (dd, J = 13.8, 9.7 Hz, 1H). 

 

In a second synthetic step, corresponding imine 101a-c (1 equiv.) was 

dissolved in anhydrous THF and subsequently LiBr (1.5 equiv.) and trans-β-

nitrostyrene 81 (1.2 equiv.) were added. Finally addition of Et3N (1 equiv.) afforded the 

formation of corresponding azomethine ylide. This process was fully carried out under 

argon atmosphere. Reaction was monitored by thin layer chromatography (TLC) using 

as eluent a mixture of EtOAc/n-hexane depending on the nature of the substituent. 

After completion, THF was removed under reduced pressure. Afterwards, crude of the 

reaction was dissolved in 20 mL of DCM and washed with aqueous saturated NH4Cl (2 

x 20 mL) and NaCl aq. sat. (2 x 20 mL). Collected organic layers were dried over 

Na2SO4 anhydrous and solvent was evaporated. Purification by flash column 

chromatography with different mixtures of EtOAc/n-hexane afforded the correct 

formation of ligands 83a-c as yellow solids. 

 

(2R,3S,4R,5S)-Methyl-5-((Sp)-2-(diphenylphosphino)ferrocenyl)-4-nitro-3-

phenylpyrrolidine-2-carboxylate (NH-D-EhuPhos-83a)¡Error! Marcador no definido. 

 

Starting from 0.29 g of imine 101a (0.63 mmol) 0.26 g of 83a 

as yellow solid obtained in a overall yield of 78% (2 steps). 

Chromatography was carried out in an eluent mixture of 

EtOAc/n-hexane EtOAc/n-hexane = 20:80. Spectroscopic data 

was in concordance with literature. 1H NMR (500 MHz, CDCl3) 

 (ppm) = 7.60 – 7.57 (m, 2H), 7.42 – 7.37 (m, 3H), 7.35 – 7.18 

(m, 8H), 7.08 – 7.03 (m, 2H), 4.94 (dt, J = 11.4, 5.6 Hz, 1H), 4.50 – 4.47 (m, 1H), 4.35 

(t, J = 2.6 Hz, 1H), 4.22 (dd, J = 5.4, 1.2 Hz, 1H), 4.17 (s, 5H), 4.03 – 3.98 (m, 2H), 

3.88 – 3.85 (m, 1H), 3.84 (s, 3H), 3.27 (dd, J = 10.8, 8.1 Hz, 1H). 

(2R,3S,4R,5S)-tert-butyl-5-((Sp)-2-(diphenylphosphino)ferrocenyl)-4-nitro-3-

phenylpyrrolidine-2-carboxylate (NH-TB-D-EhuPhos-83b) 

Starting from 0.31 g of corresponding imine 101b (0.61 mmol) 

and 0.11 g of ligand 83b as yellow solid were obtained in yield 

of 27%. Overall  yield = 49% (2 steps). Chromatography was 

carried out in an eluent mixture of EtOAc/n-hexane EtOAc/n-

hexane = 11:89. 1H NMR (500 MHz, CDCl3) (ppm) = 7.58 (s, 
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2H), 7.40 (s, 3H), 7.35 – 7.17 (m, 9H), 7.05 (d, J = 7.2 Hz, 2H), 4.99 – 4.89 (m, 1H), 

4.48 (s, 1H), 4.35 (s, 1H), 4.21 (t, J = 6.9 Hz, 1H), 4.17 (s, 4H), 3.94 (d, J = 4.5 Hz, 1H), 

3.91(m, 1H), 3.83 (s, 1H), 3.26 (d, J = 9.4 Hz, 1H), 1.52 (s, 9H). 31P NMR (202 MHz, 

CDCl3)  (ppm) = -23.13 (s). 13C NMR (126 MHz, CDCl3) (ppm) = 171.5, 140.1, 138.7, 

138.6, 136.7 (2x), 135.0, 134.9, 133.6, 133.4, 129.5, 129.2, 128.8, 128.5 (2x), 128.4, 

127.7, 127.4, 95.7, 86.7, 86.5, 82.5, 72.2, 70.6, 70.3, 69.0, 66.8, 64.4, 64.3, 56.7, 28.3. 

FT-IR (cm-1): 3316, 1730, 1541, 1367, 815, 742, 697.     
  = -67° (c= 1.00, CHCl3). 

HRMS (ESI): C37H37FeN2O4P [M + H]+, calculated: 659.1762, found: 659.1964. 

Elemental analysis calculated for C37H37FeN2O4P: C, 67.3; H, 7.3; N, 2.9; O, 9.7. 

Found: C, 67.7; H, 5.7; N, 4.6; O, 9.8. 

 

(2R,3S,4R,5S)-2-Benzyl-((Sp)-2-(diphenylphosphino)ferrocenyl)-4-nitro-3-

phenylpyrrolidine-2-carboxylate (NH-Bn-D-EhuPhos-83c) 

 (1.33 mmol) of ligand 83c were obtained as a yellow solid in a 

75% yield. Overall yield = 87% (2 steps). Chromatography was 

carried out in an eluent mixture of EtOAc/n-hexane = 20:80. 1H 

RMN (500 MHz, CDCl3)  = 7.70 – 7.58 (m, 2H), 7.48 – 7.36 (m, 

5H), 7.36 – 7.12 (m, 11H), 7.06 (d, J = 7.0 Hz, 2H), 5.23 (s, 1H), 

4.55 (dt, J = 22.6, 11.3 Hz, 1H), 4.44 (d, J = 1.1 Hz, 1H), 4.30 

(dd, J = 24.7, 7.3 Hz, 2H), 4.22 – 4.08 (m, 4H), 3.85 (s, 1H), 3.79 (s, 3H), 3.42 (s, 1H), 

2.51 (d, J = 13.5 Hz, 1H), 2.37 (d, J = 13.5 Hz, 1H). 31P RMN (202 MHz, CDCl3)  = -

23.30 (s). 13C RMN (126 MHz, CDCl3)  = 174.4, 138.6, 138.5, 137.2, 136.5, 136.4, 

136.3, 135.0, 134.8, 133.3, 133.2, 130.0, 129.4, 128.8, 128.7, 128.4 (2x), 128.3, 127.8, 

127.7, 126.7, 96.5, 86.9, 86.7, 73.7, 72.1, 72.0, 71.0, 70.3, 70.2, 66.4 (2x), 62.4, 62.3, 

59.2, 53.4, 52.6, 42.5. FT-IR (cm-1): 3324, 1736, 1547, 1371, 819, 743, 697.     
  = 

+11° (c= 1.00, CHCl3). HRMS (ESI): C41H38FeN2O4P [M + H]+, calculated 

707.1965,found 707.1935. Elemental analysis calculated for C41H38FeN2O4P: C, 69.5; 

H, 5.3; N, 4.0; O, 9.0. Found: C, 68.8; H, 5.7; N, 4.5; O, 10.9. 

 

2.8.2.3 General procedure for the synthesis of Gold(I) complexes 102a-d  

 To a solution of corresponding ferronyl-proline 83a-d (1 equiv.) in DCM (0.05 M) 

(CH3)2SAuCl (1 equiv.) was added and mixture was stirred for 4 hours at room 

temperature under nitrogen atmosphere. After this time, mixture was filtered through 
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Celite and corresponding yellow solution was evaporated to remove solvents and 

afforded yellow solids 102a-d. 

(2R,3S,4R,5S)-Methyl-5-((Sp)-2-(chloro-diphenylphosphino-gold(I))ferrocenyl)-4-nitro-

3-phenylpyrrolidine-2-carboxylate (NH-D-EhuPhosAuCl-102a)  

Ligand 83a (0.13 mmol) reacted with (CH3)2SAuCl 

(0.13 mmol) and stable complex 102a was obtained in a 60% 

yield (0.04 mmol). 1H RMN (500 MHz, CDCl3)  = 7.76 (dd, J 

= 13.4, 7.2 Hz, 2H), 7.56 (d, J = 6.0 Hz, 1H), 7.51 (t, J = 6.2 

Hz, 2H), 7.48 – 7.41 (m, 3H), 7.40 – 7.36 (m, 1H), 7.35 – 

7.28 (m, 3H), 7.28 – 7.21 (m, 4H), 5.82 (s, 1H), 4.71 (s, 1H), 

4.48 (s, 1H), 4.41 (s, 4H), 4.13 (d, J = 4.8 Hz, 1H), 4.02 (d, J = 12.4 Hz, 1H), 3,90 (s, 

1H), 3.82 (s, 4H), 3.24 (t, J = 8.9 Hz, 1H). 31P RMN (202 MHz, CDCl3)  = 23.78 (s). 13C 

RMN (126 MHz, CDCl3)  = 172.5, 138.9, 134.5, 134.4, 134.0, 133.8, 132.2 (2x), 132.0, 

131.9, 130.0, 129.6, 129.1 (2x), 129.0 (2x), 128.6, 128.0, 127.6, 95.7, 85.1, 85.0, 73.9 

(2x), 71.6, 71.3, 71.2, 69.6 (2x), 69.4, 68.8, 67.1, 63.3, 63.2, 56.1, 52.6. FT-IR (cm-1): 

3323, 1742, 1541, 1364, 801, 744, 692.     
  = -10° (c= 1.00, CHCl3). HRMS (ESI): 

C34H31AuFeN2O4P [M]+, calculated: 815.1036, found: 815.1026. Elemental analysis 

calculated for C34H31AuFeN2O4P: C, 48.0; H, 3.7; N, 3.3; O, 7.5. Found: C, 47.6; H, 3.7; 

N, 3.4; O, 7.0. 

 

(2R,3S,4R,5S)-tert-butyl-5-((Sp)-2-(chloro-diphenylphosphino-gold(I))ferrocenyl)-4-

nitro-3-phenylpyrrolidine-2-carboxylate (NH-TB-D-EhuPhosAuCl-102c)  

Ligand 83b (0.15 mmol) reacted with (CH3)2SAuCl (0.15 

mmol) and stable complex 102b was achieved as a yellow 

solid in 79% yield (0.12 mmol). 1H RMN (500 MHz, CDCl3)  = 

7.69 (dd, J = 13.3, 7.2 Hz, 2H), 7.53 – 7.47 (m, 1H), 7.47 – 

7.33 (m, 7H), 7.31 (d, J = 5.9 Hz, 1H), 7.24 (d, J = 6.3 Hz, 3H), 

7.16 (d, J = 7.2 Hz, 2H), 5.73 (d, J = 3.5 Hz, 1H), 4.63 (s, 1H), 

4.39 (d, J = 18.3 Hz, 1H), 4.34 (s, 4H), 3.93 (d, J = 5.1 Hz, 1H), 3.86 (d, J = 3.8 Hz, 

1H), 3.81 (s, 1H), 3.77 (d, J = 4.0 Hz, 1H), 3.16 (s, 1H), 1.41 (s, 9H). 31P RMN (202 

MHz, CDCl3)  = 23.75 (s). 13C NMR (126 MHz, CDCl3)  = 171.2, 139.3, 134.5, 134.4, 

133.9, 133.8, 132.1, 131.9, 130.0, 129.4, 129.1, 129.0 (2x), 128.9, 128.1, 127.8, 127.6, 

95.7, 85.2, 85.1, 82.2, 73.8 (2x), 71.6, 71.3, 71.2 (2x), 69.5, 69.4, 68.7, 67.9, 63.4, 

63.3, 56.8, 30.9, 28.0, 27.2. FT-IR (cm-1): 3313, 1727, 1544, 1366, 827, 729, 692. 

    
  = -8° (c= 1.00, CHCl3). HRMS (ESI): C37H37AuClFeN2O4P [M]+, calculated: 
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857.1506, found: 857.1503. Elemental analysis calculated for C37H37AuClFeN2O4P: C, 

49.8; H, 4.2; N, 3.1; O, 7.2. Found: C, 48.5; H, 4.1; N, 3.2; O, 7.0. 

 

2.8.3 Metal catalyzed cyclopropanation reactions: 

2.8.3.1 General procedure for the synthesis of cyclopropanes trans-109a and 

trans-110a 

Ligand NH-D-EhuPhos 83a or NMe-L-EhuPhos 85 (3.3 mol %) and the 

Cu(CH3CN)PF6 (3 mol %) were stirred for 30 minutes in DCM (anhydrous) at room 

temperature to afford the formation of the complex. After this time, corresponding 

substrate 109 or 110 (1.1 equiv.) was added to the reaction mixture and then stirred for 

additional 30 minutes. Ethyl diazoacetate 103 (1 equiv.) diluted in 10 mL of DCM 

(anhydrous) was added by a syringe pump at a rate of 1 mL/min to the reaction mixture 

and all was stirred for 16 hours at room temperature. Afterwards, the mixture was 

reduced to dryness and conversion and diastereoselectivity were determined by 1H 

NMR spectroscopy. Products were purified by flash column chromatography (AcOEt/n-

hexane = 8:92). 

 

Ethyl (1S,1aS,6bR)-1a,6b-dihydro-1H-cyclopropa[b]benzofuran-1-carboxylate (trans-

109a)93 

71 L of 2,3-benzofuran-109 (0.65 mmol) as starting material 

afforded the synthesis of 15 mg of trans-109a as colorless oil in 

12% yield. 1H NMR (400 MHz, CDCl3)  (ppm) = 7.40 (d, J = 7.5 

Hz, 1H), 7.16 (t, J = 7.9 Hz, 1H), 6.99 – 6.85 (m, 2H), 5.07 (d, J = 5.5 Hz, 1H), 4.17 (q, 

J = 7.1 Hz, 2H), 3.33 – 3.22 (m, 1H), 1.33 – 1.22 (m, 4H). 

 

Ethyl (1R,1aR,6aS)-1,1a,6,6a-tetrahydrocyclopropa[a]indene-1-carboxylate (trans-

110a)94 

74 L of indene-110 (0.63 mmol) as starting material afforded the 

formation of 34 mg of colorless oil trans-110a in 27 % yield. 1H 

NMR (400 MHz, CDCl3) = (ppm) 7.34 (d, J = 5.6 Hz, 1H), 7.17 

                                                
93

 Matlin, S. A.; Chan, L.; Catherwood, B., J. Chem. Soc. PerkinTrans 1990, 1, 89–96. 
94

 Jiang, G.; Fu, X.; Li, Q.; Yu, Z., Org. Lett. 2012, 14, 692–695. 
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– 7.10 (m, 3H), 4.15 (q, J = 7.2 Hz, 2H), 3.28 (dd, J = 17.6, 6.3 Hz, 1H), 3.05 (d, J = 

17.5 Hz, 2H), 2.95 (d, J = 6.7 Hz, 1H), 2.44 (s, 1H), 1.27 (t, J = 7.1 Hz, 3H). 

 

2.8.3.2 General procedure for synthesis of Ethyl α-diazo methyl acetate  

Ethyl α-diazo methyl acetate (113)95 

NaH (0.67 g, 27.74 mmol) was dissolved in dry Et2O (10.0 mL) and 

ethyl-2-methyl acetoacetate (2.00 g, 13.87 mmol) was added dissolved 

in 5.0 mL of Et2O. Following, the mixture was cooled down to 0°C 

using a water-ice bath. Then, TsN3 (3.28 g, 16.64 mmol) dissolved in Et2O was added 

dropwise for 5 min. Reaction was stirred for 16 hours at room temperature and 

subsequently was filtered for the removal of remaining NaH. Reaction mixture was 

washed with 4 x 20 mL H2O and extracted four times with 20 mL Et2O. Collected 

organic layers were dried over Na2SO4 and evaporated to dryness.  1.42 g of yellow oil 

was obtained in 40% yield. 1H NMR (400 MHz, CDCl3)  (ppm) = 4.19 (q, J = 7.1 Hz, 

2H), 1.93 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H). 

 

2.8.3.3 General procedure for synthesis of cyclopropanes derived from MEDA 

Corresponding ligand 83a or 85 (6.2 mol %) and Rh2(OAc)4 (3 mol %) were 

stirred for 30 minutes in a solution of DCM (anhydrous) at room temperature to afford 

the formation of the complex. After this time, indene-109 (1 equiv.) was added to the 

mixture and stirred for additional 30 min. at room temperature The corresponding ethyl 

-diazo methyl acetate 113 (1.1 equiv.) was added to the reaction mixture and stirred 

for 48 h at room temperature. Following, the mixture was concentrated to vacuo and 

conversion and diastereoselectivity were determined by 1H NMR spectroscopy. Product 

was purified by flash column chromatography using a mixture of eluents EtOAc/n-

hexane in 5:95 ratio.  

Ethyl-(1R,1aS,6aS)-1-methyl-1,1a,6,6a-tetrahydrocyclopropa[a]indene-1-carboxylate 

(trans-114a) 

23 L of indene-109 (0.19 mmol) were used and 21 mg of 

colorless oil trans-114a was obtained. Yield = 50 %. Rf: 0.34 

(EtOAc/n-hexane = 5:95). 1H NMR (400 MHz, CDCl3) (ppm) = 

                                                
95

 Bachmann, S.; Fielenbach, D.; Jørgensen, K. A., Org. Biomol. Chem. 2004, 2, 3044–     3049. 
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7.29 (d, J = 8.7 Hz, 1H), 7.14 (s, 3H), 4.17 (q, J = 7.1 Hz, 2H), 3.23 (dd, J = 18.0, 7.0 

Hz, 1H), 3.06 (d, J = 6.9 Hz, 1H), 2.82 (d, J = 18.0 Hz, 1H), 2.43 (t, J = 6.9 Hz, 1H), 

1.28 (t, J = 7.1 Hz, 3H), 0.79 (s, 3H). 13C NMR (101 MHz, CDCl3)  (ppm) = 175.2, 

144.9, 141.4, 126.6, 126.4, 125.3, 124.1, 60.9, 38.9, 32.2, 30.6, 14.4, 7.8. FT-IR (cm-1): 

2978, 2933, 2909, 1711,1585, 1542, 1476, 1380, 763, 738, 717. HRMS (ESI): 

C14H16O2 [M + H]+, calculated: 217,1223, found: 217.1224. HPLC/Mass:  RACEMIC, 

Daicel Chiralpak IC column, iso-Propanol/n-hexane 1:99 flow = 0.5 mL/min, tr1= 15.08 

min, tr2 = 15.81 min, 220 nm. 

 

 

 

 

2.8.4 Ferrocenyl-proline ligands catalyzed intramolecular (3+2) cycloaddition 

reactions 

Methyl (E)-4-(2-formylphenoxy)but-2-enoate (117)96  

To a solution of NaH (0.88 g, 36.84 mmol) in DMF (50 mL), 

salicylaldehyde 115 (2.62 g, 24.57 mmol) was added dropwise at 

0°C. The mixture was stirred for 1 hour at room temperature. After 

that, methyl-4-bromobut-2-enoate 116 (3.18 mL, 27.03 mmol) was 

added dropwise to the mixture at 0°C. Once addition was finished the reaction was 

stirred at room temperature for 16 hours. 50 mL H2O of were added to the mixture in 

order to quench the reaction and product was extracted with 40 mL of Et2O. Further 

combination of organic layers were then washed with brine and dried over Na2SO4. 

After removal of the solvent the product precipitated in Et2O and 1.84 g of yellowish 

solid 117 was obtained. Yield = 34%. 1H NMR (400 MHz, CDCl3)  (ppm) = 10.54 (s, 

                                                
96

 Stohler, R.; Wahl, F.; Pfaltz, A., Synthesis, 2005, 1431–1436. 
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1H), 7.86 (d, J = 7.7 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.17 – 7.04 (m, 2H), 6.94 (d, J = 

8.4 Hz, 1H), 6.22 (d, J = 15.8 Hz, 1H), 4.89 – 4.79 (m, 3H), 3.77 (s, 4H). 

 

Methyl (E)-4-(2-((E)-((2-methoxy-2-oxoethyl)imino)methyl)phenoxy)but-2-enoate(119)96  

Glycine methyl ester hydrochloride 118 (0.12 g, 0.99 mmol) was 

dissolved in DCM (10 mL) in presence of molecular sieves 4Å 

and N,N-diisopropylamine (0.21 mL, 0.99 mmol). Mixture was 

stirred for 1 hour at room temperature. Subsequently, 

compound 117 (0.20 g, 0.91 mmol) was added to the mixture and stirred overnight. 

Molecular sieves were removed and mixture was washed with H2O (3 x 10 mL) and 

extracted with 20 mL of DCM two times. Then, solvent was removed under reduced 

pressure and 0.22 g of white solid was obtained corresponding to 119. Yield = 85%. 1H 

NMR (400 MHz, CDCl3)  (ppm) = 8.65 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.26 (t, J = 7.5 

Hz, 1H), 6.98 (dt, J = 16.1, 4.3 Hz, 1H), 6.89 (t, J = 7.6 Hz, 1H), 6.74 (d, J = 8.3 Hz, 

1H), 6.07 (d, J = 15.9 Hz, 1H), 4.63 (s, 2H), 4.33 (s, 2H), 3.66 (s, 3H), 3.65 (s, 3H). 

 

2.8.4.1 General procedure for the synthesis of cycloadduct endo-120 and dimer-

121 

Racemic endo-120: To a solution of imine 119 (0.20 g, 0.69 mmol) and AgOAc 

(0.17 g, 1.03 mmol) in 10 mL of acetonitrile N,N-diisopropylamine (0.16 mL, 0.76 mmol) 

was added and mixture was stirred for 16 hours. After completion of reaction followed 

by TLC and 1H NMR spectroscopy, mixture was filtered through a pad of Celite and 

then solvent was removed under reduced pressure. Ratio of formed regioisomers was 

determined by 1H NMR spectroscopy and products were separated by column 

chromatography. 

Chiral endo-120: Ferrocenyl-proline ligands 83a-c or 85 (5.2 mol%) and 

metallic salts (5 mol%) were dissolved in 5 mL of corresponding solvent and stirred for 

30 minutes until complex was formed. Then, imine 119 (1 equiv.) was placed in a round 

bottom flask at described temperature for each case. Complex was added and mixture 

was stirred for 10 minutes. Subsequently, base (5 mol%) was added to the mixture and 

reaction was carried out in described temperature until completion, which was 

monitored by 1H NMR spectroscopy. Crude reaction was filtered through a pad of 

Celite and then solvent was removed under reduced pressure. Residue was purified by 

column chromatography to afford endo-120 and compound dimer-121. 
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Dimethyl-1,2,3,3a,4,9b-hexahydrochromeno[4,3-b]pyrrole-2,3-dicarboxylate           

(endo-120)96 

129 mg of imine 119 (0.44 mmol) were employed and 61 mg of 

product endo-120 were obtained corresponding to 47% yield. 

Chromatography was carried out in an eluent mixture of 

EtOAc/n-hexane = 50:50. 1H NMR (400 MHz, , CDCl3)  (ppm) = 

7.22 (d, J = 7.6 Hz, 1H), 7.11 (t, J = 7.8 Hz, 1H), 6.84 (t, J = 7.5 Hz, 1H), 6.77 (d, J = 

8.3 Hz, 1H), 4.51 (dd, J = 10.2, 4.3 Hz, 1H), 4.34 (d, J = 10.0 Hz, 1H), 4.14 (d, J = 7.2 

Hz, 1H), 4.09 (d, J = 10.9 Hz, 1H), 3.72 (d, J = 11.3 Hz, 1H), 3.67 (s, 3H), 3.64 (s, 3H), 

3.02 (t, J = 10.9 Hz, 1H). 60 % ee obtained under best reaction conditions. HPLC: 

Daicel Chiralpak IB column, iso-Propanol/n-hexane 5:95, flow = 1.0 mL/min,  = 277 

nm, trmajor = 34.2 min, trmin = 42.5 min.  

 

 

  

 

  

 

 

 

Dimerization Product (dimer-121)96 

29 mg of dimer obtained starting form 129 mg of imine 119. 

Yield = 12 %. Chromatography was carried out in an eluent 

mixture of EtOAc/n-hexane = 100:0. 1H NMR (400 MHz, , 

CDCl3)  (ppm) = 7.20 (t, J = 7.9 Hz, 1H), 7.15 (d, J = 7.6 

Hz, 1H), 6.90 (t, J = 7.5 Hz, 1H), 6.84 (d, J = 8.2 Hz, 1H), 

5.03 (d, J = 6.4 Hz, 1H), 4.40 (d, J = 9.3 Hz, 1H), 4.08 (dd, J 

= 9.5, 3.8 Hz, 1H), 3.88 (d, J = 7.3 Hz, 1H), 3.79 (s, 3H), 3.57 – 3.51 (m, 1H), 3.11 (s, 

3H), 2.98 (d, J = 7.4 Hz, 2H). HPLC: Daicel Chiralpak IB column, iso-Propanol/n-

hexane 25:75, flow = 1.0 mL/min, 233 and 273 nm. , tr1 = 16.8 min, tr2 = 45.4 min. All 

cases showed racemic nature of the product.  
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2.8.5 Intermolecular enantioselective (3+2) cycloadditions catalyzed by 

Ferrocenyl-proline ligands and transition metals 

2.8.5.1 General procedure for the synthesis of -iminoesters  

Glycine methyl or tert-butyl ester hydrochloride (101a or 101b, 1.20 equiv.) was 

dissolved in anhydrous DCM (0.50 M) in presence of MgSO4 as drying agent.  Then, 

Et3N (1.20 equiv.) was added and mixture was stirred for 1 hour at room temperature. 

Corresponding aldehyde (124a-h, 1 equiv.) was added to the reaction media and 

reaction was stirred at room temperature for 16 to 20 hours. After this time, MgSO4 was 

filtered off, and then organic layer was washed with H2O (3 x 10 mL) and with brine (1 x 

10 mL), and compound was finally extracted two times 20mL of DCM. Collected 

organic layers wer dried over Na2SO4 and solvent was removed under reduced 

pressure to afford -iminoesters 80a-i and they were used without further purification in 

next reaction step.  

 

 

Scheme 2.37. Synthesis of different -iminoesters 80a-i. 

 

 

 

Methyl (E)-2-(benzylideneamino)acetate (80a)97 

Yellow oil. Yield = 89 %. 1H NMR (400 MHz, CDCl3)  (ppm) = 

8.25 (s, 1H), 7.81 – 7.70 (m, 2H), 7.43 – 7.33 (m, 3H), 4.38 (s, 

2H), 3.73 (s, 3H). 

                                                
97

 Lopez-Perez, A.; Segler, M.; Adrio, J.; Carretero, J. C., J. Org. Chem. 2011, 76,    1945–1948. 
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Tert-Butyl (E)-2-(benzylideneamino)acetate (80b)98 

Yellow oil. Yield = 85 %. 1H NMR (400 MHz, CDCl3)  (ppm) = 

8.27 (s, 1H), 7.78 (dd, J = 7.7, 1.6 Hz, 2H), 7.45 – 7.38 (m, 3H), 

4.31 (s, 2H), 1.50 (s, 9H). 

 

Methyl (E)-2-((4-methoxybenzylidene)amino)acetate (80c)97 

White solid. Yield = 69 %. 1H NMR (400 MHz, CDCl3)  

(ppm) = 8.22 (s, 1H), 7.72 (dd, J = 8.8 Hz, 2H), 6.93 (d, J = 

8.8 Hz, 2H), 4.38 (s, 2H), 3.84 (s, 3H), 3.77 (s, 3H). 

 

Methyl (E)-2-((4-methoxybenzylidene)amino)acetate (80d)99 

White solid. Yield = 97 %. 1H NMR (400 MHz, CDCl3) δ 

(ppm) = 8.26 (s, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 7.8 

Hz, 3H), 4.40 (s, 2H), 3.78 (s, 2H), 2.39 (s, 3H) 

Methyl (E)-2-((4-fluorobenzylidene)amino)acetate (80e)99 

Yellow oil. Yield = 81 %. 1H NMR (400 MHz, CDCl3)  

(ppm) = 8.26 (s, 1H), 7.78 (dd, J = 8.7, 5.5 Hz, 2H), 7.11 (t, 

J = 8.6 Hz, 1H), 4.40 (s, 1H), 3.78 (s, 2H). 

 

Methyl (E)-2-((4-hydroxybenzylidene)amino)acetate (80f)100 

Orange solid. Yield = 60 %. 1H NMR (400 MHz, CDCl3)  

(ppm) = 8.09 (s, 1H), 7.49 (d, J = 8.1 Hz, 2H), 6.70 (d, J = 8.2 

Hz, 3H), 6.28 (s, 1H, broad), 4.30 (s, 2H), 3.64 (s, 3H). 

 

Methyl (E)-2-((naphtalen-2-ylmethylene)amino)acetate (80g)101 

White solid. Yield = 86 %. 1H NMR (400 MHz, CDCl3)  

(ppm) = 8.45 (s, 1H), 8.09 (s, 1H), 8.03 (d, J = 7.8, 1H), 

7.95 – 7.79 (m, 3H), 7.58 – 7.45 (m, 2H), 4.48 (s, 2H), 3.80 

(s, 3H). 

                                                
98

 Saito, S.; Tsubogo, T.; Kobayashi, S., J. Am. Chem. Soc. 2007, 129, 5364–5365. 
99

 Cabrera, S.; Carretero, J. C., J. Am. Chem. Soc. 2005, 130, 17250–17251. 
100

 Arrieta, A.; Otaegui, D.; Zubia, A.; Cossio, F. P.; Diaz-Ortiz, A.; de la Hoz, A.; Herrero, M. A.; Prieto, P.; 

Foces-Foces, C.; Pizarro, J. L., J. Org. Chem. 2007, 72, 4313–4322. 
101

 Lopez-Perez, A.; Segler, M.; Adrio, J.; Carretero, J. C., J. Org. Chem. 2011, 76, 1945–1948. 
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Methyl (E)-2-((furan-2-ylmethylene)amino)acetate (80h)101 

Brown oil. Yield = 83 %. 1H NMR (400 MHz, CDCl3)  (ppm) = 

8.11 (s, 1H), 7.55 (s, 1H), 6.85 (d, J = 3.0 Hz, 1H), 6.51 (s, 1H), 

4.39 (s, 2H), 3.78 (s, 3H). 

 

Methyl (E)-2-((tiophen-2-ylmethylene)amino)acetate (80i)101 

Yellow solid. Yield = 92%. 1H NMR (400 MHz, CDCl3)  (ppm) = 

8.30 (s, 1H), 7.36 (d, J = 5.1 Hz, 1H), 7.28 (d, J = 3.7 Hz, 1H), 

6.99 (t, J = 4.4 Hz, 1H), 4.29 (s, 2H), 3.67 (s, 3H). 

 

2.8.5.2 Synthesis of (E)-2-methoxy-4-(2-nitrovinyl)phenol-127102 

Vanillin-125 (1.00 g, 6.57 mmol) and nitromethane (126, 0.80 mL, 13 mmol) 

were dissolved in 66 mL of iPrOH (0.10 M) in the presence of BnNH2 (0.09 g, 0.90 

mmol) and AcOH (91L, 0.90mmol). Mixture was stirred at reflux of iPrOH for 16 hours. 

Solvent was evaporated under reduced pressure and product obtained was purified by 

flash column chromatography (EtOAc/n-hexane = 20:80 to 50:50). 509 mg of yellow 

solid 127 was obtained in 40 % yield. 1H NMR (400 MHz, CDCl3)  (ppm) = 7.95 (d, J = 

13.5 Hz, 1H), 7.51 (d, J = 13.5 Hz, 1H), 7.14 (d, J = 8.2 Hz, 1H), 7.02 – 6.94 (m, 2H), 

6.05 (s, 1H), 3.96 (s, 3H). 

 

 

Scheme 2.38. Synthesis of nitroalkene 127 bearing hydroxy and methoxy functional groups. 

 

 

 

 

 

                                                
102

 Kiyokawa, K.; Nagata, T.; Hayakawa, J.; Minakata, S., Chem. Eur. J. 2015, 21, 1280–1285. 
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2.8.5.3 Synthesis of 3-nitro-2H-chromene derivatives 122 and 128 

Salicylaldehyde 157 (1.1 equiv.) and corresponding nitroalkene 81 or 127 (1 

equiv.) were placed in a flask and dissolved in 25 mL of ethanol. Then, benzoic acid 

(0.3 equiv.) was added as additive and final addition of pyrrolidine (0.3 equiv.) was 

performed dropwise. Reaction mixture was refluxed for 12 hours upon completion of 

reaction observed by 1H NMR spectroscopy.  After reaction was cooled down to room 

temperature, solvent was removed under reduced pressure. Crude of corresponding 

chromene was purified by flash column chromatography in silica gel (EtOAc/n-hexane 

= 1:50) to obtain a yellow solid in all cases (122 and 128). 

 

Scheme 2.39. Synthesis of chromene derivatives 122 and 128 by oxa-Michael aza-Henry reaction. 

3-nitro-2-phenyl-2H-chromene (122)103  

 122 was obtained as a yellow solid. Yield = 63 %. 1H NMR (400 

MHz, CDCl3)  (ppm) = 8.09 (s, 1H), 7.49 – 7.42 (m, 2H), 7.35 (d, 

J = 7.9 Hz, 5H), 7.02 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 8.2 Hz, 1H), 

6.65 (s, 1H). 

 

2-methoxy-4-(3-nitro-2H-chromen-2-yl)phenol (128)103 

Starting from 794 mg of nitroalkenes 170, 135 mg were 

isolated for chromene 128 as a yellow oil.  Yield = 11%. 1H 

NMR (400 MHz, CDCl3)  (ppm) = 8.05 (s, 1H), 7.33 (d, J = 

7.4 Hz, 2H), 7.00 (td, J = 7.5, 1.1 Hz, 1H), 6.90 (d, J = 1.8 Hz, 

1H), 6.87 – 6.78 (m, 3H), 6.50 (s, 1H), 5.64 (s, 1H), 3.85 (s, 3H). 

 

 

 

 

 

                                                
103

 Wang, P.; Zhang, D.; Liu, X., Arkivoc 2014, v, 408–419. 
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2.8.5.4 Procedure for the synthesis of 4-(pentiloxy)benzaldehyde 124i104 

 

 

Scheme 2.40. Synthesis of aldehyde 124i by Williamson reaction. 

 

Under argon atmosphere, 4-hydroxybenzaldehyde 80e (0.50 g, 4.09 mmol) was 

placed with K2CO3 (0.65 g, 4.70 mmol), 18-crown-6 ether (0.05 g, 0.20 mmol) and dry 

acetone (16.4 mL, 0.25 M) in a flask. Then, n-pentyl iodide 129 (0.59 mL, 4.50 mmol) 

was added and temperature was elevated to reflux of acetone. The reaction was 

monitored by TLC (EtOAc/n-hexane = 25:75) and stopped after 18 h. After removal of 

solvent, crude was redissolved in DCM and solution was washed four times with 10 mL 

of H2O and then extracted three times with 20 mL of DCM. Organic layers were dried 

over Na2SO4, evaporated under pressure and crude was used in next step without 

further purification obtaining 0.79 g of compound 124i as yellow oil in quantitative yield. 

1H NMR (400 MHz, CDCl3)  (ppm) = 9.88 (s, 1H), 7.96 – 7.71 (m, 2H), 7.07 – 6.89 (m, 

2H), 4.04 (t, J = 6.5 Hz, 2H), 1.81 (dt, J = 8.1, 6.5 Hz, 2H), 1.55 – 1.34 (m, 4H), 0.94 (t, 

J = 7.0 Hz, 3H).  

 

Methyl (E)-2-((4-pentyloxy)benzylidene)amino)acetate (80j)104 

 General procedure for the synthesis of iminoesters 

was followed (Scheme 2.37). Yellow oil obtained in 

quantitative yield. 1H NMR (400 MHz, CDCl3)  (ppm) 

= 8.21 (s, 1H), 7.70 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H), 4.38 (s, 2H), 3.99 (t, J 

= 6.6 Hz, 3H), 3.77 (s, 3H), 1.86 – 1.72 (m, 3H), 1.51 – 1.31 (m, 6H), 0.93 (t, J = 7.1 

Hz, 4H). 

 

 

                                                
104

 a) Hawker, C. J.; Fréchet, J. M. J., J. Am. Chem. Soc. 1990, 112, 7638–7647. b) Aldaba, E., Nuevas 

Aplicaciones de Las Cicloadiciones [3+2] En La Preparación de Compuestos de Interés En Biomedicina Y 

En Ciencia de Los Materiales, Donostia, 2006. 
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2.8.5.5 Enantioselective synthesis of tricyclic chromane derivatives 123 and 123’  

Ferrocenyl-proline ligand 83b (3.3 mol%) and [Cu(CH3CN)4PF6] (3 mol%) were 

dissolved in 2 mL of dry THF. The mixture was stirred for 15 minutes at room 

temperature to afford the formation of copper complex and then it was cooled to -20°C. 

After that, corresponding imine 80a-j (1 equiv.) and dipolarophile 122 or 128 (1.1 

equiv.) were dissolved in 2 mL of dry THF and precooled at -20°C, and subsequently 

this mixture was added to the complex. Finally, catalytic amount of Et3N (5 mol%) was 

added. After stirring 16 hours at -20 °C, the mixture was filtered through a pad of Celite 

and the filtrate was evaporated under reduced pressure. Crude of the reaction was 

analyzed by 1H NMR spectroscopy in order to determine the diastereomeric ratio. 

Purification by flash column chromatography in silica gel (EtOAc/n-hexane) afforded 

the corresponding products 123a-k and 123’a-k. 

 

Scheme 2.41. Enantioselective ferrocenyl-proline and copper catalyzed (3+2) cycloaddition reaction to 

afford tricyclic compounds 123a-k and 123’a-k. 

 

Methyl (1R, 3R, 3aR, 4S, 9bS)-3a-nitro-3,4-diphenyl-benzopyrano[3,4-c]-pyrrolidine-1-

carboxylate (123a) 

47 mg of a white solid obtained (starting from 60 mg, 0.340 mmol of 

corresponding imine 80a), yield = 32 %.EtOAc/n-hexane 17:83, Rf: 

0.48 (2x). 1H NMR (400 MHz, CDCl3)  (ppm) = 7.55 (d, J = 7.6 Hz, 

1H), 7.44 (dd, J = 5.0, 1.9 Hz, 3H), 7.38 (dd, J = 6.9, 3.1 Hz, 2H), 

7.21 – 7.13 (m, 6H), 7.07 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 8.1 Hz, 1H), 5.58 (s, 1H), 4.97 

(d, J = 10.7 Hz, 1H), 4.79 (d, J = 3.8 Hz, 1H), 4.16 (dd, J = 7.6, 3.8 Hz, 1H), 4.03 (s, 

3H), 3.18 – 3.12 (m, 1H). 13C NMR (101 MHz, CDCl3)  (ppm) = 172.6, 150.1, 135.2, 

134.0, 129.8, 129.2, 129.1, 128.9, 128.6, 128.4, 127.1, 125.2, 123.4, 118.5, 96.8, 75.7, 
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70.6, 68.8, 53.2, 46.2. FT-IR (neat) = 3329, 3062, 3032, 2952, 1742, 1540, 1488, 1454, 

1359, 1211, 799, 755 cm-1. HRMS (ESI): C25H22N2O5 [M + H]+, calculated: 431.1607, 

found: 431.1614. Elemental analysis calculated for C25H22N2O5: C, 69.8; H, 5.1; N, 

6.5. Found: C, 69.0; H, 5.2; N, 6.6.      
   = +58.1⁰ (c 2.35, CH2Cl2), 89 % ee. HPLC: 

Daicel Chiralpak IB column, iso-Propanol/n-hexane 5:95, flow = 1.0 mL/min, trmin= 24.7 

min (1S, 3S, 3aS, 4R, 9bR), trmajor = 28.4 min (1R, 3R, 3aR, 4S, 9bS), 230 nm. 

 

 

 

 

 

Methyl (1S, 3R, 3aR, 4S, 9bS)-3a-nitro-3,4-diphenyl-benzopyrano[3,4-c]-pyrrolidine-1-

carboxylate (123’a) 

45 mg of a white solid obtained (starting from 60 mg, 0.340 mmol 

of corresponding imine 80a), yield = 31 %. EtOAc/n-hexane 

17:83 Rf: 0.33 (2x). 1H NMR (400 MHz, CDCl3)  (ppm) = 7.36 – 

7.32 (m, 2H), 7.32 – 7.26 (m, 5H), 7.26 – 7.23 (m, 1H), 7.12 (td, 

J = 7.7, 1.6 Hz, 1H), 6.97 (td, J = 7.6, 1.2 Hz, 1H), 6.83 (dd, J = 8.2, 1.2 Hz, 1H), 5.70 

(s, 1H), 5.40 (s, 1H), 5.07 (d, J = 9.7 Hz, 1H), 5.01 (d, J = 9.8 Hz, 1H), 3.37 (s, 3H).13C 

NMR (101 MHz, CDCl3)  (ppm) = 173.4, 152.7, 136.8, 134.9, 129.8, 129.2, 129.1, 

129.0, 128.8, 128.5, 128.3, 127.5, 122.1, 120.7, 118.3, 98.0, 77.6, 68.7, 64.5, 51.9, 

45.3. FT-IR (neat) = 3341, 3062, 3032, 2950, 1736, 1586, 1541, 1488, 1454, 1352, 

1230, 756, 698 cm-1.     
   = +8.58⁰ (c 1.35, CH2Cl2), 67 % ee. HPLC: Daicel Chiralpak 

IB column, iso-Propanol/n-hexane 5:95, flow = 1.0 mL/min, trmajor= 31.9 min (1R, 3S, 

3aS, 4R, 9bR), trmin = 35.6 min (1S, 3R, 3aR, 4S, 9bS), 230 nm. 
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Tert-butyl (1R, 3R, 3aR, 4S, 9bS)-3a-nitro-3,4-diphenyl-benzopyrano[3,4-c]-pyrrolidine-

1-carboxylate (123b) 

31 mg of a white solid obtained (starting from 60 mg, 0.274 mmol of corresponding 

imine 80b), yield = 24 %. EtOAc/n-hexane 11:89, Rf: 0.29. 1H NMR (400 MHz, CDCl3) 

 (ppm) = 7.56 (dt, J = 7.7, 1.2 Hz, 1H), 7.43 (dd, J = 5.0, 1.9 Hz, 3H), 7.26 (s, 0H), 

7.22 – 7.12 (m, 6H), 7.07 (td, J = 7.5, 1.3 Hz, 1H), 6.82 (dd, J = 8.1, 1.2 Hz, 1H), 5.56 

(s, 1H), 4.96 (s, 1H), 4.69 (d, J = 3.7 Hz, 1H), 4.05 (d, J = 3.8 Hz, 1H), 1.69 (s, 9H). 13C 

NMR (101 MHz, CDCl3)  (ppm) = 171.2, 150.2, 135.3, 134.1, 129.7, 129.2, 129.0, 

129.0, 128.9, 128.6, 128.4, 127.0, 125.4, 123.3, 118.4, 97.0, 83.2, 75.8, 70.9, 69.7, 

46.7, 28.3. FT-IR (neat) = 3359, 3063, 3034, 2976, 2931, 1729, 1585, 1540, 1488, 

1454, 1368, 1249, 1232, 1152, 753, 697 cm-1. HRMS (ESI): C28H28N2O5 [M + H]+, 

calculated: 473.2076, found: 473.2076. Elemental analysis calculated for C28H28N2O5: 

C, 71.2; H, 6.0; N, 6.0. Found: C, 70.3; H, 5.8; N, 6.1.      
   = +11.2⁰ (c 1.00, CH2Cl2), 

97 % ee. HPLC: Daicel Chiralpak IB column, iso-Propanol/n-hexane 1:99, flow = 0.7 

mL/min, trmin= 30.1 min (1S, 3S, 3aS, 4R, 9bR), trmajor = 36.8 min (1R, 3R, 3aR, 4S, 

9bS), 230 nm. 
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Tert-butyl (1S, 3R, 3aR, 4S, 9bS)-3a-nitro-3,4-diphenyl-benzopyrano[3,4-c]-pyrrolidine-

1-carboxylate (123’b) 

28 mg of a white solid obtained (starting from 60 mg, 0.274 mmol 

of corresponding imine 80b), yield = 15 %. EtOAc/n-hexane 

11:89, Rf: 0.25. 1H NMR (400 MHz, CDCl3)  (ppm) = 1H NMR 

(400 MHz, CDCl3) δ = 7.44 (dd, J = 6.8, 3.2 Hz, 2H), 7.38 (dd, J = 

6.4, 4.2 Hz, 4H), 7.24 (dd, J = 6.7, 3.4 Hz, 3H), 7.18 – 7.12 (m, 3H), 7.01 (t, J = 7.5 Hz, 

1H), 6.87 (d, J = 8.4 Hz, 1H), 5.58 (s, 1H), 5.26 (s, 1H), 4.98 (d, J = 10.2 Hz, 1H), 4.82 

(d, J = 10.1 Hz, 1H), 2.91 (s, 1H), 1.12 (s, 9H). 13C NMR (101 MHz, CDCl3)  (ppm) = 

172.6, 154.0, 138.3, 135.1, 131.4, 129.2, 128.7, 128.6, 128.6, 128.2, 127.8, 122.0, 

119.6, 117.7, 97.2, 82.7, 78.5, 67.1, 64.4, 45.4, 27.6. FT-IR (neat) = 3343, 3063, 3033, 

2976, 2932, 1716, 1586, 1542, 1489, 1455, 1367, 1232, 1152, 755, 699 cm-1.     
   = 

+31.9⁰ (c 0.90, CH2Cl2), 89 % ee. HPLC: Daicel Chiralpak IA column, iso-Propanol/n-

hexane 10:90, flow = 1.0 mL/min, trmin= (1R, 3S, 3aS, 4R, 9bR), trmajor (1S, 3R, 3aR, 

4S, 9bS), 230 nm. 
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Methyl (1R, 3R, 3aR, 4S, 9bS)-3-(4-methoxyphenyl)-3a-nitro-4-phenyl-

benzopyrano[3,4-c]-pyrrolidine-1-carboxylate (123c) 

30 mg of a white solid obtained (starting from 60 mg, 0.290 

mmol of corresponding imine 80c), yield = 22 %. EtOAc/n-

hexane 25:75 to 33:67, Rf: 0.17 (20:80). 1H NMR (400 MHz, 

CDCl3)  (ppm) = 7.55 (d, J = 7.7 Hz, 1H), 7.30 (d, J = 8.3 

Hz, 2H), 7.17 (t, J = 7.0 Hz, 6H), 7.06 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.4 Hz, 2H), 6.81 

(d, J = 8.1 Hz, 1H), 5.54 (s, 1H), 4.93 (d, J = 10.0 Hz, 1H), 4.77 (d, J = 3.7 Hz, 1H), 

4.13 (t, J = 5.1 Hz, 1H), 4.02 (s, 3H), 3.83 (s, 3H), 3.07 (d, J = 9.6 Hz, 1H). 13C NMR 

(101 MHz, CDCl3)  (ppm) = 172.6, 160.7, 150.0, 135.3, 130.4, 129.0, 128.9, 128.6, 

128.4, 128.2, 125.8, 125.3, 123.3, 118.4, 114.5, 113.6, 96.7, 75.7, 70.4, 68.6, 55.4, 

53.2, 46.2. FT-IR (neat) = 3322, 3007, 2959, 1745, 1585, 1535, 1361, 1340, 1310, 

1281, 1247, 758, 697 cm-1. HRMS (ESI):  C26H24N2O6 [M + H]+, calculated: 461,1713, 

found: 461.1718. Elemental analysis: calculated for C26H24N2O6: C, 67.8; H, 5.2; N, 

6.1. Found: C, 67.2; H, 5.3; N, 6.6.    
   = +18.5⁰ (c 1.70, CH2Cl2), 91 % ee. HPLC: 

Daicel Chiralpak IC column, iso-Propanol/n-hexane 5:95, flow = 0.7 mL/min, trmajor = 

101.4 min (1S, 3S, 3aS, 4R, 9bR), trmin = 113.7 min (1R, 3R, 3aR, 4S, 9bS), 230 nm. 

 

 

Methyl (1S, 3R, 3aR, 4S, 9bS)-3-(4-methoxyphenyl)-3a-nitro-4-phenyl-

benzopyrano[3,4-c]-pyrrolidine-1-carboxylate (123’c) 

22 mg of a white solid obtained (starting from 60 mg, 0.290 

mmol of corresponding imine 80c), yield = 16 %. EtOAc/n-

hexane 25:75 to 33:67. Rf: 0.33 (33:67). 1H NMR (400 MHz, 

CDCl3)  (ppm) = 7.29 – 7.19 (m, 8H), 7.10 (ddd, J = 8.5, 
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7.4, 1.7 Hz, 1H), 6.95 (td, J = 7.5, 1.2 Hz, 1H), 6.88 – 6.83 (m, 2H), 6.80 (dd, J = 8.2, 

1.2 Hz, 1H), 5.64 (s, 1H), 5.36 (s, 1H), 5.04 (d, J = 9.6 Hz, 1H), 4.98 (d, J = 10.0 Hz, 

1H), 3.78 (s, 3H), 3.35 (s, 3H). 13C NMR (101 MHz, CDCl3)  (ppm) = 173.5, 160.3, 

152.6, 135.0, 129.8, 129.0, 128.6, 128.5, 128.3, 122.1, 121.0, 118.3, 114.2, 98.0, 77.6, 

68.6, 64.4, 55.4, 51.8, 45.3. FT-IR (neat) = 3342, 3060, 3031, 3009, 2951, 2838, 1736, 

1610, 1585, 1542, 1511, 1488, 1455, 1437, 1357, 1249, 1232, 1021, 1028, 758, 698 

cm-1.     
   = -9.78⁰ (c 1.24, CH2Cl2), 72 % ee. HPLC: Daicel Chiralpak IC column, iso-

Propanol/n-hexane 3:97, flow = 0.7 mL/min, trmajor= 117.9 min (1R, 3S, 3aS, 4R, 9bR), 

trmin = 128.9 min (1S, 3R, 3aR, 4S, 9bS), 230 nm. 

 

 

 

 

 

 

 

 

Methyl (1R, 3R, 3aR, 4S, 9bS)-3-(4-methylphenyl)-3a-nitro-4-phenyl-benzopyrano[3,4-

c]-pyrrolidine-1-carboxylate (123d) 

38 mg of a white solid obtained (starting from 60 mg, 0.314 

mmol of corresponding imine 80d), yield = 27 %. EtOAc/n-

hexane 20:80, Rf: 0.35. 1H NMR (400 MHz, CDCl3)  (ppm) 

= 7.53 (d, J = 7.6 Hz, 1H), 7.23 (t, J = 7.0 Hz, 4H), 7.14 (dq, 

J = 13.4, 8.6, 6.6 Hz, 6H), 7.04 (t, J = 7.3 Hz, 1H), 6.79 (d, J = 8.1 Hz, 1H), 5.54 (s, 

1H), 4.92 (d, J = 9.0 Hz, 1H), 4.75 (d, J = 3.8 Hz, 1H), 4.12 (s, 1H), 4.00 (s, 3H), 3.11 

(s, 1H), 2.35 (s, 3H). 13C NMR (101 MHz, CDCl3)  (ppm) = 172.6, 150.0, 139.7, 135.3, 

130.8, 129.9, 129.0, 129.0, 128.9, 128.6, 128.4, 126.8, 125.3, 123.4, 118.5, 96.8, 75.7, 

70.6, 68.8, 53.2, 46.3, 21.4. FT-IR (neat) = 3466, 3028, 2970, 1739, 1609, 1585, 1540, 

1488, 1453, 1436, 1365, 757, 697 cm-1. HRMS (ESI):  C26H24N2O5 [M + H]+, calculated: 

445.1763, found: 445.1764. Elemental analysis: calculated for C26H24N2O5: C, 70.3; 

H, 5.4; N, 6.3. Found: C, 68.8; H, 5.2; N, 6.3.      
   = +42.45⁰ (c 1.64, CH2Cl2), 89 % 

ee. HPLC: Daicel Chiralpak OD-H column, iso-Propanol/n-hexane 10:90, flow = 1.0 

mL/min, trmin = 19.9 min (1S, 3S, 3aS, 4R, 9bR), trmajor = 24.3 min (1R, 3R, 3aR, 4S, 

9bS), 230 nm. 
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Methyl (1S, 3R, 3aR, 4S, 9bS)-3-(4-methylphenyl)-3a-nitro-4-phenyl-benzopyrano[3,4-

c]-pyrrolidine-1-carboxylate (123’d) 

34 mg of a white solid obtained (starting from 60 mg, 0.314 

mmol of corresponding imine 80d), yield = 24 %. EtOAc/n-

hexane 20:80, Rf: 0.26. 1H NMR (400 MHz, CDCl3)  (ppm) 

= 7.27 (s, 6H), 7.14 (dq, J = 15.6, 7.8 Hz, 4H), 6.96 (t, J = 

7.7 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 5.68 (s, 1H), 5.35 (s, 1H), 5.05 (d, J = 9.8 Hz, 

1H), 4.99 (d, J = 9.7 Hz, 1H), 3.35 (s, 3H), 2.77 (s, 1H), 2.32 (s, 3H). 13C NMR (101 

MHz, CDCl3)  (ppm) = 173.6, 152.8, 139.2, 135.1, 133.8, 129.9, 129.7, 129.2, 128.6, 

128.5, 127.4, 122.2, 118.4, 98.1, 77.7, 68.9, 64.7, 52.0, 45.5, 21.5. FT-IR (neat) = 

3348, 3062, 3030, 2970, 2948, 1737, 1586, 1542, 1488, 1455, 1435, 1364, 758, 699 

cm-1.     
   = +0.37⁰ (c 1.05, CH2Cl2), 77 % ee. HPLC: Daicel Chiralpak OD-H column, 

iso-Propanol/n-hexane 5:95, flow = 1.0 mL/min, trmin= (1R, 3S, 3aS, 4R, 9bR), trmajor 

(1S, 3R, 3aR, 4S, 9bS), 230 nm. 
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Methyl (1R, 3R, 3aR, 4S, 9bS)-3-(4-fluorophenyl)-3a-nitro-4-phenyl-benzopyrano[3,4-

c]-pyrrolidine-1-carboxylate (123e) 

31 mg of a white solid obtained (starting from 60 mg, 0.310 

mmol of corresponding imine 80e), yield = 22 %. EtOAc/n-

hexane 17:83, Rf: 0.31 (2x 17:83). 1H NMR (400 MHz, 

CDCl3)  (ppm) = 7.55 (d, J = 7.6 Hz, 1H), 7.38 (dd, J = 8.6, 

5.3 Hz, 3H), 7.23 – 7.11 (m, 9H), 7.11 – 7.04 (m, 1H), 6.82 (d, J = 8.1 Hz, 1H), 5.53 (s, 

1H), 4.97 (d, J = 9.0 Hz, 2H), 4.80 (d, J = 3.8 Hz, 1H), 4.14 (s, 1H), 4.02 (s, 4H), 3.03 

(s, 1H). 19F NMR (376 MHz, CDCl3)  (ppm) = -111.6. 13C NMR (101 MHz, CDCl3)  

(ppm) = 172.5, 164.8, 162.4, 150.0, 135.0, 130.0, 129.1, 128.9, 128.8, 128.8, 128.7, 

128.4, 125.0, 123.4, 118.5, 116.3, 116.1, 96.6, 75.7, 69.7, 68.4, 53.2, 45.8. FT-IR 

(neat) = 3345, 3079, 2954, 1739, 1606, 1586, 1540, 1509, 1488, 1453, 1435, 1358, 

1224, 757, 697 cm-1. HRMS (ESI):  C25H21FN2O5 [M + H]+, calculated: 449,1513, found: 

449.1500. Elemental analysis: calculated for C25H21FN2O5: C, 67.0; H, 4.7; N, 6.2. 

Found: C, 67.6; H, 5.1; N, 6.5.      
   = +1.15⁰ (c 0.90, CH2Cl2), 83 % ee. HPLC: Daicel 

Chiralpak IB column, iso-Propanol/n-hexane 5:95, flow = 1.0 mL/min, trmin = 24.5 min 

(1S, 3S, 3aS, 4R, 9bR), trmajor = 32.6 min (1R, 3R, 3aR, 4S, 9bS), 230 nm. 

 

  

 

 

 

 

 

  

 

 

 

Methyl (1S, 3R, 3aR, 4S, 9bS)-3-(4-fluorophenyl)-3a-nitro-4-phenyl-benzopyrano[3,4-

c]-pyrrolidine-1-carboxylate (123’e) 

30 mg of a white solid obtained (starting from 60 mg, 0.310 

mmol of corresponding imine 80e), yield = 22 %. EtOAc/n-

hexane 17:83, Rf: 0.15 (2x 17:83). 1H NMR (400 MHz, CDCl3) 

 (ppm) = 7.30 – 7.22 (m, 8H), 7.14 – 7.09 (m, 1H), 7.04 – 

6.94 (m, 3H), 6.81 (dd, J = 8.2, 1.2 Hz, 1H), 5.60 (s, 1H), 5.40 (s, 1H), 5.05 (d, J = 9.6 



CYCLOADDITIONS REACTIONS 

125 
 

Hz, 1H), 4.97 (d, J = 9.6 Hz, 1H), 3.37 (s, 3H). 19F NMR (376 MHz, CDCl3)  (ppm) = -

100.0. 13C NMR (101 MHz, CDCl3)  (ppm) = 173.6, 164.5, 162.0, 152.7, 134.7, 132.7, 

129.9, 129.3, 129.2, 129.2, 129.1, 129.0, 128.5, 128.4, 128.4, 122.2, 120.6, 118.3, 

115.9, 115.7, 97.9, 77.7, 67.9, 64.2, 51.9, 45.2. FT-IR (neat) = 3344, 3065, 3034, 2951, 

1733, 1605, 1586, 1541, 1508, 1488, 1454, 1435, 1358, 1214, 758, 729, 697.     
   = -

2.13⁰ (c 0.41, CH2Cl2), 68 % ee. HPLC: Daicel Chiralpak OD-H column, iso-

Propanol/n-hexane 3:97, flow = 1.0 mL/min, trmajor = 59.6 min (1S, 3S, 3aS, 4R, 9bR), 

trmin = 72.0 min (1R, 3R, 3aR, 4S, 9bS), 230 nm. 

  

 

 

 

 

 

 

Methyl (1R, 3R, 3aR, 4S, 9bS)-3-(4-hydroxyphenyl)-3a-nitro-4-phenyl-

benzopyrano[3,4-c]-pyrrolidine-1-carboxylate (80f) 

20 mg of a white solid obtained (starting from 60 mg, 0.310 

mmol of corresponding imine 19f), yield = 14 %. EtOAc/n-

hexane 20:80, Rf: 0.33 (33:66). 1H NMR (400 MHz, CDCl3) 

 (ppm) = 1H 7.60 – 7.49 (m, 1H), 7.22 – 7.11 (m, 8H), 7.07 

(td, J = 7.5, 1.2 Hz, 1H), 6.88 – 6.75 (m, 3H), 5.53 (s, 1H), 5.00 – 4.83 (m, 1H), 4.77 (d, 

J = 3.0 Hz, 1H), 4.14 (s, 1H), 4.03 (s, 3H). 13C NMR (101 MHz, CDCl3)  (ppm) = 

172.6, 157.2, 150.0, 135.2, 129.1, 129.0, 128.9, 128.6, 128.5, 128.4, 128.4, 125.4, 

125.1, 123.4, 118.5, 116.2, 115.2, 96.6, 75.6, 70.3, 68.5, 53.3, 46.1. FT-IR (neat) = 

3359, 3346, 3065, 3015, 2950, 1727, 1613, 1585, 1541, 1515, 1488, 1451, 1364, 763, 

697 cm-1. HRMS (ESI): C25H22N2O6 [M + H]+, calculated: 447,1556, found: 447.1563. 

Elemental analysis: calculated for C25H22N2O6: C, 67.3; H, 5.0; N, 6.3. Found: C, 67.5; 

H, 5.3; N, 6.0.     
   = 24.80⁰ (c 1.09, CH2Cl2), 85 % ee. HPLC: Daicel Chiralpak OD-H 

column, iso-Propanol/n-hexane 10:90, flow = 1.0 mL/min, trmajor = 26.8 min (1S, 3S, 

3aS, 4R, 9bR), trmin  = 35.6 min (1R, 3R, 3aR, 4S, 9bS), 230 nm. 
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Methyl (1S, 3R, 3aR, 4S, 9bS)-3-(4-hydroxyphenyl)-3a-nitro-4-phenyl-

benzopyrano[3,4-c]-pyrrolidine-1-carboxylate (123’f) 

22 mg of a white solid obtained (starting from 60 mg, 0.310 

mmol of corresponding imine 80f), yield = 16 %.EtOAc/n-

hexane 20:80, Rf: 0.19 (33:66). 1H NMR (400 MHz, CDCl3)  

(ppm) = 7.28 – 7.20 (m, 6H), 7.11 (t, J = 7.9 Hz, 3H), 6.98 – 

6.92 (m, 1H), 6.79 (d, J = 8.1 Hz, 1H), 6.73 (d, J = 8.1 Hz, 2H), 5.64 (s, 1H), 5.33 (s, 

1H), 5.04 (d, J = 9.5 Hz, 1H), 4.97 (d, J = 9.8 Hz, 1H), 3.33 (s, 3H). 13C NMR (101 

MHz, CDCl3)  (ppm) = 173.5, 156.6, 152.6, 134.9, 129.8, 129.0, 128.8, 128.5, 128.4, 

128.3, 122.1, 120.9, 118.3, 115.8, 98.0, 77.5, 68.6, 64.4, 51.9, 45.3. FT-IR (neat) = 

3570-3223 (broad), 3349, 3032, 2950, 1730, 1613, 1587, 1539, 1515, 1488, 1454, 

1210, 758, 733, 698 cm-1.     
   = +1.11⁰ (c 1.06 CH2Cl2), 68 % ee. HPLC: Daicel 

Chiralpak OD-H column, iso-Propanol/n-hexane 10:90, flow = 1.0 mL/min, trmin= 

52.0 min (1S, 3S, 3aS, 4R, 9bR), trmajor = 63.0 min (1R, 3R, 3aR, 4S, 9bS), 230 

nm. 
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Methyl (1R, 3R, 3aR, 4S, 9bS)-3-(2-naphtyl)-3a-nitro-4-phenyl-benzopyrano[3,4-c]-

pyrrolidine-1-carboxylate (123g) 

34 mg of a white solid obtained (starting from 60 mg, 0.260 

mmol of corresponding imine 80g), yield = 27 %. EtOAc/n-

hexane 20:80, Rf: 0.37. 1H NMR (400 MHz, CDCl3)  (ppm) 

= 7.99 – 7.82 (m, 4H), 7.62 – 7.43 (m, 4H), 7.24 – 7.13 (m, 

5H), 7.10 (td, J = 7.4, 1.3 Hz, 1H), 6.87 (dd, J = 8.1, 1.2 Hz, 1H), 5.66 (s, 1H), 5.23 – 

5.09 (m, 1H), 4.85 (d, J = 3.4 Hz, 1H), 4.21 (s, 1H), 4.05 (s, 3H), 3.24 (s, 1H). 13C NMR 

(101 MHz, CDCl3)  (ppm) = 172.6, 150.1, 135.2, 134.1, 133.4, 131.4, 129.1, 129.1, 

129.0, 129.0, 128.6, 128.4, 128.4, 127.9, 127.1, 126.8, 126.7, 125.2, 123.9, 123.4, 

118.5, 96.7, 75.8, 70.7, 68.7, 53.2, 46.1. FT-IR (neat) = 3346, 3033, 2951, 1739, 1586, 

1541, 1488, 1454, 1435, 1357, 756, 697 cm-1. HRMS (ESI): C29H24N2O5 [M + H]+, 

calculated: 481.1763, found: 481.1763. Elemental analysis: calculated for 

C29H24N2O5: C, 72.5; H, 5.0; N, 5.8. Found: C, 72.8; H, 4.9; N, 6.0.     
   = +31.78⁰ (c 

0.95, CH2Cl2), 84 % ee. HPLC: Daicel Chiralpak IC column, iso-Propanol/n-hexane 

5:95, flow = 1.0 mL/min, trmin = 46.5 min (1S, 3S, 3aS, 4R, 9bR), trmajor = 52.0 min (1R, 

3R, 3aR, 4S, 9bS), 230 nm. 

  

 

 

 

 

  

 

 

Methyl (1S, 3R, 3aR, 4S, 9bS)-3-(2-naphtyl)-3a-nitro-4-phenyl-benzopyrano[3,4-c]-

pyrrolidine-1-carboxylate (123’g) 

40 mg of a white solid obtained (starting from 60 mg, 0.260 

mmol of corresponding imine 80g), yield = 32 %. EtOAc/n-

hexane 20:80, Rf: 0.35. 1H NMR (400 MHz, CDCl3)  (ppm) 

= 7.89 – 7.73 (m, 4H), 7.53 – 7.46 (m, 2H), 7.40 – 7.24 (m, 

7H), 7.13 (ddd, J = 8.7, 7.5, 1.7 Hz, 1H), 6.98 (td, J = 7.5, 1.3 Hz, 1H), 6.85 (dd, J = 

8.2, 1.2 Hz, 1H), 5.75 (s, 1H), 5.57 (s, 1H), 5.13 (d, J = 9.6 Hz, 1H), 5.08 (d, J = 9.5 Hz, 
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1H), 3.39 (s, 3H), 2.88 (s, 1H). 13C NMR (101 MHz, CDCl3)  (ppm) = 173.5, 152.7, 

134.9, 134.3, 133.7, 133.2, 129.9, 129.1, 129.0, 128.9, 128.6, 128.4, 128.3, 127.8, 

127.3, 126.6, 126.5, 124.7, 122.1, 120.7, 118.3, 98.0, 77.7, 68.8, 64.5, 51.9, 45.4. FT-

IR (neat) = 3341, 2949, 1732, 1541, 1488, 1434, 1355, 861, 804, 754, 699cm-1.     
   = 

-13.87⁰ (c 0.60, CH2Cl2), 58 % ee. HPLC: Daicel Chiralpak OD-H column, iso-

Propanol/n-hexane 5:95, flow = 0.7 mL/min, trmajor = 101.1 min (1R, 3S, 3aS, 4R, 9bR), 

trmin = 113.3 min (1S, 3R, 3aR, 4S, 9bS), 230 nm. 

  

 

 

 

 

 

 

Methyl (1R, 3R, 3aR, 4S, 9bS)-3-(2-furyl)-3a-nitro-4-phenyl-benzopyrano[3,4-c]-

pyrrolidine-1-carboxylate (123h) 

32 mg of a white solid obtained (starting from 60 mg, 0.359 

mmol of corresponding imine 80h), yield = 21%. EtOAc/n-

hexane 20:80, Rf: 0.24. 1H NMR (400 MHz, CDCl3)  (ppm) = 

7.63 (d, J = 7.7 Hz, 1H), 7.33 (d, J = 22.0 Hz, 7H), 7.18 (t, J = 

7.7 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 8.1 Hz, 1H), 6.35 (s, 2H), 5.67 (s, 1H), 

4.87 (s, 1H), 4.82 (d, J = 4.7 Hz, 1H), 4.12 (d, J = 4.6 Hz, 1H), 3.94 (s, 3H), 3.15 (s, 

1H). 13C NMR (101 MHz, CDCl3)  (ppm) = 172.9, 151.7, 149.2, 143.3, 143.2, 134.9, 

129.3, 129.3, 128.8, 128.6, 128.1, 124.1, 123.2, 118.0, 110.8, 109.3, 95.3, 77.2, 68.1, 

62.7, 53.3, 45.0. FT-IR (neat) = 3346, 3321, 2970, 2951, 1738, 1586, 1543, 1436, 

1364, 756, 699 cm-1. HRMS (ESI): C23H20N2O6 [M + H]+, calculated: 420,1400, found: 

420.1406. Elemental analysis: calculated for C23H20N2O6: C, 65.7; H, 4.8; N, 6.7. 

Found: C, 63.5; H, 6.73; N, 5.43.     
   = +6.11⁰ (c 1.53, CH2Cl2), 97% ee. HPLC: 

Daicel Chiralpak IB column, iso-Propanol/n-hexane 1:99, flow = 0.7 mL/min, trmin= 72.3 

min (1S, 3S, 3aS, 4R, 9bR), trmajor = 74.8 min (1R, 3R, 3aR, 4S, 9bS), 230 nm. 
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Methyl (1S, 3R, 3aR, 4S, 9bS)-3-(2-furyl)-3a-nitro-4-phenyl-benzopyrano[3,4-c]-

pyrrolidine-1-carboxylate (123’h). 

41 mg of a white solid obtained (starting from 60 mg, 0.359 mmol 

of corresponding imine 80h), yield = 27 %. EtOAc/n-hexane 

20:80, Rf: 0.16. 1H NMR (400 MHz, CDCl3)  (ppm) = 7.39 (s, 

6H), 7.25 (d, J = 6.8 Hz, 2H), 7.16 (t, J = 7.9 Hz, 1H), 6.98 (t, J = 

7.5 Hz, 1H), 6.89 (d, J = 8.1 Hz, 1H), 6.29 (s, 1H), 6.21 (d, J = 3.3 Hz, 1H), 5.89 (s, 

1H), 5.04 (s, 1H), 5.00 (d, J = 10.9 Hz, 1H), 4.95 (d, J = 10.9 Hz, 1H), 3.36 (s, 3H), 2.79 

(s, 1H). 13C NMR (101 MHz, CDCl3)  (ppm) = 172.7, 153.6, 151.1, 143.0, 134.7, 

130.1, 129.5, 128.8, 128.5, 128.0, 121.7, 117.6, 110.8, 109.5, 94.9, 77.7, 64.0, 61.2, 

52.0, 44.3. FT-IR (neat) = 3467, 3346, 3311, , 2970, 2950, 1739, 1542, 1455, 1435, 

1365, 756, 670 cm-1.     
   = +12.8⁰ (c 2.05, CH2Cl2), 71 % ee. HPLC: Daicel Chiralpak 

IA column, iso-Propanol/n-hexane 5:95, flow = 1 mL/min, trmin= 43.6 min (1R, 3S, 3aS, 

4R, 9bR), trmajor = 70.5 min (1S, 3R, 3aR, 4S, 9bS), 230 and 273 nm. 
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Methyl (1R, 3R, 3aR, 4S, 9bS)-3a-nitro-4-phenyl-3-(2-thiophenyl)-benzopyrano[3,4-c]-

pyrrolidine-1-carboxylate (123i) 

30 mg of a white solid obtained (starting from 60 mg, 0.328 

mmol of corresponding imine 80i), yield = 21 %. EtOAc/n-

hexane 17:83, Rf: 0.31. 1H NMR (400 MHz, CDCl3)  (ppm) = 

7.56 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 5.1 Hz, 1H), 7.21 (d, J = 

3.4 Hz, 4H), 7.14 (d, J = 5.0 Hz, 2H), 7.07 (d, J = 6.1 Hz, 2H), 6.83 (d, J = 8.1 Hz, 1H), 

5.70 (s, 1H), 5.21 (s, 1H), 4.82 (d, J = 4.3 Hz, 1H), 4.13 (d, J = 4.3 Hz, 1H), 4.00 (s, 

3H). 13C NMR (101 MHz, CDCl3)  (ppm) = 172.4, 150.5, 137.1, 135.1, 129.1, 129.1, 

129.0, 128.6, 128.4, 127.6, 126.2, 125.9, 124.8, 123.4, 118.4, 96.4, 76.3, 68.4, 66.1, 

53.2, 45.7. FT-IR (neat) = 3350, 3065, 3032, 2951, 1737, 1586, 1542, 1488, 1453, 

1435, 1356, 758, 698 cm-1. HRMS (ESI): C23H20N2O5S [M + H]+, calculated: 437.1171, 

found: 437.1177. Elemental analysis: calculated for C23H20N2O5S: C, 72.5; H, 5.0; N, 

5.8. Found: C, 72.8; H, 4.9; N, 6.0.     
   = +99.28⁰ (c 1.72, CH2Cl2), 63 % ee. HPLC: 

Daicel Chiralpak IC column, iso-Propanol/n-hexane 10:90, flow = 1.0 mL/min, trmin = 

25.8 min (1S, 3S, 3aS, 4R, 9bR), trmajor = 30.3 min (1R, 3R, 3aR, 4S, 9bS)= 30, 230 

nm. 

  

 

 

 

 

 

 

 

Methyl (1S, 3R, 3aR, 4S, 9bS)-3a-nitro-4-phenyl-3-(2-thiophenyl)-benzopyrano[3,4-c]-

pyrrolidine-1-carboxylate (165’i) 

38 mg of a white solid obtained (starting from 60 mg, 0.328 

mmol of corresponding imine 80i), yield = 26 %. EtOAc/n-

hexane 17:83, Rf: 0.38 (20:80). 1H NMR (400 MHz, CDCl3)  

(ppm) = 7.37 (s, 5H), 7.25 (d, J = 5.4 Hz, 3H), 7.14 (t, J = 7.8 Hz, 

1H), 7.01 – 6.91 (m, 2H), 6.87 (t, J = 6.8 Hz, 2H), 5.80 (s, 1H), 5.47 (s, 1H), 4.99 (d, J = 
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10.6 Hz, 1H), 4.95 (d, J = 10.2 Hz, 1H), 3.37 (s, 3H), 2.90 (s, 1H). 13C NMR (101 MHz, 

CDCl3)  (ppm) = 173.1, 153.4, 140.6, 134.8, 130.2, 129.3, 128.9, 128.4, 128.3, 127.4, 

126.8, 125.9, 121.9, 119.5, 117.9, 96.6, 77.9, 63.7, 63.6, 52.0, 44.2. FT-IR (neat) = 

3017, 2970, 2948, 1738, 1586, 1543, 1487, 1450, 1435, 1365, 756, 701 cm-1.     
   = 

+11.92⁰ (c 1.23, CH2Cl2), 64 % ee. HPLC: Daicel Chiralpak OD-H column, iso-

Propanol/n-hexane 5:95, flow = 1.0 mL/min, trmajor = 40.3 min (1R, 3S, 3aS, 4R, 9bR), 

trmin = 51.6 min (1S, 3R, 3aR, 4S, 9bS), 230 nm. 

 

 

 

 

Methyl (1R, 3R, 3aR, 4S, 9bS)-4-(4-hydroxy-3-methoxyphenyl)-3a-nitro-3-phenyl-

benzopyrano[3,4-c]-pyrrolidine-1-carboxylate (123j) 

24 mg of a white solid obtained (starting from 60 mg, 0.340 

mmol of corresponding imine 80a), yield = 15 %. EtOAc/n-

hexane 33:66, Rf: 0.26. 1H NMR (400 MHz, CDCl3)  (ppm) = 

7.55 (d, J = 7.6 Hz, 1H), 7.46 – 7.42 (m, 4H), 7.40 – 7.36 (m, 

3H), 7.17 (t, J = 7.7 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.84 (d, J 

= 8.1 Hz, 1H), 6.69 (d, J = 2.1 Hz, 1H), 6.64 (d, J = 8.3 Hz, 1H), 6.58 (dd, J = 8.3, 2.1 

Hz, 1H), 5.57 (s, 1H), 5.49 (s, 1H), 4.95 (s, 1H), 4.75 (d, J = 3.8 Hz, 1H), 4.14 (s, 1H), 

4.02 (s, 3H), 3.72 (s, 3H), 3.11 (s, 1H). 13C NMR (101 MHz, CDCl3)  (ppm) = 172.6, 

150.2, 146.5, 146.3, 134.2, 129.7, 129.1, 129.1, 128.9, 127.1, 125.3, 123.4, 121.0, 

118.5, 114.2, 111.9, 97.1, 75.7, 70.5, 68.6, 56.0, 53.2, 46.1. FT-IR (neat) = 3446, 3333, 

3006, 2953, 1734, 1584, 1538, 1486, 1455, 1434, 1368, 763, 750, 696, 655 cm-1. 

HRMS (ESI):  C26H24N2O7 [M + H]+, calculated: 477.1662, found: 477.1665. Elemental 

analysis: calculated for C26H24N2O7: C, 65.5; H, 5.0; N, 5.9. Found: C, 64.0; H, 4.9; N, 

5.9.      
   = +37⁰ (c 1.20, CH2Cl2), 90 % ee. HPLC: Daicel Chiralpak IA column, iso-

Propanol/n-hexane 5:9, flow = 1 mL/min, trmin= 85.1 min (1R, 3S, 3aS, 4R, 9bR), trmajor 

= 129.2 min (1S, 3R, 3aR, 4S, 9bS), 230 and 273 nm. 
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Methyl (1S, 3R, 3aR, 4S, 9bS)-4-(4-hydroxy-3-methoxyphenyl)-3a-nitro-3-phenyl-

benzopyrano[3,4-c]-pyrrolidine-1-carboxylate (123j) 

30 mg of a white solid obtained (starting from 60 mg, 0.340 

mmol of corresponding imine 80a), yield = 18 %. EtOAc/n-

hexane 33:66, Rf: 0.22. 1H NMR (400 MHz, CDCl3)  (ppm) 

= 7.55 (d, J = 7.6 Hz, 1H), 7.43 (s, 4H), 7.38 (s, 3H), 7.17 (t, 

J = 7.6 Hz, 1H), 7.08 (t, J = 7.4 Hz, 1H), 6.84 (d, J = 8.1 Hz, 

1H), 6.69 (s, 1H), 6.64 (d, J = 8.2 Hz, 1H), 6.58 (d, J = 8.4 Hz, 1H), 5.54 (s, 1H), 5.48 

(s, 1H), 4.95 (d, J = 10.7 Hz, 1H), 4.75 (d, J = 3.6 Hz, 1H), 4.15 (s, 1H), 4.02 (s, 3H), 

3.73 (s, 3H), 3.10 (s, 1H). 13C NMR (101 MHz, CDCl3)  (ppm) = 173.5, 152.8, 146.5, 

146.4, 137.0, 129.8, 129.2, 129.0, 128.8, 127.6, 126.7, 122.1, 121.7, 120.8, 118.4, 

113.8, 111.3, 98.1, 77.7, 68.7, 64.4, 56.1, 51.9, 45.3. FT-IR (neat) = 3446, 3333, 3006, 

2953, 1738, 1604, 1586, 1541, 1489, 1455, 1435, 1366, 1354, 757, 700 cm-1.     
   = 

+4.95⁰ (c 0.80, CH2Cl2), 44 % ee. HPLC: Daicel Chiralpak IA column, iso-Propanol/n-

hexane 10:90, flow = 1 mL/min, trmin= 46.1 min (1R, 3S, 3aS, 4R, 9bR), trmajor = 53.5 

min (1S, 3R, 3aR, 4S, 9bS), 230 and 273 nm. 
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Methyl (1R, 3R, 3aR, 4S, 9bS)-3-(4-pentiloxyphenyl)-3a-nitro-4-phenyl-

benzopyrano[3,4-c]-pyrrolidine-1-carboxylate (123k) 

29 mg of a white solid obtained (starting from 60 mg, 

0.240 mmol of corresponding imine 80j), yield = 23 

%. EtOAc/n-hexane 17:83, Rf: 0.25. 1H NMR (400 

MHz, CDCl3)  (ppm) = 7.58 – 7.54 (m, 1H), 7.28 (d, 

J = 8.5 Hz, 2H), 7.21 – 7.13 (m, 5H), 7.06 (td, J = 7.5, 1.2 Hz, 1H), 6.94 (d, J = 8.6 Hz, 

2H), 6.81 (dd, J = 8.1, 1.3 Hz, 1H), 5.54 (s, 1H), 4.93 (d, J = 10.4 Hz, 1H), 4.77 (d, J = 

3.5 Hz, 1H), 4.13 (s, 1H), 4.02 (s, 3H), 3.97 (t, J = 6.5 Hz, 2H), 1.85 – 1.76 (m, 2H), 

1.50 – 1.35 (m, 4H), 0.94 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3)  (ppm) = 

172.6, 160.3, 150.0, 135.3, 129.0, 128.9, 128.6, 128.4, 128.1, 125.5, 125.3, 123.3, 

118.4, 115.0, 96.7, 75.7, 70.5, 68.7, 68.1, 53.2, 46.2, 29.1, 28.3, 22.6, 14.1. FT-IR 

(neat) = 3344, 3064, 3034, 2953, 2931, 2870, 1736, 1610, 1585, 1540, 1512, 1488, 

1454, 1359, 1238, 820, 756, 696 cm-1. HRMS (ESI): C30H32N2O6 [M + H]+, calculated: 

517.2332, found: 517.2334. Elemental analysis: calculated for C30H32N2O6: C, 69.7; 

H, 6.2; N, 5.4. Found: C, 69.6; H, 6.4; N, 6.0.     
   = +86.34⁰ (c 0.94, CH2Cl2), >99 % 

ee. HPLC: Daicel Chiralpak OD-H column, iso-Propanol/n-hexane 2:98, flow = 0.7 

mL/min, trmajor = 97.0 min (1S, 3S, 3aS, 4R, 9bR), trmin = 128.9 min (1R, 3R, 3aR, 4S, 

9bS), 230 nm.  
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Methyl (1S, 3R, 3aR, 4S, 9bS)-3-(4-pentiloxyphenyl)-3a-nitro-4-phenyl-

benzopyrano[3,4-c]-pyrrolidine-1-carboxylate (123’k) 

30 mg of a white solid obtained (starting from 60 mg, 

0.240 mmol of corresponding imine 80j), yield = 24 

%. EtOAc/n-hexane 17:83, Rf: 0.18 (20:80). 1H NMR 

(400 MHz, CDCl3)  (ppm) = 7.31 (s, 6H), 7.25 (d, J 

= 8.6 Hz, 2H), 7.17 – 7.12 (m, 1H), 7.00 (td, J = 7.5, 1.2 Hz, 1H), 6.91 – 6.87 (m, 2H), 

6.85 (dd, J = 8.1, 1.2 Hz, 1H), 5.70 (s, 1H), 5.39 (s, 1H), 5.09 (d, J = 9.7 Hz, 1H), 5.03 

(d, J = 9.8 Hz, 1H), 3.97 (t, J = 6.6 Hz, 2H), 3.39 (s, 3H), 1.81 (p, J = 6.7 Hz, 2H), 1.45 

(ddd, J = 18.8, 9.0, 2.9 Hz, 4H), 0.97 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, CDCl3)  

(ppm) = 173.4, 159.9, 152.6, 135.0, 129.8, 129.0, 128.6, 128.5, 128.3, 122.0, 121.0, 

118.3, 114.7, 97.9, 77.5, 68.6, 68.1, 64.4, 51.8, 45.2, 29.1, 28.3, 22.5, 14.1. FT-IR 

(neat) = 3346, 2952, 2933, 1733, 1611, 1542, 1455, 1372, 757, 698 cm-1.     
   = -4.36⁰ 

(c 1.20, CH2Cl2), 93 % ee. HPLC: Daicel Chiralpak OJ-H column, iso-Propanol/n-

hexane 15:85, flow = 1.0 mL/min, trmin = 59.6 min (1S, 3S, 3aS, 4R, 9bR), trmajor = 80.7 

min (1R, 3R, 3aR, 4S, 9bS), 230 nm. 
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Modern asymmetric catalysis consists principally of three basic pillars: 

biocatalysis, metal catalysis and organocatalysis. Chapter 1 of this thesis manuscript 

described the main advantages and drawbacks of the three types of catalysis and we 

focused on ligands employed mainly in organometallic catalysis.  

The asymmetric approach proposed for the synthesis of Securinega alkaloids 

requires a deeper explanation of the concept of organocatalysis and the activation 

modes developed to date. 

 

3.1.  Organocatalysis 

This type of catalysis using small organic molecules, where a metal is not part 

of the active center, has emerged strongly in the field of asymmetric synthesis as a 

useful tool in the construction of complex chiral structures.1 

List classified organocatalysts by their Lewis or Brønsted nature but nowadays 

is more likely to classify organocatalysts by their mechanistic pathway or activation 

mode. This classification is based on the interactions between the substrate and 

organocatalyst. On one hand, these interactions can be non-covalent, for example they 

show weak interactions such as hydrogen bonds or ionic pairs. On the other hand, 

some organocatalysts present strong interactions with the substrate, and therefore, the 

formation and cleavage of covalent bonds.  

 

3.1.1 Covalent activation 

Covalent activation involves the formation of new reversible covalent bonds 

between the catalyst and substrate to create an active substrate, followed by the 

chemical reaction per se, and lastly, the cleavage of the covalent bond to afford the 

product and release the catalyst. Organocatalysts employed in this type of activations 

are Lewis bases. 

  

Aminocatalysis relies on the activation of a carbonyl compound (aldehyde or 

ketone) using a primary or secondary amine.2 This activation can occur in two different 

manners: via enamine or iminium ion. Catalytic version of aminocatalysis has shown to 

generate reversible and transitory reactive species. Proline based catalysts have 

emerged during the last decade due to the excellent results presented in different 

reactions with carbonyl compounds.3 

 

 

 

                                                
1
 List, B., Chem. Rev. 2007, 107, 10–12. 

2
 Nielsen, M.; Worgull, D.; Zweifel, T.; Gschwend, B.; Bertelsen, S.; Jørgensen, K. A., Chem. Commun. 

2011, 47, 632–649. 
3
 List, B., Acc. Chem. Res. 2004, 37, 548–557. 
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3.1.1.1 Enamine catalysis 

 

Enamine catalysis can be performed by primary or secondary chiral amines in 

presence of non-saturated carbonyls.3,4  Reversibility of the process allows this type of 

activation to create a catalytic cycle (Fig. 3.1). L-proline has recently emerged as 

important organocatalyst, showing excellent results in enantioselective reactions such 

as aldol-type reactions and Michael reactions with different ketones and aldehydes. 

 

 

Figure 3.1. Catalytic cycle for the catalysis via enamine. Arrows are drawn in one direction for clarity, but 

all steps are reversible.  

 

One of the most important aspects to reach high asymmetric induction is the 

conformation and configuration of the enamine during the transition state. The 

transition state of the E configuration is generally more stable than the Z one. In 

addition, E-enamine can present two possible conformations, syn and anti. The anti-

enamine which presents the double bond oriented in the opposite direction of the bulky 

group in  position to the pyrrolidine nitrogen is more stable (Fig. 3.2). 

 

                                                
4
 Kano, T.; Maruoka, K., Chem. Commun. 2008, 5465–5473. 
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Figure 3.2. anti and syn conformers for E-enamine configuration. 

 Assuming that during the transition state of the reaction enamine participates 

mainly through the anti-E form, two different models can be distinguished related to the 

approximation of the electrophile (Fig 3.3). Generally, products obtained from the two 

different models present opposite configuration. Catalysts that contain a hydrogen 

donor group (as acids, sulfonamides…) in  to the nitrogen of the pyrrolidine they 

attack from the Re face and simultaneously enamine activates the electrophile (Fig 3.9, 

1). On the other hand, other organocatalysts determine the stereocontrol due to their 

steric blockage made by the bulky group in carbon to the nitrogen. Consequently, 

attack occurs from Si face, controlled just by steric reasons (Fig 3.3, 2).5 

 

 

Figure 3.3. Re and Si attack of the electrophile depending on the organocatalyst type. 

 

 

3.1.1.2 Catalysis via iminium ion 

 

Iminium ion catalysis is based on the generation of a more electrophilic iminium 

intermediate formed when an amine reacts with -unsaturated aldehydes or 

ketones.6 In this type of catalysis the presence of an acid as cocatalyst is required to 

promote the reversibility of the process. 

 

Activation via iminium ion has demonstrated similarities with the activation of 

carbonyl compounds by Brønsted acid or bases. In both cases, the HOMO-LUMO 

                                                
5
 Diner, P.; Kjærsgaard, A.; Lie, M. A.; Jørgensen, K. A., Chem. Eur. J. 2008, 14, 122–127. 

6
 a) Erkkilä, A.; Majander, I.; Pihko, P. M., Chem. Rev. 2007, 107, 5416–5470. b) Ahrendt, K. A.; Borths, C. 

J.; Macmillan, D. W. C., J. Am. Chem. Soc. 2000, 122, 4243–4244. 
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energy gap is decreased, and this directs the reaction under orbital frontier control. As 

in the case of enamine catalysis all steps are reversible, therefore allows describing it 

as catalytic cycle. 

 

 

Figure 3.4. Catalytic cycle for activation via iminium ion. Arrows are drawn in one direction for clarity, but 

all steps are reversible. 

 

In iminium ion catalysis , as well as for enamine catalysis, the conformation and 

configuration is a determinant factor in order to observe a good stereocontrol. Briefly, 

within this type of activation the s-trans-(E) conformer is the most stable. 

 

 

 

Figure 3.5. anti and syn conformers for E-enamine configuration. 
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3.1.2 Non-Covalent activation 

Non-covalent activation of organocatalysts presents  weak interactions between 

the catalyst and the substrate. Acid/base interactions are possible due to hydrogen 

bonds between the substrate and Brønsted acids such as, thioureas, phosphoric acids 

and guanidines.7  

 

3.1.2.1 Thiourea catalysts 

Urea and thiourea compounds have been widely used for a long time for 

molecular recognition because of their strong hydrogen bonding nature. For the last 

two decades these compounds have emerged as excellent acid catalysts in 

asymmetric reactions. Jacobsen reported the use of chiral urea derivatives in catalysis 

of different reactions with high enantiomeric excess.8 

Takemoto and coworkers designed a bifunctional thiourea catalyst incorporating 

a tertiary amine on a chiral scaffold. The advantage of these thioureas is that they can 

activate both the electrophile and nucleophile (see Fig. 3.6). This type of catalysts 

showed excellent results for Michael additions, being afterwards efficiently used in a 

large variety of reaction types. 

 

 

Figure 3.6. Monofunctional and bifunctional non-covalent activation of thiourea compounds. 

 

 

3.1.2.2 Phosphoric acid catalysts 

BINOL-derived chiral phosphoric acids, which include axial chirality, have 

emerged in the last years as highly efficient strong Brønsted acid catalysts in a variety 

of organic reactions in an enantioselective manner. In this type of activation, hydrogen-

bonding or ion pairing interactions are key factors in the control of the stereochemical 

outcome. 

                                                
7
 Akiyama, T.; Itoh, J.; Fuchibe, K., Adv. Synth. Catal. 2006, 348, 999–1010. 

8
 a) Okino, T.; Hoashi, Y.; Takemoto, Y., J. Am. Chem. Soc. 2003, 125, 12672–12673. b) Okino, T.; 

Yasutaka, H.; Furukawa, T.; Xu, X.; Takemoto, Y., J. Am. Chem. Soc. 2005, 127, 119-125. 
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 Computational studies suggested that two-sites that present hydrogen-bonding 

interactions between the substrate and the catalyst are crucial for the achievement of 

high enantiomeric excess. These sites interact with both the electrophile and 

nucleophile, and thus, prompting the bifunctional nature of the catalyst. 3,3’ 

substituents of the phosphoric acids play a key role in the elevated enantioselectivities 

induced.9 

 

Figure 3.7. Representation of the bifunctional nature of chiral phosphoric acids by activation of the 

nuclophile and the electrophile. 

 

 

3.1.2 Enantioselective oxa-Michael reactions 

 Complex oxygenated molecules usually present a unique structure and broad 

range of biological activities. In view of that, C-O bond formation has inspired many 

attempts toward the chemical synthesis of mentioned compounds.10 Similar to C-C 

bond construction strategies, oxygen nucleophiles have been employed in additions to 

conjugate acceptors as one of the most efficient methodologies for C-O bond formation 

(Scheme 3.1). For example, when alcohols are employed as nucleophiles, reaction is 

called oxa-Michael addition. Actually, it was not until recently that hetero-Michael type 

additions have received significant attention from the synthetic community.11 

 

                                                
9
 a) Akiyama, T., Chem. Rev. 2007, 107, 5744–5758. b) Kanomata, K.; Toda, Y.; Shibata, Y.; Yamanaka, 

M.; Tsuzuki, S.; Gridnev, I. D.; Terada, M., Chem. Sci. 2014, 5, 3515–3523. 
10

 Hu, J.; Bian, M.; Ding, H., Tetrahedron Lett. 2016, 57, 5519–5539. 
11

 a) Nising, C. F.; Bräse, S., Chem. Soc. Rev. 2008, 37, 1218–1228. b) Nising, C. F.; Bräse, S., Chem. 

Soc. Rev. 2012, 41, 988–999. 
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 Scheme 3.1. Common oxa-Michael reaction pathways, base induced and iminium catalyzed. 

 

Loydl discovered in 1878 the first oxa-Michael reaction, long before first Michael 

addition, in order to achieve the synthesis of malic acid. C-O bond reactions were not 

as interesting as conventional Michael or aldol reactions because they presented 

reversibility in the alcohol addition step, relatively poor nucleophilicity toward acceptor 

and sometimes lack of stereocontrol11  

During the last decades a significant enhancement on the reactivity and 

stereoselectivity of these reactions was reported. In fact, the enolates generated in 

oxa-Michael reactions are valuable intermediates that can react with other electrophiles 

to give rise to further domino reactions (Scheme 3.1). Several examples of oxa-

Michael/organocascade reactions have been reported, usually giving an efficient 

access to oxygen containing heterocycles and natural products (Scheme 3.2).10,11,12 

Moreover, -hydroxyketones and-aminoalcohols are found in a variety of natural 

products and are considered important synthetic intermediates. Organocatalysis have 

been widely employed for the development of efficient enantioselective oxa-Michael 

reactions.10 

                                                
12

 a) Grondal, C.; Jeanty, M.; Enders, D., Nat. Chem. 2010, 2, 167–178. b) Heravi, M. M.; Hajiabbasi, P., 

Mol. Divers. 2014, 18, 411–439. 
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Scheme 3.2. Wide scope of the oxa-Michael reaction. 

 

 Jacobsen and coworkers developed the first catalytic oxa-Michael reaction to 

obtain -hydroxy carboxylic acid derivatives by addition of salicylaldoxime to ,-

unsaturated imides. Salen-Al complexes were employed as catalysts for a high 

enantioinduction in the conjugate addition (Scheme 3.3).13 

 

Scheme 3.3. Enantioselective oxa-Michael reaction catalyzed by Salen-Al 218.
13

 

 

 Conjugated reaction between alcohols and ,-unsaturated aldehydes 

remained a challenge due to the competitive acetal formation. -hydroxy and -alkoxy 

                                                
13

 Vanderwal, C. D.; Jacobsen, E. N., J. Am. Chem. Soc. 2004, 126, 14724–14725. 
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carbonyl compounds generated in this type of reactions are valuable building blocks 

and structural motifs. Biphenyl diamine 165 catalyzed oxa-Michael reactions was 

developed obtaining moderate yields and moderate enantiomeric excess (Scheme 

3.4).14 

 

Scheme 3.4. Enantioselective oxa-Michael addition of alcohols to -unsaturated aldehydes.
14

 

 

 Scheidt reported the use of a bifunctional quinine derived thiourea catalyst 168 

which activates a -ketoester alkylidine and promotes an intramolecular oxa-Michael 

addition of a phenol. In this way, enantioselective cyclization and decarboxylation 

afforded valuable flavanones and chromanones which are abundant features in natural 

products and they exhibit a wide array of biological activities.15 Similarly, ligand 169 in 

combination with Ni(II) catalyzed  oxa-Michael reaction afforded a promising approach 

toward flavanones showing a broad substrate scope and excellent enantiocontrol.16 

 

Scheme 3.5. Enantioselective intramolecular oxa-Michael addition with thioureas and nickel(II)-169.
15,16

 

 

                                                
14

 Kano, T.; Tanaka, Y.; Maruoka, K., Tetrahedron 2007, 63, 8658–8664. 
15

 Biddle, M. M.; Lin, M.; Scheidt, K. A., J. Am. Chem. Soc. 2007, 129, 3830–3831. 
16

 Wang, L.; Liu, X.; Dong, Z.; Fu, X.; Feng, X., Angew. Chem., Int. Ed. 2008, 47, 8670–8673. 
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 Vicario published a domino oxa-Michael/aldol/hemiacetalization employing 

prolinol organocatalyst 173 in order to obtain hexahydrofuro[3,4-c]furanes with 

excellent diastereo- and enantiocontrol (see Scheme 3.6). In the reaction one C-C 

bond and two C-O bond are formed, and manipulation of functional groups allowed the 

production of a wide range of different chiral building blocks.17 

 

Scheme 3.6. Enantioselective domino oxa-Michael/aldol/hemiacetalization catalyzed by prolinol 173.
17

 

 

 Recently, description of the synthesis of polysubstituted chroman derivatives 

was described by a intermolecular cascade oxa-Michael/Michael reaction between o-

hydroxy-substituted ,-unsaturated ketones and trans-nitroalkenes using chiral 

bifunctional thiourea organocatalyst 177 with excellent enantioinduction18 (Scheme 

3.7). 

 

Scheme 3.7. Synthesis of chroman derivatives with excellent enantioinduction in tandem oxa-

Michael/Michael reaction catalyzed by bifunctional thiourea 177
18

 

                                                
17

 Reyes, E.; Talavera, G.; Vicario, J. L.; Badia, D.; Carrillo, L., Angew. Chem., Int. Ed. 2009, 48, 5701–

5704. 
18

 Saha, P.; Biswas, A.; Molleti, N.; Singh, V. K., J. Org. Chem. 2015, 80, 11115–11122. 
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 Interestingly, enantioselective desymmetrization of 2,5-cyclohexadienones was 

carried out after phenol dearomatization reaction. Chiral Brønsted acid catalyzed 

intramolecular oxa-Michael reaction afforded desymmetrized compounds 180 with 

excellent enantiomeric excess19 (Scheme 3.16). 

 

Scheme 3.8. First reported oxa-Michael desymmetrization catalyzed by phosphoric acid 181.
19

 

 

3.1.3 Enantioselective desymmetrization reactions 

 A desymmetrization, for definition, is the modification of a prochiral molecule 

that results in the loss of one or more symmetry elements (mirror plane, center of 

inversion…), while one or more new stereocenters are set.20  Non-enzymatic 

desymmetrization has proven to be a powerful and versatile synthetic tool for the 

synthesis of chiral building blocks in order to obtain asymmetrically complex structural 

features.21 Gaunt was the first author to report a one-pot organocatalytic oxidative 

dearomatization strategy.22 para-Substituted phenol compounds were exposed under 

oxidative dearomatization conditions to directly undergo through an amine-catalyzed 

intramolecular Michael desymmetrization (Scheme 3.9). In this way, three new 

stereogenic centers were introduced which gave rise to a broad range of bicyclic 

compounds in one synthetic step. 

 

Scheme 3.9. One pot oxidative dearomatization/intramolecular Michael desymmetrization catalyzed by 

prolinol 184.
22

 

                                                
19

 Gu, Q.; Rong, Z. Q.; Zheng, C.; You, S. L., J. Am. Chem. Soc. 2010, 132, 4056–4057. 
20

 Review: Kalstabakken, K. A.; Harned, A. M., Tetrahedron 2014, 70, 9571–9585. 
21

 a) Spivey, A. C.; Andrews, B. I., Angew. Chem., Int. Ed. 2001, 40, 3131–3134. b) Ramachary, D. B.; 

Barbas, C. F., Org. Lett. 2005, 7, 1577–1580. 
22

 Vo, N. T.; Pace, R. D. M.; O’Hara, F.; Gaunt, M. J., J. Am. Chem. Soc. 2008, 130, 404–405. 
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 Phenol oxidative dearomatization using hypervalent iodine reagents often afford 

2,5-cyclohexadienone intermediates that can react in a following Michael or hetero-

Michael addition to offer chiral complex architectures in presence of organocatalysts. 

2,5-cyclohexadienones can lead to four possible stereochemical outcomes (Scheme 

3.10) due to two factors: 1) the selective approach of the face and 2)  the preferential 

reaction on one of the two present alkenes.20  

 

 

Scheme 3.10. Possible four stereochemical outcomes of desymmetrization reactions of 2,5-

cyclohexadienones. 

 

 Gaunt’s work lead the way for further dearomatization/desymmetrization 

reaction strategies. Some of the advantages of dearomatization followed by 

desymmetrization reactions are: cheap aromatic compounds as starting materials, 

formation of more than two stereogenic centers in a sole step, and installation of chiral 

quaternary carbon centers with high enantioselectivity.23 

Dearomatization reaction followed by intermolecular oxa-Michael/Michael 

tandem reactions afforded an efficient and rapid formation of bicyclic frameworks 

containing hindered ethers. Prolinol catalyst 191 showed good to excellent 

diastereoselectivities and high enantioselectivities.24 

 

 

Scheme 3.11. Prolinol derived catalyzed reaction to afford substituted enantiopure ether compounds 

190.
24

 

 

As described before (Scheme 3.8), You and coworkers developed the first 

dearomatization/oxa-Michael desymmetrization of compound 179. This methodology 

                                                
23

 Gu, Q.; You, S. L., Org. Lett. 2011, 13, 5192–5195. 
24

 Corbett, M. T.; Johnson, J. S., Chem. Sci. 2013, 4, 2828–2832. 
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gave rise to the total synthesis of Cleroindicin C, D and F.19 In addition, same group 

reported the enantioselective dearomatization/Michael addition of cyclohexadienones 

bearing active methylenes catalyzed by cinchonine-derived ureas.23 Similarly, 

cinchonine-derived thiourea catalyst 196 presented excellent results for the first time in 

dearomatization/intramolecular aza-Michael reaction.25 Utility of this methodology was 

proved by the total synthesis of (–)-Mesembrine (Scheme 3.12). 

 

Scheme 3.12. First reported aza-Michael desymmetrization for the total synthesis of (–)-Mesembrine.
23,25

 

 

 Recently, Gaunt and coworkers performed a catalytic enantioselective 

dearomatization (CED) protocol followed by an intramolecular Michael addition which 

permitted an efficient strategy for the synthesis of (–)-Morphine core (Scheme 3.13).26 

 

Scheme 3.13. CED strategy to obtain tetracycle 199 in enantioselective manner, core of morphine.
26

 

                                                
25

 Gu, Q.; You, S.-L., Chem. Sci. 2011, 2, 1519–1522. 
26

 Williamson, A. E.; Ngouansavanh, T.; Pace, R. D. M.; Allen, A. E.; Cuthbertson, J. D.; Gaunt, M. J., 

Synlett 2016, 27, 116–120. 
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Phenol oxidation was reported by Doyle employing dirhodium caprolactone with 

tert-butyl hydroperoxide. This strategy gave rise to interesting peroxi-2,5-

cyclohexadienones which, in presence of chiral phosphoric acid 258, were transformed 

by oxa-Michael and aza-Michael reactions into bicyclic peroxi-compounds with good 

enantioselectivities.27  

 

Scheme 3.14. Peroxi-compounds 202 obtained by desymmetrization catalyzed by phosphoric acid 203, 

and chiral diamine 206 catalyzed oxa-Michael desymmetrization to afford 1,4-dioxanes.
27,28 

 

Chiral diamine catalysts 206 in combination with N-Boc-L-proline were also 

reported to catalyze efficiently oxa-Michael reactions through iminium activation. 1,4-

dioxanes obtained from the desymmetrization reaction were compounds with multiple 

chiral centers and  high enantiomeric excess.28 

 

 

 

 

 

 

                                                
27

 Ratnikov, M. O.; Farkas, L. E.; Doyle, M. P., J. Org. Chem. 2012, 77, 10294–10303. 
28

 Wu, W.; Li, X.; Huang, H.; Yuan, X.; Lu, J.; Zhu, K.; Ye, J., Angew. Chem.,  Int. Ed. 2013, 52, 1743–

1747. 
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3.2 Precedents in the total synthesis of Securinega alkaloids 

 As it has been described in Chapter 1, Securinega alkaloids possess a unique 

tetracyclic skeleton and exhibit interesting bioactivities. Thereby, a significant number 

of publications describing innovative approaches targetting such alkaloids are reported 

to date. Most of the strategies toward the achievement of the main natural product of 

the family, Securinine, started by the formation of piperidine ring A, followed by the 

subsequent formation of CD rings. Final intramolecular cyclization allowed the 

formation of ring B and, thus, Securinine synthesis ( Scheme 3.15).29 

  

 

Scheme 3.15. General strategy for the total synthesis of Securinega alkaloids. 

 

Horii was the first to develop a racemic approach toward Securinine. With no 

tools for a chiral approach, first synthesis yielded an equimolecular mixture of 

enantiomers Securinine and Virosecurinine. Enantiomers were separated by 

recrystallization of camphorsulfonate derivatives. Strategy relied on the initial pyridine 

A ring to form CD rings and final cyclization to afford B ring as it is represented in 

Scheme 3.24.30 

Therefore, synthesis started with pyridylithium 210 reacting with ketone 211 

which gave rise to pyridyl alcohol 212. Compound 212 was transformed into 

ketoalcohol 213 by pyridine ring hydrogenation, ketal hydrolysis and N-acetylation. 

Later bromination of 213 was able to afford formation of unsaturation in C14-C15 

position. Then, following incorporation of lithium ethoxyacetylene followed by treatment 

with sulfuric acid led to the mixture of butenolide formation 214 and -hydroxylactone 

215. Acetal of 214 was hydrolyzed and introduction a formyl group was introduced. The 

following bromination and acid hydrolysis led to the synthesis of the racemic mixtures 

of Securinine/Virosecurinine. 

                                                
29

 Chirkin, E.; Atkatlian, W.; Porée, F.- H., The Securinega Alkaloids, Elsevier Ltd, 2015. 
30

 Horii, Z.; Hanaoka, M.; Yamawaki, Y.; Tamura, Y.; Saito, S.; Shigematsu, N.; Kotera, K.; Yoshikawa, H.; 

Sata, Y.; Nakai, H.; Sugimoto, N., Tetrahedron 1967, 23, 1165–1174. 
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Scheme 3.16. First racemic synthesis of Securinine developed by Horii.
30

 

 

40 years later, Honda, was also able to synthesize racemic compound 214 

using an alternative Diels Alder approach.31 However, he finally developed the first 

stereoselective synthesis of Securinine by an original approach toward CD ring via 

tandem ring closing metathesis (RCM).32 Moreover, depending on the chelation to the 

amine 217 or not (when amine is protected) during the 1,2-addition of the acetylenic 

moiety on to the carbonyl, synthesis of Securinine or Viroallosecurinine33 was 

accessible. Stereochemistry in C2 position was set by the enantiopure thioester 266 

which was obtained from R-pipecolinic acid.   

Therefore thioester 217 was treated with hexenylmagnesium bromide 218 in 

order to afford ketone 219 in a good yield. Then, diastereoselective alkynylation with 

lithium trimethylsilyl acetylide 220 in presence of CeCl3 afforded the tertiary alcohol 221 

in a 97 % yield, in this way setting stereochemistry in C9 position. Subsequent 

deprotection of the alcohol and O-allylation gave compound 222, which was used in the 

RCM in the presence of highly active Ru-catalyst 223 to afford 224. This way 

stereoselective formation of A-CD rings was achieved in a relatively short sequence.  

Diene 224 was oxidized by CrO3, followed by bromination and removal of 

protecting group with TFA, and a final cyclization employing potassium carbonate 

afforded Securinine with 17% of overall yield. 

                                                
31

 Honda, T.; Namiki, H.; Kudoh, M.; Watanabe, N.; Nagase, H.; Mizutani, H., Tetrahedron Lett. 2000, 41, 

5927–5930.  
32

 Honda, T.; Namiki, H.; Kaneda, K.; Mizutani, H., Org. Lett. 2004, 6, 87–89.   
33

 Honda, T.; Namiki, H.; Watanabe, M.; Mizutani, H., Tetrahedron Lett. 2004, 45, 5211–5213. 
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Scheme 3.17. Honda’s total synthesis of Securinine using as key step tandem RCM.
32

 

 

Securinine’s epimer Allosecurinine was synthesized by Busqué starting from 

unnatural (+)-Menisdaurilide employing a vinylogous Mannich reaction as key step.34 

(+)-Menisdaurilide (see Scheme 3.18) was first protected with tert-butyldiphenylsilyl 

ether affording compound 226. In situ generated piperidinium ion 227 and compound 

226 reacted under a vinylogous Mannich reaction. Two of the possible 

diastereoisomers were generated in a 4:1 ratio, being diastereoisomer 228 the major 

one. Deprotection and mesylation of the alcohol, followed by the removal of carbamate 

using TFA led to a final cyclization in presence of a solution of K2CO3. Allosecurinine-

229 was obtained in overall yield of 42% through seven synthetic steps.  

                                                
34

 Bardají, G. G.; Cantó, M.; Alibés, R.; Bayón, P.; Busqué, F.; De March, P.; Figueredo, M.; Font, J., J. 

Org. Chem. 2008, 73, 7657–7662. 
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Scheme 3.18.  Busqué reported total synthesis of Allosecurinine-229 starting from non-natural (+)-

Menisdaurilide.
34

 

 

 
Scheme 3.19. Thadani’s total synthesis of Securinine by two RCM and a Pd-catalyzed Heck reaction.

35
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 Thadani developed an original strategy for the synthesis of Securinine (Scheme 

3.19).35 Starting reagent was part of the B ring of Securinine, and then piperidine A ring 

was synthesized. Butenolide D ring and the C ring were formed during the sequence. 

Palladium catalyzed Heck reaction and two ring closing metathesis are key steps in the 

synthesis of the natural product.  

 Compound 230 was synthesized in four steps from trans-4-hydroxy-L-proline in 

96% yield.  Compound 230 was then reduced by LiEt3BH and directly converted into 

acetate 231 in 87% yield. Treatment of 231 with allyl trimethylsilane in presence of 

BF3·OEt2 and removal of the carbamate protecting group led to major diastereisomer 

232 in 4:1 diastereomeric ratio. After separation of diastereoisomers, N-allylation of 

major compound 232, followed by RCM and reduction of the obtained alkene by 

hydrogenation gave rise to substituted indolizidine 234. Reduction of the ester gave 

rise to an aldehyde that reacted in a Wittig reaction permitting the access to the 

corresponding Z-iodoalkene 235.  

Deprotection of the alcohol allowed the subsequent to the corresponding ketone 

and addition vinylmagnesium bromide generated an alkoxy intermediate that was 

trapped by acryloyl chloride to form triene 236. Hoveyda-Grubbs II catalyzed RCM was 

followed by an intramolecular Heck reaction catalyzed by Herman-Beller palladium 

catalyst. Total synthesis of Securinine was performed in 18 steps with an overall yield 

of 16%. 

 

Scheme 3.20. Pd-catalyzed enantioselective allylation and following Bayon`s total synthesis toward 

Securinine.
36

 

                                                
35

 Dhudshia, B.; Cooper, B. F. T.; Macdonald, C. L. B.; Thadani, A. N., Chem. Commun. 2009, 463–465. 
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 Bayon developed an alternative total synthesis of Securinine based on the 

palladium catalyzed enantioselective allylation of glutarimide 238.36 It is important to 

note that depending on the size of the imide ring, 5 membered (–)-Norsecurinine or 6 

membered Securinine could be synthesized. Bayon’s synthetic sequence started with 

A glutarimide ring followed by the coupling of AD moieties through vinylogous Mannich 

reaction. Further RCM generated the BC ring which, a later intramolecular nucleophilic 

substitution, afforded the bridged natural product (Scheme 3.20). 

 Chiral diphosphine ligand 240 in combination with palladium salt catalyzed the 

enantioselective allylation between glutarimide 238 and epoxide 239 leading to the 

formation of compound 241 in a 98% of enantiomeric excess after protection of the 

alcohol. The reduction of ketone gave an aminal that directly reacted in a vinylogous 

Mannich reaction with silyloxyfuran 242, and gave rise to triene 243. RCM using 

Hoveyda-Grubss catalyst II afforded tricyclic compound 244 in almost quantitative yield 

and with the direct insertion of the distinctive C14-C15 double bond to the structure. 

Then, after the elimination of ketone group in C6 position, silyl protected alcohol was 

deprotected and mesylated. The formation of potassium enolate using KHMDS induced 

the intramolecular nucleophilic substitution in order to yield Securinine in ten reaction 

steps with an overall yield of 20%. On the other hand, (–)-Norsecurinine was obtained 

in nine steps with 14% of overall yield. 

Recently, Gademan published an efficient total synthesis of (–)-Bubbialidine, an 

alkaloid that present an azabiciclo[2.2.2]octane system.37 They described the synthesis 

of (–)-Bubbialidine in 16 synthetic steps with a 1% of overall yield (Scheme 3.21). 

Strategy followed started wC to D, A, B ring sequence direction. 

  This synthesis is very interesting due to the versatility provided by protected 

(+)-Aquilegiolide intermediate. In addition, this intermediate is a stereoisomer of (+)-

Menisdaurilide, bicycle employed in the total synthesis reported by Busqué.34 Starting 

from a simple 1,4-cyclohexadiene 246, the subsequent epoxidation, ring opening and 

acetylation reactions afforded racemic compound 247.  Enzymatic kinetic resolution 

using a lipase gave rise to compound 248 in a 94 % ee and 38% yield. After hydrolysis 

of the nitrile moiety, followed by acid catalyzed lactonization compound was exposed to 

selenation and oxidative elimination conditions to afford CD moiety 249. The protection 

of alcohol with TBDPS and the vinylogous Mannich reaction between in situ generated 

aminol 251 and 252 afforded a mixture of diastereisomers in a 1:1 ratio. After 

separation of diastereisomers, the correspondent one was converted into its 

chlorhydrate salt by removal of the Boc group.  

Salt was treated under high temperature and in presence of K2HPO4 promoted 

intramolecular aza-Michael addition to obtain protected 304. Interestingly at this stage 

they were able to diverge in the synthesis in order to obtain two possible natural 

products: 1) deprotection of alcohol led to desired (–)-Bubbialidine; 2) further four step 

sequence afforded Virosaine A, in 19 steps. 

 

                                                
36

 González-Gállvez, D.; García-García, E.; Alibés, R.; Bayón, P.; De March, P.; Figueredo, M.; Font, J., J. 

Org. Chem. 2009, 74, 6199–6211. 
37

 Miyatake-Ondozabal, H.; Bannwart, L. M.; Gademann, K., Chem. Commun. 2013, 49, 1921–1923. 



SECURINEGA ALKALOIDS 

159 
 

 

Scheme 3.21. Total synthesis of (–)-Bubbialidine reported by Gademan and coworkers.
37

 

 

 Jiang reported more recently the total synthesis of (–)-Norsecurinine, (–)-

Niruroidine and dimeric alkaloid (–)-Flueggine A.38 Similar to the synthesis described 

before (–)-Norsecurinine was obtained in 9 steps with an overall yield of 12%. 

Interestingly, synthesis of (–)-Niruroidine was obtained for the first time in four chemical 

steps from (–)-Norsecurinine with 37% of overall yield (Scheme 3.22).  

                                                
38

 Ma, N.; Yao, Y.; Zhao, B.-X.; Wang, Y.; Ye, W.-C.; Jiang, S., Chem. Commun. 2014, 50, 9284–9287. 
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Scheme 3.22. Transformation of (–)-Norsecurinine into (–)-Niruroidine.
38

 

 

 Moreover, it was considered that the three natural products were 

biosynthetically related due to their presence in plants of the same genus. Thus, (–)-

they were able to obtain (–)-Norsecurinine from (–)-Niruroidine, supporting the fact that 

this process could occur in nature (Scheme 3.23) 

 

Scheme 3.23. Transformation (–)-Niruroidine of into (–)-Norsecurinine and possible mechanism of 

rearrangement by PPh3.
38

 

 Li reported a collective and concise total synthesis of some Securinega 

alkaloids by tandem RCM reactions. In this way, total synthesis of (–)-Flueggine A, (+)-

Virosaine B, C7’-epi-Flueggine A and Bubbialine was achieved.39 

 

 

                                                
39

 Han, J.-C.; Li, C.-C., Synlett 2015, 26, 1289–1304. 
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3.3 Hypervalent iodine reagents and enantioselective 

oxidative dearomatization reactions 

Hypervalent iodine reagents have found broad application in organic chemistry 

and are nowadays frequently used in synthesis. For example, we have previously 

described their importance in oxidative dearomatization reactions that can later 

undergo enantioselective desymmetrization reactions (section 3.1.3 of this Chapter). 

 

 Wilgerodt prepared dichloroiodobenzene in 1886, first organic hypervalent 

iodine compound. Since then, these reagents have emerged as important oxidants in 

organic synthesis, often able to replace metallic oxidants due to their reactivity, and 

with the advantage of low toxicity. In particular, during last decades, hypervalent iodine 

reagents have demonstrated to promote different types of reactions such as ligand 

exchange, oxidative addition, reductive elimination and ligand coupling reactions, 

typically performed by transition metals.40 

 

Organoiodine compounds present a linear three-center-four-electron (3c-4e) 

bond (L-I-L) which is formed by the overlap of the 5p-orbital on iodine atom with the 

orbitals on the two ligands. The particular reactivity and structure for polyvalent iodine 

compounds is explained by the presence of the described weak and highly polarized 

hypervalent bond. 41 

 

Hipervalent iodine compounds can be classified into two groups:41,42 

1) Iodine (III) compounds or 3-iodanes: RIX2 compounds present 10 electrons 

placed in the iodine atom, and they exhibit a sp3d hybridization featuring a 

trigonal/bipyramidal geometry as demonstrated in structure 264 (see Fig. 3.8). As 

depicted in Figure 3.8 for PIDA, PIFA and Koser’s reagent, the oxygenated 

ligands are typically positioned in the apical positions, while the remaining lone 

pairs sit in the equatorial position along with the aromatic ring. These compounds 

thus are T-shaped structures and their I-X bond is longer than an average covalent 

bond for other organoiodine molecules.  

 

 

Figure 3.8. PIDA and PIFA, representative examples of 
3
-iodanes. 

                                                
40

 a) Willgerodt, J. Prakt. Chem. 1886, 33, 154-160. b) Zhdankin, V. V.; Hypervalent Iodine Chemistry: 

Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds, Wiley, Chichester, 

2014. 
41

 Yoshimura, A.; Zhdankin, V. V., Chem. Rev. 2016, 116, 3328–3435. 
42

 Parra, A.; Reboredo, S., Chem. Eur. J. 2013, 19, 17244-17260.  
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2) Iodine (V) compounds or 
5-iodanes: RIX4 compounds exhibit sp3d2 

hybridization featuring a square pyramidal geometry as demonstrated in structure 

267. As gathered in Figure 3.9, Dess-Martin Periodinane and IBX reagents 

present their oxygenated ligands in basal position, while the lone pair and the 

aromatic ring are placed in apical positions.   

 

 
Figure 3.9. Most common examples of 

5
-iodanes. 

 

Hypervalent iodine reagents are useful in a wide range of reactions; such as, 

oxidations of sulfide to sulfoxides, dearomatization reactions, arylation reactions, α-

functionalization of ketones,functionalization of alkenes and dehydrogenation of 

alcohols into carbonyl compounds.  

 

3.3.1 Chiral Hypervalent iodine reagents  

Imamoto and coworkers prepared the first chiral hipervalent iodine reagent, 

back in 1986, which showed moderate enantiomeric excess for the oxidation of sulfides 

to sulfoxides (Fig. 3.10, 268).43,44 On the other hand, Wirth et al. were the first to 

introduce the chirality in the aromatic backbone of a hypervalent iodine reagent (fig. 

3.10, 269), which was effective in different oxidation reactions.45 Ochiai46  and Kita47, 

independently, reported the first achiral catalytic oxidation employing aryl iodides as 

organocatalyst and m-CPBA as stoichiometric oxidant. Later, Wirth was capable of 

developing the first catalytic asymmetric version.48 

                                                
43

 Imamoto, T.; Koto, H., Chem. Lett. 1986, 967-968. 
44

 Berthiol, F., Synthesis 2015, 47, 587–603 
45

 Wirth, T.; Hirt, U. H., Tetrahedron: Asymmetry 1997, 8, 23-26. 
46

 Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K.,  J. Am. Chem. Soc. 2005, 127, 12244-

12245. 
47

 Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y.,  Angew. Chem., Int. Ed. 

2005, 44, 6193-6196. 
48

 Richardson, R. D.; Page, T. K.; Altermann, S.; Paradine, S. M.; French, A. N.; Wirth, T., Synlett  2007, 

538-542. 
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Figure 3.10. First chiral hypervalent iodine ligands 268 and 269. 

 

Since then, a broad variety of hypervalent iodine reagents have been 

synthesized as it is gathered in Figure 3.11. These ligands promote efficiently different 

asymmetric reactions such as, dearomatization reactions, oxidation of alkenes or  

oxidation of sulfides to sulfoxides. 

 

Figure 3.11.  Chiral hypervalent iodine reagents developed in the last two decades. 

 

3.3.2 Dearomatization reactions 

Within the different reactions mediated by hypervalent iodine reagents, 

oxidative dearomatization reactions of phenols and naphtols are of special interest. 

Since the first works of Siegel and Antony49 on iodoarene diacetates, dearomatization 

reactions have been widely employed as key organic reactions for natural product 

synthesis.50 Amongst the hypervalent iodine reagents commercially available, PIDA 

((Diacetoxyiodo)benzene) and PIFA [bis(trifluoroacetoxy)iodo]benzene are probably 

the most common reagents used in phenolic oxidative dearomatization reactions. In the 

                                                
49

 Siegel, A.; Antony, F., Monatsh. Chem. 1955, 86, 292-300. 
50

 a) Pouységu, L.; Deffieux, D.; Quideau, S., Tetrahedron 2010, 66, 2235–2261. b) Pouységu, L.; Sylla, 

T.; Garnier, T.; Rojas, L. B.; Charris, J.; Deffieux, D.; Quideau, S., Tetrahedron 2010, 66, 5908–5917. 
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particular case of 3-iodanes, nucleophiles can be introduced into the ortho- or para- 

positions of the aromatic ring giving rise to the corresponding 2,4-cyclohexadienones or 

2,5-cyclohexadienones.51 

Mechanistic insights of this transformation remain uncertain but three main 

mechanisms are postulated (Scheme 3.24). All proposed mechanisms start with a 

ligand exchange step of one carboxylate ligand being substituted by the phenol, owing 

to the electrophilic nature of the iodine (III) atom. Once the phenoxy group is bounded 

to the iodine (III) center, the development of the reaction depends on the nucleofugality 

of the 3-phenyliodanyl group. The reduction of two of the electrons of the iodine (III) 

center and the elimination of the iodine (I) compound formed is the driving force of the 

reaction.50a,52 

First mechanism, named as Path A in Scheme 3.24, postulates an associative 

bimolecular mechanism in which the attack of the nucleophiles and the withdrawal of 

the 3-phenyliodanyl group take place at the same time, in a concerted manner. This 

path does not imply the possible formation of phenoxenium ion intermediate. 

Alternatively, a dissociative mechanism (Scheme 3.24, path B) goes through a 

phenoxonium ion intermediate 279 due to the great nucleofugality nature of the 3 

phenyliodane. Subsequently, the nucleophile would attack the ortho position and led to 

the corresponding product.  

 

Scheme 3.24. Postulated mechanistic behavior of 
3
-iodanes through Path A, B or C.  

                                                
51

 Harned, A. M., Tetrahedron Letters, 2014, 55, 4681-4689. 
52

 Wu, W.-T.; Zhang, L.; You, S.-L., Chem. Soc. Rev, 2016, 45, 1570-1580. 
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The third mechanistic pathway (Scheme 3.24, path C) involves a second ligand 

exchange of the 3-phenyliodane with an incoming nucleophile, and subsequently, 

leads to the reductive elimination of the respective iodobenzene (PhI) with the 

simultaneous formation of a bond between the two other ligands (phenoxy unit and 

nucleophile). This mechanism is similar to the transition metals mediated coupling 

reactions. 

 

3.3.2.1 Stoichiometric enantioselective reactions 

Kita developed a strategy for the enantioselective phenolic dearomatization in 

order to obtain chiral ortho-spirolactone 286 using chiral organohypervalent iodine 287 

(Scheme 3.25). Reaction between ortho-carboxy substituted naphtol 285 and chiral 

reagent 287 afforded the spirolactone with high enantiocontrol.53 

 

Scheme 3.25. First asymmetric spirolactonization by organohypervalent iodines developed by Kita.
53

 

 

Ishihara and coworkers published an even more efficient asymmetric 

spirolactonization of naphtols by the use of a novel C2-symetric hypervalent iodine (III) 

reagent 288 bearing two lactate derivatives(Scheme 3.26).54 

 

Scheme 3.26. Asymmetric spirolactonization mediated by C2-symetryc hypervalent iodine (III) 288.
54

 

                                                
53

 Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka, H.; Caemmerer, S. B.; Kita, 

Y.A.,  Angew. Chem., Int. Ed. 2008, 47, 3787-3790. 
54

 a) Uyanik, M.; Yasui, T.; Ishihara, K., Angew. Chem., Int. Ed. 2010, 49, 2175–2177. b) Uyanik, M.; 

Yasui, T.; Ishihara, K., Tetrahedron 2010, 66, 5841–5851. 
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Pseudocyclic iodylarenes bearing a chiral oxazoline scaffold, promoted the 

formation of ortho-quinol dimers in moderate enantiomeric excess using ortho-

alkylphenols as substrates. Reaction with 2,6-dimethylphenol 289 afforded 

corresponding dimer 290 in a 63 % ee (Scheme 3.27, A).55 

 

 
Scheme 3.27. Asymmetric hydroxilative phenol dearomatizations by chiral oxazolines and biphenyl 

hypervalent iodines.
55,56

 

 

Quideau and coworkers have published the synthesis of binaphtyl and biphenyl 

containing C2-symetric iodine (V) reagents like 273. Reactions with different substituted 

phenols resulted in an asymmetric phenol dearomatization which led to the 

corresponding ortho-quinol derivatives after a [4+2] Diels-Alder reaction observing for 

the obtained products enantioselectivities up to 94 % ee (Scheme 3.27, B).56 

 

 

 

 

 

 

 

 

                                                
55

 Boppisetti, J. K.; Birman, V. B., Org. Lett. 2009, 11, 1221-1123. 
56

 Bosset, C.; Coffinier, R.; Peixoto, P. A.; El Assal, M.; Miqueu, K.; Sotiropoulos, J.-M.; Pouysegu, L.; 

Quideau, S.,  Angew. Chem., Int. Ed. 2014, 53, 9860-9864. 
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3.3.2.1 Catalytic enantioselective reactions 

Many catalytic reactions have been developed since Wirth discovered first 

catalytic -tosyloxylation in 2007.48. Kita reported the spirobiindane backbone first used 

in a substoichiometric amount of 0.55 equiv (Scheme 3.25). Subsequently, they were 

capable of modifying the chiral iodine by introducing a substituent in ortho position of 

the spirobiindane, which was used as precatalyst giving rise to products with high 

enantiocontrol (Scheme 3.28).57 

 

Scheme 3.28. Successful catalytic enantioselective spirolactonization developed by Kita.
57

 

 

Ishihara’s group reported similar catalytic enantioselective spirolactonization 

using a flexible C2-symmetric leading to product with up to 92% ee (Scheme 3.29). 

They suggested that the intramolecular hydrogen bonds are crucial for this 

improvement in the enantioselectivity.54  

 

 

Scheme 3.29. Catalytic enantioselective spirolactonization using C2-symmetric iodoarene.
54
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 Dohi, T.; Takenaga, N.; Nakae, T.; Toyoda, Y.; Yamasaki, M.; Shiro, M.; Fujioka, H.; Maruyama, A.; Kita, 

Y., J. Am. Chem. Soc. 2013, 135, 4558-4566. 
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Ibrahim reported the use of a unique C2-symmetric iodoarene precatalyst  able 

to efficient catalyzed spirolactonization reactions of naphtols bearing substituents in 

para- position to the hydroxyl group (Scheme 3.30).58 

 

Scheme 3.30. Anthracene derivative 208 as C2-symmetric chiral precatalyst used in spirolactonization 

reactions.
58

 

 

Harned has reported the synthesis of new chiral iodoarene that was used as 

precatalyst for intermolecular oxidative dearomatization of phenol derivatives inducing 

moderate levels of enantiocontrol (Scheme 3.31). The same catalyst was also able to 

provide moderate enantiomeric excess for the intramolecular spirolactonization of 

phenols.59 Intermolecular hydroxylative dearomatization of phenols catalyzed by chiral 

binaphtyl iodoarene 306 was described by Quideau et al. (Scheme 3.32). This 

methodology gave rise to dearomatized epoxide 305 with 29% ee.60 

 

 
Scheme 3.31. Harned`s precatalyst showed a moderate asymmetric oxidative dearomatization of 

phenols.
59

 

 

                                                
58

 Murray, S. J.; Ibrahim, H., Chem.Commun. 2015, 51, 2376-2379. 
59

 Volp, K. A.; Harned, A. M., Chem. Commun. 2013, 49, 3001-3003. 
60

 Quideau, S.; Lyvinec, G.; Marguerit, M.; Bathany, K.; Ozanne-Beaudenon, A.; Buffeteau, T.; Cavagnat, 

D.; Chenede, A.,  Angew. Chem., Int. Ed. 2009, 48, 4605-4609. 
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Scheme 3.32. Quideau´s strategy for the asymmetric oxidative dearomatization of phenols and 

subsequent epoxidation.
60
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3.4 Objectives  

 

Our main goal is to develop a more versatile, collective synthesis of Securinega 

alkaloids inspired by the total synthesis of (–)-Bubbialidine reported by Gademan37 

(lactone-250 as a key intermediate). Intermediate 250 could thus be combined with 

either a 5 member or 6 member synthon in order to provide an expeditive and 

divergent access to both families of Norsercurinine- and Securinine-type natural 

products.  

 

Scheme 3.33. Proposed  divergent and modulable strategy that gives access to natural compounds of 

Securinega family. 

 

At the same time, lactone 250 could be synthesized through a phenol 

dearomatization-based strategy starting from simple and cheap phenol acetic acid 307. 

Asymmetric synthesis of alkaloids could be developed by a catalytic enantioselective 

dearomatization/desymmetrization strategy using, for example, chiral ferrocenyl 

derivatives or organocatalysts.  

A second objective is the synthesis of hypervalent iodine derivatives of 

ferrocene. Therefore, after the synthesis of chiral ferrocenyl iodanes their efficacy as 

chiral hypervalent reagents will be analyzed in model reactions, such as, phenol 

oxidative dearomatizations and naphtol spirolactonizations 
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3.5 Retrosynthetic analysis of Securinega natural products 

 

 Inspired by the synthesis sequence (C-D-A-B) developed by Busqué34 and 

Gademan37, we envisioned a synthetic roadmap toward Securinega natural products 

designed on the basis of retrosynthetic analysis shown in Scheme 3.34. 

 

 

Scheme 3.34. Retrosynthetic analysis of Securinine-320 and (–)-Norsecurinine-321. 

 

 Rearrangement of azabicyclo[3.2.1]octane system of natural products 255 and 

209 led to their azabicyclo[2.2.2]octane congeners 310 and 311 as potential 

precursors. Disconnection of the carbon-nitrogen bonds revealed azidoketones 312 

and 313 as potential advanced intermediates for cascade reactions consisting of 

Staudinger/aza-Wittig reactions followed by an aza-Michael type addition. 

Azidoketones were further disconnected at the carbon-carbon bond adjacent to the 

carbonyl group furnishing azidoaldehydes 315 and 316, and bicyclic lactone 314 as 

potential precursors for aldol reaction. Finally lactone 314 was traced back to phenol 

acetic acid 307 as building block by disconnection of carbon-oxygen bond formed by 

oxa-Michael reaction and desaromatization. 

 Proposed bicyclic lactone 314is similar to the intermediate 250 that Gademan37 

reported for the total synthesis of (–)-Bubbialidine as well as the one reported by 

Busqué34 in view of the total synthesis of Allonorsecurinine. Moreover, a expeditive 

access, allowing a short multigram synthesis of this compound is planned using the 

venerable phenol oxidative dearomatization followed by desymmetrization of 2,5-

cyclohexadienone. 
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3.6 Total Synthesis of Securinega Alkaloids 

 

 

3.6.1 Racemic synthesis of lactone intermediate 314 

Access to lactone 314 starts with the oxydative dearomatization of phenol 307. 

The use of 1.5 equivalents of 3-iodanes in metanol as solvent at room temperature 

furnished 2,5-cyclohexadienone 317 in a near quantitative conversion based on the 1H 

NMR.  

Both PIDA and PIFA were evaluated for their capacity to promote such 

dearomatization. In order to avoid the formation of many byproducts, their addition was 

made at 0°C and reaction was stirred for 10 minutes. After this time the reaction was 

monitored at room temperature until completion.  

PIDA was able to generate a cleaner compound but with lower yields than 

PIFA. This might be due to the release of trifluoroacetic acid from PIFA during the 

reaction, which can directly promote oxa-Michael reaction. This could be an advantage, 

but our interest relies on a synthesis of compound 317 without further cyclization 

toward bicyclic structure 318. For all this reasons, PIDA was chosen as oxidizing agent, 

which afforded compound 317 with a 25% yield when purified (see Scheme 3.35). This 

low yield is mainly explained by the sensitivity of compound 317 on silica gel. 

Compound 317 was thus engaged crude in the following oxa-michael reaction in view 

of a high yielding racemic access to lactone 318. 

 

Scheme 3.35. Dearomatization, oxa-Michael reaction and reduction of ketone afforded lactone 319. 

 

The oxa-Michael reaction was then promoted by the use of a stronger Brönsted 

acid, the p-toluenesulfonic acid in EtOAc. A full conversion to desired lactone derivative 

318 was again observed on the crude 1H NMR after 1h of reaction at room 
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temperature. However, the attempts to purify lactone 318 through silica gel 

unambiguously showed the reversibility of this transformation. For this reason, crude of 

compound was again used without further purification in the next step. 

 

 Crude of compound 318 was thus placed in anhydrous THF, and then cooled 

down to 0°C before the addition of 2 equivalents of NaBH4 and MeOH. A fully 

diastereoselective reduction of ketone 318 to alcohol 319 was observed after 15 

minutes of reaction.  At this stage, desired lactone 327 was purified obtaining 30% yield 

from phenol 310 (average of 67% step)  

 

 

Figure 3.12. 
1
H NMR spectrum of lactone 319. 

 

Stereochemistry of molecule 319 was assigned by NOESY 1D experiments 

irradiating the signals at 4.71 (Hc), 4.38 (Hd) and 3.25 ppm (-OMe) in CDCl3 as 

deuterated solvent. Just with the irradiation of the Hc proton (Fig. 3.13) we can deduce 

that the proton Hd, Hc, Hf, He and –OMe are showing a NOE effect deducing that 

hydroxyl group must exhibit a trans relation with the methoxy group. The strong 

diastereoselectivity observed is thus due to the so-called umbrella effect of the 

bridgehead -OMe moiety, thus inducing an approach of the hydride from the convex 

face. Stereochemistry of compound 319 is the one depicted in Scheme 3.35. 
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Figure 3.13. NOESY 1D experiment after irradiation of signal at 4.17 ppm (Hc). 

 

 Alcohol of lactone 319 was then protected with TBSOTf in presence of Et3N 

using DCM as solvent. The formation of silyl enol ether 320 was observed under basic 

work up conditions (saturated bicarbonate solution). Silyl enol ether 320 was after 

dissolved in EtOAc and protonated selectively by the presence of SiO2 (silica gel). This 

last step gave rise to lactone 314, key intermediate of the total synthesis. 

 

Scheme 3.36. Protection of alcohol 319 into lactone 314, passing through silyl enol ether 320. 

 

  In order to determine the stereochemistry of lactone 314, a simple deprotection 

of the alcohol could lead to the formation of known natural products. In this case, the 

deprotection of the lactone intermediate using TBAF in presence of AcOH afforded (±)-

Menisdaurilide-321 in a 75% yield. As a consequence, the stereochemistry of lactone 

Hc 

Hd 

-OMe 

Hf, He 
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314 was set, being as depicted in Scheme 3.42. Spectroscopic data of synthesized 

(±)-Menisdaurilide was in concordance with literature.61 

 

 

Scheme 3.37. Desilylation of lactone 3144 using TBAF to afford (±)-Menidaurilide-321. 

 

 It is important to highlight that the five step sequence is scalable, and can be 

achieved with a single final purification. Indeed, carrying out the whole five step 

sequence on crudes from phenol 307 yielded lactone 314 with 17% overall yield (70% 

per step on average). This sequence is thus competitve with literature precedents in 

terms of overall yield towards intermediate 314. Moreover, it is of paramount 

importance to highlight that these five steps can be performed in one work-day. This 

turns our approach also highly competitive in terms of time-efficiency; a parameter too 

often neglected in the field of total synthesis.  

 

 

Scheme 3.38. Efficient synthetic sequence to afford racemic lactone 324. 

                                                
61

 a) Takahashi, K.; Matsuzawa, S.; Takani, M., Chem. Pharm. Bull. 1978, 26, 1677-1681. b) Yogo, M; 

Ishiguro, S.; Murata, H.; Furukawa, H., Chem. Pharm. Bull. 1990, 38, 225-226. 
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3.6.2 Asymmetric direct approach through oxa-Michael desymmetrization 

Following the same synthetic pathway, asymmetric oxa-Michael 

desymmetrization of 2,5-cyclohexadienone 317 could lead to the enantiopure formation 

of lactone intermediate 314.  

 

Scheme 3.39. Synthetic route toward the synthesis of lactone 324. Oxa-Michael desymmetrization can be 

carried out in an enantioselective fashion. 

 

First of all, some differences need to be highlighted between the racemic and 

asymmetric version. First of all, compound 317 was purified prior to its use in the 

asymmetric approach in order to avoid the presence of any possible cyclized lactone 

318. Secondly, compound 318 showed to be unstable in presence of silica gel and 

compound 319 exhibited degradation products if it was injected in HPLC and passed 

through a chiral column. Hence, enantiomeric excesses of the transformation were 

always measured by injecting compound 314 in HPLC. 

 Our first asymmetric approach toward oxa-Michael reaction was to test the 

ferrocenyl-proline ligands that resulted efficient in enantioselective (3+2) cycloaddition 

reactions. The use of the ligand in combination with different metallic salts was 

considered being the results collected in Table 1. Results obtained for oxa-Michael 

desymmetrization starting from quinone 317 showed long reaction times for reactions 

that were not fully converted into lactone 318. Furthermore, the overall yields were 

between 19-31% obtaining intermediate 314 with no enantiocontrol at all. In summary, 

metallic catalysis using ferrocenyl-proline ligands or ferrocenyl gold complexes did not 

provide any asymmetric approach toward lactone 314.  
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Table 1.  Results for the asymmetric synthesis of key intermediate 314 catalyzed by ferrocenyl compounds 

and metallic salts 

 

Entry Metallic salt Ligand or 
precatalyst 

Additive 
Reaction 

time
a 

Conversion
b
 

(%) 
ee

c 

(%) 
Yield

d
 

(%) 

1 Cu(CH3CN)4PF6 83b - 4d 77 4 31 

2 Cu(CH3CN)4PF6 85 - 5d 82 0 19 

3 Cu(OTf)2 83b - 4d 67 0 25 

4
 

AgBF4 83b - 7d 73 4 25 

5 Au(I) complex 102c AgBF4 3d 74 4 10 

6 Au(I) complex 102c Cu(OTf)2 5d 64 0 19 

7 Pd(OAc)2 83b - 3d >95 6 19 

All reactions were carried out using 3 mol% of metallic salt and 3.3 mol% of ligand. 
a
Reaction time for 

oxa-Michael desymmetrization. 
b
Conversion determined by 

1
H NMR spectroscopy for oxa-Michael 

reaction.
 c

Enantiomeric excess was measured by injection in HPLC, chiral column AS-H in 85/15 n-

hexane/isopropanol, 0.7 mL/ min,  = 254 nm, tr1=9.6 min, tr2=11.1 min. 
d
Overall yield calculated for 

purified compound 314 after four synthetic steps. 

 

 In view of these results we envisioned the enantioselective approach by using 

organocatalysts in order to generate lactone 314. In that sense, proline-derived 

catalysts have been widely used in efficient enantioselective oxa-Michael reactions and 

desymmetrization reactions with 2,5-cyclohexadienones. Combination of this type of 

catalysts and -unsaturated carbonyl compounds lead us to iminium ion catalysis. 

Indeed, using proline derivatives as catalysts could activate the carbonyl of the 

dienone, and accelerate the oxa-Michael reaction and promote a diastereofacial 

impediment. 
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Table 2. Results obtained by using proline based organocatalysts and diamine C3. 

 

Entry Organocatalyst Additive/Solvent 
Reaction 

time
a 

Conversion
b
 

(%) 
ee

c 

(%) 
Yield

d
 

(%) 

1 exo-82 CH2Cl2 40 h 75 4 38 

2 C1 CH3CN 16 h 51 0 8 

3 C2 CH2Cl2 23 h 74 0 25 

4 C3 CH2Cl2 16 h 78 2 17 

5 C3 TFA/CH2Cl2 4d 50 0 10 

6 C3 B.A./CH2Cl2 20 h 80 4 11 

All catalysts were employed in a 10 mol% catalytic loadings. When additives were employed, loading 
of 20 mol% was used.

 a
Reaction time for oxa-Michael desymmetrization. 

b
Conversion determined by 

1
H NMR spectroscopy for oxa-Michael reaction.

 c
Enantiomeric excess was measured by injection in 

HPLC, chiral column AS-H in 85/15 n-hexane/isopropanol, 0.7 mL/ min,  = 254 nm, tr1=9.6 min, 
tr2=11.1 min. 

d
Overall yield calculated for purified compound 314 after four synthetic steps. B.A = 

benzoic acid. 

 

The three proline based organocatalysts employed in the oxa-Michael 

desymmetrization gave rise to racemic lactone 314 in all the cases (Table 2, entries 1-

3). Remarkably, catalyst C2 showed good reactivity in shorter reactions times than the 

other two catalysts. 

On the other hand, cyclic chiral diamine C3 considered also as a covalent 

organocatalyst was used in different reaction conditions. Once more, desymmetrization 

in presence of catalyst C3in DCM led to similar reactivity and enantiomeric excesses 

as for the proline derivatives (Table 2, entry 5). Then, we envisioned the combination 

of organocatalyst C3 with additives such as, TFA or benzoic acid in the oxa-Michael 

reaction. Although the iminium catalysis is generally favored in the presence of acid 

cocatalysts, in this case did not improve either the reactivity or the enantioinduction. 

(Table 2, entries 6 and 7). Besides, the use of TFA as additive presented a lower 

conversion (50% after 4 days) for the oxa-Michael step (Table 2, entry 6).  
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This last result suggests that the basicity of the reaction media is necessary for 

the full conversion of the reaction. Thus, this could mean that the organocatalysts are 

acting as bases more than generating the iminium ion. In any case, it could also be 

possible that even the iminium ion is properly formed these catalysts do not induce an 

efficient blockage of one of the enantiotopic faces, and thus, all products obtained are 

racemic.  

 

Table 3. Results obtained for the asymmetric synthesis using ligands C4- C6 and 203. 

 

Entry Organocatalyst Additive/Solvent 
Reaction 

time
a 

Conversion
b
 

(%) 
ee

c 

(%) 
Yield

d
 

(%) 

1 203 CH2Cl2 23 h 85 16 5 

2 203 Toluene 41 h 83 0 18 

3 203 MeOH 4d 50 0 18 

4 203 EtOAc 7d 60 0 26 

5
 

C4 CH2Cl2 16 h 72 0 25 

6 C5 CH2Cl2 19 h 70 0 40 

7 C6 CH2Cl2 16 h 90 0 36 

All catalyst were employed in a 10 mol% catalytic load. 
a
Reaction time for oxa-Michael 

desymmetrization. 
b
Conversion determined by 

1
H NMR spectroscopy for oxa-Michael reaction.

 

c
Enantiomeric excess was measured by injection in HPLC, chiral column AS-H in 85/15 n-

hexane/isopropanol, 0.7 mL/ min,  = 254 nm, tr1 = 9.6 min, tr2 = 11.1 min. 
d
Overall yield calculated 

for purified compound 314 after four synthetic steps.  
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 In view of the results obtained with organocatalysts that bind the substrate in a 

covalent way, we decided to focus on the non-covalent organocatalyst. This type of 

catalysts generally presents weak interactions with the substrate such as, hydrogen 

bonds or ionic pair interactions. In this field, the use of chiral phosphoric acids (strong 

Brønsted acids) in enantioselective desymmetrization of alcohols has been previously 

reported. On the contrary, it is important to note that there are no references in 

literature related to the oxa-Michael desymmetrization of carboxylic acids in an 

enantioselective fashion.  In view of this background, we envisioned the use of chiral 

phosphoric acid R-TRIP-203 as organocatalyst that could possibly lead to the desired 

improvement of the enantiomeric excess. 

 Therefore, the results obtained from the employment of R-TRIP-203 in our 

asymmetric approach are gathered in Table 3. When the reaction with this chiral 

phosphoric acid was carried out in DCM we observed the best enantiomeric excess 

value obtained to date for the lactone 314 (Table 3, entry 1, 16% ee). Then, we studied 

the influence of the solvent in the enantiocontrol of the reaction. When toluene was 

selected as solvent we noticed a similar conversion toward the product but with the 

total loss of the enantiomeric excess (Table 3, entry 2). The switch to more polar 

solvents such as, EtOAc and MeOH, led to the formation of lactone intermediate in 

long reaction times as a racemic mixture (Table 3, entry 3-4). As it has been mentioned 

before, literature does not describe any asymmetric oxa-Michael desymmetrization with 

carboxylic acids. The hybridization of carbon in carboxylic acid is sp2, and the carbon 

adjacent to alcohols that undergo efficient oxa-Michael desymmetrization are sp3 

hybridized. Hence, it is possible that the lack of enantiocontrol observed can be related 

to the wrong approximation of the orbitals during the oxa-Michael step.  

 In the light of this, other type of non-covalent organocatalysts were tried. 

Cinchonidine C4 (Brønsted base) catalyzed efficiently the oxa-Michel reaction, but 

once again, giving rise to a racemic compound (Table 3, entry 5). Pyrrolidine derived 

thiourea C5 (Brønsted acid) and the chiral ammonium salt C7 (presents ionic pair 

interaction), as well as cinchonidine, afforded racemic mixtures of the lactone 324 

(Table 3, entry 6-7). 
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3.6.3 Asymmetric alternative strategy in oxa-Michael desymmetrization 

In view of the unfortunate results obtained with the direct approach toward the 

oxa-Michael reaction, another strategy was proposed for the achievement of 

enantiopure lactone 314. As it has been reported by Ye28 and coworkers, 

desymmetrization of 2,5-cyclohexadienones to obtain 1,4-dioxane compounds works in 

a highly enantioselective way using chiral primary diamines. 

 

Scheme 3.40. Novel synthetic strategy toward the generation of enantiopure intermediate 324. 

 

In this strategy, our goal was thus to introduce an ethylene glycol moiety instead 

of methoxy group coming from methanol, and protect the acid moiety (Scheme 3.40). 

The use of chiral diamines could then afford a first desymmetrization in which excellent 

enantiocontrol will be accomplished. Then a second oxa-Michael addition by removal of 

protecting group of the acid would generate a tricyclic compound, that after elimination 

of 1,4-dioxane could led to lactone intermediate 314. 

 First of all, protection of the carboxylic acid was studied. Protection by 

transforming the acid into a tert-butyl ester was best candidate for this strategy 

because it can be deprotected in the presence of Brønsted acids but is stable under 

other reaction conditions. Several coupling agents were studied in order to find a mild 

methodology for the protection of the carboxylic acid. After several tests for the 

generation of the tert-butyl ester derivative of 307, the most efficient methodology was 

found to be the use of Ghosez’s reagent (Scheme 3.41). Indeed, unlike coupling 

reaction using DCC, less byproducts were observed. Due its high cost, and to its 

unstability over time, in situ formation of the active species was studied by our group. 

This study has led to a 4 steps/one pot procedure yielding 84% of compound 325 

(unpublished results, Dr. Peixoto). This is to the best of our knowledge the most 

efficient synthetic procedure to form tert-butyl ester in basic conditions. 
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Scheme 3.41. Synthesis of the tert-butyl ester 325 by in situ formation of Ghosez reagent. 

 

Secondly, we evaluated the conditions for the oxidative dearomatization of 

compound 325 in which ethylene glycol could be introduced. For that, PIDA was first 

chosen to carry out a preliminary test using DCM as solvent of choice (Table 4, entry 

1).  

 

Table 4. Optimization of the oxidative phenol dearomatization of ester 325 toward compound 327.. 

 

Entry Solvent Oxidant T (°C) Yield (%) 

1
 

CH2Cl2 PIDA 0°C to r.t. 9 

2 CH2Cl2 PIFA 0°C 
Cyclized 
Product 

3 - PIDA 0°C to r.t. 11 

4 CH2Cl2 PIDA r.t.  18 

5 CH3CN PIDA r.t.  31 

All reactions were carried out in concentration of 0.25 M. Reaction was monitored by TLC. 

 

 In order to improve the yield of the reaction we evaluated other 3-iodanes such 

as PIFA (Table 4, entry 2). Due to the fact that PIFA is more reactive than PIDA, 

reaction was carried at 0°C for 2 hours. Unfortunately, before the reaction was finished, 

it was possible to observe lactone formation coming from the cyclization favored by 

TFA released during the reaction. Another test carried out was the use of pure ethylene 
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glycol in absence of solvent (Table 4, entry 3) in which there was no significant 

improvement of the yield. When the addition of PIDA was tried directly at room 

temperature a slight increase in the yield was observable (Table 4, entry 4). Finally the 

change of solvent to ACN made the reaction mixture more soluble, and thus, improved 

the yield of the reaction to 31% at room temperature (Table 4, entry 5).  

 

 

 

Scheme 3.42. Enantioselective oxa-Michael desymmetrization by using chiral diamines 206 and ent-206. 

 

At this point, desymmetrization catalyzed by chiral diamines was applied to 

substrate 327.  As it is depicted in Scheme 3.42, enantioselective oxa-Michael reaction 

in presence of diamines 206 and ent-206 led to the formation of two different 

enantiomers 328 and ent-328, respectively. Diamine 206 catalyzed desymmetrization 

of compound 327 led to the corresponding 1,4-dioxane 328 in 86% of enantiomeric 

excess. On the other hand, if chiral diamine ent-206 was used for desymmetrization of 

molecule 327, ent-328 was obtained with moderate enantiocontrol (scheme 3.42, 

reaction 2).   
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The employment of N-Boc-D-Proline (Scheme 3.42, reaction 3) led to the 

formation of ent-328 but with a slight decrease on the enantiomeric excess of the 

compound comparing to the use of L-Proline additive.  

These results were really encouraging in order to develop the asymmetric total 

synthesis of Securinega alkaloids. Crystals of enantioenriched compound 328 were 

obtained several times, but unfortunately they were not suitable for their analysis by X-

ray diffraction. Due to that, absolute configuration of each enantiomer remains 

unknown, and enantiomers are represented in their relative configurations. 

Although the asymmetric desymmetrization was successful by using chiral 

diamines, the optimization of the rest of the process was developed with racemic 

compounds. Thus, compound (±)-328 was deprotected (removal of tert-butyl moiety) 

and subsequent oxa-Michael cyclization in presence of p-TSA. The crude mixture of 

the reaction demonstrated the formation of clean compound 329, which was used 

without further purification in order to avoid the reversibility of the transformation. 

 

 

Scheme 3.43. Deprotection of tert-butyl ester and direct cyclization to compound 329. 

 

 Inspired by the racemic synthesis of racemic intermediate 314, the reduction of 

ketone 329 was studied. The same reaction conditions for the reduction were first 

applied to ketone 329, observing the formation of two alcohols in a 78:22 

diastereomeric ratio (Table 5, entry 1).  Further attempts were carried out in order to 

improve the diastereocontrol, and thus, the yield of the reaction. 

When the reaction was run in THF with a subsequent addition of methanol at -

40°C alcohols 330 were not afforded (Table 5, entry 2).  On the contrary, when MeOH 

was used in absence of THF, compounds 330a and 330b were obtained in a similar 

diastereomeric ratio as entry 1 (Table 5, entry 3). Additionally, reaction was tried using 

isopropanol, a more hindered alcohol than methanol, just to observe the effect in the 

diastereocontrol, in which a 80:20 ratio was obtained for compounds 330a and 330b 

(Table 5, entry 4). Furthermore, we envisioned the use of CeCl3·7 H2O in order to 

increase the diastereocontrol, but reaction did not go to completion at -78°C (Table 5, 

entry 5). The presence of CeCl3·7 H2O in the reaction at -40°C using  MeOH as solvent 

did not provide the desired products, and in THF at 0°C did not improve the 

diastereocontrol of the reduction process (Table 5, entries 6-7).  

Finally the use of 5 equiv. of NaBH4 in THF/MeOH 4:1 ratio, starting at the 

temperature of -40°C and stirring for 2 hours until 0°C was achieved, showed full 
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conversion and best diastereomeric relation of 86:14 (Table 5, entry 8). If reaction was 

carried out at -78°C, similar diastereomeric excess as in entry 8 was observed but the 

crude mixture presented some byproducts (Table 5, entry 9). Assignation of the 

relative configuration for major compound 330a was determined by the spectroscopic 

analysis compound 331. 

 

Table 5. Optimization of ketone reduction of compound 329. 

 

Entry Solvent 
NaBH4  
equiv. 

Additive Alcohol Temperature, time d.r.
a
 

1
 

THF 2 - MeOH 0°C , 10 min  78:22 

2
b 

THF 2 - MeOH -40°C, 20 min - 

3 MeOH 2 - - -40°C, 20 min 76:24 

4
 

THF 2 - 
i
PrOH 0°C , 10 min  80:20 

5
c 

MeOH 0.5 
CeCl3·7H2O 

(1 equiv.) 
- -78°C, 40 min - 

6
d 

MeOH 1 
CeCl3·7H2O 

(2 equiv.) 
- -40°C, 20 min - 

7 THF 2 
CeCl3·7H2O 

(2 equiv.) 
MeOH 0°C , 10 min 72:28 

8 THF 5 - MeOH 
-40°C to 0°C, 2 h 
0°C to r.t. 15 min 

86:14 

9
e 

THF 5 - MeOH 
-78°C, 3 h 
r.t. 15 min 

85:15 

a
d.r. = diastereomeric ratio, measured by 

1
H NMR in CDCl3. 

b
Starting material recovered, no trace 

of reduction product. 
c
Reaction was not complete so starting material does not let to estimate the 

diastereomeric ratio. 
d
Starting material and several byproducts observed. 

e
Reaction showed 

byproduct formation in the crude but no more starting material. 

 

The major alcohol 330a obtained after the reduction of ketone was protected 

with TBSOTf, as our previous experience in the synthesis of lactone 314 suggested the 

possible formation of corresponding silyl enol ether. Treatment of the crude with 

saturated solution of NaHCO3, and subsequent stirring of the crude mixture in 

EtOAc/citric acid 5% (1:1) for 12 hours gave rise to product 331 as a major product in a 

61% yield. 
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Scheme 3.44. Secondary alcohol silylation of compound 336. 

 

Relative configuration of compound 331 was established by bidimensional 

NOESY experiment. Methylenes protons belonging to the 1,4-dioxane moiety showed 

a chemical correlation in space with the protons of the tert-butyl fragment of the TBS 

group, thus concluding that the lactone ring is placed in trans to the OTBS and 1,4-

dioxane. Therefore, configuration of major alcohol 330 was the one depicted in Table 5 

for 330a. 

 

 

Figure 3.14. 2D NOESY experiment of compound 331. 

 

Our efforts were focused on the cleavage of 1,4-dioxane of tricyclic compound 

331. In Table 6 are herein described the different reagents tried for the removal by 

elimination of the dioxane moiety with the purpose to achieve lactone intermediate 314. 

Instead, the stereochemistry set for compound 331 suggested that after cleavage, 

protected Aquilegiolide 332 could be obtained. 

H-10 

H-1 H-5, H-6 

H-13 
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Table  6. Reaction conditions for the removal of 1,4-dioxane moiety of compound 337. 

 

Entry Solvent Reagents T (°C) Observed 

1
 

Acetone 
1) Iodine  

2) p-TSA and TFA 
r.t. to reflux Degradation 

2 THF PIDA, 2,6-lutidine r.t. 331 

3 THF 
t
BuO

-
 K

+ 
0°C Degradation 

4 Toluene Iodine, PPh3 r.t. to 100°C 331 

5 Acetone Cu(OTf)2 
0°C, 30 min then 

r.t. 2 h 
330a 

6 CH2Cl2 BBr3 0°C and r.t. ?? 

All reactions were carried out in concentration of 0.25 M. Reaction was monitored by TLC. 

 

Usual cleavage of 1,3-dioxanes was tried first by using iodine/acetone first, then 

addition of p-TSA and finally addition of TFA at r.t. and reflux. Compound suffered 

degradation under reflux and presence of TFA, while it remained intact under other 

conditions (Table 6, entry 1). Activation of oxygen atoms by using hypervalent iodine 

reagents like PIDA did not showed any conversion (Table 6, entry 2). Strong basic 

conditions by using potassium tert-butoxide just led to degradation of compound 331, 

(Table 6, entry 3).  

 PPh3 and iodine in combination were not able to activate enough the oxygens of 

dioxane and starting material was recovered (Table 6, entry 4). Lewis acid activation 

led to the sole deprotection of the secondary alcohol it was obtained as 330a (Table 6, 

entry 5). Similar cleavage of ethers in presence of lactones was reported.62 

Methodology of using BBr3 was tried and led to the formation of new compound 

observable by 1H NMR spectroscopy. Unfortunately, due to small amount of product 

isolated efforts to purify it and characterize by NMR spectroscopy were not enough and 

low mass spectroscopy did not provide conclusive results. 

 To conclude, the removal of 1,4-dioxane moiety of compound 331 was found to 

be impossible. Due to the lack of alternatives in literature associated with the difficulties 

encountered with the removal of this dioxane moiety, this asymmetric version was 

finally abandonned. We thus turned our attention to the completion of the 

stereoselective (but racemic) total synthesis of neosecurinane or neonorsecurinane 

                                                
62

 Corey, E. J.; Weinshenker, N. M.; Schaaf, T. K.; Huber, W.;, J. Amer. Chem. Soc. ,1969, 91, 5675-5677. 



CHAPTER 3 

188 
 

and securinane-related natural products. The synthetic effort developed for the 

alternative asymmetric strategy is depicted in Scheme 3.45. 

 

 

Scheme 3.45. Synthetic efforts for the alternative asymmetric synthesis of intermediate 332. 
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3.6.4 Development of Aldol reaction and Swern oxidation 

Inspired by Gademan’ and Busqué’s approaches, with lactone 314 in hand, we 

have then planned to construct A cycle thanks to the reactivity of the enol(ate) 

derivating from b-deprotonation of the butenolide moiety. However, instead of 

performing a Mannich-type condensation on a cyclic amine, we herein decided to 

couple an azidoaldehyde through a classical aldol reaction. Such aldol-type mediated 

linkage would thus turn the synthetic sequence more divergent, and could possibly led 

to a collective access to the members of this natural product family. The synthesis of 

corresponding azido-aldehydes is described in Scheme 3.46.  

 

 

Scheme 3.46. Synthesis of aldehydes 336a-b bearing an azide functional group. 

 

 The synthesis of the aldehydic synthons 336a and 336b starts from the 

monobromation of the respective diol 333a or 333b.63 Brominated compounds 334a-b 

were then dissolved in H2O and a nucleophic substitution using sodium azide yielded 

azides 335a-b in good yields.64 It is important to note that both bromination and azide 

formation steps provided a sole product with no need of purification. With azides 335a-

b in hand, a final oxidation of alcohols into aldehydes was carried out in Swern 

conditions to  form the corresponding aldehydes 336a-b in a quantitative yield. 

 These aldehydes were then used is the following step for the A ring connection. 

In the following aldol reaction between azidoaldehydes 336a-b and lactone 314, 

LiHMDS stood out as reagent for the formation of the lithium enolate. Then, we studied 

the optimization of the aldol process as reported in Table 7. For all the cases, we 

obtained a crude mixture containing four aldol products. Since the four aldol 

diastereisomers are later transformed into two easily separable diastereisomers by 

Swern oxidation, we did not isolate each of the products in this step. In addition, the 

yields reported in Table 7 are related to the mixture of the four diastereisomers.  

 

                                                
63

 Nickel, S.; Serwa, R. A.; Kaschani, F.; Ninck, S.; Zweerink, S.; Tate, E. W.; Kaiser, M., Chem. Eur. J. 

2015, 21, 10721–10728. 
64

 Moreno, P.; Quéléver, G.; Peng, L., Tetrahedron Lett. 2015, 56, 4043–4046. 
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 When the reaction was carried out in the presence of 1.5 equivalents of 

LiHMDS and the posterior addition of 3 equivalents of azidoaldehyde 336a (for the 

generation of six membered ring) at -78ºC we observed the formation of the aldol 

products as well as a large amount of a new aldehyde containing product. Our 

hypothesis is that this new aldehyde could result from the homoaldol polymerization 

reaction of azidoaldehyde 336a, owing to the presence of LiHMDS in excess (Table 7, 

entry 1).  

In order to avoid the formation of the azidoaldehyde derived polymer, we used 

lower equivalents of LiHMDS and aldehyde 336a. As a consequence, we observed the 

formation of the same products describes for the conditions of entry 1, but in this case 

with a slight improvement of the yield was observed (Table 7, entry 2). Moreover, 

adjusting the equivalents of LiHMDS to 1.5 and adding 1.1 equivalents of 

azidoaldehyde 336a at -50°C, right after the formation of the enolate, gave rise to 

compound 337 in a 54% yield (Table 7, entry 3). Finally, performing the addition of 

compound 336a at -78°C and warming up the reaction to -50°C led to best yield 

observed for the formation of the mixture of aldol products 337 (Table 7, entry 4). 

Table 7. Optimization for aldol reaction with LiHMDS. 

 

Entry LiHMDS equiv. Aldehyde equiv. T (°C)
a 

Yield (%)
b 

1 1.5 3.0 -78°C to -50°C 24 

2 1.1 1.1 -78°C to -50°C 37 

3 1.5 1.1 -50°C 54 

4 1.5 1.1 -78°C to -50°C 59 

All reactions were carried out using distilled THF in 0.05M concentration and quenched with 

NH4Cl at described temperature. 
a
Temperature of addition of aldehyde and after addition.

 

b
Isolated yield respective to the four diastereisomers after purification.  

 

 All the diastereoisomers formed during this aldol reaction were recovered and 

exposed to Swern oxidation conditions. The reaction led to azidoketones 338a and 

338b which derived from a cis or trans bicyclic junction. The diastereomeric ratio 

observed for the cis/trans ketones was 80:20, respectively. Relative configuration of 

compounds 338a and 338b was confirmed by the configuration observed for the final 

natural products derived from each one. 
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Scheme 3.47. Synthesis of cis-338a and trans-338b from oxidation of aldol mixture 337. 

 

 Similarly, five-membered aldehyde 336b carried out aldol reaction under 

optimized reaction conditions. The following Swern oxidation gave rise to compounds 

340a and 340b as five-membered chain analogues of 338a-b. 

 

Scheme 3.48. Synthesis of cis-340a and trans-340b obtained through classical aldol and subsequent 

Swern oxidation. 

 

3.6.5 Synthesis of neosecurinine-type natural products 

 For the synthesis of natural products featuring a 6-membered ring A cycle, 

compound 338a was first used, as it was obtained as the major product in the Swern 

oxidation.  At this point we envisioned the formation of piperidine ring of the final 

natural products. For that, Staudinger reaction of azide 338a could allow the formation 

of a phosphazene intermediate, which would after undergo through an aza-Wittig 

reaction in presence of the ketone group (Scheme 3.49).65 This way, we would be able 

to obtain a cyclic imine formation just in presence of PPh3. 

                                                
 

 
65

 Example of combination of Staudinger/aza-Wittig strategy: Pavlova, A. S.; Ivanova, O. A.; Chagarovskiy, 

A. O.; Stebunov, N. S.; Orlov, N. V.; Shumsky, A. N.; Budynina, E. M.; Rybakov, V. B.; Trushkov, I. V., 

Chem. Eur. J. 2016, 22, 17967–17971. 
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 This reaction requires of an optimization in order to enhance the reactivity. After 

several attempts, in which acetonitrile was distilled carefully in order to avoid presence 

of water, we found out that degassing the solvent was of major importance. Hence, 

acetonitrile was degassed for 10 minutes before its use and this way, compound was 

fully converted into cis-imine-340 within 5 hours. There was no influence on the use of 

solvent directly from a commercially dried or freshly distilled one. As all the efforts to 

isolate the imine were in vain, crude of the product was further used without 

purification. 

 

 

Scheme 3.49. Suggested reaction by Staudinger/aza-Wittig combination for azide 344a. 

 

 Crude mixture of compound 340 was then engaged into the following reductive 

amination. Imine 340 was dissolved in a 1:1 (v/v) mixture of AcOH/THF, and the 

reaction was monitored by 1H NMR. Interestingly, prior to the addition of NaBH3CN, we 

were able to observe the formation of a new compound that presents the absence of 

unsaturated proton signal, and thus, suggested an intramolecular cyclization process 

(compare Fig.3.21, A and B). At this stage we proposed the formation of an enamine 

intermediate 343 (due to the relative acidity of protons in  position, susceptible to be 

abstracted with a base) that could directly cyclize through an aza-1,6-addition (see 

Scheme 3.50). This enamine will be favored in the equilibrium with its iminium 

congener prior to the addition of NaBH3CN. Further computational studies could shed 

light on the mechanism of this reaction. Once the imine-340 signals fully disappeared, 

NaBH3CN was added to the mixture and two new products were observable after 30 

minutes of reaction (Scheme 3.50).  

 Protected compounds 344a and 344b were obtained in a 55:45 diastereomeric 

ratio. These compounds were susceptible to basic or acidic work up, as it could be 

observed by 1H NMR. Depending on this, we observed the formation of different 

products but after deprotection different products were capable of yielding the same 

natural products. This could be related to the nature of the amine functionality present 

in the skeleton of compounds 344a and 344b (quaternary amine under acidic 

conditions and tertiary under basic conditions). For all these reasons, compounds 351a 

and 351b were not characterized. Furthermore, in order to avoid the acidity or basicity 

of the work up, compounds were treated with brine and H2O, extracted with EtOAc and 

evaporated to dryness.  
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Figure 3.15. Spectra: 1) compound 340, 2) in presence of AcOH/THF 1:1, 3) after addition of NaBH3CN, 

compounds 344a and 344b are formed.  

 

Scheme 3.50. Synthesis of protected neosecurinine type compounds by reductive amination and 

proposed intermediates during the reaction. We suggested this mechanism without further computational 
or experimental data to confirm it. 

A) 

B) AcOH/THF 

C) NaBH3CN 

H1?? 

 

H1 

344a-b 

 (H2 and H3) 
H4 

H4 

H4  

H2 and H3?? 
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 Deprotection using TBAF/AcOH in THF was tested but, in all cases, the 

formation of several byproducts was observed within the formation of desired product. 

Only the use of HF-pyridine in THF showed full deprotection of compound 344a and 

formation of natural product (±)-Virosine B (Scheme 3.51).37 Methodology could also 

be applied to the synthesis of Virosine A by removal of TBS group from tetracyclic 

compound 344b. Spectroscopic data and mass analysis for these natural products 

were in correspondence with the ones reported in literature66 (see Experimental part 

3.9.2.5, Table 8 and Table 9, Virosine A and Virosine B, respectively). 

 

 

Scheme 3.51. HF-pyridine mediated deprotection of compound 344a to afford naturally occurring (±)- 
Virosine B. 

 After studying the whole process, its optimization led to a cascade synthesis 

starting from azide 338a, followed by the imine formation, which through a reductive 

amination and further deprotection led to both natural products by a single purification 

step. This process is summarized in Scheme 3.52 for each of the racemic natural 

products. 

 

Scheme 3.52. Four step process for the synthesis of neosecurinine type natural products Virosine B and 

Virosine A. 

                                                
66

 Wang, G.-C.; Wang, Y.; Li, Q.; Liang, J.-P.; Zhang, X.-Q.; Yao, X.-S.; Ye, W.-C., Helv. Chim. Acta 2008, 

91, 1124–1129. 
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3.6.6 Synthesis of neonorsecurinine-type natural products 

 Synthesis of neonorsecurinine-type alkaloids was carried out in similar manner 

as the previous synthesis of 6-membered ring natural products. Even so, some 

particularities were observed during the process. 

 At this time, the Staudinger/aza-Wittig reaction conditions applied to 

azidoketone 338a were employed with azide 340a, which led to the formation of cis-

imine-347 as a stable compound. Thereby, it seems that the formation of pyrrolidine 

derived imine is more stable than the piperidine one. 

 

 

Scheme 3.53. Staudinger/aza-Wittig reaction of azide 340a and formation of stable imine 347. 

 

 In contrast to the results observed for the 6-membered ring, if imine 347 was 

dissolved in a mixture of AcOH/THF no evolution of the product was observed by 1H 

NMR. Moreover, addition of NaBH3CN to the mixture led to the formation of three 

products observed by 1H NMR spectroscopy (Fig 3.16): 71% of amine 348, 

diastereisomer 349a in a 20% and 9% of diastereisomer 349b. Thus, we were not able 

to observe a full N-addition toward compounds 349a-b but amine 348 was mainly 

isolated.  

 

Scheme 3.54. Reductive amination of imine 347 and presence of three different products in the crude of 

the reaction. 
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Figure 3.16. Spectrum of crude for the reductive amination explained in scheme 3.54. Integration of 

signals showed is related to the proton in  to the carbonyl group. 

 

 In view of these results, crude mixture of 349a/349b was dissolved in 

THF/MeOH mixture 4:1 and tried to cyclize under basic conditions, and for that, 

aqueous saturated solution of K2CO3 was used as base in order to force the 

cyclization. Compounds 349a and 349b were obtained in a ratio of 72:28, but also 

formation of lactone intermediate 314 was observed, due to a possible retro-Mannich 

reaction induced by the base and the presence of water.  

 In view of the presence of byproducts, cyclization of amine 348 was carried out 

in MeOH and in the presence of 30 equiv. of Et3N (optimized by M. Kevin Antien). 

Strategy provided full conversion into diastereisomers 349a and 349b in a 75:25 

diastereomeric ratio. After separation by chromatography, compounds were 

deprotected separately employing HF-pyridine (Scheme 3.55). Thus, similarly to 

neosecurinine-type alkaloids, neonorsecurinine alkaloids (±)-Niruroidine-258 and (±)-

Bubbialidine-254 were obtained. Pleasingly, spectroscopic data were in agreement with 

the ones reported in literature for (–)-Niruroidine67 and (–)-Bubbialidine68 (see 

experimental part, section 3.9.2.6, Table 10 for Niruroidine and Table 11 for 

Bubbialidine). 

 

                                                
67

 a) Gedris, T. E.; Herz, W.; Florida, T., Phytochemistry 1996, 41, 1441–1443. b) Ma, N.; Yao, Y.; Zhao, 

B.-X.; Wang, Y.; Ye, W.-C.; Jiang, S., Chem. Commun. 2014, 50, 9284–9287. 
68

 a) Ahond, A.; Guilhem, J.; Hamon, J.; Poupat, C.; Pusset, J.; Pusset, M.; Sevenet, T.; Potier, P., J. Nat. 

Prod. 1990, 53, 875–881. b) Miyatake-Ondozabal, H.; Bannwart, L. M.; Gademann, K., Chem. Commun. 

2013, 49, 1921–3. 
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Scheme 3.55. Et3N mediated addition of amine to lactone and further deprotection of diastereisomers 

349a and 349b to afford neonorsecurinine type Securinega alkaloids. 

 

 Further attempts led to the optimized sequence of reductive amination, 

cyclization and deprotection as an improved access to Securinega alkaloids (Scheme 

3.56). The optimized reaction sequence yielded (±)-Niruroidine and (±)-Bubbialidine 

in a 49% and 21%, respectively. 

 

Scheme 3.56. Synthesis of natural products starting from imine 347, in three synthetic steps. 
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 Interestingly, in view of the diastereisomeric proportion obtained after the whole 

process, which favored the final formation of (±)-Niruroidine, we envisioned a 

computational study of in order to understand the mechanism. It is important to note 

that the 6 membered ring derivatives do not seem to share this mechanism in view of 

the differences observed in the relative stability of the intermediates formed and 

diastereomeric ratios of the products synthesized. There are no precedents on 

computational studies related to the stereoselective reductive amination of cyclic 

imines in presence of NaBH3CN. 

 The insights of the mechanism for the reductive amination and the posterior 1,6-

addition were studied by DFT for imine 347. It was found that the reductive amination 

was the limiting step for the diastereocontrol of the process due to the enantiotopic 

attack of the hydrides. Thus, in a first reaction step the imine was protonated by the 

AcOH, giving rise to reactive complex 356. Interestingly, after several calculations it 

was found that its optimized structure is the one depicted in Scheme 3.57 showing a 

hydrogen bond between the proton of the iminium and the oxygen of the lactone.  

 

Scheme 3.57. Mechanism for the reductive amination, followed by the intramolecular cyclization to give 

rise to protected natural products in a 75:25 ratio. 

 

 Then, we considered the addition of the sodium cyanoborohydride and the 

possible hydride attacks. In this case four possible approaches of the hydride were 

expected. Transition state energies were compared and the most stable ones are 

depicted in Figure 3.17. For both of the cases, there is a N-H bond interaction between 

the nitrogen of the cyanoborohydride and the proton of the iminium ion, reason of the 

stabilization of these transition states. On the left, the representation of the transition 

state for the Re attack of the hydride can be found. In this case, after the hydride attack 

the S configuration of the new stereocenter would be set. This molecule after 

cyclization and deprotection would give rise to Bubbialidine.On the other hand, Si 

attack of the hydride would lead to the formation of a new stereocenter with R 

configuration. After the following 1,6-addition and removal of TBS group this 

approximation would afford Niruroidine as final product. 

The difference of the free energy for these transition states is 0.98 kcal/mol. 

And predicts a ratio of 81:19 in favor of the attack from the Si face (leading to (±)-

Niruroidine as the major product). This value is in concordance with the 

experimentally obtained 75:25 ratio. Difference of free activation energies and free 

relative energies are given in kcal/mol in Fig. 3.17. Distances are given in Å and angles 

in deg. 
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Figure 3.17. Fully optimized transition states associated with the Re and Si hydride attack during the 

reductive amination obtained at MO6-2X(PCM)/6-31+G(d,p)//B3LYP/6-31G(d) level oftheory. 
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3.7 Synthesis of Ferrocenyl Iodanes  

 Our second objective is the synthesis of new ferrocenyl hypervalent iodine 

reagents, which incorporate planar chirality by themselves. 

Synthesis of compound 351 was developed employing the strategy developed 

by Kagan and coworkers69 (Scheme 3.58). Commercial ferrocenecarboxaldehyde 136 

was converted by several transformations into compound 96. At this stage, dioxane 96 

was treated with tert-butyl lithium through a diastereoselective ortho-lithiation, 

controlled by chelation of lithium atom with the chiral 1,3 dioxane. Lithium was able to 

activate selectively one of the two ortho positions of the cyclopentadienyl ring. Finally, 

quenching with 1,2-diiodoethane afforded compound  351. Maximum yield for this 

reaction was around 30-40 % while starting material was always recovered.  

 

 

Scheme 3.58. Synthesis of iodine containing ferrocenyl compound reported by Kagan.
69

 

 

 Mass analysis, and 1H and 13C NMR spectroscopy confirmed the nature of 

compound 351. Furthermore, all of these results were in concordance with 

literature.69,70  

 With this iodoferrocene synthesized, we turned our attention to the oxidation of 

the iodine atom according to Quideau’s described literature procedure.56 They reported 

the use of DMDO in order to oxidize iodine into 3 and 5-iodanes employed in 

enantioselective phenol dearomatization reactions.

                                                
69

 Riant, O.; Samuel, O.; Flessner, T.; Taudien, S.; Kagan, H. B., J. Org. Chem. 1997, 62, 6733–6745. 
70

 Dayaker, G.; Sreeshailam, A.; Ramana, V.; Chevallier, F.; Roisnel, T.; Komagawa, S.; Takita, R.; 

Uchiyama, M.; Krishna, P. R.; Mongin, F., Tetrahedron, 2014, 70, 2102-2117. 
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 With this methodology in hand, we treated iodine 351 with 3,3-dimethyldioxirane 

also known as DMDO (Scheme 3.59). The reaction was monitored by taking aliquots 

from the reaction mixtures after two hours of continuous stirring at romm temperature. 

After a reduction to dryness of the aliquots taken, a brownish solid was obtained and was 

found to be insoluble This in most of the usual deuterated solvents (i.e. CDCl3, 

acetonitrile-d3, Methanol-d4, (CD3)2CO, TFE-d3, 9:1 mixture of (CD3)2CO/D2O, mixture 

of TFA-d1/CDCl3). Finally, small amount of the solid was partially dissolved in DMSO-d6 

and analyzed by 1H NMR spectroscopy. 

 

 

Scheme 3.59. Possible 
5
 product expected from oxidation with DMDO of iodoferrocenyl 351. 

 It is important to note that signal of carbon ipso for compound 351 (C1-ipso in 

Fig. 3.18) to the iodine atom is known to present a characteristic shift to lower field 

when iodine is oxidized to 3 and 5-iodanes. As well, C2 and C3 carbons could present 

a shift in their signals when iodine is transformed in iodane. 

 

Figure 3.18. 
13

C spectrum for compound 351 and signal for the carbon-ipso to iodine. 

 

C1-ipso 

13C NMR in DMSO-d6 

C2 

C3 
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 Formation of a new product was observed by 1H NMR. Indeed, a clear 

disappearance of the signal corresponding to the acetal proton present in ferrocene 

351 (5.37 ppm) coincided with the consecutive formation of a new signal at 5.64 ppm. 

Interestingly, when the compound was kept dissolved in DMSO-d6 the new compound 

was back transformed in iodine 351 through the time. 

 

 

Figure 3.19. 
1
H NMR spectra of possible iodane 352 showing the evolution through time in DMSO-d

6
. 

 

 As it can be observed in Figure 3.19, when the reaction was stirred for 20 

minutes almost the new acetal signal is observed as the major compound (see Fig 

3.19, 20 min, green arrow.). After one hour dissolved in DMSO compounds 313 and 

314 showed equilibrated proportion of their signals. In addition, after more than three 

hours exclusively acetal signal of compound 351 was present (Fig 3.19, 3 hours, 

purple arrow). 

 These results demonstrated the instability of iodane 352 in DMSO. Indeed, the 

later could be oxidized by compound 352 as well as it gets reduced to afford the 

respective iodine 351. The insoluble nature of compound 352 limited its 

characterization by conventional techniques. 

 The analysis of carbon spectrum of compound 352 could provide an answer to 

its possible iodane nature. The comparison between the C1-ipso carbon of iodine and 

the one of compound 352 would help with that. This specific position often presents a 

shift due to the transformation of iodine compounds into 
3 and 

5-iodanes. 

Unfortunately for us, C1-ipso is a quaternary carbon which needs a longer acquisition 

20 min 

1 hour 

2 hours 

3 hours 

351 

DCM 
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times to be observable due to its relaxation time. Just as in the case of 1H NMR, we 

observed the reversibility of compound 352 through the time when the carbon spectra 

was acquired dissolved in DMSO-d6. This could have been resolved if a large amount 

of 352 compound was dissolved in the NMR tube in order to acquire carbon spectrum 

in shorter time but unfortunately this was limited by the poor solubility. 

 Despite the fact that ipso quaternary carbon of iodane 352 was not possible to 

observe, cyclopentadienyl and acetal carbons (depicted in purple and orange, 

respectively, Fig. 3.20) presented a considerable shift in their carbon signals. This shift 

did not confirmed the nature of iodine, so we continued searching for other techniques. 

 

Figure 3.20. 
13

C spectra for compounds 351 and 352 in deuterated DMSO. 

 

 Infrared spectroscopy analysis of iodine 351 and compound 352 was performed 

and compared with the literature.  Zhdankin et al.71 reported that the infrared vibration 

of the I=O bond for a 5-iodane can be observed around 749 cm-1, and we were able to 

observe a broad signal at 767 cm-1.  

 Although there was no certain confirmation of the nature of iodane 352, 

compound was evaluated in the asymmetric dearomatization of simple thymol 353 

(Scheme 3.60) in presence of TFA. In this reaction the substrate and iodine 351 were 

recovered. However, when the less hidered 2,6-dimethylphenol 354 was employed, a  

                                                
71

 Yusubov, M. S.; Svitich, D. Y.; Yoshimura, A; Nemykin, V. N.; Zhdankin, V. V.; Chem. Commun., 2013, 

49, 11269-11271 
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[4+2] dimer 355 was obtained in a 3 % yield. Unfortunately, evaluation of the optical 

purity of 317 revealed its complete racemic nature. 

 

 

Scheme 3.60. Asymmetric dearomatization attempts of compound 354 with thymol and 2,6-

dimethylphenol. 

  

 As compound 352 turned to be not efficient in asymmetric dearomatization 

reactions, iodine compound 351 was treated with other oxidizing agents (Scheme 

3.61). Oxone was first choosen as oxidant using a mixture of ACN and H2O. 

Unfortunately, a complete deprotection of 1,3-dioxane afforded aldehyde 356. On the 

contrary, if m-CPBA was employed using DCM as solvent for the reaction of compound 

351 and stirred for 8 hours at room temperature, starting material was fully recovered 

(Scheme 3.61). Some oxidation tests were tried with iodocarboxaldehyde ferrocene 

356, but no further oxidation was observed. 

Finally, the use of Selectfluor in presence of a mixture (4:1) of ACN and AcOH 

could lead to the formation of the 3 derivatives of ferrocenyl compound 351. Presence 

of some new products was observed by 1H NMR. Unfortunately, the signals observed 

were broad similar to the ones observed for compound 352. It could be possible that 

oxidation of the iron atom is taking place before the oxidation of iodine, as the potential 

for Fe2+ to Fe3+  is lower. Formation of Fe3+ could lead to a paramagnetic state of the 

molecule, which in is known to exhibit broader signals in 1H NMR. 

 In conclusion, we were not able to oxidize the iodine atom placed in the 

ferrocenyl moiety or at least confirm the nature of this oxidation. Furthermore, this type 

of compounds was not able to induce any chirality on the typical hypervalent iodine 

reagent mediated reactions. 
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Scheme 3.61. Use of different oxaidant to oxidize iodine 351 into 
3 
and 

5
-iodanes 
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3.8 Conclusions 
. 

 

 A successful racemic synthetic route toward lactone 314 was developed in five 

steps, within 24 h, without purification of intermediates and in an overall yield of 

17%. 

 

 Asymmetric oxa-Michael desymmetrization employing organometallic catalysis 

and organocatalysis did not provide good results for intermediate lactone 314. 

On the other hand, alternative asymmetric approach of lactone 314 by chiral 

diamines catalyzed desymmetrization into dioxanes gave rise to a good 

enantiocontrol. Unfortunately, elimination of 1,4-dioxane moiety prevented the 

access to enantiopure lactone intermediate. 

 

 Total synthesis of neosecurinine- and neonorsecurinine-type compounds (±)-

Virosine B, (±)-Virosine A, (±)-Niruroidine and (±)-Bubbialidine was 

accomplished in 10 synthetic steps, with an overall yield for each compound of 

1-2%. Lactone 314 resulted in a valuable key intermediate which in combination 

with different azidoaldehydes 336a-b permitted the divergent access toward 

neosecurinine and neonorsecurinine type alkaloids at the same time. 

 

 Piperidine and pyrrolidine ring compounds demonstrated different mechanistic 

behavior during reductive amination and cyclization steps. Due to that, the 

study of the mechanism by DFT calculations confirmed the diastereoselectivity 

exhibited by neonorsecurinine derivatives. Unfortunately, no conclusive results 

were obtained for neosecurinine derivatives but further analysis is in progress. 

 

 The first synthesis of ferrocenyl-iodanes was tried in order to catalyze 

asymmetric dearomatization reactions. Characterization of the possible 

hypervalent iodine ferrocene 352 was not conclusive due to its possible 

paramagnetic character (Fe2+ to Fe3+) and low solubility in organic solvents. 

Unfortunately, compound 352 was not able to show either good reactivity or 

chiral induction in oxidative dearomatization reactions. 
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3.9 Experimental part 

3.9.1  General remarks  

All reactions were carried out under a nitrogen or argon atmosphere with dry 

solvents under anhydrous conditions, unless otherwise noted. All the glassware has 

been previously dried in an oven at 90°C. Room temperature is related to around 20-

25°C. Reactions at 0°C were carried out using an ice bath; reactions from -78°C to -

10°C were carried out with dry ice in acetone 

Dry tetrahydrofuran (THF), dichloromethane (DCM), diethyl ether (Et2O) and 

toluene were obtained by passing commercially available dry, oxygen-free formulations 

through activated alumina columns from a SPS (solvent purification system) machine. 

Dry methanol (MeOH), dry acetonitrile (ACN) and Et3N were obtained by distillation 

over calcium hydride. Ethyl acetate (EtOAc), diethyl ether (Et2O), dichloromethane 

(DCM), cyclohexane, n-hexane and petroleum ether (PET) were purchased at the 

highest commercial quality and used without further purification, unless otherwise 

stated. Reagents were purchased at the highest commercial quality and used without 

further purification, unless otherwise stated. Yields refer to chromatographically and 

spectroscopically (1H NMR) homogeneous materials, unless otherwise noted. 

Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm 

E. Merck silica gel plates (60F-254). Ethanolic solution of phosphomolybdic acid, 

aqueous cerium molybdate and aqueous potassium permanganate were used as 

developing agents. E. Merck silica gel (60, particle size 40-63 μm) was used for column 

chromatography. 

 

 NMR spectra were recorded on Bruker DPX-300 and Bruker Avance III 400 

MHz instrument, and were calibrated using residual undeuterated solvent as an internal 

reference. The following abbreviations were used to explain the multiplicities: s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet. 

 

 Infrared spectra were recorded between 4000 and 400 cm-1 on a Bruker IFS55 

(OPUS/IR 3.0.2) FT-IR spectrometer.  

 

High-Resolution Mass Spectra (HRMS) were provided by the Centre d’Etude 

Structurale et d’Analyse des molecules Organiques (CESAMO, Université de 

Bordeaux, France) and performed on a Accutof JEOL mass spectrometer using ESI 

and EI ionization sources.  
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Analytical High Performance Resolution Chromatography (HPLC) 

experiments were performed using Daicel Chiralpack IA, AS-H, OD-H and OJ-H 

columns (250 x 4.6 mm I.D) which contain a chiral stationary phase.  Equipment was 

the following: a Thermo system equipped with P1500 pumps and a UV 6000LP diode 

array detector.  

  

Optical rotation coefficient,    
 , was measured at 589 nm (sodium line) in a 

digital polarimeter JASCO P-2000. T is referred to the temperature of measurement .  

 

Computational methods. All the calculations reported in Chapter 3 were 

performed by Density Functional Theory (DFT),72 using the hybrid three-parameter 

functional denoted as B3LYP.73 The standard 6-311 G(d) basis set74 as implemented in 

the Gaussian0975 was used to describe all the atoms. All stationary points were 

characterized by harmonic analysis. Reactants, intermediates and cycloadducts have 

positive definite Hessian matrices. Transition structures show only one negative 

eigenvalue in their diagonalized force constant matrices, and their associated 

eigenvector were confirmed to correspond to the motion along the reaction coordinate. 

Thermal corrections to Gibbs free energies (TCGE) at 298 K were computed at the 

same level and were not scaled. The final energies were obtained by performing single 

point M06-2X
76 calculations with the 6-31+G(d,p) basis set at the optimized B3LYP 

geometries. The solvent effects were included by means of the Polarization Continuum 

Model (PCM)77 with the relative permittivity (ε=7.426) and parameters corresponding to 

tetrahydrofuran. 

 

 

 

 

 

                                                
72

 Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules, Oxford, New York 1989. 
73

 (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789. (b) Becke, A. D. J. Chem. Phys. 

1993, 98, 1372–1377. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. 
74

 Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab initio Molecular Orbital Theory, Wiley, New 

York, 1986; pp. 76-87 and references cited therein. 
75

 Frisch, M. J. et al. Gaussian 09, Revision B.01; Gaussian, Inc., Wallingford CT, 2009. 
76

 Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241. 
77

 a) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V.;  J. Comput. Chem. 2003, 24, 669–681; b) Tomasi, J.; 

Mennucci, B.; Cammi, R., Chem. Rev. 2005, 105, 2999–3094. 
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3.9.2 Total Synthesis of Securinega Alkaloids 

 

3.9.2.1 General procedure for racemic synthesis of key intermediate 314  

 

4-hydroxyphenylacetic acid 307 (5.00 g, 32.89 mmol) was dissolved in MeOH 

(165 mL, 0.20 M) and stirred at room temperature for 10 minutes. Subsequently, 

reaction mixture was cooled to 0°C and stirred for 5 minutes more. Then, 

(diacetoxyiodo)benzene (16.40 g, 49.33 mmol) was added as a solid directly in to the 

mixture. After additional 10 minutes of stirring at 0°C the reaction was led to stir at 

room temperature for 2 hours and followed by TLC (66:17:17 EtOAc/DCM/Acetone) 

and 1H NMR spectroscopy. Once reaction was finished the reaction was quenched with 

Na2S2O3 (1.11 mL, 4.43 M solution) and added 60 mL of DCM and 50 mL of HCl 1M. 

Then compound was extracted three times with 20 mL of DCM, dried over Na2SO4 and 

evaporated to dryness. Crude of compound 317 (see Scheme 3.62) was used in next 

step without further purification. 

 

Compound 317 was dissolved in 165 mL of EtOAc (0.20 M) and then p-

toluenesulfonic acid monohydrate (1.88 g, 9.87 mmol) was added at room temperature. 

Reaction was followed by 1H NMR due to the instability of the new product in silica gel. 

After 1 h, more than 95 % conversion of the starting material was observed and the 

mixture was just evaporated to dryness. 1H NMR of crude showed the desired product 

and iodobenzene remaining from the first step. Crude of lactone 318 (see Scheme 

3.62) was used as obtained for next step. 

 

318 was then dissolved in THF (165 mL, 0.20 M) at room temperature, and 

subsequently the mixture was cooled down to 0°C. To the stirred solution NaBH4 (2.49 

g, 65.80 mmol) was added and stirred at low temperature for 5 minutes before adding 

MeOH (16.0 mL) dropwise until bubbling is observed, vigorous stirring is necessary to 

avoid formation of foam.  Reaction was monitored by TLC (DCM/EtOAc 50:50) and 

product is observable after staining with KMnO4. After 15 minutes reaction was 

finished, then 200 mL of EtOAc and 66 mL of HCl 0.1 N were added at 0°C. After 

extraction of the organic layer with 3 times 40 mL of EtOAc, organic layer was washed 

with brine. After that the organic layer was dried over Na2SO4 and evaporated to 

dryness under high vacuum. Crude 319 (Scheme 3.62) was confirmed by 1H NMR 

spectroscopy and product was obtained in a total diastereoselective manner. 
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Crude of 319 (2.74 g, 14.88 mmol) was dissolved in anhydrous CH2Cl2 (75 mL, 

0.20 M) and then distilled Et3N (12.4 mL, 89.28 mmol) was added at room temperature 

and subsequently TBSOTf (10.4 mL, 44.64 mmol) Monitoring of the reaction was 

performed by TLC in 1 to 1 DCM/EtOAc to observe the disappearance of the starting 

material (stained in KMnO4) and then 20/80 of EtOAc/cyclohexane mixture containing 

1% of Et3N. After 30 minutes of stirring at room temperature reaction is finished and 

quenched with 40 mL of NaHCO3 aq. (sat.), then extracted 3 times with 40 mL of 

CH2Cl2. After drying over Na2SO4 and evaporation to dryness 1H NMR was performed 

for the sylil enol ether 320.  

 

320 was dissolved in anhydrous EtOAc (75 mL, 0.20 M) and 10 g of SiO2 were 

added. Stirring was kept for 30 minutes when it was observed by TLC 

(EtOAc/Cyclohexane 20:80 containing 1% of Et3N) total conversion to desired product. 

After evaporation to dryness the solid deposit was placed in a column to purify by flash 

column chromatography in silica gel eluting with a mixture 10:90 to 20:80 of 

EtOAc/Cyclohexane. 1.22 g of product 314 (Scheme 3.62) was obtained as a white 

solid in a 17 % global yield. 

 

 

Scheme 3.62. Five step racemic synthesis of intermediate 314. 
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2-(1-methoxy-4-oxocyclohexa-2,5-dien-1-yl)acetic acid (317) 

Compound obtained as a white powder. Rf: 0.19 (EtOAc/DCM 25:75). 

1H NMR (300 MHz, CDCl3)  (ppm) = 6.97 – 6.86 (m, 2H), 6.43 (d, J = 

10.3 Hz, 2H), 3.27 (s, 3H), 2.75 (s, 2H). 13C NMR (75 MHz, CDCl3)  

(ppm) = 184.9, 173.2, 148.6, 132.0, 72.8, 53.3, 44.4. FT-IR (DCM): 

3414-3231 (br), 2939, 2833, 1715, 1672, 1518, 1464, 1398, 862. HRMS (ESI): [M + H]+ 

calculated for C9H10O4: 183.0657, found: 183.0666.  

 

 

(3aS,6R,7aS)-6-hydroxy-3a-methoxy-3a,6,7,7a-tetrahydrobenzofuran-2(3H)-one (319)  

 

 Compound obtained as colorless oil. Rf: 0.40 (EtOAc/DCM 50:50). 

1H NMR (300 MHz, CDCl3)  (ppm) = 6.17 (dd, J = 10.3, 3.7 Hz, 1H 

), 5.74 (dd, J = 10.3, 1.9 Hz, 1H), 4.69 (dd, J = 9.5, 4.4 Hz, 1H), 4.36 

(ddt, J = 7.4, 4.8, 1.9 Hz, 1H), 3.22 (s, 3H), 3.15 (s, 1H), 2.75 (q, J = 

17.6 Hz, 2H), 2.50 – 2.36 (m, 1H), 1.90 (ddd, J = 13.4, 9.5, 7.6 Hz, 

1H). 13C NMR (75 MHz, CDCl3)  (ppm) = 174.2, 136.3, 126.3, 78.8, 78.2, 63.9, 51.6, 

41.5, 36.1. FT-IR (DCM): 3433 (br), 2926, 2852, 1767, 1453, 1359, 1169, 1058, 996. 

HRMS (ESI): [M + H]+ calculated for C9H12O4: 185.0813, found: 185.0818.  

 

 

(6R,7aS)-6-((tert-butyldimethylsilyl)oxy)-7,7a-dihydrobenzofuran-2(6H)-one (314) 

Compound obtained as a white solid. Rf: 0.32 (EtOAc/Cyclohexane 

20:80). 1H NMR (300 MHz, CDCl3)  (ppm) = 6.52 (dd, J = 9.9, 2.4 Hz, 

1H), 6.20 (dt, J = 10.0, 1.6 Hz, 1H), 5.81 – 5.76 (m, 1H), 4.84 (ddd, J = 

13.4, 4.9, 1.8 Hz, 1H), 4.67 – 4.50 (m, 1H), 2.78 (dd, J = 6.2, 5.1 Hz, 

1H), 1.71 (ddd, J = 13.4, 11.3, 10.0 Hz, 1H), 0.91 (s, 9H), 0.13 (d, J = 

3.5 Hz, 6H). 13C NMR (75 MHz, CDCl3)  (ppm) = 173.4, 163.1, 144.8, 119.4, 111.3, 

78.2, 67.5, 40.6, 25.8, 18.2, -4.4, -4.7. FT-IR (DCM): 3095, 2954, 2930, 2857, 1740, 

1640, 1252, 1151, 1022, 878, 840, 725. HRMS (ESI): [M + H]+ calculated for 

C14H22O3Si: 267.1416, found: 267.1422.  
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3.9.2.2 Asymmetric direct approach through oxa-Michael desymmetrization 

4-hydroxybenzoic acid 307 (0.50 g, 3.29 mmol) was dissolved in MeOH (16 mL, 

0.20 M) and stirred at room temperature for 5 minutes. Subsequently, reaction mixture 

was cooled to 0°C and stirred for 5 additional minutes. Then, PIDA (1.56 g, 4.93 mL) 

was added as a solid directly in to the mixture (scheme 3.63, step 1). After additional 

10 minutes of stirring at 0°C the reaction was increased to room temperature and 

followed by TLC (66:17:17 EtOAc/DCM/Acetone). 1 hour and 30 minutes of reaction at 

room temperature was quenched with Na2S2O3 (1.11 mL, 4.04 M) and added 60 mL of 

DCM and 50 mL of HCl 1M. Compound was extracted 3 times with 20 mL of DCM; 

organic layer was dried over Na2SO4 and evaporated to dryness. Purification by flash 

column chromatography in silica gel with EtOAc/DCM 20:80 EtOAc to 50:50 

EtOAc/DCM afforded 125 mg of compound 317, yield 21%.  

 

 

Scheme 3.63. Asymmetric direct approach toward intermediate 314. 

 

Corresponding catalyst  (5 mol % of metallic salt + 5.5 mol % of ligand, or 10 

mol % of organocatalyst)  and additives (20 mol %) were placed in a round bottom flask 

with a magnetic stirrer and dissolved in corresponding solvent (0.10 M) (Scheme 3.63, 

step 2). Then compound 317 (1 equiv.) dissolved in the corresponding solvent was 

added to the mixture at certain reaction temperature. Reaction was monitored by 1H 

NMR spectroscopy in CDCl3 until full conversion to desired cyclic lactone 318 was 

observed. Once reaction was finished, the mixture was reduced to dryness and dried 

under high vacuum without further purification. Compound 314 was synthesized as 
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reported for racemic procedure (Scheme 3.62 and 3.63). Enantiomeric excess of 

compound 314 was determined by HPLC. 

 

(6R,7aS)-6-((tert-butyldimethylsilyl)oxy)-7,7a-dihydrobenzofuran-2(6H)-one (314) 

Rf: 0.32 (EtOAc/Cyclohexane 20:80). 1H NMR (300 MHz, CDCl3)  (ppm) 

= 6.52 (dd, J = 9.9, 2.4 Hz, 1H), 6.20 (dt, J = 10.0, 1.6 Hz, 1H), 5.81 – 

5.76 (m, 1H), 4.84 (ddd, J = 13.4, 4.9, 1.8 Hz, 1H), 4.67 – 4.50 (m, 1H), 

2.78 (dd, J = 6.2, 5.1 Hz, 1H), 1.71 (ddd, J = 13.4, 11.3, 10.0 Hz, 1H), 

0.91 (s, 9H), 0.13 (d, J = 3.5 Hz, 6H). 17 % ee. HPLC: Daicel Chiralpak 

AS-H column, iso-Propanol/n-hexane 15:85, flow = 1.0 mL/min, trmajor= 10.3 min (6R, 

7aS), trmajor = 11.8 min (6S, 7aR), 255 nm. 

 

 

Best result: Use of R-TRIP-203, 10 mol %, in DCM as solvent and room temperature. 
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3.9.2.3 Asymmetric alternative strategy in oxa-Michael desymmetrization 

(4-Hydroxyphenyl)acetic acid tert-butyl ester (325)78,79 

N,N-dimethyl isobutyramide 326 (1 mL, 7.75 mmol) was dissolved in 

32 mL of CH2Cl2 and cooled to 0°C in order to add oxalyl chloride 

(0.72 mL, 8.52 mmol). After stirring at room temperature for 30 

minutes, Et3N (1.3 mL, 9.3 mmol) was added. After 15 minutes, 4-

hydroxybenzoic acid (591 mg, 3.88 mmol) was added and stirred at 

room temperature for another 20 minutes. Finally, tert-butanol (8 mL, 

excess) were added and the resulting mixture was stirred overnight. Reaction was 

monitored by TLC (EtOAc/PET 30:70). HCl 1M and EtOAc were used to extract the 

organic layer (3 x 30 mL).  Then, drying over Na2SO4 and reduction to dryness afforded 

the crude.  Purification by flash column chromatography in silica gel with EtOAc/PET 

30:70, isolated 675 mg of white powder in 84 % yield. 1H NMR (300 MHz, CDCl3)  

(ppm) = 7.12 – 7.06 (m, 2H), 6.72 (d, J = 8.6 Hz, 2H), 5.57 (s, 1H), 3.45 (s, 2H), 1.44 

(s, 9H). 13C NMR (75 MHz, CDCl3)  (ppm) = 172.1, 154.9, 130.5, 126.5, 115.6, 81.2, 

41.9, 28.2. FT-IR (CH2Cl2): 3314, 3010, 2982, 2935, 1698, 1518, 1447, 1370, 1272, 

1134, 810, 767, 750. Title compound was in concordance with reported literature. 

 

Synthesis of 4-(4,4-dimethyl-2-oxopentyl)-4-(2-hydroxyethoxy)cyclohexa-2,5-dien-1-

one (327) 

Compound 325 (480 mg, 2.30 mmol) was dissolved in 9.20 mL of 

anhydrous acetonitrile and the anhydrous ethylene glycol was 

added (3.89 mL, 69.00 mmol). After stirring 5 minutes at room 

temperature, PIDA (1.15 g, 3.45 mmol) was added as a solid and 

observed the change of color to purple and then to yellow.  

Monitoring by TLC (DCM/Et2O 25:75) showed that reaction was over after 2 hours and 

30 minutes.  Reaction was quenched with Na2S2O3 (5 equiv., 4.43 M, 3.90 mL) and 

H2O and NaHCO3 aq. (sat.) were added. Subsequently, EtOAc and NaHCO3 aq. (sat.) 

were added in a 1 to 1 ratio v/v. Organic layer was washed 3 times with 20 mL of 

NaHCO3 aq. (sat.) and dried over Na2SO4. After evaporation crude was obtained and 

was purified by flash column chromatography in silica gel in a gradient from 100 % 

DCM to 10:90 and 25:75 Et2O/DCM, Rf: 0.18 (EtOAc/Cyclohexane 20:80). 180 mg of a 

yellow oil were obtained, Yield = 36 %. 1H NMR (300 MHz, CDCl3) : (ppm) = 6.98 (d, J 

= 10.3 Hz, 2H), 6.39 (d, J = 10.3 Hz, 2H), 3.72 (t, J = 4.2 Hz, 2H), 3.48 (dd, J = 5.2, 4.0 

                                                
78

 Hama, T.; Liu, X.; Culkin, D. A; Hartwig, J. F., J. Am. Chem. Soc. 2003, 125, 11176–7. 
79

 Bhawal, B. M.; Khanapure, S. P.; Biehl, E. R., Synthesis, 1991, 2, 112–114. 
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Hz, 2H), 2.69 (s, 2H), 1.45 (s, 9H). 13C NMR (75 MHz, CDCl3)  (ppm) = 184.9, 167.6, 

149.0, 131.2, 81.8, 72.8, 66.3, 61.9, 45.7, 28.0. FT-IR (CH2Cl2): 3700 (br), 2978, 2934, 

2873, 1728, 1672, 1631, 1457, 1393, 1369, 1151, 1091, 1064. HRMS (ESI): [M + Na]+ 

calculated for C14H20O5 291.1201, found 291.1208. 

 

 

-Racemic synthesis of compound (±)-328 

  

 Compound 327 (8 mg, 0.03 mmol) was dissolved in 0.3 mL of anhydrous DCM 

and then p-toluenesulfonic acid (0.56 mg, 0.003 mmol) was added. While stirring at 

room temperature for 30 minutes reaction was monitored by TLC (Et2O/DCM 20:80). 

Evaporation afforded the crude product and then purification by flash column 

chromatography in silica gel with a gradient from 100 % DCM to EtOAc/Cyclohexane 

20:80 gave the cyclized product, 2.6 mg in a 32 % yield. Injection of racemic compound 

in HPLC Daicel chiralpack IA column with a mixture of eluents of iso-Propanol/n-

hexane 25:75 in 0.7 mL/min at 220-250 nm showed one enantiomer at tr1 = 7.90 min 

and at tr2 =8.77 minutes.  

 

-Asymmetric synthesis of compound 328 and ent-32880 

 

 Path 1: Compound 327 (50 mg, 0.19 mmol) was dissolved in 0.7 mL (0.25 M)  

of anhydrous toluene, 1R,2R-phenylethylendiamine 206 (6.00 mg, 0.03 mmol) and N-

Boc-L-proline (6.00 mg, 0.03 mmol) were added and reaction was stirred at room 

temperature for 20 h while reaction conversion was monitored by 1H NMR 

spectroscopy. Once full conversion was observed solvent was removed by 

evaporation. Purification by flash column chromatography in silica gel using 100 % 

DCM to EtOAc/Cyclohexane 20:80 afforded cyclized product 328, 39 mg in a 80 % 

yield.     
   = +21.73⁰ (c 0.40, DCM). Injection of compound in HPLC Daicel chiralpack 

IA column with a mixture of eluents of iso-Propanol/n-hexane 5:95 in 0.7 mL/min at 210 

nm showed 86 % of ee. trmajor = 25.4 min, trminor = 30.9 min. 

 

 

 

 

 

                                                
80

 Wu, W.; Li, X.; Huang, H.; Yuan, X.; Lu, J.; Zhu, K.; Ye, J., Angew. Chem., Int. Ed. 2013, 52, 1743–

1747. 
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Path 2: Compound 327 (50 mg, 0.19 mmol) was dissolved in 0.86 mL (0.25 M)  

of anhydrous toluene, 1S,2S-phenylethylenediamine ent-206 (6.00 mg, 0.03 mmol) 

and N-Boc-L-proline (6.00 mg, 0.03 mmol) were added and reaction was stirred at 

room temperature for 72 h while reaction conversion was monitored by 1H NMR 

spectroscopy. Once full conversion was observed solvents was removed by 

evaporation. Purification by flash column chromatography in silica gel using 100 % 

CH2Cl2 to EtOAc/Cyclohexane 20:80 gave cyclized product ent-328, 32 mg in a 64 % 

yield. Injection of compound in HPLC Daicel chiralpack IA column with a mixture of 

eluents of iso-Propanol/n-hexane 5:95 in 0.7 mL/min at 210 nm showed 60 % of ee for 

the opposite enantiomer observed when 1R,2R-phenylethylenediamine was used. 

trminor = 25.9 min, trmajor = 31.4 min. 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment 3: Compound 327 (57 mg, 0.19 mmol) was dissolved in 0.86 mL 

(0.25 M)  of anhydrous toluene, 1S,2S-phenylethylendiamine ent-206 (6.81 mg, 0.03 

mmol) and N-Boc-D-proline (6.89 mg, 0.03 mmol) were added and reaction was 
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stirred at room temperature for 72 h while reaction conversion was monitored by 1H 

NMR spectroscopy. Once full conversion was observed solvents was removed by 

evaporation. Purification by flash column chromatography in silica gel using 

EtOAc/Cyclohexane 20:80 gave the cyclized product ent-328, 30 mg in a 53 % yield. 

    
   = -9.43⁰ (c 0.93, DCM). 42 % of ee. Injection of compound in HPLC Daicel 

chiralpack IA column with a mixture of eluents of iso-Propanol/n-hexane 5:95 in 0.7 

mL/min at 210-254 nm showed trminor = 28.1 min, trmajor = 33.1 min. 

 

 

 

 

 

 

 

 

 

 

 

(4aS,8aR)-8a-(4,4-dimethyl-2-oxopentyl)-2,3,4a,8a-tetrahydrobenzo[b][1,4]dioxin-

6(5H)-one (328) 

Colorless oil, Rf: 0.62 (DCM/Et2O 75:25). 1H NMR (300 MHz, 

CDCl3)  (ppm) = 6.86 (dd, J = 10.5, 2.8 Hz, 1H), 6.14 (dd, J = 

10.5, 1.0 Hz, 1H), 4.14 (q, J = 3.0 Hz, 1H), 3.83 (ddd, J = 12.2, 9.4, 

5.3 Hz, 1H), 3.74 – 3.65 (m, 3H), 2.70 – 2.62 (m, 2H), 2.59 (d, J = 

6.9 Hz, 2H), 1.46 (s, 9H). 13C NMR (75 MHz, CDCl3)  (ppm) = 

195.5, 168.1, 150.8, 131.2, 81.7, 76.5, 72.6, 66.3, 63.0, 44.6, 41.7, 28.2. FT-IR 

(CH2Cl2): 2970, 2917, 2866, 1729, 1685, 1455, 1367, 1152, 1112. HRMS (ESI): [M + 

Na]+ calculated for C14H20O5 291.1203, found 291.1205. Crystals obtained several 

times, not suitable for their analysis by X-ray diffraction. No absolute configuration of 

each enantiomer. 

 

Synthesis of tricyclic compound 330a 

 

Racemic compound 328 (29 mg, 0.11 mmol) was dissolved in anhydrous DCM 

(0.10 M, 1.10 mL) and in the presence of p-toluenesulfonic acid (2.12 mg, 0.01 mmol) 

trifluoroacetic acid (252 µL, 3.30 mmol) was added. Monitoring of the reaction by TLC 
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(KMnO4 staining) (Et2O/DCM 25:75) presented almost full conversion after 2 hours of 

stirring, and then aliquot of reaction mixture was analyzed by 1H NMR spectroscopy 

which showed 88 % of conversion to compound 329. Due to the possible low stability 

of the compound in silica gel the reaction mixture was reduced to dryness and dried 

under high vacuum obtaining 23 mg of crude and used in next step without further 

purification. Rf (Et2O/DCM 25:75): 0.52. 

 

Different collected fractions of compound 329 (91.0 mg, 0.43 mmol) were 

dissolved in anhydrous THF (4.29 mL) and then cooled to -40°C. After that, NaBH4 

(80.0 mg, 2.15 mmol) was added and reaction mixture was stirred for 5 minutes. 

Subsequently, MeOH (0.80 mL) was added dropwise and stirred for 2 hours letting the 

temperature increase to 0°C while was monitored by TLC (DCM/EtOAc 50:50). 

Reaction was finished in this time but two products (major and minor) were observable 

by TLC (KMnO4 staining), then 20 mL of HCl 0.50 M were added and mixture was 

diluted with 20 mL of DCM. Compound was extracted several times with 10 mL of 

DCM. Organic layer was dried with Na2SO4 and evaporated to dryness. 1H NMR 

spectrum in CDCl3 showed a mixture of diastereisomers in 86:14 ratio. Purification by 

flash column chromatography in silica gel (DCM/EtOAc 50:50) gave major compound 

330a as colorless oil, 22 mg obtained in 35 % yield. 

 

(4aS,7aS,10aS)-9-hydroxyhexahydro-9H-[1,4]dioxino[2,3-d]benzofuran-6(5H)-one 

(330a) 

 Rf: 0.24 (DCM/EtOAc 50:50), if runned TLC 2 times, 0.52. 1H NMR 

(300 MHz, CDCl3)  (ppm) = 5.01 (dd, J = 8.8, 6.4 Hz, 1H), 4.05 (s, 

1H), 3.99 – 3.95 (m, 1H), 3.94 – 3.83 (m, 2H), 3.74 – 3.60 (m, 2H), 

3.28 (s, 1H), 2.72 (d, J = 17.1 Hz, 1H), 2.61 – 2.49 (m, 1H), 2.45 (dd, J 

= 17.1, 0.8 Hz, 1H), 2.25 (dtd, J = 14.8, 4.6, 2.2 Hz, 1H), 1.88 (dt, J = 

14.9, 3.7 Hz, 1H), 1.58 (ddd, J = 14.3, 8.8, 3.2 Hz, 1H). 13C NMR (75 MHz, CDCl3)  

(ppm) = 173.9, 76.4, 74.4, 65.8, 65.3, 61.7, 38.7, 37.9, 33.6. Quaternary carbon missed 

(maybe under CDCl3 signals). FT-IR (DCM): 3603-3152 (br), 2928, 2872, 1779, 1106, 

1070, 1012, 913. HRMS (EI): [M]+ calculated for C10H14O5 214.0841, found 214.0845. 
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Protection of secondary alcohol 330a  

 

Compound 330a (22 mg, 0.10 mmol) was dissolved in anhydrous DCM (0.10 M, 

1.0 mL) and then Et3N (111 µL, 0.80 mmol) was added. Subsequently, TBSOTf (94 µL, 

0.40 mmol) was added and stirred for 30 minutes at room temperature. Conversion of 

the reaction was monitored by TLC (DCM/EtOAc 50:50, KMnO4 staining). At this point 

reaction was quenched with saturated solution of NaHCO3, dissolved in mixture 1 to 1 

of ethyl acetate and citric acid 5 % and stirred at room temperature for 12 h and then, 

product was extracted with EtOAc and finally organic layers were washed once with 10 

mL of a saturated solution of NaHCO3. Organic layer was dried with Na2SO4 and 

evaporated to dryness. Crude 1H NMR showed mainly product 337. Purification by 

flash column chromatography in silica gel (Et2O/PET 25:75) afforded 8 mg of 

compound 331 as colorless oil in 61 % yield. 

 

 

(4aR,7aR,9S)-9-((tert-butyldimethylsilyl)oxy)hexahydro-9H-[1,4]dioxino[2,3-

d]benzofuran-6(5H)-one (331) 

 Rf: 0.31 (Et2O/ PET 25:75). 1H NMR (300 MHz, CDCl3)  (ppm) = 

4.41 (dd, J = 4.2, 2.7 Hz, 1H), 4.01 – 3.79 (m, 2H), 3.77 – 3.67 (m, 

2H), 3.59 – 3.46 (m, 2H), 3.19 (d, J = 16.7 Hz, 1H), 2.61 (dd, J = 

16.7, 0.8 Hz, 1H), 2.27 – 2.13 (m, 2H), 1.87 (dtd, J = 12.2, 4.1, 2.1 

Hz, 1H), 1.76 (m, 1H), 0.88 (s, 9H), 0.06 (d, J = 1.4 Hz, 6H). 13C 

NMR (75 MHz, CDCl3)  (ppm) = 173.1, 81.9, 75.1, 71.5, 65.3, 64.1, 60.0, 39.7, 34.9, 

34.0, 25.9, 18.2, -4.6, -4.6. FT-IR (DCM): 2956, 2906, 2856, 1791, 1259, 1208, 1087, 

836, 777. LMS (ESI): 328.9 u [M + H]+, 351 u  [M + Na] +,  679 u (100%)  [2M + Na]+.  

 

 

 

 

 

 

 

 

. 
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3.9.2.4 Development of Aldol reaction and Swern oxidation 

-General procedure for the synthesis of azidoaldehyde compounds (336a, 336b) 

1,4-butanediol or 1,5-pentanediol (1 equiv.) was dissolved in toluene (0.30 M) 

and then an aqueous solution of HBr (1.20 equiv.) was added. Reaction was refluxed for 

12 h and reaction was followed by thin layer chromatography (50:50 

EtOAc/Cyclohexane). Mixture was diluted with EtOAc and then organic layer was 

washed twice with NaOH 1 M, followed by brine and H2O. Organic layer was dried over 

Na2SO4 and solvents were removed under reduced pressure. Obtained compounds 

340a-b were used without further purification in next step.81 

Corresponding compound 334a-b (1 equiv.) was dissolved in H2O (1 equiv.) and 

then NaN3 (2 equiv.) was added. This mixture was heated for 18 h at 80°C and the 

reaction was monitored by 1H NMR spectroscopy. Once reaction was complete it was 

diluted and extracted several times with EtOAc and the organic layer then dried over 

Na2SO4. Final removal of solvents afforded the crude of reaction for compounds 335a-b 

which was used without further purification.82 

Last step was always performed just before the use of the azidoaldehyde in aldol 

reaction due to its instability. Oxalyl chloride (2 equiv.) was added to a precooled flask of 

DCM (0.20 M) at -78°C, and then DMSO (4 equiv.) was added dropwise. Reaction was 

stirred at the same temperature for 15 minutes and then corresponding compound 

335a-b (1 equiv.) was added dropwise in DCM at -78°C. After additional 30 minutes of 

stirring at -78°C, Et3N (8 equiv.) was added and stirred for 5 minutes. Immediately, 

mixture was warmed up to 0°C and stirred for 30 minutes. Reaction was monitored by 

thin layer chromatography (30:70 EtOAc/Cyclohexane) and when reaction was finished 

it was quenched by adding saturated aqueous NaHCO3 at 0°C. Then organic layer was 

extracted several times with DCM and dried over Na2SO4. Evaporation of solvent was 

cautiously performed above 100 mbar due to the volatile character of the compounds. 

Purification by flash column chromatography in silica gel using 40:60 Et2O/PET afforded 

desired compound (336a or 336b) usually in quantitative yields. 

 

                                                
81

 Nickel, S.; Serwa, R. A.; Kaschani, F.; Ninck, S.; Zweerink, S.; Tate, E. W.; Kaiser, M., Chem. Eur. J. 

2015, 21, 10721–10728. 
82

 Moreno, P.; Quéléver, G.; Peng, L., Tetrahedron Lett. 2015, 56, 4043–4046. 
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Scheme 3.64. Synthesis of azidoaldehydes 342a and 342b. 

4-azidobutanal (336a)83  

Yellowish oil was obtained in overall yield of 85%. Rf: 0.40 

(EtOAc/Cyclohexane 30:70). 1H NMR (300 MHz, CDCl3)  (ppm) = 

9.80 (d, J = 1.2 Hz, 1H), 3.35 (t, J = 6.6 Hz, 2H), 2.57 (td, J = 7.0, 

1.1 Hz, 2H), 1.91 (pd, J = 6.9, 1.1 Hz, 2H). 13C NMR (75 MHz, CDCl3)  (ppm) = 200.9, 

50.4, 40.5, 21.3. Spectroscopic data in concordance with reported in literature. 

5-azidepentanal (336b)84 

 Yellowish oil was obtained in overall yield of 81%. Rf: 0.62 

(EtOAc/Cyclohexane 30:70). 1H NMR (300 MHz, CDCl3)  (ppm) = 

9.78 (t, J = 1.5 Hz, 1H), 3.31 (t, J = 6.5 Hz, 2H), 2.49 (td, J = 7.0, 

1.5 Hz, 2H), 1.78 – 1.58 (m, 4H).13C NMR (75 MHz, CDCl3)  (ppm) = 201.8, 51.2, 

43.4, 28.4, and 19.4. Spectroscopic data in concordance with reported in literature. 

 

Diastereoselective aldol reaction and following swern oxidation  

TBS-protected compound (314, 1 equiv.) was dissolved in freshly distilled THF 

(0.05 M) and cooled in a round bottom flask to -78°C. After 10 minutes LiHMDS (1.50 

equiv.) was added and stirred for 30 minutes at same temperature while the mixture 

turns orange. Corresponding aldehyde (336a or 336b, 1.10 equiv.) then was added and 

reaction was warmed up to -50 °C. Conversion was monitored by thin layer 

chromatography (20:80 EtOAc/Cyclohexane and 40:60 EtOAc/Cyclohexane). Reaction 

was quenched using aqueous saturated solution of NH4Cl at -50 °C and compound was 

                                                
83

 Bates, R. W.; Dewey, M. R., Org. Lett. 2009, 11, 3706–3708 
84

 John, J.; Thomas, J.; Parekh, N.; Dehaen, W., European J. Org. Chem. 2015, 2015, 4922–4930. 
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extracted with EtOAc. Drying over Na2SO4 and evaporation to dryness afforded the 

crude of the reaction. Purification was made by flash column chromatography in silica 

gel using a ternary mixture (5:20:75 DCM/Et2O/Cyclohexane) and finally 100 % Et2O to 

obtain the mixture of corresponding aldol compounds 337 or 339 as a mixture of 

diastereisomers. 

 

Scheme 3.65. Aldol reaction and swern oxidation. 

To a round bottom flask containing DCM (0.10 M), oxalyl chloride (2 equiv.) was 

added at -78°C. After that DMSO (4 equiv.) was added dropwise keeping the 

temperature and stirring for 15 minutes. Then, mixture of aldol diastereisomers 337 or 

339 (1 equiv.) was added dissolved in DCM and stirred at low temperature for 30 

additional minutes. Finally Et3N (8 equiv.) was added and then led to stir at 0°C for 

another 30 minutes. Conversion of the reaction was monitored by thin layer 

chromatography (20:80 to 40:60 EtOAc/Cyclohexane) and aqueous saturated NaHCO3 

was added in order to quench the reaction. Extraction using DCM and then drying 

organic layer with Na2SO4 afforded after evaporation a crude mixture of 338a/338b 

(neosecurinine) or 339a/339b (neonorsecurinine) adducts in 80:20 ratio. Purification by 

flash column chromatography in silica gel using EtOAc/Cyclohexane mixture (10:90 

then 20:80 respectively) afforded (cis) and (trans) adducts separately. 

 

-Securinine precursors: 

(6R,7aS)-7a-(5-azidobutanoyl)-6-((tert-butyldimethylsilyl)oxy)-7,7a-dihydrobenzofuran-

2(6H)-one (338a) 

(300 mg, 1.12 mmol of 314) obtained 135 mg of colorless oil 

was afforded with a yield of 31 % (2 steps). Rf: 0.39 

(EtOAc/Cyclohexane 20:80). 1H NMR (300 MHz,CDCl3)  

(ppm) = 6.48 (dd, J = 10.0, 2.2, 1H), 6.19 (dd, J = 9.8, 1.9 Hz, 

1H), 5.93 (t, J = 0.7 Hz, 1H), 4.97 – 4.84 (m, 1H), 3.24 (t, J = 

6.4 Hz, 2H), 2.99 – 2.84 (m, 1H), 2.60 (ddd, J = 18.5, 7.4, 6.3 Hz, 1H), 2.33 (dt, J = 

18.6, 6.7 Hz, 1H), 1.77 (dd, J = 12.3, 8.8 Hz, 1H), 1.68 – 1.44 (m, 5H), 0.90 (s, 9H), 
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0.13 (d, J = 2.2 Hz, 6H). 13C NMR (75 MHz, CDCl3)  (ppm) = 204.3, 172.2, 161.7, 

144.8, 118.5, 112.6, 90.3, 66.4, 51.2, 41.0, 34.8, 28.2, 25.8, 20.7, 18.2, -4.6, -4.7. FT-

IR (DCM): 2931, 2857, 2097, 1768, 1725, 1639, 1470, 1088, 1021. HRMS (ESI): [M + 

Na]+ calculated for C19H29N3O4Si: 414.1819, found: 414.1808.  

 

(6R,7aR)-7a-(5-azidobutanoyl)-6-((tert-butyldimethylsilyl)oxy)-7,7a-dihydrobenzofuran-

2(6H)-one (338b) 

(300 mg, 1.12 mmol of 314) obtained 35 mg of product 

obtained in 8 % yield (2 steps). Rf: 0.27 (EtOAc/Cyclohexane 

20:80). 1H NMR (300 MHz,CDCl3)  (ppm) = 6.68 (d, J = 9.8 

Hz, 1H), 6.12 (dd, J = 9.5, 4.8 Hz, 1H), 5.86 – 5.79 (m, 1H), 

4.58 (td, J = 4.7, 1.8 Hz, 1H), 3.30 – 3.23 (m, 2H), 2.93 – 2.60 

(m, 3H), 2.08 (dd, J = 13.5, 4.6 Hz, 1H), 1.71 – 1.51 (m, 4H), 0.87 (s, 9H), 0.11 (s, 2H), 

0.07 (d, J = 3.5 Hz, 4H). 13C NMR (75 MHz, CDCl3)  (ppm) = 201.3, 171.4, 163.0, 

137.3, 121.7, 113.2, 87.8, 64.9, 51.3, 39.6, 37.4, 28.3, 25.8, 20.5, 18.3, 1.2, -4.6, -4.7. 

FT-IR (DCM): 2951, 2929, 2857, 2097, 1767, 1728, 1644, 1470, 1289, 1091, 1020, 

778, 733. HRMS (ESI): [M + Na]+ calculated for C19H29N3O4Si: 414.1819, found: 

414.1827.  

 

-Norsecurinine precursors: 

(6R,7aS)-7a-(4-azidobutanoyl)-6-((tert-butyldimethylsilyl)oxy)-7,7a-dihydrobenzofuran-

2(6H)-one (340a) 

(400 mg, 1.50 mmol of 314) obtained 167 mg of a yellowish oil in 

a 29 % yield (2 steps). Rf: 0.35 (EtOAc/Cyclohexane 20:80). 1H 

NMR (300 MHz,CDCl3)  (ppm) = 6.49 (dd, J = 10.0, 2.2 Hz, 1H), 

6.19 (ddd, J = 10.1, 2.6, 0.9 Hz, 1H), 5.95 (t, J = 0.7 Hz, 1H), 4.98 

– 4.81 (m, 1H), 3.25 (td, J = 6.6, 1.7 Hz, 2H), 2.91 (ddt, J = 12.3, 

6.3, 0.9 Hz, 1H), 2.66 (dt, J = 18.7, 6.9 Hz, 1H), 2.41 (dt, J = 18.6, 7.0 Hz, 1H), 1.86 – 

1.73 (m, 3H), 0.89 (s, 9H), 0.13 (d, J = 2.3 Hz, 6H). 13C NMR (75 MHz, CDCl3)  (ppm) 

= 204.0, 172.2, 161.6, 144.7, 118.5, 112.7, 90.2, 66.4, 50.4, 41.0, 32.4, 25.8, 25.8, 

22.8, 18.2, -4.6, -4.7. FT-IR (DCM): 2955, 2931, 2099, 1773, 1725, 1639, 1464, 1385, 

854, 728. HRMS (ESI): [M + H]+ calculated for C18H27N3O4Si: 378.1845, found: 

378.1845.  
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(6R,7aR)-7a-(4-azidobutanoyl)-6-((tert-butyldimethylsilyl)oxy)-7,7a-dihydrobenzofuran-

2(6H)-one (340b) 

 

 (400 mg, 1.50 mmol of 314) obtained 29 mg of yellowish oil in a 

yield of 5 % (2 steps). Rf: 0.28 (EtOAc/Cyclohexane 20:80).1H 

NMR (300 MHz,CDCl3)  (ppm) =  6.71 – 6.64 (m, 1H), 6.12 

(ddd, J = 9.9, 5.0, 1.1 Hz, 1H), 5.83 (s, 1H), 4.58 (td, J = 4.7, 1.8 

Hz, 1H), 3.28 (td, J = 6.7, 4.6 Hz, 2H), 2.98 – 2.64 (m, 4H), 2.08 

(dd, J = 13.5, 4.6 Hz, 1H), 1.83 (qd, J = 8.8, 7.9, 6.8 Hz, 3H), 0.86 (s, 9H), 0.08 (d, J = 

8.9 Hz, 6H).13C NMR (75 MHz, CDCl3)  (ppm) = 201.0, 171.3, 162.7, 137.3, 121.7, 

113.2, 87.7, 64.8, 50.8, 39.5, 35.1, 25.8, 25.7, 22.9, 18.3, -4.6, -4.7. FT-IR (DCM): 

2954, 2930, 2099, 1769, 1727, 1644, 1470, 1388, 856, 779, 712. HRMS (ESI): [M + H]+ 

calculated for C18H27N3O4Si: 378.1845, found: 378.1849.  

 

3.9.2.5 Procedure for the synthesis of Securinega alkaloids of neosecurinine type 

 

 

Scheme 3.66. Procedure for the racemic synthesis of Virosine B and Virosine A starting from 338a. 

 

(±)-Virosine A and (±)-Virosine B: To a stirred solution of azide precursor 

338a (0.18 g, 0.45 mmol) in argon-degassed ACN (9 mL) was added PPh3 (0.59 g, 

2.23 mmol) at room temperature. The mixture was stirred overnight at room 
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temperature, and all volatiles were removed in vacuo.  The resulting oil was dissolved 

in a THF/AcOH 1:1 mixture (9 mL), and was stirred 7 hours at room temperature. 

NaBH3CN (0.281 g, 4.47 mmol) was then added, and the reaction mixture was stirred 

another 30 minutes at room temperature, before water (10 mL) and brine (5 mL) were 

added to quench the reaction. Organic compound was extracted with EtOAc (6 x 10 mL) 

from the aqueous solution. The combined organic layers were dried over Na2SO4, and 

concentrated in vacuo. Filtration through a short pad of silica gel, eluting with 

Et2O/DCM/Petroleum ether (8:2:90 to 32:8:60), afforded the protected natural products 

as a mixture of diastereomers 344a and 344b (55:45 ratio). The resulting oil was 

dissolved in THF (9 mL) and transferred to a Teflon reactor, before hydrogen fluoride 

(70% in pyridine, 1.16 mL, 44.7 mmol) was added at room temperature. The reaction 

mixture was stirred 24 hours at room temperature, before an aqueous solution of K2CO3 

(8.1 M, 5.52 mL, 44.7 mmol) was added to quench the reaction. The resulting mixture 

was further diluted with a saturated aqueous solution of NaHCO3 (6 mL), water (3 mL), 

and EtOAc (15 mL).  The organic layer was separated and the aqueous layer was 

extracted with EtOAc (6 x 15 mL). The combined organic extracts were dried over 

Na2SO4, and concentrated under reduced pressure. Purification by column 

chromatography on silica gel, eluting with Et2O/DCM (0:100 to 50:50), afforded (±)-

Virosine A and  (±)- Virosine B.  

(±)-Virosine A (346)85,86  

20 mg of colorless oil were obtained (from azide 338a, 175 mg, 0.45 

mmol, yield = 19 %).  Rf: 0.27 (Et2O/DCM 40:60).  1H NMR (300 

MHz, CDCl3)  (ppm) = 5.70 (t, J = 1.7 Hz, 1H), 4.42 – 4.33 (m, 1H), 

2.98 (d, J = 18.2 Hz, 1H), 2.94 – 2.75 (m, 3H), 2.75 – 2.62 (m, 2H), 

1.81 (d, J = 13.5 Hz, 2H, –OH), 1.63 – 1.51 (m, 2H), 1.46 (dd, J = 

12.4, 4.8 Hz, 1H), 1.52 – 1.34 (m, 1H), 1.38 – 1.17 (m, 1H), 0.86 (ddd, J = 23.3, 12.1, 

4.0 Hz, 1H). 13C NMR (75 MHz, CDCl3)  (ppm) = 174.3, 174.2, 111.6, 84.6, 65.3, 65.0, 

59.0, 52.8, 40.9, 29.5, 26.7, 25.7, 24.0. FT-IR (neat): 3450, 2924, 2853, 1750, 1736, 

1637, 1260, 1149 cm-1. HRMS (ESI): [M - H]- calculated for C13H16NO3 234.1135, found 

234.1137. Physical and spectroscopic data from (±)-Virosine A are identical to those 

reported in the literature.  

                                                
85

 Wang, G.-C.; Wang, Y.; Li, Q.; Liang, J.-P.; Zhang, X.-Q.; Yao, X.-S.; Ye, W.-C., Helv. Chim. Acta 2008, 

91, 1124–1129. 
86

 Bélanger, G.; Dupuis, M.; Larouche-Gauthier, R., J. Org. Chem. 2012, 77, 3215–3221. 



CHAPTER 3 

226 
 

Table 8. Comparison of spectroscopic data for naturally occurring Virosine A and experimentally obtained 

one. 

1
H NMR 

This work 

 (300 MHz, CDCl3) (ppm)
 
 

 

1
H NMR 

Isolated Product 

 (400 MHz, CDCl3) 

(ppm)
85

  

13
C NMR 

This work 

 (75 MHz, CDCl3) (ppm) 

13
C NMR 

Isolated 

Product (50 

MHz, CDCl3)
 

(ppm)
85

 

 

5.70 (t, J = 1.7 Hz, 1H) 

 

 

 

 

5.65 (s, 1H) 

 

174.3  

  

174.7 

 

 
 

4.42 – 4.33 (m, 2H)  4.35 – 4.29 (m, 1H) 

 

174.2 174.3 

 

 

2.98 (d, J = 18.2 Hz, 1H)  2.96 (br, d, J = 18.5 Hz, 

1H) 

 

111.6 111.2  

2.94 – 2.75 (m, 3H) 
 2.95 – 2.89 (m, 1H) 

 

84.6 84.6 

 

 

  2.90 – 2.85 (m, 1H) 65.3 65.1 

 

 
 

  2.78 – 2.72 (m, 1H) 

 

65.0 64.6 

 

 
 

2.75 – 2.62 (m, 2H) 
 
 

2.72 – 2.66 (m, 1H) 

 

59.0 58.8  

  2.70 – 2.64 (m, 1H) 

 

52.8 52.5  

-  2.65 (dd, J = 12.2, 9.5 

Hz, 1H) 

 

40.9 40.6  

1.81 (brd, J = 13.5 Hz, 2H, 

–OH) 

 

 1.78 (br, d, J = 12.6 Hz, 

1H) 

 

29.5 29.3 

 

 
 

1.63 – 1.51 (m, 2H) 

and 1.52 – 1.34 (m, 1H) 

 

 1.54 – 1.46  (m, 3H) 

 

26.7 26.4  

1.46 (dd, J = 12.4, 4.8 Hz, 

1H) 

 

 1.43 (dd, J = 12.3, 4.9 

Hz, 1H) 

25.7 25.5 

 

 
 

1.38 – 1.17 (m, 1H) 

 

 1.32 – 1.24  (m, 1H) 

 

24.0 23.8  

0.86 (ddd, J = 23.3, 12.1, 

4.0 Hz, 1H) 

 0.88 – 0.80  (m, 1H)    
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(±)-Virosine B (345)85  

 30 mg of crystalline solid were obtained (from azide 338a, 175 mg, 

0.45 mmol, yield = 29 %). Rf: 0.35 (Et2O/DCM 40:60). 1H NMR (300 

MHz, CDCl3)  (ppm) = 5.60 (t, J = 1.8 Hz, 1H), 4.21 (dd, J = 8.4, 5.1 

Hz, 1H), 3.11 (dt, J = 19.3, 2.0 Hz, 1H), 2.97 – 2.85 (m, 1H), 2.84 – 

2.77 (m, 2H), 2.75 (brd, J = 8.9 Hz, 1H), 2.71 – 2.59 (m, 1H), 2.21 

(brd, J = 10.2 Hz, 2H, –OH), 1.91 – 1.78 (m, 1H), 1.68 – 1.48 (m, 3H), 1.44 – 1.23 (m, 

2H), 1.19 (d, J = 13.2 Hz, 1H). 13C NMR (75 MHz, CDCl3)  (ppm) = 176.9, 174.6, 

108.8, 85.2, 66.7, 63.2, 57.6, 52.6, 36.4, 26.8, 25.9, 24.7, 23.1. FTIR (neat): 3450, 

2937, 2853, 2786, 1749, 1733, 1652, 1152, 1050 cm-1. HRMS (ESI): [M + H]+ 

calculated for C13H18NO3 236.1280, found 236.1278. Physical and spectroscopic data 

from (±)-Virosine B are identical to those reported in the literature.  
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Table 9. Comparison of spectroscopic data for naturally occurring Virosine B and experimentally obtained 

one. 

1
H NMR 

This work 

 (300 MHz, CDCl3) (ppm)
 
 

 

1
H NMR 

Isolated Product 

 (400 MHz, CDCl3) 

(ppm)
85

  

13
C NMR 

This work 

 (75 MHz, CDCl3) (ppm) 

13
C NMR 

Isolated 

Product (50 

MHz, CDCl3)
 

(ppm)
85

 

 

5.60 (t, J = 1.8 Hz, 1H) 

 

 

 

 

5.63 (s, 1H) 

 

176.9 

  

176.1 

 

 
 

4.21 (dd, J = 8.4, 5.1 Hz, 

1H) 

 4.23 (dd, J = 8.5, 5.1 

Hz 1H) 

174.6 174.1 

 

 

3.11 (dt, J = 19.3, 2.0 Hz, 

1H) 

 3.11 (td, J = 19.3, 2.1 

Hz, 1H) 

108.8 108.8  

2.97 – 2.85 (m, 1H)  2.95 – 2.91 (m, 1H) 85.2 84.8 

 

 

2.84 – 2.77 (m, 2H)  2.84 – 2.78 (m, 2H) 66.7 66.7 

 

 
 

2.75 (d, J = 8.9 Hz, 1H)  2.76 (dd, J = 13.1, 8.6 

Hz, 1H) 

 

63.2 63.2 

 

 
 

2.71 – 2.59 (m, 1H)  
 

2.72 – 2.64 (m, 1H) 

 

57.6 57.5  

2.21 (br, d, J = 10.2 Hz, 2H, 

–OH) 

 2.24 (br, d, J = 10.4 Hz, 

1H) 

 

52.6 52.5  

1.91 – 1.78 (m, 1H)  1.85 (td, J = 9.7, 3.1 Hz, 

1H) 

 

36.4 36.5  

1.68 – 1.48 (m, 3H)  1.62 – 1.56  (m, 3H) 

 

26.8 26.7 

 

 
 

1.44 – 1.23 (m, 2H)  1.46 – 1.39 (m, 1H) 25.9 25.7 

 

 

  1.36 – 1.28 (m, 1H) 24.7 24.6 

 

 
 

1.19 (d, J = 13.2 Hz, 1H)  1.20 (br, d, J = 13.1 Hz, 

1H) 

23.1 22.9  
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3.9.2.6 Synthesis of neonorsecurinine-type natural products 

 

 

Scheme 3.67. Staudinger aza-Wittig reaction afforded 5 membered stable imine 347-cis. 

 

Compound 340a (0.14 g, 0.37 mmol) was dissolved in previously degassed 

ACN (0.05 M, 7.40 mL). Subsequently PPh3 (0.48 g, 1.84 mmol) was added and 

mixture was stirred at room temperature. Reaction was monitored by 1H NMR in CDCl3 

observing full conversion into desired imine after 5 h. Then mixture was evaporated to 

dryness in order to obtain the crude imine. Compound was purified by flash column 

chromatography in silica gel, using a mixture 30:70 of Et2O/PET. 90 mg of a white 

powder were obtained, corresponding to the desired product 347, yield = 72 %. 

 

(6R,7aS)-6-((tert-butyldimethylsilyl)oxy)-7a-(3,4-dihydro-2H-pyrrol-5-yl)-7,7a-

dihydrobenzofuran-2(6H)-one (cis-347)  

Rf: 0.34 (Et2O/PET 30:70). 1H NMR (300 MHz,CDCl3)  (ppm) = 6.51 

(dd, J = 10.0, 2.3 Hz, 1H), 6.13 (dd, J = 10.0, 2.4 Hz, 1H), 4.80 (m, 

1H), 3.92 – 3.81 (m, 2H), 3.15 – 3.02 (m, 1H), 2.63 – 2.48 (m, 1H), 

2.42 – 2.28 (m, 1H), 1.93 – 1.79 (m, 3H), 0.89 (s, 9H), 0.11 (s, 6H).13C 

NMR (75 MHz, CDCl3)  (ppm) =: 173.4, 172.2, 164.2, 144.0, 119.2, 

112.2, 85.7, 67.1, 61.7, 41.9, 32.9, 25.9, 22.4, 18.2, -4.4, -4.6. FT-IR (DCM): 2955, 

2931, 1767, 1642, 1471, 874, 864, 838, 779. HRMS (ESI): [M + H]+ calculated for 

C18H27NO3Si: 334.1834, found: 334.1832.  
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Scheme 3.68. Procedure for the racemic synthesis of Niruroidine and Bubbialidine starting from 347-cis. 

 

(±)–Niruroidine and (±)–Bubbialidine: To a stirred solution of imine precursor 

347 (52 mg, 0.16 mmol, cis) in THF (1.50 mL) and AcOH (1.50 mL) was added 

NaBH3CN  (98 mg, 1.56 mmol) at room temperature. The reaction mixture was stirred 

30 minutes at room temperature, before water (5 mL) and brine (10 mL) were added to 

quench the reaction. The aqueous solution was then extracted with EtOAc (8 x 10 mL). 

The combined organic extracts were dried over Na2SO4, and concentrated in vacuo. In 

order to obtain cyclized products, crude was dissolved in MeOH (3.12 mL) and Et3N 

(0.65 mL, 4.68 mmol) was added. After 30 minutes at r.t. reaction was evaporated to 

dryness. Purification by column chromatography on silica gel, eluting with EtOAc/DCM 

(20:80 to 50:50), afforded both TBS-protected natural products as colorless oils in a 

75:25 ratio. 349b (minor, 14 mg): Rf = 0.53 (EtOAc/DCM 50:50); 349a (major, 36 mg): 

Rf = 0.44 (EtOAc/DCM 50:50).1H and 13C NMR data was not conclusive for either 

diastereomers 349a and 349b, which were not characterized. 

 

Each separated fractions (349b or 349a) were dissolved in THF (0.05 M) and 

transferred to a Teflon reactor, before hydrogen fluoride (70% in pyridine, 100 equiv.) 
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was added at room temperature. The reaction mixtures were stirred 24 hours at room 

temperature, before an aqueous solution of K2CO3 (8.10 M, 100 equiv.) was added to 

quench the reaction. The resulting solution was further diluted with a saturated aqueous 

solution of NaHCO3 (3 mL), water (1 mL), and EtOAc (5 mL).  The organic layer was 

separated and the aqueous layer was extracted with EtOAc (6 x 5 mL). The combined 

organic extracts were dried over Na2SO4, and concentrated to dryness. Purification by 

column chromatography on silica gel, eluting with EtOAc followed by MeOH/DCM 

(10:90), afforded (±)–Niruroidine and (±)–Bubbialidine. 

 

(±)-Niruroidine (258)87,88 

17 mg of colorless oil were obtained from major diastereisomer 

349a (from imine 347, 52 mg, 0.156 mmol, yield = 49 %).  Rf: 0.25 

(MeOH/DCM 10/90). 1H NMR (300 MHz, CDCl3)  (ppm) = 5.71 (t, J 

= 2.0 Hz, 1H), 4.46 – 4.37 (m, 1H), 3.25 (dt, J = 19.1, 2.0 Hz, 1H), 

3.13 – 3.03 (m, 2H), 2.98 (t, J = 6.7 Hz, 1H), 2.94 – 2.83 (m, 2H), 

2.78 (dd, J = 13.8, 9.8 Hz, 1H), 2.30 (s, 1H, –OH), 2.00 – 1.83 (m, 2H), 1.83 – 1.69 (m, 

2H), 1.33 (ddd, J = 13.8, 3.2, 1.4 Hz, 1H). 13C NMR (75 MHz, CDCl3)  (ppm) = 175.5, 

174.1, 110.4, 84.5, 62.2, 61.7, 55.9, 51.4, 34.3, 27.5, 27.4, 25.8. FT-IR (neat): 3450, 

2956, 2924, 2853, 1747, 1733, 1652, 1152, 1050 cm-1. HRMS (ESI): [M – H]- calculated 

for C12H14NO3 220.0979, found 220.0984. Physical and spectroscopic data from (±)-

Niruroidine are identical to those reported in the literature. 

 

 

 

 

 

 

 

 

                                                
87

 Gedris, T. E.; Herz, W.; Florida, T., Phytochemistry 1996, 41, 1441–1443. 
88

 Ma, N.; Yao, Y.; Zhao, B.-X.; Wang, Y.; Ye, W.-C.; Jiang, S., Chem. Commun. 2014, 50, 9284–9287. 
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Table 10. Comparison of spectroscopic data for naturally occurring Niruroidine and experimentally 

obtained one. 

1
H NMR 

This work 

 (300 MHz, CDCl3) 

(ppm) 

1
H NMR 

Isolated Product  

(500 MHz, CDCl3) 

 (ppm)
87

 

13
C NMR 

This work  

(75 MHz, CDCl3) 
 

(ppm)
 
 

13
C NMR  

Isolated Product 

(50.3 MHz, CDCl3)  

(ppm)
 87   

 

    

5.71 (t, J = 2.0 Hz, 1H) 

 

5.74 (t, J = 12.0 Hz, 1H) 175.5  174.8 

4.46 – 4.37 (m, 1H) 4.45 (br, ddd, J = 9.5, 3.0, 

1.5 Hz, 1H) 

 

174.1 173.9 

3.25 (dt, J = 19.1, 2.0 Hz, 

1H) 

3.26 (ddd, J = 19.5, 2.0, 2.0 

Hz, 1H) 

 

110.4 110.8 

3.13 – 3.03 (m, 2H) 3.15 (m,  J = 3.0, 2.0 Hz 1H) 

 

84.5 83.9 

3.12 (m, 1H) 62.2 62.1 

 

2.98 (t, J = 6.7 Hz, 1H) 3.02 (ddd, J = 7.0, 1.5 Hz  

1H) 

 

61.7 61.5 

2.94 – 2.83 (m, 2H) 

 

2.91 (m, J = 19.5, 12.0, 1.5 

Hz, 1H) 

 

55.9 55.7 

2.89 (m, 1H) 51.4 51.0 

 

2.78 (dd, J = 13.8, 9.8 Hz, 

1H) 

 

2.81 (dd, J = 14.0, 9.5 Hz, 

1H) 

34.3 34.0 

2.30 (brs, 1H, –OH) 

 

   

2.00 – 1.83 (m, 2H) 1.97 (m, J = 7.0 Hz, 1H) 

 

27.5 27.0 

1.91 (m, 1H) 27.4 26.9 

 

1.83 – 1.69 (m, 2H) 1.79 (m, J = 7.0 Hz,  2H) 

 

25.8 25.4 

1.33 (ddd, J = 13.8, 3.2, 

1.4 Hz, 1H) 

1.36 (ddd, J = 14.0, 3.0, 1.5 

Hz, 1H) 
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 (±)-Bubbialidine (254) 89,90  

7 mg of colorless oil were obtained from minor diastereisomer 349b 

(from imine 347, 52 mg, 0.156 mmol, yield = 21 %). Rf: 0.25 

(MeOH/DCM 10:90). 1H NMR (300 MHz, CDCl3)  (ppm) = 5.78 (t, J = 

2.0 Hz, 1H), 4.45 (dt, J = 9.5, 3.4 Hz, 1H), 3.51 (dd, J = 9.2, 6.1 Hz, 

1H), 3.12 – 3.08 (m, 1H), 3.07 – 3.02 (m, 1H), 3.01 – 2.97 (m, 2H), 2.93 

(s, 1H, –OH), 2.76 – 2.68 (m, 1H), 2.67 (dd, J = 12.9, 9.5 Hz, 1H), 1.86 – 1.65 (m, 3H), 

1.51 (dd, J = 12.9, 3.1 Hz, 1H), 1.15 – 0.98 (m, 1H). 13C NMR (75 MHz, CDCl3)  173.5, 

171.2, 112.9, 84.1, 67.5, 63.0, 55.6, 50.9, 40.5, 27.0, 25.2, 21.8. FT-IR (neat): 3400, 

2956, 2924, 2854, 1754, 1737, 1650, 1461, 1255, 1082, 921, 849 cm-1. HRMS (ESI): 

[M – H]- calculated for C12H14NO3 220.0979, found 220.0971. Physical and 

spectroscopic data from (±)-Bubbialidine are identical to those reported in the 

literature. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
89

 Ahond, A.; Guilhem, J.; Hamon, J.; Poupat, C.; Pusset, J.; Pusset, M.; Sevenet, T.; Potier, P., J. Nat. 

Prod. 1990, 53, 875–881. 
90

 Miyatake-Ondozabal, H.; Bannwart, L. M.; Gademann, K., Chem. Commun. 2013, 49, 1921–3. 
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Table 11. Comparison of spectroscopic data for naturally occurring Bubbialidine and experimentally 

obtained one. 

1
H NMR 

This work 

 (300 MHz, CDCl3) (ppm)
 
 

 

1
H NMR 

Isolated Product 

 (400 MHz, CDCl3) 

(ppm)
89 

 

13
C NMR 

This work 

 (75 MHz, CDCl3) (ppm) 

13
C NMR 

Isolated 

Product (50 

MHz, CDCl3)
 

(ppm)
89

 

 

5.78 (t, J = 2.0 Hz, 1H) 

 

 

 

 

5.77 (t, J = 2.0 Hz, 1H) 

 

173.5 

  

173.3 

 
 

4.45 (dt, J = 9.5, 3.4 Hz, 

1H) 

 4.47 (dt, J = 10.0, 3.0 Hz, 

1H) 

 

171.2 170.9  

3.51 (dd, J = 9.2, 6.1 Hz, 

1H) 

 3.54 (dd, J = 9.0, 6.0 Hz, 

1H) 

 

112.9 113.0  

3.12 – 3.08 (m, 1H) 

 

 3.13 (sp, J = 8.0 Hz, 1H) 84.1 83.9  

3.07 – 3.02 (m, 1H)  3.06 (m, 1H) 67.5 67.2 

 

 
 

3.01 – 2.97 (m, 2H)  2.99 (m, 1H) 63.0 63.1 

 

 
 

2.93 (brs, 1H, –OH) 

 

 
 

    

2.76 – 2.68 (m, 1H)  2.70 (dt, J = 10.0, 6.0 Hz, 

1H) 

 

55.6 55.8  

2.67 (dd, J = 12.9, 9.5 Hz, 

1H) 

 

 2.65 (dd, J = 13.0, 9.0 

Hz, 1H) 

50.9 51.0  

1.86 – 1.65 (m, 3H)  1.78 (m, 2H) 40.5 40.5 

 

 
 

1.51 (dd, J = 12.9, 3.1 Hz, 

1H) 

 

 1.50 (dd, J = 13.0, 3.0 

Hz, 1H) 

27.0 27.0  

1.15 – 0.98 (m, 1H)  1.06 (m, 1H) 25.2 25.1 

 

 
 

   21.8 21.8  
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3.9.3 Synthesis of Ferrocenyl Iodanes and their applications 

 

 (2S,4S)-4-(Hydroxymethyl)-2-ferrocenyl-1,3-dioxane (95) 

 

 According to the procedure describe by Kagan91 commercially 

available ferrocenecarboxaldehyde 92 (3.00 g, 14.02 mmol) 

was dissolved in trimethyl orthoformiate (18.00 mL) and then p-

toluenesulfonic acid (130 mg, 0.68 mmol) was added to the 

reaction mixture. Then reaction was heated for 16 h at 80°C. 

Once reaction is finished, K2CO3 anhydrous was added to the cold mixture and then 

diluted with diethyl ether. Then the product was filtered through a pad of CELITE and 

evaporated to dryness to afford a mixture 90:10 of desired product and starting 

material.  

 Then 1,2,4-butanetriol (1.04 g, 9.81 mmol) was previously washed 3 times by 

using as co-solvent toluene (10 mL) and dried under high vacuum for 6 hours. After, 

1S-(+)-10-camphorsulfonic acid (114 mg, 0.491 mmol) was added to the flask and 

everything was dissolved in 20 mL of CHCl3. Subsequently, in another flask the 

protected aldehyde (2.55 g, 9.81 mmol) was dissolved in CHCl3 and was added 

dropwise at room temperature to the butanetriol. Reaction was followed by thin layer 

chromatography (30:70 EtOAc/cyclohexane), and was finished after 20 hours. Again 

addition of anhydrous K2CO3 and filtration through a pad of CELITE led to a filtrate 

which was evaporated to obtain the crude. Purification by flash column 

chromatography in silica gel in gradient of 10:90 to 30:70 EtOAc in cyclohexane 

afforded 2.06 g of dioxane. Yellow oil was obtained in a 54 % yield was obtained. 1H 

NMR (300 MHz, CDCl3) (ppm) = 5.41 (s, 1H), 4.34 (d, J = 2.0 Hz, 2H), 4.24 (ddd, J = 

11.4, 5.2, 1.4 Hz, 1H), 4.17 (s, 5H), 4.14 (t, J = 1.9 Hz, 2H), 3.99 – 3.85 (m, 2H), 3.66 

(ddd, J = 9.7, 7.0, 4.2 Hz, 2H), 2.04 (dd, J = 7.8, 5.3 Hz, 1H), 1.86 (tdd, J = 12.6, 11.5, 

5.2 Hz, 1H), 1.41 (dtd, J = 13.2, 2.6, 1.4 Hz, 1H). 13C NMR (75 MHz, CDCl3) (ppm) =  

100.3, 85.9, 69.0, 68.2, 66.8, 66.6, 65.9 27.0. 

 

 

 

                                                
91

 Riant, O.; Samuel, O.; Flessner, T.; Taudien, S.; Kagan, H. B., J. Org. Chem. 1997, 62, 6733–6745. 



CHAPTER 3 

236 
 

 

 

 

(2S,4S)-4-(Methoxymethyl)-2-ferrocenyl-1,3-dioxane (96)91  

 

1,3-dioxane 95 (2.06 g, 6.82 mmol) was dissolved in THF 

(30 mL) under argon atmosphere. Reaction mixture was 

cooled to 0°C and NaH (0.49 g, 20.46 mmol) was added as 

a solid. After 10 minutes of stirring at 0°C, iodomethane 

(0.85 mL, 13.64 mmol) was added dropwise. Then reaction 

was led to stir at room temperature for 15 minutes. Monitored by TLC (30:70 EtOAc in 

cyclohexane), when reaction was finished reaction was quenched with 5 mL of MeOH 

and 5 mL of H2O, then washed 2 times with H2O and 2 times with brine. After drying 

over Na2SO4 and evaporating to dryness product was purified by flash column 

chromatography in silica gel with 20:80 EtOAc in cyclohexane. 2.02 g of a yellow oil 

were obtained with a yield of 94%. 

1H NMR (300 MHz, CDCl3) (ppm) = 5.37 (s, 1H), 4.38 – 4.33 (m, 1H), 4.27 – 4.19 (m, 

2H), 4.17 (s, 5H), 4.11 (t, J = 1.9 Hz, 2H), 4.00 (dddd, J = 11.1, 6.0, 4.6, 2.5 Hz, 1H), 

3.90 (ddd, J = 12.4, 11.4, 2.6 Hz, 1H), 3.54 (dd, J = 10.4, 6.0 Hz, 1H), 3.43 (s, 3H), 

3.42 – 3.33 (m, 1H), 1.78 (dddd, J = 13.2, 12.3, 11.4, 5.1 Hz, 1H), 1.49 (dtd, J = 13.2, 

2.6, 1.4 Hz, 1H). 13C NMR (75 MHz, CDCl3) (ppm) = 100.2, 86.1, 76.2 , 75.7, 69.0, 

68.0, 67.9, 66.8, 66.8, 66.7, 59.5 , 28.1. One signal is missing. 

 

 

(2S,4S,Sp)-4-(Methoxymethyl)-2-(-iodoferrocenyl)-1,3-dioxane (351)91  
 

Methoxy dioxane 96 (1.51 g, 4.76 mmol) was dissolved in 

THF (20 mL, distillated) under argon atmosphere. Reaction 

mixture was cooled to -78°C and stirred 10 minutes. Then 

tertbutyl lithium solution (6.08 mL, 5.71 mmol) was added 

dropwise and led to reach room temperarature. After 1 hour of stirring, mixture was 

cooled to -78°C again and 1,2-diiodoethane (1.74 g, 6.19 mmol) was added dropwise 

previously dissolved in THF. Then reaction was led to stirred for 10 minutes and then 4 

hours at room.  Reaction was monitored by TLC (ternary mixture  13:37:50 

Et2O/CH2Cl2/cyclohexane) and it was quenched with 8 mL of Na2S2O3 , 8 mL of H2O, 8 

mL of NaHCO3 aq. (sat.)  when starting material was consumed. Compoudn was 

extracted 3 times using 20 mL of EtOAc. Organic layer was dried over Na2SO4 and 
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evaporated to dryness. Product was purified by flash column chromatography in silica 

gel eluting with a mixture 13:37:50 Et2O/CH2Cl2/cyclohexane. 763 mg of orange oil 

were obtained, yield of 37%. 1H NMR (300 MHz, CDCl3) (ppm) = 5.40 (s, 1H, H-

acetal), 4.44 (dd, J = 2.7, 1.4 Hz, 1H), 4.40 (dd, J = 2.5, 1.4 Hz, 1H), 4.31 (ddd, J = 

11.3, 5.1, 1.4 Hz, 1H), 4.20 (t, J = 2.6 Hz, 1H), 4.17 (s, 5H, H-Cp), 4.09 – 3.94 (m, 2H), 

3.51 (dd, J = 10.3, 5.6 Hz, 1H), 3.40 (d, J = 5.0 Hz, 1H), 3.38 (s, 3H), 1.82 (dddd, J = 

13.3, 12.4, 11.4, 5.2 Hz, 1H), 1.52 (dtd, J = 13.3, 2.6, 1.4 Hz, 1H).13C NMR (75 MHz, 

CDCl3) (ppm) = 101.0, 86.1 (C-quaternary, Cp), 76.3, 75.4, 74.9, 71.8, 68.7, 67.1, 

66.3, 59.4, 41.5 (C-ipso), 28.1. FT-IR (KBr): 3097, 2922, 2852, 1478, 1376, 1106, 821. 

LMS (ESI): [M + H]+ = 442.9 u. 

 

Deuterated DMSO: 1H NMR (300 MHz, DMSO-d6) (ppm) = 5.39 (s, 1H, H-

acetal), 4.47 (dd, J = 2.4, 1.4 Hz, 1H), 4.36 (dd, J = 2.7, 1.4 Hz, 1H), 4.28 (t, J = 2.5 Hz, 

1H), 4.22 (ddd, J = 11.4, 5.2, 1.3 Hz, 1H), 4.16 (s, 5H, Cp), 4.01 (ddd, J = 11.8, 10.0, 

2.8 Hz, 2H), 3.39 – 3.28 (m, 2H),  3.26 (s, 3H), 1.63 (qd, J = 12.2, 5.1 Hz, 1H), 1.51 – 

1.41 (m, 1H). 13C NMR (75 MHz, DMSO-d6) (ppm) = 100.0, 86.1 (C-quaternary, Cp), 

75.5, 74.7, 74.3, 71.5, 68.5, 66.2, 65.9, 58.4, 41.0 (C-ipso), 27.2. 

 

 

Preparation and titration of 3,3-dimethyldioxirane (DMDO)92 
 
 

To a stirred solution of sodium bicarbonate (NaHCO3, 58 g, 0.69 mol, 0.27 

equiv.) in water (254 mL) was added acetone (192 mL, 2.59 mol, 1.0 equiv.). The 

resulting mixture was cooled down to 0 °C, and Oxone® (120 g, 0.195 mol, 0.15 mol 

KHSO5) was added every two minutes in successive portions to avoid too much 

foaming. The ice bath was then removed, and the resulting solution was distilled under 

reduced pressure (ca. 20-30 mmHg) for 1 hour, the distillate being collected at −78 °C, 

until no more distillation was observed. The distillate was stored at −18 °C on 4 Å 

molecular sieves, and could be kept between 10 and 15 days at this temperature. 

 

 

Scheme 3.69. Synthesis of DMDO. 

                                                
92

 Bosset, C.; Coffinier, R.; Peixoto, P. A.; El Assal, M.; Miqueu, K.; Sotiropoulos, J. M.; Pouységu, L.; 

Quideau, S., Angew. Chem., Int. Ed 2014, 53, 9860–9864. 
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Titration of the DMDO solution in acetone was performed by adding 1 mL of this 

freshly prepared solution (DMDO postulated at 0.2 M in acetone) to methyl para-tolyl 

sulfide (27 μL) in a 4 mL vial. The resulting solution was stirred at room temperature for 

1 hour, and the solvent was removed by nitrogen bubbling because of the low boiling 

point of the starting material (Eb1 52-54°C). Relative integration of the 1H NMR methyl 

signals resonating at 2.71 and 2.46 ppm, for methyl p-tolyl sulfoxide and sulfide, 

respectively, gave the conversion rate of the reaction, and concentration values 

ranging between 50 and 70 mM were usually obtained for our solution of DMDO in 

acetone. 

 
 
Compound (352) 
 

Compound 351 (49 mg, 0.11 mmol) was dissolved directly in a predistilled 

solution of DMDO in acetone (5.97 mL, 0.44 mmol) at room temperature and stirred for 

2 to 24 hours. Reaction was monitored by 1H NMR spectroscopy in DMSO-d6 due to 

the low solubility of the mixture in other organic deuterated solvents. Mixture was 

evaporated to dryness to afford 33 mg of brownish solid that could correspond to 352 in 

a maximum yield of 63%. 1H NMR (300 MHz, DMSO-d6) (ppm) = 5.64, 4.69, 4.63, 

4.57, 4.53, 4.44, 4.15, 1.62, 1.52, 1.48, 1.43. Possible paramagnetic character, not 

possible to measure coupling constants.13C NMR (75 MHz, DMSO-d6) (ppm) = 99.5, 

97.4, 75.3, 74.4, 71.5, 70.6, 69.4, 66.1, 65.7, 58.5, 27.1. Quaternary carbons are not 

observable because of oxidation of DMSO-d6 in tube and reduction of iodosyl to iodine. 

Because of that it is really difficult to confirm the oxidation of iodine atom, it is not 

observable the shift of C-ipso which could be around 90 ppm. FT-IR (KBr): 3403 (br), 

2929, 1636, 1100, 998, 779 (I=O maybe). Very broad signals were observed. 

 

(S)--Iodoferrocenecarboxaldehyde (356)91  

 

Compound 352 (144 mg, 0.32 mmol) was dissolved in anhydrous 

CH2Cl2 (5 mL) and H2O (2 mL). Then, p-toluenesulfonic acid (88 mg, 

0.46 mmol) was added to the reaction mixture and was heated to 

50°C for 16 hours until the monitoring by TLC (5:95 EtOAc in 

cyclohexane) showed just desired product. Subsequently mixture was washed 3 timed 

with 10 mL of H2O and extracted with 20 mL of EtOAc. After drying over MgSO4 the 

filtrate was evaporated and dried under high vacuum. Crude brown oil showed no need 
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to purify and 111 mg were obtained quantitative yield. 1H NMR (300 MHz, DMSO-d6) 

(ppm) =  9.95 (s, 1H), 5.01 – 4.92 (m, 1H), 4.84 (dt, J = 9.6, 2.6 Hz, 2H), 4.31 (s, 

5H).13C NMR (75 MHz, DMSO-d6) (ppm) = 193.6, 79.6, 76.6, 74.0, 72.2, 67.9, 41.0 

(C-ipso). 

 

3.9.3.1 Asymmetric hydroxilative phenol dearomatization procedure92 

 

Compound 352 (188 mg, 0.39 mmol) was dissolved in anhydrous CH2Cl2, then 

2,6-dimethylphenol was added at room temperature as a solid. After 30 minutes of 

stirring TFA was added (25 µL, 0.33 mmol) and mixture turned more soluble and dark 

yellow. Monitoring by TLC in 20:80 EtOAc in cyclohexane showed no evolution after 19 

hours. After a reductive work up using 10 eq. of Na2S2O4 and a ratio 1 to 1 in volume 

with NaHCO3 aq. (sat) and stirred with EtOAc 1 hour, the mixtures was extracted and 

washed with brine. Drying with Na2SO4 and evaporation to dryness gave the crude 

mixture which showed 30% conversion to Diels-Alder product. Final purification by 

preparative TLC with 35:65 EtOAc in cyclohexane, afforded 2.5 mg of product, 3 % of 

yield. 

 

(1R,4R,8R,8aS,10R)-8,10-dihydroxy-4,6,8,10-tetramethyl-4,4a,8,8a-tetrahydro-1,4-

ethanonaphthalene-7,9(1H)-dione (355)92 

 

Product was obtained as a white amorphous powder, and found 

by TLC with Rf of 0.20 (30:70 EtOAc/cyclohexane). 3% ee. HPLC 

conditions using chiral AS-H column: n-hexane/i-PrOH (90:10), 

1.0 mL/min, UV detection at 254 nm; tr1 = 12.8 min and tr2 = 26.7 

min. 1H NMR (300 MHz, CDCl3)  (ppm) = 6.33 – 6.17 (m, 2H), 5.51 (ddd, J = 8.2, 1.7, 

0.8 Hz, 1H), 4.00 (s, 1H), 3.39 (dt, J = 6.9, 1.9 Hz, 1H), 3.25 (dd, J = 8.4, 2.1 Hz, 1H), 

2.87 (dd, J = 7.3, 4.8 Hz, 1H), 2.29 (s, 1H), 1.85 (t, J = 1.5 Hz, 3H), 1.34 (s, 3H), 1.32 

(s, 3H), 1.24 (s, 3H). 
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ANNEX I. 1H, 13C spectra of Chapter 2 

Compound trans-144 

1
H-NMR (CDCl3) 400 MHz 

 

13
C NMR (CDCl3) 101 MHz 
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Compound 123a 

1
H-NMR (CDCl3) 400 MHz 

 

 

 

13
C NMR (CDCl3) 101 MHz 
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COSY 2D 

 

 

HSQC 2D 
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Compound 123’a 

1
H-NMR (CDCl3) 400 MHz 

 

 

 

13
C NMR (CDCl3) 101 MHz 
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COSY 2D 

 

 

HSQC 2D 
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Compound 123b 

1
H-NMR (CDCl3) 400 MHz 

 

 

 

13
C NMR (CDCl3) 101 MHz 
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Compound 123’b 

1
H-NMR (CDCl3) 400 MHz 

 

 

13
C NMR (CDCl3) 101 MHz 
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Compound 123c 

1
H-NMR (CDCl3) 400 MHz 

 
 

 

13
C NMR (CDCl3) 101 MHz 

 



ANNEX 

253 
 

Compound 123’c 

1
H-NMR (CDCl3) 400 MHz 

 

 

 

13
C NMR (CDCl3) 101 MHz 
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Compound 123d 

1
H-NMR (CDCl3) 400 MHz 
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Compound 123’d 

1
H-NMR (CDCl3) 400 MHz 

 

 

 

13
C NMR (CDCl3) 101 MHz 
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Compound 123e 

1
H-NMR (CDCl3) 400 MHz 

 

 

 

13
C NMR (CDCl3) 101 MHz 
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Compound 123’e 

1
H-NMR (CDCl3) 400 MHz 

 

 

 

13
C NMR (CDCl3) 101 MHz 
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Compound 123f 

1
H-NMR (CDCl3) 400 MHz 
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C NMR (CDCl3) 101 MHz 
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Compound 123’f 

1
H-NMR (CDCl3) 400 MHz 

 

 

13
C NMR (CDCl3) 101 MHz 
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Compound 123g 

1
H-NMR (CDCl3) 400 MHz 
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C NMR (CDCl3) 101 MHz 
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Compound 123’g 

1
H-NMR (CDCl3) 400 MHz 

 

 

13
C NMR (CDCl3) 101 MHz 
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Compound 123h 

1
H-NMR (CDCl3) 400 MHz 
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C NMR (CDCl3) 101 MHz 
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Compound 123’h 

1
H-NMR (CDCl3) 400 MHz 

 

 

 

13
C NMR (CDCl3) 101 MHz 
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Compound 123i 

1
H-NMR (CDCl3) 400 MHz 
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C NMR (CDCl3) 101 MHz 
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Compound 123’i 

1
H-NMR (CDCl3) 400 MHz 

 

 

13
C NMR (CDCl3) 101 MHz 
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Compound 123j 

1
H-NMR (CDCl3) 400 MHz 
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Compound 123’j 

1
H-NMR (CDCl3) 400 MHz 
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C NMR (CDCl3) 101 MHz 

 



268 
 

Compound 123k 

1
H-NMR (CDCl3) 400 MHz 
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C NMR (CDCl3) 101 MHz 
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Compound 123’k 

1
H-NMR (CDCl3) 400 MHz 

 
 

 

13
C NMR (CDCl3) 101 MHz 
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ANNEX II.1H, 13C spectra of Chapter 3 

Compound 317 

1
H-NMR (CDCl3) 300 MHz 

 

 

13
C NMR (CDCl3) 75 MHz 
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Compound 319 

1
H-NMR (CDCl3) 300 MHz 

 

 

 

13
C NMR (CDCl3) 75 MHz 
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Compound 314 

1
H-NMR (CDCl3) 300 MHz 

 

 

 

13
C NMR (CDCl3) 75 MHz 
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Compound 327 

1
H-NMR (CDCl3) 300 MHz 
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C NMR (CDCl3) 75 MHz 
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Compound 328 

1
H-NMR (CDCl3) 300 MHz 
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Compound 330a 

1
H-NMR (CDCl3) 300 MHz 
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Compound 331 

1
H-NMR (CDCl3) 300 MHz 
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C NMR (CDCl3) 75 MHz 
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COSY (CDCl3) 

 

 

 

 

NOESY 2D (CDCl3) 
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Compound 338a 

1
H-NMR (CDCl3) 300 MHz 
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C NMR (CDCl3) 75 MHz 
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Compound 338b 

1
H-NMR (CDCl3) 300 MHz 
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Compound 340a 

1
H-NMR (CDCl3) 300 MHz 
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Compound 340b 
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H-NMR (CDCl3) 300 MHz 
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(±)-Virosine A-346 
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(±)-Virosine B-345 

1
H-NMR (CDCl3) 300 MHz 
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Compound 347 

1
H-NMR (CDCl3) 300 MHz 
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 (±)-Niruroidine-258  

1
H-NMR (CDCl3) 300 MHz 

 

 

13
C NMR (CDCl3) 75 MHz 
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(±)–Bubbialidine-254 

1
H-NMR (CDCl3) 300 MHz 
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C NMR (CDCl3) 75 MHz 
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Compound 352 

1
H-NMR (CDCl3) 300 MHz 

 

 
13

C NMR (CDCl3) 75 MHz 
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ANNEX III. X-ray analysis 

Compound 123a 

 

 



ANNEX 

289 
 

Compound 123’b 
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Compound S-122 
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