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Highlights 

· Speech brain tracking was analyzed from simultaneous MEG and EEG data. 

· Uncovering speech brain tracking requires 3 times shorter MEG than EEG recordings. 

· Some previous MEG findings were replicated with MEG but not with EEG. 
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Abstract: 

During connected speech listening, brain activity tracks speech rhythmicity at delta           

(~0.5 Hz) and theta (4–8 Hz) frequencies. Here, we compared the potential of             

magnetoencephalography (MEG) and high-density electroencephalography (EEG) to uncover        

such speech brain tracking. 

Ten healthy right-handed adults listened to two different 5-min audio recordings,           

either without noise or mixed with a cocktail-party noise of equal loudness. Their brain              

activity was simultaneously recorded with MEG and EEG. We quantified speech brain            

tracking channel-by-channel using coherence, and with all channels at once by speech            

temporal envelope reconstruction accuracy. 

In both conditions, speech brain tracking was significant at delta and theta frequencies             

and peaked in the temporal regions with both modalities (MEG and EEG). However, in the               

absence of noise, speech brain tracking estimated from MEG data was significantly higher             

than that obtained from EEG. Furthemore, to uncover significant speech brain tracking,            

recordings needed to be ​~​3 times longer in EEG than MEG, depending on the frequency               

considered (delta or theta) and the estimation method. In the presence of noise, both EEG and                

MEG recordings replicated the previous finding that speech brain tracking at delta            

frequencies is stronger with attended speech (i.e., the sound subjects are attending to) than              

with the global sound (i.e., the attended speech and the noise combined). Other previously              

reported MEG findings were replicated based on MEG but not EEG recordings: 1) speech              

brain tracking at theta frequencies is stronger with attended speech than with the global              

sound, 2) speech brain tracking at delta frequencies is stronger in noiseless than noisy              

conditions, and 3) when noise is added, speech brain tracking at delta frequencies dampens              

less in the left hemisphere than in the the right hemisphere. Finally, sources of speech brain                
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tracking reconstructed from EEG data were systematically deeper and more posterior than            

those derived from MEG. 

The present study demonstrates that speech brain tracking is better seen with MEG             

than EEG. Quantitatively, EEG recordings need to be ​~​3 times longer than MEG recordings              

to uncover significant speech brain tracking. As a consequence, MEG appears more suited             

than EEG to pinpoint subtle effects related to speech brain tracking in a given recording time. 

 

Keywords: ​speech brain tracking, MEG, EEG, reconstruction accuracy, coherence 
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1. Introduction 

Social interactions are of tremendous importance in human society and largely rely on             

verbal language interactions. Still, the neural mechanisms allowing the human brain to            

decode speech signals in real time are poorly understood ​(Zion-Golumbic et al., 2012)​. Based              

on electroencephalographic (EEG) or magnetoencephalographic (MEG) recordings, it was         

shown that listerner’s auditory cortices track the time course of speaker’s speech temporal             

envelope at 0.5 Hz (delta frequencies) and 4–8 Hz (theta frequencies) ​(Ahissar et al., 2001;               

Bourguignon et al., 2013; Broderick et al., 2017; Di Liberto et al., 2015; Ding et al., 2017;                 

Ding and Simon, 2014; Gross et al., 2013; Horton et al., 2013; Keitel et al., 2018; Kösem and                  

van Wassenhove, 2016; Luo and Poeppel, 2007; Meyer and Gumbert, 2018; Molinaro et al.,              

2016; Müller et al., 2018; O’Sullivan et al., 2014; Peelle et al., 2013; Pellegrino et al., 2011;                 

Puschmann et al., 2017; Zion-Golumbic et al., 2012)​. ​As delta and theta frequencies match              

with phrasal/sentence and syllable repetition rates respectively, it has been hypothesized that            

corresponding brain oscillations subserve the chunking of incoming speech into relevant           

segments for further speech recognition ​(Ahissar et al., 2001)​. In line with this view, speech               

brain tracking is stronger when listening to intelligible speech compared to non-intelligible            

speech ​(Ahissar et al., 2001; Luo and Poeppel, 2007; Peelle et al., 2013; Riecke et al., 2018)​,                 

and delta fluctuations track sentence boundaries, even in the absence of prosodic cues ​(Ding              

et al., 2016; Meyer et al., 2016)​. 

Studies on speech brain tracking have also increased our understanding of the neural             

mechanisms subtending speech perception in adverse listening conditions ​(Ding and Simon,           

2014; O’Sullivan et al., 2014; Riecke et al., 2018; Zion-Golumbic et al., 2013;             

Zion-Golumbic and Schroeder, 2012)​. Indeed, in cocktail-party conditions, 1) speech brain           

tracking at delta and theta frequencies is stronger with the attended speech (i.e., the sound               
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subjects are attending to) than with the global sound (i.e., the attended speech and the noise                

combined) ​(Broderick et al., 2017; Ding and Simon, 2012; Fuglsang et al., 2017; Horton et               

al., 2013; Luo and Poeppel, 2007; Mesgarani and Chang, 2012; O’Sullivan et al., 2014;              

Puschmann et al., 2017; Rimmele et al., 2015; Simon, 2015; Vander Ghinst et al., 2016;               

Zion-Golumbic et al., 2013)​, 2) it decreases when the signal-to-noise ratio (SNR) decreases             

(Giordano et al., 2016; Vander Ghinst et al., 2016; ​but see ​Ding and Simon, 2013 who found                 

that speech brain tracking remains stable as long as speech is intelligible), 3) this dampening               

is more stringent in the right (vs. left) hemisphere at delta frequencies ​(Vander Ghinst et al.,                

2016)​, and 4) high-order brain regions track only the attended speech stream with no              

detectable trace of the unattended speech ​(Zion-Golumbic et al., 2013)​. 

In addition to its interest for the basic understanding of speech processing, speech             

brain tracking holds the promise of enabling the development of novel impactful applications.             

For example, speech brain tracking could be used as a tool for pre-surgical localization of               

language brain functions. It could be used for objective assessment of hearing functions in              

individuals with developmental hearing loss, to evaluate how their condition impacts their            

brain functions ​(Petersen et al., 2017)​, and to determine if they would benefit from a cochlear                

implant. Finally, speech brain tracking in noisy conditions could be used to assess auditory              

attentional selection functions ​(O’Sullivan et al., 2014; Rimmele et al., 2015; Zion-Golumbic            

et al., 2012) in individuals presenting a disorder of consciousness ​(Laureys et al., 2004; Owen               

et al., 2006)​.  

Only two non-invasive techniques afford a temporal resolution high enough to           

properly estimate speech brain tracking: MEG and EEG. Although tightly related, these two             

techniques differ largely on several aspects. MEG is mainly sensitive to primary currents             

while EEG measures only the volume conduction currents ​(Hari and Puce, 2017)​. MEG has a               
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heightened sensitivity to currents tangential to the skull and is mainly blind to deep sources               

while EEG measures voltage fluctuations arising from sources in all orientations, and sees             

deep sources better ​(Ahlfors et al., 2010; Hari and Puce, 2017)​. This implies that EEG               

electrodes are sensitive to larger brain volumes than MEG sensors, especially compared to             

planar gradiometers. Consequently, scalp distributions are more widespread in EEG than           

MEG, which makes it difficult, for instance, to discriminate with EEG the contribution of left               

and right auditory cortices to the auditory N2 component ​(Crowley and Colrain, 2004; Pereira              

et al., 2014)​. On the other hand, the cost of MEG in its current form is a tremendous                  

limitation to its large scale usability. 

Despite the profusion of studies on speech brain tracking conducted with MEG or             

EEG recordings, the potential of these two recording modalities to uncover significant speech             

brain tracking has not yet been compared. The outcome of such comparison would             

undoubtedly help researchers and, in a foreseeable future, clinicians determine which           

modality they should opt for to properly investigate speech brain tracking. 

Here, we compare the potential of MEG and high-density EEG (256 electrodes) to             

uncover significant speech brain tracking based on simultaneous recordings. We also test the             

hypothesis that speech brain tracking can be observed with equal accuracy based on both              

modalities, provided that adequate channel combination is used. Finally, we illustrate the            

impact of the choice of the recording modality to identify relevant effects. Specifically, we              

evaluate whether the effects highlighted above that concern speech listening in noisy            

conditions can be replicated based on MEG and EEG recordings.  
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2. Methods 

Unless stated otherwise, data analyses were performed using custom-made Matlab          

scripts. These scripts as well as fully anonymized data are available upon reasonable request              

to the corresponding author. 

 

2.1. Subjects 

Ten healthy adult human subjects (5 women) took part in this experiment. They were              

aged 25 ± 4 years (mean ± SD) and native French speakers. None of them had prior                 

developmental, neurological, or psychiatric disorder. All subjects had normal hearing          

according to pure tone audiometry (i.e., normal hearing thresholds (between 0–20 dB HL) for              

250, 500, 1000, 2000, 4000 and 8000 Hz) and normal speech-in-noise perception as revealed              

by a speech-in-noise test (Lafon 30) from a French language central auditory battery             

(Demanez et al., 2003) administered at the ENT department of the CUB Hôpital Erasme. All               

of them were right-handed according to Edinburgh Handedness Inventory ​(Oldfield, 1971)​. 

This study was approved by the Ethics Committee of the CUB Hôpital Erasme             

(Brussels, Belgium) and participants signed a written informed consent before participation.           

They did not receive any financial compensation. 

  

2.2. Experimental conditions 

Participants underwent 5 experimental conditions lasting 5 min each that were adapted            

from Vander Ghinst et al. (2016). In the first, task-free, condition they were asked to remain                

still and to stare at a cross on the wall. The order of the four subsequent conditions was                  

randomized separately for each participant. The task was to listen carefully to a speech              

stream, henceforth the ​attended speech, either without noise (​noiseless​), or mixed with a             
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cocktail-party noise at SNR of +5, 0, and –5 dB. For each condition, the attended speech was                 

drawn randomly from a set of 6 recordings of different individuals (3 males and 3 females)                

reading a different French text aloud. In the present report, we analysed only the ​noiseless               

condition and the ​noise condition at SNR of 0 dB. The text-to-condition assignment was              

random and different for all subjects. The noise background consisted of a mix of 6 French                

speakers’ voices (3 women). This type of noise introduces both energetic and informational             

masking ​(Hoen et al., 2007; Simpson and Cooke, 2005)​. The ​global sound stream (the mix of                

the ​attended speech and the background noise) was always displayed at ~60 dB using a               

MEG-compatible 60 × 60 cm​2 high-quality flat panel loudspeaker (Panphonics SSH sound            

shower, Panphonics) facing the subjects, ~2.7 m away. At the end of each speech stream               

listening condition, participants were asked 16 questions about the story they had to attend to.               

They were also asked to rate the intelligibility level of the attended stream on a scale from 0                  

(totally unintelligible) to 10 (perfectly intelligible). 

  

2.3. Data acquisition 

During the experimental conditions, participants’ brain activity was recorded         

simultaneously with MEG and EEG at the CUB Hôpital Erasme. Neuromagnetic signals were             

recorded with a whole-scalp-covering MEG system (Triux, Elekta). The sensor array           

comprised 306 sensors arranged in 102 triplets of one magnetometer and two orthogonal             

planar gradiometers. Magnetometers measure the radial component of the magnetic field,           

while planar gradiometers measure its spatial derivative in the tangential directions. Scalp            

electric potentials were recorded with a MEG-compatible whole-head and partial face           

covering low-profile EEG net (256 electrodes MicroCel Geodesic sensor net, Net Amp GES             

400 series with MEG compatibility, Electrical Geodesic Inc., Eugene, USA). Electrode           
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impedance was kept below 50 kΩ by means of an electrolyte gel (Redux Gel, Parker               

Laboratories Inc., New Jersey, USA), and the reference was at Cz. The recordings were              

performed in a lightweight magnetically shielded room (Maxshield, Elekta), the          

characteristics of which being described elsewhere ​(Carrette et al., 2011b; De Tiège et al.,              

2008)​. MEG signals were band-pass filtered at 0.1–330 Hz and sampled at 1000 Hz. EEG               

signals were low-pass filtered at 450 Hz and sampled at 1000 Hz. Note that the absence of                 

online high-pass filter for EEG signals did not cause saturation artifacts. 

We used 4 head-position indicator coils to monitor subjects’ head position during the             

experimentation. Before the MEG session, and before placing the EEG electrodes, we            

digitized the location of these coils and at least 300 head-surface points (on scalp, nose, and                

face) with respect to anatomical fiducials with an electromagnetic tracker (Fastrack,           

Polhemus). At the end of the experimentation, we digitized the head surface again, along with               

the location of the 256 EEG electrodes and the Cz reference with respect to anatomical               

fiducials. 

Finally, subjects’ high-resolution 3D-T1 cerebral images were acquired with a          

magnetic resonance imaging (MRI) scanner (MRI 1.5T, Intera, Philips). 

  

2.4. Data pre-processing 

Continuous MEG data were first preprocessed off-line using the temporal signal space            

separation method implemented in MaxFilter software (MaxFilter, Neuromag, Elekta;         

correlation limit 0.9, segment length 20 s) to suppress external interferences and to correct for               

head movements ​(Taulu et al., 2005; Taulu and Simola, 2006)​. EEG signals were             

re-referenced to a common average. EEG signals at electrodes affected by excessive noise             

level (mainly due to bad electrode‑skin contact) were reconstructed by interpolation of the             
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signals from the surrounding electrodes as done in ​Perrin et al. (1989)​. Electrodes were              

considered noisy when they matched at least one of the three criteria previously described by               

Bigdely-Shamlo et al. (2015)​. These three criteria are 1) too high wide-band amplitude, 2) too               

high ratio between high and low frequency amplitudes, and 3) too low correlation with other               

channels. The details of the methods and default values used for these three criteria can be                

found in ​(Bigdely-Shamlo et al., 2015)​. Across subjects and conditions, 21.9 ± 11.8 (mean ±               

SD) electrodes signals were interpolated.  

To further suppress physiological artifacts from MEG and EEG data separately, 30            

independent components were evaluated from the data band-pass filtered at 0.1–25 Hz and             

reduced to a rank of 30 with principal component analysis. Independent components            

corresponding to heartbeat, eye-blink, and eye-movement artifacts were identified, and          

corresponding MEG or EEG signals reconstructed by means of the mixing matrix were             

subtracted from the full-rank data. Across subjects and conditions, the number of components             

rejected was 2.3 ± 1.0 (MEG; mean ± SD) and 6.6 ± 2.1 (EEG). Finally, time points at                  

timings 1 s around remaining artifacts were set to bad. Data were considered contaminated by               

artifacts when MEG amplitude exceeded 5 pT in at least one magnetometer or 1 pT/cm in at                 

least one gradiometer, or when EEG amplitude in at least one channel exceeded 10 times its                

standard deviation. A different rejection scheme was used for MEG and EEG signals because              

EEG signals tended to be more variable across subjects. It is noteworthy that because the               

definition of bad data points was common to MEG and EEG signals, analyses of both               

modalities were carried out on the exact same artefact-free time intervals. 

We finally extracted the temporal envelope from the different audio signals (​attended            

speech and ​global sound). To that aim, audio signals were rectified and low-pass filtered at               
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50 Hz. We did not explore superior methods for extracting the speech envelope (Biesmans et               

al., 2017), but this is unlikely to affect the results as the resulting envelopes are very similar. 

  

2.5. Speech brain tracking assessed channel-by-channel 

For each condition, we calculated the coherence-based speech brain tracking as the            

coherence between the envelope of each audio signal and each MEG and EEG signal. To that                

aim, time-locked MEG, EEG and envelope of audio signals were segmented into 2000-ms             

epochs with 1600-ms overlap, affording a 0.5-Hz frequency resolution ​(Bortel and Sovka,            

2014)​. Epochs contaminated by artifacts were discarded from the analysis, leaving ​N​ep = 677              

± 42 (mean ± SD) epochs in the ​noiseless condition and ​N​ep = 689 ± 35 epochs in the ​noise                    

condition. These values did not differ significantly between conditions (​t​9 = –1.18, ​p = 0.27,               

paired ​t​-test). Coherence was evaluated only for frequencies below 20 Hz, which are critical              

for speech comprehension ​(Rosen, 1992)​, following the formulation of Halliday et al (1995).             

Furthermore, we specifically analysed coherence values in two frequency ranges of interest:            

delta frequencies (0.5 Hz) and theta frequencies (mean coherence across 4–8 Hz). For the              

sake of comparing coherence values between modalities, we extracted the maximum           

coherence value across all channels (i.e., all sensors, including both magnetometers and            

gradiometers for MEG, and all electrodes for EEG). Note that coherence at the frequency bin               

corresponding to 0.5 Hz actually reflects coupling in a range of frequencies ​f around 0.5 Hz,                

with a sensitivity profile proportional to the Fourier transform of a 2-s-long boxcar function:              

sinc(𝜋(​f​−0.5 Hz)/0.5 Hz). These two frequency intervals have been highlighted in previous            

studies: the first interval centered on 0.5 Hz matches with phrasal/sentence rhythmicity            

(Bourguignon et al., 2013; Gross et al., 2013; Kösem and van Wassenhove, 2016; Molinaro              

et al., 2016; Vander Ghinst et al., 2016), ​and, although speech temporal envelope did not               
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show a clear peak at 4–8 Hz (see Figure 1), this frequency interval was specifically analysed                

here because it has been consistently reported to match with syllable rhythmicity, regardless             

of the language ​(Abrams et al., 2008; Ding et al., 2017; Luo and Poeppel, 2007; Molinaro et                 

al., 2016; Peelle et al., 2013; Vander Ghinst et al., 2016; Zion-Golumbic et al., 2012)​. Of                

note, in French, the mean syllabic rate is of ~7 per second ​(Pellegrino et al., 2011)​.  

For MEG data, a single optimal coherence value was estimated per gradiometer pair             

as done by ​Bourguignon et al. (2015)​. Briefly, the coherence was computed in the optimal               

direction within the two dimensional space spanned by the two gradiometers. These values of              

coherence for gradiometer pairs were used for visualization purposes, and for the statistical             

comparison described in section 2.9.6 only. 

For EEG, coherence was also estimated with current source density distribution           

estimated via surface Laplacian transformation implemented in Fieldtrip (​(Oostenveld et al.,           

2011; Pernier et al., 1988)​; http://www.ru.nl/neuroimaging/fieldtrip). Surface Laplacian        

transformation renders the data reference-free and increases spatial selectivity ​(Huiskamp,          

1990; Oostendorp and van Oosterom, 1996)​. It was therefore expected to boost coherence             

values. 

For the ​noiseless condition, all subjects, modalities and frequency ranges of interest            

separately, we also estimated the minimum amount of data necessary to uncover significant             

speech brain tracking (see section 2.9.1 for the description of significance assessment). In that              

analysis, we estimated the maximum coherence across all channels based on the first 1, 2, 3,                

… ​N​ep epochs. We then defined the minimum necessary recording time as the number of               

epochs for which maximum coherence turns and remains significant, multiplied by 0.4 s (i.e.,              

epoch length minus epoch overlap). Note that this is an optimistic estimation because it tells               

how much artifact-free data is needed rather than actual recording time. This is however not a                
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problem since the aim was to compare the minimum necessary recording time between             

modalities. 

  

2.6. Speech brain tracking assessed globally 

For the ​noiseless condition, a global value of speech brain tracking was also evaluated              

for all MEG signals (gradiometers only) at once, for all EEG signals at once, and for all MEG                  

and EEG signals at once (later referred to as MEEG signals). This analysis was motivated by                

that EEG electrodes are generally sensitive to larger brain volumes than MEG sensors ​(Hari              

and Puce, 2017)​. Consequently, when measuring focal cortical activity, related EEG signals            

at a given electrode contain more interferences from neighboring brain areas than MEG             

signals at a given sensor. One could therefore hypothesise that speech brain tracking             

estimated based on EEG signals would benefit more from a global estimation            

procedure—which would, e.g., subtract interferences—than that estimated based on MEG          

signals. 

Using the mTRF toolbox ​(Crosse et al., 2016)​, we trained a decoder on             

electrophysiological data (MEG, EEG or MEEG) to reconstruct speech temporal envelope,           

and estimated its Pearson correlation with real speech temporal envelope. This correlation is             

often referred to as the reconstruction accuracy (RA), and it provides a global measure of               

speech brain tracking. A similar approach has been used in previous studies on speech brain               

tracking ​(Ding and Simon, 2012; Lalor and Foxe, 2010; O’Sullivan et al., 2014;             

Zion-Golumbic et al., 2013)​. 

In practice, electrophysiological data were band-pass filtered at 0.2–1.5 Hz (delta) or            

2–8 Hz (theta), resampled to 10 Hz (delta) or 40 Hz (theta) and standardized. A decoder was                 

built based on electrophysiological data from –500 ms to 1000 ms (delta) or from 0 ms to 250                  
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ms (theta) with respect to speech temporal envelope. Filtering and delay ranges were as in               

previous studies for theta frequencies ​(Ding and Simon, 2012; Lalor and Foxe, 2010;             

O’Sullivan et al., 2014; Zion-Golumbic et al., 2013)​, and defined based on an inspection of               

the temporal response functions for delta frequencies (data not shown). Regularization was            

applied to limit the norm of the derivative of the reconstructed speech temporal envelope              

(Crosse et al., 2016)​, by estimating the decoder for a fixed set of ridge values (λ = 2​10​, 2​12​, 2​14​,                    

2​16​, 2​18​, 2​20​). In a classical 10-fold cross-validation approach, the data is split in 10 segments                

of equal length, the decoder is estimated for 9 segments and tested on the remaining segment,                

and this procedure is repeated 10 times until all segments have served as test segment. The                

ridge value yielding the maximum mean reconstruction accuracy is then retained. Due to the              

maximization procedure, ensuing RAs are inflated. To eliminate this bias, we adopted a             

10-fold nested cross-validation scheme ​(Varoquaux et al., 2017)​. Following that scheme, for            

each segment, a 9-fold cross validation was conducted on the remaining 9 segments to select               

the ridge value that maximizes the RA, and the corresponding decoder was used to estimate               

the RA for that segment. This procedure led to 10 values of reconstruction accuracy (one for                

each segment) per subject, frequencies of interest, and audio signal. We refer to the mean               

value of the RA as the RA-based speech brain tracking value. 

  

2.7. Coherence analysis in source space 

Individual MRIs were first segmented using the FreeSurfer software ​(Reuter et al.,            

2012)​. Then, MEG and EEG coordinate systems were coregistered to individual subjects’            

MRI with the MEG-MRI integration software (MRIlab, Neuromag, Elekta), using the three            

anatomical fiducial points for initial estimation and the head-surface points to manually refine             

the surface coregistration. The forward models were next computed within a 5-mm grid             
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source space for 3 orthogonal source orientations per grid point with MNE suite ​(Gramfort et               

al., 2014)​. Forward modelling was based on a 1-layer boundary element model for MEG data               

and on a 3-layer one for EEG data. Based on these forward models, we computed a                

Minimum-Norm-Estimates inverse solution ​(Dale and Sereno, 1993)​, with the regularization          

parameter fixed assuming a SNR of 1 ​(Hämäläinen et al., 2010)​. We then used this inverse                

solution to produce coherence maps in the source space for each condition (​noiseless and              

noise​), participant, audio signal (​attended and ​global​), frequency band of interest (delta and             

theta), and recording modality (MEG and EEG). Of notice, the coherence value at each              

source location was optimized across the three source orientations in a way similar to what               

was done for the MEG gradiometers. For MEG source reconstruction, both planar            

gradiometers and magnetometers were used for inverse modeling after dividing each sensor            

signal (and the corresponding forward-model coefficients) by its noise standard deviation.           

The noise variance was estimated from the continuous ​task-free MEG data band-passed            

through 1–195 Hz, for each sensor separately. 

  

2.8. Group-level analysis 

A non-linear transformation from individual MRIs to the MNI brain (“Montreal           

Neurological Institute”) was first computed using the spatial normalization algorithm          

implemented in Statistical Parametric Mapping (SPM8; ​(Ashburner et al., 1997; Ashburner           

and Friston, 1999) and then applied to the coherence maps. The resulting maps were then               

averaged across subjects to produce group-level maps. 

We identified the coordinates of the local maxima in group-level coherence maps.            

Local coherence maxima are sets of contiguous voxels displaying higher coherence value            

than all other neighbouring voxels ​(Bourguignon et al., 2012)​. We only report on local—and              
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statistically significant (see below)—coherence maxima and disregard the extent of the           

clusters of significant coherence. Indeed, cluster extent is hardly interpretable in view of the              

inherent smoothness of MEG/EEG source reconstruction ​(Bourguignon et al., 2017;          

Hämäläinen and Ilmoniemi, 1994; Hari et al., 1988; Sekihara et al., 2005; Wens et al., 2015)​ . 

In one subject, probably due to head movements during the MRI acquisition, the inner              

and outer skull layers did intersect, leading to a failure to compute the EEG forward model.                

For this reason, we were able to perform the source-level analysis on 9 participants only. 

  

2.9. Statistical analyses 

2.9.1 Coherence-based speech brain tracking 

For each listening condition, frequency band of interest, and recording modality, the            

statistical significance of individual coherence values was assessed with maximum-based          

statistics derived from surrogate data, which takes into account both the multiple comparisons             

across channels and the temporal autocorrelation within signals. For each subject, 1000            

surrogate coherence distributions across channels were generated, as was done for genuine            

coherence values but with the audio signals replaced by their Fourier-transform surrogates,            

which preserves their power spectrum by replacing the phase of their Fourier coefficients by              

random numbers in the range [–π ; π] ​(Faes et al., 2004)​. Then, the maximum coherence                

value across all channels was extracted for each surrogate simulation. Finally, the 95​th             

percentile of this maximum coherence value yielded the coherence threshold at ​p < 0.05.              

Across subjects and conditions, the coherence thresholds were 0.0436 ± 0.0028 (mean ± SD;              

MEG, delta), 0.0375 ± 0.0030 (EEG, delta), 0.0126 ± 0.0006 (MEG, theta), and 0.0112 ±               

0.0006 (EEG, theta). 
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2.9.2 Reconstruction accuracy 

The significance of individual RA values was assessed with one sample t-tests across             

the 10 validation runs. 

 

2.9.3 Comparison of speech brain tracking values 

Maximum coherence-based speech brain tracking values across all channels,          

RA-based speech brain tracking values and minimum necessary recording times were           

compared between recording modalities (MEG vs. EEG; MEG vs. MEEG; EEG vs. MEEG)             

with paired ​t​-tests. The same approach was also used to compare maximum coherence-based             

speech brain tracking values obtained based on EEG with versus without surface Laplacian             

transformation. 

A link between RA values obtained based on MEG and EEG signals was sought for               

with Spearman correlation. 

 

2.9.4 Effect of noise on the intelligibility of the attended speech  

We used paired, two-tailed ​t​-tests to determine the effect of the SNR (​noiseless​, ​noise​)              

on intelligibility ratings and on scores on the comprehension questions. 

 

2.9.5 Comparison of speech brain tracking with the attended speech vs. global sound in the               

noise condition  

We evaluated whether subjects brain signals were specifically tracking the ​attended           

speech or the ​global sound. To that aim, we estimated for each subject the tune-in index as                 

(​Coh​attended - ​Coh ​global​)/(​Coh​attended + ​Coh​global​), where ​Coh​attended (respectively ​Coh​global​) is the           

maximum across all channels of coherence-based speech brain tracking values estimated with            
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the ​attended (respectively ​global​) speech signal. Tune-in indices were compared to 0 with             

one sample, two-tailed ​t​-tests, and were compared between modalities with paired, two tailed             

t​-tests. 

 

2.9.6 Effect of the noise on coherence levels and hemispheric lateralization  

To determine the effect of the auditory noise on speech brain tracking magnitude and              

hemispheric lateralization, coherence-based speech brain tracking values were assessed with          

repeated-measures ANOVA. In that analysis, coherence-based speech brain tracking was          

taken as the maximum coherence value across the 9 gradiometer pairs (MEG) or 20              

electrodes (EEG) of maximum group-averaged coherence in the left and right hemispheres            

separately, and at delta and theta frequencies separately. Note that here, we used the MEG               

coherence values optimized across orientations within each gradiometer pair (see section 2.5). 

 

2.9.7 Coherence in source space  

The statistical significance of the local coherence maxima observed in group-level           

source coherence maps was assessed with a nonparametric maximum-based permutation test           

(Nichols and Holmes, 2001)​. The following procedure was performed for each listening            

condition, frequency band of interest, recording modality, and brain hemisphere separately.           

First, subject- and group-level task-free coherence maps were computed, as done for the             

different listening conditions, but with MEG signals replaced by task-free MEG signals and             

sound signals unchanged. Group-level difference maps were then obtained by subtracting           

listening condition coherence maps and task-free coherence maps. Under the null hypothesis            

that coherence maps are the same whatever the experimental condition, the labelling            

“listening condition” and “task-free” are exchangeable at the subject-level before group-level           
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difference map computation ​(Nichols and Holmes, 2001)​. To reject this hypothesis and to             

compute a threshold of statistical significance for the correctly labelled difference map, the             

permutation distribution of the maximum of the difference map’s absolute value was            

computed from all possible 512 permutations. The threshold at ​p < 0.05 (intrinsically             

corrected for the multiple comparison issue across sources) was computed as the 95​th             

percentile of the permutation distribution ​(Nichols and Holmes, 2001)​. All supra-threshold           

local coherence maxima were interpreted as indicative of brain regions showing statistically            

significant coupling with the audio signals. 

 

2.9.8 Confidence on peak coherence coordinates and comparison between MEG and EEG.  

The coordinates of the local maxima identified in MEG and EEG coherence maps             

were statistically compared using the location-comparison approach proposed by         

(Bourguignon et al., 2017)​. That method uses a bootstrap procedure ​(Efron, 1979) to estimate              

the sample distribution of coordinates of local coherence maxima in MEG and EEG maps and               

tests the null hypothesis that the distance between them is zero. Briefly, we generated 1000               

group-level MEG and EEG maps by random bootstrapping from the individual maps, and             

identified the coordinates of the local maxima closest to the genuine maxima location. The              

resulting sample distribution of coordinates difference was then submitted to a multivariate            

location test evaluating the probability that this difference is zero ​(Bourguignon et al., 2017)​.              

That test tightly relates to the multivariate test ​(Hotelling, 1931) and assumes that the               

sample distribution of coordinates difference is normal. 

In that framework, the 95% confidence volume and surface were also estimated              

for each local maximum. Specifically, was computed as the volume of an ellipsoid that               

contains 95% of the sample coordinates of a given local maximum, and , as the surface of                 
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an ellipse that contains 95% of the sample coordinates projected orthogonally onto the plane              

of maximum variance. Assuming the sample coordinates are normally distributed, we have            

and , where ( ) are the eigenvalues of          

sample coordinates covariance matrix sorted in ascending order, and ​k​V and ​k ​S are the              

95-percentile of the  and  distributions respectively.  

  

3. Results 

3.1. Coherence-based speech brain tracking values in the noiseless condition 

 

---------- INSERT TABLE 1 ABOUT HERE -------- 

---------- INSERT FIGURE 2 ABOUT HERE -------- 

 

Figure 2 presents speech brain tracking values obtained in the ​noiseless condition with             

the coherence-based approach, based on MEG (Coh​MEG​) and EEG recordings (Coh​EEG​). As            

previously reported in the literature, coherence at 0.5 Hz (delta frequencies) and 4–8 Hz              

(theta frequencies) was maximum over temporo-frontal brain areas. The topographic          

distribution of group-level coherence with EEG signals suggests that the underlying sources            

are mainly radial at delta frequencies, and tangential at theta frequencies. However,            

individual coherence maps, which are not presented here, demonstrated a large           

inter-individual variability. 

 

---------- INSERT FIGURE 3 ABOUT HERE -------- 
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Table 1 and Figure 3 present the maximum Coh​MEG and Coh​EEG values across all              

channels. At delta frequencies, all subjects displayed significant Coh​MEG and 8/10 displayed            

significant Coh​EEG (​ps < 0.05). At theta frequencies, Coh​MEG was significant in 8/10 subjects              

and Coh​EEG in 6/10 subjects. Importantly, maximum Coh​MEG was significantly higher than            

maximum Coh​EEG by a factor of 3.23 on average at delta frequencies (​t ​9 = 7.25, ​p < 0.001)                  

and of 1.85 at theta frequencies (​t​9​ = 3.55, ​p​ = 0.0062; see Table 1). 

Applying the surface Laplacian transformation to EEG signals further decreased          

coherence-based speech brain tracking values. This effect was statistically significant at delta            

frequencies (​t​9 = 2.65, ​p = 0.027) but not at theta frequencies (​t​9 = 1.52, ​p = 0.16). Therefore,                   

in what comes next, we only report on results obtained based on non-transformed             

mean-referenced EEG signals. 

 

3.2. Minimum necessary recording time in the noiseless condition 

---------- INSERT FIGURE 4 ABOUT HERE -------- 

Figure 4 presents the evolution of Coh​MEG and Coh​EEG with recording length in the              

noiseless condition at delta and theta frequencies, illustrating that differences in coherence            

levels directly translated into differences in minimum necessary recording time. In the 8             

subjects with significant Coh​MEG and Coh​EEG at delta frequencies, the minimum necessary            

recording time was 3.68 times longer in EEG (127.2 ± 67.9 s) than in MEG (34.6 ± 20.7 s)                   

and this difference was statistically significant (​t​7 = 3.43, ​p = 0.011). In the two subjects                

lacking significant Coh​EEG​, the minimum necessary MEG recording time was 9.2 s and 230 s.               

In the six subjects with significant Coh​MEG and Coh​EEG at theta frequencies, the minimum              

necessary recording time was 1.86 times longer in EEG (195.3 ± 59.0 s) than in MEG (105.3                 

± 63.5 s) and this difference was statistically significant (​t​5 = 2.63, ​p = 0.047). In the four                  
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remaining subjects, two lacked significant Coh​MEG and Coh​EEG​, and two lacked significant            

Coh​EEG while having significant Coh​MEG uncovered in a minimum necessary recording time of             

129.6 s and 130.0 s. 

 

3.3. RA-based speech brain tracking values in the noiseless condition 

 

---------- INSERT FIGURE 5 ABOUT HERE -------- 

 

Table 1 and Figure 5 present speech brain tracking values obtained in the ​noiseless              

condition with the RA-based approach. With this approach, a single value of RA was              

obtained for all MEG sensors (RA​MEG​), for all EEG electrodes (RA​EEG​), and for all MEG and                

EEG channels combined optimally (RA​MEEG​).  

The ridge parameter selected through nested cross validation was well within the            

explored range (from 2​10 to 2​20​). Indeed, with the selected ridge value written 2​l​, the mean ​l                 

across validation runs was 14.3 ± 1.5 (MEG, mean ± SD across subjects), 13.9 ± 2.6 (EEG)                 

and 14.9 ± 1.4 (MEEG) at delta frequencies and 15.0 ± 2.3 (MEG), 15.1 ± 1.3 (EEG) and                  

15.4 ± 1.7 (MEEG) at theta frequencies. Across all modalities, frequency ranges, subjects and              

validation runs, extreme values of ​l​ (10 or 20) were selected in 10.2 % of the instances. 

RA​MEG​, RA​EEG and RA​MEEG were significant in all subjects and at both frequencies (​ps              

< 0.05), except for RA​EEG in one subject at theta frequencies. RA​MEG was higher than RA​EEG​,                

by factors 1.56 at delta frequencies (​t​9 = 5.11, ​p = 0.0006) and 1.69 at theta frequencies (​t​9 =                   

-4.19, ​p = 0.0024). RA​MEG and RA​EEG were strongly correlated, both at delta (​r = 0.78, ​p =                  

0.012, Spearman correlation) and theta frequencies (​r = 0.70, ​p = 0.031). RA​MEG did not differ                

significantly from RA​MEEG (delta frequencies, ​t ​9 = 1.42, ​p = 0.19; theta frequencies, ​t​9 = 2.02,                
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p = 0.074), while RA​EEG was significantly lower than RA​MEEG (delta frequencies, ​t ​9 = 5.12, ​p                

= 0.0006; theta frequencies, ​t​9​ = 6.18, ​p​ = 0.0002).  

  

3.4. Comparison between noiseless and noise conditions in MEG and EEG 

The introduction of the background noise significantly impacted speech         

comprehension. Indeed, subjects gave higher intelligibility ratings in the ​noiseless ​than in the             

noise ​condition (mean ± SD, 9.9 ± 0.3 vs. 4.4 ± 2.0; ​t​9 = 8.0, ​p ​< 0.001, paired two-tailed                    

t​-test). Likewise, they answered more accurately to the comprehension questions in the            

noiseless ​than in the ​noise ​condition (14.1 ± 1.3 vs. 11.1 ± 2.0; ​t​9​ = 5.2, ​p ​< 0.001). 

 

---------- INSERT FIGURE 6 ABOUT HERE -------- 

 

Figure 6 presents Coh​MEG and Coh​EEG estimated with the ​attended speech in the ​noise              

condition. Coherence topographies were similar to those in the ​noiseless condition (see            

Figure 2). Coherence values were overall similar to those obtained in the ​noiseless condition,              

except for Coh​MEG values at delta frequencies that were ~35% lower. At delta frequencies,              

Coh​MEG and Coh​EEG were significantly stronger when estimated with the ​attended speech than             

with the ​global sound (MEG, mean ± SD tune-in index = 0.085 ± 0.064, ​t​9 = 4.24, ​p =                   

0.0022; EEG, tune-in index = 0.084 ± 0.063, ​t​9 = 4.26, ​p = 0.0021). The same effect was                  

observed at theta frequencies with MEG (tune-in index = 0.078 ± 0.070, ​t​9 = 3.48, ​p =                 

0.0069) but did not reach statistical significance with EEG (tune-in index = 0.033 ± 0.052, ​t​9                

= 1.98, ​p = 0.079). However, tune-in indices did not differ significantly between modalities              

(delta, ​t​9​ = 0.09, ​p​ = 0.93; theta, ​t​9​ = 1.83, ​p​ = 0.10). 
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We formally compared coherence values between conditions with a three-way (2           

conditions × 2 hemispheres × 2 modalities) repeated measures ANOVA at delta and theta              

frequencies separately. In this analysis, the dependent variable was the maximum coherence            

value across a left and a right clusters of channels. 

At delta frequencies, the three-way ANOVA revealed a significant main effect of            

modality (​F​1,9 ​= 57.84, ​p < 0.0001), a significant double interaction between condition and              

modality (​F​1,9 = 6.31, ​p = 0.033), and a significant triple interaction between hemisphere,              

condition and modality (​F​1,9 = 5.90, ​p = 0.038). The strong effect of modality (confirming               

that Coh​MEG is higher than Coh​EEG​) suggested conducting the ANOVA separately for Coh​MEG             

and Coh​EEG​. When performed on Coh​MEG values, the ANOVA revealed a significant            

interaction between hemisphere and condition (​F​1,9 = 5.53, ​p = 0.043), a significant main              

effect of condition (​F​1,9 ​= 5.62, ​p = 0.042), and no main effect of hemisphere (​F​1,9 = 0.18, ​p =                    

0.68). Post-hoc ​t​-tests revealed that right hemisphere Coh​MEG was significantly higher in the             

noiseless (mean ± SD, 0.176 ± 0.078) than in the ​noise condition (0.092 ± 0.056, ​t​9 = –2.77, ​p                   

= 0.022) while such difference was not significant in the left hemisphere (​noiseless​, 0.142 ±               

0.068; ​noise​, 0.113 ± 0.043; ​t​9 = –1.32, ​p = 0.22). Such effect was not found based on EEG                   

recordings as the ANOVA performed on Coh​EEG values showed no effect of condition (​F ​1,9 ​=               

0.60, ​p​ = 0.46), hemisphere (​F​1,9 ​= 0.24, ​p​ = 0.64) or interaction thereof (​F​1,9 ​= 0.12, ​p​ = 0.73). 

At theta frequencies, the three-way ANOVA revealed a significant main effect of            

modality (​F​1,9 ​= 37.11, ​p = 0.0002) and no other main effects nor interactions (​ps > 0.05).                 

Again, Coh​MEG (0.0237 ± 0.0071, mean ± SD of mean Coh​MEG across hemispheres and              

conditions) was higher than Coh​EEG​ (0.0109 ± 0.0036). 
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3.5. Brain sources of speech brain tracking 

 
---------- INSERT FIGURE 7 ABOUT HERE -------- 

---------- INSERT FIGURE 8 ABOUT HERE -------- 

---------- INSERT TABLE 2 ABOUT HERE -------- 

 

Figures 7 and 8 present the maps of group-level Coh​MEG and Coh​EEG at delta and theta                

frequencies in the ​noiseless (Figure 7) and in the ​noise (Figure 8) conditions. Table 2 presents                

the corresponding peak MNI coordinates, the confidence on these coordinates as well as the              

result of their comparison between MEG and EEG. 

Overall, coherence peaked in bilateral auditory regions in both conditions. All           

coherence values at these local maxima were significant (​ps < 0.05) except for             

left-hemisphere Coh​EEG at theta frequencies in the ​noise condition (​p = 0.51). All local              

maxima were in the supratemporal auditory cortex except for those of Coh​MEG at delta              

frequencies in the ​noiseless condition that localized in bilateral posterior superior temporal            

sulcus (see Table 2 for MNI coordinates) and in the left inferior frontal lobule (MNI               

coordinates [–63 8 22] mm). Of notice, the local maximum of left hemisphere Coh​EEG at theta                

frequencies in the ​noiseless condition was substantially more anterior and ventral than other             

local maxima, in the white matter underlying the frontal pole of the middle temporal gyrus.               

However, this local maximum barely exceeded the significance threshold and was associated            

with very large localization uncertainty: its volume of confidence was ~70 cm​3​. It is therefore               

still compatible with a localization in supratemporal auditory cortex. 

Coh​EEG peaked generally deeper than Coh​MEG​. A formal test comparing the location of             

peak Coh​EEG and Coh​MEG revealed a significant difference in all right-hemisphere peaks, and             
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in the left hemisphere peak in the ​noiseless condition at delta frequencies (see Table 2).               

Finally, the confidence volume of local maxima of Coh​EEG was 5–78 times larger than that of                

Coh​MEG​. This large difference can be partly explained by that confidence volumes of peak              

Coh​MEG are compressed in the orientation perpendicular to the skull, simply because Coh​MEG             

peaked systematically at the surface. This did not happen for deeper-localized Coh​EEG            

sources. Hence, an index of dispersion more comparable between the two modalities is the              

confidence surface. That is, an estimation of the surface in the plane of maximum dispersion               

containing the dominant source of speech brain tracking with 95% confidence. Still, the             

confidence surface of local maxima of Coh​EEG​ was 3–12 times larger than those of Coh​MEG​.   
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4. Discussion 

This simultaneous MEG-EEG study demonstrates that speech brain tracking values          

estimated based on MEG recordings are higher than those estimated based on EEG             

recordings, and that speech brain tracking requires ~3 times shorter recordings with MEG             

than with EEG to become significant. As likely consequence of this discrepancy, some             

previously reported findings related to speech in noise perception were replicated based on             

MEG but not EEG recordings. 

  

4.1. Speech brain tracking values estimated based on MEG vs. EEG 

The main objective of this study was to compare the potential of MEG and EEG to                

uncover significant speech brain tracking. As a result, both modalities yielded substantially            

different coupling estimates in terms of magnitude and source localization. 

In the channel-by-channel analysis, the coupling estimated based on MEG recordings           

was systematically higher than that estimated based on EEG recordings, by a factor of ~3 at                

delta frequencies and ~2 at theta frequencies for the noiseless condition. Since significance             

thresholds for coherence estimates decrease asymptotically as the inverse of the amount of             

data points available ​(Halliday et al., 1995)​, it can be inferred that EEG recordings need to be                 

2 or 3 times longer than MEG recordings to uncover significant speech brain tracking.              

Empirically supporting this inference, the minimum necessary recording time to uncover           

significant coherence-based speech tracking was 3.7 (delta) or 1.9 (theta) times longer in             

EEG than in MEG. This explains why the detection rate of significant speech brain tracking               

observed here was systematically higher with MEG than with EEG. Hence, in experiments in              

which several speech brain tracking conditions need to be recorded, MEG should be preferred              

over EEG to keep experiment duration comfortable for the participants. 
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The discrepancy in speech brain tracking values between modalities could have been            

induced by differences in spatial selectivity they afford. Indeed, EEG electrodes are sensitive             

to a larger brain volume than MEG sensors, especially so for planar gradiometers             

(Hämäläinen et al., 1993a)​. One could therefore hypothesize that speech brain tracking could             

be seen with equal accuracy based on both modalities, provided that adequate channel             

combinations be used. Still, surface Laplacian transformation decreased rather than increased           

EEG-based speech brain tracking values. Also, RA-based speech brain tracking values were            

still 1.56 (delta) or 1.69 (theta) times higher when estimated based on MEG than EEG               

recordings. RAs are correlation values and significance thresholds for correlation estimates           

decrease asymptotically as the inverse of the square root of the amount of data points               

available. Accordingly, when assessed with all channels at once, EEG recordings still needed             

to be 2.4 (delta) or 2.9 (theta) times longer than MEG recordings to uncover significant               

speech brain tracking. In sum, these results do not support the hypothesis that optimal              

channel combination enables EEG to uncover speech brain tracking with similar accuracy as             

MEG. 

In the framework of RA, we could also evaluate the yield of combining MEG and               

EEG signals to estimate speech brain tracking. As a result, RA values estimated based on               

combined MEG and EEG signals were 7% higher than those estimated based on MEG signals               

only. This effect was not significant, possibly because of statistical power issues intrinsic to              

studying small sample size (10 subjects here). Still, we have showed that adding EEG              

information to that already present in MEG has at best a mild effect on speech brain tracking                 

estimation. In the same line, the result that RA​EEG correlates strongly with RA​MEG suggests              

that, at least for speech brain tracking investigations, both MEG and EEG recorded             
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similar—rather than complementary—information, though MEG does so with a more          

advantageous SNR. 

The difference between speech brain tracking values estimated based on MEG and            

EEG recordings probably pertains to that SNR is higher in MEG than in EEG recordings.               

Such SNR difference between MEG and EEG modalities has been previously reported for the              

superficial portion of the cortex, leading to the conclusion that MEG is more suited than EEG                

to record superficial and focal sources ​(Goldenholz et al., 2009)​. This SNR difference is at               

least partly explained by that the scalp distribution of electric potential is more diffuse than               

the corresponding pattern of the radial component of the magnetic field ​(Hari and Puce,              

2017)​. EEG scalp patterns are diffuse because secondary currents spread laterally at the             

interfaces between the different mediums of the head (cerebrospinal fluid, skull and scalp             

tissues) since those have strikingly distinct conductivities. In contrast, magnetic fields are            

essentially unaffected by these different layers because they all have a magnetic permeability             

close to that of the vacuum. Consequently, magnetic field spread depends only on the              

distance between brain sources and recording site ​(Hari and Puce, 2017)​. Another source of              

SNR difference between MEG and EEG signals lays in that MEG signals arise predominantly              

from close-to-the-scalp tangential currents, while EEG signals also receive contribution from           

radial and deeper sources ​(Ahlfors et al., 2010; Hari and Puce, 2017)​. Consequently, signals              

related to neuronal activity close to the scalp can be contaminated by a larger amount of                

interfering random neuronal activity when recorded by EEG. 

Speech brain tracking sources estimated based on EEG recordings were systematically           

deeper than those estimated based on MEG recordings. The origin of this difference is              

unclear. It may relate to inaccuracies in EEG source reconstruction due to errors in forward               

model estimation ​(Hämäläinen et al., 1993b)​. That is because electric currents are heavily             
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distorted by the skull in a way that is difficult to model ​(Hämäläinen and Hari, 2002)​. In line                  

with that interpretation, it has been reported that in presence of anisotropic layers (like the               

bone), superficial sources in EEG may be localized deeper and weaker than with MEG              

(Wolters et al., 2006)​. Alternatively, EEG signals may have received a greater contribution             

from deeper sources of speech brain tracking that are not seen by MEG. 

  

4.2. Comparison between MEG and EEG in other studies 

Even though MEG and EEG are widely known to capture different neuronal activity,             

surprisingly very few studies have quantified this discrepancy in sensory or cognitive            

processes. Most of the studies comparing EEG and MEG are clinical studies investigating the              

yield of both modalities for the identification and localization of interictal epileptiform            

discharges in epilepsy patients ​(Iwasaki et al., 2005; Knake et al., 2006; Paulini et al., 2007;                

Wheless et al., 1999)​. These studies have demonstrated that MEG captures epileptiform            

discharges in ~70% of the patients, a few percent of whom have normal EEG ​(De Tiège et                 

al., 2012; Knowlton, 2008, 2006; Stefan et al., 2011)​. In patients with clinical suspicion of               

epilepsy but with normal EEG, MEG has ~20 % of sensitivity ​(Duez et al., 2016)​. These                

studies support the claim that MEG and EEG have different sensitivity profiles to different              

brain activities, but they do not quantify ​per se discrepancy in signal magnitude, simply              

because epilepsy is a too heterogeneous brain disorder in terms of source location and              

epileptic activity. 

In a study aiming at assessing the test-retest reliability of 40-Hz auditory steady-state             

responses, authors quantified with both MEG and EEG the inter-trial coherence (ITC) value             

induced by auditory white noise and click trains ​(Legget et al., 2017)​. Although exact ITC               

values were not reported in the text, it can be inferred from their figure 3 that group-level ITC                  
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estimated based on MEG recordings was ~2 times higher than that estimated based on EEG               

recordings ​(Legget et al., 2017)​. ITC is a measure of phase synchronization with respect to a                

given stimulation onset in the time-frequency domain ​(Legget et al., 2017; Tallon-Baudry et             

al., 1996)​. It is easy to show that, in the presence of noise only, ITC decreases as the square                   

root of the number of available data segments. Hence, we can conclude that 40-Hz auditory               

steady state responses can be recovered with MEG based on ~4 times shorter recordings than               

required from EEG. This order of magnitude is close to that hereby reported for speech brain                

tracking. 

In the visual domain, steady-state visual-evoked responses at theta (4–8 Hz) and upper             

alpha (10–14 Hz) frequencies are seen with both MEG and EEG ​(Thorpe et al., 2007)​. Again,                

inspection of values provided in figures but not in the text suggests that SNR in MEG                

responses is at least 2 times higher than that in EEG responses. However, responses at               

low-beta frequencies (15–20 Hz) were observed with EEG but not with MEG ​(Thorpe et al.,               

2007)​. 

Finally, some perceptual studies have shown that MEG and EEG do not uncover the              

same brain processes with identical accuracy. For example, the amplitude of the P2 auditory              

evoked response is modulated by the acoustic complexity in a way that is more prominent in                

EEG than in MEG ​(Shahin et al., 2007)​. This discrepancy likely pertains to that sources of                

the P2 component are close to radial ​(Shahin et al., 2007)​. It also reminds us that our result                  

that EEG recordings need to be 3 times longer than MEG recordings to uncover significant               

effects is restricted to the specific case of speech brain tracking, i.e., the tracking by brain                

signals of speech temporal envelope at delta and theta frequencies. 

This brief review highlights the importance of quantifying the discrepancy between           

MEG and EEG recordings for each functional process separately. Depending on source            
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location and orientation, MEG and EEG may not afford the same statistical power and see the                

same effects. 

 

4.3. Effect of added auditory noise on speech brain tracking 

A secondary objective of this study was to compare the potential of MEG and EEG to                

uncover previously reported relevant effects related to speech brain tracking in noisy            

conditions ​(Vander Ghinst et al., 2016)​. Three previously reported findings related to speech             

perception in noise were replicated based on MEG but not EEG recordings: 1) speech brain               

tracking at theta frequencies is significantly stronger with the attended speech than with the              

global auditory scene, 2) speech brain tracking at delta frequencies dampens when noise is              

added, and 3) this dampening is stronger in the right (vs. left) hemisphere. The only effect                

reproduced by both MEG and EEG was that speech brain tracking at delta frequencies is               

significantly stronger with the attended speech than with the global auditory scene. This             

discrepancy in results may be explained by the SNR difference in recordings of the two               

modalities, in line with our result that ~3 times less MEG than EEG data is needed to uncover                  

speech brain tracking. Alternatively, it could reflect a difference in sensitivity to tangential             

vs. radial neocortical sources. 

The stronger dampening of delta speech brain tracking in the right (vs. left)             

hemisphere might have been seen with MEG only simply because responses from both             

hemispheres are better segregated spatially in MEG than EEG. Undermining this explanation,            

EEG scalp distribution of coherence at delta frequencies was maximal over bilateral temporal             

electrodes. Poor spatial segregation in EEG is typically seen for auditory evoked cortical             

responses such as N1 and P2 components ​(Pereira et al., 2014)​. It is also the case of tracking                  

at theta frequencies where EEG scalp distribution of coherence maximum at the vertex and at               
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bilateral temporo-occipital electrodes is compatible with N1 topography, as also evident in            

previous studies ​(Müller et al., 2018; Ng et al., 2013)​. 

At theta frequencies both MEG and EEG did not reveal a significant difference             

between ​noiseless and ​noise conditions. This finding is well in line with previous results by               

Vander Ghinst et al. (2016) and ​Ding and Simon (2013​). ​Vander Ghinst et al. (2016) found                

that the brain tracks the attended speech at theta frequencies with similar strength in the               

absence of noise and when it is mixed with a cocktail party noise at 0 dB. Speech brain                  

tracking was however compromised at lower SNR (–5 dB and –10 dB). ​Ding and Simon               

(2013​) reported that speech brain tracking at theta frequencies remains stable as long as              

speech is intelligible. Alghouth the speech SNR we used in the present study (0 dB) did lower                 

speech comprehension and intelligibility ratings, it essentially left speech intelligible. As the            

absence of significant difference between ​noiseless and ​noise conditions is in essence a             

negative effect, an interaction between modalities and conditions was not expected and not             

found, despite there being a significant effect of modality confirming that the level of theta               

speech brain tracking is higher with MEG than EEG. 

Finally, speech brain tracking at theta frequencies assessed based on MEG but not             

EEG recordings was significantly stronger when estimated with the ​attended speech than            

with the ​global sound. This suggests that MEG outperformed EEG at the task of detecting               

selective speech tracking in noise. However, a direct comparison of tune-in indices between             

MEG and EEG did not support this conclusion. 

  

4.4. Limitations and practical considerations 

In the present study, EEG signals were recorded with MEG-compatible passive EEG            

electrodes. Passive systems provide arguably lower SNR than active systems, wherein signals            
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are amplified on the scalp to minimize interferences picked up by the cables. This advantage               

of active over passive electrodes is however only mildly supported by empirical studies on              

the topic ​(Cencen et al., 2016; Laszlo et al., 2014)​. Furthermore, the impact of ambient noise                

was certainly mitigated in our setting since EEG signals were recorded in a shielded room.               

Supporting that assumption, a previous study using 128 active EEG electrodes to estimate RA              

with an approach highly similar to ours found mean RA values across their group of 0.054                

(O’Sullivan et al., 2014)​, which is rather close to our mean value of 0.0615. Still, further                

studies are needed to generalize our results to other types of EEG systems. 

The present study was conducted on a small sample of subjects (​n = 10). This limited                

sample size was likely the reason why we could not evidence the benefit of combining MEG                

with EEG (over MEG alone) to estimate speech brain tracking, and why selective tracking of               

the attended speech (vs. global sound) at theta frequencies came significant based on MEG              

but not EEG recordings, despite the fact that such selective tracking was not significantly              

better seen with MEG than EEG. Nevertheless, our restricted sample was enough to reliably              

observe that speech brain tracking is better seen with MEG than EEG, an effect seen in all                 

subjects and frequencies, except for one subject at theta frequencies. 

We have demonstrated that MEG largely outperforms EEG in estimating speech brain            

tracking, i.e., the coupling between cortical activity and heard speech. However, various            

practical aspects of currently existing MEG systems preclude their large-scale use. MEG            

recordings may prove challenging in participants wearing cochlear implant, teeth braces or            

any metallic devices, because all these generate strong interferences. Mitigating this           

limitation, most of these nearby interferences can be substantially subtracted from the MEG             

signals of interest with appropriate preprocessing ​(Bourguignon et al., 2016; Carrette et al.,             

2011a; Hillebrand et al., 2013; Mäkelä et al., 2007; Medvedovsky et al., 2009; Taulu and               
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Hari, 2009; Taulu and Simola, 2006)​. As another limitation, MEG helmets do not adapt to               

participants’ head size, which implies that individuals with exceptionally large head do not fit              

in the helmet, and more importantly, when assessing children, the large sensor–brain distance             

may potentially diminish the SNR ​(Wehner et al., 2008)​. And the most important limitations              

is undoubtedly the high cost related to the MEG system itself, maintenance, helium             

consumption, and the shielding room required to isolate the brain signals from external             

magnetic fields (Baillet, 2017). These costs are a barrier to large-scale use of MEG. In               

comparison, recording with EEG is rather cheap, even with high-density systems. The            

situation for MEG might however change drastically in a near future. Indeed, a novel              

generation of MEG sensor types is currently being developed that does not require being              

immersed in liquid helium ​(Boto et al., 2018)​. Shortly, these optically-pumped           

magnetometers could enable the measurement of MEG signals on-scalp with reasonable           

SNR, using a portable cap as currently done in EEG ​(Knappe et al., 2014)​. 

  

4.5. Conclusion 

We have demonstrated that EEG recordings need to be ​~​3 times longer than MEG              

recordings to uncover significant speech brain tracking. This result should help researchers            

and clinicians design their recording procedure to evaluate speech brain tracking. 
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6. Tables and figures 

 

Table 1.​ Mean ± SD speech brain tracking values and number N of participants for whom 

they were statistically significant.   

 

 

 

Table 2.​ MNI coordinates and confidence volume (​V​) and surface (​S​) of peak speech brain 

tracking, and ​p​ value quantifying the significance of a difference in location between MEG 

and EEG. 
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Figure 1.​ Power spectrum of speech temporal envelope for the 6 different audio recordings. 

 

  

 

Figure 2. Speech brain tracking in the ​noiseless condition based on MEG (A) and EEG (B)                

recordings. Boxes on the left (respectively right) present coherence spectra computed           

between the attended speech stream and MEG/EEG signals from the left (respectively right)             

hemisphere. In each plot, there is one black trace per subject and group mean is in red.                 

Between coherence spectra are the corresponding group-level spatial distributions at delta           

(0.5 Hz) and theta (4–8 Hz) frequencies.  
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Figure 3. Coherence-based speech brain tracking values in ​noiseless condition. Circles           

provide individual coherence levels estimated based on MEG and EEG recordings at delta             

(left) and theta frequencies (right). Group mean and standard deviation are presented aside             

from individual values. 

 

 

 

Figure 4. ​Minimum necessary recording time to obtain significant speech brain tracking with             

coherence analysis in the ​noiseless condition. Data from a representative subject (a different             

one for delta and theta frequencies) are presented here. Connected traces represent the             
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maximum coherence across all channels (Coh) as function of the recording time. Dashed             

traces are the significance threshold at ​p < 0.05 (Th), which also depend on the recording                

length. A gray vertical dashed line indicates the minimum necessary recording time, that is,              

the time point at which maximum coherence becomes and remains significant (i.e., the             

connected trace crosses and remains above the black dashed trace). 

 

 

 

 

Figure 5. Same as Figure 3 for reconstruction accuracy (RA)-based speech brain tracking             

values in the ​noiseless​ condition. 
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Figure 6.​ Same as Figure 2 for the ​noise​ condition. 

  

 

Figure 7. Group-level coherence maps of speech brain tracking in the ​noiseless condition.             

Maps are thresholded at statistical significance level, and different scales are used for MEG              

and EEG, and for maps at delta and theta frequencies, to match maps maximum value. Note                

that maximum coherence at theta frequencies reach higher values than those in scalp maps              

shown in Figs. 2 and 6. This is mainly due to that coherence at a given source was here                   
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optimized across 3 orientations, a procedure that inflates values especially when there is no              

significant coupling.  

 

 

Figure 8.​ Same as Fig. 7 for the ​noise​ condition. 
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