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Hydrogen, consisting of just a proton and an electron, is the simplest and most
abundant element in the Universe. It is well known at ambient conditions, where
it forms a diatomic molecule. Lithium, with only three protons, is the lightest
metal in the periodic table. It is indeed a good representative of metals, since its
normal condition properties can be explained with the free-electron model thanks
to its almost perfectly spherical Fermi surface. These two elements are deeply
understood at the pressure (P ) and temperatures (T s) we usually find on the
surface of the Earth. However, they still capture the attention of the scientific
community, as they display extraordinary properties once they are brought under
extreme conditions.

The physical changes pressure and temperature promote in matter can be seen
in everyday life. Water, for example, transforms to vapor when heated to 100
oC at fixed ambient pressure. However, one can also convert water into vapor by
reducing pressure at a fixed lower temperature. Similarly, water transforms to solid
ice when cooled to temperatures below 0 oC or at pressures higher than roughly
10.000 atm. These phase transitions obey the general intuition considering they
are a consequence of minimizing the so-called Gibbs free energy

G = E − TS + PV, (1)

where E is the internal energy (or just the energy, for simplicity), S is the en-
tropy and V is the volume of the piece of matter. According to Eq. (1), compact
and ordered phases (solids) are favored at low temperatures and/or at high pres-
sures, while less dense and disordered structures (gases) will be favored at opposite
conditions. Liquids will be favored at intermediate regimes.

When the TS and PV terms of the Gibbs free energy are comparable to chemical
bonding energies, temperature and pressure can induce chemical and structural
changes which may lead to physical properties not expected a priori. In the solid
state, while some famous and extraordinary temperature induced transformations
occur, like the martensitic transition of lithium [1], pressure is usually a more
powerful tool for tuning the crystal structure and, as a consequence, the properties
of materials. This is because pressure alters the energy of atomic bonds by forcing
atoms closer together in a smaller volume.

One of the physical properties showing exceptional changes associated to pressure
is superconductivity. According to simple electronic and vibrational theories like
Hartree-Fock and the quasi-harmonic approximation, electron-phonon coupling
mediated superconductors are expected to reduce their superconducting critical
temperature (Tc) as the applied pressure is increased [2, 3]. While this is true
for most simple conventional superconductors [4, 5], some elements have their
Tcs increased by orders of magnitude under compression. Lithium is in fact a
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great example as, while at ambient pressure it superconducts below 0.4 mK [6],
Tc escalates to almost 20 K at 48 GPa [7–12], an astonishing enhancement of five
orders of magnitude. This phenomenon is even more striking when a material is not
a superconductor (in some cases neither a metal) at ambient pressure but becomes
a superconductor after being squeezed to high pressure. Just considering single-
element materials, pressure raises the total number of superconducting elements
from 29 at ambient pressure to 52, including non-metallic elements like sulfur or
oxygen [13]. Actually, even though it has not been experimentally confirmed yet,
this is expected for hydrogen as well. Metallization of hydrogen under pressure was
predicted by Wigner and Huntington in 1935 [14] and later Ashcroft predicted it
would be an extremely high temperature superconductor [15]. The measurement
of a record Tc of 203 K after compressing hydrogen sulfide to 150 GPa [16] suggests
Ashcroft’s prediction may be on-track.

Superconductivity is not the only counter-intuitive or unexpected phenomenon
emerging under compression in single-element materials. While the PV term of
the Gibbs free energy favors compact structures at high pressure, some materials
display the opposite behavior [17–22]. Lithium, along with other alkali metals, is
one of the elements showing this behavior. Associated to their rich phase-transition
sequence, they show metal-insulator transitions [23, 24] and low temperature melt-
ing [25, 26]. Some of the structural transitions are induced by phonon instabili-
ties, which are caused by the deviation of the Fermi surface from the free-electron
sphere to more complex shapes. The loop closes back to superconductivity as these
phonon softenings often enhance the electron-phonon coupling and, consequently,
drive the increase of Tc [27–33].

Pressure covers probably the greatest range of orders of magnitude of all physical
magnitudes. From the almost perfect vacuum of outer space to the enormous
atomic-nuclei-like density of neutron stars there are sixty orders of magnitude.
To put it in numbers, any object in the Mariana trench in the Pacific Ocean,
the deepest point on Earth, is subject to a pressure of about 0.1 GPa (roughly
1,000 atm). Pressure at the center of the Earth exceeds 300 gigapascal (GPa),
with large gaseous planets as Saturn and Jupiter reaching estimated pressures
of several terapascal. At the not ultimate but quite upper part of the range,
the pressure inside of the Sun is expected to be around 26 petapascal. In the
context of materials research, as it is the case of the examples given in the previous
paragraphs, “high pressure” commonly refers to pressures in the range of thousands
to millions atmospheres. The common unit of choice in the field and in this thesis is
the GPa, which is approximately 10000 times larger than the atmospheric pressure.

In order to study materials at pressures up to hundreds of GPa experimentalists
confine the samples in specially designed machines that apply a force to the small
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Figure 1: Schematic sketch of a diamond anvil cell. The red arrows indicate the
direction in which the force is applied.

sample area. Laser shock-wave experiments are able to reach the terapascal regime
for a limited short time, but with accordingly high temperatures of hundreds or
thousands of Kelvins. When low temperature material properties, as superconduc-
tivity, need to be probed static experiments are required, for which the diamond
anvil cell (DAC) is the most commonly used device. In the DAC two gem-quality
diamonds apply a force to a metallic gasket in such a way that the sample chamber
is defined by the cylindrical gasket wall and the flat diamond ends (see Fig. 1).
For solid samples a non-reactive pressure transmitting fluid is usually introduced
to guarantee the pressure acting on the sample is isotropic. State of the art DACs
are able to reach pressures up to 600 GPa [34], but experiments at these extreme
pressures are extremely challenging. Even though the employed high-quality dia-
monds show very few impurities, they make diamonds vulnerable to breaking and
losing their broad spectrum transparency, which is vital for analyzing the samples.

The technical difficulty and high economical cost of high pressure experiments
make theoretical approaches specially necessary. Fortunately, in the framework
of density functional theory (DFT), the theory of choice in this thesis, dealing
with pressure is quite straightforward, since the unit-cell volume can be chosen
on demand. Pressure can be determined either by calculating the stress tensor
of the system via the Hellmann-Feynman theorem from a ground-state energy
calculation, or by calculating the total energy of the system for several volumes
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and fitting an equation of state. Combination of theory with experiments has led
to fast advances in the high-pressure science field [35–37], with theory being able to
make predictions as important as the high superconducting Tc of hydrogen sulfide
at high pressures [38, 39].

In this thesis we present a first-principles analysis of the electronic, vibrational
and superconducting properties of solid hydrogen and lithium under high pressure
based on DFT. This thesis consists of three distinct parts. In part I, we summarize
the theoretical framework used to perform the calculations. Solid hydrogen is
exhaustively analyzed around its expected metallization pressure of 400-600 GPa
in part II. Part III is devoted to the analysis of the high pressure superconducting
behavior of lithium, motivated by the recent measurement of an inverse isotope
effect in its superconductivity [9].



Part I

Theoretical background

11





Chapter 1

The adiabatic Born-Oppenheimer
approximation

Matter can be described as a set of electrons and nuclei interacting via the Coulomb
inverse square law. Matter can form a plasma, where the charged particles move so
fast that they are not able to bond. It can appear in gaseous state, where electrons
bond to nuclei and form atoms which may be alone or joint into molecules. It
can also condense and form both disordered, as liquids and amorphous solids, and
ordered materials as crystalline solids, surfaces, etc. Whatever the case, the proper
framework to describe a piece of matter is quantum mechanics and, in the absence
of external potentials acting on the system under analysis, the problem reduces to
solving the time-independent Schrödinger equation

H |ΨA〉 = EA |ΨA〉 , (1.1)

where EA is an eigenvalue with quantum number A and

〈r|ΨA〉 = ΨA(r1, ..., rN ,R1, ...,RM) = ΨA(r,R) (1.2)

its corresponding eigenfunction of the quantum mechanical system consisting of
N electrons at positions r ≡ r1, ..., rN and M nuclei of atomic number Zj at
R ≡ R1, ...,RM . The Hamiltonian that governs this equation is, for the non-
relativistic case1,

H = 1
2

N∑
i

p2
i + 1

2

M∑
j

P2
j

mj
−

N∑
i

M∑
j

Zj
|ri −Rj|

+ 1
2

N∑
i 6=j

1

|ri − rj|

+1
2

M∑
i 6=j

1

|Ri −Rj|
= Te + TI + Ve,I + Ve,e + VI,I , (1.3)

1Here and on, we will use atomic units (~ = e = me = 1)
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14 Chapter 1. The adiabatic Born-Oppenheimer approximation

where pi and Pj are electronic and nuclear momentum operators and mj is the
nuclear mass. Te and TI are the electronic and nuclear kinetic energy operators,
respectively, and Ve,I , Ve,e and VI,I account for electron-nuclei, electron-electron
and nuclei-nuclei Coulomb interactions.

As we can see, we are dealing with a system of 3(N + M) degrees of freedom
where the Coulombic terms make impossible to separate the many-body Hamilto-
nian into single-particle ones. Due to such complexity an analytical solution for
macroscopic systems (N,M ∼ 1023) is impossible. However, the eigenfunctions
ΨA(r,R) contain all the relevant information of the material, including the posi-
tions of the nuclei and, therefore, its structure. Interestingly, from these equations
one can deduce that every property of a material is a consequence of the fairly
simple Coulomb pair potential and the quantum many body character of matter.

The mathematical complexity of the problem makes the use of approximations
imperative right from the beginning. Due to the huge difference of masses between
nuclei and electrons (mj ∼ 103), the latter move much faster than the nuclei2.
In the Born-Oppenheimer Approximation (BOA) electrons are assumed to adapt
instantaneously to the nuclear position changes. As we will see, this will allow us
to treat the electrons and nuclei as separate quantum mechanical systems.

Let us assume the total Hamiltonian is separable into electronic (He ) and nuclear
(HI ) parts. As we consider nuclei frozen from the electronic point of view, we
first get rid of nuclear degrees of freedom in the electronic problem. Thus, we can
solve the electronic problem by building He only with the terms from the total
Hamiltonian that depend on electronic degrees of freedom

He(R) = Te + Ve,I(R) + Ve,e + VI,I(R), (1.4)

where we include the nuclei-nuclei term as it reduces to a constant and the R
dependence is parametric. We assume the following eigenvalue problem holds:

He |ψeα〉 = Ee
α |ψeα〉 , (1.5)

where α is a quantum number which fully describes the electronic system. Now,
the electronic eigenvalues Ee

α and eigenfunctions

〈r|ψeα〉 = ψeα(r; R) (1.6)

depend on the nuclear positions only parametrically.

2Classical theory of harmonic crystals predicts velocities of 108cm/s and 105cm/s for electrons
and nuclei, respectively.
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Since the electronic eigenfunctions form a complete set in r space, we can always
write any state of the total system as a linear combination of vectorial products
expanded only in the electronic degrees of freedom3:

|Ψαβ〉 =
∑
α′

Cα′αβ |ψIα′β〉 ⊗ |ψeα′〉 , (1.7)

where Cα′αβ is a complex tensor and |ψIαβ〉 are eigenstates of the still unknown HI .
If we project Eq. (1.7) with 〈r| from the left we can see that the total wavefunction
is an expansion of products of nuclear and electronic counterparts:

Ψαβ(r,R) =
∑
α′

Cα′αβψ
I
α′β(R)ψeα′(r; R). (1.8)

The α index of the nuclear eigenstates points out that nuclear states still de-
pend on electronic degrees of freedom. For determining HI , we plug |Ψαβ〉 in the
Schrödinger equation (Eq. (1.1)) and project it on 〈ψeα′ |:

〈ψeα′ |H|Ψαβ〉 = Eαβ 〈ψeα′ |Ψαβ〉 . (1.9)

By plugging Eq. (1.7) in Eq. (1.9) it is straightforward to obtain

Cα′αβE
e
α′ |ψIα′β〉+

∑
α′′

Cα′′αβ 〈ψeα′|TI
[
|ψeα′′〉 ⊗ |ψIα′′β〉

]
= CααβEαβ |ψIαβ〉 , (1.10)

where4

TI =
∑
j

P2
j

2mj

=
∑
j

1

2mj

[P2
j ]I +

∑
j

1

2mj

(
2 [Pj]I [Pj]e + [P2

j ]e
)

= [TI ]I + ∆H.

(1.11)

So far, everything is exact. In the adiabatic approximation we assume no electronic
excitations are created due to nuclear motion, so we only consider α′ = α and
neglect ∆H. This way Eq.(1.10) is simplified and we end up with a Schrödinger
equation for the nuclei

HI |ψIαβ〉 = Eαβ |ψIαβ〉 , (1.12)

where
HI ≡ HI

α = [TI ]I + Ee
α. (1.13)

3From now on, α and β (and their primed versions) will be quantum numbers that account
for electronic and nuclear degrees of freedom, respectively. Combined, they will fully define any
A = αβ state of the total system.

4Writing operators as [O]I and [O]e indicates they act exclusively on |ψe〉 and |ψI〉 states,
respectively.
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This means nuclei move in effective potential energy surfaces Uα(R) = Ee
α(R)

with α reminding us this surface can in principle be different for different elec-
tronic eigenstates. For most crystals at normal and low temperatures, which is
the case throughout this thesis, α can be dropped from the nuclear problem and
just consider the electronic ground state Ee(R) ≡ Ee

0(R), successfully splitting
the electronic and nuclear problems. Ionic eigenstates not depending on electronic
degrees of freedom anymore, we can write any eigenstate of the Born-Oppenheimer
Hamiltonian (HBO = He +HI) as a tensorial product of individual electronic and
nuclear eigenstates:

|Ψαβ〉 = |ψeα〉 ⊗ |ψIβ〉 ≡ |α, β〉 . (1.14)

In this basis, of course, HBO is diagonal

〈α′, β′|HBO|α, β〉 = Eαβδα,α′δβ,β′ . (1.15)

The BOA is an excellent approximation for understanding and predicting many
properties of diverse materials by analyzing their electronic structure and lattice
vibrations (phonons), e.g., when we calculate the sound velocity, heat capacity
or the stable geometry of a crystal. However, the assumption of nuclear kinetic
energy not affecting electronic states is not always valid and even some basic
properties are a consequence of non-diagonal elements in the Hamiltonian arising
from the previously neglected ∆H term (i.e. the electrical resistivity in metals
is a straightforward example). Still, even when this approach does not fully hold
and one needs to go beyond, the picture of electrons and phonons being almost
separate systems remains in most cases and, as we will see in Chapter 4, their
coupling is commonly treated as a perturbation.



Chapter 2

The electronic problem

Once successfully separated the electronic and nuclear degrees of freedom, we will
start solving the electronic problem, which still constitutes a challenge as Ve,e
(the electron-electron interaction term of the electronic Hamiltonian) couples the
equations via the two-body 1

|ri−rj | operator. Actually, the way one deals with that

operator makes the distinction from a solving method to another.

2.1 Independent electron approximation

If one neglects Ve,e and, thus, adopts the so-called independent electron approxi-
mation, the system now is formed by N noninteracting electrons under an external
potential

Vext(x) =
M∑
j

Zj
|x−Rj|

, (2.1)

where x denotes any electronic position. Since the Hamiltonian is now separable,
He(r) =

∑
i Te(ri) + Vext(ri), single electron states |φαi〉 would be obtained from

(
−∇

2

2
+ Vext

)
|φαi〉 = εαi |φαi〉 , (2.2)

with all the electrons having an identical set of eigenfunctions 〈x|φαi〉 = φαi(x)
and eigenvalues εαi . Any total electronic wavefunction of such hypothetical system

17



18 Chapter 2. The electronic problem

could be given by a Slater determinant [40]:

ψeα(r) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
φα1(r1) φα1(r2) ... φα1(rN)
φα2(r1) φα2(r2) ... φα2(rN)

. . ... .

. . ... .
φαN (r1) φαN (r2) ... φαN (rN)

∣∣∣∣∣∣∣∣∣∣
, (2.3)

with α ≡ α1, α2...αN and 〈rj|φαi〉 = φαi(rj) being the single-electron wavefunction
of jth electron at the αthi state.

One can think that neglecting the electron-electron interaction is quite a rough
approach, which is true indeed; many properties of materials are precisely a conse-
quence of such interaction. However, solving a single-body problem is substantially
easier than a many-body one. Therefore, different mean field theories have been
developed to turn the many-body electron-electron pair-potential into a single-
body operator that acts as an external potential as the electron-nuclei interaction
does. The theory of our choice will be density functional theory (DFT).

2.2 Density functional theory

Density functional theory is a mean field theory formulated in the 60’s by Kohn,
Hohenberg and Sham [41, 42]. In spite of being nowadays highly popular and
successful in solid state physics as well as in molecular chemistry, the lack of
computational power at the time it was developed made Kohn wait for more than
30 years to obtain the Nobel Prize.

As the name of the theory may suggest, the main ingredient of this formalism is
the electronic density:

nα(x) = 〈ψeα|n(x)|ψeα〉 = 〈ψeα|
N∑
i

δ(x− ri)|ψeα〉 =

=N

∫
(...)

∫
dr2...drNψ

e∗
α (x, r2, ..., rN)ψeα(x, r2, ..., rN).

(2.4)

DFT is composed by two theorems; the first theorem establishes a one to one
relationship between the ground state density (α = 0) and the Hamiltonian which
governs a system of electrons; the second states the total energy of the system can
be written as a functional of the density (E[nα]) for any external potential Vext(x),
where the exact ground state energy is the global minimum of this functional, and
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the density that minimizes it is the exact ground state density n0(x). Bringing
it to our case, we see that the mentioned external potential is the electron-nuclei
interaction:

Vext(x) =
M∑
j

Zj
|x−Rj|

=
M∑
j

vext(x−Rj). (2.5)

In order to implement DFT to a system, Kohn and Sham proposed a new way of
interpreting an electronic system. Instead of solving the actual interacting elec-
tronic system, they replaced it with another non-interacting one that would have
exactly the same ground state density. The Hamiltonian of the non-interacting
electronic system is now separable:

He(r) =
N∑
i

[
−1

2
∇2

ri
+ V KS(ri)

]
=

N∑
i

HKS(ri), (2.6)

where the Kohn-Sham one-electron states |φαi〉 (Kohn-Sham states) fulfill

HKS |φαi〉 = εαi |φαi〉 . (2.7)

and the total Kohn-Sham state of this non-interacting system |ψKSα 〉 is built with
a single Slater determinant exactly as in Eq. (2.3). This way, the density can be
written in terms of the single-particle wavefunctions as

nα(x) =
N∑
i

|φαi(x)|2. (2.8)

Eq. 2.6 is equivalent to Eq. (2.2) in the independent electron approximation,
except for in this case the effective Hamiltonian HKS does include the electron-
electron interaction contribution. However, we do not know the functional form
of V KS yet.

The electronic energy functional can be written as

Ee[nα] = Te[nα] + Ee,e[nα] + Eext[nα], (2.9)

with the electron-nuclei interaction energy adopting the following form:

Eext[nα] =

∫
dx nα(x)Vext(x). (2.10)

The terms Te[nα] and Ee,e[nα] cannot be expressed in such a straightforward form
as Eext[nα]. Thus, it is useful to write the non-interacting kinetic energy, TKSe [nα],
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by evaluating the electronic kinetic energy operator with |ψKSα 〉

TKSe [nα] = 〈ψKSα |Te |ψKSα 〉 =

= −1

2

N∑
i

〈φαi | ∇2 |φαi〉 = −1

2

N∑
i

∫
dx φ∗αi(x)∇2φαi(x). (2.11)

Note the density dependence of TKSe [nα] is implicit, as it comes from the density
dependence of the single-electron wavefunctions φαi(x). Additionally, it is impor-
tant to point out TKSe [nα] accounts for most but not all the kinetic energy of the
electrons and it is consequently different from Te[nα]. As |ψKSα 〉 is built by vectorial
products of independent single-particle states |φαi〉 with the momentum operator
pi acting only in its corresponding electronic state, TKSe [nα] = Te[nα] − Tc[nα]
lacks of the electronic correlation component of the kinetic energy Tc[nα], which
precisely considers how the motion of one electron affects the motion of another.
For dealing with Ee,e[nα] we proceed in the same way and write the non-interacting
electron-electron interaction energy functional

EKS
e,e [nα] = 〈ψKSα |Ee,e |ψKSα 〉 = EH [nα] + EX [nα] (2.12)

where

EH [nα] =
1

2

∫∫
dx dx′

nα(x)nα(x′)

|x− x′|
(2.13)

is the Hartree energy which corresponds to an electronic density interacting with
itself and

EX [nα] = −1

2

∑
i,j

∫∫
dx dx′

φ∗αi(x)φαi(x
′)φ∗αj(x

′)φαj(x)

|x− x′|
(2.14)

is the electronic exchange energy which accounts for the antisymmetric nature of
the wavefunction with respect to the exchange of any two particles’ coordinates
and the quantized nature of electrons, meaning it corrects the self-interaction of
each electron wrongly included in EH [nα]. However, as it happened for the ki-
netic energy, EKS

e,e [nα] = Ee,e[nα]− Ee,e,C [nα] lacks of the correlation contribution
Ee,e,C [nα] to the electron-electron interaction energy.

We shall rewrite the total energy functional as

Ee[nα] = TKSe [nα] + Eext[nα] + EH [nα] + EX [nα] + TC [nα] + Ee,e,C [nα]. (2.15)

Correlation properties are purely many-body properties and can only be calculated
exactly by solving the many-body Schrödinger equation, i.e. by quantum Monte
Carlo methods [43]. In mean-field theories as in DFT TC [nα] and Ee,e,C [nα] are
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always approximated to some degree. Besides, while easily accessible in principle,
EX [nα] is considerably more expensive to evaluate computationally than TKSe [nα],
Ee,I [nα] and EH [nα]. Thus, it is common to approximate the exchange energy as
well, leading to the usual grouping together of the exchange and correlation ener-
gies into the exchange-correlation energy Exc[nα]. Thus, our final energy functional
has the form

Ee[nα] = TKSe [nα] + Eext[nα] + EH [nα] + Exc[nα]. (2.16)

We minimize the energy with respect to φ∗αi(x) using the variational method:

δ

δφ∗αi(x)

(
Ee[nα]−

∑
j

εj(

∫
dx φ∗αj(x)φαj(x)− 1)

)
= 0, (2.17)

where εj are Lagrange multipliers related to the normalization condition of the
single-particle wave functions. Using Eq. (2.8) it is straightforward to obtain

−1

2
∇2φαi(x) +

(
δEext[nα]

δnα(x)
+
δEH [nα]

δnα(x)
+
δExc[nα]

δnα(x)

)
φαi(x) = εiφαi(x). (2.18)

As we know from the second Hohenberg and Kohn theorem, the density that
minimizes the energy functional is the exact ground state energy. Since electrons
are fermions, the ground-state density is calculated filling the electronic states of
energy ε by following the zero temperature Fermi-Dirac distribution 2[θ(εF − ε)],
where the factor of 2 accounts for spin-degeneracy and εF is the Fermi energy
of the system, which indicates the highest energy occupied electronic state in a
metal1. Thus, the ground-state density reads

n0(x) =
∞∑
i=0

2θ(εF − εi)|φi(x)|2 = 2

N
2
−1∑

i=0

|φi(x)|2, (2.19)

with ε0 being the lowest single-electron eigenvalue. By comparing Eq. (2.18) to
Eq. (2.7) and plugging the expressions in Eqs. (2.12) and (2.10) we obtain

V KS(x) = Vext(x) +

∫
dx

n0(x)

|x− x′|
+

∣∣∣∣δExc[n0]

δn0(x)

∣∣∣∣
α=0

=

= Vext(x) + VH(x) + Vxc(x). (2.20)

If we knew the functional form of Exc we would be able to solve the ground state of
the system exactly. However, this is not possible and approximations are necessary.

1The Fermi-Dirac distribution at finite temperature is given as fε(T ) = 2
e(ε−εF )/κBT−1

, where

T is temperature and κB the Boltzmann constant.
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Many Exc functionals have been proposed in the last years, each of them with some
benefits and pathologies [44–46]. As deep theoretical analysis and development of
Exc functionals lay far from the objectives of this thesis, we will briefly describe
those that have been used in our calculations.

2.2.1 LDA and GGA functionals

By far the most famous Exc approximation is the Local Density Approximation
(LDA) [42], which assumes this energy contribution is just a functional of the
ground state density in each point of the system2:

ELDA
xc [n] =

∫
dx n(x)εHEGxc [n(x)]. (2.21)

The upper HEG index holds for homogeneous electron gas [47], where the density
is constant throughout space. Here, we assume the expression is still valid when
the density varies from point to point. In most solids the behavior of electrons is
quite close to the one in a HEG and one may assume the functional form is the
same. Moreover, this assumption is justified due to the fact that one recovers the
same analytical form at high densities and slowly-varying ones.

The LDA energy is parametrized as follows [48]:

εLDAxc [n] = εHEGx [n] + εHEGc [n], (2.22)

where the exchange term reads as

εHEGx [n] = −3

4

(
3

π

)1/3

n1/3. (2.23)

Various parametrizations of this correlation term have been tabulated for different
densities [49–52]. In this thesis we will use two of the most typical parametrizations
for the correlation, given by Perdew and Zunger [52] and Perdew and Wang [53].

Looking at the nature of the approximation one can see that it will work reasonably
well unless the inhomogeneities are high, as in isolated atoms. Even though it
seems a too simple or rough approximation it is able to give much better results
than expected. However, it has some known pathologies that are usually general.
For instance, the most remarkable is the overestimation of binding energies and
its consequent underestimation of bond lengths.

2We drop the 0 indices for simplicity.
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Taking advantage of the good behavior and results obtained within the LDA,
semilocal approximations have been developed in order to take into account the
inhomogeneities n(x) may have. This is performed including non-local terms as
it is done in the Generalized Gradient Approximation (GGA), which introduces a
correction with the gradient of the density:

EGGA
xc [n] =

∫
dx n(x)εxc[n(x), |∇n(x)|]. (2.24)

In our calculations we used the PBE parametrization of the Exc [45]:

EGGA
xc [n] = EGGA

x [n] + EGGA
c [n]. (2.25)

The exchange term reads

EGGA
x [n] =

∫
dx n(x)εHEGx [n(x)]Fx(s), (2.26)

where εHEGx is the one used in the LDA and Fx(s) = 1 + 0.804(1− [1 + 0.273s2]−1)
introduces the gradient correction to the density via the dimensionless parameter
s = 0.1616|∇n|/n4/3. It is straightforward to see that one obtains the LDA limit
for vanishing gradient. EC is constructed using the dimensionless parameter t =
0.9669|∇n|/n3/2,

EGGA
c [n] =

∫
dx n(x)(εHEGc [n(x)] + Fc[n(x), t]). (2.27)

Fc[n(x), t] is built to fit some specific limiting values [45, 54, 55].

Unfortunately, some solids show sharp density inhomogeneities making the gra-
dient expansion break down. Moreover, LDA fulfills several sum rules that are
violated by the GGA [56]. Thus, GGA does not necessarily improve LDA results,
being the choice of one or another approximation system dependent. In this work
we have mostly used the PBE-GGA approximation [45], even though PZ-LDA [52],
PW-LDA [53] and other approximations have also been used for comparison with
other works and for testing. Testing different functionals helps in order to differ-
entiate real physical properties from artifacts coming from inappropriate choices
of the exchange-correlation functional approximation.

2.3 Bloch’s theorem and plane-wave basis sets

As our analyzed systems have crystalline structures, we will take advantage of their
periodicity. Due to the periodic structure of a crystal lattice the Hamiltonian is
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periodic. That has straightforward implications in the wavefunctions that will
make our work easier.

For any T lattice vector
He(r) = He(r + T), (2.28)

which also holds for any effective single-electron Hamiltonian and potential. In
this section we will write them as HKS(x) and V KS(x), respectively, for notation
simplicity as our main mean field theory of choice will be DFT. However, Bloch’s
theorem is valid at any theory.

Bloch’s theorem proves that one-electron solutions (Bloch states) must be of the
following form [48]:

φnk(x) = eik·xunk(x)

φnk(x + T) = eik·Tφnk(x),
(2.29)

where unk(x) has the periodicity of the lattice. n is the band index and k is the
wave vector of the electron. Applying Born-Von Karman boundary conditions the
possible values of k reduce to the number of unit cells Nk ∝ 1023:

kmbi
=
∑
bi

mbi/Nbibi mbi ∈ [0, Nbi − 1]. (2.30)

bi, i = 1, 2, 3 are the three basis vectors of the reciprocal lattice, Nbi is the number
of unit cells in the direction of bi and, therefore, Nk = Nb1Nb2Nb3 . In this new
notation the eigenenergies are εnk and the electronic structure is obtained plotting
the energy for different wave vectors in the first Brillouin Zone (BZ) consisting of
all the independent wavevectors.

Looking at the wavefunctions in Eq. (2.29) one can think of plane waves as a good
basis set for writing our one-electron eigenstates [48]:

|φnk〉 =
∑
k′

cnkk′ |k′〉 , (2.31)

where 〈x|k〉 = 1/
√
NkΩBZe

ik·x, ΩBZ is the first BZ volume and cnkk′ is a complex
tensor tensor containing the coefficients of the expansion. The coefficients can be
obtained by diagonalizing HKS written in the plane-wave basis, which reads

〈k|HKS |k′〉 = −1

2
〈k|∇2|k′〉+ 〈k|V KS |k′〉 . (2.32)

Since HKS is periodic, being τ(T) the translation operator:

〈k|HKS |k′〉 = 〈k|τ−1(T)HKSτ(T)|k′〉 = ei(k’-k)·T 〈k|HKS|k′〉 (2.33)
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Therefore, holding the equality

ei(k−k
′)·T = 1⇒ k− k′ = G (2.34)

where G is any reciprocal lattice vector, we have arrived to the conclusion that the
Hamiltonian couples only wave vectors differing just by a reciprocal lattice vector.
As we have obtained a block diagonal Hamiltonian we can diagonalize each block
associated to different k vectors just in the first BZ independently:

〈k−G|HKS|k−G′〉 = −k−G2

2
δGG′ + V KS(G′ −G). (2.35)

Since the kinetic operator is diagonal in the momentum representation, the equa-
tion above means the coupling values are just the Fourier components of the also
periodic effective potential

V KS(G) = 〈k|V KS|k−G〉 =

∫
ΩBZ

dx V KS(x)e−iG·x. (2.36)

This way, the final single-electron eigenstates will have the form

|φnk〉 =
∑
G

cnk-G |k−G〉 (2.37)

φnk(x) = 〈x|φnk〉 =
1√

NkΩBZ

∑
G

cnk-Ge
i(k−G)·x (2.38)

It is straightforward to see that the obtained eigenfunctions are Bloch wavefunc-
tions.

2.4 Pseudopotentials

In the beginning of this chapter we described a piece of matter as a system com-
posed by nuclei and electrons. However, in some cases it is much more convenient
to treat valence electrons and core electrons separately. This way, matter would
be composed by ions (each of them composed by a nucleus and core electrons) and
valence electrons, the outermost layers’ electrons of the atoms that are responsible
for chemical interactions.

However, considering ions as fixed point charges with frozen core electrons is a very
rough and inaccurate approximation. Electronic wavefunctions must be orthogonal
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and Pauli exclusion principle rules the level filling. Taking a bare ionic potential
as vext and plugging it into Eq. (2.5) one would neglect the consequences of
core electrons in the valence electrons’ wavefunctions. In order to properly take
the inner structure of the ions into account while reducing computational costs
pseudopotentials are constructed, which smooth out the oscillatory core part of
the potential and the corresponding wavefunction while the valence part remains
essentially unaltered [47, 57]. Even though pseudopotential development lays far
from this thesis’ objectives, we will briefly explain how they are built.

First of all, the whole electronic configuration of the isolated atom is calculated,
in our particular case using DFT with the desired Exc approximation. Once all
the wavefunctions are obtained the valence electrons are chosen. Which and how
many valence electrons to chose is optional and depends on the desired accuracy
and the nature of the system one wants to analyze. As a consequence of orthog-
onality, valence electrons’ wavefunctions oscillate locally near the nucleus. These
oscillations are very expensive to compute3. Therefore, we assume that the closest
part to the nucleus of the wave function has little influence in our system and
we create a so-called pseudo-wavefunction φpsi (x) for each orbital i which replaces
the oscillations by a smooth function φsmoothi (x), and coincides with the original
all-electron wave function φaei outside a radius known as the cutoff radius Rc:

φpsi (x) =

{
φsmoothi (x), , for |x| < Rc

φaei (x), , for |x| ≥ Rc

. (2.39)

Once we have the pseudo-wave functions of the valence electrons, solving(
−1

2
∇2 + vpsi (x)

)
φpsi (x) = εiφ

ps
i (x). (2.40)

we obtain vpsi (x) for each orbital channel. That pseudopotential is the one we will
use to build vext, which will take into account the inner electrons of the ion. A
schematic illustration of the procedure is shown in Fig. 2.1.

While the energy and the valence electron density produced by the pseudo-wave-
function must be the same as the all-electron wavefunction, φsmoothi is non-unique;
how one builds this smooth part, along with which electrons are considered as
valence electrons, differentiates one pseudopotential from another. In this thesis
we have mostly used norm-conserving [58, 59] and ultrasoft [60] pseudopotentials.
In norm-conserving pseudopotentials the charge enclosed by the core radius in
the all-electron wavefunction is preserved in the pseudo-wavefunction. Ultrasoft

3Using a plane-wave basis this implies the need of more wavefunctions to describe them
properly, thus, requiring more time and memory.
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Figure 2.1: Simplified qualitative representation of a pseudopotential and a pseudo-
wavefunction (radial dependence shown only). The dashed blue curve shows the bare Coulomb
potential of an ion seen by an electron, considering the core electrons are frozen. The black
curve displays the “exact” wavefunction φaei of the valence electron obtained from the all-electron
calculation. Red curves show the constructed pseudo-wavefunction φpsi and its associated pseu-
dopotential vpsi obtained by inverting the Schrödinger equation.

pseudopotentials relax the norm-conserving constraint allowing for a smoother core
part of the wavefunction and, thus, requiring less plane waves, yet compromising
transferability from one system to another and making more testing necessary to
avoid spurious results.

In this work, some of the calculations will be performed in hydrogen crystals. One
could think that using pseudopotentials in hydrogen is a nonsense; nevertheless, in
spite of the lack of nodes of the occupied 1s state, its wavefunction is quite sharp
around the maximum, and smoothing it can speed up calculations by reducing the
amount of plane waves. Besides, the inclusion of additional unoccupied channels
is often necessary and the need of pseudopotentials in hydrogen becomes more
evident.
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| E| > 

| E| < 

Initial wavefunction guess

Calculate density

Build VKS 

Diagonalize H

End of calculation

Figure 2.2: Flowchart of the self-consistent cycle for solving the Kohn-Sham equation. ∆E
and ε are the energy difference between the current cycle and the previous one and the chosen
threshold, respectively.

2.5 Computational method

Now that we have all the theoretical ingredients to perform an electronic struc-
ture calculation we are ready to implement it computationally. We have made
all our electronic structure calculations using the software suite Quantum ES-
PRESSO [61].

The procedure of the self-consistent calculation is shown in Fig. 2.2. For the first
cycle a guess of the total wavefunction is introduced built by the superposition of
individual atom’s valence electrons wavefunctions, which provides an initial elec-
tronic ground state density. With this density we are able to construct the whole
V KS potential and therefore to solve the Kohn-Sham eigenvalue equation (2.7).
The eigenfunctions provide a new electronic density to start over a cycle. One
stops this self-consistent loop when the chosen accuracy (defined by a threshold
value) is reached for the total energy.

If we look at equation (2.37) we see that in order to obtain the exact Kohn-Sham
state the sum should be extended to infinity. As this is practically impossible, one
must fix an energy cutoff (Ecutoff ≥ 1/2|k + G|2) for the plane waves in order to
truncate the sum. The value of this cutoff determines the number of G vectors
in the expansion and needs to be chosen to satisfy the desired accuracy. Ecutoff
depends on both the system to analyze and the pseudopotentials.

On the other hand, for an ideal infinite crystal the number of k vectors in the
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first Brillouin zone is also infinite. Instead, we divide it in a finite Monkhorst-
Pack grid [62] that has also to be chosen and optimized. For a better and faster
convergence in metals, the step function in Eq. (2.19) is commonly substituted
by a smoother or a smeared out function, effectively introducing a low electronic
temperature. We have used the Methfessel-Paxton smearing for such purpose [63].

Electronic structure calculations are easily parallelized taking advantage of the
independence of the wave vectors. We have used computer clusters to run all the
calculations in many interconnected processors in order to speed them up.
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Chapter 3

The nuclear problem

The adiabatic Born-Oppenheimer approximation left us with two equations to
solve. So far, we have shown how to solve the first one corresponding to the elec-
tronic part. Even though electronic degrees of freedom are responsible of many
properties of solids, many others, such as thermal conductivity and superconduc-
tivity, arise due to nuclear (or ionic) degrees of freedom.

In order to know about the nuclear motion we have to solve the nuclear Schrödinger
equation (1.12). As we can see, ions move in a potential that is just the electronic
energy obtained in the previously solved equation (1.5). This potential is usually
referred to as the Born-Oppenheimer Energy Surface (BOES) and it is different
for each electronic energy state. In our case, we will focus on solving the one
corresponding to the electronic ground state (α = 0), as it is done in the adiabatic
approximation.

From Eq. (1.13) we see that the nuclear potential is U(R) ≡ Ee
0(R), where the

nuclear positions are not fixed parameters anymore. We are dealing with a many-
body problem and a BOES of ∼ 1023 degrees of freedom, meaning the system
is unsolvable unless some approximation is considered. When displacements are
much smaller than the interatomic distances a low-order Taylor expansion of the
potential may often be a valid approximation.

3.1 The harmonic approximation

In a crystal ions move around their equilibrium lattice sites, which are defined as
the positions of the nuclei at the local minimum of the BOES corresponding to

31
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the crystal structure under analysis. This way, we can define the position of the
sth nucleus in the mth unit cell as

Rms = Tm + τs + ums = R0
ms + ums, (3.1)

where ums is the displacement of this atom from its equilibrium position R0
ms, Tm

is a lattice vector from the origin to the origin of the mth cell and τs is a basis
vector that denotes the equilibrium position of the sth atom inside the unit cell.

Once the equilibrium positions of the crystal structure are fixed, we can Taylor
expand the BOES in the displacements:

U(R) = U(R0) +
∑
msl

∂U

∂ulms

∣∣∣∣
R0

ulms +
1

2

∑
msl

∑
m′s′l′

∂2U

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

ulmsu
l′

m′s′ +

+
1

6

∑
msl

∑
m′s′l′

∑
m′′s′′l′′

∂3U

∂ulms∂u
l′
m′s′∂u

l′′
m′′s′′

∣∣∣∣
R0

ulmsu
l′

m′s′u
l′′

m′′s′′ + (...), (3.2)

where m runs up to Nq, the number of units cell or, equivalently, the number of
q-points in the first BZ taken into account for solving the nuclear problem which
are not necessarily the same as Nk. The atom index s runs from 1 to Ns, the
number of atoms per unit cell and l runs on the Cartesian coordinates x, y and z.

Since at equilibrium the first order ∂U
∂ulms

∣∣∣∣
R0

term is identically zero by definition,

the lowest order approximation one can make to account for the nuclear motion
is the one retaining terms up to second order in the displacements. This is the
so-called Harmonic approximation and the nuclear Hamiltonian now reads [64]:

HI(R) ≈ U(R0) +
∑
msl

(P l
ms)

2

2ms

+
1

2

∑
msl

∑
m′s′l′

Φll′

msm′s′u
l
msu

l′

m′s′ , (3.3)

where

Φll′

msm′s′ ≡
∂2U

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

(3.4)

are the interatomic force constants.

It is convenient to define the Fourier transformed force constants as

Φll′

ss′(q,q
′) =

1

Nq

∑
mm′

Φll′

msm′s′e
−i(q·Tm+q′·Tm′ ). (3.5)

Interestingly, due to translational symmetry the force constants only depend on
Tm − Tm′ . Therefore, only the terms with q′ = −q survive and Eq. (3.5) is
simplified to

Φll′

ss′(q) = Φll′

ss′(q,−q) =
∑
m

Φll′

ms0s′e
−iq·Tm . (3.6)
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Let us also define in a similar fashion the Fourier transforms of the nuclear dis-
placement and momentum operators

uls(q) =
1√
Nq

∑
n

eiq·Tmulms (3.7)

P l
s(q) =

1√
Nq

∑
n

e−iq·TmP l
ms. (3.8)

(3.9)

The crucial step in order to diagonalize the Hamiltonian is to assume the following
transformation to the bosonic ladder operators,

us(q) =
∑
µ

1√
2msωµ(q)

εlsµ(q)
(
bµq + b†µ−q

)
(3.10)

Ps(q) = −i
∑
µ

√
msωµ(q)

2
εlsµ(q)

(
bµq − b†µ−q

)
, (3.11)

which satisfy the following commutation algebra:

[bµq, b
†
µ′q′ ] = δµµ′δqq′ , [bµq, bµ′q′ ] = 0, [b†µq, b

†
µ′q′ ] = 0. (3.12)

This way, the nuclear Hamiltonian in the harmonic approximation in second quan-
tization can be written as a sum of independent harmonic oscillators [48, 65, 66]:

HI = U0 +
∑
µ

1BZ∑
q

ωµ(q)

(
b†µqbµq +

1

2

)
, (3.13)

with the following eigenenergies

Ωµ(q) = U0 + ωµ(q)(nµq +
1

2
) (3.14)

Here, U0 is the ground state energy of the electronic system at equilibrium (which
includes the contribution coming from the nuclei-nuclei interaction) at the local
minimum of the BOES and εsµ(q) and ωµ(q) are, respectively, the polarization
vector (of atom s in the unit cell) and the frequency of the vibrational mode µ
with momentum q. nµq denotes the occupation level of a mode, in such a way
that when a given mode is excited to the nthµq level, we would say that we have
nµq phonons of that mode. In practice even the frequencies of the vibrational
modes ωµ(q) are often called phonon frequencies and the phonon frequency vs.
momentum dispersion relation is called phonon spectrum. The polarization vectors
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(eigenvectors) and phonon frequencies (eigenvalues) are obtained by diagonalizing
the dynamical matrix Dll′

ss′(q) = Φll′

ss′(q)/
√
msms′ , so that

ω2
µ(q)εlsµ(q) =

∑
s′

∑
l′

Dll′

ss′(q)εl
′

s′µ(q). (3.15)

Finally, the energy per unit cell of a total state |β〉 = |n1q1 . . . n3Nsq1 . . . n3NsqNq
〉,

is given by

Ecell
β =

1

Nk

U0 +
1

Nq

∑
µ

1BZ∑
q

ωµ(q)

(
nµq +

1

2

)
. (3.16)

In particular, as phonons are bosons they follow Bose-Einstein statistics and the
total energy at a given temperature can be calculated as

Ecell(T ) =
1

Nk

U0 +
1

Nq

∑
µ

1BZ∑
q

ωµ(q)

(
nB(ωµ(q)) +

1

2

)
. (3.17)

where

nB(ωµ(q)) =
1

eβωµ(q) − 1
(3.18)

is the usual Bose-Einstein distribution function. The zero point energy (ZPE) of
the system is defined as

Ecell
ZPE = Ecell(T = 0) =

1

Nk

U0 +
1

Nq

1

2

∑
µ

1BZ∑
q

ωµ(q). (3.19)

3.2 Phonons from linear response theory

Once we have formulated the nuclear problem in the harmonic approximation, we
need to calculate the derivatives of U appearing in Eq. (3.3) in order to obtain the
dynamical matrices. Unfortunately, an ab initio calculation of these derivatives
can be extremely cumbersome. Hellmann-Feynman theorem [67, 68] allows us to
calculate first derivatives easily such that

∂U

∂ulms
= 〈ψe0|

∂He

∂ulms
|ψe0〉 =

∂VI,I
∂ulms

+

∫
dx n(x)

∂Vext(x)

∂ulms
. (3.20)

This relation holds since the only explicit dependence on the nuclear coordinates
of He comes from the external potential Vext and the Coulomb internuclear inter-
action VI,I . In order to obtain the second derivatives at equilibrium needed for the
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dynamical matrices, from Eq. (3.20) straightforwardly

Φll′

msm′s′ =
∂2U

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

=

∫
dx

∂n(x)

∂ulms

∣∣∣∣
R0

∂Vext(x)

∂ul
′
m′s′

∣∣∣∣
R0

+

+

∫
dx n(x)

∂2Vext(x)

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

+
∂2VI,I

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

. (3.21)

This last fundamental equation shows how phonons can be calculated from the
electronic properties at the nuclear equilibrium positions as it was already stated
by Pick, Cohen and Martin [69]. However, the second derivatives require the
knowledge not only of the electron density n(x), but of its derivatives with respect

to the nuclear positions ∂n(x)
∂ulms

as well. While the electronic density at equilibrium
has been previously obtained in the electronic structure calculation, the latter
needs to be calculated a posteriori.

Linear response theory allows to calculate derivatives of the density [70]. The
change in the electronic density induced by any external potential Φext is related
to the density-response function χ(x,x′) as follows:

δn(x) =

∫
dx′χ(x,x′)Φext(x′). (3.22)

In the case of lattice vibrations Φext = δVext, which means the external potential
is the change in the electron-ion interaction due to the displacement of ions from
their equilibrium position. The next step is to assume both density and electron-
ion potential changes are linear with respect to nuclear displacements. If one
expands any function f in the atomic displacements up to first order as f(x) =
f 0(x)+∆f(x), where f 0(x) is the value of the f with the ions at their equilibrium
sites and

∆f(x) =
∑
msl

∂f(x)

∂ulms

∣∣∣∣
R0

ulms, (3.23)

we can rewrite Eq. (3.22) as follows:

∆n(x) =

∫
dx′χ(x,x′)∆Vext(x

′). (3.24)

It is, thus, straightforward to show the second derivatives can be written in terms
of the electronic density-response function as

∂2U(R)

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

=

∫
dxdx′

∂Vext(x)

∂ulms

∣∣∣∣
R0

χ(x,x′)
∂Vext(x

′)

∂ul
′
m′s′

∣∣∣∣
R0

+

∫
dx n(x)

∂2Vext(x)

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

+
∂2VI,I

∂ulms∂u
l′
m′s′

∣∣∣∣
R0

. (3.25)
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The response function can be calculated with the following formula [71]:

χ(x,x′) = lim
η→0+

∑
α

〈ψe0|n(x)|ψeα〉 〈ψeα|n(x′)|ψe0〉
(Ee

0 − Ee
α) + iη

+

+
〈ψe,0|n(x′)|ψeα〉 〈ψeα|n(x)|ψe,0〉

(Ee
0 − Ee

α)− iη
(3.26)

If in the equation above we plug Slater determinants constructed with non-inter-
acting (Kohn-Sham, in the case of DFT) orbitals we obtain the so called non-
interacting density-response function

χ0(x,x′) = lim
η→0+

∑
αi,α′i

φ∗αi(x)φα′i(x)φαi(x
′)φ∗α′i(x

′)
fεαi − fεα′i

εαi − εα′i − iη
, (3.27)

where φαi(x) and εαi are eigenfunctions and eigenvalues of an independent-electron
Hamiltonian, and fεαi is the occupation of the state |φαi〉 according to the Fermi-
Dirac distribution. However, as electrons do not interact with each other, χ0

cannot describe electronic screening. Instead, while χ connects the change in
electronic density to the change in Vext, χ0 describes the response of non-interacting
electrons with the already screened perturbation, which in the DFT formalism is
∆V KS:

∆n(x) =

∫
dx′χ0(x,x′)∆V KS(x′). (3.28)

Finally, using Eqs. (2.20) (3.24) and (3.28) its easy to show χ and χ0 are related
by the Dyson equation:

χ(x,x′) = χ0(x,x′) +

∫∫
dx1dx2χ0(x,x1)K(x1,x2)χ(x2,x

′). (3.29)

The kernel of the integral is the functional derivative of the electron-electron in-
teraction potential with respect to the density:

K(x,x′) =
δVH(x)

δn(x′)
+
δVxc(x)

δn(x′)
=

1

|x− x′|
+ fxc(x,x

′) (3.30)

This method has been successfully applied in several simple metallic solids and
surfaces [72–75] but it also has some practical limitations [76]; calculating the re-
sponse function ab initio is extremely computationally demanding for real systems
since it includes a summation over unoccupied states. As we will see later in sec-
tion 3.3, we can overcome this using perturbation theory. Before that, we will show
a particular case in which χ0 adopts an analytical expression: the homogeneous
free-electron gas.
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3.2.1 Phonons from Lindhard theory

Due to translational invariance, the response function of a homogeneous electron
gas does not depend on the absolute coordinates x and x′, but on x− x′:

χ(x,x′) = χ(x− x′). (3.31)

Consequently, its Fourier transform depends on a single momentum coordinate:

χ(k) =
1

V

∫∫
dxdx′χ(x− x′)eik·(x−x

′), (3.32)

meaning Eq. (3.24) adopts the following simple form in momentum space:

∆n(k) = χ(k)∆Vext(k). (3.33)

The same holds in the case of χ0 and, therefore, the Dyson equation in momentum
space reads as follows:

χ(k) = χ0(k) + χ0(k)K(k)χ(k), (3.34)

with simple arithmetic operations leading to

χ(k) =
χ0(k)

1−K(k)χ0(k)
. (3.35)

In the case of free electrons, whose parabolic energy-momentum dispersion and
plane-wave eigenfunctions are well-known, χ0 is analytical. Its expression in mo-
mentum space is known as the Lindhard formula and for a three-dimensional free-
electron gas of density n it reads as follows:

χ0(k) = −kF
π2
FL(|k|/2kF ), (3.36)

where kF = (3π2n)1/3 is the Fermi momentum and

FL(x) =
1

2
+

1− x2

4x
ln

∣∣∣∣1 + x

1− x

∣∣∣∣ (3.37)

is the Lindhard function.

In the random phase approximation (RPA) we neglect the exchange-correlation
term in K, and electronic screening is thus only considered with the Hartree term,
which is analytical and in momentum space can be written as:

K(k) =
4π

k2
. (3.38)



38 Chapter 3. The nuclear problem

Now, we have all the ingredients to write

χ(k) =
χ0(k)

1− 4π
k2χ0(k)

. (3.39)

Lindhard theory, despite its simplicity, yields reasonably good results whenever the
behavior of the electrons in the system under analysis is close to the homogeneous
electron gas. The simple alkali metal sodium is a good example where the validity
of this model holds at least up to a qualitative level [77], where this theory was
even able to make predictions such as Kohn anomalies [78]. These kinks on the
phonon branches are a consequence of the existence of a Fermi surface; they may
appear whenever the wavevector of a phonon satisfied |q + G| ∼ 2kf due to the
discontinuity on the derivative of the Lindhard function (eq. (3.37)) at that point.
However, one may expect this theory fails calamitously not only in insulators,
but also in other metals with a more complex electronic structure than the one
assumed here.

3.3 Density functional perturbation theory

In order to deal with the derivatives of the density, the main idea of density
functional perturbation theory (DFPT) [79–81] is to apply first order perturbation
theory to calculate the variation of the Kohn-Sham orbitals when the ions are
displaced from their equilibrium position, allowing to obtain the induced electron
density needed for calculating the force constant matrix (and, as we will see in
Chapter 4, electron-phonon coupling coefficients as well) just summing over the
occupied states.

The original Kohn-Sham problem was settled in Eq. (2.7) and the density given in
Eq. (2.8). If we make a first order expansion in the Hamiltonian, the eigenvalues,
the eigenfunctions and the density,

HKS → HKS + ∆HKS

εnk → εnk + ∆εnk

|φnk〉 → |φnk〉+ |∆φnk〉
n(x) → n(x) + ∆n(x),

where 〈x|∆φnk〉 = ∆φnk(x), we obtain an eigenvalue problem at linear order that
reads

(HKS − εnk) |∆φnk〉 = −(∆HKS −∆εnk) |φnk〉 (3.40)
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and, by simple derivation of Eq. (2.19) a density change

∆n(x) = 2Re
∑
n

1BZ∑
k

2[θ(εF − εnk)]φ∗nk(x)∆φnk(x), (3.41)

where the zero temperature Fermi-Dirac distribution function limits the sum to
occupied states only. Eq. (3.40) is known as the Sternheimer equation [82] and is
the perturbed version of eq. (2.7). Finally, the linear change of the Hamiltonian,
∆HKS, can be derived making use of functional derivatives

∆HKS(x) = ∆Vext(x) +

∫
dx′K(x,x′)∆n(x′) (3.42)

or, equivalently, since the kinetic energy change does not have a first order contri-
bution,

∆HKS(x) ≡ ∆V KS(x) = ∆Vext(x) + ∆VH(x) + ∆Vxc(x). (3.43)

The combination of Eqs. (3.40), (3.41) and (3.42) forms a set of self-consistent
equations for the perturbed system that can be solved following a loop similar
to the one in Fig. 2.2. The step function in Eq. (3.41) is smeared out as in the
ground-state electronic calculation, using the same Methfessel-Paxton method [63].

Even though we have formulated the problem in terms of ∆n(x), we could have

formulated it in terms of ∂n(x)
∂unsl

∣∣∣∣
R0

considering that Eqs. (3.40), (3.41) and (3.42)

must hold for all the coefficients in the expansion given in Eq. (3.23). Hence, the
DFPT formalism described above gives the derivatives of the density needed to
construct the dynamical matrices.

Our calculations of the dynamical matrices have been done using the ph.x package
of Quantum ESPRESSO. In principle, one needs N ∼ 1023 dynamical matri-
ces to sample the whole BZ. However, DFPT calculations are time demanding.
Therefore, the usual procedure is to divide the BZ in a q-point mesh and make the
phonon calculation for those points. Afterwards, a discrete Fourier transform is
done to obtain the force constant matrix of the system. Finally, one goes back to
the reciprocal space by Fourier-transforming it again to the desired q-points to plot
the phonon spectra. These two last steps, which constitute the so-called Fourier
interpolation, are performed by the packages q2r.x and matdyn.x, respectively.
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3.4 Anharmonic effects in solids

In the harmonic approximation one makes the assumption that ions oscillate with
a small amplitude near a fixed equilibrium position. Truncating the Taylor ex-
pansion in Eq. (3.3) at second order in the displacements we can diagonalize
the Hamiltonian in terms of phonons that do not interact with each other. This
assumption seems to be valid in most solids for temperatures below the melting
point, specially for obtaining phonon frequencies and its associated physical prop-
erties [66]. There are, however, many important physical phenomena that cannot
be explained within this approximation that arise entirely due to the higher order
terms in the Taylor expansion. Within the harmonic approximation phonons have
infinite lifetimes and do not decay which, for instance, implies a strictly harmonic
crystal has an infinite thermal conductivity. In reality, solids obviously have a fi-
nite thermal conductivity and it is well known that the peaks observed in neutron
scattering experiments have a measurable width, which is inversely proportional to
the lifetime of a phonon. Moreover, the harmonic approximation is unable to ex-
plain the temperature dependence of phonons nor the thermal expansion of solids
either.

Anharmonicity can be treated perturbatively by calculating explicitly more terms
of the Taylor expansion of the potential. Third order terms can be efficiently
computed in crystals using DFPT thanks to the 2n + 1 theorem, which allows
to obtain derivatives of the total energy up to (2n + 1)th order from nth order
derivatives of the density [83]. However, calculating higher-order terms ab initio is
strongly complicated and perturbation theory is only valid in the regime where the
harmonic potential is much larger than higher-order terms, which does not always
hold. It can be the case that nuclear displacements cannot be considered small
anymore making higher-order terms to be as important as, or even more than, the
second-order ones. A source of such big displacements can be high temperature
when a solid is close to melting, but even zero-point motion or low temperatures
can be enough to break down both the harmonic and perturbative regimes in the
presence of very light atoms or when the crystal is close to dynamical instabilities,
as it happens in ferroelectrics or in materials exhibiting charge density waves.

Anharmonic effects at a non-perturbative level have been commonly treated with
computationally expensive methods based on molecular dynamics simulations [84–
91]. These approaches require long simulation times to obtain converged renor-
malized phonon spectra and, as they are based on Newtonian dynamics, their ap-
plication is limited to temperatures above the Debye temperature. Path-integral
molecular dynamics [92] overcomes this limitation by considering the quantum be-
havior of nuclei, but the computational cost of this approach is even greater. In
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recent years, several methods [93–100] have been developed mainly inspired by the
self-consistent harmonic approximation (SCHA) formulated by Hooton [101]. The
SCHA uses the variational Gibbs-Bogoliubov (GB) principle in order to approxi-
mate the free energy of the true nuclear Hamiltonian with the free energy calcu-
lated with a trial harmonic density matrix for the same system, which does not
necessarily coincide with the harmonic density matrix obtained from the harmonic
approximation. In this thesis we use a stochastic implementation of the SCHA,
the so-called stochastic self-consistent harmonic approximation (SSCHA) [93, 94].

3.4.1 The stochastic self-consistent harmonic approxima-
tion

In the SCHA the vibrational free energy of the system is minimized with respect
to a trial density matrix which is chosen to be harmonic; this practically means
the minimization is performed with respect to phonon frequencies, polarization
vectors and average nuclear equilibrium positions. After minimization, one obtains
effective phonon frequencies, polarization vectors and equilibrium positions which
include anharmonic effects up to infinite order in a non-perturvative, variational
way. The SSCHA has been successfully used in hydrides, such as platinum and
palladium hydrides and the record superconductor H3S [93, 94, 102, 103], charge
density wave systems as Nb2Se [104] and in ferroelectric and incipient ferroelectric
chalcogenides [105].

Given the nuclear Hamiltonian H = TI+U in (we drop the I index from HI in 1.13
for simplicity), the partition function reads ZH = tr

[
e−βH

]
and the Helmholtz free

energy is

FH = − 1

β
lnZH = tr (ρHH) +

1

β
tr (ρH ln ρH) , (3.44)

where ρH = e−βH/tr[e−βH ] is the density matrix and β = 1
κBT

. We can define a
trial Hamiltonian H = TI + U and build a trial density matrix ρH and write the
corresponding free energy as

FH = tr (ρHH) +
1

β
tr (ρH ln ρH) . (3.45)

If we take the trial density matrix ρH but compute the free energy with the actual
anharmonic Hamiltonian H we obtain

FH(H) = tr (ρHH) +
1

β
tr (ρH ln ρH) , (3.46)



42 Chapter 3. The nuclear problem

which satisfies the Gibbs-Bogoliubov inequality

FH ≤ FH(H). (3.47)

By addition and subtraction of tr (ρHH) and using Eq. (3.45) we get

FH(H) = FH + tr [ρH (U − U)] , (3.48)

which is the function that has to be minimized with respect to the trial Hamiltonian
H.

In the SCHA the trial potential U is restricted to a harmonic one, so H takes the
form

H =
∑
ms

∑
l

(
P l
ms

)2

2mms

+
1

2

∑
mm′

∑
ss′

∑
ll′

ũlmsΦ̃
ll′

mm′ss′ũ
l′

m′s′ , (3.49)

where Φ̃ll′

nm′ss′ is the trial force constant matrix and the atomic displacements
ũm′s′ are referred to the average nuclear positions R̃0, which are the centroids
of the Gaussian harmonic density matrix. The advantage of using a harmonic
trial Hamiltonian is that the term FH in (3.48) and the density matrix ρH can
be expressed in a closed form in terms of the phonon frequencies and polarization
vectors, making calculations easier.

FH(H) has to be minimized with respect to Φ̃, from which arises the implicit
minimization with respect to phonon frequencies and polarization vectors, as di-
agonalizing the force constant matrices Φ̃ we obtain ωµH and εmsµH. Furthermore, it

also has to be minimized with respect to the centroids R̃0, which are not necessarily
the R0 positions of the minimum of the BOES.

The expressions for FH(H) and its gradients are the following:

FH(H) = FH +

∫
dR [U(R)− U(R)] ρH(R) (3.50)

∇R̃0FH(H) = −
∫

dR [f(R)− fH(R)] ρH(R) (3.51)

∇Φ̃FH(H) = −
∑

mm′ss′ll′µ

√
ms′

ms

(εlmsµH∇Φ̃ ln aµH + ∇Φ̃ε
lm
sµH)εl

′m′

s′µH

×
∫

dR[f lms (R)− f lmsH(R)](Rl′m′

s′ − R̃l′m′0
s′ )ρH(R). (3.52)
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In these expressions R ≡ {R1, ...RM} is a general nuclear configuration. ρH(R)
is the probability to find the system described by H in that general nuclear con-
figuration R, which in normal coordinates is a product of Gaussians. aµH =√
~coth(β~ωµH/2)(2ωµH) is called the normal length1 of mode µ and is the stan-

dard deviation of the Gaussians. Finally, f(R) is the vector formed by all the
atomic forces for the nuclear configuration R and fH(R) are the forces defined by
H. The only non-analytic terms in equations (3.50-3.52) are the integrals and, of
course, the actual forces f(R).

The usual procedure for evaluating the integrals involves approaching to higher
order coefficients in the Taylor expansion, which is a difficult and time-consuming
task. In the SSCHA method, however, these integrals are evaluated stochastically.
By using the relationship∫

dRO(R)ρ(R) ' 1

Nc

Nc∑
I=1

O(RI) ≡ 〈O〉, (3.53)

we are able to convert the integral in a finite sum. The set of RI configurations
is created according to the distribution ρ(R). O is any operator and Nc is the
number of configurations we have created. One recovers the exact value for the
integral in the limit Nc → ∞. As we are dealing with a stochastic procedure, we
have a statistical error scaling as 1/

√
Nc. In return, this reduces the problem to

calculating forces acting on atoms in supercells, which are easily extracted from
electronic ground state calculations thanks to the Hellmann-Feynman theorem.

The minimization is worked out using a Conjugate-Gradient (CG) method and it
is carried out in a subspace of the parameters that preserve crystal symmetries:
Φ̃ and R̃0 are written on a symmetrized vector basis and the coefficients of such
basis vectors are optimized. Therefore, depending on the system, we will obtain
a different Np number of independent coefficients to optimize. The flowchart in
Fig. 3.1 summarizes the minimization process. An initial guess H0 (in the first
step j = 0) is made for the trial Hamiltonian. A common procedure is to use the
harmonic Hamiltonian obtained in a previous harmonic phonon calculation using
DFPT, for instance, even though this cannot be used whenever the system is
unstable in the harmonic approximation. This trial Hamiltonian is used to create
Nc nuclear configurations according to ρH0(R). The energy and atomic forces in
each of the configurations are calculated in supercells2. Finally, we are able to
evaluate the integrals in Eqs. (3.50-3.52) and perform a conjugate gradient step.

This way, R̃0 and Φ̃ are updated so a new Hj is obtained.

1Even if it has dimensions of length times square root of mass.
2Using supercells to calculate atomic force constant matrices makes the Fourier transform

provide the dynamical matrices in a q-mesh of the same size as the supercell.
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Figure 3.1: Flowchart of the SSCHA minimization process. The step marked in black, the
calculation of forces in supercells, is the most time-demanding, and the program is optimized to
call it as little as possible.

In principle, in order to perform a new cycle of the CG minimization new configura-
tions should be created using the new ρHj . However, this would be very inefficient
as electronic calculations in supercells are quite computationally demanding. In-
stead, a reweighting importance sampling technique is used, by correcting Eq.
(3.53) as ∫

dRO(R)ρ(R) ' 1

Nc

Nc∑
I=1

O(RI)
ρHj
ρHj0

, (3.54)

where j0 is the latest iteration at which configurations were created. As long as
〈 ρHj
ρHj0
〉 does not deviate substantially from unity, the configurations created with

Hj0 can be reused. When the deviation is larger than a fixed parameter η new
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Figure 3.2: One dimensional example of the SCHA with arbitrary units for energy and displace-
ment. The actual potential and the harmonic one are the black and red solid curves, respectively.
The ground state harmonic, SSCHA (at zero temperature) and exact wavefunctions are shown
with dashed curves. Dotted lines show the energy and the average position of each ground state
wavefunction.

configurations have to be created with Hj. The minimization stops when the
chosen convergence criterion is satisfied. In our case we set a threshold value for
the norm of the total gradient. One can always add extra configurations to reduce
the statistical error and obtain the desired precision.

Figure 3.2 illustrates the aim of this theory with a simple one dimensional and zero
temperature example were the density matrix in position representation reduces
to the ground state wavefunction, which is a Gaussian curve. Imagine a real
anharmonic potential, represented by a black curve in the figure, acts on a particle
of unitary mass. In this particular case, the actual potential is known and we can
solve the Schrödinger equation to obtain the exact ground state of the system,
whose wavefunction is shown in dashed black. In the harmonic approximation
(shown in red), the ground state wavefunction is just a Gaussian centered at the
origin, whose standard deviation is just

√
1/ω0 a0 and the ground state energy is

E = ω0/2 = 1/2 = 0.5 Hartree. In the SCHA we assume the wavefunction is a
Gaussian and optimize its centroid position and standard deviation to minimize
the vibrational energy. This leads to a wavefunction (blue curve) with a centroid
position of 0.61 a0 and a ground state energy of 0.41 Hartree, values much closer
to the exact solutions, of 0.60 a0 and 0.40 Hartree, respectively, than the harmonic
ones (0.0 a0 and 0.5 Hartree, respectively).



46 Chapter 3. The nuclear problem



Chapter 4

The electron-phonon coupling

So far, we have considered electrons and phonons as fully independent systems.
This means we assumed our total Hamiltonian was well approximated by just
taking the Born-Oppenheimer Hamiltonian and neglecting ∆H in Eq. (1.11),
which precisely accounts for how the nuclear motion affects the electronic structure
of the system (and vice versa). For semi-conductors and insulators, where there is
an electronic energy gap which is in general larger than the phonon frequencies,
this assumption mostly holds; in the case of metals, where the gap is zero, it
inevitably breaks down.

Let us write the Hamiltonian of the total system as

Htot = HBO + ∆H. (4.1)

For |α, β〉 being any state of the system product of separate electronic and phonon
parts in accordance to the adiabatic approximation (as defined in Eqs. 1.14 and
1.15), we can write the matrix elements of the total Hamiltonian as:

〈α′, β′|Htot|α, β〉 = Eαβδαα′δββ′ + 〈α′, β′|∆H|α, β〉 . (4.2)

In Eq. 1.11 we can see ∆H is the sum of two terms, and so is any of its matrix
elements:

〈α′, β′|∆H|α, β〉 = 〈α′, β′|
∑
ms

1

ms

[Pms]I [Pms]e|α, β〉+〈α′, β′|
∑
ms

1

2ms

[P2
ms]e|α, β〉 .

(4.3)

Let us assume 〈x; Rm + τs + ums|α〉 = ψe,α(x; Rm + τs + ums) can be expanded in
a power series of the atomic displacements ums. While the first term in Eq. (4.3)

47
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involves first order derivatives with respect to nuclear positions and, therefore,
contributes at linear order in the displacement, the second term involves second
order derivatives. Therefore, the first part is the important contribution and, thus,
the electron-phonon interaction Hamiltonian can be limited to

He−ph =
∑
ms

1

ms

[Pms]e[Pms]I , (4.4)

and its matrix elements are separable in nuclear and electronic states:

〈α′, β′|Hep|α, β〉 =
∑
ms

1

ms

〈β′|Pms|β〉 〈α′|Pms|α〉 . (4.5)

The phonon part in momentum space can be immediately obtained by taking
the matrix element 〈β′|Pms|β〉 and using the commutation relation [HI ,ums] =
− i
ms

Pms and the bosonic ladder operators b and b† as defined in Eq. 3.101:

〈β′|Pms|β〉 = ims(Eβ′ − Eβ) 〈β′|ums|β〉
(4.6)

= ims(Eβ′ − Eβ)
1√
Nq

1BZ∑
q

∑
µ

eiq·Rm√
2msωµq

εsµq 〈β′|
(
bµq + b†µ−q

)
|β〉 .

Obtaining the electronic part is not straightforward, because the commutation
relation [HI ,ums] = − i

ms
Pms does not hold for He. Using quantum perturbation

theory we can write the perturbed electronic states to first order as |α〉 → |α〉 +
|∆α〉, with

|∆α〉 =
∑
α′

〈α′|∆He
ms|α〉

Ee
α − Ee

α′
|α′〉 , (4.7)

and the electronic states |α〉 (and |α′〉) referring to the equilibrium positions of
the ions. In this context, the matrix element 〈α′|Pms|α〉 will only have a non-
vanishing contribution for 〈α′|Pms|∆α〉. The change in the electronic Hamiltonian
∆He

ms caused by an atomic displacement ums can be expanded to linear order as
∆He

ms = ums · ∇umsH
e. Now we can rewrite the matrix element as

〈α′|Pms|α〉 = 〈α′|
∑
α′′

〈α′′|Pmsums · ∇umsH
e|α〉

Ee
α − Ee

α′′
|α′′〉 =

= −i
∑
α′′

δα′α′′
〈α′′|∇umsH

e|α〉
Ee
α − Ee

α′′
= −i〈α

′|∇umsH
e|α〉

Ee
α − Ee

α′
.

1From now on we will write the phonon wave vector dependence as a subindex, as in ωµq =
ωµ(q).
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Given that within DFT He(r) =
N∑
i

HKS(ri), we can easily write∇umsH
e in second

quantization making use of the usual fermionic creation and annihilation operators,

∇umsH
e =

∑
nn′

1BZ∑
kk′

c†n′k′cnk 〈φn′k′| ∇umsH
KS |φnk〉 , (4.8)

where c†nk creates and cnk annihilates a Kohn-Sham state. Finally, the electronic
part of the electron-phonon Hamiltonian reads as follows:

〈α′|Pms|α〉 = −i 1

Ee
α − Ee

α′

∑
nn′

1BZ∑
kk′

〈φn′k′| ∇umsH
KS |φnk〉 〈α′|c†n′k′cnk|α〉 . (4.9)

Knowing that in a scattering process energy is conserved, Ee
α − Ee

α′ = Eβ′ − Eβ,
we can write the total electron-phonon Hamiltonian as

He−ph =
∑
ms

∑
nn′

1BZ∑
kk′q

∑
µ

eiq·Rm 〈φn′k′| ∇umsH
KS |φnk〉√

Nq2msωµq
εsµq

(
bµq + b†µ−q

)
c†n′k′cnk.

(4.10)
Noting that the derivatives of the potential are periodic in real space and as mo-
mentum conservation can be extracted from

∑
m e

iq·Rm 〈φn′k′| ∇umsH
KS |φnk〉, the

electron-phonon Hamiltonian can be rewritten in the Fröhlich way as

He−ph =
1√
Nq

∑
µ

1BZ∑
q

∑
nn′

1BZ∑
k

gµn′k+q,nkc
†
n′k+qcnk

(
bµq + b†µ−q

)
, (4.11)

where the electron-phonon coupling function is given by

gµn′k+q,nk =
∑
m

∑
s

eiq·Rm
1√

2msωµq
〈φn′k+q| ∇umsH

KS · εsµq |φnk〉 . (4.12)

The Fröhlich Hamiltonian given in Eq. (4.11) describes the creation (annihilation)
of a phonon mode that at the same time annihilates (creates) an electron-hole
pair (see Fig. 4.1) and it is the basis for the many-body electron-phonon problem
that drives, for example, the superconducting state. Luckily, once the electronic
ground-state and phonon spectra have been calculated, He−ph can be obtained
from DFPT following the procedure described in Section 3.3.
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�εnk
ωµq

εn′k+q �εnk εn′k+q

ωµ−q

Figure 4.1: Diagrams that represent the interactions in He−ph. Straight and wig-
gling lines represent electrons and phonons, respectively, while time evolution
is depicted from left to right. In the absorption diagram (left) energy conser-
vation requires that εnk + ωµq = εn′k+q while in the emission diagram (right)
εnk = ωµ−q + εn′k+q. Momentum is conserved in each interaction vertex.

4.1 Migdal-Eliashberg theory

Even though we have already defined the electron-phonon Hamiltonian, we have
not deduced how it will affect the total wavefunction of the system yet. In fact, the
electron-phonon interaction affects both the lattice dynamics and the electronic
structure, which in turn alter the electron-phonon interaction itself. In order to
properly account for this self-consistency we will use many-body perturbation the-
ory and obtain both the electron and phonon Green functions, which will describe
the excitations of the system or, in other words, how electronic and vibrational
states are affected by the coupling of these two systems previously considered as
independent under the Born-Oppenheimer approximation.

The starting point in all many-body problems is the Dyson equation [65, 106],
which reads

Gn(k, iωm) = G0
n(k, iωm) +G0

n(k, iωm)Σn(k, iωm)Gn(k, iωm) (4.13)

for the electron Green function and

Dµ(q, iΩm) = D0
µ(q, iΩm) +D0

µ(q, iΩm)Πµ(q, iΩm)Dµ(q, iΩm) (4.14)

for the phonon Green function. In the equations above temperature is incorporated
with the Matsubara complex frequency formalism and, therefore, the imaginary
fermion iωm = i(2m−1) and boson iΩm = i2m frequencies need to be analytically
continued to the real frequency (or energy) axis (i.e., iωn → ε+ iη and iΩn → ω+
iη at zero temperature). The noninteracting electron Green function G0

n(k, iωm)
can be written in terms of the eigenvalues of the one-electron effective electronic
Hamiltonian (HKS in the DFT formalism) as

G0
n(k, iωm) =

1

iωm − εnk
, (4.15)
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while the noninteracting phonon Green function D0
n(k, iωm) can be written in

terms of the eigenvalues of the harmonic nuclear Hamiltonian (i.e. the phonon
frequencies):

D0
µ(q, iΩm) =

2ωµq
(iωm)2 − (ωµq)2

. (4.16)

This allows us to rewrite the Dyson equations as

Gn(k, iωm) =
1

iωm − εnk + Σn(k, iωm)

(4.17)

Dµ(q, iΩm) =
2ωµq

(iΩm)2 − (ωµq)2 + 2ωµqΠµ(q, iΩm)
.

Finally, by following the diagrammatic representation in Fig. 4.2 the electron and
phonon self-energies can be written formally from the standard Feynman rules [65]2

as

Σn(k, iωm) = − 1

Nqβ

∑
µ

1BZ∑
q

∑
n′

∑
iΩn

[gµn′k+q,nk]∗g̃µn′k+q,nk(iωn, iΩn)

× Gn′(k + q, iωm + iΩn)Dµ(q, iΩm) (4.18)

and

Πµ(q, iΩm) =
1

Nkβ

∑
nn′

1BZ∑
k

∑
iωm

[gµn′k+q,nk]∗g̃µn′k+q,nk(iωn, iΩn)

× Gn′(k + q, iωm + iΩn)Gn(k, iωm), (4.19)

respectively, where β = 1/κBT is the inverse of temperature and g̃µn′k+q,nk(iωn, iΩn)
are the renormalized electron-phonon matrix elements due to the higher order
terms of electron-phonon interaction, as well as due to scattering processes dif-
ferent than electron-phonon scattering as electron-electron or electron-impurity
scatterings.

Electron and phonon self-energies constitute a set of coupled equations where the
number of diagrams to be summed is infinite. Fortunately, the lowest order di-
agrams (see Fig.4.2), which are built by substituting the electron and phonon
propagators by their noninteracting counterparts and by plugging gµnn′(k,q) in-
stead of g̃µnn′(k,q, iωm, iΩm), are expected to be a good approximation; according

2As we are neglecting spin degrees of freedom, the 2 factor in Eq. (4.19) is not present.
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(a)
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Σ =
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Figure 4.2: Pictorial representation using Feynman diagrams of the Dyson equa-
tion for the electron Green function (a) and the phonon Green function (b). The
electron (c) and phonon (d) self-energies are shown in their exact form and in the
Migdal approximation. In the diagrams a double straight line depicts the electron
Green function, a single line the noninteracting electron Green function, a dou-
ble wiggly line the phonon Green function, a single wiggly line the noninteracting
phonon Green function, the dot the bare vertex shown in Fig. 4.1 and the shaded
dot the renormalized vertex.

to Migdal’s theorem, all vertex corrections will be of order
√

1/ms [107]. This
way, we can decouple the expressions for the self-energies, which now read

Σn(k, iωm) = − 1

Nqβ

∑
µ

1BZ∑
q

∑
n′

∑
iΩn

|gµn′k+q,nk|
2G0

n′(k + q, iωm + iΩn)

×D0
µ(q, iΩm) (4.20)

and

Πµ(q, iΩm) =
1

Nkβ

∑
nn′

1BZ∑
k

∑
iωm

|gµn′k+q,nk|
2G0

n′(k + q, iωm + iΩn)

×G0
n(k, iωm). (4.21)
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After performing the sum over Matsubara frequencies and continuing the functions
analytically to real frequencies, the self-energies read3

Σn(k, ω) =
1

Nq

∑
µ

1BZ∑
q

∑
n′

|gµn′k+q,nk|
2

[
nB(ωµq) + 1

2
fn′k+q

ω + iδ + ωµq − εn′k+q

+
nB(ωµq) + 1− 1

2
fn′k+q

ω + iδ − ωµq − εn′k+q

]
(4.22)

Πµ(q, ω) =
1

Nk

∑
nn′

1BZ∑
k

|gµn′k+q,nk|
2 fnk − fn′k+q

εnk − εn′k+q + ω + iδ
. (4.23)

The physical meaning of the self-energies is understood when taking the imaginary
part of the Green functions which, when expressed in the real frequency axis, rep-
resent the electronic excitation and phonon spectra of the system under analysis.
In this context, the real and imaginary parts of the self-energies are associated to
the renormalization and linewidth, respectively, of the corresponding electron or
phonon band. More interestingly, all relevant properties of the electron-phonon
system are derived from these two equations.

In order to analyze the physical phenomena arising from the electron-phonon cou-
pling we find useful to define the Eliashberg function as

α2Fn(k, ω,Ω) =
1

Nq

∑
q

∑
µ,n′

|gµn′k+q,nk|
2δ(Ω− ωµq)δ(ω − εn′k+q), (4.24)

with the electron self-energy adopting the following simple integral form:

Σn(k, ω) =

∫ ∞
−∞

dω′
∫ ∞

0

dΩα2Fn(k, ω′,Ω)

[
nB(Ω) + 1

2
f(ω′)

ω − ω′ + iδ + Ω
+

+
nB(Ω) + 1− 1

2
f(ω′)

ω − ω′ + iδ − Ω

]
(4.25)

Considering that all the relevant physics happen among the states at the Fermi
level, the Eliashberg function can be averaged over the Fermi surface as

α2F (Ω) =
1

N(εF )Nk

∑
n

1BZ∑
k

α2Fn(k, εF ,Ω)δ(εnk − εF ), (4.26)

3In Eq. (4.22) the 1/2 factor in front of the f ’s is a consequence of the fact that we are
including a g = 2 spin-degeneracy factor in the Fermi-Dirac distribution function. The phonon
occupation number follows the Bose-Einstein distribution nB(ωµq) = 1

eωµq/κBT−1
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leading to

α2F (Ω) =
1

N(εF )

1

NqNk

∑
nn′

1BZ∑
kq

∑
µ

|gµn′k+q,nk|
2δ(Ω− ωµq)

×δ(εnk − εF )δ(εn′k+q − εF ), (4.27)

with N(εF ) = 1
Nk

∑
nk δ(εnk − εF ) being the electronic density of states at the

Fermi level.

From the last equation one can think of the Eliashberg function as a phonon density
of states weighted by the strength of the electron-phonon coupling. In fact, after
considering a few assumptions one can write this useful function in terms of the
phonon linewidths, which are experimentally accessible and given by the imaginary
part of the self-energy at the phonon frequency,

γµ(q) = −ImΠµ(q, ωµq). (4.28)

Making use of the following

lim
δ→0

1/(a± iδ) = P(1/a)∓ iπδ(a) (4.29)

property,

γµ(q) =
π

Nk

∑
nn′

1BZ∑
k

|gµn′k+q,nk|
2(fnk − fn′k+q)δ(εnk − εn′k+q + ωµq). (4.30)

At temperatures much lower than the Fermi temperature (εf/κB) fnk ≈ 2θ(εF −
εnk) and, considering that the Dirac delta is the derivative of the step function
and that phonon frequencies are much smaller than electron energies, it can be
deduced that fnk− fn′k+q = 2[θ(εF − εnk)− θ(εF − εn′k+q)] ≈ 2ωµqδ(εn′k+q− εF ).
The smallness of phonon frequencies compared to the electronic energies allows us
to neglect the phonon frequency in the delta function of Eq. (4.30) as well, so the
linewidth can be simplified to

γµ(q) =
2πωµq
Nk

∑
nn′

1BZ∑
k

|gµn′k+q,nk|
2δ(εn′k+q − εF )δ(εnk − εF ). (4.31)

This means we just need to focus on excitations happening exclusively on the
Fermi surface, as we actually recover the Eliashberg function averaged over the
Fermi surface by combining Eqs. (4.31) and (4.27):

α2F (ω) =
1

2πN(εF )Nq

∑
µ

1BZ∑
q

γµ(q)

ωµq
δ(ω − ωµq). (4.32)
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This will be the procedure throughout this work to calculate the Eliashberg func-
tion. For convergence and numerical reasons, the delta functions in Eq. (4.31) are
commonly substituted by Gaussians, whose width needs to be optimized.

As we will see later, the Eliashberg function is a key ingredient to investigate the
electron-phonon coupling mediated superconductivity. However, electron-phonon
coupling affects normal metals as well, as it modifies the electronic states distorting
the band structure close to the Fermi energy. This alteration of the band-structure
is usually represented by the electron-phonon coupling parameter or the sometimes
called mass-enhancement parameter,

λn(k) = −Re

[
∂Σn(k, ω)

∂ω

]
ω=0

, (4.33)

which measures the distortion of the nk band close to the Fermi level due to
the electron-phonon interaction. Actually, this is a key quantity for studying
superconductors as well, even though a new formalism needs to be introduced
to account for the creation of Cooper pairs and the consequent condensate: the
Eliashberg formalism.

4.2 Eliashberg equations

So far we have dealt with a set of electrons and phonons that interact with each
other, yielding a renormalization of electronic and vibrational spectra. However,
in this work the electron-phonon coupling calculations will be addressed to de-
termining the superconducting properties of the systems under analysis. In the
superconducting state the system appears as a condensate formed by electron
pairs known as Cooper pairs. In conventional superconductors the pairing mecha-
nism is provided by the electron-phonon interaction. Eliashberg theory [108, 109],
which extends BCS theory [110] beyond the weak coupling limit, is the appropriate
method to reformulate the problem studied in Section 4.2 by accounting for the
Cooper pairs.

Despite electrons usually repel each other due to the strong Coulomb repulsion,
when being part of a metal a pair of electrons can gain attraction by exchanging
phonons, even if this is not evident if one just looks at the Fröhlich Hamiltonian in
the form (4.11). However, a canonical transformation and a perturbative expansion
of the mentioned Hamiltonian leads to an expression which does not depend on
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�εk′ εk

εk′−q ωq εk+q

Figure 4.3: Diagrammatic representation of Eq. (4.34), which describes the
phonon mediated effective electron-electron interaction responsible of the creation
of Cooper pairs. The exchanged phonon is virtual as it propagates perpendic-
ularly to time evolution and it is, therefore, infinitesimally short lived, allowing
|εk − εk′+q| 6= ωq.

phonon creation and annihilation operators [65]4:

H̃ep =
1BZ∑
kk′

1BZ∑
q

Veff (k,k
′,q)c†k+qc

†
k′−qck′ck (4.34)

with
Veff (k,k

′,q) = gk+q,kgk′−q,k′
ωq

|εk − εk+q|2 − ω2
q

. (4.35)

This Hamiltonian describes the scattering of two electrons with momenta k and k′

into states with momenta k+q and k′−q by the exchange of a virtual phonon with
momentum q (see Fig. 4.3). If we look at the effective electron-electron interaction
Veff we see it becomes attractive when |εk−εk′+q| < ωq, potentially allowing two-
electron bound states (Cooper pairs). Unfortunately, ordinary perturbation theory
does not work in order to solve the eigenvalue problem with a Hamiltonian of the
form H = He + H̃ep and Veff adopting the form in Eq. 4.35. However, we can
extract some conclusions which are crucial for solving this many-body problem:

• As total energy is preserved in a scattering process and as electron-electron
attraction is limited to energy differences below phonon frequencies, only
states existing within a shell of width ωmax (the maximum phonon frequency
of the system) above the Fermi level will contribute to Cooper pair formation.

• The available k-space for scattering processes that fulfill the condition above
is maximum when the total momentum of the electron-pair is zero (k′ = −k).

• Since in conventional superconductors Cooper pairs are expected to have a
symmetric spatial wavefunction, they must adopt the singlet spin state with
the constituting electrons having anti-parallel spins.

4Let us write it for a single electronic band and a single phonon branch for clarity.
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With these considerations, the superconducting state can be defined as a macro-
scopic quantum state characterized by a coherent occupation of Cooper pairs, i.e.,
two-electron states with (k ↑, −k ↓) where arrows denote spin up and down states.
BCS theory uses the variational principle to find a new ground-state following the
conditions above and simplifying the effective attraction potential as

Veff (k,k
′,q) =

{
−|C| , for |εk − εk′+q| < ωq

0 , otherwise ,
(4.36)

with C being a real number. Considered the most important theory regarding the
field of superconductivity, BCS theory was able to explain the underlying physical
mechanism as well as many properties of conventional superconductors. One of the
most important results of the theory was the emergence of an energy gap (2∆ ≈
2ωDe

−1/|C|N(εF ) at zero temperature) in the electronic excitation spectra of metals,
responsible of the Meissner effect and lack of electrical resistivity, for instance.
Interestingly, the gap decreases with increasing temperature until vanishing at Tc,
the superconducting critical temperature.

However, BCS theory lacked of predictive power, specially for Tc, since |C| had
to be determined a posteriori and it did not work whenever the electron-phonon
coupling was strong, as in lead or mercury. This was mainly because retardation
effects were neglected by writing Veff as an instantaneous interaction. Eliashberg
theory [108], which extends Migdal’s work [107] on normal metals to the supercon-
ducting state, overcomes the issues of BCS theory by appropriately rewriting the
electronic Green function and self-energy and by considering the electron-phonon
Hamiltonian in its original many-body Fröhlich form.

Eliashberg theory makes use of the so-called Nambu formalism [111], in which the
two-electron Green function Gn(k, iωm) adopts the following 2× 2 matrix form

Gn(k, iωm) =

(
Gn(k, iωm) F (k, iωm)
F ∗(k, iωm) Gn(−k,−iωm)

)
, (4.37)

in terms of the one-electron Green functions Gn(k, iωm) and the anomalous Green
functions F (k, iωm), which will account for the creation of Cooper pairs, vanishing
in the normal state. In this context the Dyson equation does not change, except
that now the electron Green functions and the self-energy are matrices 5:

Gn
−1(k, iωm) = G0

n
−1

(k, iωm)− Σn(k, iωm), (4.38)

with
G0
n(k, iωm) = (iωm − εnk)−1τ3 (4.39)

5τ0 =

(
1 0
0 1

)
, τ1 =

(
0 1
1 0

)
, τ1 =

(
0 −i
i 0

)
and τ3 =

(
1 0
0 −1

)
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and

Σn(k, iωm) = − 1

Nqβ

∑
µ

1BZ∑
q

∑
n′

∑
iωm′

gµn′k+q,nkτ3 Gn′(k + q, iωm′) τ3

×gµnk,n′k−qDµ(q, iωm′ − iωm). (4.40)

If we write the electron self-energy in the general form

Σn(k, iωm) = iωm[1− Zn(k, iωm)]τ0 + χn(k, iωm)τ3 +

+ Φn(k, iωm)τ1 + Φ̃n(k, iωm)τ2, (4.41)

where Zn, χn, Φ and Φ̃ are yet unknown and real functions, using the Dyson
equation the Green function can be written as

Gn(k, iωm) =
1

Dn(k, iωm)
[iωmZn(k, iωm)τ0 + (εnk + χn(k, iωm))τ3 +

+ Φn(k, iωm)τ1 + Φ̃n(k, iωm)τ2], (4.42)

with

Dn(k, iωm) = (iωmZn(k, iωm))2 − (εnk + χn(k, iωm))2 −
− Φ2

n(k, iωm)− Φ̃2
n(k, iωm). (4.43)

Plugging Eq. (4.42) in (4.40) and separating the τ components, one arrives at four
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self-consistent equations for the four unknown functions Zn, χn, Φn, and Φ̃n:

ωm(1− Zn(k, iωm)) = − 1

Nqβ

∑
µ,n′,m′

1BZ∑
q

|gµn′k+q,nk|
2Dµ(q, iωm′ − iωm)

× ωm′Zn(k + q, iωm′)

Dn′(k + q, iωm′)
(4.44)

χn(k, iωm) = − 1

Nqβ

∑
µ,n′,m′

1BZ∑
q

|gµn′k+q,nk|
2Dµ(q, iωm′ − iωm)

× εn′k+q + χn′(k + q, iωm′)

Dn′(k + q, iωm′)
(4.45)

Φn(k, iωm) =
1

Nqβ

∑
µ,n′,m′

1BZ∑
q

|gµn′k+q,nk|
2Dµ(q, iωm′ − iωm)

× Φn′(k + q, iωm′)

Dn′(k + q, iωm′)
(4.46)

Φ̃n(k, iωm) =
1

Nqβ

∑
µ,n′,m′

1BZ∑
q

|gµn′k+q,nk|
2Dµ(q, iωm′ − iωm)

× Φ̃n′(k + q, iωm′)

Dn′(k + q, iωm′)
(4.47)

The equations above are the so-called Eliashberg equations and the physical mean-
ing of the four unknown functions can be understood after writing the electronic
quasiparticle energy, which are the poles of the Green function after analytic con-
tinuation, i.e., from Dn(k, iωm → ω + iδ) = 0. This gives

En,k =

√
(εn,k + χn(k, En,k))2

Z2
n(k, En,k)

+
Φ2
n(k, En,k) + Φ̃2

n(k, En,k)2

Z2
n(k, En,k)

. (4.48)

One can see Z is the quasiparticle renormalization factor, χ describes shifts in the
electron energies and the gap function is given by

∆n(k, ω) =
Φn(k, ω)− iΦ̃n(k, ω)

Zn(k, ω)
. (4.49)

Thus, the superconducting state is characterized by a non-zero Φ or Φ̃.
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4.2.1 Isotropic approximation

The Eliashberg equations represent a complicated non-linear set of equations which
couple all momenta k with each other. We will use the so-called isotropic equations
instead, where the functions are averaged over the Fermi surface and only the
frequency dependence remains. A very detailed derivation is given by Allen and
Mitrovic [109], but here we only briefly explain the main assumptions leading to
the final form.

• As in the normal state, the electron-phonon interaction produces a significant
renormalization of quasiparticle energies only in a range ±ωmax around the
Fermi energy. Moreover, superconducting gaps are often very isotropic and,
in real materials, defects tend to average anisotropic gaps [112].

• The shift in the electronic energies is usually small, and we therefore take
χ = 0.

• As Φ and Φ̃ obey the same equations, they are expected to have the same
functional form up to a common phase factor. Even though this phase factor
can be important in some cases, as for the description of Josephson junctions,
it is irrelevant for the thermodynamic properties of a homogeneous super-
conductor. In the following, we choose the simple gauge Φ̃ = 0.

• We ignore changes of the phonon quasiparticles and replace Dµ(q, iΩm) by
the non-interacting Green function

Dµ(q, iΩm)→ D0
µ(q, iΩm) =

∫ ∞
0

dΩδ(Ω− ωµq)
2Ω

(iΩm)2 − Ω2
. (4.50)

Under these conditions we can replace the quantities Zn(k, iωm) and φn(k, iωm) by
their Fermi surface averages Z(iωm) and Φ(iωm) and write the so called Eliashberg
equations [109, 113]6:

ωm(1− Zm) = −πT
∑
m′

Λm−m′
ωm′Zm′

[(ωm′Zm′)2 + φ2
m′ ]

1/2

(4.51)

φm = πT
∑
m′

Λm−m′
φm′

[(ωm′Zm′)2 + φ2
m′ ]

1/2
,

6For simplicity, functions are written as: fn = f(iωn)
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where the superconducting bandgap in the Matsubara axis is given by ∆n = φn
Zn

.
The frequency dependent electron-phonon coupling constant can be directly ob-
tained from the Fermi surface averaged electron-phonon spectral function α2F (ω):

Λm−m′ =

∫ ∞
0

dΩα2F (Ω)
2Ω

Ω2 + (ωm − ωm′)2
. (4.52)

This even function takes its largest value at ωm − ωm′ = 0,

λ = Λ0 = 2

∫ ∞
0

dΩ
α2F (Ω)

Ω
. (4.53)

λ is called the (isotropic) electron-phonon coupling constant and is a dimensionless
measure of the average strength of the electron-phonon coupling. In fact, it is just
the Fermi surface average of the mass enhancement parameter shown in Eq. (4.33).

In order to calculate up to which temperature the superconducting condensate
survives, the critical temperature Tc, one needs to solve the Eliashberg functions for
different temperatures and check whether there’s a solution with ∆0 = ∆(∆0) > 0
after analytically continuing the gap function. Practically, a Matsubara frequency
cutoff is chosen such that |π(2n − 1)πT | ≤ Ωc and the ME equations are solved
using an iterative self-consistent loop by setting a threshold for either ∆n in the
superconducting state or Zn in the normal state.

4.2.2 Coulomb repulsion and impurity effects

An important feature of the Eliashberg equations is that they only depend on
normal-state properties: the electronic band structure, phonons, and the electron-
phonon coupling vertices, quantities which are accessible to first principles tech-
niques. Moreover, because α2F (ω), as defined in Eq. (4.27), is a positive function,
Eliashberg equations always possess a superconducting solution for low enough
temperatures, meaning all metals would be superconductors below a certain tem-
perature.

Our derivation up to now was based on the Fröhlich Hamiltonian, where the elec-
tronic subsystem is approximated by bands of noninteracting quasiparticles ig-
noring any Coulomb interaction, as repulsion between electrons was already con-
sidered using a mean-field approach (DFT in our case). However, the interaction
among the electron quasiparticles cannot be completely neglected in the discussion
of phonon-mediated superconductivity, as it tends to reduce or even completely
suppress the pairing. It was shown by Morel and Anderson [112] that the Coulomb
repulsion can be taken into account by replacing the kernel just in the gap equation
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by

Λm−m′ → [Λm−m′ − µ∗]θ(ωc − |ω′m|). (4.54)

In practice, the so-called Coulomb pseudopotential µ∗ is commonly treated as a
phenomenological dimensionless parameter of the order of 0.1 for normal metals.

On the other hand, we have not included the effects of elastic impurity scattering
in the Eliashberg equations. We can in fact easily introduce impurity scattering
in the equations by replacing the spectral function in both equations by

α2F (ω)→ α2F (ω) + α2
impF (ω), (4.55)

with

α2
impF (ω) =

ω

2πTτimp
δ(ω). (4.56)

If we consider the substitutions shown above, the Eliashberg equations can be
rewritten as

ωm(1− Zm) = −
∑
m′

[πTΛm−m′ +
1

2τimp
δm,m′ ]

ωm′Zm′

[(ωm′Zm′)2 + φ2
m′ ]

1/2

(4.57)

φm =
∑
m′

[πT (Λm−m′ − µ∗) +
1

2τimp
δm,m′ ]

φm′

[(ωm′Zm′)2 + φ2
m′ ]

1/2
.

In this thesis we have solved the equations above mostly in order to obtain Tc
values of different materials, but also for obtaining the gap and renormalization
functions, which provide crucial information about the excitations of the system
(i.e. to obtain optical reflectivity spectra, as we will see in Chapter 8). In order
to solve the equations, a FORTRAN code has been written from scratch.

4.3 McMillan equation

When the electron-phonon coupling is weak (λ < 1), instead of solving the Eliash-
berg equations a simpler approach can be taken by using the McMillan equa-
tion [114] improved by Dines [115]:

Tc =
ωlog
1.2

exp

(
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)
, (4.58)
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with the logarithmic frequency average, ωlog, reading as

ωlog = exp

(
2

λ

∫ ∞
0

dω
α2F (ω)

ω
lnω

)
. (4.59)

Although Eq. (4.58) is an equation based on quantities averaged on the Fermi
surface, it generally yields results in agreement with experiments [113] and is even
used in systems with anisotropic Fermi surfaces [116, 117].
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Chapter 5

Time-dependent density
functional theory

In Section 3.2 we described phonons in terms of a time-independent density-
response function χ, assuming the electrons adapt instantaneously to the changing
ionic positions. Later, in Section 3.3 we overcame the cumbersome calculation of
χ by using DFPT, after which we included non-adiabatic (time-dependent) ef-
fects by considering the electron-phonon coupling in a perturbative way as well in
Chapter 4. This approach is valid in order to account for lattice dynamics and the
effects of electron-phonon interaction in both the electronic and the vibrational
spectra. However, systems are often characterized after being excited by some
incident external beam; the difference between the incident beam and the scat-
tered one provides information about the excitations of the system. The potential
induced by the external probe will be, in general, time-dependent and, therefore,
the electronic density will depend on time. Interestingly, collective excitations may
exist even in the absence of an external probe, such as plasmons, which cannot be
represented with conventional DFT. In order to tackle these problems with oscil-
lating frequencies we will use an expansion of DFT, the so called linear response
time-dependent density-functional theory (linear response TDDFT).

Let us consider an interacting many electron system under a time-dependent ex-
ternal potential

Vext(x, t) = Vext(x) + Φext(x, t), (5.1)

where Vext(x) is the potential created by the ions and Φext(x, t) the potential
created by a general external probe. As Runge and Gross showed [118], the final
density n(x,R, t) becomes a functional of the potential and, as the relation can
be inverted, the potential itself becomes a functional of the density. This is an
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analogous time dependent version of the first Hohenberg-Kohn theorem.

The key of TDDFT is that the theorem also holds for a system of non-interacting
Kohn-Sham electrons moving in an effective time-dependent potential

V KS(x, t) = Vext(x, t) + VH(x, t) + Vxc(x, t), (5.2)

where the time-dependent Hartree potential is

VH(x, t) =

∫
dx′

n(x′, t)

|x− x′|
(5.3)

and Vxc(x, t) is the time-dependent exchange-correlation potential [119, 120].

Taking into account such functional relations, and assuming a causal relation be-
tween the induced density and the external probe, the time-dependent density
response function can be written as

χ(x,x′, t− t′) =
δn(x, t)

δVext(x′, t′)
, (5.4)

while in the non-interacting case

χ0(x,x′, t− t′) =
δn(x, t)

δV KS(x′, t′)
. (5.5)

As we saw for the time-independent case, the interacting and non-interacting res-
ponse functions are related to each other by a Dyson-type equation [119],

χ(x,x′, t− t′) = χ0(x,x′, t− t′) +

∫ ∞
−∞

dt1dt2

∫
dx1dx2 χ

0(x,x1, t− t1)

×
[
δ(t1 − t2)

|x1 − x2|
+ fxc(x1,x2, t1 − t2)

]
χ(x2,x

′, t2 − t′). (5.6)

The time-dependent exchange-correlation kernel is defined according to

fxc(x,x′, t− t′) =
δVxc(x, t)

δn(x′, t′)
. (5.7)

Since χ(x,x′, t − t′) and χ0(x,x′, t − t′) are periodic in real space for any lattice
translation, their momentum components χ(k,k′, t − t′) and χ0(k,k′, t − t′) are
zero unless k and k′ differ by a reciprocal lattice vector G. Thus, adopting the
matrix notation fGG′(k) = f(k + G,k + G′), and by Fourier transforming in
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time coordinates as well, we can expand χ(x,x′, t − t′) in its χGG′(k, ω) Fourier
components as

χ(x,x′, t− t′) =
1

NkΩBZ

1BZ∑
k

∑
GG′

∫ ∞
−∞

dω ei(k+G)·xe−i(k+G′)·x′eiω(t−t′)χGG′(k, ω),

(5.8)
which also holds for χ0. In Fourier space, Eq. (5.6) becomes a simple matrix
equation for each k and ω,

χGG′(k, ω) = χ0
GG′(k, ω) +

∑
G1G2

χ0
GG1

(k, ω)

×
[

4π

|k + G1|2
δG1G2 + fxcG1G2

(k, ω)

]
χG2G′(k, ω), (5.9)

where the reciprocal lattice vectors serve as the indexes of the matrices. Adopting
the same matrix notation for the Fourier transform of the exchange-correlation
kernel KG1G2(k, ω) = 4πδG1G2/|k + G1|2 + fxcG1G2

(k, ω), the interacting density
response matrix can be obtained from

χ = (1− χ0K)−1χ0. (5.10)

Hence, in order to calculate χ one needs to estimate the noninteracting response
matrix and, then, invert 1− χ0K.

The non-interacting response function can be calculated from the single-particle
Kohn-Sham states as [71, 121, 122]

χ0
GG′(k, ω) =

1

Ω

1BZ∑
k′

∑
nm

fnk′ − fmk′+k

εnk′ − εmk′+k + ω + iη

×〈φnk′| e−i(k+G)·x |φmk′+k〉 〈φmk′+k| ei(k+G′)·x |φnk′〉 , (5.11)

where η is a positive infinitesimal which insures that the response function is causal
or, if preferred, is the retarded response function.

Moreover, considering that χ0
GG′(k, ω) is analytic in the upper complex half-plane,

the useful Kramers-Kronig relations can be derived [71]:

Reχ0
GG′(k, ω) = − 1

π

∫ ∞
−∞

dω′Imχ0
GG′(k, ω

′)P
(

1

ω − ω′

)
(5.12)

Imχ0
GG′(k, ω) =

1

π

∫ ∞
−∞

dω′Reχ0
GG′(k, ω

′)P
(

1

ω − ω′

)
, (5.13)
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where P denotes the principal value. Kramers-Kronig relations are a consequence
of the causality of the response function and relate its real and imaginary parts.
Thus, it suffices to calculate one of the terms (the usual procedure is to calculate
Imχ0

GG′ with TDDFT), as the other term can be obtained by using the mentioned
relations.

Once the density response function of the system has been obtained, the inverse
dielectric matrix can be written as

ε−1
GG′(k, ω) = δGG′ +

4π

|k + G|2
χGG′(k, ω). (5.14)

The inverse dielectric function relates the induced (screened) field and external
field as

Φind
G (k, ω) =

∑
G′

ε−1
GG′(k, ω)Φext

G′ (k, ω). (5.15)

The non-diagonal elements of the matrix are often named as the crystal local-
field effects (CLFE), which appear because translational symmetry is reduced to
a discrete symmetry under translations by lattice vectors [121]. In the case of an
homogeneous electron gas with full translational symmetry the inverse dielectric
matrix is diagonal [71].

Inverting Eq. (5.15) one obtains

Φext
G (k, ω) =

∑
G′

εGG′(k, ω)Φind
G′ (k, ω), (5.16)

with the dielectric matrix being the inverse of Eq. (5.14). Interestingly, there is a
nontrivial solution of Eq. (2.6) even in the absence of an external field (Φext = 0)
whenever det ε(k, ω) = 0. These solutions are known as plasmons, and they are
defined as an oscillating electronic potential that is set up without the application
of an external field [122].

In this thesis we are interested in the zero-momentum transfer limit, as we will use
TDDFT for obtaining reflectivity spectra for normal incident light. Reflectivity of
a material for normal incident light in a medium with refractive index n can be
written as

R(ω) =

∣∣∣∣∣
√
ε(ω)− n√
ε(ω) + n

∣∣∣∣∣
2

, (5.17)

with ε(ω) ≡ limk→0 ε00(k, ω) being the so-called frequency dependent dielectric
function, notation that will be used throughout the results shown in Chapter 8.
We find important to point out that, unless the CLFE are negligible, generally
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ε00(k, ω) 6= [ε−1
00 (k, ω)]−1. Therefore, one needs to invert ε−1

00 (k, ω) and take the
< 00 > element of the resulting matrix.

Even though TDDFT is an exact theory, similar to DFT, the time-dependent
exchange-correlation kernel is unknown and it needs to be approximated. In this
work, among the different kernels available in literature [123], the time-dependent
local-density approximation (TDLDA) is used to approximate the many-body ef-
fects.

The TDLDA is a local and time-independent expansion of the RPA based on the
static LDA exchange-correlation potential. Indeed,

fxcTDLDA(x,x′, t− t′) = δ(x− x′)

[
d2(nεhomxc (n))

dn2

]
n(x)

, (5.18)

where εhomxc is given in Section 2.21. Despite being more complex than the RPA,
which consists of taking fxcRPA(x,x′, t − t′) = 0, most of the times it corrects only
very slightly the RPA results [124]. However, while in general terms both RPA
and TDLDA describe accurately optical properties of metals due to their screening
capability, sometimes effects beyond RPA may be important.
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Part II

Solid metallic hydrogen
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High pressure hydrogen has been of scientific interest for a long time, being solid
hydrogen first documented back in 1899 [125]. Despite molecular and insulating in
its common gaseous state, its position on the periodic table suggests it could, once
condensed and under certain conditions, adopt a metallic form similar to the alka-
lis. In 1935 Wigner and Huntington predicted hydrogen molecules would dissociate
at around 25 GPa yielding a metallic compound [14]. Despite a huge experimental
effort in the last years has characterized the phase diagram of hydrogen even be-
yond 400 GPa [126, 126–137], metallic hydrogen has remained elusive. However,
the long standing quest might have come to an end as, early in 2017, Dias and Sil-
vera reported the first ever laboratory-produced sample of solid metallic hydrogen
at 495 GPa [138].

We find convenient to note that there are two pathways to obtain metallic hydrogen
at static pressures (see Fig. 5.1). The first (pathway I) is to compress hydrogen
along a quasi-isotherm at temperatures below 400 K until the insulator-metal
transition occurs. This is, in fact, what Wigner and Huntington predicted [14]
and Dias and Silvera claimed to have achieved in Ref. [138]. The second path to
metallize hydrogen (pathway II) consists of increasing the temperature at almost
constant pressure (typically around 150 GPa) beyond its melting point and further
up until the molecules dissociate into a partially ionized metallic monoatomic liquid
after the so-called plasma phase transition [139]. This region of the phase diagram
belongs to hot-dense matter and it has been widely analyzed theoretically [129,
139–142] as well as with both static and shockwave experiments [143–146]. Even
though this is of tremendous interest to plasma and planetary scientists, as these
are the conditions found in the giant gaseous planets and exoplanets, in this thesis
we will focus on the low temperature metallization of hydrogen instead, which we
find more interesting from the point of view of materials science.

The interest of solid metallic hydrogen for materials scientists grew exponentially
when in 1968 Neil Ashcroft predicted a superconducting Tc of nearly room tem-
perature for high pressure hydrogen [15]. In fact, recent ab initio predictions
support this statement and estimate hydrogen may superconduct even at ambi-
ent temperatures above 400 GPa [147–150], which would make hydrogen the best
superconductor ever observed. The measurement of a Tc of 203 K in the sulfur
hydrogen system [16], a temperature reachable on Earth’s surface, was a major
breakthrough in the field of superconductivity and validated Ashcroft’s idea that
hydrogen and hydrogen-dominant metallic compounds can be high-temperature
superconductors [15, 151]. This measurement, specially after Dias and Silvera’s
controversial claim of having produced a metallic hydrogen sample [138], offers
new hopes to find sooner than later room-temperature superconductivity in other
hydrogen-rich compounds or hydrogen itself.
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Figure 5.1: Experimental/theoretical pressure vs. temperature phase diagram of
hydrogen. It shows the two pathways to metallic hydrogen: I the low temperature
pathway and II the high temperature pathway. In pathway I phases of solid hy-
drogen are shown with their Latin number names. The plasma phase transition
(PPT) is the liquid-liquid transition to metallic atomic hydrogen. Dashed lines
emphasize uncertainty in the phase boundaries. This graph has been adapted
from Ref. [138].

Despite the fact that these predictions and hypotheses may look promising, lots of
experimental and theoretical work are still necessary. With the latest developed
DACs it is possible to obtain pressures potentially up to 600 GPa [34]. As most
of the properties of a material are critically influenced by the structure of its con-
densed phases, structural characterization is crucial. However, due to the weak
cross-section of hydrogen against X-ray radiation and the difficulties to obtaining
samples big enough for neutron diffraction experiments for the DAC technology,
determining the structures of hydrogen is a huge experimental challenge. These
limitations imposed on conventional techniques make the use of alternative tech-
niques imperative. Nowadays, most of the available experimental data comes from
infrared (IR) and Raman measurements that give us information about the vibra-
tional properties of high pressure hydrogen at the Γ point. The way for determining
a phase transition is to follow the vibrational modes’ (as a molecular vibron) fre-
quencies when changing the pressure and temperature. Thus, a phase transition
will lead to an abrupt change of the frequencies of the modes. On the other hand,
the latest claim of having produced metallic hydrogen in a lab relies on reflectance
experiments [138], suggesting optical measurements could also be an alternative
for characterizing high pressure hydrogen.
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Raman and IR data are not, on their own, enough to characterize the phases
of hydrogen and comparison with theoretical predictions becomes crucial to un-
derstand the phase diagram. In fact, the way to determine the crystal structure
of each phase is by comparing the measured vibrational spectra to calculations
on candidate structures. However, the theoretical study of such a light element
turns out to be difficult due to the large nuclear quantum effects. Even at T = 0
K fluctuations of nuclear positions due to Heisenberg’s indetermination principle
could energetically favor some structures against others, as well as even melt the
crystal into a liquid. Actually, metallic and superconducting hydrogen could also
appear in a quantum liquid state under certain conditions [129, 152, 153]. Quan-
tum fluctuations may lead to huge anharmonic effects even down to absolute zero
temperature as zero point motion can cause large atomic displacements due to
the lightness of hydrogen atoms. As a consequence, the change in frequencies and
free energies due to anharmonic effects could alter the relative stability among
different structures. Actually, the influence of anharmonic effects in the stabil-
ity goes beyond a purely energetic discussion knowing that imaginary frequen-
cies at phonon spectra are fingerprints of instabilities in crystals. Furthermore,
phonon frequency renormalization due to anharmonicity may have an impact in
the large Tc values predicted for hydrogen [147–150, 154–156], as seen in many
hydrides [93, 94, 102, 103, 157, 158]. Considering that in aluminum [157, 158],
palladium [94], and platinum hydrides [93], as well as in the record superconduc-
tor H3S [102] anharmonicity suppresses the electron-phonon couping as it tends to
harden optical H-character phonon modes, one might expect that anharmonicity
might strongly impact superconductivity in hydrogen too. The SSCHA is the ap-
propriate tool for including anharmonic effects in ab initio simulations, and it will
be intensively used throughout this chapter to estimate their consequent structural
and spectral renormalizations.

Thus far, five solid phases of hydrogen have been confirmed, all of them molecular
and insulating. Only phase I and phase II, which are the lowest pressure solid
phases of hydrogen, have been characterized by X-ray and neutron scattering ex-
periments. Phase I is thought to be a molecular solid of quantum rotors on a
hexagonal close packed lattice [127]. It is found in a wide pressure and temper-
ature range up to the melting curve, which has a maximum of ∼1000 K around
65 GPa [128, 129]. Phase II appears between approximately 50-150 GPa and only
below 150 K, temperature at which it transforms back to phase I [130, 159]. The
phase I to phase II transformation is described as a broken symmetry phase tran-
sition, in which the molecules go from a spherical rotational state to an anisotropic
rotational state [159]. The other phases have been found by Raman and IR mea-
surements and, therefore, the information about their crystal structure is limited
to finding a candidate structure that fits best the measured vibrational spectra.
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Hydrogen adopts phase III above 150 GPa up to at least 360 GPa [131, 132] and
it is best modeled by a candidate structure with symmetry C2/c [160]. Recent
experiments have determined that this phase transforms to phase IV at around
200 K in the 240-325 GPa pressure range [126, 133, 134], which might melt close
to room temperature [135]. Transition from phase IV to V occurs at 325 GPa,
the last one existing probably up to the dissociation pressure [137]. The candidate
structures for phases IV and V are the mixed molecular-atomic phases predicted
by Pickard and Needs [160, 161].

Recently, new phases have been claimed to be found as experimental researchers
have been able to reach pressures up to around 500 GPa, where metallization
is already expected according to extrapolation of optical measurements [136]. A
new work claims to have found phase VI by cooling down phase V below 200-
220 K [162, 163] and it could be semi-metallic. Dias and Silvera, months after
announcing the discovery of a new molecular and close to a metallic phase of
hydrogen up to 421 GPa [164], which could be the same semi-metallic phase VI
found by Eremets et al. [162, 163], made a very controversial [165–168] claim of
having produced metallic hydrogen at 495 GPa in a dissociated atomic state [138],
as predicted by Wigner and Huntington in 1935. According to recent quantum
Monte Carlo calculations, where anharmonicity was included for considering the
zero-point energy [169], the I41/amd structure is the most likely structure of this
metallic atomic phase (shown in Fig. 6.1) a structure which had been predicted
before [170]. Several molecular structures have been proposed for the region where
phase VI is supposed to exist, with Cmca− 4 being a strong candidate to model
it in the case it is confirmed to be metallic. In fact, very recent experiments
suggested this molecular metallic phase may exist above 300 GPa [171]. However,
the uncertainty of the phase diagram in this region is very large and whether
metallization of hydrogen would occur due to band gap closure in a molecular
phase or due to a phase transition to an atomic phase is unclear.

In this thesis we perform an exhaustive analysis of the electronic and vibrational
properties of low temperature solid metallic hydrogen around its, so far, highest
achieved pressure regime, which is above 400 GPa. Our goal is to provide useful
information in order to diminish the uncertainty in the region of the phase dia-
gram where metallization of hydrogen is expected to occur. With that in mind, we
present first-principle calculations of the physical properties of the most probable
candidate structures, as well as we try to help in structure determination with
optical spectra calculations which, apart from shining some light on the latest ex-
periment by Dias and Silvera [138], could also guide future experiments. This way,
in chapter 6 we analyze the impact of anharmonicity in the stability and supercon-
ducting properties of metallic hydrogen in the 400-600 GPa pressure range, under
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the hypothesis of it adopting the predicted atomic I41/amd tetragonal structure.
In chapter 7 we analyze how anharmonic effects alter the crystal structure and
superconducting properties in the hypothetical scenario of metallization in the
predicted Cmca−4 molecular structure. Finally, in chapter 8 we try to contribute
on the goal of characterization of high pressure hydrogen as we analyze the op-
tical properties of both previous candidate structures and evaluate if reflectance
measurements can actually distinguish different crystalline phases.
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Chapter 6

The atomic I41/amd structure

In this chapter we show the results of our ab initio analysis of the electronic and
vibrational properties of I41/amd hydrogen in the 400-600 GPa pressure range.
While in Ref. [148] vibrational and superconducting properties of this possible
first structure of atomic hydrogen phase are analyzed holding to the harmonic
approach, our goal is to elucidate the impact of anharmonicity in those properties
plus its consequences on lattice stability.

6.1 Computational details

We performed DFT calculations within the PBE parametrization of the GGA [45].
The electron-proton interaction was considered making use of an ultrasoft pseu-
dopotential as implemented in Quantum ESPRESSO [61]. Due to the large
kinetic energy of the electrons, a proper convergence of the electronic proper-
ties and phonon frequencies required a dense 80 × 80 × 80 k-mesh and 0.05 Ry
Methfessel-Paxton electronic smearing for the electronic integrations in the first
Brillouin zone (BZ). An energy cutoff of 100 Ry was necessary for expanding the
wave-functions in the plane-wave basis.

Phonon frequencies were calculated within DFPT as implemented in Quantum
ESPRESSO [61] in a 6× 6× 6 q-point grid in the BZ. Fourier interpolation was
used to obtain the phonon spectra along high-symmetry lines. Electron-phonon
matrix elements were also calculated within DFPT in a 6 × 6 × 6 q-point grid.
Converging the double Dirac delta in Eq. (4.31) required a 100× 100× 100 denser
k-point mesh and a 0.04 Ry Gaussian smearing. The superconducting Tc was
calculated solving the isotropic Eliashberg equations [107, 108], considering that
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a = b 1.21 Å
c 3.08 Å

d1 0.98 Å
d2 1.21 Å

Figure 6.1: (a) Conventional unit cell of I41/amd hydrogen. (b) a = b and c
lattice parameters as well as the two different interatomic distances d1 and d2 of
I41/amd hydrogen at 500 GPa.

for large electron-phonon coupling constants McMillan’s equation underestimates
Tc [172]. Besides DFPT, we have also used free-electron Lindhard response func-
tion within the Random Phase Approximation (RPA) as explained in section 3.2.1.
In the latter approach the dynamical matrix is analytical at any q so that we have
not restricted the calculations to the 6× 6× 6 grid.

The anharmonic phonon spectra were calculated with the SSCHA [93, 94]. Forces
acting on atoms were calculated in a 3× 3× 3 supercell making use of DFT with
the same parameters as the DFPT phonon calculations. This yielded phonon
frequencies in a commensurate 3 × 3 × 3 q-point grid. The difference between
the harmonic and anharmonic dynamical matrices was interpolated to the finer
6 × 6 × 6 grid (see Appendix B). The anharmonic correction to the electron-
phonon coupling and the superconducting Tc was calculated by using the SSCHA
polarization vectors and phonon frequencies in Eq. (4.12), with the electron-
phonon deformation potentials 〈φn′k+q| ∇ulms

HKS |φnk〉 calculated within DFPT.

6.2 Electronic structure

Fig. 6.2a shows the electronic band structure of I41/amd hydrogen at 500 GPa.
The bands present a huge dispersion, associated to the dominating kinetic term
in the energies of the electronic states. The calculated band structure is not far
from the free-electron approximation, the main difference being the band gaps
opened at the border of the BZ and whenever band crossing occurs due to the
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Figure 6.2: (a) Electronic band structure of I41/amd hydrogen at 500 GPa calcu-
lated within DFT, where the self-consistent potential is V KS = Vext + VH + Vxc.
Bands obtained within the free-electron approach (V KS = 0) and the independent-
electron approach (V KS = Vext) are also shown. The origin of energy (black dotted
line) corresponds to the Fermi level. (b) Fermi surface of I41/amd hydrogen at
500 GPa within DFT. The BZ and its high-symmetry points are shown.

interaction of the electrons with the proton lattice. It is interesting to point out
that if we consider the independent electron approximation, just keeping the Vext
term that gives the electron-proton interaction in the V KS self-consistent potential
and completely neglecting the electron-electron interactions, the resulting bands
match almost perfectly with the DFT ones. Therefore, we can conclude that the
main differences with the free-electron approximation are due to the large proton-
electron interaction, and that the interaction between the electrons is not giving
any significant contribution to the band structure. Fig. 6.2b shows the Fermi
surface, which is quite spherical. However, the sphere shows some open areas
around the high symmetry point N, where it touches the BZ boundary and a band
gap is opened.

6.3 Harmonic phonons and lattice stability

In Fig. 6.3 we show the calculated phonon dispersion in tetragonal I41/amd
hydrogen at 500 GPa within DFPT. We also show the phonons at 400 and 600
GPa, but due to the minor qualitative changes we will focus just on the 500
GPa spectrum, as the following analysis is valid for all the pressure range. The
system clearly is dynamically stable, even if there are some branches with Kohn
anomalies [78], which are visible in the lowest energy transverse acoustic branch in
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Figure 6.3: Harmonic phonon spectra of I41/amd hydrogen calculated within
DFPT at several pressures. At 500 GPa phonons calculated within the Lindhard
RPA formulation are also shown. Dotted vertical black lines indicate q-points
satisfying |q + G| = 2kf , where Kohn anomalies are expected to appear.

form of slight oscillations. Indeed, as shown in Fig. 6.3, some q-points at which the
anomalies appear coincide with |q + G| = 2kf , where kf is the Fermi wave-vector
and G the reciprocal lattice vector that brings q back into the BZ.

Considering the validity of the free-electron-like approximation to describe the elec-
tronic band structure, we have calculated the phonon dispersion with the Lindhard
response function at the RPA level as explained in section 3.2.1, therefore, neglect-
ing exchange and correlation in the electronic response. In this free-electron limit
we can obtain the spectra along high-symmetry lines without any Fourier inter-
polation (see Fig. 6.3), evidencing the presence of the Kohn anomalies at the
|q + G| = 2kf points, and confirming that the kinks present in the DFPT result
are Kohn anomalies as well.

Nevertheless, the Lindhard RPA spectrum completely differs from the DFPT cal-
culations. The intensity of the Kohn anomalies is much stronger and the trans-
verse acoustic modes become unstable with imaginary frequencies. While the lower
strength of the Kohn anomalies in the DFPT calculations may be a consequence
of Fourier interpolation, the underlying reason for the instabilities in the Lindhard
approach must be physical. Even though the electronic band structure could be
understood within the free-electron-like approximation, phonons seem to be far
from this picture, contrary to the case of sodium [33, 77]. This fact also questions
the stability of the I41/amd tetragonal phase in the ultimate high-pressure limit
where the electrons are expected to be free.
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Figure 6.4: Lindhard RPA phonons of I41/amd hydrogen at 500 GPa decomposed
into the contributions coming from the Dp and De terms. Dotted vertical lines
indicate q-points satisfying |q + G| = 2kf , where Kohn anomalies appear.

The origin of these instabilities can be better understood if we split the calculated
dynamical matrices at a given wave-vector as D(q) = Dp(q)+De(q). Dp represents
the contribution of the proton-proton Coulomb interaction to the dynamical ma-
trix, which can be estimated analytically with an Ewald summation. De contains
the effect of the electronic response to the proton motion in the dynamical matrix
(see Appendix A for more details). Interestingly, Dp and De scale differently with
the average inter-electronic distance parameter rs: Dp always scales as r−3

s , while,
in the Lindhard RPA, De scales as r−2

s (rs +C), where C is always positive and of
the order of unity. Therefore, in the very large pressure limit with small rs, the
Dp contribution is expected to dominate over the electronic contribution. In Fig.
6.4 we present the dispersion of the root of the eigenvalues of each contribution
separately. This represents the phonon spectra that would be obtained from each
contribution independently. In our case, phonons associated to Dp are already
unstable and the contribution from De is not enough to stabilize them. This is
the reason why the Lindhard RPA phonons have imaginary frequencies. As in
the high-pressure limit Dp will dominate over De, the tetragonal I41/amd will not
become stable at very large pressure, but more symmetric and compact structures
with positive eigenvalues of Dp (as fcc or bcc) will be favored.

In order to better understand the discrepancy between the ab initio DFPT and
the Lindhard RPA spectra, we have made several calculations based on linear-
response theory trying to disentangle the different contributions of the electronic
response to the final phonon spectra. The main aspect we want to analyze is
whether the evident failure of the Lindhard RPA model is because of the failure of
the free-electron bands for estimating χ0, or because we are neglecting exchange
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Figure 6.5: Phonon spectra of I41/amd hydrogen at 500 GPa calculated within
DFPT using V KS = 0 and ∆V KS = ∆Vext + ∆VH with and without imposing
the ASR. The results are compared to the Lindhard RPA spectrum calculated
analytically, which is an equivalent calculation.

and correlation in the Dyson equation for obtaining χ (i.e. using the RPA, fxc
is set to zero in the electronic screening kernel K in Eq. (3.30)). Instead of
calculating χ0 and χ explicitly using different approximations for the electronic
structure and screening, which is extremely cumbersome, we use DFPT and solve
the Sternheimer equation neglecting different terms in V KS and ∆V KS, which is
equivalent to making different approaches to χ0 and K, respectively. For instance,
one recovers the Lindhard RPA by taking V KS = 0 and taking ∆V KS = ∆Vext +
∆VH (setting ∆Vxc = 0).

In those cases when a different scheme is adopted for V KS and ∆V KS translational
invariance is not satisfied anymore. We overcome this difficulty imposing the
acoustic sum rule (ASR) a posteriori by correcting the force-constants matrix in
Eq. (3.21) as

φll
′

0s0s −→ φll
′

0s0s −
∑
ms′

φll
′

ms0s′ . (6.1)

The added term corrects the second term in Eq. (3.21) dependent on the electronic
density. As an example, in Fig. 6.5 we show how imposing the ASR works in the
case V KS = 0, ∆V KS = ∆Vext+∆VH , which is equivalent to the analytic Lindhard
RPA approximation. We see how after imposing the ASR the spectrum coincides
with the analytic one. The small differences between the analytic spectrum and
the one obtained with the DFPT procedure are because the latter is obtained from
a Fourier interpolation from a 6× 6× 6 q-grid, while the former one is calculated
point by point.
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Figure 6.6: Phonon spectra of I41/amd hydrogen at 500 GPa within different
approximations for the unperturbed self-consistent potential V KS and its linear
perturbation ∆V KS. Calculations are performed within the DFPT formalism.
The ASR has been imposed a posteriori in every case.

In Fig. 6.6 we show four phonon spectra with different combinations of neglected
terms in V KS and ∆V KS. First, we show the spectrum obtained by neglecting any
electron-electron interaction in the unperturbed Hamiltonian (V KS = Vext), but
keeping all the terms in its linear perturbation ∆V KS = ∆Vext + ∆VH + ∆Vxc. We
obtain exactly the same result as in the previously calculated full DFPT phonons,
remarking the insignificant role of electron-electron interaction in the electronic
bands and, consequently, in χ0. Second, we show the phonons calculated neglecting
electron-electron interaction in V KS again, but this time neglecting the exchange
and correlation term in ∆V KS. This is equivalent to calculating χ0 as in the
previous case, but using the RPA for electronic screening (fxc = 0). Finally,
we show the dispersion obtained with free electrons (V KS = 0) but using the
full linear perturbation going beyond the RPA. Comparing the free-electron RPA
calculation in Fig. 6.3 with the one including exchange-correlation effects for the
response in Fig. 6.6, it can be confirmed that including exchange and correlation
in ∆V KS (and, therefore, in fxc) is determinant for obtaining dynamically stable
phonons. However, due to the strong electron-proton interaction, including Vext in
the self-consistent potential is necessary to obtain good quantitative results.

Analyzing these different calculations, we conclude that, despite the electronic
kinetic energy dominates and the electron-electron interaction plays a negligible
role in the band structure, going beyond the RPA including exchange-correlation
effects in the calculation of the electronic response is crucial. Indeed, exchange-
correlation effects in the response to the proton motion make tetragonal I41/amd
atomic hydrogen dynamically stable.
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Figure 6.7: Electronic density of I41/amd hydrogen at 500 GPa in units of the
average electron density (0.1301 a−3

0 ) for (a) V KS = Vext + VH + Vxc and (b)
V KS = Vext + VH , and (c) their difference shown in relative terms. The values are
shown for the OY Z plane passing through the center of the atoms (black circles).

This calamitous failure of the RPA is related to the self-interaction error associated
to the Hartree potential, which, as seen in Fig. 6.7, underestimates the high
electronic density around the protons up to a 9% at 500 GPa.

We have checked that similar phonons are obtained for different approximations
of the exchange-correlation potential, as seen in Fig. 6.8, where we show phonon
spectra calculated using LDA, PBE and BLYP exchange-correlation function-
als [45, 46, 173]. Thus, the conclusions extracted from this chapter are functional
independent. This is not the case in the molecular case at lower pressures, where
correlation clearly has an effect in the energies of molecular vibrons [174].

6.4 Anharmonic effects

Even if exchange-correlation effects guarantee the stability of the I41/amd atomic
structure of hydrogen, this conclusion is drawn exclusively at the harmonic level.
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Figure 6.8: Phonon spectra of I41/amd hydrogen at 500 GPa within different
approximations for the exchange and correlation functional [45, 46, 173].

In Fig. 6.9 we compare the harmonic DFPT phonon spectra with the anharmonic
spectra obtained within the SSCHA. Anharmonicity is quite strong, as phonon fre-
quencies are affected up to a 20% in the transverse acoustic branch in the Γ-N path.
Transverse acoustic branches are in general specially vulnerable as their energies
are considerably lowered. Consequently, one could expect anharmonic effects to
increase the zero-point displacement of the atoms, bringing atomic hydrogen closer
to quantum melting. According to our calculations, however, I41/amd hydrogen
is not melted if we hold to the quantum limit of the Lindemman criterion, which
states quantum melting occurs when the root mean square (RMS) displacement of
atoms is around 27− 30% of the interatomic distances [175]. The RMS displace-
ment of the atom with index s in the unit cell can be calculated with the following
formula:

uRMS
s =

√
1

Nq

∑
µq

1 + 2nB(ωµq)

msωµq
|εsµq|2,. (6.2)

In this case, both atoms in the primitive unit cell are symmetry equivalent and,
therefore, yield the same RMS displacement values. While in the harmonic ap-
proach we obtain RMS displacements of 20.3% and 16.4% at zero temperature
relative to the two different interatomic distances d1 and d2 of the crystal, these
values are only slightly raised by anharmonicity to 20.7% and 16.6%, respectively.
The reason of this rather small change is a big part of the high energy modes are
enhanced by anharmonicity, compensating the softening of the transverse acoustic
branches.

As most of the phases have been found and characterized by Raman and infrared
spectroscopy experiments, we show the impact of anharmonicity in the optical
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P (GPa) Mode ωh (cm−1) ωanh (cm−1)
400 Eg 1161.8 -

B1g 2472.2 -
500 Eg 1214.6 1187.9

B1g 2745.4 2769.8
600 Eg 1212.4 -

B1g 2988.4 -

Table 6.1: Raman active modes of I41/amd hydrogen in the 400-600 GPa pressure
range. Harmonic and anharmonic frequencies are represented as ωh and ωanh
respectively.

modes at the Γ point in Table 6.1. The structure has two Raman active modes
that are barely affected by anharmonicity. On the other hand, this structure lacks
of first order IR active modes.

6.5 Electron-phonon coupling and superconduc-

tivity

In order to analyze how anharmonicity affects superconductivity, we have cal-
culated the electron-phonon spectral function α2F (ω) at 500 GPa both in the
harmonic and anharmonic cases. α2F (ω) shows a large peak at high energy due
to the large electron-phonon linewidth of high-energy optical modes (see Fig. 6.9).
The practically linear and homogeneous increase of the integrated electron-phonon
coupling constant,

λint(ω) = 2

∫ ω

0

dω′α2F (ω′)/ω′, (6.3)

indicates that the contribution to the electron-phonon coupling constant is quite
homogeneous over all the modes in the BZ. This analysis holds both in the har-
monic and in the anharmonic case as, even though anharmonic effects have a
significant impact on the phonon spectra, the electron-phonon coupling constant
λ = λ(∞) is practically unaltered by anharmonicity. We obtain λ = 1.68 and
λ = 1.63 in the harmonic and anharmonic cases, respectively. As λ scales with
the phonon frequencies as ∝ ω−2, the contribution of the low-energy transverse
acoustic modes to the electron-phonon coupling constant is slightly enhanced due
to the anharmonic suppression of their frequencies. However, this is compensated
by the hardening of the high-energy optical modes.
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Figure 6.9: Left: harmonic and anharmonic phonon spectra of I41/amd hydrogen
at 500 GPa. Right: harmonic and anharmonic electron-phonon spectral function
α2F (ω) and frequency dependent electron-phonon coupling constant λint(ω).

We estimate the superconducting critical temperature by solving the isotropic
Eliashberg equations in order to overcome the underestimation of Tc given by
McMillan’s equation in the strongly interacting limit [172]. With a Coulomb pseu-
dopotential of µ∗ = 0.1 we obtain a superconducting energy gap (we take the first
Matsubara frequency) of ∆1 ≈ 62 meV and ∆1 ≈ 58 meV in the harmonic and an-
harmonic cases, respectively, at 0 K (see Fig. 6.10). Tc, defined as the temperature
at which the gap vanishes, is 318 K and 300 K in the harmonic and anharmonic
approaches, respectively. The harmonic result is in reasonable agreement with
previous results [148]. The effect of the Coulomb pseudopotential in Tc is weak,
which is expected whenever λ values are considerably larger than µ∗. Therefore,
anharmonicity slightly lowers the superconducting critical temperature in tetrag-
onal I41/amd hydrogen due to the small reduction of λ. In Fig. 6.10 we also show
the first Matsubara frequencies of the energy gap at 400 GPa and 600 GPa in the
harmonic approach. As wee can see, Tc is very weakly affected by pressure in the
400-600 GPa pressure range. Due to the flatness of Tc and the smooth change of
the phonons with pressure (Fig. 6.3) anharmonic effects are expected to have a
similar impact at 400 and 600 GPa.

Considering that in all superconducting hydrides where strong anharmonic effects
in superconductivity have been reported there are strongly softened optical modes
in the harmonic approximation [93, 94, 102, 157, 158], even imaginary sometimes,
it seems the impact of anharmonicity on Tc is largely determined by the presence of
such soft hydrogen-character optical modes. Due to the fairly uniform distribution
of the electron-phonon coupling in the BZ here, there are no particular optical
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Figure 6.10: Calculated first Matsubara frequency of the superconducting energy
gap of I41/amd hydrogen at different pressures and temperatures using a Coulomb
pseudopotential µ∗ = 0.10. Inset: Tc vs pressure in the harmonic and anharmonic
cases. Solid and dashed curves correspond to the values estimated in Ref. [148],
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modes that soften, making anharmonic effects on Tc weaker.

6.6 Conclusions

In this chapter we present an exhaustive analysis of the electronic and vibrational
properties of I41/amd hydrogen within the 400-600 GPa pressure range. Moreover,
we have studied how anharmonic effects affect those mentioned properties as well
as its superconductivity.

Atomic metallic hydrogen in this phase shows a nearly free-electron-like electronic
band structure, where the opened band gaps can be explained even without the
need of electron-electron interaction. The huge kinetic energy of the electrons due
to the extremely high pressure plus their strong interaction with the bare nuclei
makes the electron-electron interaction be irrelevant for the electronic structure.
Nevertheless, the strong electron-proton interaction creates a big electronic local-
ization near the atomic nuclei. Consequently, the RPA dramatically fails when
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calculating the phonons of atomic hydrogen. In fact, the inclusion of exchange-
correlation effects in the calculation of the electronic response to proton motion
guarantees the dynamical stability of the structure.

Despite anharmonicity modifies phonon frequencies up to approximately a 20%,
for instance, lowering the energies of the transverse acoustic modes and hardening
high-energy optical modes, it has a minor effect on superconductivity, only sup-
pressing Tc by a 6%. This is in stark contrast to other hydrides where anharmonic-
ity has a huge impact on the superconducting properties [93, 94, 102, 157, 158],
even inducing an inverse isotope effect in palladium hydrides [94]. This raises the
interesting question whether anharmonicity impacts superconductivity in hydrides
simply because hydrogen is light and vibrates far from equilibrium or for another
particular reason. Our results suggest that determining whether anharmonicity
has a strong impact on Tc cannot be related exclusively to the lightness of the ions
present in the system, but to the presence of softened optical modes.
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Chapter 7

The molecular Cmca-4 structure

While in the previous chapter we have analyzed the impact of anharmonicity on
the properties of the most likely atomic candidate, we find interesting to consider
its impact on the hypothetical scenario of metallization occurring in a molecular
phase as well. Crystal structure predictions applying DFT within the PBE [45]
generalized gradient approximation and neglecting the vibrational contribution to
the free energy suggest that between 385 and 490 GPa hydrogen adopts a metallic
Cmca− 4 orthorhombic structure with two molecules in the unit cell [160]. This
molecular phase is claimed to be a high-temperature superconductor with Tc =
242 K at 450 GPa [147]. However, previous ab initio studies on this phase were
performed only at the harmonic level. Anharmonicity could not only strongly af-
fect superconductivity due to phonon frequency renormalization, but also affect
the crystal structure as, unlike in the I41/amd structure, in the Cmca− 4 struc-
ture atomic positions are not fully determined by symmetry. This feature has
been recently shown for the record superconductor H3S, where the quantum be-
havior of the proton and the consequent anharmonicity symmetrize the hydrogen
bonds strongly affecting the phase diagram at the pressures where the record Tc
was observed [103]. A significant structural renormalization could have implica-
tions in the electronic band-structure and in the electron-phonon coupling and,
consequently, the superconducting properties.

7.1 Computational method

We performed our DFT calculations within the Perdew-Wang parametrization of
the LDA [53] by making use of the Quantum ESPRESSO package [61]. The

93
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Figure 7.1: Crystal structure of Cmca− 4 hydrogen at 414 GPa at the harmonic
and anharmonic level in the conventional orthorhombic lattice. The hydrogen
intramolecular distance dH−H is shown for each case.

LDA is chosen to allow a direct comparison with previous calculations [147]. The
electron-proton interaction was considered making use of a norm-conserving pseu-
dopotential as implemented in Quantum ESPRESSO [61]. Convergence of the
electronic properties and phonon frequencies required a 16× 16× 16 k-mesh and
0.01 Ry Hermite-Gaussian electronic smearing for the electronic integrations in the
first BZ. An energy cutoff of 65 Ry was necessary for expanding the wave-functions
in a plane-wave basis.

Harmonic phonon frequencies were calculated within DFPT as implemented in
Quantum ESPRESSO [61] in a 6 × 6 × 6 q-point grid in the BZ. Fourier in-
terpolation was used to obtain the phonon spectra along high-symmetry lines.
Electron-phonon matrix elements were also calculated within DFPT in a 6× 6× 6
q-point grid. Converging the double Dirac delta in the equation for the phonon
linewidth required a 100× 100× 100 dense k-point mesh. The superconducting Tc
was calculated solving the isotropic Eliashberg equations (Eq. (4.57)).

Anharmonic renormalization of phonon spectra and crystal structure were calcu-
lated with the SSCHA. Forces acting on atoms were calculated in a 2 × 2 × 2
supercell making use of DFT with the same parameters as the DFPT phonon cal-
culations. This yielded phonon frequencies in a commensurate 2 × 2 × 2 q-point
grid. The difference between the harmonic and anharmonic dynamical matrices
was interpolated to the finer 6×6×6 grid as in the previous chapter (see Appendix
B).

The anharmonic correction to the superconducting Tc was calculated combining
the SSCHA dynamical matrices with the electron-phonon deformation potentials
calculated within DFPT as in the previous case.
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P(GPa) a(a0) b(a0) c(a0) rs(a0) Wyckoff position dH−H (Å)
Harmonic 414 2.9345 5.1365 4.4727 1.26 (0.0000,0.3677,0.4296) 0.793

Anharmonic 414 2.9345 5.1365 4.4727 1.26 (0.0000,0.3653,0.4143) 0.837
Harmonic 450 2.8987 5.0539 4.4599 1.25 (0.0000,0.3659,0.4339) 0.782

Anharmonic 450 2.8987 5.0539 4.4599 1.25 (0.0000,0.3670,0.4085) 0.832

Table 7.1: Structural parameters of Cmca − 4 hydrogen at the harmonic and
anharmonic level. Lattice parameters a, b, and c used in the calculations are given
in units of the Bohr radius, a0. The coordinates of a representative of the 8f
Wyckoff orbit in fractional coordinates of the conventional orthorhombic lattice,
the Wigner–Seitz radius (rs), and the intramolecular distance are also included.

7.2 Crystal structure

The Cmca− 4 structure is a base-centered orthorhombic structure with hydrogen
molecules at the z = 0 and z = c/2 planes with opposite orientations as shown
in Fig. 7.1, with two molecules in the primitive unit cell. Hydrogen atoms sit
at the 8f Wyckoff positions, which have two free parameters not determined by
symmetry. These two parameters determine the intramolecular H–H distance,
dH−H , as well as the orientation of the molecules.

In the harmonic approximation, for a given volume, the equilibrium positions are
those determined by the minimum of the static BOES. If the motion of the nuclei
is considered, instead, atomic positions are determined by the minimum of the
free energy that includes the vibrational contribution. This is true even at zero
temperature, where the vibrational free energy reduces to just the energy, due to
the zero point motion of the nuclei. As we saw in section 3.4.1, if the system is
an ideal harmonic solid, the static and the dynamical equilibrium positions will
be exactly the same, as the centroid positions of the harmonic Gaussian density
matrix coincide with the static equilibrium positions. However, this does not
necessarily hold for real anharmonic solids. In the SSCHA this is calculated by
minimizing the vibrational free energy with respect to the atomic coordinates. In
this dynamical approach, the equilibrium positions are defined as the ones that
make the quantum statistical average of the forces vanish.

Our results, summarized in Table 7.1, show that such quantum behavior signifi-
cantly modifies the equilibrium Wyckoff positions in molecular Cmca − 4 hydro-
gen by increasing the intramolecular dH−H distance and increasing the angle of
the molecules with respect to the z = 0 plane. As shown in Table 7.1, the SS-
CHA result shows that at 414 and 450 GPa dH−H is increased by a non-negligible
5.5% and 6.4%, respectively. An increase of the intramolecular H-H distance could
be expected a priori if the intramolecular interaction was described by a simple



96 Chapter 7. The molecular Cmca-4 structure

Heitler–London model [176]. It could be said that quantum behavior and anhar-
monicity tend to break the molecule and bring molecular hydrogen closer to an
atomic crystal. This implies that it should be expected that first-principles cal-
culations correctly incorporating the zero-point fluctuations will predict molecular
dissociation of hydrogen at lower pressures than calculations at the static level.

7.3 Electronic and vibrational spectra

Figure 7.2 shows the band structure at 414 and 450 GPa calculated with the har-
monic and anharmonic atomic positions. Once the molecules stretch by quantum
and anharmonic effects, electron pockets are induced at the Γ and R points at
these two pressures. The Fermi surface thus becomes more complex and rich at
the anharmonic level with a new disk around the Γ point and a small pocket at
R (see Fig. 7.3a). In Fig. 7.3b we can see how the density of states (DOS) at
the Fermi level is increased by anharmonicity by approximately a factor of 1.2
at 414 GPa and 1.3 at 450 GPa. Our bands at the harmonic level at 414 GPa
are in good agreement with previous calculations [147], although at 450 GPa in
the results presented in [147] the Γ and R electron pockets are already occupied,
while not in our case, as we predict the occupation of these states starting above
470 GPa. Considering the small energies involved, the different pressure at which
the pockets appear on the Fermi surface might be attributed to the different k-
point mesh used for the self-consistent electronic calculation, which is finer in our
case [147]. Our calculations show that the pressure at which the Γ and R electron
pockets appear is significantly lowered by anharmonicity. Therefore, anharmonic
structural changes have a large impact on the electronic structure of Cmca − 4
hydrogen, remarking that the zero point motion can strongly affect Fermi surface
states in metals as it can modify the band gap in insulators [177–179].

With two molecules in the base-centered orthorhombic primitive unit cell, this
structure presents two different vibrons, one in which the molecules in different
planes vibrate in phase and a second in which they vibrate in counter phase. These
two modes have a very low energy compared to those observed for molecular phases
of hydrogen below 420 GPa. Peaking at the Γ point with about 2800 cm−1, they lay
far below the typical vibronic signals at energies of approximately 4000 cm−1 [131–
135, 137]. It is also remarkable the large dispersion of these vibrons over the BZ,
a fingerprint of molecular vibrations being strongly coupled to the lattice. Indeed,
large electron–phonon coupling is the reason for the softening of the vibrons in the
Cmca− 4 phase [147].

The impact of anharmonicity in the phonon dispersion relation of Cmca − 4 hy-
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Figure 7.2: Band structure of Cmca−4 hydrogen at (a) 414 GPa and (b) 450 GPa.
The band structure is calculated for the crystal structure at the harmonic and
anharmonic level. The Fermi energy is at 0 eV. The insets show the band structure
close to the Fermi level around the Γ, R and T points.
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Figure 7.3: Electronic DOS of Cmca − 4 hydrogen in the neighborhood of the
Fermi level εf at 414 GPa calculated with the harmonic and anharmonic atomic
positions. (b) Fermi surface at 414 GPa for the two different approaches.

drogen is also considerable. As shown in Fig. 7.4, the SSCHA renormalization
of the phonons clearly indicates that vibronic modes are further softened by an-
harmonicity. The anharmonic softening of the vibrons makes these modes mix
with the rest of the phonons in large areas of the BZ, even at Γ. As well as
molecular stretching, the Heitler–London model [176] or enhanced Friedel oscilla-
tions induced intramolecular potential picture [78] also predict that anharmonicity
tends to soften the vibrons. On the contrary, the anharmonic correction of the
non-vibronic modes does not show a clear pattern as some modes are softened
while others hardened. It should be noted that the small instability that appears
along ZT in the anharmonic case at 450 GPa is an artifact of the Fourier inter-
polation, as no imaginary frequencies are found in the 6× 6× 6 grid used for the
interpolation.

7.4 Electron-phonon coupling and superconduc-

tivity

Considering the large electronic band-structure and phonon spectra renormaliza-
tion induced by anharmonicity, a big impact on the superconducting behavior
should be expected. Calculating the electron–phonon deformation potential within
DFPT, we have estimated the electron–phonon coupling constant λ for Cmca− 4
hydrogen at 414 and 450 GPa. At the harmonic level, we obtain a value of λ = 0.97
at 414 GPa and a similar λ = 0.89 at 450 GPa (see Fig. 7.5 and Table 7.2). The
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Figure 7.4: (a) Harmonic and (b) anharmonic phonon spectra of Cmca− 4 hydro-
gen at 414 GPa and 450 GPa. In the right panels the Eliashberg functions α2F (ω)
and the integrated electron–phonon coupling constants λint(ω) are shown both at
the harmonic and anharmonic level.
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Figure 7.5: Calculated superconducting Tc, both with µ∗ = 0.10 and µ∗ = 0.15
, and electron–phonon coupling constant λ for Cmca − 4 hydrogen both at the
harmonic and anharmonic level. Results are compared with earlier calculations at
the harmonic level presented in Ref. [147].

value at 414 GPa is in very good agreement with previous calculations [147], though
the value at 450 GPa is much lower than the one given in [147]. The reason for
the discrepancy is that there are no electron pockets at Γ and R in our case at
450 GPa, while they exist in the previous calculation. Indeed, these pockets, and
specially the disk around the Γ point [147], provide new scattering channels for
the electrons in the Fermi surface strongly enhancing λ. We estimate the super-
conducting Tcs by solving isotropic Eliashberg equations with a value of 0.10 and
0.15 for the Coulomb pseudopotential, µ∗ , which covers the range estimated for
it by superconducting DFT (SCDFT) calculations [155, 156]. At the harmonic
level the estimated Tcs are around 100 K both at 414 and 450 GPa (see Fig. 7.5
and Table 7.2). The Tc estimated at 414 GPa is not far from the value given by
SCDFT that, in contrast to the isotropic Eliashberg approach used here, considers
the multi-band character of the superconductivity and includes electron-electron
repulsion effects non-parametrically [147]. On the contrary, our calculation gives
a much lower Tc at 450 GPa due to the lower value of λ obtained.

The superconducting behavior of Cmca − 4 hydrogen changes radically once the
quantum and anharmonic renormalization of the Wyckoff positions and phonons
is considered. As shown in Fig. 7.5 anharmonicity makes the electron–phonon
coupling constant reach a value of 1.69 at 414 GPa, an increase of a factor of
1.75, and 2.00 at 450 GPa, a value 2.25 times larger than the harmonic value.
This supposes a huge anharmonic enhancement of the electron–phonon coupling
that brings Tc above 200 K, reaching a value of 258(237) K at 450 GPa with µ∗ =
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P(GPa) 〈ω〉 (cm−1) λ Tµ
∗=0.10

c (K) Tµ
∗=0.15

c (K)
Harmonic 414 1701 0.97 134 116

Anharmonic 414 1580 1.69 236 216
Harmonic 450 1742 0.89 109 92

Anharmonic 450 1650 2.00 258 237

Table 7.2: Calculated average phonon frequency, electron–phonon coupling con-
stant, and superconducting Tc.

0.10(0.15) .

This anharmonic enhancement of superconductivity is exactly the opposite of what
has been calculated in superconducting hydrides [93, 94, 102, 103, 157, 158]. In
order to unravel the possible sources of this anomaly, it is useful to write the
following formula for the electron–phonon coupling constant, which can be derived
from equations (4.12),(4.27) and (4.53) and reads as

λ =
N(εF )D2

M 〈ω〉2
, (7.1)

where N (εf ) is the electronic DOS at the Fermi level, D2 an effective squared
deformation potential (an average of | 〈φn′k+q| ∇ulms

HKS |φnk〉 |2), M the atomic
mass, and 〈ω〉 an effective phonon frequency. The reason why Tc is suppressed
in hydrides is that anharmonicity tends to harden H-character optical modes and
thus reduce the value of λ. Here, the situation is very different as the average
phonon frequency, calculated as

〈ω〉 =

∫∞
0
ωg(ω)dω∫∞

0
g(ω)dω

(7.2)

where g (ω) = 1/Nq

∑
µq δ(ω−ωµq) is the phonon density of states, barely changes

by anharmonicity. Our results give (〈ω〉harmonic/〈ω〉SSCHA)2 = 1.16 at 414 GPa,
while at 450 GPa the ratio is 1.12, which reflects the softening of the vibronic
modes. Even if the increase of the DOS at the Fermi level of around a 20-30% and
the softening of the vibrational frequencies enhances λ, according to (7.1) these are
insufficient to explain the large increase of the electron–phonon coupling constant
shown in Fig. 7.5. Hence, from Eq. (7.1) it can be deduced that the large increase
of the electron–phonon coupling constant comes mainly from the increase of the
deformation potential D. Therefore, the electron pockets created by quantum and
anharmonic effects at the Γ and R points are responsible for the enhancement of
λ and Tc. The occupation of these pockets specially enhances the low-energy part
of the Eliashberg function α2F (ω) as shown in Fig. 7.4 so that the integrated
electron–phonon coupling constant λ (ω) rapidly soars at low energy.
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7.5 Conclusions

In this Chapter we have studied how anharmonicity affects the structural, elec-
tronic and vibrational properties of the molecular metallic Cmca − 4 candidate
structure at 414 and 450 GPa, along with the consequent effects in its super-
conducting properties. We have found including anharmonic effects is of vital
importance to properly account for all of the mentioned properties, showing big
anharmonic renormalizations in its atomic positions, electronic band structure,
phonon spectra and superconducting Tc.

Despite the fact that anharmonicity suppresses the superconducting Tc in many
hydrides due to the enhancement of hydrogen character optical modes [93, 94, 102,
103, 157, 158], in the possible metallic and molecular Cmca− 4 phase of hydrogen
the situation is the contrary: anharmonicity doubles Tc bringing it from around
100 K to values well above 200 K. The reason is that quantum and anharmonic ef-
fects strongly affect the hydrogen positions of the crystal by considerably stretching
the hydrogen molecules. This has a large impact on the electronic structure by
creating two extra electron pockets on the Fermi surface. The new scattering
channels opened by these pockets strongly enhance the electron–phonon coupling
constant and, consequently, superconductivity.

Similar molecular phases of hydrogen, which might be candidates for the first
metallic phase of hydrogen, might also be strongly affected by the quantum nature
of the protons and the consequent anharmonicity. The anharmonic stretching of
hydrogen molecules and the consequent softening of the vibron frequencies might
be a general feature among molecular phases of hydrogen. If, as it happens in
Cmca − 4 hydrogen, the structural changes open electron pockets in the Fermi
surface, superconducting properties can be strongly affected in metallic molecular
phases of hydrogen, in a larger degree than in the energetically most favored atomic
phase in the 400–500 GPa pressure range as we analyzed in the previous chapter.
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Optical spectra

A huge experimental effort in the last years has characterized the phase diagram
of hydrogen up to very high pressures [126, 126–137]. Even so, long after the
start of this thesis, metallic hydrogen has remained elusive. There have been
some works in which the first signals of metallization were present or close to
appear [137, 162]. There even was a claim of having found metallic hydrogen in
the form of a monoatomic liquid [126], which was put in doubt and disproved
shortly after [180, 181]. However, the long standing quest might have come to an
end as, early in 2017, Dias and Silvera reported the first ever laboratory-produced
sample of metallic hydrogen [138].

Metallic hydrogen was claimed to have been observed as the sample became reflec-
tive above 495 GPa [138]. The claim remains controversial as doubts on the pres-
sure calibration have been raised and semiconductors may also be reflective [165–
168]. Moreover, raw reflectance data in Ref. [138] shows a sharp decrease for photon
energies larger than 2 eV whose origin is not totally understood even though it
was first attributed to absorption of diamond [182]. Thus, reproducibility of the
experiment and exhaustive characterization of the system are necessary to confirm
which would be a new milestone not only in materials science, but in physics in
general.

So far, in this thesis we have calculated several properties of metallic hydrogen un-
der the hypotheses that it adopts either an atomic or molecular structure. However,
publication of Ref. [138], which claims to provide experimental data for metallic
hydrogen for the first time, motivated us to contribute in the effort of characteri-
zation. As the outstanding claim in Ref. [138] relies on reflectance measurements,
our initial goal was to obtain, from first-principles, the most accurate reflectance
spectra of the I41/amd atomic candidate structure as possible, covering not only

103
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the experimental frequency range for direct comparison, but also reaching the IR
and ultraviolet (UV) regimes in order to check for possible features which could
help guiding future experiments. Additionally, we performed our calculations also
for the Cmca− 4 molecular phase in order to check whether optical spectra could
be useful for distinguishing among crystal structures.

This way, in this chapter we present reflectance calculations of solid metallic hy-
drogen for the two most probable crystal structures I41/amd and Cmca−4, which
model solid hydrogen at around its metallization pressure in the atomic and molec-
ular cases, respectively.

8.1 Calculation methods and procedure

The central quantity addressed in this chapter is the frequency dependent reflec-
tivity, which for normal incident light in a medium with refractive index n can be
written as

R(ω) =

∣∣∣∣∣
√
ε(ω)− n√
ε(ω) + n

∣∣∣∣∣
2

, (8.1)

where the relative dielectric function ε(ω) can be expressed in terms of the optical
conductivity σ(ω) as1

ε(ω) = 1 + i
4πσ(ω)

ω
. (8.2)

The optical conductivity of a metal can be splitted into different contributions:

σ(ω) = σintra(ω) + σinter(ω) + σphonons(ω), (8.3)

where σintra and σinter account, respectively, for the optical conductivity provided
by electronic intraband and interband transitions, while σphonons accounts for the
direct phonon absorption contribution. As I41/amd hydrogen, due to crystal
symmetry, lacks of first order IR active vibrational modes, we set σphonons = 0.
Cmca − 4 does have some IR active modes, but we will deal with them later, in
Section 8.3.

The interband and intraband contributions are computed in two stages. We
first calculate the dielectric function within TDDFT as described in Chapter 5,
which realistically incorporates the actual electronic structure into the dielec-
tric function. The dielectric function is calculated by employing an interpola-
tion scheme [183–185] of both the Kohn-Sham states and the matrix elements

1We have used atomic units, even though we show final results and graphics in different units
(e.g. eV for energy).
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Figure 8.1: (a) Different contributions to the imaginary part of ε of of I41/amd
hydrogen at 500 GPa. The inset shows a zoom into lower energies. (b) Real part
of ε calculated using the Kramers-Kronig relations. (c) Different contributions to
the imaginary part of ε of of Cmca − 4 hydrogen at 414 GPa for two different
momentum transfers (qsmall = 1/160ΓS and qlarge = 1/80ΓS). The inset shows
a zoom into lower energies. (d) Reflectivity of a Cmca − 4 hydrogen/diamond
interface at 414 GPa calculated using TDDFT. The red dashed curve shows the
results using the ε values obtained directly with TDDFT, while for the black curve
the intraband contribution in Im ε has been substituted by a Delta function at
ω = 0 and Re ε has been obtained using the Kramers-Kronig relations afterwards.
The magnitude of the Delta function is set to satisfy the f-sum rule and therefore
it is related to the electronic density contributing to intraband transitions Nintra.



106 Chapter 8. Optical spectra

with the use of maximally localized Wannier functions [186, 187]. The method
allows a very fine sampling of the reciprocal space in Eq. (5.11). In order to
avoid numerical problems, a finite but small momentum is taken for the cal-
culation of the dielectric function. The obtained optical conductivity from the
TDDFT calculation thus contains both interband and intraband contributions:
σTDDFT (ω) = σTDDFTintra (ω) + σTDDFTinter (ω). In order to incorporate the fine features
of the band structure, we set σinter(ω) = σTDDFTinter (ω) in Eq. (8.3), which provides
a fine description of the reflectivity at high energies.

The low-energy intraband contribution given by σTDDFTintra (ω) is affected by the
choice of a finite momentum and completely neglects how an excited electron can
decay due to the electron-phonon interaction. Moreover, this regime can also be
strongly affected in superconductors due to the presence of the superconducting
gap [188–190]. In order to incorporate these effects into the reflectivity, the in-
traband contribution to the optical conductivity is calculated instead by solving
the isotropic Eliashberg equations including Coulomb and impurity effects (Eq.
(4.57)) and by evaluating the current-current correlation function. This function
can be written in terms of the band gap and gap renormalization functions (φn
and Zn, respectively) and, if one takes the average of a spherical Fermi surface, it
reads as follows [191]:

Π(iΩm) = NfreeπT
∑
n

Snm, (8.4)

with Nfree the free-electron density and

Snm =


φ2n
R3
n
, (m = 0)

1
Rn
, (m = −2n− 1)

ω̃n(ω̃n+ω̃n+m)+φn(φn−φn+m)
RnPnm

−
− ω̃n+m(ω̃n+m+ω̃n)+φn+m(φn+m−φn)

Rn+mPnm
, other m

, (8.5)

where iωn = iπT (2n − 1) and iΩm = i2πTm are the fermionic and bosonic Mat-
subara frequencies, respectively, and

ω̃n = Znωn,

Rn = (ω̃2
n + φ2

n)1/2, (8.6)

Pnm = ω̃2
n − ω̃2

n+m + φ2
n − φ2

n+m.

We can now write the optical conductivity in the Matsubara axis:

σME(iΩm) = i
Π(iΩm)

iΩm

. (8.7)
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The conductivity must still be analytically continued to the real axis. It is con-
venient to separate the imaginary-axis conductivity into the superconducting con-
densate contribution and additional excitations (electron-phonon coupling and im-
purities):

σME(iΩm) = σsc(iΩm) + σexc(iΩm),

σsc(iΩm) = i
Π(0)

iΩm

, (8.8)

σexc(iΩm) = i
Π(iΩm)− Π(0)

iΩm

.

The analytic continuation of the superconducting part is just

σsc(ω) = πΠ(0)δ(ω) + i
Π(0)

ω
, (8.9)

which is exactly zero at the normal state since, as it can be seen in Eqs. (8.4) and
(8.5), φn = 0 ⇒ Π(0) = 0. We perform the continuation of σexc(iΩm) to σexc(ω)
numerically using the Padé approximant technique of Vidberg and Serene [192].
Finally, by adding up the two contributions in the real axis we get σME(ω) =
σsc(ω) + σexc(ω).

Due to the low energy of phonons compared to interband transitions, even for
hydrogen, electron-phonon coupling takes part practically at the Fermi surface.
Thus, using the partial f-sum rule integral we write

Nfree = Nintra =
2

π

∫ ∞
0

Re σTDDFTintra (ω)dω (8.10)

where Nintra is the electronic density contributing to the intraband processes, and
plug it in Eq. 8.4. Finally, we set σintra(ω) = σME(ω) and compute the total
optical conductivity σ(ω) = σME(ω) + σTDDFTinter (ω). Since

Ninter =
2

π

∫ ∞
0

Re σTDDFTinter (ω)dω (8.11)

and N = Nintra+Ninter, this guarantees that the total f-sum rule yields the correct
total electronic density of the system.

In the I41/amd atomic structure this procedure can be easily performed be-
cause the interband and intraband contributions in the TDDFT optical con-
ductivities (real part) are clearly separated as it can be seen in Fig. 8.1a for
Im ε(ω) = ωRe σ(ω)/4π. The real part of ε (Fig. 8.1b) is obtained after-
wards using the Kramers-Kronig relations. Performing the f-sum rule integral
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(Eq. (8.10)) for each contribution in the TDDFT calculation at 500 GPa we
obtain ωintrap =

√
4πNintra = 22.6 eV and ωinterp =

√
4πNintra = 26.3 eV, with

ωp =
√

4πN =
√

4π(Nintra +Ninter) = 35.0 eV, with Nintra and Ninter being the
electronic density contributing to the intraband and interband processes respec-
tively.

In the Cmca − 4 molecular phase splitting the two contributions in Im ε is still
possible, even though trickier than in the atomic case as interband and intraband
transitions are closer in energy than in the atomic phase. In Fig. 8.1c we show
Im ε calculated within TDDFT at 414 GPa for two different wavevectors in order
to understand how intraband and interband contributions could be separated. We
can see that the offset of intraband excitations is at a lower energy for smaller q
as ideally, intraband and interband contributions would be completely separated
for an infinitesimally small q where the former would just consist of a Dirac delta
function at ω = 0. However, numerical restrictions impose a minimum size for
the wavevector. Here we use q = 1/160ΓS and in Fig. 8.1d we show how after
separating both contributions and substituting the intraband contribution by a
Dirac delta function at ω = 0, we recover practically the same reflectivity values for
energies larger than the offset of intraband transitions in the TDDFT calculation
(around 1 eV). For energies smaller than the mentioned offset reflectivity is exactly
one, as there are no available scattering possibilities for electrons, while in the
original TDDFT calculation R takes smaller values as an artifact of the finite q.
The f-sum rule integral for each contribution in the TDDFT calculation at 414
GPa yields ωintrap =

√
4πNintra = 10.6 eV and ωinterp =

√
4πNintra = 22.6 eV, for a

total plasma frequency of 33.2 eV.

Our DFT calculations were performed by employing the Quantum ESPRESSO
package [61]. For I41/amd hydrogen we used a plane-wave energy cutoff of 100 Ry
and a norm-conserving pseudopotential with the Perdew-Wang parametrization of
the LDA [53] for the exchange and correlation potential. The wannierization pro-
cess includes the 40 lowest-lying bands and was performed using the WANNIER90
package [193]. It allows us to interpolate the original 20 × 20 × 20 k-space mesh
into a fine 80 × 80 × 80 mesh for the calculation of the TDDFT dielectric func-
tion. In the latter crystal local field effects were taken into account by the use of
two reciprocal lattice shells [183, 185]. The Eliashberg function α2F (ω) function
needed to solve the Eliashberg equations was calculated as described in Chapter
6, but with the use of the same exchange and correlation potential as for the
TDDFT calculation. α2F (ω) was calculated at the harmonic level as we have seen
in Chapter 6 anharmonicity barely affects it. Eliashberg equations were solved
using a Matsubara energy cutoff of 6 times the highest phonon frequency, the
same as for the Padé approximant. We solved the Eliashberg equations assuming
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Figure 8.2: TDDFT results of the dielectric function of I41/amd hydrogen at 500
GPa for LDA and GGA exchange and correlation functionals.

different τ−1
imp impurity scattering rates as the latter is introduced as a parameter

in the equations. We checked our results are robust with respect to the choice
of exchange and correlation functional as TDDFT plasmon frequencies, which are
identified as peaks in -Im ε−1 vary less than a 5% from the LDA to the generalized
gradient approximation (PBE) [45] (see Fig. 8.2). Moreover, in Section 6 we saw
vibrational properties (and the Eliashberg function) are not significantly affected
by the choice of the exchange correlation functional nor anharmonicity. In any
case, as we are dealing with a good metal where screening is good and no excitonic
effects are present, we consider this combined TDDFT and Eliashberg approach
as a good one for obtaining the optical properties of atomic hydrogen at high
pressure. In the Cmca− 4 structure the calculations were performed in the same
way as in the atomic phase. For the TDDFT calculations, we employed the same
pseudopotential as the one used for the I41/amd structure while the wannieriza-
tion process has been checked to be converged with the use of the 30 lowest-lying
bands. As in the I41/amd case, we interpolate the original 20 × 20 × 20 k-space
mesh into a fine 80 × 80 × 80 mesh for the calculation of the TDDFT dielectric
function, where crystal local field effects were taken into account by the use of two
reciprocal lattice shells. Even though interband and intraband transitions were
closer in energy than in the atomic phase, splitting the two contributions in Im ε
was still possible. Anharmonic effects were included because, as we saw in Chapter
7, they considerably modify the crystal structure, electronic band-structure and
the electron-phonon coupling.
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Figure 8.3: (a) Re ε, Im ε and -Im ε−1 for I41/amd hydrogen at 50 K and 500 GPa
for τ−1

imp = 200 meV in the normal state. The inset shows the same curves zoomed
in the interband plasmon region. (b) Real and imaginary parts of the dielectric
function of I41/amd hydrogen at 50 K and 500 GPa in the IR region for τ−1

imp =
200 meV in both the normal and superconducting (SC) states.
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8.2 I41/amd hydrogen

In Fig. 8.4a we show the calculated reflectivity of I41/amd hydrogen in vacuum
(n = 1 in eq. (8.1)) at 50 K and 500 GPa, for both the normal (which can be
obtained by setting φn = 0 in Eliashberg equations) and superconducting states.
We find two different regimes for the optical spectra: the IR regime (ω < 1 eV),
where the effects related to scattering with phonons and impurities dominate; and
the visible and UV regime (ω > 1 eV) where electronic band structure effects start
to play a role.

The inset in Fig. 8.4a shows the reflectivity at 50 K and 500 GPa for IR radiation.
As we know from Chapter 6, Tc is above 300 K and therefore a temperature of
50 K can be considered to be in the low temperature limit, as the superconduct-
ing gap value remains constant upon reducing the temperature (see Fig. 6.10).
Clean hydrogen (τ−1

imp = 0) in the normal state reflects all the incoming light un-
til phonons start contributing substantially to α2F (ω) above ∼ 100 meV, with
the large α2F (ω) values above 250 meV inducing an even greater reduction of
reflectance. When impurity scattering is taken into account reflectivity decreases
from 1 right from the beginning, reaching a small plateau (∼ 0.99 for τ−1

imp = 200
meV) until scattering with phonons starts to be relevant. In the superconducting
state the reflectivity is equal to unity below 2∆0 = 122 meV even when impurity
scattering is taken into account, as that is the amount of energy required to break
a Cooper pair and make electrons contribute to the optical conductivity. This
can be clearly seen in Fig. 8.3b, where Im ε is strictly zero below 2∆0 (except the
zero frequency contribution coming from the DC conductivity of the Cooper pairs)
abruptly increasing at larger energies. While for τ−1

imp = 200 meV the gap is clearly
observable due to the sudden decrease of R, it is not the same for the clean case;
in order to have electrons contributing to the optical conductivity one needs both
to break Cooper pairs and scattering with phonons to conserve both energy and
momentum. This necessity of impurities for observing the superconducting gap
optically is already well-known, and becomes more evident if one plots the ratio
between superconducting and normal state reflectance (Rsc/Rn) for different τ−1

imp

values (Fig. 8.4b). This figure clearly shows the emergence of a sharp decrease at
ω = 2∆0 only when impurity scattering is included. The gap is observable even in
the clean limit (τ−1

imp = 50 meV < 2∆0), but the drop in Rsc/Rn is more notorious

as one approaches the dirty limit (τ−1
imp >> 2∆0).

The reflectivity above ω=1 eV for normal and superconducting states is almost
identical (see Fig. 8.4a). The effect of impurity scattering up to 5 eV only yields
quantitative differences keeping the shape of the reflectivity curve unaltered. More-
over, temperature effects are completely negligible in this regime. Actually, for ω >



112 Chapter 8. Optical spectra

0 10 20 30 40
ω (eV)

0

0,2

0,4

0,6

0,8

1

R

Normal, τ
imp

-1
=0

Normal, τ
imp

-1
=200 meV

2∆
0
=122 meV

0 200 400 600 800 1000

ω (meV)

0,94

0,96

0,98

1
R

Superconducting, τ
imp

-1
= 0

Superconducting, τ
imp

-1
= 200 meV

0

1

2

3

α
2
F

(ω
)

0 200 400 600 800 1000
ω (meV)

0,98

0,99

1

1,01

1,02

1,03

R
sc

/R
n
o
rm

al

τ
imp

-1
=0

τ
imp

-1
=50 meV

τ
imp

-1
=200 meV

τ
imp

-1
=500 meV

2∆
0
=122 meV

Figure 8.4: (a) Reflectivity of I41/amd hydrogen in vacuum at 50 K and 500 GPa
for different impurity scattering rates both in the normal and superconducting
states. The inset shows the same curves at the low energy regime along with the
electron-phonon spectral function α2F (ω). (b) Ratio between superconducting
and normal state reflectance of I41/amd hydrogen in vacuum at 50 K and 500
GPa for different impurity scattering rates.
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Figure 8.5: Electronic band-structure of I41/amd hydrogen at 500 GPa. Interband
transitions around the N point that yield a peak in Im ε are marked with blue
arrows. The DFT bands are compared to the free-electron band structure. The
Fermi level is at 0 eV.

5 eV all the curves converge into one, suggesting electronic scattering is dominated
by electronic band structure effects rather than phonons and impurities. Remark-
ably, in this UV regime the reflectivity sharply decreases from a high ∼ 0.95 value
in the visible range (ω = [1.6-3.3] eV) to ∼ 0.3 at ω = 6.5 eV. This stark reduction
of the reflectance is a consequence of light absorption due to the presence of an in-
terband plasmon not expected a priori for a simple free-electron-like alkali metal.
This is demonstrated in Fig. 8.3a, where we display the calculated dielectric func-
tion. The interband plasmon emerges around the energy where Re ε vanishes and
Im ε remains low. This induces a clear peak in −Im ε−1 at ωinter = 6.2 eV as shown
in Fig. 8.3a, which coincides with the drastic drop in the reflectivity. We label
this plasmon as interband because it is a consequence of the interband transitions
of around 8.2 eV that occur close to the N point (see band structure in Fig. 8.5).
Consequently, Im ε shows a clear peak at 8.2 eV, which due to Kramers-Kronig
relations makes the real part pass through 0 at 6.5 eV and create the interband
plasmon. Even if the band structure of I41/amd is not far from the free-electron
limit as discussed in Chapter 6, the large gap opened by the electron-ion interaction
at the N point suffices to induce the presence of an interband plasmon not expected
for a free-electron-like metal. Thus, metallic hydrogen in the I41/amd phase is an-
other example in which the departure from the free-electron-like character makes
interband plasmons emerge and abruptly modify the optical properties, as it oc-
curs in other simple compounds under pressure such as Li [194–196], Ca [184],
Na [185, 197], Rb, Cs [198] and AlH3 [199]. Apart from the interband plasmon, we
find that metallic hydrogen shows the expected free-electron plasmon at ωp = 35.7



114 Chapter 8. Optical spectra

Pressure (GPa) 400 500 600
∆0 (meV) 64.1 61.0 67.1
ω0 (eV) 7.6 8.2 8.2
ωinter (eV) 5.5 6.5 6.6
ωp (eV) 34.2 35.7 36.8

Table 8.1: Superconducting electronic bandgap (∆0), interband absorption peak
position (ω0), interband plasmon peak position (ωinter) and total plasma frequency
(ωp) of I41/amd hydrogen at different pressures.

eV, which is responsible for the final decrease of the reflectivity at the extreme
UV regime. This value is in good agreement with the Drude-model estimate of
ωp =

√
4πN = 35.0 eV, where N is the total electronic density.

The sharp offset of reflectivity due to the superconducting gap lays off the IR
absorption range of diamond, and should be measurable in consequence. UV
absorption of diamond however would eclipse the minimum of the reflectivity pre-
dicted here at 6.5 eV due to the presence of the interband plasmon, since above
the indirect electronic bandgap of 5.47 eV (at zero pressure) diamond is no longer
transparent. Nevertheless, the sharp decrease associated to such plasmon starts
before the absorption onset and should be observable in pure diamond. However,
impurities in diamond could be responsible of light absorption at lower energies,
even in the visible [182].

Finally, motivated by uncertainties in the reported pressure of the experiment [165–
168] we have calculated the optical spectra for I41/amd hydrogen at 400 and 600
GPa. As we can see in Fig. 8.7, differences are only quantitative, as the qualitative
nature of the curves does not change. The energy of the interband plasmon at 400
GPa is 5.5 eV and 6.6 eV at 600 GPa, and other minor quantitative changes of
the main parameters are summarized in Table 8.1.

8.3 Cmca-4 hydrogen

Figure 8.8a shows the reflectivity of this molecular phase at 414 GPa including
electron-phonon and band-structure effects. Our results predict light absorption
at much lower energies than in the atomic phase due to enhanced interband tran-
sitions at lower energies, which are indicated in Fig. 8.8c. Figure 8.8d shows how
these transitions induce a clear peak in Im ε at 6.7 eV, with a shoulder at around
5 eV. This broad feature is related to available low energy interband transitions
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Figure 8.6: (a) Frequency-dependent electronic scattering rate of I41/amd hy-
drogen at 500 GPa for different τ−1

imp values and temperatures compared to the
experimental value τ−1 = 1.1 ± 0.2 eV [138, 182]. The pure TDDFT calculation
is also shown. The inset shows the obtained ωp(ω) in the same energy range, to-
gether with the ωintrap estimate. (b) Reflectivity of a I41/amd hydrogen/diamond

interface at 5 and 83 K at 500 GPa for different τ−1
imp values. Reflectivity of the

Cmca − 4 structure at 414 GPa is shown for comparison. Diamond IR (0.2-0.47
eV) and UV (5.47 eV electronic bandgap) absorption regions are shown in shaded
gray. Experimental raw values [138] are included. The inset shows a zoom into
the IR region, with the 2∆0 values of the molecular and atomic phases indicated
with vertical lines at 96 and 122 meV, respectively.
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as shown in Fig. 8.8c. Accordingly Im ε−1 shows a broad peak centered at 2.7 eV,
close to where the real part of the dielectric function crosses zero, but it decays
slowly with increasing energy causing strong light absorption up to 8 eV (see Fig.
8.8a) as interband transitions are still available at those energies. At high ener-
gies, the bulk plasmon of the material appears centered at 32.0 eV, close to the
free-electron value of

√
4πN = 33.2 eV, being N the average electronic density of

the material.

Figure 8.8b shows the reflectivity of Cmca − 4 hydrogen in the infrared. As this
system is also superconducting at low temperatures, it does display the abrupt
decrease of reflectivity at ω = 2∆0. However, the bandgap in this phase is con-
siderably smaller (2∆0 = 96 meV). Moreover, three IR active lattice vibrations
(Γ point) are expected in this structure at around 0.09, 0.14 and 0.31 eV, which
would absorb light and consequently further reduce the reflectivity. Note that in
the superconducting state the lowest energy IR active mode lays below the 2∆0

value, meaning it would not affect the reflectivity; it would affect the normal state
reflectivity, though.

8.4 Comparison to experiments

In Fig. 8.6b we show how the raw experimental reflectivity values in Ref. [138]
compare to our calculations for the I41/amd structure at 5 and 83 K, with reflec-
tivity calculated for a hydrogen/diamond interface by using the refractive index of
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n = 2.41 of diamond instead of n = 1 in eq. 8.1. Our results compare well at 5 K
to the two lowest frequency experimental data points. Additionally, for compari-
son we also show the optical spectrum of molecular Cmca− 4 hydrogen (see Figs.
8.6b and 8.8a). The calculated reflectivity for Cmca−4 significantly deviates from
both the I41/amd spectra and the experimental measurements due to the pres-
ence of enhanced interband electronic transitions in the molecular structure. Even
though the amount of experimental data is insufficient for unequivocal determina-
tion, agreement is better with the atomic candidate. Interestingly, the calculated
optical spectrum for both structures show very different features, which supports
the potential validity of the reflectivity to identify the structure and encourages
to extend optical measurements on a wider energy range.

In Ref. [138] the authors fitted the experimental data with the reflectivity formula
following the Drude model. According to this model,

ε(ω) = 1−
ω2
pτ

ω

1

i+ ωτ
. (8.12)

The plasma frequency ωp and the mean scattering time τ are usually defined as
fixed parameters, which significantly simplifies the problem yielding good results
when the covered energy range is small compared to the plasma frequency of the
system. When this is not the case, it can be useful to generalize this formula by
making them frequency dependent. This way, for a known ε(ω), one can define
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ωp(ω) and τ(ω) as
1

τ(ω)
=

ωIm ε(ω)

1− Re ε(ω)
(8.13)

and

ω2
p(ω) = ωτ(ω)

(
ω2 +

1

τ(ω)2

)
Im ε(ω). (8.14)

As the atomic candidate fits better to the experiments than the molecular one,

we have calculated τ−1(ω) and ωp(ω) ≡ +
√
|ω2
p(ω)| at 500 GPa for the I41/amd

structure using ε(ω) values calculated for different impurity scattering rates and
temperatures, as well as only considering TDDFT and therefore neglecting phonon
and impurity scattering. In Fig. 8.9 we can see that for frequencies larger than
15 eV, all ωp curves converge in a plateau close to the theoretical ωp =

√
4πN =

35.0 eV value, while τ−1 yields around 7 eV, regardless of whether or not including
phonon and impurity scattering. This shows electronic scattering is dominated by
electronic band structure effects in this high frequency regime. For frequencies
lower than 5 eV but larger than 0.5 eV approximately, ωp yields values around
21 eV, close to the ωp =

√
4πNintra = 22.6 eV value, which is expected as the

interband transitions onset at higher energies and therefore their corresponding
electronic density does not contribute to ε. In this energy regime τ−1 ranges
between 0.7-1.5 eV when phonon and impurity scattering is included in the calcu-
lations even if for the TDDFT only calculation yields negligible values. This shows
phonon and impurities clearly govern electronic scattering for the photon energies
the experiment was performed at. In the 5-15 eV interband plasmon region, ωp
and τ−1 take unrealistic (even negative for τ−1) values. This is because the Drude
formula is not adequate for modeling the optical conductivity close to interband
excitations. In order to take into account the interband transitions and their con-
tribution to ε, one should add a Lorentz oscillator. The same holds for the very
small energy region (ω < 0.5 eV), as the ω dependence of the electron-phonon and
impurity scattering contribution to ε is more complex than the one modeled by
the Drude formula.

The experimental values obtained by Dias and Silvera by fitting to a Drude model
only the two lowest-energy points, which, according to the authors, are not affected
by diamond absorption [182], yielded ωp = 33.2 ± 3.5 eV and τ−1 = 1.1 ± 0.2
eV at 5 K [182]. In order to shed some light into these experimental values we
fit our calculated dielectric function to a Drude model with frequency-dependent
ωp(ω) and τ−1(ω), which are displayed in Fig. 8.6a. In the ω = [0.7 − 3] eV
range our results yield ωp ∼ 21 eV and τ−1 ∼ 0.6 − 1 eV at 5 K for a clean
sample, with impurities shifting τ−1 upwards. Our estimated τ−1 in the measured
frequency range is in good agreement with the experiment and clearly shows that
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its large value is mainly due to the strong electron-phonon interaction, which
highlights the fact that we are dealing with a superconductor with a very large
Tc. On the contrary, the value obtained for ωp is considerably lower than the
one obtained by Silvera and Dias [138, 182]. In fact, our value is consistent with
the ωintrap =

√
4πNintra = 22.6 eV value, where Nintra is the electronic density

contributing to intraband transitions. Nonetheless, in this low energy (ω << ωp)
regime very different ωp values still provide a good fitting to the experimental
data, while τ−1 remains almost unaltered (see Fig. 8.10). By fitting the first two
experimental data points at 5 K to the reflectivity formula we have obtained at
least two different results: ωp = 60.91 eV and 1.98 eV and with τ−1 = 2.21 eV and
0.085 eV respectively (see Fig. 8.10). None of the fitted ωp values are reasonable,
either for too high or too low. It is also important to notice we do not obtain
the same fitting parameters as in Ref. [182] (ωp = 33.2 eV and τ−1 = 1.1 eV).
However,if we set ωp = 33.2 eV and fit only τ−1 we obtain the same 1.1 eV as
in Ref. [182]. We have checked that for ωp values fixed within 20-40 eV (values
close to what is expected for a nearly-free-electron-like metal at these densities)
and fitted only τ−1 to the experimental data, the latter only oscillates within 0.64-
1.36 eV yielding a good fitting to the experiments within the error bars. We thus
consider the τ−1 value obtained experimentally [138, 182] to be more meaningful
than the plasma frequency, because indeed it is this parameter what determines
how much the reflectivity deviates from one for ω << ωp.
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In the experimental region our calculated reflectivity and scattering rate values
are practically temperature independent (see Fig. 8.6). Our calculations predict
temperature only affects the region within some meVs around the superconducting
gap. This indicates the temperature dependence shown in the experiments cannot
be explained with the increase of phonon occupation in the system.

8.5 Conclusions

We have made an exhaustive analysis of the optical response properties of high
pressure metallic hydrogen from the infrared to the extreme ultraviolet. More
precisely, we have focused on the I41/amd and Cmca − 4 structures, which are
candidates to model atomic and molecular metallic hydrogen close to its metal-
lization pressure.

Our results show that in the measured energy range [138] the electronic scattering
of the I41/amd structure is dominated by the huge electron-phonon interaction of
the system. Besides, our calculations reveal a sharp onset of the optical conductiv-
ity in the infrared region induced by the superconducting gap, which is remarkably
large for the atomic structure. The fact that the stark offset of reflectivity pro-
duced by this gap lays below the phonon induced IR absorption of diamond makes
this feature potentially accessible for optical spectra measurements.

We have also found a pronounced loss of reflectance in the ultraviolet regime due
to the presence of a non-free-electron-like plasmon in I41/amd hydrogen, similar
to others predicted and found in alkalis and hydrides at high pressure [185, 194–
199]. In contrast, the molecular candidate Cmca−4 shows a considerably different
spectrum due to the presence of low energy interband absorption processes, sug-
gesting different phases of hydrogen can potentially be distinguished from their
optical spectra.

Finally, the agreement of our calculations with experiments in Ref. [138] is better
for the atomic structure even if only at the two lowest energies, where the authors
from Ref. [138] claim the data is not affected by diamond absorption. In fact,
determining how much of the decrease in the measured reflectance comes from
diamond absorption and how much from the hydrogen sample itself, potentially
due to the proximity of the interband plasmon, would be very interesting. How-
ever, the disagreement on the temperature dependence of the reflectivity and the
clear lack of data for a reliable fitting to the Drude formula put the results from
Ref. [138] under question. Thus, our work deeply encourages further experimental
research in order to not only reproduce the experiments, but also to extend opti-
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cal measurements to both the UV and the IR regions. Confirming the predicted
interband plasmon and measuring the superconducting gap optically would be not
only of tremendous interest by itself, but also a big step towards characterizing
this fascinating material.



Part III

Lithium

123





125

Lithium, the lightest metal on the periodic table at ambient conditions, is a nearly-
free-electron material which adopts a compact bcc structure [200]. One could
expect lithium to evolve to an even more free-electron like system with increasing
pressure because the kinetic energy of electrons increases faster with pressure than
the opposite sign electron-electron repulsion. However, it has been shown that
pressure not only induces several structural transformations [17, 26, 201–203], but
also gives rise to a plethora of fascinating physical properties [33]. For instance,
lithium becomes a semiconductor near 80 GPa [23], it shows a maximum in the
melting line [204] and melts below ambient temperature (190 K) at around 50
GPa [26]. It also presents one of the highest Tc for an element [7–12], reaching 20
K at 48 GPa, and it is expected to display a periodic undamped plasmon [194, 196].
Additionally, according to a recent experiment lithium shows quantum and isotope
effects in its low temperature and pressure phase transformations [203].

Recently, the strongly anomalous superconducting isotope effect measured in li-
thium in the 15-25 GPa pressure range [9] brought this element back under the
spotlight. The reported superconducting critical temperatures contrast starkly
with the BCS theory, where Tc is expected to scale as ∝ 1/mα, with m being the
isotopic mass and α the isotope coefficient (0.5 within the BCS theory). Actually,
for most phonon mediated superconductors, α does not deviate much from 0.5.
However, the above mentioned experiment shows a highly erratic behavior of α
as a function of pressure, with values ranging from 1 to 4 from 15 to 21 GPa,
decreasing sharply between 21 and 25 GPa, where it even becomes negative, with
values as low as -2.

Experimental evidence [17, 23, 26, 201–203] shows that in the pressure and tem-
perature ranges where the anomalous isotope effect was measured (15-25 GPa and
below 30 K) lithium presents a face centered cubic (fcc) structure. Tc rapidly soars
with increasing pressure in the fcc phase, which is adopted by lithium up to 40
GPa, pressure after which it transforms to the rhombohedral hR1 phase. This
phase is really similar to fcc as it consists of just a distortion along the c axis if
one switches to a hexagonal representation. The transformation to the cubic cI16
phase occurs shortly after, at around 43 GPa.

Theoretical calculations within the harmonic approximation in fcc lithium show a
highly softened transverse acoustic mode in the ΓK high-symmetry line [10, 27,
28, 205, 206]. Around qinst = 2π/a(2/3, 2/3, 0), where a is the lattice parameter,
this anomalous mode presents a huge electron-phonon coupling, becoming a key
factor to explain the high Tc observed in lithium [27, 205, 206]. This softening
is associated to a well defined Fermi surface nesting [10, 27, 28, 205–207] and
even yields imaginary phonon frequencies at pressures where fcc is known to be
stable. The instability emerges at pressures higher than 30 GPa in the local
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density approximation, and at even lower pressures if one uses the generalized
gradient approximation. As seen in other systems, such as simple cubic Ca [208],
PdH [94], the record superconductor H3S [103] and NbSe2 [104], anharmonicity
could have a significant role stabilizing this structure and, due to phonon frequency
renormalization, also determining its superconducting properties.

The origin of the observed unconventional isotope effect in high pressure lithium
remains unclear. In this thesis we consider the following two hypotheses to explain
this behavior. (i) Phonon frequencies scale with the atomic mass differently as
expected within the harmonic approximation. Therefore, while in the harmonic
approach the electron phonon coupling constant λ is independent of the isotopic
mass, anharmonicity could make it differ from one isotope to the other, as it
happens in palladium hydrides [94]. (ii) 6Li and 7Li isotopes adopt different crystal
structures due to the significant role of the vibrational energy in the phase diagram.
Experimental evidence and previous theoretical calculations claim fcc is the most
stable structure from zero pressure to 40 GPa [23, 26, 201–203]. However, it has
been recently measured at lower pressures that, even if fcc is the most stable
structure of lithium, other structures close in energy may be kinetically favored,
which is the case of the martensitic phase [203]. Besides, this behavior has been
seen to be strongly isotope dependent. Therefore, one cannot discard a similar
behavior in the 15-25 GPa pressure range, specially considering the small enthalpy
differences between the most competitive candidates [17, 209, 210].

Motivated by the experiment from Ref. [9], our goal is to give an explanation
to the measured anomalous isotope effect in terms of phonon anharmonicity and
thermodynamical stability. For that purpose we have exhaustively investigated
the phonon softening of lithium in its fcc phase at 15-40 GPa, as well as its leading
contribution to the electron-phonon coupling and superconductivity. Moreover, we
have made precise enthalpy calculations for the competing phases in the pressure
range where the experiments were performed, fully including the vibrational energy
at the anharmonic level to check whether the phase transition sequence could be
isotope dependent. Finally, we have calculated the superconducting Tc of the most
competitive phases at several pressures to see if the values are compatible with the
experimental anomaly.

In chapter 9 we analyze the phonon softening of fcc 7Li at 26 GPa and its an-
harmonic renormalization. While the harmonic phonon analysis relies on DFPT,
anharmonicity has been treated by solving the ionic Schrödinger equation numeri-
cally with the BOES mapped according to the polarization vector of the anomalous
mode. In chapter 10 we show the results of our analysis on the possible sources
of the anomalous isotope effect measured on lithium. In this case, the theoretical
method of choice for including anharmonicity in the phonon spectra and enthalpy
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calculations will be the SSCHA. With that goal in mind, we will extend the analy-
sis on the fcc phase to several pressures and to both isotopes, as well as to different
structures which may compete with fcc in terms of thermodynamical stability.
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Chapter 9

Stability of fcc lithium at 26 GPa

The phonon softening of fcc lithium at qinst = 2π/a(2/3, 2/3, 0) in the harmonic
approximation is extremely important, mostly for two reasons. First, in the har-
monic approach it yields imaginary phonon frequencies, which means the system
should be dynamically unstable. However, it is well known fcc lithium is stable
from even ambient pressure up to 40 GPa [23, 26, 201–203]. Thus, a correct treat-
ment of the lattice dynamics in this system requires going beyond the harmonic
approximation with a non-perturbative approach. Second, this anomalous mode
presents a huge electron-phonon coupling and it is therefore essential for explaining
the high Tc of fcc lithium under pressure.

In this chapter we analyze the anomalous vibrational mode of fcc 7Li at 26 GPa in
terms of ab initio total energy calculations. In order to deepen the understanding
of the nature of this anomaly, we study the convergence of the DFPT harmonic
phonon frequency of the unstable mode. We also estimate the impact of anhar-
monicity by solving the time independent Schrödinger equation for the potential
associated to the atomic displacements along the mode of interest, which implies
it does not interact with the rest of the modes in the crystal.

9.1 Computational details

Our DFT calculations were done within the Perdew-Burke-Ernzerhof (PBE) para-
metrization of the GGA [45]. Harmonic phonon frequencies and the electron-
phonon deformation potential were calculated within density functional perturba-
tion theory (DFPT) [81] as implemented in Quantum ESPRESSO [61]. The
electron-proton interaction was considered making use of an ultrasoft pseudopo-
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Figure 9.1: DFPT harmonic phonon spectrum of fcc Li at 26 GPa.

tential [60] in which 1s2 core electrons were also included. An energy cutoff of
65 Ry was necessary for expanding the wave-functions in the plane-wave basis.
Converging the total electronic energy within 0.1 meV required a 30 × 30 × 30
k-point mesh and a 0.01 Ry Methfessel-Paxton electronic smearing for electronic
integrations in the first BZ.

9.2 Numerical convergence of harmonic phonons

In Fig. 9.1 we show the DFPT harmonic phonon spectrum of fcc lithium at 26
GPa. The dynamical matrices have been explicitly calculated in a 9×9×9 q-point
grid and Fourier interpolated afterwards to the chosen path in the first BZ. The
transverse acoustic branch T1 is clearly softened in the ΓK path, displaying even
imaginary (shown as negative in the graph) frequencies at qinst = 2π/a(2/3, 2/3, 0)
(a = 6.59 a0 at 26 GPa). This point is part of the 9×9×9 grid in which an explicit
DFPT dynamical matrix calculation was performed, so it is not an artifact of the
Fourier interpolation.

In order to better understand the nature of this anomaly, we obtained its associated
energy profile by calculating the total electronic energy U for different displace-
ments following the polarization vector of the T1 mode at qinst. The displacements
implied by this mode require a a 3× 3× 3 supercell. In Fig. 9.2 we plot the total
energy along the path described by the anomalous mode for different choices of k-
point grids, referred to a unit cell, and smearing widths for electronic integrations.
While for displacements larger than 0.05 Å the curves do not vary much among
the different calculations, for small displacements the chosen convergence criteria
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Figure 9.2: Electronic energy vs. displacement along the T1 mode at qinst for
different choices of k-point grids and smearing width values. In red (30× 30× 30)
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as in the black ones (21 × 21 × 21). The inset shows a zoomed view of the small
displacements region. The origin of energy is set at the zero displacement energy
for a 30 × 30 × 30 grid and 0.01 Ry smearing width. b) Convergence analysis of
the DFPT harmonic frequency of the three normal modes at qinst

of 0.1 meV is clearly not enough for describing the profile properly. As one in-
creases the BZ sampling and decreases the smearing width, the double-well shape
of the energy surface sharpens. As the harmonic phonon frequency is obtained by
calculating the second derivative at the equilibrium position, we expect the conver-
gence of this value to be harsh. This is confirmed by DFPT calculations. In Fig.
9.3 we can see that, while the frequency of the L longitudinal and T2 transverse

modes converge within 1 cm
-1

, the frequency of the T1 transverse anomalous mode
decreases monotonically as smearing values are reduced for the densest samplings
of the BZ. A proper convergence would require an even denser grid and a smaller
smearing width. However, such small energies and displacements are physically
meaningless considering the zero point energy which, as we will see later in section
9.3, is 6.3 meV. Thus, we hold to the choice of a 30× 30× 30 k-point mesh and a
0.01 Ry smearing width for the rest of the calculations in this chapter and in the
next one.

We estimated the harmonic frequency of the T1 mode at qinst by calculating the
second derivative of U at the equilibrium position numerically. Performing the
numerical second-order derivative using the three data-points closest to the equi-
librium position (see Fig. 9.4) we have estimated a phonon frequency of -28.6



132 Chapter 9. Stability of fcc lithium at 26 GPa

0 0,01 0,02 0,03

-50

0

50

100

150

200

ω
 (

c
m

-1
)

10x10x10
20x20x20
30x30x30
40x40x40
50x50x50

0 0,01 0,02 0,03

Smearing (Ry)

526

528

530

532

534

536

538

540

0 0,01 0,02 0,03

558

560

562

564

566

568

570

T
1

T
2

L

Figure 9.3: Convergence analysis of the DFPT harmonic frequency of the three
modes at qinst as a function of the smearing and k-point mesh.

cm−1. The value obtained within DFPT for the same calculation parameters is
-22.1 cm−1, in quite good agreement with the previous finite difference result.

9.3 Solving the ionic equation

Due to the highly anharmonic shape of the energy profile of the mode under
analysis, we solved the one-dimensional time-independent Schrödinger equation
for the potential associated to the vibrational mode. This way, we are neglecting
the interaction of the analyzed mode with the rest of the normal modes of the
lattice.

We calculated the total electronic energy of the system for different atomic dis-
placements along the anomalous vibrational mode using its polarization vector.
We fitted a 10th degree polynomial to the energy vs. displacement data points and
solved the eigenvalue problem using ParametricNDSolve in Wolfram Mathe-
matica [211]. We assumed that for displacements larger than 0.7 Å the eigen-
functions vanish, discarding tunneling to adjacent positions.

In Fig. 9.4 we show the electronic energy data points, the fitted polynomial and
the obtained three lowest energy eigenfunctions and eigenvalues, with values 6.3,
20.6 and 36.3 meV, respectively. The possible transitions between states yield
phonon frequencies of 14.3, 15.7 and 30.0 meV (115.3, 121.8 and 241 cm−1 ),
respectively. If we compare the value of the most probable transition, 115.3 cm−1 ,
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which is the transition between the ground state and the first excited state, with the
harmonic value of -28.6 cm−1 , we see a huge difference. First, the magnitude of the
anharmonic correction is even larger than the harmonic value itself. Second, the
shape and width of the wavefunctions and the magnitude of the eigenvalues confirm
not only the lack of physical relevance of the convergence problems observed when
computing the second derivative, but also the absolute failure of the harmonic
approach for describing this vibrational mode. Finally, anharmonicity changes the
sign of the frequency and, thus, guarantees the dynamical stability of the system
at least within this frozen-phonon approach.

9.4 Conclusions

In this chapter we have analyzed the anomalous transverse phonon at qinst =
2π/a(2/3, 2/3, 0) in fcc lithium. We have estimated the anharmonic correction of
the unstable mode at 26 GPa for 7Li using a frozen-phonon approach by solving
the Schrödinger equation. While within the harmonic approach one obtains a
frequency of -28.6 cm−1, anharmonicity renormalizes dramatically this value up
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to 115.3 cm−1. Thus, it seems that anharmonicity is dynamically stabilizing this
system.

This strong phonon renormalization could potentially cause the inverse isotope
effect [9] by making the electron-phonon coupling constant different for the two
stable lithium isotopes, as it happens in PdH, where anharmonicity explains the
inverse isotope effect [94]. Anyway, our frozen-phonon calculations neglect the
interaction of the analyzed vibrational mode with the rest of the modes in the
crystal. Therefore, a proper quantitative analysis would require a method taking
into account the phonon-phonon interaction also among different modes. The
SSCHA is the proper framework to address this problem and the results of applying
it to this system are shown in the next chapter.

Moreover, according to our calculations, even though it is extremely difficult to
converge the harmonic frequency of the anomalous mode, converging the energy
profile at relevant energy scales is considerably easier. Convergence problems only
occur at very low displacements, which are unphysical, and not in the part of
the potential determined by the fluctuations. Therefore, the phonon calculations
including anharmonic effects within the SSCHA in the next chapter will not have
these convergence issues.



Chapter 10

Superconducting isotope effect

As we mentioned in the introduction of this part, we consider the following two
hypotheses to explain the anomaly: (i) λ depends on the isotopic mass due to
anharmonic effects and (ii) 6Li and 7Li isotopes adopt different crystal structures.

In the previous chapter our results suggested fcc lithium is stabilized by anhar-
monic effects, since its phonon softening is hardened if one goes beyond the har-
monic approach. Previous works show this soft mode contributes exceptionally to
the total electron-phonon coupling constant of the system [27, 205, 206]. Since we
have seen anharmonic effects modify considerably the frequency of the softening,
we expect big changes in the electron-phonon coupling strength and the supercon-
ducting properties of fcc lithium once anharmonicity is considered. Here, apart
from extending the analysis to different pressures, we upgrade the theoretical ap-
proach as we use the SSCHA method for including the anharmonic renormalization
of lattice vibrations, as well as for calculating the electron-phonon coupling and
superconducting Tc for each pressure and lithium isotope. This will allow us to
check if hypothesis (i) explains the experiment from Ref. [9].

On the other hand, while according to experiments and theoretical calculations
lithium adopts the fcc structure in the pressure range where the experiments were
performed, the cI16 and hR1 structures are close both in pressure and enthalpy [17,
203, 209, 210]. In order to account for hypothesis (ii), we have made precise
enthalpy calculations for the three competing phases at different pressures and
calculated the Tcs for the cI16 phase as well. As we will see in section 10.3, we
will discard hR1 as a competing phase and we will not evaluate its Tc.
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Figure 10.1: Harmonic (black curves) and anharmonic (red symbols) phonon spec-
tra of fcc 7Li at different pressures. Harmonic spectra are obtained by Fourier
interpolating the 9 × 9 × 9 q-grid data to the desired path. Anharmonic data
corresponds to SSCHA calculations in a 3× 3× 3 q-point grid.

10.1 Anharmonic phonon spectra and electron-

phonon coupling

In this chapter we will use the same exchange-correlation functional, pseudopo-
tential and calculation parameters as in chapter 9.

10.1.1 Fcc structure

Harmonic dynamical matrices of fcc Li have been obtained in a 9 × 9 × 9 q-grid
within DFPT for every analyzed pressure and isotope. In Fig. 10.1 we show the
harmonic phonon spectra obtained at 15, 21, 26 and 36 GPa for 7Li after Fourier
interpolating the dynamical matrices from the 9× 9× 9 grid to the desired path.
We do not show the spectra for 6Li since they are essentially the same, except for
the larger frequencies due to the lower mass. We can see increasing pressure makes
most of the modes increase their frequency, except the low frequency transverse
branch, which is softened. This decrease is specially large at qinst, where as shown
in Fig. 10.2, it yields negative (imaginary) values above 25 GPa in the harmonic
case, a considerably lower pressure than the 30 GPa obtained with the LDA in
previous calculations [10, 27, 28, 205–207].

We calculated the anharmonic dynamical matrices in a 3× 3× 3 q-grid commen-
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surate to the supercell used for our SSCHA calculations, in which we calculate
forces acting on atoms. According to our calculations, the anomalous mode gets a
strong renormalization due to anharmonic effects. Fig. 10.2 shows the anharmonic
frequency of the anomalous mode for different pressures, confirming fcc lithium is
dynamically stabilized by anharmonicity above 25 GPa as the frequency takes
positive values.

From Fig. 10.1 one can deduce that anharmonicity is primarily localized at the
softened mode. In order to analyze this in detail and see how anharmonicity is
distributed over the first BZ, we show in Fig. 10.3 the DFPT point-by-point
(without Fourier interpolation) harmonic phonon dispersion of fcc 7Li at 26 GPa
and the anharmonic corrections calculated within the SSCHA. We performed the
SSCHA calculations in 3 × 3 × 3 and 4 × 4 × 4 supercells to obtain anharmonic
dynamical matrices in the respective commensurate q-point grids. We can confirm
that anharmonicity is localized around the phonon softening at the transverse
acoustic T1 branch at qinst where, as we saw in the previous chapter, the frequency
is strongly shifted up by anharmonic effects. In fact, the SSCHA value of 16.2 meV
at 26 GPa is in quite good agreement with the 14.3 meV frozen phonon value from
the previous chapter.

Electron-phonon matrix elements were calculated within DFPT in a 9×9×9 q-grid,
where converging the double Dirac delta in the equation for the phonon linewidth
required a denser 80×80×80 k-point mesh. Anharmonic effects were included using
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Figure 10.3: Fcc 7Li phonon dispersion at 26 GPa. Anharmonic phonons within
the SSCHA are calculated both for a 3× 3× 3 and a 4× 4× 4 grid of points. The
Eliashberg function α2F (ω) and the integrated electron-phonon coupling λint(ω)
is also shown for the anharmonic case.

the same method as in hydrogen, with anharmonic dynamical matrices interpolated
to the 9× 9× 9 grid with the method explained in Appendix B.

The superconducting Tc was calculated solving the isotropic Eliashberg equations
(eq. (4.57)) considering that for large electron-phonon coupling constants McMil-
lan’s equation underestimates Tc [172]. We estimate a µ∗ value of 0.17 using the
Morel-Anderson formula [212]:

µ∗ =
µ

1 + ln (
εf
ωD

)
. (10.1)

The average electron-electron Coulomb repulsion term µ was obtained from Tho-
mas-Fermi screening theory, a free-electron Fermi energy εf was chosen, and the
Debye cutoff phonon frequency ωD was taken as the highest frequency of the
longitudinal acoustic modes [213]. We have also used the McMillan equation (eq.
(4.58)) and different µ∗ values for testing the convergence of Tc with the q-point
grid and for comparing our results with other works.

In Fig. 10.4a we can see how converging Tc and λ with the q-point grid becomes
tedious due to the large contribution of qinst to the total electron-phonon coupling.
Our chosen 9×9×9 grid overestimates Tc by 2.5 K comparing to the 12×12×12 case
while λ is 0.2 larger. However, increasing the grid size would make the calculation
really demanding. Moreover, as our goal is to check whether anharmonicity can
explain the anomalous isotope effect, this overestimation only makes anharmonic
effects more visible as it gives more weight to qinst in our estimations. Moreover,
we clearly see grids not containing qinst (dimensions not multiple of 3) yield smaller
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Figure 10.4: Convergence of Tc and λ with the q-grid for (a) fcc and (b) cI16 7Li,
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Tc and λ values that the ones they do, and using such grids would obviously neglect
how anharmonicity affects the electron-phonon coupling and superconductivity.

Our combined SSCHA and DFPT electron-phonon coupling calculations displayed
in Fig. 10.5 show the total coupling constant λ rises abruptly with increasing
pressure in the fcc phase. Starting from an already high value of 0.85 at 15 GPa
it reaches a value as high as 2.6 at 36 GPa. This dramatic growth is directly
related to the rapid increase of the electron-phonon linewidth γ of the T1 mode
at qinst, which doubles its value in the mentioned pressure range (see inset of Fig.
10.5). The remarkable peak in the Eliashberg function α2F (ω) and the associated
abrupt growth of the integrated electron-phonon coupling constant λint(ω) around
the frequency of the anomaly (see Fig. 10.3) is another fingerprint of how relevant
this softening is in the superconducting properties of fcc lithium.

Our λ values, which do not almost differ from one isotope to the other, are slightly
larger than the ones by Maheswari et al. [206] and Profeta et al. [27] and quite
larger than the ones by Akashi et al. [205] and Bazhirov et al. [10]. We attribute
these disagreements to the large dependence of λ with the q-point grid. While we
use a 9 × 9 × 9 sampling of the BZ for the electron-phonon and lattice dynamics
calculations, where qinst is explicitly taken into account, the mentioned works use
8×8×8 grids (7×7×7 in the case of Maheswari et al.), where it is not. According
to our convergence tests described previously (see Fig. 10.4a), those grids clearly
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underestimate λ due to the absence of qinst in the grid. Including this extremely
anharmonic point is crucial for estimating the impact of anharmonicity in the
electron-phonon coupling and, as a consequence, the superconducting Tc. Fig. 10.6
shows the superconducting critical temperature of fcc lithium for both isotopes at
15, 20, 26 and 36 GPa. We find Tc increases monotonically with pressure the same
way λ does, ranging from 11.2 K (10.7 K) at 15 GPa to 34.8 K (32.5 K) at 36 GPa
for 6Li (7Li). Our Tc values are larger than in previous works as in the case of λ.
However, they compare better to literature and experiments if we use McMillan’s
formula with µ∗ =0.22.

10.1.2 cI16 structure

Harmonic dynamical matrices have been obtained in a 6 × 6 × 6 q-grid for every
analyzed pressure and isotope. For this crystal structure, a proper convergence of
phonon frequencies required a 16 × 16 × 16 k-point grid and Methfessel-Paxton
smearing width of 0.01 Ry for electronic integrations in the first BZ. An energy
cutoff of 65 Ry was necessary for expanding the wave-functions in the plane-wave
basis. In Fig. 10.7 we show the phonon spectra obtained at 15,19, 27 and 44 GPa
for 6Li after Fourier interpolating the dynamical matrices from the 6× 6× 6 grid
to the desired path. We can see that phonons do not show any remarkable feature,
as they are positive and well-behaved all over the BZ.

Anharmonic dynamical matrices were obtained in a 2×2×2 q-grid, commensurate
to the supercell in which the SSCHA was performed. We interpolated the results
to the finer 6 × 6 × 6 grid with the same method as in the fcc case. In this case
anharmonicity has practically no influence on phonon frequencies at 27 and 44
GPa, while at 15 and 19 GPa low frequency modes are more noticeably affected.
We can see this in Fig. 10.7 for 6Li (we do not show the result for 7Li as they are
practically identical).

Converging the double Dirac delta in the equation for the phonon linewidth re-
quired a 32×32×32 k-point mesh. The superconducting Tc was calculated solving
isotropic Eliashberg equations. Converging Tc within 1 K required to calculate the
electron-phonon matrix elements in a 6× 6× 6 q-point grid (see Fig. 10.4b).

The cI16 structure (space group I43d) has all the Li atoms placed in the Wyck-
off 16c positions (conventional coordinates (x, x, x) and all symmetry equivalent),
which has a free parameter x. As the SSCHA minimization of the free energy is
also performed with respect to x, final average atomic positions are different from
the harmonic or static ones. In principle, one should perform the electron-phonon
coupling calculations in the new anharmonic atomic positions for each isotope and
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Figure 10.7: Phonon spectra of cI16 6Li at different pressures.
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pressure. However, we checked that the impact on λ and Tc for 6Li at 19 GPa,
where the change in x due to anharmonic effect is the greatest (∆x =0.004) is
within the convergence criteria. Therefore, we use the electron-phonon coupling
calculation calculated at the static equilibrium positions at each pressure for both
isotopes.

In Fig. 10.5 we show the total electron-phonon coupling λ for cI16 Li at 15, 19,
27 and 44 GPa. λ does not vary with pressure as much as it does in the fcc
phase, as it varies only between 0.9 and 1.2 in the 15-44 GPa pressure range.
λ is fairly similar for both isotopes, so anharmonicity does not have almost any
impact. Still, at the lowest pressures, cI16 values differ more than the fcc ones
from one isotope to the other. This is due to the fact that, while the overall
phonon spectrum is very slightly modified by anharmonicity in the cI16 phase,
anharmonic corrections occur mostly at the lowest frequencies, which are the ones
that contribute the most to the total electron-phonon coupling. In fact, our λ and
Tc estimations with µ∗=0.17 shown in Figs. 10.5 and 10.6 yield values higher than
in fcc below 20 GPa, being the opposite at higher pressures.

10.2 Enthalpy calculations

Since the temperature of the systems under analysis is below 30 K (2.5 meV),
which is the maximum estimated Tc, and the typical phonon frequencies are of
the order of tens of meVs, the phonon occupation of the system will always be
negligible and so will be the entropic contribution to the vibrational free energy.
The same holds for the electronic entropy, even in a more obvious way, with typical
electronic energies being of the order of eVs. Therefore, all our calculations will
be at zero temperature and, therefore, the thermodynamically stable structure at
each pressure will be the one that minimizes the total enthalpy of the system

H = ET + PV. (10.2)

where V is the volume of the system, ET = U0 + Ev is the total energy and
U0 = U(R̃0) and Ev are the electronic and vibrational energies, respectively. The
pressure of the system is defined as

P = −∂ET
∂V

. (10.3)

We calculated each contribution to the total energy ET = U0 +Ev at several unit-
cell volumes and fitted them separately, due to the fact that the computational
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cost of a data point differs significantly from one contribution to another, as U0

is faster to compute than Ev, which is calculated within the SSCHA as it is the
T = 0 limit of Eq. (3.48).

We calculated U0 for fcc and cI16 Li for volumes ranging from 50 to 100 a3
0/atom

with a step size of approximately 1.5 a3
0/atom. We fitted the data using a Birch-

Murnaghan equation of state [214]. Due to the different properties of the phonon
spectra, the vibrational contribution required a different treatment for each crystal
structure. Taking the T = 0 limit of Eq. (3.48) we write the vibrational contribu-
tion to the energy as Ev = Efreq+ < U − U > [93], where Efreq comes from the
sum of the SSCHA frequencies over all the modes of the crystal and < U − U >
comes from the difference of the actual anharmonic energy surface and the SSCHA
harmonic one. Efreq can be further splitted into the harmonic contribution and
the anharmonic correction, Efreq = Ehar +Eanh, where Ehar is the energy coming
from the harmonic frequencies and Eanh is their anharmonic correction.

For cI16 calculating harmonic dynamical matrices in a 2×2×2 q-grid was enough
to converge Ehar within 0.5 meV/atom (see Fig. 10.4d). We calculated Ehar
at seven different volumes, from 50 to 100 a3

0/atom, and fitted a fourth order
polynomial to the data points. We calculated Eanh and < U − U > at four
different volumes (60,70,80 and 84 a3

0/atom) by performing SSCHA calculations
in 2× 2× 2 supercells, and fitted the data with a second order polynomial.

Fcc Li presents a more complex situation due to the anomaly in the ΓK path. We
computed Ehar using a 8×8×8 grid, which does not show any imaginary frequency
down to at least 65 a3

0/atom (which corresponds to around 35 GPa), and converges
Ehar within 0.2 meV/atom (see Fig. 10.4c). We calculated Ehar at seven different
volumes, from 50 to 100 a3

0/atom, and fitted a fourth order polynomial to the
data points. To estimate the anharmonic contribution, we performed SSCHA
calculations to obtain anharmonic dynamical matrices and < U − U > in a 3 ×
3× 3 grid for four different volumes (66,72,77 and 84 a3

0/atom). To overcome the
situation of using different grids for each contribution of the vibrational energy,
we needed to treat Eanh carefully. We interpolated our anharmonic dynamical
matrices from the 3×3×3 grid to a finer 9×9×9 to obtain Efreq, and subtracted
the harmonic contribution in a 8× 8× 8 grid as Eanh = Efreq−Ehar, as imaginary
frequencies prevent us obtaining Ehar in a 9× 9× 9 grid. Finally, we fitted these
four data points with a second order polynomial.

For hR1 we have proceeded in a different way due to the fact that it shows plenty
of imaginary frequencies in the harmonic phonon spectra (see Fig. 10.8). These
imaginary frequencies are strongly renormalized by anharmonicity and become
real after applying the SSCHA in a 2 × 2 × 2 q-grid. However, the interpolation
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Figure 10.8: Phonon spectra of hR1 7Li at around 40 GPa. Harmonic dynamical
matrices have been explicitly calculated in a 6×6×6 q-grid, while the anharmonic
ones have been calculated in a 2×2×2 grid and interpolated to the finer 6×6×6
grid afterwards. The harmonic spectrum shows phonon instabilities in large regions
of the BZ. Anharmonicity renormalizes strongly those instabilities, yielding real
frequencies for every q-point in the 2× 2× 2 grid. However, after interpolating to
the 6× 6× 6 grid some modes remain unstable.

method was not useful in this case as some of the interpolated anharmonic ma-
trices in a 6 × 6 × 6 remained yielding imaginary frequencies. We overcame this
situation making use of the similarity of hR1 with the fcc phase. If one chooses
a rhombohedral unit cell, hR1 differs from fcc only by the rhombohedral angle
θ. Thus, taking θ and the unit cell volume V as variables, we can focus our at-
tention to their associated potential energy surface. We define the total energy
as ET (θ, V ) = ET,fcc(V ) + ∆E(θ, V ), where ET,fcc(V ) is the total energy of the
fcc phase (θ =60o) and ∆E(θ, V ) is the difference in energy due to the change in
the rhombohedral angle. We only need to calculate ∆E(θ, V ) in this case as we
had previously calculated ET,fcc(V ). ∆E(θ, V ) is the sum of electronic and vibra-
tional contributions. The electronic contribution ∆U0(θ, V ) is easily obtained by
DFT total energy calculations. For obtaining the vibrational contribution ∆Ev(θ)
we assumed that it is independent of the unit cell volume. This way, we per-
formed SSCHA calculations in 2 × 2 × 2 supercells at four different cos(θ) values
(0.25,0.35,0.412 and 0.5) for a single volume (60 a3

0/atom) and fitted it with a 3rd

order polynomial. In Fig. 10.9 we show ∆E(V, θ) against θ for different choices of
the unit cell volume V, which is kept constant in each curve. Two relative minima
can be distinguished below 70 a3

0/atom: one at cos θ = 0.5, which corresponds to
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Figure 10.9: ∆E(θ, V ) against cos (θ) for different unit-cell volumes (in a3
0/atom).

In the dashed curves vibrational energy is not included.

the fcc structure, and another one corresponding to the hR1 phase, which even
has a lower energy than the previous one for volumes smaller than 63 a3

0/atom.
Plus, the angle at which this minimum occurs increases with decreasing volume.
Above 70 a3

0/atom, which corresponds to pressures below 28 GPa, hR1 could not
exist as it lacks of a local energy minimum.

In Fig. 10.10 we show the pressure vs. volume curves for each isotope and struc-
ture, obtained by taking the first derivative of ET with respect to the volume.
According to the graph, our relative enthalpy calculations should be trustworthy
at least between 15 and 50 GPa.

Fig. 10.11 shows the enthalpies of the competing phases cI16 and hR1 relative to
their respective fcc ones for the two isotopes. Our static calculations, i.e. not in-
cluding Ev (which at T = 0 is the ZPE), compare well with literature (there are no
previous works including ZPE) [209] and just show the fcc to cI16 transition. No
important changes are shown for both isotopes when anharmonic ZPE is included
and, although in the pressure range where this phase transition happens the en-
thalpy difference with the hR1 is less than 1 meV/atom, that is, roughly the same
as the error one assumes when converging total energy calculations within DFT,
it remains metastable. Therefore, small changes in the calculation parameters or
the choice of exchange and correlation potential might cause modifications in the
transition pressures and phase sequence. Accordingly, when ZPE is included the
fcc to cI16 transition pressure shifts from 37 GPa to 33 GPa for both isotopes,
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as the enthalpy difference is reduced by around 3 meV due to lattice vibrations.
Additionally, in the 21-25 GPa pressure range, where the inverse isotope effect was
observed, the enthalpy difference between cI16 and fcc structures is really small
(around 4-6 meV/atom).

10.3 Discussion on the isotope effect

First of all, we discarded an isotope dependent µ∗ as the source of the anomalous
isotope effect. Changes in phonon frequencies and electronic density for different
pressures and isotopes only alter the fourth significant digit of µ∗, so that differ-
ences in µ∗ cannot explain the isotope effect anomalies and we assume the same
value for every isotope and pressure.

In Fig. 10.12 we show our calculated α values against pressure using our Tc esti-
mations of fcc Li. We do not see any anomalous scaling of the superconducting
temperature with the isotopic mass, as α is close to the conventional harmonic
BCS value of 0.5 within almost the entire pressure range. It is true that at 15
GPa it shows a lower value. However, it does not, in any case, explain the ex-
perimentally observed anomalous isotope effect. The reason for a normal isotope
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dotted curves only electronic energy has been considered. The low pressure limit
for the hR1 curves has been set at the pressure which corresponds, in each case,
to the maximum volume at which the phase shows a local minimum in the total
energy surface (see Fig. 10.9).

effect in our calculation is the way the anomalous phonon frequency scales with
isotopic mass. As it is shown in the inset of Fig. 10.2, even though this soft mode
shows huge anharmonic effects, its frequency scales practically as in the harmonic
case ( ω ∝

√
1/M). This makes λ nearly identical for both isotopes at every

pressure except at 36 GPa, where the difference is just 7% even if anharmonicity is
already really strong as shown in Fig. 10.2. A similar harmonic mass scaling was
previously calculated for high pressure simple cubic calcium despite being strongly
anharmonic [208].

As using McMillan’s formula with µ∗ =0.22 Tc compares better with literature
and experiments, we show the corresponding α values in Fig. 10.12 as well. In
any case, α does not almost change, and the conclusion remains unaltered. The
overestimation of Tc in our calculations could also indicate that vertex corrections
in the electron-phonon coupling and anisotropic effects in the Eliashberg equations
might be important. However, anisotropic effects should not be isotope dependent
and, due to the harmonic scaling of phonon frequencies, we do not expect vertex
corrections to yield any anomalous isotope effect either. Therefore, we discard
hypothesis (i).

After discarding that the anomalous isotope effect comes from strong anharmonic-
ity in the fcc phase, we analyze the possibility of the two isotopes showing different
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structures at the same pressure in a thermodynamically stable way. As we saw in
section 10.2, our results do not support hypothesis (ii) as 6Li and 7Li isotopes are
not expected to adopt different stable crystal structures in the pressure range of
interest.

However, due to the extremely small enthalpy differences metastability of phases
cannot be discarded as it happens at ambient pressure for its martensitic transi-
tion [203]. In order to see if 6Li and 7Li adopting different structures could lead
to the observed anomalous isotope effect, we have also made lattice dynamics and
electron-phonon coupling calculations in the cI16 structure. We do not further
consider hR1 as a candidate because, as we saw in section 10.2, the local mini-
mum in the total energy surface associated to hR1 disappears for pressures lower
than 28 GPa.

In Fig. 10.12 we can see the isotope effect coefficient against pressure in the case
both isotopes adopt the cI16 structure. The values are close to the harmonic value
at 27 and 44 GPa, with α =0.42 and 0.57, respectively. However, they deviate
considerably from 0.5 at 15 and 19 GPa as α yields 0.77 and 0.34, respectively,
due to the higher anharmonicity we found at lower pressures. Nevertheless, this
scenario does not still give an explanation to the experiments.

Finally, we have also analyzed this metastability driven hypothetical scenario: 6Li
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stabilizing in the fcc phase and 7Li in the cI16, and vice versa. In these cases Tc vs.
P data points have been obtained at different pressures for each isotope. Thus, we
have fitted second order polynomials to overcome this situation. As shown in Fig.
10.12, in the pressure range where the inverse isotope effect was experimentally
observed (21-25 GPa), experimental values would only be qualitatively reproduced
if 6Li adopted the cI16 structure while 7Li were in the fcc phase. This qualitative
picture does not vary much if one uses the McMillan formula with µ∗ =0.22, but
it could notably change if we used different µ∗ values for the different phases.

10.4 Conclusions

According to our calculations, even though anharmonicity is crucial to stabilize
the fcc phase in lithium under pressure, its λ remains almost the same for both
isotopes and yields a conventional scaling of Tc with isotopic mass. Therefore, it
does not explain the experimentally observed anomalous isotope effect.

On the other hand, including anharmonic ZPE in the enthalpy curve does not
modify the phase diagram of lithium in the pressure range of interest, so that it is
unexpected to have both isotopes in different structures in a stable regime. The
anomalous isotope effect could only be qualitatively explained if 7Li adopted the
fcc structure while 6Li adopted the cI16 one in a metastable way.

All this, added to the large error bars and quite chaotic behavior of Tc with pressure
in Ref. [9]–with considerably different temperature values for the same pressure–
puts in question the experimental observation of an anomalous isotope effect in
lithium at high pressure. This way, our work encourages further experimental
research to determine the phase sequence and superconducting properties of the
two stable isotopes of lithium.
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The main goal of this thesis was to provide an accurate theoretical description of
lithium and hydrogen at high pressures focusing on the regions of their respective
phase diagrams where the superconducting properties, which are still potential in
the case of hydrogen, emerge. With this in mind, we have presented electronic and
vibrational spectra along with the coupling between the electronic and nuclear
sub-systems in order to obtain the superconducting properties of the analyzed
materials. While our calculations rely on the DFT framework, we have accurately
included the quantum behavior of the nuclei and anharmonic effects arising due to
the lightness of the elements. For that purpose, we have used the SSCHA [93, 94],
which accounts for quantum nuclear and anharmonic effects in a non-perturvative
variational way.

Even though this thesis has mostly revolved around superconductivity and the
effects of pressure in this fascinating property, we have seen pressure alters many
other properties of high pressure hydrogen and lithium. Despite some of these ef-
fects were expected prior to performing the calculations, others took us by surprise
and required a careful analysis. Given that we have already drawn conclusions for
each of the systems we have analyzed at the end of their corresponding chap-
ters, here we will give some remarks about what we consider relevant, expected or
unexpected, phenomena emerging under pressure.

From a purely uniform electron gas approximation, metals are expected to be-
come more free-electron-like as the pressure is increased. This is because the
kinetic energy of electrons increases faster with pressure than the opposite sign
electron-electron repulsion. In fact, this is what we saw in the case of atomic
I41/amd hydrogen, where the band-structure is properly represented if one ne-
glects the electron-electron interaction. However, due to the lack of core-electrons
in hydrogen the electron-nuclei interaction is particularly strong and must there-
fore be included, as it induces large band-gaps wherever the Fermi sphere touches
the BZ boundaries. In fact, the lack of core electrons has crucial effects on the
electronic screening as well, which we did not expect a priori, making the RPA
fail due to the large self-interaction error of the Hartree term. These deviations
from the free-electron model are more evident in the molecular Cmca − 4 phase,
where the Fermi surface complexity is strongly pressure dependent. The reason is
that electron and hole pockets are created as the hydrogen molecules stretch with
increasing pressure.

In principle, phonon frequencies are expected to rise as the pressure is increased.
This can be expected since, as the interatomic distance is reduced, the forces
acting on atoms get stronger. However, we have seen that lithium, in its simple fcc
structure, clearly deviates from this picture. Its phonon softening, even if strongly
renormalized by anharmonic effects, reduces its frequency as the applied pressure
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is increased. Lattice dynamics and anharmonicity have strong implications on
the phonon frequencies of molecular hydrogen too, but the effects are specially
relevant in its crystal structure. As pressure stretches the hydrogen molecules,
vibronic frequencies are expected to get lower, and the Cmca − 4 structure is
not an exception. On top of that, anharmonic effects stretch the molecules even
further. This reduces significantly the pressure needed for filling the electron and
hole pockets in the Fermi surface which are responsible of the high superconducting
Tc. In fact, these strong anharmonic effects were expected considering lithium and
hydrogen are extremely light elements. However, we did not expect the very little
impact of anharmonicity in atomic hydrogen. Even though it is true that the
phonon spectrum was significantly affected by anharmonic effects, the changes
inflicted in the physical properties of atomic hydrogen are merely quantitative.

According to our results, hydrogen and lithium are great examples of pressure
enhanced superconductivity. However, it is the impact of anharmonicity in the
superconducting Tcs of atomic and molecular hydrogen which draws our attention.
While the general trend in hydrides is to reduce or even suppress superconductivity,
anharmonicity even increases Tc in Cmca− 4 hydrogen thanks to the electron and
hole pockets created at the Fermi level as the molecules are stretched. On the
other hand, the reduction of Tc in the I41/amd atomic phase due to anharmonic
effects is negligible. When anharmonicity is related to soft modes, as it is the case
of lithium and of many hydrides [93, 94, 102, 157, 158], the general trend is that
anharmonicity hardens these modes and therefore it reduces the Tc. However,
in the absence of soft modes, as in atomic hydrogen, or in molecular systems
where anharmonicity may stretch the molecules and soften the vibrons, a different
behavior should be expected. The fact that anharmonicity does not necessarily
handicap superconductivity is great news, indeed.

The electronic, vibrational and superconducting features of the systems analyzed
in this thesis lead to interesting and useful fingerprints on their optical spectra.
The presence of non-free-electron-like plasmons in lithium and in other alkali met-
als was already known [185, 194–198]. Our results show hydrogen, once metallized
under pressure, would have a similar behavior to the rest of the alkalis in that
sense. Furthermore, its huge electron-phonon coupling and high temperature su-
perconductivity would also have notorious implications in its optical response,
which would help in characterizing this material.

This thesis has been strongly influenced by two experimental papers, one for each
of the elements under analysis. In this aspect, our objective was to give some
answers to the hypotheses presented in these works. In “High-pressure supercon-
ducting phase diagram of 6 Li: Isotope effects in dense lithium” [9], Schaeffer et
al. claimed they have measured an anomalous, even inverse at some pressures,
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isotope effect in lithium in the 15-26 GPa range. Their main hypothesis is that
anharmonic lattice vibrations cause this anomaly as it is the case in PdH [94].
They also suggest an isotope dependent crystal structure could be the origin of
the anomaly, even though they do not show any structural characterization mea-
surement. Our results clearly discard the first hypothesis, and do not support the
latter either. Though metastability of phases could be behind what it was seen in
the experiments, our calculations put in doubt the experimental results and, there-
fore, encourage their reproduction and further diffraction experiments in order to
confirm the crystal structure of lithium in the pressure range of interest. The
paper “Observation of the Wigner-Huntington transition to metallic hydrogen”
by Dias and Silvera [138] has been one of the most important but controversial
scientific publications in recent years. The claim of having produced a metallic
hydrogen sample sparked strong criticism regarding how pressure was determined
in the experiment and the lack of sophistication of the used optical characteriza-
tion technique [165–168]. According to our calculations, pressure, while extremely
important as it determines the crystal structure, does not modify the optical prop-
erties of metallic hydrogen within each of the most probable phases. Moreover,
the experimental electronic scattering rates are not far from our estimated values,
supporting that the I41/amd atomic phase could be behind the measurements.
However, the temperature dependence of the measurements cannot be explained
by our calculations and we show the amount of experimental points presented by
Dias and Silvera are clearly not enough. Moreover, using the Drude model for
characterization is probably a too simple theoretical approach. In any case, it
seems that experimentalists are already able to obtain the pressures necessary to
metallize hydrogen and the confirmation of metallization of hydrogen looks closer
than ever. Hopefully, our contribution will be helpful to guide present and future
experiments.
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Appendix A

Components of the dynamical
matrix

The dynamics of a crystal lattice in the harmonic approximation are solved by
diagonalizing the dynamical matrix of the system. According to Eq. (3.25) the
force constant matrix is splitted into the nuclei-nuclei (the last term) and nuclei-
electron contributions (the first two terms). The dynamical matrix can therefore
be splitted accordingly:

D(q) = Dp(q) +De(q), (A.1)

where Dp accounts for the nuclei-nuclei contribution and De for the nuclei-electron
contribution. The electronic part can be computed within the RPA using the
Lindhard formula in which, assuming a constant free electron density, after Fourier
transforming Eq. (3.25) and dividing it by

√
msms′ , one obtains

De
ll′

ss′(q) =
1

√
msms′Ωcell

∑
kG

(δk,q+G − δs,s′δk,G)
χ0(k)

1− 4π
k2
χ0(k)

× V s
c (k)V s′

c (k)klkl
′
eik·(τs−τs′ ), (A.2)

where the index s holds for the atoms in the unit cell and l for the three cartesian
axes. V s

c (k) = −4πZs/|k|2 is the Coulomb potential in momentum space created
by a nuclei with index s and charge Zs.

The ionic part is always analytic, and one needs to use the Ewald summation
method to deal with the convergence issues emerging from the long range behaviour
of the Coulomb interaction [215]. If the ionic total energy is split into short
and long range contributions, the ionic contribution to the dynamical matrix will
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consist of
Dp

ll′

ss′(q) = Dlong
p

ll′

ss′
(q) +Dshort

p

ll′

ss′
(q), (A.3)

where

Dlong
p

ll′

ss′
(q) =

1
√
msms′

∑
m

e−iq·Tm
∂2V long

I,I (R)

∂ulms∂u
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(A.4)

Dshort
p

ll′

ss′
(q) =

1
√
msms′

∑
m

e−iq·Tm
∂2V short

I,I (R)

∂ulms∂u
l′
0s′

∣∣∣∣
R0

. (A.5)

The long range contribution is computed in momentum space and reads as

Dlong
p

ll′

ss′
(q) =

1
√
msms′Ωcell

∑
G

∑
k

(δk,q+G − δs,s′δk,G)
4πZsZs′

|k|2
klkl

′ ×

× eik·(τs−τs′ )e−k
2/4γ. (A.6)

The short-range contribution is computed in real space as

∂2V short
I,I (R)

∂ulms∂u
l′
0s′

∣∣∣∣
R0

= −ZsZs′
∂2φshort(x)

∂xl∂xl′

∣∣∣∣
x0

, (A.7)

where

φshort(x) =
erfc(
√
γ|x|)
|x|

(A.8)

and the second derivatives have to be evaluated at

x0
mss′ = Tm + τs′ − τs. (A.9)

Making use of the properties of the complementary error function it can be shown
that the derivatives of the potential look like

∂2φshort

∂xl∂xl′
(x) = ZsZ

′
s

xlxl
′

|x|2

[(
4γ +

6

|x|2

)√
γ

π
e−γ|x|

2

+
3erfc(

√
γ|x|)

|x|3

]
−ZiZj

δll′

|x|2

[
2

√
γ

π
e−γ|x|

2

+
erfc(
√
γ|x|)
|x|

]
. (A.10)

The γ parameter can help to speed up the convergence and, obviously, the final
result must be independent of the chosen value.
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Interpolation of SSCHA
dynamical matrices

In the SSCHA forces are calculated in supercells and, therefore, anharmonic dy-
namical matrices are obtained in a commensurate q-point grid. Computational
costs increase enormously with the supercell size making dense sampling calcula-
tions extremely time-demanding. Therefore, whenever a fine sampling of the BZ
is required, we have used the following interpolation scheme.

Let us call the anharmonic dynamical matrices obtained in the output of the SS-
CHA calculation in a coarse q-point grid (small supercell) Dcoarse

SSCHA(q). We will
name the harmonic dynamical matrices obtained in the same grid as Dcoarse

har (q).
Our goal is to obtain anharmonic dynamical matrices in a finer grid, written as
Dfine
SSCHA(q), by taking advantage of having the fine grid harmonic dynamical ma-

trices Dfine
har (q) already computed (which are faster to obtain than the anharmonic

ones). Assuming that

D̃coarse(q) ≡ Dcoarse
SSCHA(q)−Dcoarse

har (q) (B.1)

is slowly varying in the reciprocal space (i.e. the differences between the SSCHA
and the harmonic force constant matrices are more localized in real space than
the harmonic force constant matrices) we can interpolate D̃coarse(q) using Fourier

interpolation to the fine grid of our choice to obtain D̃fine(q). Now, it is straight-
forward to obtain

Dfine
SSCHA(q) = Dfine

har (q) + D̃fine(q). (B.2)
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Laburpena (summary in Basque)

Hidrogenoa eta litioa taula periodikoko elementu sinpleak dira, euren propietateak
giro presio eta tenperaturan oso ezagunak direlarik. Hidrogenoa gas diatomiko mo-
lekularra da eta litioa elektroi askeen ereduarekin erraz azal daitekeen metal arrun-
ta. Muturreko baldintzatan, ordea, ustekabeko portaera agertzen dute. Material
hauek presio oso altuetan daukaten portaera aztertzea da, hain zuzen, doktoretza
tesi honen helburua. Horretarako dentsitatearen funtzionalen teoria (DFT) erabili
dugu.

Presioak eta tenperaturak materian duten eragina egunerokotasunean ikus daiteke,
eta ura da horren adibide on bat. Urak giro presioan 100 oC-tan irakiten du, lurrun
bilakatuz. Presioa igoz gero, ordea, tenperatura altuagoa behar du irakiteko. Hau
da, hain zuzen, presio-eltzearen oinarria, tenperatura altuago honi esker egosten
baita bertan sartzen dugun janaria azkarrago. Beste muturrean, presioa asko
jaitsiz gero ura lurrun bihur daiteke tenperatura baxuetan ere. Logika berdina
jarraituz, izotza sortzeko ere bi aukera daude: ohiko modua, ura zero gradura
hoztea, eta ez-ohiko modua, presioa izugarri handitzea, 10000 atmosfera ingurura.

Presio eta tenperatura oso altuetan materialen egitura eta propietateak zehaz-
ten dituzten lotura kimikoak ere alda daitezke, askotan aurresan ezin daitezkeen
ondorioekin. Honela, presioa eta tenperatura materialen propietateak aldatzeko
eta material berriak sortzeko tresna gisa ikus daitezke. Egoera solidoaren fisikan
propietate aldaketak kristal-egitura aldaketekin batera agertzen dira maiz. Ba-
tzuetan, litioaren trantsizio martensitikoan kasu [1], tenperatura da aldaketaren
eragilea. Bilatzen ari garen propietatea tenperatura baxukoa denean, ordea, pre-
sioa da aldaketak eragiteko egokiena.

Presiopean ezustean agertzen den propietateetako bat supereroankortasuna da.
Elektroientzat Hartree-Fock eredua eta kristal sarearen bibrazioentzat (fonoi-en-
tzat) eredu kuasi-harmonikoa onartuz gero, presioak supereroankortasunaren kon-
tra egin beharko luke [2, 3]. Izatez, hori da supereroale konbentzional sinpleetan
behatzen dena [4, 5]. Ostera, badira lege hau apurtzen duten material asko eta
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asko, baita oso sinpleak direnak ere. Honela, giro presioan taula periodikoko 29
elementu badira supereroaleak, presiopean zenbakiak 54 arte egiten du gora [13].
Litioa, kasu, giro presioan supereroalea bada ere, oso tenperatura baxura hoztu
beharra dago, bere supereroankortasun tenperatura kritikoa (Tc) 0.4 mK eskase-
koa baita [6]. Presiopean, ordea, Tc-k bost magnitude orden egiten du gora, 20
K-era helduz 48 GPa-tan [7–12]. Hidrogenoa, oraindik esperimentu bidez konfir-
matu ez bada ere, 55. elementua izan liteke. Wigner-ek 1935ean presiopean solido
bihurtzeaz gain metal bihurtuko litzatekeela [14] aurresan eta urte batzuetara,
Ashcroft-ek oso tenperatura altuko supereroalea ere izango litzatekeela iragarri
zuen [15]. Duela gutxi sufre eta hidrogeno konposatu batean 150 GPa-tan 203 K-
tako Tc-a neurtu izanak [16] Ashcroft-en ideiari berebiziko sinesgarritasuna eman
zion.

Supereroankortasuna ez da, noski, presiopean ager daitekeen propietate bakarra.
Adibidez, presioa igo ahala kristal egitura gero eta trinkoagoak espero badira ere,
material batzuek kontrako joera agertzen dute, litioa adibide ona izanik [17–22].
Fase trantsizio horiei lotuta metaletik isolatzailerako trantsizioak edota tenperatu-
ra baxuko urtze prozesuak agertzen dira [23–26]. Egitura aldaketa horiek askotan
fonoi ezegonkortasunei lotuta ageri dira, aldi berean supereroankortasuna bultzatu
edo areagotzen dutenak [27–33].

Presio altuko materialen fisikan propietate aldaketak, normalean, gigapascal (GPa)
eskalan ematen dira. Esperimentalki presio horiek lortzeko diamond anvil cell
(DAC) izeneko gailuak erabiltzen dira, aztertu beharreko lagina bi diamanteren
artean zapaltzen dutenak. Teknika oso garesti eta konplexua da eta, ondorioz,
kalkulu teorikoek bereziko garrantzia daukate zientziaren arlo honetan. Zorionez,
DFT kalkuluetan presioa erraz simulatu daiteke inongo kostu gaingarririk gabe,
kristala definitzen duen gelaxka unitatearen bolumena nahieran aukera baitaiteke.

Tesia hiru ataletan banatuta dago. Lehenengo atalean kalkuluak burutzeko beha-
rrezkoak izan diren oinarri teorikoak laburtu ditugu. Bigarren atala hidrogeno
solidoari buruzko analisiari eskaini diogu. Azkenik, litioari buruzkoa hirugarren
atalean bildu dugu.

Lehenengo atala, Theoretical Background izenekoa, bost kapituluz osaturik dago.
Lehenengo kapituluan materiaren propietateak fisikaren ikuspuntutik aztertzeko
beharrezkoa den gorputz anitzeko Hamiltondarra eta Schrödinger ekuazioaren for-
malismoa aurkeztu dugu, Born-Oppenheimer hurbilketaren bidez elektroi eta nu-
kleo atomikoen azpisistemak bananduz. Bigarren kapituluan sistema elektronikoa
ebazteko erabili dugun metodologia aurkeztu dugu, DFT-ren oinarriak azalduz.
Hirugarren kapitulua sistema nuklearrari eskaini diogu, sare kristalinoaren bibra-
zioei hain zuzen. Hurbilketa harmonikoa aurkeztu dugu mekanika kuantikoaren
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ikuspuntutik, fonoi kontzeptua sareen bibrazioen kuantu gisa definituz. Fonoiak
kalkulatzeko dentsitatearen funtzionalen perturbazio teoria (DFPT) azaldu du-
gu, eta baita efektu anharmonikoak zer diren eta hauek nola kalkulatu hurbilketa
harmoniko auto-bateragarri estokastikoa (SSCHA) deituriko metodoaren bitartez.
Laugarren kapituluan elektroi eta fonoi azpisistemen elkarrekintza aztertu dugu,
supereroankortasun konbentzionalaren oinarria dena, Migdal eta Eliashberg teo-
riak aurkeztuz. Azkenik, bosgarren kapituluan propietate elektronikoen denbora-
rekiko menpekotasuna kontuan hartzen duen denboraren menpeko DFT (TDDFT)
teoria azaldu dugu, metalen propietate optikoak aztertzeko erabilgarria dena.

Bigarren atala, Solid Metallic Hydrogen izenekoa, hidrogeno metalikoari buruzkoa
da. Presio altuko hidrogenoak komunitate zientifikoaren interesa betidanik piztu
badu ere, Ashcroft-en 1968ko iragarpenak nabarmen handitu zuen elementu ho-
nekiko arreta [15]. Ordutik zientzialari esperimentalek gero eta presio altuagoak
lortu dituzte, hidrogeno solidoaren bost fase molekular eta isolatzaile topatuz 400
GPa-tik behera. Azken urteotan, ordea, presioa are gehiago igotzea lortu dute,
metalizaziotik are eta gertuago egon litezkeen faseak topatuz [162–164]. Azkenik,
pasa den urteko hasieran Dias eta Silverak hidrogeno metalikoa lortu eta neurtu
zutela adierazi zuten Science aldizkarian argitaraturiko artikulu batean [138]. Ha-
la ere, artikuluak kritika sakonak jaso zituen [165–168], presioa neurtzeko moduaz
gain, lagina karakterizatzeko erabilitako teknika zalantzan jarriz.

Materialen kristal-egitura karakterizatzea ezinbestekoa da, propietate fisikoek egi-
turaren menpekotasun handia baitaukate. Hidrogenoaren kasuan are gehiago, ez
baitago batere argi metalizazioa egitura molekular batean edo molekula apurtu
ondoren emango den, gainontzeko metal alkalinoen itxurako metal monoatomiko
bat sortuz. Tamalez, hidrogenoan hain presio altuetan karakterizazio neurketak
egitea oso zaila da neutroi eta X-izpien esperimentuak orokorrean ezin baitira bu-
rutu. Hortaz, hidrogenoaren fase ezberdinak determinatzeko kalkulu teorikoak
ezinbestekoak dira. Fase gehienak infragorri (IR) xurgapen eta Raman esperimen-
tuen bitartez detektatu dira eta fisikari teorikoek proposatutako hainbat kristal
egituretan kalkulaturiko espektroekin konparatu dira ondoren. Dias eta Silveraren
azken esperimentuan, ordea, espektro optikoa (islapena, konkretuki) neurtu dute,
eta Drude eredu sinplearekin konparatu.

Hortaz, atal honetako gure helburua hidrogeno solidoaren propietate elektroni-
ko, bibrazional eta optikoak metalizazio presio inguruan aztertzea izan da, hots,
400-600 GPa tartean. Konkretuki, bibliografiaren arabera egitura atomiko eta
molekular probableenak aztertu ditugu, I41/amd eta Cmca− 4, hurrenez hurren.
Atalak hiru kapitulu dauzka, tesiko seigarrenetik zortzigarrenera bilduta.

Seigarren kapituluan I41/amd egituraren propietate elektroniko eta bibrazionalak
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aztertu ditugu 400-600 GPa tartean. Gure emaitzen arabera I41/amd egituran
elektroiek eredu asketik gertuko portaera dute, elektroi-elektroi elkarrekintzak ez
baitauka banda egituran eraginik. Hala ere, elektroi-protoi elkarrekintza oso bor-
titza da, elektroiak partzialki lokalizatuz protoien inguruan. Lokalizazio honen
ondorioz erantzun elektronikoa eta fonoiak kalkulatzean RPA ereduak kale egiten
du. Arrazoia, Hartree eredua erabiltzean elektroi bakoitzak bere buruarekin dau-
kan ekarpenaren errorea handia dela. Hortaz, truke eta korrelazio energia kontuan
hartzea ezinbestekoa da fonoiak kalkulatzeko. Gainera, azken gai honi esker dira
soilik fonoiak egonkorrak. Gure elektroi-fonoi kalkuluen arabera elektroien eta bi-
brazioen arteko elkarrekintza oso bortitza da, eredu harmonikoa erabiliz 320 K-eko
Tc-a lortzen dugularik. Azkenik, SSCHA kalkuluen arabera efektu anharmonikoek
ez daukate eragin handirik fonoietan ez baitute kualitatiboki ezer aldatzen eta Tc
300 K-era jaisten delako soilik. Aldaketa hau oso txikia da beste hidruro batzuekin
konparatuz [93, 94, 102, 157, 158].

Zazpigarren kapituluan Cmca−4 egitura molekularra izan da aztertutakoa. Kasu
honetan efektu kuantiko eta anharmonikoek propietate elektroniko eta bibrazio-
naletan eta supereroankortasunean daukaten eragina aztertu dugu 414 GPa eta
450 GPa-tan. Gure kalkuluetatik efektu anharmonikoek kristal egitura nabarmen
aldatzen duela ondorioztatu daiteke, hidrogeno molekula %6 bat luzatzen dela-
rik. Honek, aldi berean, ondorio azpimarragarriak dakartza banda egituran, Fermi
gainazalean elektroi eta zulo poltsa berriak sortuz. Poltsa hauek elektroi-fonoi el-
karrekintza indartzen dute eta, hori dela eta, Tc ia bikoiztu egiten da. Hurbilketa
harmonikoarekin lortzen diren 100 K-etik gertuko balioetatik 200-K-etik gorako
tenperaturetara igotzen da efektu kuantiko eta anharmonikoak kontuan hartu on-
doren. Efektu hauek kontuan hartzen ez badira, propietate berdinak lortzeko pre-
sioa nabarmen igo behar da, presioa igotzeak hidrogeno molekulak luzatzeko joera
baitauka ere. Ondorioz, Cmca − 4 egitura molekularrean efektu anharmonikoek
tenperatura altuko supereroankortasuna lortzeko beharrezko presioa txikitzen du-
tela esan daiteke.

Zortzigarren kapituluan aurreko bi kapituluetan aztertutako egituren propieta-
te optikoak aztertu ditugu, hidrogeno metalikoaren karakterizazioan laguntzeko
asmoz. Horretarako, bi fase hauek IR-tik ultramore (UV) espektrorainoko erra-
diazioa nola islatuko duten kalkulatu dugu TDDFT eta Eliashberg formalismoa
konbinatuz. Gure emaitzen arabera, I41/amd egituraren islapena elektroi-fonoi
elkarrekintzak gobernatzen du Dias eta Silveraren esperimentuak buruturiko argi
maiztasunetan. Guk kalkulatutako elektroien sakabanatze balioak bateragarriak
dira esperimentuetan neurtutakoekin. Bestalde infragorrian tarte debekatu supe-
reroalearen presentzia nabarmena da 120 meV inguruan. Honez gain, ultramorean
elektroi askeen ohiko plasmoiaz gain 35 eV inguruan, beste plasmoi bat ere topatu
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dugu 6 eV inguruan, interbanda izaera duena eta beste metal alkalino batzue-
tan eta zenbait hidrurotan ere agertzen dena Bestalde, Cmca − 4 egituran oso
emaitza ezberdinak lortu ditugu, batez ere argi ikuskor eta ultramorean. Bertan,
elektroien energia baxuko kitzikapen prozesuek islapena nabarmen murrizten dute
1 eV-tik gora. Ondorioz, islapen esperimentuen bidez bi egitura hauek bereiztea
posible litzateke. Dias eta Silveraren emaitzekin hobeto bat datozen kalkuluak
I41/amd egiturarenak dira, esperimentuan datu nahikoa bildu ez badute ere on-
dorio zehatzik ateratzeko. Edozein modutan, gure emaitzek esperimentu gehiago
egitera bultzatzea espero dugu, neurtutakoa berretsi eta infragorri eta ultramorean
iragarritako ezaugarriak bilatzeko.

Hirugarren atala, Lithium izenekoa, litioaren analisiari eskaini diogu. Duela urte
gutxi batzuk Schaeffer eta egilekideek litioan supereroankortasun isotopo efektu
anomaloa neurtu zuten 15-25 GPa tartean [9]. BCS (Bardeen Cooper Schrieffer)
teoriaren eta eredu harmonikoaren arabera, elementu supereroale bateko Tc-ak iso-
topoen masaren arabera ∝ 1/Mα bezala eskalatu beharko luke, α = 0.5 izanik.
Azken esperimentu honetan, ordea, 6Li eta 7Li-ren Tc-ak neurtu eta gero, 0.5 balio-
tik oso urrun dauden α balioak lortu dituzte, 21 GPa-tik gora α-k balio negatiboak
hartzeraino. Anomalia hau azaltzeko, bi hipotesi planteatu ditugu. Lehenengoa,
efektu anharmonikoen ondorioz fonoi maiztasunek ez dutela ohiko ∝ 1/M0.5 mo-
du harmonikoan eskalatzen, eta ondorioz, λ elektroi-fonoi koefizienteak masarekiko
menpekotasuna duela. Bigarrena, bi isotopoek kristal egitura ezberdina dutela eta,
ondorioz, propietate ezberdinak. Lehenengo hipotesiaren oinarria fcc egiturak, es-
perimentuan neurturiko presioetan esperotakoa, hurbilketa harmonikoan eginiko
kalkuluetan agertzen duen fonoi biguna da, agian efektu anharmoniko bortitzak
agertzen dituena [10, 27, 28, 205, 206]. Bigarren hipotesia planteatzeko arrazoiak,
alde batetik, aurreko kalkulu batzuen araberako kristal egituren arteko entalpia
diferentzia txikiak dira [17, 209, 210]. Bestetik, presio eta tenperatura baxuetako
esperimentuetan agertutako meta-egonkortasunak dira, litioaren isotopo bien fase
diagrama ezberdina izanik [203].

Bederatzigarren kapituluan fcc egituraren qinst = 2π/a(2/3, 2/3, 0) puntuko modu
biguna aztertu dugu. Konkretuki, 7Li-an efektu anharmonikoen ondoriozko fonoi
maiztasunaren zuzenketa kalkulatu dugu 26 GPa-tan. Horretako, atomoak mo-
du normal anomaloaren arabera desplazatu, energia profila kalkulatu eta ondoren
Schrödinger ekuazioa ebatzi dugu. Eredu harmonikoaren arabera, oreka posizioko
energiaren bigarren deribatua numerikoki kalkulatuz, -28.6 cm−1-ko maiztasuna
lortu dugun bitartean, efektu anharmonikoek 115.3 cm−1-ra igotzen dute maiz-
tasuna. Maiztasuna negatibotik (irudikaria, izatez) positibora pasatzen denez,
badirudi efektu anharmonikoek egonkortzen dutela litioa presio honetan. Efek-
tu anharmonikoak, hortaz, oso handiak dira fcc litioan. Modu anomalo honek
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ekarpen handia daukanez supereroankortasunean, baliteke efektu anharmonikoek
eragin handia izatea ere propietate honetan.

Bukatzeko, hamargarren kapituluan litioan neurtutako supereroankortasun isoto-
po efektu anomaloaren arrazoiak bilatzen saiatu gara. Alde batetik, lehenengo
hipotesia, hots, isotopo efektua fcc egituran efektu anharmonikoen ondorioz ager-
tzen den, konprobatu dugu, horretarako SSCHA erabiliz. Gure emaitzen arabera,
efektu anharmonikoen eragina fonoi anomaloan oso nabaria bada ere, bere maiz-
tasunak eredu harmonikoaren arabera eskalatzen du masarekin. Hortaz, λ-k ez du
apenas bere balioa aldatzen isotopo batetik bestera eta Tc-k isotopo efektu arrunta
agertzen du. Beste aldetik, bigarren hipotesia konprobatu dugu, hau da, bi isoto-
poek kristal egitura ezberdina izatearen ondorioz gertatzen den isotopo efektuaren
anomalia. Horretarako 10-50 GPa inguruan hiru fase lehiakorrenen entalpia kalku-
latu dugu (fcc, cI16 eta hR1 egiturak), bibrazioen energia SSCHA-rekin kontuan
hartuz. Gure emaitzen arabera ez da espero bi isotopoek egoera egonkorrean kris-
tal egitura ezberdina izatea. Hala ere, ezin dira meta-egonkortasunak baztertu,
entalpia ezberdintasunak meV gutxi batzuetakoak baitira. Meta-egonkortasunak
posible balira, esperimentuetako emaitzak kualitatiboki azalduko lirateke 6Li-k
cI16 egitura eta 7Li-k fcc egitura balute. Edozein modutan, esperimentuetako
erroreak handiak dira eta, askotan, presio oso antzekoetarako Tc oso ezberdinak
lortzen dituzte. Ondorioz, esperimentuen fidagarritasuna zalantzan jartzen du gu-
re lanak. Hortaz, esperimentuak berriz burutzeko gomendatzen dugu, emaitzak
berresteko eta egituren karakterizazio zehatza egiteko.
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Konturatu barik elkarrekin egin gara heldu eta bagara biok doktore, ezberdinak
bada ere.
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