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ABSTRACT (<250 words) 

Evergreens living in high mountainous areas have to cope with hard conditions in winter as there is a 

combination of high light and low temperatures. Under this situation, there is an imbalance between 

light collection and energy use. As a response evergreens activate a photoprotective process which 

consists on the down-regulation of photosynthetic efficiency, referred to as winter photoinhibition 

(WPI). WPI has been classified in dynamic and chronic depending on the rapid (<14 h) or slower (>14 

h) recovery kinetics. With the aim of characterize whether WPI is a general trait in evergreen high 

elevation photosynthetic organisms and its dependence to the deepoxidation state of xanthophyll 

cycle, WPI was analyzed in the field in 50 species including woody species, herbs, lichens and 

mosses. Recovery kinetics were studied in detail in one model species from each group. Results show 

that high levels of WPI are much more frequent (but not exclusive) among woody plants than in any 

other group. Changes in AZ/VAZ were not related to the activation/deactivation of WPI in the field 

and do not follow changes in photochemical efficiency during recovery treatments. Thylakoid proteins 

seasonal changes differ among different functional groups. The obtained results highlight the diversity 

of physiological solutions to winter stress.   

ABBREVIATIONS 

ΔpH: Transthylakoid proton gradient; A: Antheraxanthin; AZ/VAZ: De-epoxidation degree of 

xanthophylls cycle pigments (antheraxanthin+zeaxanthin)/(violaxanthin+antheraxanthin+zeaxanthin); 

Chl: Chlorophyll; Fm: Maximum chlorophyll fluorescence; F0: Minimum chlorophyll fluorescence; 

Fv/Fm: Maximum quantum yield of PSII; L: Lutein; Lhc: Light harvesting complex of photosystem; 

NPQ: Non-photochemical quenching of chlorophyll fluorescence; 1O2: Singlet oxygen; PS: 

Photosystem; ROS: Reactive oxygen species; V: violaxanthin; V-cycle: Xanthophyll cycle; WPIall: 

Total winter photoinhibition; WPI>12h: Chronic Winter Photoinhibition; WPI0.5h: Dynamic Winter 

Photoinhibition; WPI: Winter photoinhibition; Z: Zeaxanthin. 
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1. INTRODUCTION 

High mountain climates are characterized by low temperatures, low atmospheric pressure and high 

proportion of short wavelength radiation (Körner 1999). Photosynthetic organisms acclimated to these 

extreme conditions need to complete their life cycle within a short vegetative period and to accumulate 

sufficient reserves for a long-lasting winter (Streb and Cornic 2012). Among perennial alpine plants, 

there are some species which require snow cover to overwinter successfully because the conditions 

below the snow are milder, mainly due to the amelioration of extreme temperatures and to the 

decrease of light intensity (e.g. (Strand and Öquist 1985)). On the contrary, other species are exposed, 

at least periodically, to the adverse conditions out of snow banks. The major stresses that these plants 

with evergreen foliage have to cope with are the freezing of apoplastic water (Sutinen et al. 2001) and 

the combined effect of high light and low temperature, known as “photochilling” (Huner et al. 2003; 

Ivanov et al. 2003).  

Photochilling stress is due to the fact that low temperature slow down enzymatic carbon assimilation 

(Falk et al. 1996), whereas the absorption of light by the photosynthetic apparatus remains constant 

because it is temperature independent. As a consequence, light energy absorption by antennae is much 

higher than its potential use by the photosynthetic machinery, so the photosynthetic apparatus remains 

overexcited. This situation greatly increases the risk of photooxidative damage, and plants must up-

regulate photoprotection mechanisms to counteract these effects. Apart from the reduction of light 

absorption through morphological modifications or the adjustments in photosystems (PS) antenna size, 

plants employ other physiological photoprotection mechanisms that can be grouped in three main 

strategies: (i) the up-regulation of alternative energy emission pathways such as the dissipation of 

exceeded light energy as heat (thermal dissipation) (Öquist and Huner 2003; Demmig-Adams and 

Adams WW III 2006) (ii) the increase of metabolic activity of energy sinks (Asada 1999; Niyogi 

2000) and (iii) the deactivation of reactive oxygen species (ROS) through the antioxidant metabolism 

and/or the repair of oxidative damage (Noctor and Foyer 1998; Mullineaux and Rausch 2005).  

Regulated thermal dissipation is associated with a decrease in fluorescence yield, which is estimated 

by the fluorescence parameter called non-photochemical quenching (NPQ). For its activation, NPQ 

requires three different components: transthylakoidal proton gradient (ΔpH), PsbS protein (Li et al. 

2002) and activation of violaxanthin cycle (V-cycle) (Niyogi et al. 1997; Niyogi et al. 1998). 

Depending on the maintenance or not of the activation this mechanism in darkness, NPQ can be 

considered dynamic, when is completely reversed after one winter night (12 hours), or sustained, when 

it needs more time, even several days of low light and optimal temperature for a complete recovery. 

The consequence of sustained (also refereed to as chronic) thermal dissipation is a concomitant 

reduction of photochemical efficiency. Hence, this process results in a depression of maximal 

photochemical efficiency and as a consequence can be considered as a type of photoinhibition 

(Demmig-Adams and Adams WW III 2006). Contrasting with other processes that generate an 
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uncontrolled damage in photosynthetic machinery, particularly of reaction centers (photodamage), 

chronic thermal dissipation is a highly regulated protective mechanism.  

Severe winter stress activates sustained thermal dissipation, which involves the slow reversion from a 

dissipative state in the photosynthetic apparatus of evergreen plants (Verhoeven 2014). This is also 

termed as a sustained/chronic winter photoinhibition (WPI) when recovery is extremely slow (more 

than one night) even after incubation under optimal conditions. WPI is apparently independent on ΔpH 

(Verhoeven et al. 1998; Gilmore and Ball 2000; Demmig-Adams et al. 2006) and PsbS protein (Öquist 

and Huner 2003; Adams WW III et al. 2004), but it has been demonstrated that it requires the presence 

of zeaxanthin (Z). Thus, when WPI is activated, Z is retained and persistently engaged in thermal 

dissipation (Demmig-Adams and Adams WW III 2006). A unified view of winter downregulation of 

photosynthesis in woody species, integrating the roles of pigments and proteins, and different types of 

“quenching” that occur simultaneously, has been recently proposed by (Verhoeven 2014).  

In temperate alpine ecosystems, the mechanism of WPI was well characterized in woody plants e.g. 

(Demmig-Adams and Adams WW III 2006; Zarter et al. 2006; Verhoeven 2014) and some herbs 

(Streb et al. 2003; Østrem et al. 2011; Sanchez and Smith 2015; Sui 2015). These studies showed that 

a wide range of species use the downregulation of photosynthesis as a photoprotective mechanism 

under wintry conditions. Although metabolic and protein changes involved on WPI have been well 

characterized in a few woody species e.g. (Demmig-adams and Adams III 2014), it is still unknown 

how widespread this character is among other evergreen species, specially mosses and lichens. What is 

more, a recent literature compilation (Míguez et al. 2015) has revealed that very scarce number of 

works have studied WPI in lichens, bryophytes, terrestrial algae or ferns, even though these groups are 

dominant in many boreal and alpine ecosystems. Hence, in the present work we aimed to fulfill these 

gaps by comparing the well-known response of woody species with the rest of alpine flora (herbs, 

lichens and mosses) at three different levels: (i) performing a survey on the frequence of this character 

under field winter conditions in mosses, lichens and herbs; (ii) analyzing the potential for 

photosynthetic recovery under the simulation of a period of warm temperatures in winter, in selected 

species from the different functional groups (iii) elucidating the role of pigment and thylakoid proteins 

in photoprotection and along recovery process. 
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2. MATERIALS AND METHODS 

2.1. Site description, plant material and experimental design 

Field experiments were carried out (i) during late spring (June), after snow melt but before the 

occurrence of any summer drought and (ii) in late winter (March) due to the complete coverage by 

snow on previous months. Besides, according to a recent study of (Verhoeven 2013), the slowest rates 

of photosynthesis recovery are observed in late winter, indicating that in this period, at least conifers, 

present the deepest downregulation of photosynthesis. In both seasons, samples were collected at 

noon. The temperatures at that time in the field oscillated between 3 and 7οC in winter and between 19 

and 25οC in spring. Photosynthetic organisms collected in winter were not covered by snow. The 

altitude of sampling sites was between 1750 and 1850m corresponding to the subalpine bioclimatic 

level. Two approaches, the first observational (experiment 1) and the second manipulative (experiment 

2), were carried out: 

Experiment 1: In order to encompass a wide range of different species, a screening, comprising 50 

subalpine species representative of the main functional groups (woody plants, herbaceous species, 

mosses and lichens) was carried out in 2012. The samplings were performed in winter and spring in 

three different mountainous areas in the north of Spain (Table 1). Immediately after collection, 

samples were incubated under darkness at 100% relative humidity (in plastic bags with wet paper) and 

at room temperature (20ºC) during 14h to allow their recovery from any kind of dynamic WPI (here 

termed WPI0.5h). Chl fluorescence measurements were taken after 30min and after 14h under those 

optimal conditions in 5 individuals of each species. After the second measurement, 5 replicates per 

species (100 mg approximately) were sampled and immediately frozen into liquid nitrogen and 

thereafter preserved at -80ºC until pigment and protein analysis. 

To calculate WPI, it has been considered that the photochemical efficiency of PSII (Fv/Fm) measured in 

late spring after 14h of recovery in darkness is the highest value that each species can reach. Taking 

this assumption into consideration, the percentages of dynamic winter photoinhibition (WPI0.5h) and 

chronic winter photoinhibition (here termed WPI>12h) were calculated for each species as follows: 

 WPI0.5h=(Fv/Fm 14h winter– Fv/Fm 30min winter)/(Fv/Fm 14h spring) x 100 

 WPI>12h=(Fv/Fm 14h spring – Fv/Fm 14h winter)/(Fv/Fm 14h spring) x 100.  

WPIall=WPI>12h + WPI0.5h 

Where: 14h and 30min indicate the time that plants were incubated in darkness and 20°C before the 

fluorescence measurement. This approach is in agreement with the kinetics of Fv/Fm recovery 

previously described by other authors (Verhoeven 2013), where a rapid component lasts less than 2h.  
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Experiment 2: To study in deep which are the photosynthetic recovery responses of each functional 

group (woody species, herbs, bryophytes and lichens), a species representative of each group was 

chosen and sampled in 2013: Cytisus cantabricus (Wilk.) Rchb. F., Hieracium pilosella L., Syntrichia 

muralis (Hedw.) Raab  and Lasallia hispanica (Frey) Sancho & Crespo, respectively (Table 1, species 

with names in bold). The criteria for selecting these model species were: the easy identification in 

winter in the absence of flowers or fruits and extensive representation in the sampling area. For this 

manipulative approach, 10 individuals of each species were directly sampled in the field in winter. In 

order to avoid cavitation, C. cantabricus stems were cut under nutritive solution and maintained into 

the solution along all the recovery process. The rest of species were preserved in Petri dishes over wet 

paper to avoid desiccation. To estimate the actual Fv/Fm in the field before starting the process of 

recovery, all samples were placed over an ice bath at a temperature of 4-7ºC (simulating field 

conditions) and under darkness conditions during 30 min. After this period, Chl fluorescence 

measurements were performed. Then, 5 samples per species were frozen in liquid nitrogen for pigment 

and thylakoid protein determination (to). A second set of samples was transferred to optimum 

conditions to allow the recovery from WPI during 42h (for H. pilosella, S. muralis and L. hispanica) 

or 140h (in C. cantabricus) in a chamber at 20°C, dim light and saturating humidity. The maximal 

photochemical efficiency of PSII (Fv/Fm) (see below) was monitored in these organisms at different 

times until Fv/Fm stabilization. During all the recovery process, samples were located in containers 

with nutritive solution or in petri dishes to avoid desiccation. Samples (100mg approximately) were 

frozen in liquid nitrogen after 30 min in darkness and low temperature (t0), after 0.5 and 14h in 

darkness and optimal temperature and after the last fluorescence measurement for pigment and protein 

analysis. Due to their different morphologies, the sampling of each species was as follows: (i) in C. 

cantabricus, the apical part of green stems was sampled (ii) in H. pilosella, whole green leaves (iii) in 

L. hispanica, thallus pieces of around 2 cm2 size and (iv) in S. muralis the apical part of each caulid 

(shoot) containing photosynthetically active phyllids (leaves). 

2.2. Fluorescence measurements  

Chla fluorescence was measured using a portable modulated fluorometer PAM 2500 (Walz, Effeltrich, 

Germany). The maximum Chla fluorescence yield (Fm) was induced with a saturating pulse (7795 

µmol photons m-2s-1) while minimum fluorescence (Fo) was recorded with low measuring light 

intensities. The maximal photochemical efficiency of PSII (Fv/Fm) was calculated as (Fm-Fo)/Fm. In this 

study, the comparison of Fv/Fm values in spring and winter were used as an estimator of thermal 

dissipation because it offers several advantages (Verhoeven 2013; Míguez et al. 2015), especially 

when species from very different functional groups are being compared.  

2.3. Pigment and tocopherol analysis 

The frozen samples, stored at -80ºC, were homogenized with a mortar in pure acetone solution 

buffered with CaCO3. The extracts were centrifuged at 16100 g and 4ºC for 20 min, and supernatants 
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were filtered with 0.2 µm PTFE filters (Teknokroma, Spain). Pigment separation was performed by 

HPLC with a reverse phase C18 column (Waters Spherisorb ODS1, 4.6 x 250 mm, Mildord, MA, 

USA) with a photodiode array (PDA) detector, following the method of (García-Plazaola and Becerril 

1999) with modifications (Garcia-Plazaola and Esteban 2012). 

2.4. Protein extraction and characterization 

The proteins examined in this study were D1 (photosystem II (PSII) core complex protein), D1-P (D1 

protein phosphorilated), Lhca2 (antenna protein from PSI), Lhcb2 (antenna protein from PSII), PsbS 

(essential protein for thermal dissipation) and ELIP (Early Light Induction Protein), closely related to 

stress. All the antibodies were from Agrisera AB (Vännäs, Sweeden). The extraction, thylakoid 

isolation and SDS-page were carried out as (Sáez et al. 2013) with the modifications of (Míguez et al. 

2014). Total protein content was determined by DC protein assay commercial kit (BioRad) to 

elucidate the quantity of protein in each extract. This method was used because it is compatible with 

the solvents used for the sample extraction. Inmuno-detected proteins were detected by enhanced 

chemiluminescence ECL Plus (GE Healthcare) through CHEMIDOC XRS system (Bio-Rad). 

Densitometric measurements for the quantification of band intensity were carried out by using 

Quantity One (Bio-Rad) software. 

2.5. Statistics 

Kolmogorov-Smirnov and Levene tests were used to test for the normality of data and homogeneity of 

variances respectively. To analyze the presence of significant correlations between different types of 

photoinhibition and different pigment concentration, Pearson and Spearman tests were used with 

normal data and no normal data respectively. To check for differences in the percentage of WPI, non 

parametric Mann-Whitney U test was used. In the case of WPI0.5h, as the data were distributed 

normally but the variances were no homogeneous, one way ANOVA was applied with Dunnet C test 

as post-hoc. In order to look for significant differences in AZ/VAZ content along the recovery, one 

way ANOVA test was used. Post-hoc test used were Duncan when there was variance homogeneity 

and Dunnet C test, when variances where no homogeneous. When necessary, data were log 

transformed. Significant differences were assumed at P< 0.05. All analyses were performed using the 

SPSS 17.0 statistical package (Chicago, SPSS Inc.). 

3. RESULTS 

3.1. Chronic and dynamic winter photoinhibition: Differences among functional groups 

The presence of chronic (WPI>12h) and/or dynamic photoinhibition (WPI0.5h) was studied in 50 

representative species of the following functional groups: woody species, herbs, mosses and lichens. 

The highest total photoinhibition (WPIall) occurred in woody plants (Fig. 1A). They presented not only 

the highest WPI>12h but also the most relevant WPI0.5h. Altogether, WPI0.5h and WPI>12h reached more 
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than 30% (Fig.1A), representing WPI>12h the 57% of the WPIall. In contrast with woody species, in the 

rest of functional groups, WPIall was on average lower than 11% (Fig. 1A). In the case of lichens 

virtually all the WPI was WPI>12h. 

To characterise the variability of WPI within each group, WPI was represented in a box plot (Fig. 1B). 

The highest variability was present in woody species, in both WPI>12h and WPI0.5h. Although 

herbaceous species and lichens presented the lowest WPI>12h, it must be highlighted that there were 

four herbaceous species (Digitalis parviflora, Festuca sp., Saxifraga paniculata and Thymelaea sp.) 

and one lichen (Rhizocarpon sp.) that did not follow this pattern, showing high values of WPI>12h, 

comparable to those of woody plants (Appendix S2). Horizontal line in each bar represents the median 

value. Interestingly, in herbs, mosses and lichens, a half of species did not present any WPI>12h as the 

median for WPI>12h was 0% (for more detail, see Appendix S2). In reference to WPI0.5h, the same 

occurred for mosses and lichens while woody and herbaceous species presented a median of 13 and 5 

% respectively (Fig. 1B).  

3.2. Variable responses of lipophilic antioxidant composition during the year in different 

functional groups. 

Concomitantly with high WPI, all woody species without exception, showed the highest content of 

lipophilic antioxidants (tocopherols and carotenoids) during winter (see Appendix S1, S2). The most 

relevant changes between both seasons occurred in: Pinus sylvestris and Pinus uncinata, whose β-

carotene/Chl was 2-fold higher in winter than in spring; Vaccinium myrtillus, which had a 5 fold 

increase in AZ/Chl in winter and the shrubs Daphne cneorum, Erica aragonensis, Erica vagans and 

Globularia repens which doubled the VAZ/Chl ratio in winter compared to spring. Interestingly, in 

this group the highest difference between winter and spring were in α-tocopherol/Chl content except 

for Calluna vulgaris of site 3 and Cytisus cantabricus. In the rest of woody plants, α-tocopherol/Chl 

showed an increase of at least 2 or 3 times, becoming even 12 times in the case of Daphne cneorum.  

Contrasting with woody plants, the opposite tendency was observed in mosses, which presented the 

highest amount of photoprotective and antioxidative molecules in spring, in parallel with a higher 

photoinhibition (Appendix S3), indicating that possibly, for mosses, spring conditions were more 

stressful than winter. This pattern occurred for all species and antioxidants except for Polytrichum 

piliferum which showed a bigger amount of β-carotene in the winter.  

In the case of herbaceous plants there was not a unique pattern of response to seasonality in the 

antioxidant content. Thus, although for lutein/Chl and VAZ/Chl all the species showed slightly higher 

amounts in winter, in the case of AZ/Chl and α-tocopherol/Chl, there was not a consistent seasonal 

pattern among herbaceous species. The most remarkable changes were observed in Asperula hirta 

which presented the triple amount of AZ/Chl in winter than in spring and in Scilla sp. with the 
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opposite tendency. Regarding α-tocopherol/Chl, the most relevant response was observed in Digitalis 

parviflora, which in winter reached a value (1973 mmol mol Chl-1) almost 30 times higher than in 

spring (70 mmol mol Chl-1). The opposite tendency, but not so marked, was detected in Scilla sp.  

Within lichens, half of the studied species, showed an increase in AZ/VAZ during winter while the 

others did not show any difference with spring values. The α-tocopherol/Chl ratio did not show any 

consistent pattern among species, being in some species higher in winter, in others higher in spring 

and in some of them similar among seasonal.  

3.3. Winter photoinhibition: To what extent is it related with the lipophilic antioxidant 

composition? 

To clarify the possible inter-relationship between antioxidant composition and WPI, correlations 

between both parameters were assessed. Despite their low WPI, herbaceous species, showed 

significant correlations between lipophilic antioxidants and WPIall or WPI>12h (Table 2). Thus, not only 

V-cycle components (V/Chl, A/Chl and total VAZ/Chl) and total carotenoids correlated linearly with 

WPI, but it was also the case of tocopherols. Surprisingly, in woody species, which presented the 

highest values of WPI>12h, none significant linear regression with V-cycle components or other 

pigments was found. On the contrary, WPI0.5h and WPIall of woody plants are correlated with V-cycle 

depoxidation activity (Table 2). In mosses and lichens, only WPI0.5h showed significant correlation 

with lipophilic antioxidants per Chl ratios. WPI0.5h was correlated with A/Chl in mosses and with 

L/Chl and with Neoxanthin/Chl (N/Chl) in lichens.  

3.4. Recovery kinetics: Which are the differences between functional groups?  

Recovery for winter conditions was studied in four model species representative of each major 

functional groups (the shrub C. cantabricus, the perennial herb Hieracium pilosella, the moss 

Syntrichia muralis and the lichen Lasallia hispanica). For that purpose, thalli, branches or leaves were 

transferred to the laboratory and their recovery at 20ºC and dim light was followed by measuring Fv/Fm 

and AZ/VAZ content. Interestingly, under spring conditions all functional groups presented similar 

value of de-epoxidation index (0.3-0.37) and during winter conditions it increased moderately in the 

herb, the moss and the lichen (0.45-0.5) but dramatically in the woody plant (0.75) (Fig. 2). 

Additionally, the recovery kinetics detected in model species could be classified following three major 

patterns: (i) the woody species (C. cantabricus), which showed mainly the slow component (in 92 

hours only is recovered the 30% of control Fv/Fm) (Fig. 2A)) (ii) the moss S. muralis and the 

herbaceous H. pilosella that did not present any recovery because they were not photoinhibited and 

(iii) the lichen L. hispanica which displayed only the rapid component, being the 50% of control Fv/Fm 

value raised in 7 hours under recovery conditions (Fig. 2D).  

3.5. Changes in photosynthetic apparatus protein composition 
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Thylakoid protein composition was studied by western blot in samples of the four model species 

collected in the field in spring and winter and also after recovery from winter conditions in the 

laboratory. Our results show that even after relatively short periods of time, in comparison with 

seasonal changes, there were changes in protein composition. Thus in C. cantabricus, phosphorylated 

D1 protein (D1-P), PsbS, Elip and Lhca diminished significantly after 140h of recovery in the 

laboratory (Fig. 3A). S. muralis presented also a reduction in PsbS and Lhca for the same period of 

time (Fig. 3C). Contrasting with those species, H. pilosella showed a diminution of PsbS in 41h, as 

well as an augmentation of D1-P (Fig. 3B). In L. hispanica, the only significant change after recovery 

was the increase in D1 content (Fig. 3D).  

As observed during the recovery experiments under laboratory conditions, in the field, the protein 

composition of each species showed a characteristic seasonal pattern. Thus, in the woody species C. 

cantabricus the amount of Elip and PsbS proteins was higher in winter, while D1 protein was more 

abundant in spring (Fig. 3A). Unlike C. cantabricus, the moss and the lichen had higher amounts of 

PsbS and Elip in spring than in winter (Fig. 3C, D). On the contrary, the only variations observed in H. 

pilosella were a higher content of Lhca in spring (Fig 3B). In L. hispanica, there was a higher 

abundance of Lhcb2 in winter (Fig. 3D).    
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4.  DISCUSSION 

4.1. Diversity of photosynthetic responses to winter conditions  

Photoinhibition is a frequent phenomenon whenever intense light exceeds the capacity for energy use 

by photosynthetic organisms (Powles and Critchley 1980). However, despite its ubiquity, 

photoinhibition is a term full of complexity and with a wide variability in Plant Kingdom. One of the 

most outstanding representations of this process is observed in winter when the so-called “chronic 

winter photoinhibition” (WPI>12h) restricts carbon assimilation in woody species (Adams WW III et al. 

1995; Ottander et al. 1995; Verhoeven et al. 1998; Öquist and Huner 2003; Taulavuori et al. 2011). By 

contrast, herbs are thought to respond to winter stress by a process of dynamically reversible 

modulation of PSII (WPI0.5h) (Öquist and Huner 1993; Li et al. 2000). To determine the winter strategy 

in other functional groups (mosses and lichens) in comparison to woody plants, we analyzed 50 

different taxa from different functional groups. In agreement with previous studies, WPI>12h was 

higher in woody species than in the rest of functional groups. Nevertheless, it is noticeable that 4 

herbaceous species (Digitalis parviflora, Festuca sp., Saxifraga panaliculata and Thymelaea sp.) 

presented a WPI>12h around 20%. These species were neither ecologically nor phylogenetically related.  

Contrasting with woody species and the herbs mentioned above, lichens, bryophytes and most 

herbaceous species presented very low WPI. It is difficult to ascribe this strategy to a defined pattern 

since, despite their substantial contribution to the primary production in boreal and alpine ecosystems, 

these groups are not well represented in WPI studies, as was shown in a recent literature compilation 

(Míguez et al. 2015). It should be noted that most mosses and lichens present the peculiarity of drying 

out regularly, precluding metabolic activities (Heber et al. 2000). Their capacity to tolerate desiccation 

when they are frozen, is an advantage under winter conditions (Lenné et al. 2010). Furthermore, most 

of the mosses and lichens are comparatively small and commonly grow in cushions, tussocks or 

rosettes. These growth forms favour their coverage by protective snow mantle and reduce the 

mechanical effects of wind and temperature stress, creating an appropriate microclimate (Körner 

1999). By contrast, the majority of woody plants are taller, thus, they are exposed to much lower 

temperatures and higher irradiances. Furthermore, in air-exposed organs, such as tree branches, air 

embolisms in the xylem are very common due to freeze-thaw cycles (Sperry and Sullivan 1992; Mayr 

et al. 2002) leading to tissue injury or even death. To prevent this damage, evergreen woody species 

enter in a state of reduced photosynthetic activity and stomatal closure associated with cessation of 

water and carbohydrate transport (Adams WW III et al. 2004). 

4.2. Role of carotenoids and tocopherols on WPI 

Around late 1980s and early 1990s, Demmig et al. (Demmig et al. 1987; Demmig et al. 1988) 

provided the first evidence of an involvement of the V-cycle in NPQ, particularly in its sustained 

forms (WPI>12h) (Demmig-Adams and Adams WW III 2006), more concretely in plants living in 
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montane and subalpine areas in Colorado. Later, many other studies have corroborated these 

observations (for a recent compilation see (Míguez et al. 2015)). In the present study, taking advantage 

of the large number of species analyzed (50), we aimed to verify whether there is a correlation 

between V-cycle de-epoxidation and WPI (Table 2). The results indicated that both factors are not 

always correlated. Woody species only presented a significant linear correlation between (i) WPI0.5h 

and AZ/Chl, and (ii) WPIall with Z/Chl and AZ/VAZ. On the other hand, contrary to the results of 

(Barták et al. 2003), we did not find any correlation between WPI and the de-epoxidation state of V-

cycle pigment pool in lichens. Nevertheless, we detected a correlation connecting WPI0.5h and other 

xanthophylls such as L and Neo in this group. 

Contrary to our expectations, in herbs, WPI>12h was more strongly correlated with V-cycle content than 

in woody species (table 2). This could be due to the fact that in each species, the components which 

affect to sustained NPQ (Z concentration, reduction in antenna cross-sections, aggregation of light 

harvesting proteins, the photoinhibition of reaction centres or the accumulation of specific families of 

proteins such as Elip or Ohps (Ensminger et al. 2004)), may have different quantitative importance. 

Alternatively, this low correlation in woody plants could be explained by the fact that few Z molecules 

are enough to generate the maximum induction of NPQ (Ruban et al. 2002). Hence, one species could 

be strongly chronically photoinhibited with low concentration of Z.  

Several studies have examined seasonal changes in leaf antioxidant systems in different woody 

evergreens growing in seasonally cold environments (Esterbauer and Grill 1978; Demmig et al. 1988; 

Polle and Rennenberg 1992; Doulis et al. 1993; Logan et al. 1998). There is a considerable variation 

between species, but most of them increase the activities of at least some of the antioxidant enzymes 

and metabolites during winter. In the present study, β-carotene, which is able to quench singlet oxygen 

(1O2) (Burton and Ingold 1984), was higher in woody plants during winter, especially in Pinus species 

(Appendix S2, S3). The same trend has been described previously in broadleaf evergreens such as 

Quercus ilex (Corcuera et al. 2005). One of the most general trends observed among vascular plants 

(herbaceous and woody species) was the increase of α-tocopherol in winter with respect to spring 

(Appendix S1, S2). This trend was maintained even in the cases in which WPI was close to 0. This 

suggests that the role of α-tocopherol in the stabilization of the thylakoid membrane and the 

prevention of lipid peroxidation (Verhoeven et al. 2005; DellaPenna and Pogson 2006) could be 

important in low temperature acclimation, as has been shown in non-alpine model species (Leipner et 

al. 1997; Szymańska and Kruk 2008). In non vascular plants, there is not a general trend in carotenoids 

and tocopherols accumulation during winter season (Appendix S3). In fact, in mosses and some 

lichens, the amount of antioxidants was higher during spring, suggesting that low temperatures do not 

represent a severe stress. But during spring, other stresses as episodes of drying cause the 

accumulation of antioxidant components.  
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4.3. Recovery kinetics: How do different functional groups recover from winter photoinhibition? 

The kinetics of recovery of photosynthetic activity during winter deacclimation have been 

characterized in conifers by Verhoeven (Verhoeven et al. 1998; Verhoeven et al. 2009; Verhoeven 

2013) but little is known about other groups. In those studies, it was shown the existence of two phases 

in the recovery process when plants are transferred from field winter conditions to optimal chamber 

environment: a fast component that appears in leaves in early winter or in shade acclimated organisms, 

and a slow component. The fast phase is reversible within minutes to hours while the slow component 

needs several days and involves the retention of AZ/VAZ and a thylakoidal protein reorganization 

(Verhoeven 2013). In the present study a similar recovery protocol was applied not only to woody 

plants (Cytisus cantabricus) but also to representatives of the other functional groups studied: herbs 

(Hieracium pilosella), bryophytes (Syntrichia muralis) and lichens (Lasallia hispanica) (Fig. 2). As 

described in conifers, C. cantabricus, a shrub that maintains photosynthetic stems in winter, showed 

both a rapid and a slow component during the recovery process on its stems. Despite the long 

incubation period (140 hours) recovery rate was so slow that restoration of photosynthetic activity was 

not complete, even when the relaxation of V-cycle was much earlier completed. These results are 

comparable with those of the study of Verhoeven (Verhoeven 2013) carried out in conifers during late 

winter season. Contrastingly, the other studied species presented only the fast component (L. 

hispanica) or no WPI at all (H. pilosella and S. muralis). Irrespective of their level of WPI, all these 

species showed initially a high AZ/VAZ that recovered at the same rate in these three species. Hence, 

only L. hispanica presents a rapid recovery of Fv/Fm and AZ/VAZ. The existence of such uncoupling 

between AZ/VAZ and WPI in H. pilosella and S. muralis, agrees with a recent meta-analytic study 

(Míguez et al. 2015) that showed that in absence of WPI, the values of AZ/VAZ can vary from 0 to 

0.9. So, although low values of AZ/VAZ indicate the absence of WPI, the presence of high AZ/VAZ 

content does not assure WPI. Other protective roles of Z different from the modulation of NPQ, such 

as antioxidant or membrane stabilizer might justify this discrepancy and remark the importance of de-

epoxidised xanthophylls under winter conditions (Havaux et al. 2007; Dall’Osto et al. 2010).  

4.4.  Thylakoid protein composition during winter acclimation 

Winter changes in thylakoid protein composition during deacclimation have been precisely 

characterised in conifers (Verhoeven 2013), but little is known in other groups. The main changes 

described in those woody plants, involve a diminution of D1 protein and an increase of Elips during 

winter. Nevertheless, in the case of Lhcb, Lhca and PsaA, when different studies are considered, there 

is not a consistent pattern. In the present study, the process of deacclimation was characterized by the 

study of some key thylakoid proteins: D1 and Lhcb2 which are proteins from the reaction center and 

the antennae of PSII respectively (Vener et al. 1998), PsbS which is directly involved in the regulation 

of NPQ (Alboresi et al. 2010) and Elips which are a family of stress related proteins (Levy et al. 1993) 
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(Fig 4). In the shrub C. cantabricus the degradation of D1 was accompanied by an upregulation of 

PsbS and Elip protein as well as de novo synthesis of Z. This is consistent with previous results 

(Demmig-Adams et al. 2006; Verhoeven 2014), and it indicates the development of a protective 

sustained down regulation of photosynthesis as well as the deactivation of reaction centres and the 

upregulation of stress related proteins. It must be considered that C. cantabricus is a woody plant 

which loss their leaves during winter but maintains its stems photosynthetically active during winter. 

Hence, the protein analysis was performed in green stems. A previous study analyzing the stems of 

Viscum album in winter and spring (Míguez et al. 2014), come to the same conclusions so, 

presumably, photosynthetic stems and leaves follow the same seasonal pattern in terms of thylakoid 

protein changes. As occurred in woody plants, in L. hispanica D1 content was lower in winter but it 

was not accompanied by an increase in PsbS. Besides, while C. cantabricus presented the highest D1 

content in winter, in L. hispanica it was higher after recovery under controlled conditions. This 

demonstrated that L. hispanica growing in the field is not under optimum conditions in winter and also 

not in spring. The most plausible reason is that in the field, the hydration-dehydration cycles are 

constant while in the laboratory conditions, they were constantly maintained at 100% of humidity. On 

the other hand, L. hispanica presented higher Elip and PsbS content in spring indicating that this 

season is more harmful than winter. In H. pilosella, consistently with the absence of WPI, protein 

content was stable. However, this is not the case of all herbaceous species, as has been shown in 

Colobanthus quitensis, where D1 degradation was detected when it was subjected to low temperature 

treatment in a growth chamber (Bascuñán-Godoy et al. 2012).  

Not only the amount of each protein is relevant, but also their structural organization in thylakoid 

membrane (Johnson et al. 2011) as well as their post-translational modifications. For example, it is 

known that D1 is subjected to phosphorylation under stress (Koivuniemi et al. 1995). This small 

biochemical change provokes modifications in structure that are of paramount importance because: (i) 

induce the reduction of oxidative damage in membrane proteins; (ii) cause the diminution of ROS 

generation (Chen et al. 2012) and (iii) prevent the degradation of D1 protein (Aro et al. 1992; 

Koivuniemi et al. 1995). In this study, D1-P was detected in all model species except in the lichen. As 

far as we know, there are not studies which analyze D1-P in lichens, but there are for algae (Turkina et 

al. 2006). Algae also present phosphorylation of D1 under stress so more studies in lichen 

photosynthetic proteins under different scenarios are needed to determinate if lichenized algae behave 

in the same way than free living algae.  

It was recently demonstrated that PsbS protein was absent in algae, where Lhcsr protein played similar 

roles (Li et al. 2000; Peers et al. 2009). By contrast, in bryophytes, such as Physcomitrella patens, 

both PsbS and Lhcsr coexist (Alboresi et al. 2010). In this study, PsbS was detected in all species, 

diminishing after recovery except in the case of lichen L. hispanica, where PsbS was independent 

from stress. This lichen is formed by a fungus and a green alga of Trebouxia genus. It was surprising 
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that PsbS appeared in a green algae because it has been recently demonstrated that in Chlorophyta, 

PsbS gene can also be expressed under stress but as far as it was known, the protein was suppose to be 

absent (Gerotto and Morosinotto 2013). This could indicate that L. hispanica, and probably many 

other lichens have evolved a NPQ system different from that of green algae, presumably more adapted 

to the terrestrial environment.  

4.5. Concluding remarks 

After studying chronic and dynamic winter photoinhibition in 50 species (woody plants, herbs, mosses 

and lichens) co-occurring in three subalpine locations, as well as the recovery process from winter 

photoinhibition on selected species representative of each group, it is confirmed that high levels of 

WPI are much more frequent (but not exclusive) among woody plants than in any other group. Why 

the strategy is so widespread in trees and shrubs independently of their phylogenetic position or 

growth form remains to be understood, but a relationship with the prevention of xylem cavitation or 

growth out of protective snow layer can be hypothesised as underlying explanations. Whatever the 

functional reason for the uneven distribution of WPI in each functional group, the detailed analysis 

provided by the present study has highlighted that the diversity of physiological solutions to the 

unfavourable conditions generated in winter is wider than previously described. Since WPI represents 

a conservative strategy that lowers photosynthetic efficiency to prevent damage, future climatic 

scenarios of warmer winters could limit the effectiveness of these mechanisms, altering the ecological 

relationships in mountain and subalpine ecosystems. 
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SUPPORTING INFORMATION 

Appendix S1.Photochemical efficiency of PSII (Fv/Fm) and pigment composition in different functional groups in winter. Results show mean values (14 

woody plants n≥5; 20 herbaceous plants n≥5; 5 mosses n=5; 9 lichens n=5). 

  Fv/Fm 
(30 min recovery) 

Fv/Fm  
(12h recovery) 

V/Chl 
(mmol mol-1) 

A/Chl 
(mmol mol-1) 

Z/Chl 
(mmol mol-1) A+Z/VAZ VAZ/Chl 

(mmol mol-1) 
  

Winter Woody plant 0.43 0.53 114.60 33.08 32.82 0.36 180.51 

 Herb 0.67 0.71 109.88 6.77 11.80 0.14 128.46 

 Mosses 0.61 0.58 68.53 6.27 25.90 0.31 100.70 

 Lichens 0.58 0.56 59.76 3.04 13.48 0.23 76.28 

Spring Woody plant 0.75 0.77 87.87 5.36 8.59 0.14 101.83 

 Herb 0.72 0.74 85.95 6.40 11.05 0.17 103.40 

 Mosses 0.50 0.56 59.63 26.39 45.19 0.44 131.21 

 Lichens 0.50 0.57 64.38 2.20 16.32 0.23 82.90 
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Appendix S1. Continuation 

  clorf a/b Neo/Chl L/Chl α-Car/Chl β-Car/Chl α-Car/β-Car Total Car/Chl α-Toc/Chl Total Toc/Chl 

    mmol mol-1 mmol mol-1 mmol mol-1 mmol mol-1 mmol mol-1 mmol mol-1 mmol mol-1 

Winter Woody plant 3.33 46.56 219.63 1.11 113.15 0.01 560.97 626.41 654.16 

 Herb 3.08 46.73 181.89 0.10 105.39 0.00 462.56 331.52 340.78 

 Mosses 2.56 51.92 185.23 1.68 144.41 0.01 483.96 220.29 242.56 

 Lichens 3.42 70.71 214.68 5.60 77.23 0.33 444.51 65.90 67.65 

Spring Woody plant 3.15 38.57 141.20 1.80 95.13 0.02 378.52 148.14 158.29 

 Herb 2.96 40.19 148.40 0.17 102.37 0.00 394.53 173.52 191.44 

 Mosses 2.26 60.43 205.15 7.82 156.97 0.21 561.58 103.35 252.40 

  Lichens 3.06 83.50 315.23 3.35 137.77 0.04 622.75 82.59 93.70 
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 Appendix S2.Photoprotective parameters: dynamic and chronic photoinhibition  (WPI0.5h and WPI>12h  respectively) of each analyzed species and pigment 

concentrations in winter. Results are the average of 5 replicates. 

 % WPI>12h % WPI0.5h  A+Z/VAZ AZ/Chl L/Chl β-Car/Chl VAZ/Chl α-Toc/Chl 

    (mmolmol Chl-1) (mmolmol Chl-1) (mmolmol Chl-1) (mmolmol Chl-1) (mmol mol Chl-1) 

Cytisus cantabricus 31,50 6,45 0,32 54,90 232,72 133,42 166,07 274,01 

Calluna vulgaris 1º site 17,02 10,15 0,40 57,63 195,70 78,78 143,25 470,38 

Calluna vulgaris 2º site 0,00 23,88 0,54 85,48 199,06 73,30 155,78 757,49 

Calluna vulgaris 3º site 27,67 0,00 0,24 28,15 163,54 81,74 119,94 368,38 

Daphne cneorum 15,79 12,75 0,26 82,23 343,07 121,66 305,18 1809,97 

Erica aragonensis 22,72 13,69 0,36 99,30 226,48 109,32 269,60 1220,56 

Erica cinerea 4,50 4,58 0,18 28,49 143,10 90,92 155,81 202,00 

Erica vagans 6,39 23,95 0,33 86,72 231,35 90,57 255,96 671,61 

Genista hispanica 21,32 9,39 0,31 50,55 198,18 119,50 157,05 459,66 

Globularia repens 19,43 7,53 0,29 54,38 232,61 111,21 177,03 1124,88 

Juniperu scommunissubsp. alpina 3,08 24,47 0,32 54,88 220,15 90,54 158,57 294,74 

Pinus sylvestris 7,73 18,75 0,45 85,45 271,96 256,96 184,59 442,59 

Pinus uncinata 26,69 18,13 0,36 48,09 234,90 149,75 133,21 212,98 

Vaccinium myrtilus 45,11 12,82 0,71 109,92 157,76 49,90 147,45 761,27 

Arabis alpina 0,00 7,07 0,15 16,64 201,06 103,53 109,28 191,20 

Armeria cantabrica 0,00 2,55 0,12 11,88 141,95 103,21 103,09 76,96 

Asperula hirta 1,87 2,27 0,22 32,88 213,91 109,80 146,52 249,12 

Cerastium fontanum 0,00 5,92 0,13 21,07 158,56 118,22 162,71 60,98 

Digitalis parviflora 14,44 3,76 0,12 24,09 240,44 139,22 200,32 1973,21 

Festuca sp. 11,38 0,00 0,09 12,12 177,99 116,06 127,12 121,59 

Hieracium pilosella 1º site 0,00 6,70 0,14 15,45 155,33 119,20 111,33 248,99 

Hieracium pilosella 3º site 0,00 9,73 0,14 19,93 167,21 104,03 138,52 530,96 

Plantago lanceolata 0,00 5,72 0,10 11,95 165,61 107,39 119,89 164,34 

Woody 
species 

 

Herbaceous 
species 
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 Appendix S2: Continuation. 

 % WPI>12h % WPI0.5h  A+Z/VAZ AZ/Chl L/Chl β-Car/Chl VAZ/Chl α-Toc/Chl 

    (mmol mol Chl-1) (mmol mol Chl-1) (mmol mol Chl-1) (mmol mol Chl-1) (mmol mol Chl-1) 

Poacea sp. 0,00 2,75 0,10 8,71 145,55 96,42 85,65 73,50 

Polypodium sp. 0,00 5,95 0,14 14,96 164,52 98,83 102,33 174,44 

Ranunculus repens 0,00 9,37 0,12 16,91 165,63 104,78 138,02 80,16 

Saxifraga paniculata 19,46 3,68 0,19 30,38 175,97 104,37 158,29 253,71 

Scilla sp. 0,01 3,65 0,17 13,07 205,30 101,96 78,87 111,83 

Sedum album 0,63 2,11 0,16 17,74 162,42 84,41 105,49 147,84 

Sedum brevifolium 0,00 6,48 0,17 19,13 189,38 98,45 114,34 328,90 

Sedum sp. 0,00 4,65 0,13 15,53 181,04 98,64 119,21 207,76 

Senecio sp. 0,58 2,85 0,13 18,17 196,08 117,62 136,92 609,46 

Teucrium pyrenaicum 0,27 9,64 0,19 30,01 216,37 97,31 157,10 434,78 

Thymelaea sp. 13,93 5,04 0,14 20,81 213,40 84,28 154,13 590,61 

Dicranum scoparium 0,00 0,00 0,24 21,47 165,70 82,69 87,50 192,23 

Didymodon sp. 0,00 11,70 0,40 40,38 186,08 196,86 100,60 306,89 

Grimmia pulvinata 18,60 0,00 0,27 23,90 166,63 89,43 86,71 100,94 

Polytrichum piliferum 15,69 0,00 0,34 39,78 187,07 231,52 116,01 293,67 

Syntrichia muralis 0,00 8,56 0,31 35,33 220,70 121,57 112,69 207,73 

Dermatocarpon sp. 0,00 0,00 0,25 19,14 171,92 53,64 71,03 202,36 

Lasallia hispanica 0,00 1,32 0,18 14,72 193,81 69,94 80,66 55,92 

Lichinella stipatula 0,00 0,00 0,19 11,94 188,25 51,09 62,18 22,55 

Parmelia saxatilis 0,00 0,00 0,20 17,40 214,25 122,33 89,11 31,17 

Physcia sp. 0,00 4,41 0,34 22,31 387,12 120,06 82,46 108,94 

Ramalina sp. 7,32 0,00 0,21 17,95 171,28 64,33 85,06 62,96 

Rhizocarpon sp. 39,15 0,00 0,14 11,64 182,74 70,63 84,10 59,36 

Umbilicaria cylindrica 0,00 3,94 0,23 17,10 189,00 54,36 71,64 42,14 

Umbilicariapolyphylla 10,70 0,00 0,27 14,82 187,24 66,17 61,04 48,86 

Herbaceous 
species 

 

Mosses 

Lichens 
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Appendix S3. Photoprotective parameters: dynamic photoinhibition (WPI0.5h ) and pigment concentration in spring. Results are the average of 5 replicates. 

 

 
% WPI0.5h 

AZ/VAZ AZ/Chl L/Chl β-car/Chl VAZ/Chl α-Toc/Chl 

(mmolmolChl-1) (mmol mol Chl-1) (mmol mol Chl-1) (mmol mol Chl-1) (mmol mol Chl-1) (mmol mol Chl-1) 

Cytisus cantabricus 5.47 0.14 10.22 137.59 97.89 72.63 209.51 

Calluna vulgaris 1º site 1.27 0.14 13.69 137.65 93.49 98.44 106.98 

Calluna vulgaris 2º site 0.46 0.24 24.64 152.71 99.71 106.63 141.95 

Calluna vulgaris 3ºsite 0  0.11 9.57 137.85 89.47 84.24 379.85 

Daphne cneorum 6.68 0.12 17.65 159.99 108.99 142.60 157.26 

Erica aragonensis 1.93 0.11 13.64 147.25 104.55 130.02 157.72 

Erica cinerea 1.87 0.15 13.20 125.90 95.09 92.58 55.14 

Erica vagans 0.19 0.12 10.85 117.60 90.62 86.89 92.72 

Genista hispanica 0.00 0.11 11.53 123.30 107.08 105.02 44.92 

Globularia repens 4.32 0.12 11.10 122.36 98.56 88.06 200.38 

Juniperus communis subsp. alpina 4.64 0.15 14.28 147.58 76.27 97.16 85.30 

Pinus sylvestris 0.85 0.09 8.94 167.61 94.61 121.77 129.99 

Pinus uncinata 2.08 0.09 6.96 128.19 75.74 83.93 82.98 

Vaccinium myrtilus 3.51 0.25 22.08 136.13 93.57 91.36 281.03 

Arabis alpina 0.00 0.15 14.31 166.36 100.19 98.12 264.22 

Armeria cantabrica 1.26 0.21 17.27 135.06 106.32 83.82 117.83 

Asperula hirta 0.00 0.12 10.76 120.34 104.38 87.24 58.88 

Cerastium fontanum 2.91 0.23 13.25 146.44 104.97 59.53 108.85 

Digitalis parviflora 1.70 0.12 9.54 143.55 97.44 90.27 70.39 

Hieracium pilosella 1º site 4.55 0.11 8.72 120.48 109.84 83.47 133.53 

Hieracium pilosella 3º site 4.08 0.11 8.72 119.90 111.49 81.94 98.78 

Plantago lanceolata 1.28 0.13 9.52 125.52 102.99 73.68 122.91 

        

        

Woody 
species 

 

Herbaceous 
species 
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Appendix S3. Continuation        

 % WPI0.5h  
AZ/VAZ AZ/Chl L/Chl β-car/Chl VAZ/Chl α-Toc/Chl 

 (mmol mol Chl -1)  (mmol mol Chl -1)  (mmol mol Chl -1)  (mmol mol Chl -1)  (mmol mol Chl -1)  (mmol mol Chl -1) 

Poacea 0.00 0.19 24.57 140.81 108.81 123.72 74.36 

Polypodium sp. 3.72 0.13 12.15 140.89 82.45 95.86 64.93 

Ranunculus repens 3.53 0.14 17.17 133.67 98.88 125.77 48.25 

Saxifraga paniculata 1.79 0.28 28.35 132.13 102.89 107.10 145.09 

Scilla sp. 2.90 0.42 49.48 154.67 127.85 100.26 328.71 

Sedum album 8.90 0.23 18.83 138.19 84.37 83.16 168.18 

Sedum brevifolium 0.00 0.25 43.23 238.04 83.24 174.78 871.90 

Sedum sp. 10.14 0.15 26.01 205.06 109.90 172.83 206.56 

Senecio sp. 6.87 0.11 9.60 121.77 102.65 90.23 76.12 

Teucrium sp. 0.00 0.14 14.32 125.33 98.67 100.79 111.43 

Thymelaea sp. 4.62 0.11 9.08 141.73 99.65 83.75 318.71 

Dicranum scoparium 0 0.49 60.00 221.77 238.08 121.50 390.69 

Didymodon sp. 14.92 0.45 52.71 200.27 260.41 107.25 442.90 

Grimmia pulvinata 26.07 0.41 42.06 194.07 115.31 103.22 315.23 

Polytrichum piliferum 0.25 0.38 39.07 173.14 199.63 113.50 308.63 

Syntrichia muralis 0.00 0.57 90.78 255.78 167.32 161.15 203.89 

Dermatocarpo sp. 13.17 0.24 17.11 208.26 66.89 72.89 45.36 

Lasallia hispanica 11.11 0.19 13.75 182.63 66.92 75.18 57.38 

Lichinella stipatula 9.77 0.18 12.98 185.71 55.95 72.99 48.15 

Parmelia saxatilis 9.97 0.21 18.72 198.93 106.58 89.94 39.24 

Physcia sp. 11.14 0.22 36.23 571.69 202.87 188.40 62.82 

Ramalina sp. 3.97 0.17 18.31 183.13 76.28 106.64 59.79 

Umbilicaria cylindrica 11.71 0.17 10.24 184.46 59.87 61.58 29.26 

Umbilicaria polyphylla 6.36 0.14 10.27 187.81 74.38 72.95 35.69 

 

  
      

Herbaceous 
species 

 

Mosses 

Lichens 
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Table 1: List including all plant species for screening (experiment 1) and the locations in which 

they were collected. Species in bold are the model species used in the Experiment 2. 

    

Functional group 
Site 1 Site 2 Site 3 

43ο2’33”N   4ο22’14”W 42ο3’38”N   2ο32’4”W 42ο56’26”N   0ο46’7”W 

Woody Calluna vulgaris Calluna vulgaris Calluna vulgaris 

species C. cantabricus Erica aragonensis Daphne cneorum 

 Ericacinerea Pinus sylvestris Erica vagans 

 Juniperus communis subsp. alpina Vaccinium myrtilus Erica cinerea 

   Genista hispanica 

   Globularia repens 

   Pinus uncinata 

Herbaceous Arabis alpina Armeria sp. Asperula hirta 

 Cerastium fontanum Digitalis parviflora Hieracium pilosella 

 Hieracium pilosella Festuca sp. Poacea 

 Scilla sp. Polypodium sp. Saxifraga paniculata 

 Plantago lanceolata Sedum brevifolium Teucrium pyrenaicum 

 Ranunculus repens Senecio sp. Thymelaea sp. 

 Sedum album   

 Sedum sp.   

Mosses Dicranum scoparium Syntrichia muralis  

 Didymodon sp.   

 Grimmia pulvinata   

 Syntrichia muralis   

 Polytrichum piliferum   

Lichens Dermatocarpon sp. Pseudevernia furfuracea  

 Lasallia hispanica Rhizocarpon sp.  

 Lichinella stipatula Usnea sp.  

 Parmelia saxatilis   

 Physcia sp.   

 Ramalina sp.   

 Umbilicaria cylindrica   

 Umbilicaria polyphylla   
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Table 2: Correlation coefficients (r) between the different types of photoinhibition (chronic 

photoinhibition (WPI>12h), dynamic photoinhibition (WPI0.5h)  and total photoinhibition (WPIall)) 

and the ratios of carotenoids and tocopherols per chlorophyll. The number of species included in 

calculations was 14 woody plants, 20 herbaceous plants, 5 mosses and 9 lichens. Asterisks denote 

significant correlations (hyphen “-“ P ≥ 0.05, *P < 0.05, **P < 0.01, ***P ≤ 0.001).  

	
  

	
  

  

 Woody Herbaceous Mosses Lichens 

 WPIall WPI>12h  WPI0.5h  WPIall WPI>12h  WPI0.5h  WPIall WPI>12h  WPI0.5h  WPIall WPI>12h  WPI0.5h  

V/Chl - - - 0.456*** 0.332** - - - - - - - 

A/Chl - - - 0.398** 0.286* - - - 0.779* - - - 

Z/Chl 0.296* - - - - - - - - - - - 

AZ/Chl - - 0.293* 0.241* - - - - - - - - 

VAZ/Chl - - - 0.471*** 0.335** - - - - - - - 

AZ/VAZ 0.416* - - - - - - - - - - - 

Neo/Chl - - - - - 0.204* - - - - - 0.499* 

Trans Neo/Chl - - - - - - - - - - - 0.666** 

L/Chl - - - - - - - - - - - 0.480* 

Total car/Chl - - - 0.339** 0.258* - - - - - - - 

Total toc/Chl - - - 0.253* 0.222* - - - - - - - 
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Fig. 1: Chronic and dynamic winter photoinhibition (WPI>12h and WPI0.5h, respectively) in 

different functional groups. (A) Grey bars represent WPI>12h and white bars are the WPI0.5h. Each 

bar represents the mean ± SE. The number of species included were: 14 woody species, 20 herbs, 

5 mosses and 9 lichens (n=5 for each species). (B) Box plot of WPI0.5h (white bars) and WPI>12h 

(black bars) in all functional groups. For each functional group the percentage of each type of 

photoinhibition is plotted for functional group (horizontal axis). Each box encloses the middle 

half of the data between the first and third quartiles. Horizontal line represents the median; 

vertical line shows the range of data values. Outliers are shown as `*´ and atypical data are 

represented as `ο´. The number of species included in each bar in A and B figures was 14 in 

woody, 20 in herbaceous, 5 in mosses and 9 in lichens (n=5 for each species). 

 
Fig. 2: Recovery kinetics of Fv/Fm (closed circles) for all model species (A) Cytisus cantabricus, 

(B) Hieracium pilosella (C) Syntrichia muralis and (D) Lasallia hispanica. Control valueswere 

considered those collected in spring. T0 was collected in winter after 30 minutes under low 

temperatures and darkness. The remaining measurements were done on all species maintained at 

room temperature and low light. Each time point is an average of samples from five individuals. 

Black bars (Control) represent spring values of AZ/VAZ while grey bars represent the changes in 

AZ/VAZ along the recovery. Each bar depicts the mean ± SE (n=5). Different lowercase letters 

indicate significant differences at P < 0.05. 

 

Fig. 3: Relative thylakoid proteins content D1, D1-P, PsbS, Elip, Lhca, Lhcb2 in (A) Cytisus 

cantabricus; (B) Hieracium pilosella; (C) Syntrichia muralis and (D) Lasallia hispanica in winter 

(solid bars), after recovery treatment (grey bars) and in spring (open bars). Recovery treatment 

refers to optimum conditions at room temperature of 20ºC and dim light during 40h for S. 

muralis, L. hispanica and H. pilosella and during 140h for C. cantabricus. Values correspond to 

mean ± SE (n≥3). “n.d” indicates that the protein was not detected. Different lowercase letters 

indicates significant differences at P < 0.05 for each species and protein. 

 

Fig. 4: Schematic representation of thylakoid protein composition and V-cycle for model species 

(A) Cytisus cantabricus, (B), Hieracium pilosella, (C) Syntrichia muralis and (D) 

Lasalliahispanica in winter and spring. The size of V-cycle letters and of protein boxes illustrates 

the amount of each component in winter or spring.  
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