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Abstract: Mechanistic target of rapamycin (mTOR) is a master signaling pathway that regulates
organismal growth and homeostasis, because of its implication in protein and lipid synthesis, and
in the control of the cell cycle and the cellular metabolism. Moreover, it is necessary in cerebellar
development and stem cell pluripotency maintenance. Its deregulation has been implicated in the
medulloblastoma and in medulloblastoma stem cells (MBSCs). Medulloblastoma is the most common
malignant solid tumor in childhood. The current therapies have improved the overall survival but
they carry serious side effects, such as permanent neurological sequelae and disability. Recent studies
have given rise to a new molecular classification of the subgroups of medulloblastoma, specifying
12 different subtypes containing novel potential therapeutic targets. In this review we propose the
targeting of mTOR, in combination with current therapies, as a promising novel therapeutic approach.
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1. Mechanistic Target of Rapamycin (mTOR)

The mechanistic (formerly mammalian) target of rapamycin (mTOR) is a master signaling
pathway that regulates organismal growth and homeostasis. This pathway is not only implicated in
physiological conditions but it is also central in several pathological conditions [1]. mTOR is highly
sensitive to rapamycin, a specific inhibitor of this serine/threonine kinase and an antiproliferative drug
that is used clinically in antitumor and immunosuppressive therapy [2]. As represented in Figure 1,
mTOR is activated by tyrosine kinase receptors via the phosphatidylinositol 3-kinase (PI3K)/AKT
pathway. mTOR interacts with different proteins, forming two functionally distinct multiprotein
complexes, mTOR complex 1 (mTORC1) and complex 2 (mTORC2) [3]. mTORC1 is composed of
mTOR, Raptor, GβL, and DEP domain-containing mTOR-interacting protein (DEPTOR) [4]. It is a
sensor of a wide variety of cellular signals, including growth factors, energy levels, oxygen, stress, or
amino acids. These signals promote the regulation of cell growth and metabolism through a number
of downstream effects, such as protein and lipid synthesis or autophagy inhibition [3]. Less is known
about mTORC2, which is composed of mTOR, Rictor, GβL, Sin1, Proline rich protein 5 (PRR5)/Protor-1,
and DEPTOR [5]. It responds to growth factors that control the cell proliferation, but it is insensitive to
nutrients. mTORC2 can directly phosphorylate AKT, and it controls the cytoskeletal organization and
cell survival [6] (Figure 1).
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Figure 1. Mechanistic target of rapamycin (mTOR) signaling pathway. mTOR is part of two different 
complexes, mTOR complex 1 (mTORC1) and complex 2 (mTORC2). mTORC1 is activated by the 
phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway, and its downstream effectors activate 
cell growth, lipid synthesis, and metabolism, whereas it inhibits the autophagy. This complex can be 
inhibited by rapamycin. mTORC2 activates AKT, thus activating also mTORC1. Furthermore, 
mTORC2 activates the metabolism, cytoskeletal organization, and cell survival. 

One of the most important downstream effects of mTORC1 is the upregulation of protein 
synthesis. It phosphorylates several translation regulators, including eukaryotic translation initiation 
factor 4E (eIF4E)-binding proteins (4E-BP1, 2, 3) [1] and the p70 ribosomal S6 kinase 1 and 2 (S6K1) 
[7]. The phosphorylation of 4EBP1 inactivates this protein and allows the dissociation of 4EBP1 from 
EIF4E, enabling the formation of the translation initiation complex. In the case of S6K1, when 
phosphorylated, it increases mRNA biogenesis, translational initiation, and elongation [1]. 
Furthermore, S6K1 establishes a negative-feedback mechanism between mTORC1 and mTORC2; 
when there is a strong activation of mTORC1, mTORC2 is inhibited [8,9]. Since mTORC2 activates 
AKT, the activation of mTORC1 indirectly inhibits AKT. AKT activation via mTORC2 is required for 
the phosphorylation of some AKT substrates, such as the members of the Forkhead boxO (FoxO) 
family (FoxO1, 3, 4, and 6), which are involved in the regulation of cellular processes such as cell 
proliferation, apoptosis, and longevity [9] (Figure 1).  

It is more and more obvious that the mTOR signaling pathway has an important role in essential 
cellular functions. The key role of mTOR in controlling cell proliferation has raised the interest in 
rapamycin for cancer therapy. This drug disrupts mTORC1 protein complex formation, whereas 
mTORC2 is quite insensitive to the drug, and long-term treatments are required in order to inhibit its 
assembly [10] (Figure 1). 

  

Figure 1. Mechanistic target of rapamycin (mTOR) signaling pathway. mTOR is part of two different
complexes, mTOR complex 1 (mTORC1) and complex 2 (mTORC2). mTORC1 is activated by the
phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway, and its downstream effectors activate
cell growth, lipid synthesis, and metabolism, whereas it inhibits the autophagy. This complex can be
inhibited by rapamycin. mTORC2 activates AKT, thus activating also mTORC1. Furthermore, mTORC2
activates the metabolism, cytoskeletal organization, and cell survival.

One of the most important downstream effects of mTORC1 is the upregulation of protein synthesis.
It phosphorylates several translation regulators, including eukaryotic translation initiation factor
4E (eIF4E)-binding proteins (4E-BP1, 2, 3) [1] and the p70 ribosomal S6 kinase 1 and 2 (S6K1) [7].
The phosphorylation of 4EBP1 inactivates this protein and allows the dissociation of 4EBP1 from EIF4E,
enabling the formation of the translation initiation complex. In the case of S6K1, when phosphorylated,
it increases mRNA biogenesis, translational initiation, and elongation [1]. Furthermore, S6K1
establishes a negative-feedback mechanism between mTORC1 and mTORC2; when there is a strong
activation of mTORC1, mTORC2 is inhibited [8,9]. Since mTORC2 activates AKT, the activation of
mTORC1 indirectly inhibits AKT. AKT activation via mTORC2 is required for the phosphorylation
of some AKT substrates, such as the members of the Forkhead boxO (FoxO) family (FoxO1, 3, 4, and
6), which are involved in the regulation of cellular processes such as cell proliferation, apoptosis, and
longevity [9] (Figure 1).

It is more and more obvious that the mTOR signaling pathway has an important role in essential
cellular functions. The key role of mTOR in controlling cell proliferation has raised the interest in
rapamycin for cancer therapy. This drug disrupts mTORC1 protein complex formation, whereas
mTORC2 is quite insensitive to the drug, and long-term treatments are required in order to inhibit its
assembly [10] (Figure 1).
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2. mTOR in Central Nervous System (CNS) Development

mTOR plays an important role in the development of an organism because of its implication in the
growth, proliferation, and migration of every cell during normal brain development [11]. Accordingly,
the first mTOR knockout (KO) mouse study demonstrated that mTOR is indispensable for normal
development and viability [11,12]. Indeed, the importance of mTOR in the brain development was
evidenced when Hentges and colleagues created a loss of function mutant of mTOR and it showed a
defect in the telencephalon formation, and it died in mid-gestation [13].

Nowadays, it is known that the deregulation of mTOR signaling is associated with many
brain diseases, including neurological diseases, psychiatric diseases, or pediatric brain tumors [9,14].
The activation of the PI3K/AKT/mTOR signaling pathway enhances the proliferation of progenitors,
neuronal hypertrophy, and excessive dendritic branching, while the opposite consequences are
presented when the pathway is suppressed [15].

When forming the cerebellum, cerebellar granule neuron precursors (CGNPs) undergo a rapid
expansion in the external granule layer (EGL) on the dorsal surface of the cerebellum. Afterwards, they
exit the cell cycle, migrate internally, and differentiate into interneurons [16]. In the expansion phase,
the CGNPs require Sonic Hedgehog (SHH) signaling activation for cell proliferation and insulin-like
growth factor (IGF), which positively regulates the mTOR pathway, for cell survival capacity [16].
Furthermore, Mainwaring and Kenney demonstrated that SHH signaling modulates the individual
mTOR effectors separately, in order to maintain a proliferation-competent state. Unlike what has been
observed in cell lines, the CGNPs positively regulate eIF4E and negatively regulate S6K, promoting
cell proliferation and cell cycle progression [16].

3. Medulloblastoma

Medulloblastoma (MB) is the most frequent pediatric solid tumor, representing around 20% of
the tumors of the CNS in childhood [17]. This tumor arises in the cerebellum and it is classified as
a grade IV lesion by the World Health Organization (WHO) [18]. As mentioned above, cerebellum
development needs a well-regulated rate of proliferation and differentiation of the CGNPs in order to
form a correct cerebellum [19]. The SHH–Patched (PTCH1) [20], or WNT [21] signaling pathways are
key regulators of this process. PTCH1 is the receptor of SHH. In the absence of SHH, PTCH1 inhibits
the Smoothened (SMO)-GLI signaling pathway (Figure 2). When SHH is present, its binding to PTCH1
releases the negative regulation that PTCH1 is exerting to SMO and therefore the signaling pathway
will be active, promoting cell proliferation [20]. The mechanism of action of the WNT signaling pathway
is similar. As represented in Figure 2, in the absence of WNT, the multiprotein complex formed by
Axin, and the Glycogen Synthase Kinase 3 Beta (GSK3β) and APC will phosphorylate cytoplasmic
β-catenin that will then be degraded. When WNT is present, it will bind to its receptor Frizzled and
this binding will inhibit the GSK3β inhibiting the function of the multiprotein complex. β-catenin will
be accumulated and then it will translocate into the nucleus, promoting the cell cycle progression. If an
excessive activation of these signaling pathways occurs, the MB progression may occur because of the
incapacity of the cells to exit from a proliferative state and enter in a differentiation process [22].
Indeed, the patients with Gorlin’s syndrome (PTCH1 mutation) and the patients with Turcot’s
syndrome (APC mutation) present increased incidence of MB [20]. Further evidence demonstrating
that the hyperactivation of these signaling pathways are responsible for the loss of equilibrium in
cerebellar growth are the WNT and SHH MB mice models [23–25].
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Figure 2. The Sonic Hedgehog (SHH)/Patched (PTCH1) and WNT signaling pathways. (A) The SHH 
ligand inactivates the PTCH1 receptor allowing Smoothened (SMO) to become active. Red cross 
represents the release of the inhibition exerted by PTCH1 on SMO when SHH is present. The SMO 
activates the GLI proteins, a family of transcription factors that turn on the expression of different 
target genes, giving raise to cell proliferation and tumorigenesis (activation of the pathway 
represented with black arrows). (B) The binding of WNT to the Frizzled receptor activates a cascade 
of downstream events, resulting in the inactivation of the β-catenin destruction complex. The red 
cross represent the release of the inhibition exerted by the β-catenin destruction complex on β-catenin. 
In consequence, β-catenin activates and promotes the transcription of genes that promote cell 
proliferation and tumorigenesis (represented with black arrows). Adapted from [21,23]. 

The progress in MB therapy has increased the survival rate of the patients, although it is very 
variable depending on the tumor subtype. The strategy that is used nowadays for MB patients is 
based on maximal tumor resection, followed by chemotherapy and craniospinal radiotherapy [17]. 
The prognostic of the patients is different depending on the type of resection (complete or not) and 
the age of the patient, since patients younger than 3 years old cannot receive craniospinal 
radiotherapy because of the risks that promote a second neoplasia [26]. Regarding to chemotherapy, 
the most used strategy is the combination of lomustine, vincristine, and cisplatin [17]. This therapy 
has improved the survival of patients, in some cases reaching a 70–90% of survival rate [27]. However, 
the high doses of chemotherapy and radiotherapy that need to be used in order to achieve a 
therapeutic response cause irreparable damage to the healthy tissue, causing permanent neurological 
sequelae and disability [28,29]. Furthermore, despite the improvement in the prognosis for children 
with MB, about 30% of the surviving patients relapse after the initial treatment [29,30]. 

  

Figure 2. The Sonic Hedgehog (SHH)/Patched (PTCH1) and WNT signaling pathways. (A) The SHH
ligand inactivates the PTCH1 receptor allowing Smoothened (SMO) to become active. Red cross
represents the release of the inhibition exerted by PTCH1 on SMO when SHH is present. The SMO
activates the GLI proteins, a family of transcription factors that turn on the expression of different
target genes, giving raise to cell proliferation and tumorigenesis (activation of the pathway represented
with black arrows). (B) The binding of WNT to the Frizzled receptor activates a cascade of downstream
events, resulting in the inactivation of the β-catenin destruction complex. The red cross represent the
release of the inhibition exerted by the β-catenin destruction complex on β-catenin. In consequence,
β-catenin activates and promotes the transcription of genes that promote cell proliferation and
tumorigenesis (represented with black arrows). Adapted from [21,23].

The progress in MB therapy has increased the survival rate of the patients, although it is very
variable depending on the tumor subtype. The strategy that is used nowadays for MB patients is
based on maximal tumor resection, followed by chemotherapy and craniospinal radiotherapy [17].
The prognostic of the patients is different depending on the type of resection (complete or not) and the
age of the patient, since patients younger than 3 years old cannot receive craniospinal radiotherapy
because of the risks that promote a second neoplasia [26]. Regarding to chemotherapy, the most used
strategy is the combination of lomustine, vincristine, and cisplatin [17]. This therapy has improved
the survival of patients, in some cases reaching a 70–90% of survival rate [27]. However, the high
doses of chemotherapy and radiotherapy that need to be used in order to achieve a therapeutic
response cause irreparable damage to the healthy tissue, causing permanent neurological sequelae
and disability [28,29]. Furthermore, despite the improvement in the prognosis for children with MB,
about 30% of the surviving patients relapse after the initial treatment [29,30].

Moreover, almost 30% of the patients present with disseminated tumor at the moment of
diagnosis [31]. MBs spread from the cerebrospinal fluid (CFS), and the most common dissemination is
leptomningeal. Metastases outside the CFS are very rare, but they can appear in the bone, lymph node,
and lung, in decreasing order of occurrence [32].
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4. Medulloblastoma Subgroups

The first classification of MBs was based on their histopathological features. Until 2007, three main
subgroups were defined (classic, desmoplastic-nodular, and large cell anaplastic [LCA] MB), when
the WHO classification defined four different histological subgroups, namely, desmoplastic-nodular,
large cell, anaplastic, and MB with extensive nodularity (MBEN), the first one being the one with the
best prognosis [33]. This classification was supplemented in 2011 with the studies of Northcott and
colleagues. Using a bioinformatic analysis of transcriptional data from two cohorts from Toronto and
Moscow, they discovered four distinct molecular variants of MB, which they denominated WNT, SHH,
Group C, and Group D [34]. These and additional studies gave rise to a consensus conference in Boston
in 2010, where the discussants came to a consensus of the existence of four MB subgroups, named WNT,
SHH, Group 3, and Group 4 [35]. In a recent study that was carried out by Cavalli and colleagues, 763
MB samples were analyzed using the similarity network fusion approach [36]. The result of this work
was the identification of new subtypes within the four MB subgroups, specifically, they identified a
total of 12 subtypes, namely: two WNT, four SHH, three Group 3, and three Group 4 subtypes [36].
The main features and the relationship among these classifications are summarized in Table 1.

4.1. WNT subgroup

This subgroup is characterized by the aberrant activation of the WNT/β-catenin signaling
pathway and the good prognosis of the patients [37]. In 2017, two subtypes were identified, WNT α

and WNT β. The main molecular difference between the two subgroups is that the WNT α type tumors
present monosomy 6, where β-catenin gene is located, whereas the WNT β type tumors are normally
diploid for chromosome 6 (Table 1). The WNT α tumors are frequent in children and adolescents,
whereas the WNT β tumors are more likely to appear in adolescents and adults [36] (Table 1).

Table representing key histological and clinical data of two different MB classifications, as well as
genetic alterations, metastasis rates, age, and survival data of the Cavalli classification. The mTOR
implication in some of the subgroups is also presented. The age groups are infant (0–3 years), children
(>3–10 years), adolescent (>10–17 years), and adult (>17 years). Ado—adolescent; amp: amplification;
child—children; dup—duplication; LCA—large cell/anaplastic; MBEN—medulloblastoma with
extensive nodularity; mut—mutations; ↑—activation.
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Table 1. Graphical summary of the different classification of medulloblastoma (MB) subgroups and their specifications.

Medulloblastoma
Classification

System

Clinical
Features WNT SHH Group 3 Group 4

Taylor
Classification

Histology Classic, Rarely LCA Desmoplastic/Nodular, Classic, LCA Classic, LCA Classic, LCA

Prognosis Very good Infants Good; Other Intermidiate Poor Intermidiate

Cavalli
classification

α β α β γ δ α β γ α β γ

Metastasis 9% 21% 20% 33% 9% 9% 43% 20% 40% 40% 41% 39%

Genetic
alterations Monosomy 6 TP53 mutations PTEN loss TERT promoter

mut 8q loss

GFI1 and
GFI1B ↑,

OTX2 amp,
DDX31 loss

MYC amp

MYCN and
CDK amp,

8p loss,
7q gain

SNCAIP dup,
i17q

CDK amp,
8p loss,
7q gain

Age Child; Ado Ado; Adult Child; Ado Infant Infant Adult Infant; Child Child; Ado Infant;
Children Child; Ado Child; Ado Child; Ado

Subtype
histoloogy

LCA,
desmoplastic Desmoplastic MBEN,

desmoplastic Desmoplastic

Survival 97% 100% 70% 67% 88% 89% 66% 56% 42% 67% 75% 83%

mTOR mTORC1 activation PI3K/AKT/mTOR
activation
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4.2. SHH Subgroup

This subgroup is characterized by the aberrant activation of the SHH signaling pathway that
gives rise to the disease. Different genes belonging to this signaling pathway can be mutated, such
as SHH, PTCH, SMO, SUFU, GLI1, or GLI2. The patients that are classified in the SHH subgroup
have an intermediate prognosis, except the infants who have a good prognosis. This information
has recently been complemented with the four subtypes that are defined within the SHH group:
SHH α, SHH β, SHH γ, and SHH δ [36] (Table 1). The SHH α subtype mainly affects the children
and adolescents, and, among other alterations, it is the only one presenting the TP53 mutations [36].
Furthermore, this subgroup is enriched with the expression of the genes that are involved in DNA
repair and cell cycle progression [36]. Both SHH β and SHH γ tumors affect infants, but the survival
rates are very different. As shown in Table 1, the SHH β tumors are characterized by phosphatase
and tensin homolog (PTEN) loss and they present the lowest survival rate at 5 years within the SHH
tumors. In addition to identifying specific mutations and genetic alterations, Cavalli and colleagues
identified an enrichment on the developmental signaling pathways in the SHH β and SHH γ subgroups.
In SHH δ, the main characteristic is the enrichment of mutations in TERT promoter [36] (Table 1).

4.3. Group 3

This subgroup presents the worst survival rate [38] and to date, a unique altered signaling
pathway originating the disease has not been identified. Cavalli and colleagues have described three
different subtypes within the Group 3 MB, namely: Group 3α, Group 3β, and Group 3γ. Group 3α
is characterized by chromosome 8q loss (encoding v-myc avian myelocytomatosis viral oncogene
homolog (MYC)). The Group 3β tumors are characterized by the activation of the GFI1 and GFI1B
oncogenes, amplification of OTX2, and loss of DDX31 on chromosome 9. Finally, the Group 3γ tumors
present the MYC amplification as a result of the gain of chromosome 8q [36] (Table 1).

Regarding to the implication of the signaling pathways, the Group 3α tumors are enriched in the
expression of the photoreceptor, muscle contraction, and primary cilium-related genes, while Group
3β and 3γ present the enrichment of protein translation pathways. Furthermore, Group 3γ is also
enriched in the expression of genes that are related to telomere maintenance [36].

4.4. Group 4

This is the most prevalent group; almost 40% of the MBs are included in this subgroup. As in
Group 3, the deleterious signaling pathway that causes the disease has not been identified. There are
three different subtypes that have been described within this subgroup: Group 4α, Group 4β, and
Group 4γ. The main characteristics of the Group 4α tumors are the v-myc avian myelocytomatosis
viral-related oncogene, neuroblastoma-derived (MYCN) and cyclin dependent kinase 6 (CDK6)
amplifications, 8p loss and 7q gain. The Group 4β tumors are characterized with the synuclein
alpha interacting protein (SNCAIP) duplications and ubiquitous i17q. Finally, the Group 4γ tumors
present CDK6 amplifications, 8p loss, and 7q gain, as Group 4α tumors, but with the absence of MYCN
amplifications [36] (Table 1).

The experiments that were performed by Cavalli and colleagues have identified differentially
activated pathways for each subtype, supporting the existence of the three independent subtypes.
The pathways that were identified were the activation of migration pathways in Group 4α, activation
of mitogen activated kinase-like protein (MAPK) and fibroblast growth factor receptor 1 (FGFR1)
signaling pathways in Group 4β, and activation of PI3K/AKT/mTOR and erb-b2 receptor tyrosine
kinase 4 (ERBB4)-mediated nuclear signaling pathways in Group 4γ [36].

It is of relevance to underscore that in 2010, Gibson and colleagues demonstrated that the distinct
subgroups of MB have different developmental origins, discovering that some WNT MBs were arisen
from the cells in the dorsal brainstem [23]. Later, Grammel and colleagues discovered that some of
the SHH MBs arise from the granule neuron precursors of the cochlear nuclei of the brainstem [39].
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Two independent studies also reported two different cells of origin for Group 3 MB, with stem cell
characteristics [40,41]. At last, several cell types were shown to be able to give rise the Group 4
tumors [26]. What all of these cells of origin have in common are the stem cell properties, and it is
relevant to take into account that the majority of MB cells have a stem-like appearance [26].

5. Medulloblastoma Stem Cells (MBSCs)

The cancer stem cell (CSC) hypothesis explains the existence of a small fraction of tumor cells that
have stem properties and the ability to proliferate and maintain the tumor growth [42]. These cells
are characterized by two main properties, self-renewal and differentiation capacity, the self-renewal
being the key property regulating the oncogenic potential, so that tumorigenesis is an effect that is
derived by a deregulation of this process [43]. In the last years the presence of CSC has been described
in different hematopoietic and solid-tumors, including MB [44]. These MBSCs are characterized by
high levels of expression of CD133, Sox2, Musashi1, and Bmi1, which are all neural stem cell (NSC)
genes [45]. As it occurs with CSCs, the MBSCs are considered responsible for therapeutic resistance
and tumor recurrence [26], which is common in these tumors. Therefore, it would be necessary to
develop targeted therapies against these MBSCs, in order to avoid tumor resistance and recurrence.
Different studies have been focused on targeting different signaling pathways that are implicated in
MBSCs, such as the SHH, PI3K/AKT/mTOR, Stat3, and Notch signaling pathways [26].

6. mTOR in Cancer

The activation of the mTOR pathway plays a key role in the development of several cancer types
because of its importance in controlling cell growth and metabolism [1]. Aberrant mTOR activation can
occur through oncogene stimulation or the loss of tumor suppressors [46]. Although the constitutive
activation of the mTOR gene can occur, mutations in downstream and upstream components of both
mTORC1 and mTORC2 [46] are more frequent, and these mutations are responsible for inducing
cancer cell growth, survival, and proliferation [1].

The PI3K/AKT signaling pathway is found to be deregulated through a variety of mechanisms
in many human cancers [1]. Mutations in different components produce constitutive activation of
this signaling pathway, leading to a disturbance between the cell proliferation and apoptosis [47]. For
instance, PIK3CA amplifications/mutations, AKT overexpression, and PTEN loss have been described
in breast [48] or colorectal cancer [49].

Downstream of mTORC1, the overexpression of S6K1, 4EBP1, and eIF4E has been associated
to cellular transformation [46]. eIF4E overexpression occurs in different human tumors, like breast,
head and neck, colon, prostate, bladder, cervix, and lung cancer, enabling the selectable translation of
some mRNAs that encode key proteins for cellular transformation [50]. Additionally, the loss of p53, a
common event in cancer [1], negatively regulates some of the downstream targets of mTORC1, such as
autophagy [51]. Thus, the function of the mTOR pathway in cancer development makes it interesting
for targeted therapy in different tumors.

7. mTOR in Medulloblastoma

During brain development, the mTOR-mediated signaling pathway masters the differentiation of
neurons and glia, as well as the maintenance of the stemness of NSCs [14]. In the expansion phase of
CGNPs in the cerebellum, SHH and IGF are required [16], and it has been suggested that the activation
of both pathways in CGNPs could interact and enhance tumor formation in the cerebellum [52–54].
Following this hypothesis, Rao and colleagues discovered that, in mice, the SHH induced tumor
formation increases significantly when IGF-II is co-expresed, but no tumor formation was observed in
the mice that were injected with IGF-II alone [53].

IGF positively regulates the mTOR pathway, which is frequently activated in malignant brain
tumors, including MB [55]. Such an activation promotes the upregulation of protein translation by
inhibition of 4E-BP1, through mTORC1 mediated phosphorylation [56]. Besides, a growing body of
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evidence points to the SHH signaling pathway as being the responsible for promoting the activity of
mTORC1/4E-BP1-dependent translation and enhance tumor formation [6,57]. This evidence suggests
that IGF-II, and therefore, the mTORC1/4E-BP1 pathway is a downstream transcriptional target of
SHH, being critical in the SHH-mediated MB [58].

As a result of its role in the canonical SHH signaling pathway, mTORC1 seems to be a potentially
important molecular target for treating SHH MBs [57]. However, the SHH signaling pathway also
interacts with additional signaling pathways to promote MB growth and to induce treatment resistance.
For instance, the Hippo pathway plays an important role in the control of organ development,
and cross-talks with this pathway have been described [59].

Regarding the role of the PI3K/AKT/mTOR signaling pathway, its activation occurs in subgroup
4γ, the most prevalent subtype [36]. Moreover, Frasson et al. reported that the PI3K inhibition induces
dramatic morphological changes and promotes apoptosis in DAOY human MB cells [60]. All of these
data together suggest that targeting mTOR could be a potential therapeutic strategy for SHH-driven
and Group 4 MBs. However, no relation between mTOR and the WNT or Group 3 MB subgroups has
been described yet.

8. mTOR Signaling Pathway in MBSCs

Like all CSCs, the MBSCs possess the ability of self-renewal and differentiation, increasing the
oncogenic potential of the heterogeneous tumor [61]. The transcription factors octamer-binding
transcription factor 4 (OCT4), Nanog homeobox (NANOG), and SRY-box 2 (SOX2) are essential to
maintain the pluripotency and self-renewal in embryonic stem cells and CSCs [14,62]. In addition to the
expression of these transcription factors, one of the leading pathways that are involved in the regulation
of embryonic stem cell differentiation and resistance of CSCs to therapy is the PI3K/AKT/mTOR
signaling pathway [60]. This signaling pathway plays an essential role in the maintenance and
survival of the CSCs by regulating multiple apoptosis-related proteins [61] and controlling the cell
cycle progression [55]. Therefore, mTOR-mediated intracellular signaling is tightly regulated in
the stem cells and it is considered one of the key modulators of the stemness in different stem cell
populations [62]. Besides, it has been demonstrated that when inhibiting the mTOR signaling pathway,
the CSC properties are reduced and the invasion potential is restrained in some of the cancer types [63].

The fact that PI3K inhibition has a heavy impact on the cell number of primary MB cells has already
been demonstrated [60]. Following the hypothesis that stem cells could be the preferential target of
PI3K/AKT inhibition, Frasson and colleagues showed that such inhibition indeed targets the CD133
positive cell fraction, reducing the number of the MBSC pool [60]. Furthermore, Hambardzumyan
and colleagues discovered that the PI3K⁄AKT inhibitor, perifosine, increases the sensitivity to
radiation-induced apoptosis in Nestin positive MBSCs [64]. Additionally, the PI3K/AKT axis is
able to enhance the intracellular SHH signaling in CGNPs [65]. Different studies support the idea that
the SHH signaling is also important in the regulation of CSC [66,67]. Ahlfeld and colleagues described
that the constitutive activation of SHH signaling results in a significantly augmented expression of
Sox2 that induces the cellular growth and proliferation of SHH MBs [68]. Therefore, targeting CSCs by
the inhibition of mTOR or SHH may improve the outcome of patients with MB.

9. Targeted Therapy

As mentioned above, the current therapy is not enough to cure all of the MB patients, and the
high doses of chemotherapy and radiotherapy that are needed induce severe side effects. This is the
reason that recent investigations are directed toward improving targeted therapy in MB subgroups.
There are two main objectives; on the one hand, to discover new drugs, and on the other hand,
to optimize the doses of the drugs that are usually used. One consideration to be taken into account in
MB treatment, as it occurs in all brain tumors, is that the drug must be able to cross the blood-brain
barrier, which makes the development of new therapeutic agents difficult.
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9.1. Targeting WNT Medulloblastomas

The WNT MBs present a good rate of cure compared with the other subgroups, since the WNT
activation increases the tumor’s radiosensitivity [69]. That is the reason that there are relatively few
drugs that have been developed to target this signaling pathway. The current clinical trials are focused
on the refinement of the standard treatment, with the objective of reducing the doses of chemotherapy
and radiotherapy to decrease the neurotoxic side effects that are related to the treatment [27].

Two specific therapies have been developed to target the WNT MBs. The first one, norcantharidin,
has been shown to block the WNT signaling pathway, impairing the growth of the MB [70]. The second
one, lithium chloride, inhibits the GSK3β stabilizing β-catenin and reduces the MB growth [71].

9.2. Targeting SHH Medulloblastomas

Many specific treatments for SHH MB have been developed. Almost all of these treatments are
focused on inhibiting SMO, a G protein type receptor that is implicated in the SHH signaling pathway.
These treatments are based on the structure of cyclopamine, a naturally occurring plant alkaloid,
the first SHH pathway inhibitor that was discovered with an anticancer effect. Cyclopamine inhibits
the SMO protein, binding to its transmembrane domain and avoiding its change of conformation
to the active form. However, cyclopamine has failed in clinical development, mainly because
of its pharmacokinetic characteristics [26]. Therefore, research is focused on the development of
new small molecules based on this compound, but with improved pharmacokinetic properties.
Several small molecules have been developed, like vismodegib (GDC-0449), saridegib (IPI-926),
erismodegib (LDE-225), TAK-441, XL-139 (BMS-833923), PF-04449913, and PF-5274857 [26].

The most studied of all of these analogs is vismodegib, the first food and drug administration
(FDA)-approved drug as a SHH signaling inhibitor for advanced and metastatic basal cell
carcinoma [72]. The patients with SHH-driven MB that were treated with vismodegib had a remarkable
response and tumor size regression [73]. However, as vismodegib is a SMO inhibitor, it is not an
effective treatment for the patients harboring genetic aberrations in genes downstream SMO, such as
SUFU or GLI2 [74]. Furthermore, a number of patients that were treated with vismodegib acquired
drug resistance because of a point mutation in SMO, the D473H mutation. This mutation would not
prevent the activation of the SHH signaling pathway, but it would disrupt the ability of vismodegib to
bind to the SMO [75]. Thus, a therapy targeting GLI using bromo- and extra-terminal BET domain
inhibitors may be an alternative and efficient treatment for patients with genetic aberrations in SUFU
or GLI, as well as for the patients who acquire resistance to SMO inhibitors, since they modulate GLI
expression downstream of SMO and SUFU [76]. Another method to target GLI is the use of arsenic
compounds. They have been tested in vitro and in vivo as a treatment for SHH-driven cancers and
they have showed promising results [77].

9.3. Targeting Group 3 and 4 Medulloblastomas

The lack of an altered signaling pathway responsible for initiating the tumor makes it difficult
to develop a targeted therapy for these subgroups of MBs. Among other alterations, some Group 3
MBs are characterized with MYC overexpression [36,74]. Two FDA-approved drugs targeting MYC,
pemetrexed and gemcitabine, were used in combination to treat mouse allografts and xenografts.
As a result of the treatment, the tumor growth was decreased [78]. Additionally, BET bromodomaim
proteins have also been demonstrated to inhibit MYC-regulated signaling pathways in different cancers.
Therefore, targeting these proteins could also be a promising strategy to target this subgroup of MBs.
Nevertheless, MYC overexpression is only found in 10–20% of the patients in subgroup 3 [79].
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9.4. Targeting the mTOR Pathway

As a result of the importance of the PI3K/AKT/mTOR pathway in cancer progression, targeting
this signaling pathway has become one of the most studied strategies. Rapamycin is the first mTOR
inhibitor that has been used in anti-cancer therapy. This compound is an antifungal agent that
binds to FK506 Binding Protein 12 (FKBP12), forming a complex that allosterically inhibits the
FKB12-Rapamycin Binding (FRB) domain of mTORC1, leading to the dissociation of Raptor from
mTORC1 [80]. As rapamycin inhibits the mTORC1 complex, it also inhibits the protein translation
and synthesis, and it induces cell cycle arrest in the G1 phase [10]. Even if rapamycin is not able
to inhibit mTORC2, it can affect the mTORC2 complex indirectly [10,55]. However, poor solubility
and unpredictable pharmacokinetic profiles of rapamycin have led to the development of rapamycin
derivatives (rapalogs), new compounds based on the structure of rapamycin, but with improved
pharmacological properties. These compounds have been tested and are approved for use in the
treatment of different solid tumors [81–99] (Table 2).

Table 2. Mechanistic target of rapamycin (mTOR) inhibitors used in the clinic.

Types of mTOR
Inhibitors Name Target Disease Trial Phase

Rapalogs

Temsirolimus mTOR RCC and MCL Completed phase III

Everolimus mTOR RCC, PNET, Lung, GEP, NET, Gastric,
BC, mRCC Completed phase III

Ridaforolimus mTOR Sarcoma Completed phase III

Second-generation
mTOR inhibitors

BEZ235 PI3K/mTOR BC, RCC, Endometrial, PNET Discontinued

GSK2126458 PI3K/mTOR
Colon/Rectum, RCC, BC, Endometrial,
Melanoma, Ovary/Primary Peritoneal,

Pancreas, Prostate
Phase I

Gedatolisib
(PF-04691502; PKI-587) PI3K/mTOR SCLC, Ovarian, Endometrial, Renal,

Colorectal, Glioblastoma Phase I

Apitolisib
(GDC-0980) PI3K/mTOR MPM, Colorectal, GIST, Sarcoma, BC Phase I

Third-generation
mTOR inhibitors Rapalink-1 mTOR

(mutant forms too) Glioblastoma No clinical data

mRRC—metastatic renal cell carcinoma; MCL—mantle cell lymphoma; PNET—pancreatic neuroendocrine tumor;
GEP—gastro-entero-pancreatic; NET—neuroendocrine tumor; BC—breast cancer; SCLC—small cell lung cancer;
MPM—malignant, pleural mesothelioma; GIST—gastrointestinal stromal tumor.

Some of these rapalogs have also been tested in MB, demonstrating promising results and leading
to three clinical trials in phase I. These compounds are temsirolimus, sirolimus, and tesirolimus,
in combination with perifpsine, an AKT inhibitor [55].

The PI3K/AKT/mTOR signaling pathway is primarily involved in SHH MBs. In these types of
tumors, not only the mutations in the SMO receptor or the aberrant activation of the SHH pathway are
the cause of MB initiation; an increased activation of the PI3K signaling or the alternative activation of
the RAS-MAPK pathway could also eventually cause drug resistance [100]. Thus, combining SMO
and PI3K/AKT/mTOR inhibitors may be a strategy to overcome resistance development.

Finally, it has been shown that the PI3K/AKT/mTOR signaling pathway is implicated in CSCs,
and specifically in MBSCs, demonstrating that the inhibition of this signaling pathway reduces
the MBSC population in the primary tumor culture [60]. Therefore, inhibiting mTOR may be a
potential treatment to target the MBSCs, thus reducing the chances of tumor recurrence and therapy
resistance (Figure 3).
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Figure 3. Schematic representation of a possible new approach to target medulloblastoma stem
cells (MBSCs)s and MB. Medulloblastoma has an intracellular heterogeneity, having different cell
types, such as normal tumor cells and MBSCs. With the classic treatment, the elimination of normal
tumor cells is achieved, and the surviving MBSCs can form the tumor again. With the proposed new
approach, the MBSCs are eliminated using mTOR inhibitors and the tumor cells are eliminated using
the conventional therapy, achieving total tumor regression.

10. Concluding Remarks

MB is the most common malignant solid tumor in childhood, and even if the current therapies
have improved the overall survival, the side effects that they generate are devastating for children.
Improved knowledge of MB has given rise to a new and detailed classification of the subgroups of
MB, which may lead, in the future, to a better stratification of the patients, based on the molecular
characteristics of their tumor, moving towards a personalized therapy for each patient. To reach this
goal, a deeper molecular profiling of each tumor is needed after the biopsy or surgery. Together with
the new classification, new signaling pathways that are implicated in different subgroups of MB,
have been identified. Signaling pathways such as the SHH or WNT signaling pathways, as well as
PI3K/AKT/mTOR are therapeutic targets in MB.

mTOR is a master signaling pathway that regulates organismal growth and homeostasis, as a
result of its implication in protein and lipid synthesis, and in the control of the cell cycle and the cellular
metabolism. Different studies have shown that it is also necessary in cerebellar development and stem
cell pluripotency maintenance. Being an essential protein in the homeostasis of the cells, when it is
deregulated, it is implicated in different tumors, including MB. Furthermore, it has a decisive role in
MBSCs, which is demonstrated by the fact that when the PI3K/AKT/mTOR signaling pathway is
inhibited, the number of MBSCs decreases.

In this review we describe the targeting of mTOR as a promising therapeutic approach, mainly,
but not only, for SHH-driven MB patients. Moreover, the combination of this approach with the
current therapies could be a promising strategy, as the mTOR inhibition impairs the growth of MBSCs
and increases the sensitivity to radiation-induced apoptosis in Nestin positive MBSCs, decreasing the
possibility of tumor recurrence and therapy resistance (Figure 3).
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