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Abstract: This project aims to design and implement a holistic control system to 

build a portable self-balancing robot with two wheels that can have several 

functionalities added to it, based on software implemented on the Arduino and 

Raspberry Pi® processing units. Two of the functionalities added to this system are a PC 

terminal remote control and a computer vision based algorithm, which is able to detect, 

track, and chase objects. The system is highly scalable and has room for many other 

ideas so that almost anybody can pick up where I left off and improve the existing 

algorithms or implement new ideas on it. The focus of this project is mainly on the 

control systems and algorithms, and not so much on the final robot product, which is 

just a way to show how neatly the controls and algorithms work. The object of the 

research was also understanding the inter-dependability and connections of several 

different systems and being able to make them compatible under the same system.  

Introduction: The original idea behind this project is based on an existing off-

the-shelf product developed by SainSmart. Hence, although the existing technology has 

been enhanced and modified for our own purposes, some recognition must be delivered 

to SainSmart, as part of the software and hardware were developed by them. The 

product, available to the general public, goes under the name of “InstaBots Remote 

Control Self-Balancing Robot” [1].  

 

Figure 1: Final aspect of the rover, standing 

 

The research was carried out in the Electrical & Computer Engineering 

Department of the Illinois Institute of Technology, in Chicago, as the main task of the 

course ECE597: Special Problems, and under the supervision of Dr. Jafar Saniie. In 

particular, the research was done in collaboration and as part of the ECASP (Embedded 

Computing and Signal Processing) Research Laboratory, tutored by one of its members, 

Boyang Wang, to whom I owe the praise for being able to develop this project.  



 Needless to stay, the project would not have been possible without the 

laboratory equipment and funding from the ECASP Research Team and the ECE 

Department, or without the help of the professors and researchers involved in this 

space. 

The main duty this student had to accomplish for the first part of this course was 

to become familiarized with the environment, tools, and knowledge necessary to be 

able to manage such a complex and diverse system. For the first three months, during 

the Spring semester, the work was only focused on documentation and developing 

laboratory assignments of courses related to computing algorithms and FPGA design. In 

fact, the original idea was to develop this same project based on an FPGA controller 

instead of using the Arduino board for balancing control, but as will be explained later 

on, the idea had to be dropped due to several difficulties. In the first report related to 

this course, this student submitted the set of laboratory assignments designed for the 

course ECE446 – Advanced Logic Design, which consisted of a set of assignments related 

to hardware design.  

Along with this report, several files will be submitted, such as the slides for a 

presentation, the file for the AutoCAD designs comprising the physical structure, the 

Arduino source code that governs the motor motion, and the two Python codes used by 

the Raspberry Pi® to implement the functionalities of the remote keyboard controller 

and the computer vision based algorithm for object tracking and chasing.  

Some potential future work will be discussed at the end of this report too, to give 

a few pointers of how this project could be continued or improved in the future.  

Background: In a world where everything is becoming automatized, and 

communication systems are implemented in more and more objects, like we see in the 

IoT example, understanding and being able to make a wide variety of systems 

compatible has become of utmost importance. Starting from the physics and 

mathematics of the balancing, to the more advanced software used in a board with an 

operating system such like the Raspberry Pi®, this project involves a rather deep 

understanding of several fields, including hardware electronics.  

This section was also intended to provide some background information about 

the parts that comprise this project, such as the Arduino system, the Raspberry Pi® 

single-board computer, the MPU-6050 accelerometer, or the PWM motor driver. 

However, due to the already detailed explanations given in the following chapter, 

Project Description, details will be omitted and the reader will be referred to said section 

for further detailed descriptions. 

  



Project Description: 
The project consists of a holistic system including different parts that 

communicate with each other and are dependent on one another’s performance. The 

following block diagram could illustrate the main scheme of the parts involved in the 

project.   

 

 
 

Figure 2: Block diagram of the project 

 

MPU-6050 

The MPU-6050 is the device in charge of the physical sensors utilized to balance 

the system. This block’s only purpose is to sense the acceleration, inclination, and 

rotation of the rover and provide an input of information to the Arduino processor so 

that a real-time adjustment can be made thus keeping the robot from falling down. 

The device is the world’s first integrated 6-axis MotionTracking device, and it 

combines a 3-axis gyroscope, 3-axis accelerometer and a Digital Motion Processor™ 

(DMP) all in a small 4x4x0.9 mm package. The number of sensor inputs in an IMU are 

referred to as DOF or Degrees of Freedom, so a chip with a 3-axis gyroscope and a 3-axis 

accelerometer such as this one would be a 6-DOF IMU. For communication, it uses a 

standard I2C bus for serial data transmission.  [2] 



An accelerometer is a device that is able to sense three-dimensional motion and 

provide a numerical output to compute it. Proof of mass deflection is measured as a 

change in capacitance between the proof mass and sensing plates, as shown in Figure 3: 

Accelerometer circuitry.  The internal circuitry converts the tiny capacitance to a voltage 

signal, which can be digitized and output. Each accelerometer has a zero-g voltage level, 

which should be found on spec, and computing orientation relies on a constant 

gravitational pull of 1g (~9.81 m/s2) downwards. Besides that, each device usually also 

has a sensitivity value, expressed in mV/g, and digital accelerometers such as this one 

use a serial protocol like I2C, SPI or USART to communicate with the rest of the system. 

In this particular project, as mentioned, we will use the MPU-6050 as a slave of a I2C 

system controlled by the master located in the Arduino chip.  

 

 

 

 

 

 

 

 

 A gyroscope measures angular velocity, i.e. the rate of change in orientation 

angle, but not angular orientation itself. For this, one must first initialize the sensor 

position with a known value (possibly from the accelerometer), and then measure the 

angular velocity (ω)around the x, y, and z axes measured at intervals (Δt). Hence: 

 ω x Δt = change in angle 

 The new orientation angle is the original angle plus this change 

However, because this is obtained by integrating (adding up many small 

computed intervals) to find orientation, repeatedly adding up increments of ω x Δt 

results in small systematic errors becoming magnified over time. This phenomenon is 

called Gyroscopic drift and it makes the gyroscope data increasingly inaccurate over long 

timescales.  

As Figure 5 shows, gyroscopes use the Coriolis effect to transform an angular 

velocity into a displacement. The Coriolis Force acts perpendicular to the rotation axis 

and to the velocity of the body in the rotating frame. 

Figure 3: Accelerometer circuitry [10] 

Figure 4: MPU-6050 and its three-
dimensional axes 



 Fc = -2m Ω x v 

 

 

 

 

 

 

 

  

The displacement induces a change in capacitance between the mass and the 

housing, thus transforming the angular rate input to the gyroscope into an electrical 

output.  

One of the methods to deal with systematic errors in both of these devices is 

called Sensor Fusion. An accelerometer measures inertial force, such as gravity, but it 

might also be caused by acceleration (movement) of the device. Even if the 

accelerometer is relatively stable, it is very sensitive to vibration and mechanical noise. 

A gyroscope, on the other hand, is less sensitive to linear mechanical movements (the 

type of noise that the accelerometer suffers from), but has other types of problems like 

drift: not coming back to zero-rate value after rotation stops. Averaging the data that 

comes from both can produce a better estimate of orientation than using accelerometer 

data alone. For that, several algorithms exist, such as the Kalman Filter or the 

Complementary Filter, that provide a weighted average, which results in more accurate 

outputs. Figure 6 shows a graphic example of how the combination of the data from both 

devices contributes to a better Pitch & Roll accuracy.  

 

Figure 6: Sensor Fusion accuracy depending on vibration frequency [3] 

 Figure 5: Coriolis Forces on a Gyroscope [11] 



 As for the communication, we mentioned the device MPU-6050 uses the 

protocol I2C to communicate between the master (Arduino) and the slaves (in this case 

the accelerometer and the gyroscope). As Figure 7 shows, an I2C system may have 

several devices. Generally, there will be multiple slaves, but there will only be one 

master, who is in charge of driving the clock and initiating all transfers both ways. Both 

master and slave can transfer data over the I2C bus, but the transfer is always controlled 

by the master. 

 

Figure 7: I2C block diagram [4] 

  There are two wires: SCL is the clock line, and is used to synchronize all data 

transfers. SDA is the data line. Both lines are “open drain” drivers, which means they can 

only be driven low, and a pull-up resistor attached to the voltage supply is necessary for 

the line to go high. Figure 8 shows an example of this.  

 

Figure 8: An "open drain" driver 

 Without getting too deep into explaining the procedures of the I2C protocol, it is worth 

mentioning that the data is transferred in sequences of 8 bits, sent with the most significant bit 

first, and the protocol possesses control mechanisms such as the start bit and the stop bit 

(signaling the beginning and end of a transaction), and the acknowledge bit. The acknowledge 

bit is sent by the slave right after each 8 bits transfer, therefore it takes 9 SCL clock pulses to 

transfer each 8 bytes of data.  

Each device on the bus has a unique I2C address, that is usually 7 bits long, allowing up 

to 128 devices on the I2C bus. Addresses are sent in 8 bits, where the extra bit (the last one) 

indicates read or write operations:  

 Zero  the master is writing to the slave 

 One  the master is reading from the slave 

The standard SCL clock speed for I2C is up to 100 kHz.  



Decoder and Filter: Conversion of raw data into gesture information 
 The next block of our system consists of a processing unit inside Arduino that is 

responsible for receiving the raw data coming from the MPU-6050, and converting it into useful 

gesture information that we can utilize for decision-making. For this, it is necessary to convert 

and filter the signals from the accelerometer and gyroscope.  

 The code for this block, as with the rest of the source codes, will be attached on a 

separate file along with this document, in the Arduino source code. It is a set of mathematical 

operations, written in a language similar to C++, that filters the serial data to raw angles and 

values first, and then gives a filtered angle converted to degrees and acceleration and rotation 

values for all 3 axes x, y, and z. This gesture information can then be used to infer the position 

of the rover and adjust the power and direction of the motors driving the wheels to make the 

machine stand upright.  

 In essence, the input of this block is serial data coming from the MPU-6050, and the 

output should be the x,y, and z co-ordinates of the accelerometer and gyroscope, as seen on 

Figure 4, and ultimately a filtered angle that will indicate the inclination of the rover. Then this 

output can be used as an input of the PID controller, which, compared to the desired setpoint, 

will give us an error signal e(t) with which we will be able to compute the calculations for self-

balancing and gesture correction.   

 

PID Controller 
 While the original project developed by SainSmart already had a fairly simple but 

working PID controller written on the Arduino processor, our goal was to improve that one to 

end up with an efficient, robust algorithm. The following lines will be used to explain what a PID 

controller is and how we were able to devise an advanced PID starting from the simplest form. 

In order to fulfill this goal, we will make use of the updated PID library for Arduino, available for 

free on Arduino’s official website [5], and we will explain the advantages that this standardized 

library has over the basic PID designed originally by SainSmart.  

 PID stands for proportional-integral-derivative, and it is a control loop feedback 

mechanism widely used in industrial control systems and a variety of other applications 

requiring continuously modulated control. A PID controller continuously calculates and error 

value e(t) as the difference between a desired setpoint (SP) and a measured process variable 

(PV), and it applies a correction based on the proportional, integral, and derivative terms of the 

error (denoted P, I, and D respectively). In practical terms, it automatically applies accurate and 

responsive correction to a control function.  

 Each terms has a weighted coefficient, so that the arithmetic of the continuous 

operation would look like the following formula expressed in Figure 9. 

 

Figure 9: PID arithmetic 



 Developing a code based only on this operation could give satisfactory results, but there 

are a few factors to take into account when developing a robust and reliable industrial control 

system: [6] 

 Sample time: The PID algorithm functions best if it is evaluated at a regular interval. If 

the algorithm is aware of this interval, it is also possible to simplify some of the internal 

math.  

In the case of the original algorithm, we can see by observing the code that this issue is 

already taken care of, as the reading of the values from the MPU-6050 happens exactly 

every 1,000 cycles. 

 Derivative Kick: This is a phenomenon caused by the spikes in the signal of derivative 

error, which result in spikes in the output signal also. It happens often, for instance, 

when the setpoint is modified by the user, as we can see in Figure 10.  

 

 

Figure 10: Derivative Kick [6] 

In order to ameliorate this, we change the equation of the derivative error from this: 

 
𝑑 𝑒(𝑡)

𝑑𝑡
 = 

𝑑 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡

𝑑𝑡
 - 

𝑑 𝐼𝑛𝑝𝑢𝑡

𝑑𝑡
       to this:   

𝑑 𝑒(𝑡)

𝑑𝑡
 =  - 

𝑑 𝐼𝑛𝑝𝑢𝑡

𝑑𝑡
       

which is the equivalent of the equation when the setpoint is constant.  This means the 

derivative of the error is equal to the negative derivative of the Input except when the 

setpoint is changing. Taking the setpoint out of the equation, we get rid of the spikes 

from the changes of setpoint, as we can see in Figure 11. That way, the PID will work just 

as well, but will rely on the value of the previous input instead of the previous error.  



 

Figure 11: Derivative Error without the setpoint component [6] 

This technique is known as using “Derivative on Measurement”.  

 

 On-The-Fly Tuning Changes: A good PID algorithm is one where tuning parameters can 

be changed without jolting the internal workings. In our system, although we do not 

plan to interactively change the PID coefficients while running, it seems a good feature 

to add just in case for a well-thought PID algorithm.  

However, when doing so, we can observe the integral component suffers a significant 

bump, due to the fact that Ki is multiplying the entire error sum accumulated so far (all 

the previous components), so when Ki changes the difference is amplified by the 

accumulated error. Ideally, when changing parameters, the goal would be to only affect 

things going forward, and not previous values. 

To fix this, we can create a temporary variable for the values of “Ki * error” and add this 

to the error sum. This way, the sum of errors will have already included the current 

coefficient into account and we won’t have to multiply the whole error sum by the later 

coefficient, as we did before. In other words, the equation goes from being equation a) 

from REFERENCE to equation b) from REFERENCE. At first sight, it seems like nothing 

changes because the equations are equivalent, but it makes a big difference. In equation 

b) the momentary coefficients are multiplied by each term end the error is stored in the 

sum, in equation a) all errors are summed up and then multiplied by the latest 

coefficient. With a changing coefficient, the difference is obvious.  

 

Figure 12: Integrating errors to obtain error sum, two different approaches 
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The result can be observed in the two Figures above. Before, when the coefficient Ki was 

changed, it rescaled the entire sum of the error (every error value we had seen). With 

this code, the previous error remains untouched, and the new Ki only affects the output 

moving forward.  

 

 Reset Windup Mitigation: This is a problem that occurs when the PID has an external 

limit and cannot provide an output value that thinks it can. For example, it a PWM motor 

accepts a range of values from 0 to 255, and the PID is not aware of this, it will keep 

going up trying to give output numbers of 300, 400 or 500 but not getting anywhere. 

This is graphically expressed in Figure 15. 

 

 

 

Figure 15: Reset Windup [6] 

Figure 14: Change of parameters Figure 13: Change of parameters, bump 
fixed 



One effective method to solve this could be to establish the limits for the PID output so 

that the system is aware of the usable range and the computed values are always 

proportional and within range. In our case, the PID code was improved by adding a 

function named “SetOutputLimits”, which is in charge of performing the desired task. 

With this enhancement, the value of the output pin would resemble the one that can be 

seen in the bottom image of Figure 16. 

 

Figure 16: Reset Windup fixed [6] 

 

 On/Off (Auto/Manual): In most applications, there might be times where it is desirable 

to turn off the PID controller and adjust the output by hand, without the controller 

interfering. This might be useful for calibrating or testing purposes. This functionality 

was added by adding a section of code which allows the PID to be on (Automatic mode) 

or Off (Manual mode). In the latter, the Output can be manually set regardless of the 

input value or the previously computed output value of the PID. 

 

 Initialization: When the controller first turns on, ideally a ‘bumpless’ transfer should be 

obtained. This is, the output should not suddenly jerk to a new value. This is already 

done successfully in the original code developed by SainSmart, by simply running a 

couple hundred of cycles previous to starting the program’s regular routine. This way, 

before the output is enabled, a few input values from the sensor are computed and the 

output signal is stabilized. When it is already stable, the output can be activated and the 

user will only see a steady signal without any violent jerks.  

 

 

 



 Controller direction: PID processes will have two ways of acting upon the output 

devices, in this case, the motors: direct acting and reverse acting. Making sure the 

parameters, such as the coefficients, are operated with the correct sign is of vital 

importance. This can be an easy fix, just be using absolute values for the parameters and 

clearly stating the sign of the operations.  

 

This measure is already taken in the original code, but it was our job to double-check 

the operations were properly executed. 

 

 Adaptive tunings:  One of the benefits of the updated PID library is that the tuning 

parameters can be changed accordingly in real time. This can be helpful if one wants the 

controller to be more aggressive at some times, and more conservative at others. For 

instance, in our example we set the K coefficients to be more conservative when the 

input value is near setpoint and more aggressive when it is further away.  

 

As we can see in the attached code, we established different coefficients for different 

situations, having three aggressive Kp, Ki, and Kd, with a bigger absolute value than the 

conservative Kp, Ki, and Kd. This improves the balancing performance significantly.  

 

Raspberry Pi® 
The Raspberry Pi® is a small single-board computer that can be connected to several 

peripherals such as a keyboard, a monitor, and a Wi-Fi router thus making it a perfect candidate 

for us to implement more sophisticated code from a distance while having a very simplistic 

model installed on our rover.  

The main purpose of this board is to receive and process input signals coming from the 

Web Cam and/or the command terminal from a PC, and to communicate those to the Arduino 

board via USB in order to govern the motion of the rover. The block diagram of Figure 2 displays 

this idea. 

Web Cam 
The Web Cam is connected via USB cable to the Raspberry Pi®, and through a few simple 

existing algorithms we are able to implement object tracking or obstacle avoidance features to 

our rover. This code is written in Python and also attached with this document.  

The main functionality of the camera is going to be recognizing and tracking an object 

(for instance a red foam ball) and to send commands to the Arduino board so that the rover 

follows it. Existing libraries on OpenCV make perfect candidates for this use, so this student 

analyzed them, adapted them to our own system, and debugged them in order to obtain an 

efficient algorithm that is able to keep up with the objective.  

In this case, unlike in the next chapter, we will connect a PC to the Raspberry Pi® via 

Remote Desktop. The reason being that the libraries that detect object allow us to display the 

images of the camera with the tracking objects being highlighted by colorful signs; but none of 

this is useful if we do not have a monitor where we can see the display of the Raspberry Pi®. 

Since the board will be independent and wireless (so that it can move freely), we will use Wi-Fi 

connection to access the Remote Desktop and that way we’ll be able to monitor the object 

tracking and make sure it is doing its job properly. 



The object tracking algorithm chosen for this task is based on the Hough Transform, and 

it is free and available for everyone to obtain online on the OpenCV library. This algorithm only 

detects shape and color, so it is nowhere near perfect, but it does a good enough of a job to 

keep track of objects such as a red ball, for demonstration purposes. 

 As for the object chasing algorithm, it was created from scratch by this student on the 

lab, by implementing a series of orders based on the position of the detected object on the 

screen. Basically, if the center of the object detected is on the left side or right side of the screen, 

the rover will turn to the opposite side until the object is centered on the screen. Only then, 

when the object is centered, will the rover decide to move forward and approach the object. If 

the object’s radius on the screen is small enough (meaning that the object is far enough), the 

tracking pointer will appear in green, and if the object is centered, the rover will move forward 

towards it. On the contrary, if the object is close (its radius is bigger), the tracking sign will appear 

in red and the rover will not move forward. However, if the object is on one side or another of 

the screen, even if it is close and it appears in red, the rover will turn to face it directly, but it will 

not move forward to get any closer to it.  

In order for the Raspberry Pi® to allow Remote Desktop access to our PC, we will have 

to previously install the xrdp library, by typing the following command on the terminal, while 

having a working Internet connection, of course: 

sudo apt-get install xrdp 

The following figure shows the display of the object detection algorithm as the camera 

captures footage of myself holding a red frisbee. As we can see, the algorithm does a pretty 

good job recognizing and tracking the red, round object.  

 

Figure 17: Object tracking software on Raspberry Pi® using Remote Desktop 

 

Keyboard Commands 
Another feature that the Raspberry Pi® board allows us to do is to be able to control the 

motion of the rover by inputting commands from the terminal of any PC. In order to do this, we 

connect any PC to the Raspberry Pi® board via ssh communication over a Wi-Fi router (although 

this could be done by direct Wi-Fi connection), and we execute a Python code which was 



developed from scratch to intake commands from the user and send them serially to the motor 

controller board. The ssh communication can be done by using an application such as PuTTY or 

simply by typing ssh commands from the terminal. After that, the commands are sent to the 

Arduino board, which is continuously listening to the serial connection. The Arduino board 

should contain some functions in its code that are responsible for receiving and processing this 

data and govern the PWM controller accordingly. The physical connection between the 

Raspberry Pi® and the Arduino board is made by an USB cable and the parameters of it are as 

follows: 

 Port: ttyACM0 (important to set the correct USB port) 

 Baudrate : 115200 symbols/s 

 Parity bits: none 

 Stopbits: one 

 Bytelength: eight bits 

 

These parameters, although they seem very basic, are very relevant, because this is the 

format of serial communication the Arduino board will be expecting, and it is of the uttermost 

important that both boards ‘speak the same language’. 

As for the commands, this design includes a set of eight commands that are activated 

by inputting a character from the keyboard and function as follows. 

 ‘I’: move forward 

 ‘K’: move backwards 

 ‘J’: turn left 

 ‘L’: turn right 

 ‘N’: spin left 

 ‘M’: spin right 

 ‘S’: stop spinning 

 ‘X’: stop displacement 

The Python code used in the Raspberry Pi®, as well as the C++ code used in the Arduino 

will both be attached for a deeper comprehension of the communication algorithms.  

 

 

Figure 18: Raspberry Pi® board 



PWM Controller 
The PWM controller is the block in charge of controlling the direction and power of the 

motors by asserting them signals modulated with Pulse Width Modulation (PWM). In essence, 

this modulation controls the power of the motor by means of the Duty Cycle, which is the 

percentage of time for which the signal that drives the motor is asserted. This is shown 

graphically in Figure 19, where a 0% duty cycle shows the driving signal low all the time, thus 

not moving the motor, and a 100% duty cycle has the input signal asserted at all times, hence 

running the motor at full speed. In our case, the duty cycle is a value between 0 and 255, an 8-

bit value.  

 

Figure 19: Pulse Width Modulation [7] 

 

The output value of the duty cycle is dependent not only on the input values obtained 

from the accelerometer and the gyroscope, but also on the values of the ‘speed’, ‘turn speed’, 

which can be manually adjusted by the user by using commands coming from the Raspberry Pi®, 

or by the information gotten from the Web Cam. Id est, the motors are governed according to 

the PID controller in order for the rover to stand upright, but that only controls the balance of 

the device, whereas the orders for the rover to move back and forth or turn would have to come 

from the Raspberry Pi® (whether they are obtained from the Web Cam or input manually by the 

user). The block diagram seen at Figure 2 shows a global picture of the system which could help 

understand the flow of information of the project.  



Therefore, any type of information relevant for the rover to move, has to come through 

this block, because this block is what ultimately tells the motor what to do; that is, which motor 

to activate (left or right), with how much power, and in what direction.  

It is worth mentioning that, the electronic chip that was chosen for the purpose of 

driving the motor is the microchip TB6612, commercialized by SparkFun and, in our case, 

delivered by Digi-Key Electronics USA.   

 

 

Physical Structure 
The physical structure of the project is based on the original idea developed by 

SainSmart but was further developed and enhanced to meet our own goals. The design consists 

of four layers, one more than the original, and the following paragraphs contain a description of 

what could be found in each of these layers.  

The PVC boards that separate each layer were redesigned to better fit our demands and 

replaced with a thicker, stronger, PVC material to prevent the bending or cracking of the 

structure due to the weight that it supports. Design changes include the following: 

 The bottom board had to be stretched out in order to fit the new motors, which were 

bought to replace the old, worn out motors of the original SainSmart system, and were 

larger than the originals. 

 The drill holes designed for the motor holders were also slightly misaligned and were 

redesigned to perfectly fit the measures of the real units. 

 The holes designed for the motor wirings were shrunk, so that the wirings are barely 

able to pass through, but the overall resistance of the board is greatly enhanced.  

 A top board was added on top of the battery to sustain both the Raspberry Pi® and the 

Microsoft® Web Cam. 

The graphic designs of these boards were designed using AUTODESK® AutoCAD® 2016 

and brought to reality by the use of a laser cutter on campus. All the files containing the designs 

are also attached along with this report.  

 

Figure 20: AutoCAD design of the PVC boards 



 

Figure 21: Laser cutter 

The bottom layer contains the two motors, attached with a set of metal holders with a 

wheel on each side, which compose the vehicle’s traction component. 

 

Figure 22: Two JGA25-370B motors 

The first layer contains the set of PCBs (Printed Circuit Boards) responsible for the main 

operation of the project. This is to say: the Arduino microchip, the supply voltage input, the 

TB6612 motor driver, the MPU-6050 Inertial Measurement Unit, the On/Off switch, etc. This 

chip was originally included in the purchase from SainSmart.  



 

Figure 23: Main board with Arduino, MPU-6050, TB6612, etc. 

 This board, however, was designed with a faulty layout and a security adjustment had 

to be made. The LB-Link connector underlying the pins for the motor was in contact with those 

pins, and since it had a metal surface, it created a short-circuit between all of the pins for Motor 

1. In order to fix this, this student used a caulk gun and covered all the pins with silicon with the 

intention of avoiding any non-desired contact which would lead to potentially burning some of 

the components of the board. The final result is visible in Figure 24.  

 

 

Figure 24: Caulk gun being used to cover motor pins 

The second contains a 11.1 V battery, responsible for supplying the power for the entire 

system, attached with a couple of Velcro strips to the PVC structure.  



 

Figure 25: Battery with 11.1 V DC output 

And the top layer is comprised by the Raspberry Pi® board and the Microsoft® Web Cam, 

which is at the same time connected to the Raspberry Pi® as an input sensor.  

 The layers are assembled together in a structure made possible by using the PVC boards 

as bases and a set of several nuts and bolts as connectors. Figure 26 shows the final aspect of 

the project.  

 

Figure 26: Physical structure of rover 

 

  



Challenges: 
A few challenges were encountered in the realization of this project, which led to 

changes in plans, goals, and even deadlines. The original idea was to develop the project in VHDL 

language using an FPGA system based on the board PYNQ™-Z1 by Xilinx, seen in Figure 27.  

 

Figure 27: PYNQ™-Z1 by Xilinx 

 However, due to the difficulty of the project, the time constraints, and frankly the lack 

of expertise of this student in FPGA areas as specialized as this, the idea had to be dropped, after 

consulting with Mr. Wang, the most proficient instructor in the FPGA area.  

 The preparation work for this project carried out in the Spring semester was all directed 

towards FPGA preparation, as can be inferred by the report submitted for ECE597 in Spring. 

Nevertheless, after the student encountered more problems than expected, a change of plans 

seemed inevitable.  

 Even after that, a few more problems came up. This student in particular burnt one of 

the motors and a TB6612 motor driver due to the incorrect connection of pins, so the lab had to 

spend extra revenue in new material for the realization of this project.  

More hardware problems were also noted, such as the output voltage of the battery, 

which seemed to be worn out by use, and did not give anywhere near the desired 12 V (in fact 

it ranged between 7.12 V and 7.58 V, depending on the charge). This students suspects that the 

reason behind the deterioration of the battery might have been the faulty physical design by 

SainSmart mentioned in the physical structure description, which created a short circuit 

between the motor pins and thus was demanding an enormous amount of current continuously 

from the battery. This problem’s solution was shown in Figure 24.  



 The older, worn out hardware created a relatively critical problem when carrying out 

the testing of the codes, because the student was not sure if the incorrect functioning of the 

system was due to the hardware (apparent lack of power when driving the motor) or the Arduino 

code was just not good enough for balancing the system. This gave the student more than one 

headache.  

Results:  
 The result is essentially a self-sufficient wireless balancing robot, which is controllable 

through instructions from another PC, and able to detect, track, and chase objects automatically. 

As mentioned before, Wi-Fi connection is necessary for the communication between the PC and 

the Raspberry Pi® (via ssh or Remote Desktop) and the communication between the latter and 

the Arduino board is done serially over a USB cable.  

 The project is easily scalable by adding or improving the Python algorithms on the 

Raspberrry Pi®, meaning that it has potential continuity.  

The final aspect of the project can be seen in Figure 26, but it is somewhat difficult to 

show the proper functioning of it in a report. Hence, the university of IIT, through Dr. Saniie, 

scheduled an official demonstration carried out on the 26th of July of 2018 on the Illinois Institute 

of Technology campus, Electrical and Computer Engineering Department.  That will provide 

proof of the performance of the project for the record. The demonstration, as well as the 

presentation carried out by this student to explain the project in detail, will be recorded on video 

and posted on the ECASP Research Team’s website for anyone to see.  

Conclusion and Future Work: 
 The project offers a final working product, but more importantly, a research of 

several control systems and codes, and a holistic system integrating several peripherals. 

It is important to note that the object of a research project is not to sell a product, but 

to learn about a particular subject, so even if the result of this project was inconclusive, 

and it was not possible to make the robot work; or furthermore, even if the conclusion 

of this research was that it is not possible to make such different systems compatible; 

we could consider this a satisfactory research, due to the amount of information learnt 

and the diverse nature of the environments that this student had to get familiarized 

with.  

 As mentioned above, none of this would have been possible without the 

inestimable help of the members of ECASP and the ECE Department, and of course the 

funding and equipment provided by them.  

 As for the future works, there is a particular proposal that I started working on, 

but could not present due to time constraints: A set of algorithms called ARUCO and 

developed by a group of researchers from Cordoba, southern Spain. It consists of an 

OpenSource library for camera pose estimation using squared markers. ARUCO is 

written in C++, but can be converted to Python, and is extremely fast. An example of a 

functionality that could be implemented with ARUCO is the detection of several shapes 

such as the ones seen on Figure 28, in which each of the shapes could represent a 

command, and make the motors of the rovers act accordingly, depending on the shape 

they see. This objects is also able to detect rotation, semi-covered objects, etc.  



 

Figure 28: shape codes for the ARUCO library 
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Attachments:  
Attached along with this document, on separate files, are: 

 Source code for the Arduino controller 

 Python codes used on the Raspberry Pi® for: 

o Keyboard commands and serial communication 

o Object tracking and following algorithm 

 AutoCAD® footprints of the boards used for assembling the rover 

 Presentation slides summarizing this report 
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