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1. Regulatory policies for marine environmental 
protection 

1.1. The United Nations international regulatory framework 

It is widely recognised that the planet faces serious environmental challenges that can only 

be addressed through international cooperation (Sands et al., 2012). Acid rain, ozone depletion, 

climate change, loss of biodiversity, toxic and hazardous products and wastes, aquatic pollution 

and depletion of aquatic resources are amongst the issues that international regulation is being 

called upon to address (Wilhelmsson et al., 2013). The United Nations Conference on the Human 

Environment held in Stockholm in 1972 is regarded as the starting point of the development of 

modern day international environmental law (Kamminga, 1995).  

Thus, a series of conventions and regulations deal with the protection of the marine 

environment. For instance, the approval in the early 1980's of the United Nations Convention on 

the Law of the Sea (UNCLOS), established a framework to define the responsibilities of the 

contracting nations in the prevention, reduction and control of marine pollution (UNEP, 1995). As 

a result, different international cooperation structures were created to manage, in a coordinated 

way, the actions necessary to promote the sustainable use and conservation of the regional seas 

(Johnson and Miller, 1971; Teclaff, 1972; Sands et al., 2012). United Nations (1992) defined 

specific actions at international regulatory level aimed at pursuing the protection and sustainable 

development of the marine and coastal environment and its resources (Chapter 17 of Agenda 21; 

United Nations, 1992); thus, new approaches were required for marine and coastal area 

management and development, at the national, subregional, regional and global levels. Besides, in 

1995, the United Nations Environment Programme (UNEP) launched the Global Programme of 

Action for the Protection of the Marine Environment from Land-based Activities, in the context 

of UNCLOS (UNEP, 1995; Franckx, 1998). Different international agencies and organisations 

contribute to this issue: International Maritime Organization (IMO), Food and Agriculture 

Organization (FAO), World Meteorological Organization (WMO), International Atomic Energy 

Agency (IAEA), and (World Bank) International Bank for Reconstruction and Development 

(IBRD). Outside the UN system, regional organisations that have adopted significant legal 

instruments in the field of the environment include the Organization for Economic Cooperation 

and Development (OECD), the Conference on Security and Cooperation in Europe (CSCE) and 
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the Organisation of African Unity (OAU). Non-Governmental Organisations (NGOs) which have 

had such impact include the International Union for the Conservation of Nature (IUCN), Friends 

of the Earth (FOE) and Greenpeace International (Kamminga, 1995). 

The Regional Seas Programme, launched in 1974, is one of UNEP’s most significant 

achievements in the past five decades. As a result, several worldwide Regional Sea Conventions 

(RSCs) are used as a guidance framework for the implementation of the most recently developed 

marine legislation. The Programme aims to address the accelerating degradation of the world’s 

oceans and coastal areas through a “shared seas” approach by engaging neighbouring countries in 

comprehensive and specific actions to protect their common marine environment. Today, more 

than 143 countries have joint 18 RSCs and Action Plans for the sustainable management and use 

of the marine and coastal environment. In most cases, the Action Plan is underpinned by a strong 

legal framework in the form of a regional Convention and associated Protocols on specific 

problems. All individual Conventions and Action Plans reflect a similar approach, yet each has 

been tailored by its own governments and institutions to suit their particular environmental 

challenges. UNEP coordinates the Regional Seas Programme, based at the Nairobi headquarters 

(Table 1).  

Table 1. Regional Seas programmes. The bold letters are programmes where mangrove-lined ecosystems 
are present. 

FRAMEWORK PROGRAMMES 

UNEP-administered Regional Seas 
programmes 

Caribbean Region 
East Asian Seas 
Eastern Africa Region 
Mediterranean Region 
North-West Pacific Region 
Western Africa Region 
Caspian Sea 

Non-UNEP administered Regional Seas 
programmes 

Black Sea Region 
North-East Pacific Region 
Red Sea and Gulf of Aden 
ROPME Sea Area 
South Asian Seas 
South-East Pacific Region 
Pacific Region 

Independent Regional Seas programmes 

Arctic Region 
Antarctic Region 
Baltic Sea 
North-East Atlantic Region 
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In Europe, four RSCs deal with the protection of the marine environment of member states 

and neighbouring countries: (a) the OSPAR Convention in the North-East Atlantic; (b) the 

Helsinki convention (HELCOM) in the Baltic sea; (c) the Barcelona convention in the 

Mediterranean sea; and (d) the Bucharest convention in the Black sea (EC, 2006). These 

conventions fulfil an important role in the implementation of international legal requirements as 

they provide valuable regional frameworks for (a) assessing the state of the marine environment; 

(b) addressing key developments that interact with the marine environment (e.g., socio-economic 

activities, coastal settlements, land-based activities); and (c) agreeing on appropriate responses in 

terms of strategies, policies, management tools and protocols (UNEP, 2007).  

In the Caribbean, UNEP established the Caribbean Environment Programme (CEP) in 1981 

as one of its Regional Seas Programmes. The importance and value of the Wider Caribbean 

Region’s fragile and vulnerable coastal and marine ecosystems is recognised. Countries of the 

Wider Caribbean Region (WCR) adopted an Action Plan that led to the development and adoption 

of the Cartagena Convention on 24 March 1983. This Convention is the first-and-only regionally 

binding treaty of its kind. It promotes the protection and development of the marine environment 

of the Region. It is supported by three technical agreements or protocols on (a) oil spills, (b) 

specially protected areas and wildlife, and (c) land-based sources of marine pollution. The 

Caribbean Regional Co-ordinating Unit, located in Kingston (Jamaica), was established in 1986 

as the Secretariat to the Cartagena Convention. The Caribbean Environment Programme has three 

sub-programmes:  

• Assessment and Management of Environment Pollution (AMEP) 

• Specially Protected Areas and Wildlife (SPAW) 

• Communication, Education, Training and Awareness (CETA) 

Nevertheless, in the Caribbean region a number of shortcoming and challenges have been 

identified in relation with regulatory policies for marine environmental protection (Fig. 1); these 

are the low ratification of various multilateral agreements, the poor implementation, and the 

inadequate stipulations in conventions to effectively respond to issues such as pollution (Singh, 

2008). 
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1.2.  European policies for protection of the marine environment 

The European Union (EU) goes ahead in the context of protection of coastal marine 

ecosystems. EU has adopted several environmental directives, strategies, recommendations, and 

agreements that focus on biological endpoints with ecosystem health at the centre of regulation 

and management decision making. For example, the Water Framework Directive (WFD;  

2000/60/EC; EC, 2000) and the Marine Strategy Framework Directive (MSFD; 2008/56/EC; EC, 

2008) deal with the assessment and management of the environmental quality of estuarine and 

marine water bodies, respectively.  

Since its entrance into force in 2000, the WFD has established a framework for the protection 

of groundwater, inland surface waters, estuarine waters and coastal waters. Its first objective was 

to achieve the “Good Ecological Status” (GES) for all the European water bodies by 2015 (EC, 

2000). The WFD deals with the compliance of environmental quality standards (EQSs), 

established for chemical substances at European level (Environmental Quality Standards 

Directive; 2008/105/EC), in the water basins from inland to transitional and coastal waters. 

Complementarily, the EU adopted the MSFD with the aim of achieving the “Good Environmental 

Status” (GEnS) for all European seas, by 2020 (Bertram and Rehdanz, 2013). The main objectives 

of the MSFD are to protect and restore the quality of European seas while ensuring the 

sustainability of human activities, the conservation of marine ecosystems, and the provision of 

safe, clean, healthy and productive marine waters to current and future generations (Borja et al., 

2010, 2008). The WFD works as a “deconstructing structural approach”; however, the MSFD is 

conceived as a “holistic functional approach” that defines the quality of the marine ecosystems in 

an integrative way, considering together biological, physicochemical and pollution parameters, 

biological elements becoming especially important. Concretely, the MSFD requires criteria and 

methodological standards to allow consistency in approach in evaluating the extent to which Good 

Environmental Status (GEnS) is being achieved. MSFD's Descriptor 8 (“Concentrations of 

contaminants are at levels not giving rise to pollution effects") is closely linked with Descriptor 9 

("Contaminants if fish and other seafood") and Descriptor 10 ("Marine litter").  

Therefore, given the adverse impacts that marine pollution events can induce in the 

biological functioning of estuarine and marine ecosystems, both directives require the 

identification of the polluting pressures and the spatio-temporal scales in which these are reflected. 
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They require the integration of the results of chemical monitoring programmes in combination 

with the assessment of the biological effects at different level of biological complexity; this 

approach helps in detecting early warning signals of pollution (Law et al., 2010). 

1.3.  U.S. programmes for protection of the marine environment 

Likewise, USA is a pioneering reference for activities pursuing the protection of the marine 

environment. Thus, the US Environmental Protection Agency (USEPA) has long-lasting 

experience in protecting and restoring ocean and coastal ecosystems by promoting watershed-

based management, preventing aquatic pollution, managing ocean dumping sites, assessing coastal 

conditions, establishing effective partnerships and facilitating community-led science-based 

efforts. These programs help to ensure clean and safe waters that sustain human health, the 

environment and the economy.  

For instance, the Coastal Nonpoint Pollution Control Program addresses nonpoint pollution 

problems in coastal waters. This program is administered jointly with the National Oceanic and 

Atmospheric Administration (NOAA) and National Centres for Coastal Ocean Science (NCCOS) 

in order to study and monitor the effects of coastal pollution. These results provide communities 

with the information and tools they need to identify pollution "hotspots" and to develop practices 

and policies that reduce pollution and improve coastal health. NCCOS Coastal Pollution research 

is focused on chemical contaminants, hypoxia and eutrophication, invasive species and pathogens 

and microbes. NCCOS identifies coastal areas that are contaminated, the pollutants and their 

sources and impacts. In parallel, the Bioeffects Program has undertaken since 1991 a series of 

regional environmental assessments designed to describe the magnitude and extent of toxic 

contaminant impacts in estuarine and coastal areas. The Bioeffects Programme aims at assessing 

the spatial distribution and effects of chemical contamination, and at developing indicators of 

environmental contaminant exposure in water bodies, ranging from small estuaries to large bays 

and coastal areas. This information is integrated to develop a comprehensive assessment of the 

health of the marine habitat.  

The National Estuary Program (NEP) constitutes another example (USEPA, 2014). In 1987, 

Congress established the NEP as a non-regulatory, community-based program to protect and 

restore the water quality of estuaries (Section 320 of the Clean Water Act of 1987). The NEP 

identifies nationally-significant estuaries threatened by pollution, development or overuse, and 
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requires the preparation of comprehensive conservation and management plans to ensure the long-

term ecological integrity of those estuaries. These plans include (a) assessing water quality, natural 

resources and human use trends, (b) characterisation and identification of the causes of 

environmental problems, identifying pollutants and its sources and impact, (c) recommending 

priority corrective actions and compliance schedules, and (d) monitoring effectiveness of actions 

taken. 

1.4.  Marine environment protection programmes in the Caribbean   

Within the UNEP CEP framework, several tools (e.g. the protocol for Pollution from Land-

based Sources and Activities) were agreed in order to classify water bodies, establish legally 

binding standards, identify major sources of pollutants and prevent pollution (Siung-Chang, 1997).  

Further on, institutions such as the International Oceanographic Commission (IOC) collaborated 

with the UNEP and the NOAA in order to support the creation of the International Mussel Watch 

Project in the Caribbean since the 1990's. The program was directed by the International Mussel 

Watch Committee and coordinated and administered by Coastal Research Center of the Woods 

Hole Oceanographic Institution (Farrington and Tripp, 1995). Like the initial US Mussel Watch 

programme, the Caribbean Mussel Watch program was also focused on chemical approaches and 

mainly targeted to organochlorine contaminants (Fig. 2; Farrington and Tripp, 1995; Siung-Chang, 

1997; UNEP, 2006). Following the same guidelines, the UNEP Global Environmental Facility 

project for the assessment of environmental and health effects of persistent toxic substances (PTSs) 

was launched in 2000. It incorporated Central American and Caribbean Regions (denoted Region 

X), which included 23 countries (Colombia and Nicaragua amongst others) and 136 million 

inhabitants. The regional component addressed the 12 persistent organic pollutants (POPs) defined 

by the Stockholm Convention on Persistent Organic Pollutants held in 2001 (aldrin, endrin, 

dieldrin, chlordane, DDT, toxaphene, mirex, heptachlor, hexachlorobenzene, polychlorinated 

biphenyls, polychlorinated dibenzodioxins, and polychlorinated dibenzofurans), and additional 

regionally important compounds (atrazine, endosulfan, pentachlorophenol, polybrominated 

diphenyl ethers, lindane, organic lead, organic mercury, organic tin, polychlorinated phenols, 

polycyclic aromatic hydrocarbons, short chain paraffins, phthalates, octylphenols, and nonyl 

phenols) (UNEP, 2002). Other relevant monitoring program was carried out in the Caribbean by 

the Caribbean Regional Coordinating Unit for the UNEP (UNEP-CAR/RCU), with the support of 

the Global Environment Facility (GEF), embarked on efforts to reduce agricultural pesticide runoff 
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to the Caribbean Sea through a joint project with the Governments of Colombia, Costa Rica and 

Nicaragua (GEF-REPCar); which began in 2006 and ended in 2011. 

Exceptionally, biomonitoring programmes have been run at national level, as in the case of 

the REDCAM programme in Colombia (Vivas-Aguas et al., 2014). Likewise, specific pollution 

assessment studies have been carried out locally in a few cases (Ebanks-Mongalo et al., 2013). 

Fig. 2. Sampling sites of the International Mussel Watch Programme (Farrington and Tripp, 1995). 

2.  Chemical pollution and its assessment in coastal 
ecosystems  

2.1. Marine and coastal chemical pollution  

According to OSPAR Commission (2000a) “Marine pollution” is defined as the introduction 

by humans, directly or indirectly, of substances or energy into the marine area which results, or 
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is likely to result, in hazards to human health, harm to living resources and marine ecosystems, 

damage to amenities or interference with other legitimate uses of the sea. 

Metals. Metals are persistent and toxic, tend to bioaccumulate, and pose a risk to humans 

and marine organisms and ecosystems (Rainbow, 2002; Ponizovsky, 2003; Funes et al., 2006). 

There is an increasing metal input to the coastal zone from both rivers and non-point sources, 

especially in developing countries. Thus, heavy metal contamination at local, regional and global 

scales has been intensively studied in recent years,  

Natural metal inputs such as erosion, wind-blown dust, volcanic activity, and forest fires 

account for the main sources of some metals like Al and Hg (Mahboob, 2013). Today's industrial 

pollution still includes Zn, Cu, Ni, Cr and Pb (Shi et al., 2010; Simpson et al., 2004). Metals such 

as Pb, Zn, Cd and Cu, among others resulting from anthropogenic activity, are released trough 

atmospheric and river inputs, mining activities, dredging spoil, direct discharges, industrial 

dumping and sewage sludge, contributing to metal pollution leading to the marine environment 

(Schindler, 1991; Audry et al., 2004; ICES, 2006). Once into aquatic systems metals will undergo 

several processes such as dissolution, precipitation, sorption and complexation, which can further 

affect their biological effects and environmental consequences, as the form of the metal (chemical 

species, compound, matrix and particle size) may influence its bioavailability, fate, and effects on 

the biota (Looi et al., 2013). Environmental properties, such as pH, particle size, moisture, redox 

potential, organic matter, cation exchange capacity, among others are also relevant to determine 

the biological effects of the metal pollutants (Belabed et al., 2013; Fairbrother et al., 2007; Ivanina 

and Sokolova, 2013). 

The mechanisms for uptake, distribution/storage and excretion of metals are well known in 

aquatic organisms (Fairbrother et al., 2007; Marigómez et al., 2002). Metals may form complexes 

with proteins such as metallothioneins (Amiard et al., 2006; Pellerin and Amiard, 2009), 

metalloproteins and other carrier molecules such as chaperons (Amiard et al., 2006; Hédouin et 

al., 2010; Kozlowski et al., 2013); thus they are distributed to target cell compartments for 

sequestration and excretion, their bioaccumulation usually being tissue and cell type specific 

(Marigómez et al., 2002); which depends on the affinity of the metals for different electron donors: 

metals such as Cs, K, Na, Li, Ba, Sr, Ca, Mg, Be, La, Gd, Y, Lu, Sc, and Al bind oxygen donors 

such as carbonate, oxalate, phosphate and sulphate, whilst Au, Cu, Hg, Se, Pd, Pt, Bi, Ti, Pb and 

Ag bind sulphur donors such as sulphur and nitrogen; other metals such as Cd, Sn, Pb, Ti, Mn, Fe, 
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V, Co, Zn, Ni, Cr, In, Ga, Sb, and As are classified as borderline and may bind both oxygen and 

sulphur donors (Nieboer and Richardson, 1980). 

Polycyclic aromatic hydrocarbons (PAHs). PAHs are composed of hydrogen and carbon 

arranged in the form of two or more fused benzene rings (in linear, angular, or cluster 

arrangements) that may or may not have substituted groups attached (Sims and Overcash, 1983; 

Webster et al., 2010). These can be naturally occurring, but their presence in the marine 

environment is mainly due to anthropogenic activities; especially those related to the combustion 

of any kind of organic matter and to the transport and use of fossil fuels (Galgani et al., 2011; 

Soclo et al., 2000). PAHs arrive at marine and coastal ecosystem mainly through long range 

atmospheric transport and waterborne inputs (OSPAR Commission, 2009a). As a consequence of 

their hydrophobic nature, PAHs in aquatic environments rapidly tend to become associated with 

sediments, which represent the most important reservoir of PAHs in the marine environment. The 

background levels of PAHs in the marine environment are also present as a result of  biosynthesis 

and natural oil seeps (Cortazar et al., 2008; OSPAR Commission, 2000a). 

Most PAHs are toxic and persistent and may be metabolised or bioaccumulated, the latter 

especially in marine invertebrates such as mussels; and some of them such as naphthalene, 

benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene and 

dibenzo[a,h]anthracene have a recognised mutagenic and carcinogenic potential (Eisler, 1987; 

IARC, 1989; Rocher et al., 2006; OSPAR Commission, 2009a). Physical and chemical 

characteristics of PAHs generally vary with molecular weight. For instance, solubility in water 

varies from 0.3 ng/l for low molecular weight PAHs (two and three ring compounds) to <0.001 

ng/l for the high molecular weight PAHs (five or more ring compounds). As a general rule, high 

molecular weight PAHs exhibit low aqueous solubility and high melting point, boiling point, and 

the logKow (octanol/water partition coefficient), which reveals a high fat solubility and a low 

resistance to redox reactions and vapour pressure (Eisler, 1987; Marigómez et al., 2013a; OSPAR 

Commission, 2000b). Consequently, depending on their molecular weight, the PAHs  present 

different behaviour and distribution in the environment and different toxicity on marine organisms 

(Bustamante et al., 2010; Orbea and Cajaraville, 2006).  

Persistent organic pollutants (POPs). POPs include polychlorinated biphenyls (PCBs), 

organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs), which are 

anthropogenic synthetic compounds that have been used extensively in agriculture and industry in 
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the past (OSPAR Commission, 2009a; Sturludottir et al., 2013). Their high chemical stability, 

lipophilicity, and persistence, make these chemicals tend to bioconcentrate and biomagnify in the 

food chains and persist in the environment for many years, representing a definite health hazard 

for both marine organisms and humans (Naso et al., 2005; Perugini et al., 2004). POPs can induce 

a series adverse effects at different biological complexity levels in marine organisms; these include 

oxidative stress, DNA damage, membrane destabilisation, suppressed filtration rate, and 

reproductive and growth impairment (Islam and Tanaka, 2004; Höher et al., 2012; Bizarro et al., 

2014; Ortiz-Zarragoitia et al., 2014; Valencia et al., 2017). The major route of POPs intake for 

small organisms at lower trophic levels (e.g., plankton, bivalves and crustaceans) is the direct 

uptake from water or sediments by passive diffusion through body surfaces; which is positively 

correlated with the logKow of the chemicals and the amounts of lipids within the organisms (Gray, 

2002; MacKay and Fraser, 2000). As the body mass and the trophic level in the food chain of 

marine organisms increase, the biomagnification process plays an increasing role in the 

accumulation of organic pollutants, especially for the most hydrophobic ones (Binelli and Provini, 

2003; Loizeau et al., 2001). Elimination rates for lipophilic contaminants generally decrease with 

increasing logKow (Gray, 2002). Passive diffusion also represents the main mechanism for the 

elimination of these chemicals. Interestingly, bivalves show a very limited capacity to metabolise 

PCBs through the cytochrome P450 system (Zanette et al., 2013), and hence the concentrations of 

each of the PCB congeners, as well as the total congener pattern, are scarcely modified by 

biotransformation. For these reasons, the levels of organochlorines and the accumulation profile 

of  PCBs detected in mussels reflect the state of pollution of the coastal waters (Naso et al., 2005).  

 Special interest is increasing in PBDEs as they are widely used as brominated flame 

retardants in many domestic and industrial products (television sets, computers, radios, textiles, 

new synthetic building materials, and automobiles) and data on their biological effects are lacking 

or scarce (Darnerud et al., 2001; OSPAR commission 2009b; Llorca et al., 2016). PBDEs are 

persistent man-made aromatic chemicals composed of two phenyl rings linked by an oxygen 

bridge (ether linkage). Bromine atoms can replace up to ten hydrogen atoms on the phenyl rings. 

Theoretically, 209 unique PBDE structures (congeners) are possible and are classified into 10 

congener groups (mono- to decabromodiphenyl ethers). Congeners with the same number of 

bromine atoms are referred to as a homologue, and thus, there are ten homologues ranging from 

mono- to decaBDE. The chemical structure of PBDEs is similar to that of PCBs, being referred to 

as the new PCBs (Darnerud et al., 2001; Kimbrough et al., 2009). Commercial PBDEs are quite 
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resistant to physical, chemical, and biological degradation. The boiling point of PBDEs is between 

310 and 425°C and their vapour pressure is low at room temperature. PBDEs are lipophilic, and 

their solubility in water is low, especially for the higher brominated compounds (Darnerud et al., 

2001; Kimbrough et al., 2009). Two PBDE transformation pathways are found in the environment: 

incineration and photodegradation, both resulting in formation of PBDDs and PBDFs (Thomas et 

al., 1987; Dumler et al., 1989); which are structurally similar to the corresponding chlorinated 

compounds, more toxic and very persistent in the environment (Watanabe and Satsukawa, 1987; 

Öberg and Bergström, 1990). Toxicological studies are not well documented (OSPAR 

commission, 2009b). Available data in human suggest that the acute toxicity of PBDEs is low 

(Darnerud et al., 2001). In Latin America, PBDE concentrations in the range of 86 ng/g lipid wt 

have been reported in coastal molluscs such as clams and razor clams (Barón et al., 2013; Pozo et 

al., 2015; Llorca et al., 2016) 

2.2. Pollution monitoring and assessment  

"Monitoring" is a systematic and orderly gathering of data to ensure that previously 

established quality control conditions are being met. Monitoring can be regarded as a series of 

observations in time, carried out to show the extent of compliance with a set of environmental 

objectives. To be effective, monitoring needs to be carried out at the appropriate time and space 

scales; for which a range of strategies need to be adopted making use of a variety of monitoring 

tools. Thus, the goal of environmental biomonitoring is to provide an early warning that 

unacceptable levels of environmental stress have occurred (Cairns, 2013).  

Marine organisms have been commonly used as core tools in biomonitoring programs 

(Shugart et al., 1992; George et al., 2013; Brenner et al., 2014; Melwani et al., 2014), referred to 

as  sentinel species (Basu et al., 2007; George et al., 2013; Viarengo et al., 2007), bioindicator 

(Corsi et al., 2002; Fattorini et al., 2008; Storelli and Marcotrigiano, 2005; Zhou et al., 2008), 

biomonitors (Conti et al., 2012; Luoma and Rainbow, 2005), or bioaccumulators (Beeby, 2001; 

Conti et al., 2006). Amongst them, due to their widespread geographic distribution, reasonable 

size and availability throughout the year, bivalves (mussels, oysters, clams and cockles) have been 

used most commonly (Farrington and Tripp, 1995; Cajaraville et al., 2000; Zorita et al., 2007; 

ICES, 2012; Garmendia et al., 2011a, b; George et al., 2013; Marigómez et al., 2013b; Zuykov et 

al., 2013). When used to quantify chemical bioavailability they are designated as bioindicators or 
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biomonitors, whilst when used in biological effect monitoring programs to assess ecosystem and 

environmental integrity they are referred to as sentinel organisms (Morgano and Bebiano, 2005).  

3.  Marine ecosystem health and environmental 
stressors 

3.1. Healthy vs stressed ecosystems 

An "ecosystem" may be defined as any unit that includes all of the organisms in a given 

area interacting with the physical environment so that a flow of energy leads to a clearly defined 

trophic structure, biotic diversity, and material cycles within the system (Odum, 1963). 

Ecosystems are complex entities that change on daily and seasonal bases as well as in the long-

term due to natural environmental variations and in response to stressors such as global climate 

change and anthropogenic contaminants (Denslow et al., 2007).  

The concept of ecosystem health can be used to generate holistic methodologies for the 

monitoring and management of marine ecosystems, but it is itself a subject of debate (Tett et al., 

2013). An ecosystem is healthy and free from “distress syndrome” if it is stable, sustainable and 

resilient to stress (Costanza et al., 1992; Costanza, 2012). An excellent review on marine 

ecosystem health has been published as a position paper by Tett et al., (2013). According to these 

authors, a "good health for marine ecosystems" can be understood as the condition of a system that 

is self-maintaining, vigorous, resilient to externally imposed pressures, and able to sustain 

services to humans. It contains healthy organisms and populations, and adequate functional 

diversity and functional response diversity. All expected trophic levels are present and well 

interconnected, and there is good spatial connectivity amongst subsystems. Overall, the various 

levels of biological organisation (cell, tissue, organism, population, community and ecosystem) 

can be regarded as healthy or unhealthy (Elliott, 2011). Thus, ecosystem health upends on (a) the 

physiological health of the constituent organisms; (b) the characteristic properties and interactions 

of the species present; and (c) the emergent properties of the system comprising the biota and their 

environment (Tett et al., 2013). Healthy ecosystems contain organisms and populations that are 

free of stress-induced pathologies. Interestingly, at the level of organism, the meaning of ‘health’ 

seems unambiguous and identical with that of human physical well-being whilst at the next levels 

the argument becomes more complex; for instance, "community health" can be described as that 
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of an assemblage of organisms that can continue to function in terms of inter-species relationships, 

and "ecosystem health" as providing protection against ‘ecosystem pathologies’ (Elliott, 2011).  

"Environmental stress" is any action, agent, or condition that impairs the structure or 

function of a biological system (Cairns, 2013). However, the environmental stress can only be 

defined in reference to its interaction with some biological system (environmental stress receptor). 

Moreover, there must be an adverse response; say, a particular structure or function of the receptor 

is changed by exposure to the environmental stress towards the detriment of that system. However, 

if the survival of that biological system (or another) is not threatened by the change, then there is 

no environmental stress (Cairns, 2013). Yet, environmental stress appears to play a substantial role 

in the evolution of life (Fink, 2009; Steinberg, 2012). Environmental stress can be either natural 

or anthropogenic. Natural stressors, such as most hurricanes, droughts, floods, and fires are a 

periodic feature of life on Earth; in contrast, anthropogenic stressors such as the production and 

release of new chemical compounds and large-scale land-use changes can be eventual, periodic or 

chronic (Evans and Cohen, 1987; Cairns, 2013). Both natural and anthropogenic stressors can be 

characterised on the basis of their spatial distribution, temporal distribution, intensity and novelty; 

implying unequal sizes of effects upon species responses, species diversity, as well as ecosystem 

functioning and recovery (Kelly and Harwell, 1989; Segner et al., 2014). These differences 

between stressors in terms of intensity, frequency, temporal, and spatial scales (Fig. 3) is one of 

the complicating factors in the assessment of the combined effects of stressors in multiple stress 

scenarios naturally occurring (Segner et al., 2014). Many stressors such as increasing temperature, 

ocean acidification, hypoxia, increasing eutrophication, overfishing, diseases and pollution co-

occur in time and space, resulting in almost all marine organisms and ecosystems becoming subject 

to the impacts of multiple stressors (Mackenzie and Schiedek, 2007; Schiedek et al., 2007; 

Wilhelmsson et al., 2013). 

To diagnostic and predict multiple stressor impacts, assessment strategies should focus on 

properties of the biological receptors rather than on stressor properties. This change of paradigm 

is required because (a) multiple stressors affect multiple biological targets at multiple 

organizational levels, (b) biological receptors differ in their sensitivities, vulnerabilities, and 

response dynamics to the individual stressors, and (c) biological receptors function as networks, 

so that actions of stressors at disparate sites within the network can lead via indirect or cascading 

effects, to unexpected outcomes (Segner et al., 2014). In addition for the potential effect of these 
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multiple stress sources on marine ecosystems will be further exacerbated in the context of global 

environment and climate change (Fig. 4; Steffen, 2006; Hoegh-Guldberg and Bruno, 2010; IPCC, 

2013).  

 

 

 

 

 

 

3.2. Ecosystem health assessment 

Ecosystem health assessment is one of the hotspots in the fields of ecology and ecosystem 

management (Peng et al., 2007); this integrates environmental conditions with the impact of 

anthropogenic activities in order to give information for a sustainable use and management of 

natural resources (Burkhad et al., 2008). The key objectives in the assessment of marine ecosystem 

health are to provide information necessary to ensure maintenance of biodiversity and the integrity 

of marine communities, to limit human influences on living resources, to protect critical habitats 

and to safeguard human health (Marigomez et al., 2013b). In Canada, the Marine Environmental 

Quality (MEQ) program is charged with the development of methods for marine quality 

assessment, which are based on the concept of ecosystem health (Mark et al., 2003). In a European 

context, a condition of good health in estuarine and coastal marine ecosystems is implied by the 

‘Good Ecological Status’ of the WFD and the ‘Good Environmental Status’ of the MSFD (Table 

2; Tett et al., 2013).  

 

 

 

 

Fig. 3. Chemical, biological, and 
physical stressors differ in their 
inherent properties which are 
relevant for the biological 
receptors. The intensity and 
frequency of each type of stressors 
influence the reversibility or 
irreversibility of their effects 
(Segner et al., 2014). 
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Table 2. Components of (good) ecosystem health, according to the empirical approach, and as 
interpreted by EU Directives. Column 3 gives corresponding specifications from  Annex V of the EU 
Water Framework Directive (WFD) for ‘high quality status’ (which we  equate with good health) in 
‘transitional’ and ‘coastal’ waters. Column 4 refers to the relevant ‘qualitative descriptors for determining 
good environmental status’ in Annex I of the Marine Strategy Framework Directive (MSFD), which are 
expanded by COM (2010) (after Tett et al., 2013). 

1. Generic component of 
ecosystem health 

2. Ecological 
norm 

3. WFD ‘high quality 
status’ 

4. MSFD ‘qualitative 
descriptors’ 

Autochthonous primary 
photosynthetic production plus  
import of organic matter is 
roughly in balance with  
consumption, so that there is no 
large excess of respiration that 
might lead to de- oxygenation 
nor substantial export of 
unconsumed material 

Life-form of primary 
producer is typical of 
ecohydrodynamic type 
and production is 
within characteristic 
range for undisturbed 
example of this type 

• Phytoplankton biomass to be 
consistent with the type 
specific physico-chemical 
condition. 
• Macro-algal cover, and 

angiosperm abundance to be 
consistent with undisturbed 
conditions.  

• Oxygen balance... remain[s] 
within the range ... normally 
associated with undisturbed 
conditions. 

• Human-induced 
eutrophication is minimised, 
especially adverse effects 
thereof, such as losses in 
biodiversity, ecosystem 
degradation, harmful algae 
blooms and oxygen deficiency 
in bottom waters. 

Nutrient supply, cycling rates 
and elemental ratios are  
adequate to support 
community functioning and 
structure; communities make 
efficient use of these 
resources 

Nutrient seasonal 
cycles, amounts, and 
elemental ratios are 
similar to those under 
undisturbed 
conditions 

• Nutrient concentrations 
remain within the range 
normally associated with 
undisturbed conditions. 

Not explicitly mentioned 

Sufficient biodiversity to fulfil all 
the  necessary bio-geochemical 
roles,  to support species at 
higher trophic levels, and to 
provide a reserve in case of 
loss of species; keystone 
species flourishing where 
essential for community 
functioning; there is a mixture 
of r- and k-adapted species, and 
a mixture of reproductive and 
young individuals within 
populations 

All aspects of diversity 
are  appropriate for 
undisturbed example 
of ecosystem type as 
determined by climate 
and local  (eco) 
hydrodynamic 
conditions 

• The composition and 
abundance of 
phytoplanktonic taxa are 
consistent with undisturbed 
conditions. 

• All disturbance sensitive 
macroalgal and angiosperm 
taxa associated with 
undisturbed conditions are 
present.  

• The level of diversity and 
abundance of invertebrate 
taxa is within the range 
normally associated with 
undisturbed conditions. 

• Biological diversity is 
maintained. The quality and 
occurrence of habitats and 
the distribution and 
abundance of species are in 
line with prevailing 
physiographic, geographic and 
climatic conditions.  

• Non-indigenous species 
introduced by human 
activities are at levels that do 
not adversely alter the 
ecosystems. 

Community structure  includes 
multiple trophic levels and a 
variety of trophic links  
between levels; in cases where 
autogenic or responsive 
successions are important, 
then either a sub- stantial 
proportion of the  eco- system is 
in the  mature state, or there 
are  no impediments to 
reaching such  a state 

Structure is that 
characteristic of this 
ecosystem type under 
undisturbed 
conditions 

 (Not explicitly dealt with  by 
this Directive) 

• All elements of the  marine food 
webs, to the  extent that they 
are  known, occur  at normal 
abundance and diversity and 
levels capable of ensuring the 
long-term abundance of the 
species and the  retention of 
their full reproductive 
capacity. 

Individual organisms are 
healthy and reproductively fit, 
not showing widespread 
pathologies, nor substantially 
contaminated with  pollutants, 
nor exhibiting reduced 
resistance to disease or stress 
or reduced ability to detoxify 

Body burden of 
contaminants below 
defined threshold; no 
substantial differences 
in performance com- 
pared with  individuals 
at unpolluted station 

• Pollutant concentrations 
remain within the range 
normally associated with 
undisturbed conditions. 

• Concentrations of 
contaminants are at levels not 
giving rise to pollution 
effects. 
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Fig. 4 Overview of climate change impacts on ecosystem and biota, and how they interact with 
contaminants, and their fate and effects (Schiedek et al., 2007). 

Another approach is the so-called empirical ecosystem health, which sees health not as a 

single property of an ecosystem, but as an aggregate of contributions from organisms, species and 

processes within a defined area (Tett et al., 2013). At the level of communities and ecosystems, 

monitoring allows ‘detection of things going wrong’ against a background of system variability 

(Elliott, 2011); however, early signals of ecosystem health disturbance can be used preventively 

anticipating the occurrence of such undesired wrong events, as below discussed (Marigomez et al., 

2013b).  

To evaluate the "empirical health status" (say, the aggregated health status; or simply the 

general status) of marine ecosystems a science-based and integrated Ecosystem Approach1 is 

                                                           
1 Ecosystem Approach: The Ecosystem Approach [defined in CBD (2000)] is a management and resource planning 
procedure that integrates the management of human activities and their institutions with the knowledge of the 
functioning of ecosystems. In the management of marine ecosystems and resources, it requires to “identify and take 
action on influences that are critical to the health of marine ecosystems, thereby achieving sustainable use of ecosystem 
goods and services and maintenance of ecosystem integrity” (cf., Farmer et al., 2012, for a review of the concept of 
ecosystem approach in marine management). The Ecosystem Approach can be defined as the ability to fulfil the major 
aim of protecting and maintaining the natural structure and functioning while at the same time ensuring the creation of 
ecosystem services from which societal benefits can be obtained (Elliott, 2011). 
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highly valuable (Burkhad et al., 2008; Borja et al., 2016). The environmental status assessment is 

an important component of the integrated ecosystem approach for marine management; this 

assessment describes the health of marine ecosystems in an integrative way, and hence it requires 

that a considerable amount of data are available (Borja and Elliott, 2013; Borja et al., 2013; 2016). 

The evaluation of the "empirical health status" can be achieved by different methods (Borja et al., 

2016): e.g., the HELCOM HOLAS Tool; the Ocean Health Index; and the MARMONI Tool. The 

HELCOM HOLAS Tool for the Assessment of ecosystem health of the Baltic Sea (Baltic Marine 

Environment Protection Commission-Helsinki Commission; Baltic Sea Action Plan; HELCOM, 

2007) is based on the Ecosystem Approach for establishing a region-wide baseline and an 

indicator-based assessment of ecosystem health; the assessment main endpoints include 

eutrophication, biodiversity and chemical status (HELCOM, 2009a; 2009b; 2010b; Andersen et 

al., 2010; 2011; 2014; 2016). The MARMONI Tool for MSFD Marine Biodiversity Assessment 

(www.sea.ee/marmoni/) uses various indicators for the assessment area with several options for 

GEnS determination (Auninš and Martin, 2015). A global scale initiative in the field of evaluation 

of the "empirical health status" of marine systems is the Ocean Health Index (Halpern et al., 2008; 

2012); this includes not only the negative impacts exerted on the oceans but also captures the 

tangible and less-tangible benefits derived from the oceans. The OHI framework scores a suite of 

benefits (“goals”) that are delivered to people by assessing the current status and likely future state 

(including pressures and resilience measures) of each goal for each region that together comprise 

the whole assessment area (Fig. 5). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The Ocean 
Health Index is a global 
scale initiative in the 
field of evaluation of the 
l health status of marine 
systems (Halpern et al., 
2008; 2012). 
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The OHI is a way to measure how healthy oceans are. Understanding the state of our oceans 

is a first step towards ensuring they can continue providing humans benefits now and in the future. 

Determining how healthy oceans are and managing for the future requires an assessment approach 

that evaluates current conditions comprehensively from social, economic, and environmental 

perspectives. The OHI is an assessment framework that measures progress towards a suite of key 

societal ‘goals’ representing the benefits and services people expect healthy oceans to provide. By 

analyzing these goals together and scoring them from 0-100, OHI assessments provide an 

integrated picture of the state of the ecosystem and can be communicated to a wide range of 

audiences. Originally developed by an interdisciplinary team of scientists (Halpern et al., 2012), 

the OHI framework is standardized yet tailorable to different contexts and spatial scales. This is 

possible because the core framework of how goals are scored does not change while the goal 

models themselves are developed with local information and local decisions specific to the context. 

Changes in community structure are often used to indicate ecosystem health status but, 

regrettably, these responses are manifestations of damage rather than prognostic indices (Knap et 

al., 2002). Changes at molecular, cellular and tissue-level levels, which underlie effects at complex 

biological levels and for which causality can be established (Knap et al., 2002), may provide early 

warning of ecosystem health deterioration (Beliaeff and Burgeot, 2002). "Biomarkers" are those 

responses at simple levels of biological complexity that indicate the presence of pollutants 

(exposure biomarkers) or the magnitude of the biological response to pollutant exposure (effect 

biomarkers; McCarthy and Shugart, 1990). Effect biomarkers give a general picture of the health 

status of the environment whereas exposure biomarkers have specificity of reaction (McCarthy 

and Shugart, 1990). Recently, biomarkers have been integrated in ecosystem health indices (Table 

3) that provide comprehensive information about the biological effects of pollution in marine 

organisms and may therefore serve as useful tools for environmental managers (Broeg and 

Lehtonen, 2006).  

The bioeffects assessment index (BAI; Broeg et al., 2005), was designed for the assessment 

of multifactorial contamination in coastal areas using fishes as sentinels (Broeg et al., 2005). BAI 

has been applied for long-term studies of the biological effects of pollution in Europe using fish 

and mussels as sentinels (Broeg et al., 2005; Broeg and Lehtonen, 2006; Marigómez et al., 

2013ab). The Health Status Index (HSI) is computed by an expert system designed and developed 

to evaluate and integrate biomarkers recorded at different levels of biological organisation in 



 
 
Introduction  

22 
 
 

mussels (Viarengo et al., 2000; Dondero et al., 2006; Dagnino et al., 2007). The Integrated 

Biomarker Response (IBR; Beliaeff and Burgeot, 2002) has been applied in sentinel fish and 

mussels from the Baltic Sea, the Mediterranean Sea, the Bay of Biscay (e.g. example in Fig. 6) 

and the North Sea (Beliaeff and Burgeot, 2002; Bocquene et al., 2004; Broeg and Lehtonen, 2006; 

Damiens et al., 2007; Brooks et al., 2011; Marigómez et al., 2013a). The Ecological Health 

Condition Chart (EHCC) was designed to integrate biomarker and chemical data in the Urdaibai 

Reserve of the Biosphere and was recently adapted to sentinel mussels to monitor the biological 

consequences of the Prestige oil spill (POS; Marigómez et al., 2013b). The Integrative Biomarker 

Index (IBI) was also recently developed in order to integrate biomarker data recorded within the 

framework of the Mussel Watch monitoring program carried out after the POS in Galicia and the 

Bay of Biscay (Marigómez et al., 2013b). IBI was based on the calculation of five specific indices 

of deleterious effects at different levels of biological complexity (Molecular/Metabolic Response 

Index; Cellular Response Index; Tissue Response Index; Systemic Response Index; and  Disease 

Response Index) and existing reference and critical values are taken into consideration 

(Marigomez et al., 2013b). Overall, the integrative biomarker indices provide comparable 

information (Broeg and Lehtonen, 2006; Dagnino et al., 2007; Marigómez et al., 2013ab).  

The selection of biomarkers is a crucial issue (Marigómez et al., 2013b). For instance, BAI 

and IBI are only based on biomarkers of general stress while HSI, IBR and EHCC can be 

constructed using both effect and exposure biomarkers. Besides, whereas BAI, HSI, IBI and 

EHCC require a more or less extensive knowledge of mechanisms of the biological response and 

the existence of reference/critical values, IBR is a simple mathematical transformation which does 

not need such knowledge. On the other hand, EHCC allows describing each scenario using pure 

biomarkers without any kind of transformation. Finally, whereas BAI and HSI provide a basic 

indication of the ecosystem health status, IBR, IBI and EHCC provide complementary information 

concerning the mechanisms of biological response to environmental insult. The selection of the 

indices and the biomarkers used for their calculation depends on (a) the researchers' expertise and 

technical capability as regards biomarkers; (b) the existence of reference/critical values or previous 

studies in the impacted area; and (c) the available resources.  
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Fig. 6 Top: Star plots representing the five biomarkers (AOXeff, LP, VvBAS, CIIR and CIPI) used to compute 
the IBR/n index that were measured in localities studied during the biological Mussel Watch programme 
carried out to monitor ecosystem health after POS in Galicia and Biscay Bay (2003–2006). Each of the five 
axes of the star plots represents the relative degree of response of one biomarker. Colour lines represent 
different samplings (legend). Bottom: IBR/n index (based on the same 5 biomarkers) in mussels M. 
galloprovincialis from Galicia (A) and the Bay of Biscay (B) after POS (Marigómez et al., 2013b) 
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Table 3. Quantitative biomarker indices (after Schettino et al., 2012; and Marigómez et al., 2013b). 

Index Reference Selected Biomarkers Species 

Health 
Assessment 
Index (HAI) 

Adams et al. 
(1993) Histopathology, hematocrit, plasma proteins, parasitisation. Fish 

Bioeffect 
Assessment 
Index (BAI) 

Broeg et al. 
(2005) Broeg 
and Lehtonen 
(2006) 

LMS, INLA, MMCs, AcP, MFO, parasitisation. Fish 
Mussel 

Integrated 
Biomarker 
Response (IBR) 

Beliaeff and 
Burgeot (2002) AChE, GST, CAT, MT, LMS, MN, INLA.  Fish 

Mussel 

Ecosystem 
health 
condition chart 
(EHCC) 

RBU-Rep (1994) 
Díez (1996) 

AOXeff, AOXexp, LMS, lysosomal enlargement, cell type 
replacement, MET, inflammatory responses, parasitisation. Mussel 

Health Status 
Index (HSI) 
Expert System 

Dagnino et al. 
(2007) 

LMS, LPF, INLA, CAT, Ca-ATPase, MFO, SOD, AChE,  
B[a]P-MO, MT, MN, SoS, peroxisome proliferation. Mussel 

Biomarker 
Response Index 
(BRI) 

Hagger et al. 
(2008) 

LMS, AChE, MT, MN, antioxidant status, cell viability, heart 
rate, feeding rate, immune function. Mussel 

Integrative 
Biomarker 
Index (IBI) 

Marigomez et 
al. (2013a) 

AOXeff, LMS, lysosomal enlargement, cell type replacement, 
inflammatory responses, parasitisation. Mussel 

4.  Biological effects assessment and monitoring 

Conventional monitoring studies were essentially focused upon chemical data, whilst the 

biological effects were often used just as a complement. During the last years, however, there has 

been an increasing trend to focus upon the biological effects with chemical data accompanying. 

Thus, the OSPAR Co-ordinated Environmental Monitoring Programme CEMP (OSPAR 

Commission, 2013) focuses upon the concentrations of contaminants in sediment and biota, and 

upon their biological effects. This shift has been due to several reasons:  

a) measured contaminants are limited to some few 30 compounds whilst 1000's are released 

by human activities into the environment, including new emerging pollutants for 

which chemical analytical methods are not available;  

b) the concentrations of contaminants give no or limited information on their consequences 

for the ecosystem health status;  

c) biological effects may occur below the detection limits of chemistry;  

d) measurement of contaminants in sediment, water and biota can be transient and does not 

necessarily reveal a biologically effective exposure;  
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e) organisms' response will give indication of contaminant exposure and bioavailability;  

f) unlike chemical data, the biological responses integrate the effects of mixtures, time-trends 

and seasonal variations and the influence of confounding factors (temperature, 

salinity); and  

g) an increasing variety of cost-effective and reliable tools is available to detect alterations 

in the health status of marine organisms.  

Multidisciplinary approaches are required in pollution biomonitoring programme to assess 

the chemical, biological and toxicological impact of complex mixtures of stressors in different 

environmental matrices, i.e., water, sediments and biota (Viarengo et al., 2007). The OSPAR 

guidelines for contaminant specific or general monitoring (JAMP 1998a) contain advice on the 

appropriate combinations of chemical and biological effects measurements in integrated 

monitoring programmes of using fish and shellfish (mussels and oysters) as sentinel organisms. 

These sentinel species can provide integrated and relevant information on the types, amounts, 

availability, and effects of environmental contaminants (Basu et al., 2007). For an organism to be 

considered a key sentinel species, it must satisfy certain requirements: (a) widespread distribution, 

(b) high trophic status, (c) ability to bioaccumulate pollutants, (d) suitability to be maintained and 

studied in captivity, (e) easy to be captured in sufficient numbers, (f) restricted home range, (g) 

well known biology, and (h) sensitivity to pollutants (Basu et al., 2007; Beeby, 2001; Fox, 2001; 

Masson et al., 2010). However, in sentinel species assimilation and excretion rates of pollutants 

and their biological effects are subjected to biological determinants (e.g.: age/size, season, gender, 

physiological and nutritional status, and population/genetic traits) as well as to the duration and/or 

level of exposure (Beeby, 2001; Phillips and Rainbow, 1994; Phillips and Segar, 1986).  

4.1. Biomarkers in biological effects assessment  

The OSPAR guidelines for biological effects techniques is since its commencements 

reviewed based on ICES advice (i.e., Fig. 7; Table 4; ICES, 2011; 2012; 2013; OSPAR 

Commission, 2013). These documents standardise reference methods for biomarkers and include 

assessment criteria/levels for various techniques (e.g., fish disease index; OSPAR Commission, 

2013). Some biomarkers (PAH metabolites in bile, and Cyt P4501A activity or metallothionein 

levels) indicate contaminant linked sublethal responses but cannot with current knowledge be used 

to predict adverse effects on individual health (Law et al., 2010). Other biomarkers (lysosomal 
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membrane stability, oxidative stress, DNA damage and histopathology) constitute sublethal 

responses that are not necessarily linked to the action of pollutants; adverse health effects, 

however, can be predicted because the biological mechanisms underneath are known (Table 2).  

 

 

 

 

 

 

 

 

 

 

 
Fig.7. Overview of methods to be included in an integrated biomonitoring programme for selected 

bivalve species: solid lines - core methods; broken lines - additional methods (ICES, 2011). 
 

On the other hand, biological effects monitoring based on the biomarker approach is not 

commonly carried out in developing countries, as the monitoring capacities and facilities can be 

far away from those required to conduct sophisticated and most-advanced biomarker-based 

monitoring using fish and molluscs as sentinels (Van Lavieren et al., 2011). Nevertheless, the 

application of biomarkers is not necessarily inhibited by monetary and logistic constraints because 

effortless biomarkers can provide basic knowledge on animal health and water quality and are 

technically achievable everywhere; the toolbox may include histopathological analyses and 

responses easy to measure at population and individual level (Blaise et al., 2016). For instance, 

Blaise et al., (2016) proposed three simple physiological biomarkers, quantifiable in bivalves (SoS 

response, condition index and growth index), which are reliable indicators of ecosystem health 

disturbance.  
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4.2. Stress-on-Stress (SoS) response  

It well known that contaminant exposure may alter the ability of organisms to survive 

environmental stress. (Viarengo et al., 1995; Pampanin et al., 2005; Nesto et al., 2007; Davies and 

Vethaak, 2012). The reduction of survival in air, or stress on stress (SoS), is a simple, low cost, 

organism level response and can show pollutant induced alterations in an organism’s physiology 

that render the animal more sensitive to further environmental changes (Hellou and Law, 2003; 

Davies and Vethaak, 2012;).  

SOS is defined as a test and it measures how long mussels at different conditions survive 

when are removed from water and exposed to air (Eertman et al., 1993; Smaal et al., 1991; 

Viarengo et al., 1995). According to Viarengo et al., (1995) mortality in air would presumably 

occur more rapidly in pollutant pre-stressed animals than in control animals.  

This method has been applied routinely to pollutants exposed mussels in laboratory studies 

(Eertman et al., 1993; Viarengo et al., 1995) and mussels collected in national monitoring from 

polluted environments and along pollution gradients (Hellou and Law, 2003; Davies and Vethaak, 

2012) . Showing their applicability of anoxic/aerial survival as an early warning indicator of 

contaminant induced stress. The effects of xenobiotics, including heavy metals, organometals, 

organics, and contaminated field sediments, on survival in air in invertebrates have been 

demonstrated (de Zwaan and Eertman, 1996). However, there are several research works in where 

this test did not demonstrate a strong correlation between stressed mussels and their survival to air  

(Eertman et al., 1996; Nicholson, 2003; Nesto et al., 2007).  

In general, several factors can be involved in the alteration of SoS; these can be abiotic such 

as temperature, humidity, intertidal and subtidal zone, acclimatization, seasonal variation and 

pollutants (Eertman et al., 1993; Sokolova et al., 2012) or biotic such as the body size, age, 

reproductive cycle, sexual maturity, sex, food availability and pathologies (Eertman et al., 1993; 

de Zwaan and Eertman, 1996; Hellou and Law, 2003; Sokolova et al., 2012). 
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4.3. Biometry and flesh condition 

The changes in normal condition patterns are generally regarded as useful measurements of 

the nutritive status of bivalves (Crosby and Gale, 1990). These condition indices may be used to 

describe physiological state of mollusc, a parameter of economic relevance reflecting the 

ecophysiological conditions and the health of animals (Orban et al., 2002; Strogyloudi et al., 2012).  

Biometrical parameters and Flesh Condition Index (FCI) are employed in the field of 

toxicology to monitoring the environmental stress of pollutants and disease in marine organism 

(Soto et al., 2000; Andral et al., 2004; Strogyloudi et al., 2012; Gomiero et al., 2015). The condition 

index also provides some clues as to the levels of chemical contamination, especially in the case 

of trace metals (Andral et al., 2004).  Mussels exposed to polluted areas spend part of their energy 

budget in detoxification processes to maintain homeostasis to the detriment of body growth and 

gonadal production (Gomiero et al., 2015).  Andral et al., (2004) proposed a linear model 

explaining the relationship of FCI and metal concentrations in mussel whole soft tissue: tissue 

concentrations are inversely proportional to the condition index (Ivanković et al., 2005; Gorbi et 

al., 2008) and the other hand for organic compounds, tissue concentration is proportional to the 

condition index although stations located in contaminated areas did not obey this rule due to their 

consistently higher results (Andral et al., 2004).  

The decrease of biometry and FCI values, also are correlated to bioavailability of nutrients, 

occurrence of phytoplankton blooms and seawater temperature which are known to influence, 

directly or indirectly, bivalves physiology (Acarli et al., 2011; Brenner et al., 2014). These 

alterations are most pronounced during or after periods of reproduction when energy reserves are 

exhausted, easily leading to misinterpretation of the biomarkers for nutritional status such as the 

condition index or glycogen.  

High concentrations of metabolic end products, such as lipofuscins and neutral lipids have 

been observed in the submerged mussels due the permanent feeding mode (leading to higher 

ingestion of food and associated chemical contaminants) (Brenner et al., 2014), but also when 

bivalves are exposed to pollutants (Kagley et al., 2003).  

Seasonal pattern of FCI and lipid content in mussels were observed by Strogyloudi et al., 

(2012): elevated values during the warm period of the year followed by an additional peak in 
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autumn to minimum levels in January and a subsequent gradual increase through spring, presenting 

their best physiological condition from April to July. 

4.4. Sex and reproduction 

The gonad development analysis of bivalves play an essential role in marine ecosystem 

health assessment which face to exposure to environmental stress (Ortiz-Zarragoitia et al., 2011; 

Garmendia et al., 2011a; Cuevas et al., 2015). The collection of these data provide additional 

information on the health and physiology of the mussel (Cajaraville et al., 2006; ICES, 2011). 

Reproductive condition parameters include reproductive markers such as adipogranular 

cells, gonadal apoptosis, atresia, hermaphroditism and intersex, it have shown the effect to 

exposure to organic contaminants and metal (Bignell et al., 2008, 2011; Ortiz-Zarragoitia and 

Cajaraville, 2010; Ortiz-Zarragoitia et al., 2011) . An increased levels of DNA damage has been 

detected in indigenous mussels after oil spills  and in mussels exposed to oil in laboratory 

experiments (Laffon et al., 2006). Disruption of gonad development at early stage may affect 

gamete quality, causing alteration as deformities and growth in bivalves, threatening the survival 

of future generations (Baussant et al., 2011).  According to Ortiz-Zarragoitia and Cajaraville, 

(2010) the oocyte atresia is more frequent within advanced maturation stages. However, high 

prevalence of oocyte atresia and necrosis in mussels were associated to pollutant exposure (Ortiz-

Zarragoitia and Cajaraville, 2010; Puy-Azurmendi et al., 2010).  

Some authors have found incidence of hermaphroditism in bivalves, which suggest 

associations with endocrine disruptors as organotins, estrogenic hormones, bisphenol, alkylphenol 

and phthalates from urban and industrial sources (Montenegro et al., 2010; Puy-Azurmendi et al., 

2010). So, one of the main drawbacks that face an environmental pollution biomonitoring is the 

presence of potential confounding factors that may lead to misinterpretation of the toxicological 

findings (Garmendia et al., 2010; Costa et al., 2013). Parasites burden (Cuevas et al., 2015) and 

temperature can alter the timing of reproduction as well as in reproductive success, recruitment 

and growth performance  (Pörtner, 2002; Suárez et al., 2005; Lemaire et al., 2006; Okaniwa et al., 

2010). Moreover, elevated temperatures can induce earlier start of spawning (Philippart et al., 

2003). Hence thermal stress has serious implications on the total reproductive effort and mortality 

of individuals (Fearman and Moltschaniwskyj, 2010; Múgica et al., 2015) altering the ‘good’ 

health status of bivalves and marine ecosystem. 
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4.5. Histopathology and tissue-level biomarkers 

Histopathology is essential in understanding the role of sublethal effects of environmental 

stressors at population level (Stentiford and Feist, 2005). Histopathology of digestive gland in 

bivalves provides valuable information concerning changes in cellular and sub-cellular structures 

of an organ or tissue much earlier than the external manifestations (Kim and Powell, 2006; Aarab 

et al., 2008; Kim et al., 2008; Bignell et al., 2011; Garmendia et al., 2011b).  

High prevalence of tubular dilation or atrophy, brown cell aggregates, lipid vacuoles in 

basophilic cells and eosinophilic bodies in the digestive cells has been related to the presence of 

PAHs compounds (Moore and Clarke, 1982; Aarab et al., 2008). Augmented incidence of 

granulocytomas and vacuolisation have been reported in the digestive gland of clams and mussels 

exposed to heavy metals, pesticides and PAHs (Wolfe, 1992, Wedderburn et al., 2000; Kim et al., 

2008; Khan et al., 2015).  

Inflammatory responses as hemocytes are responsible of immune system in molluscs their 

raised incidence represent a response to detoxification and removes xenobiotics from the 

hemolymph or tissues and thereby keeps the concentrations in the blood and tissues below toxic 

levels (Marigómez et al., 1990; Soto et al., 1996). Also hemocytic infiltration constitutes a repair 

process following tissue damage (DesVoigne and Sparks, 1968), also pathological effects may be 

responsible for this immune response (Couch, 1984; Lee et al., 2001). Severe inflammations 

accompanied by an increased prevalence of granulocytomas within the connective tissues were 

observed in mussels with infestation by Marteilia sp., Steinhausia mytilovum or digenean 

metacercariae (Bignell et al., 2008), provoking an extensive destruction of digestive diverticula 

structure (Villalba et al., 1997).  

Different kind of stressors, such as food availability, water temperature, salinity, tide ranges 

and pollutants can increase the susceptibility to parasites and diseases (Laird, 1961; Sabry et al., 

2011; Costa and Costa, 2012; Höher et al., 2012). It has been observed that a decrease in water 

quality can affect the immunological response in aquatic organisms thus making them more 

susceptible to parasitic infection (Svärdh and Johannesson, 2002; Bignell et al., 2008; Lynch et 

al., 2014).  
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5.  Caribbean mangrove-lined ecosystems 

5.1. The Caribbean Sea region 

The Caribbean Sea is a semi-enclosed basin of the western Atlantic Ocean, bounded by the 

coasts of Central and South America on two sides and by the Antilles island chain on the other 

two. The WCR has an area of about 2754000 km2 and over 13500 km of coastline, and is home to 

28 countries as well as 12 dependent territories (Table 4; Launche, 2008).  

Table 4. States and Dependent Territories of the Wider Caribbean Region (after Launche, 2008).  

States  Dependent Territories or Associated States 

 
Parties to the Cartagena Convention : 

 
Antigua and Barbuda  
Barbados  
Belize  
Colombia  
Costa Rica  
Cuba  
Dominica 
Dominican Republic  
France 
Grenada  
Guatemala  
Jamaica  
Mexico  
Netherlands  
Nicaragua  
Panama 
Saint Kitts and Nevis  
Saint Lucia 
Saint Vincent and the Grenadines  
Trinidad and Tobago 
United Kingdom 
United States of America  
Venezuela 
 

Out of the Cartagena Convention : 
 
Bahamas 
Guyana  
Haiti 
Honduras  
Suriname 
 

 

Overseas territories of the United Kingdom: 
 
Anguilla 
British Virgin Islands Cayman Islands 
Montserrat 
Turks and Caicos Islands 

 
Three French overseas regions (departments):  

 
Guadeloupe 
Martinique 
French Guiana (which includes 2 French overseas 
collectives—Saint Barthélemy and Saint Martin) 

 

Two self-governing units of The Netherlands: 
 
Aruba 
The Netherlands Antilles 

 
One organized unincorporated U.S. Territory: 

 
Virgin Islands 
 

 
One U.S. Territory with Commonwealth Status: 

 
Puerto Rico 
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The regional atmospheric seasonality is dominated by the position of the Inter-Tropical 

Convergence Zone (ITCZ) which controls wind and precipitation (Andrade, 2000; Poveda et al., 

2006; Torres and Tsimplis, 2012). The surface wind field in the Caribbean is dominated by the 

Northern Trade Winds. A permanent and intense westward wind jet, known as Caribbean Low 

Level Jet (CLLJ), has its core in the center of the basin (~15ºN, 75ºW) and exhibits large spatial 

and temporal variability (Wang and Lee, 2007; Amador, 2008). Precipitation in the Caribbean is 

seasonal with a rainy season (May–November) and a dry one (December–April). A diminution in 

rainfall (July–August) is found during the middle of the rainy season and described as the mid-

summer drought (Magaña et al., 1999). The midsummer drought modulates the precipitation over 

the entire Caribbean Sea with significant spatial variability in timing and strength, and has been 

attributed mainly to the intensification and expansion of the North Atlantic Subtropical High 

(Gamble and Curtis, 2008). Freshwater runoff is significant in the South Colombia Basin, where 

the two largest rivers which discharge directly into the Caribbean Sea have a mean annual water 

discharge of 7200±2000 m3/s (Magdalena River) and 2700±700 m3/s (Atrato River; Restrepo and 

Kjerfve, 2000a; 2000b). However, studies of freshwater budgets show water loss over the entire 

Caribbean basin caused by an excess of evaporation over precipitation (74 cm/year) not 

compensated by river discharge (Etter et al., 1987; Yoo and Carton, 1990). 

 

 

 

 

 

 

 

 

 

Fig. 8. Bathymetry, main currents, and ecosystems of the Caribbean Sea (Miloslavich et al., 2010). 
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The Caribbean Sea has an overall counterclockwise circulation (Fig. 8). The Caribbean 

Current enters the southeast corner of the basin through several passages of variable sill depth 

between the Lesser Antilles and, to a lesser extent, the Windward Passage, and slightly increases 

its velocity as it flows west-northwesterly into the Gulf of Mexico through the Yucatan Channel, 

where it forms the Gulf Stream (Gyory et al., 2008). Caribbean waters are mostly clear and warm 

(22–29 ºC), and the tidal range <0.4 m (Kinder et al., 1985). The water column is highly stratified 

in the upper 1200 m because of the sill depths of the Antilles Islands arc, which prevents the flow 

of deep water into the Caribbean Basin (Gordon, 1967).  

The most characteristic ecosystems present in this region are mangroves (~11560 km2), coral 

reefs (~26000 km2) and seagrass beds (~66000 km2; Fig. 8; Jackson, 1997; FAO, 2003; Burke and 

Maidens, 2004; Miloslavich et al., 2010). As discussed by Harborne et al., (2006) Caribbean coral 

reef habitats, seagrass beds and mangrove stands provide many important ecosystem goods and 

services such as coastal defence, sediment production, primary production, fisheries and the 

maintenance of high species diversity. Furthermore, all three systems often occur in close 

proximity and many physical and ecological processes transcend individual habitats. For example, 

estuarine mangroves trap riverine sediments that might otherwise discharge onto reefs and cause 

mortality through sedimentation. 

5.2. Environmental quality status from WCR 

In the Caribbean Sea and its watersheds (WCR), degradation of water and land resources is 

related to major declines in biodiversity, species extinction, mass mortality of organisms, and 

reduction of marine resource productivity (Rivera-Monroy et al. 2004). The WCR has fragile 

coastal ecosystems that are susceptible to environmental impacts, in part because of their 

oligotrophic conditions (Richards and Bohnsack 1990, Lapointe 1997) and their critical support of 

economic development. 

According to Ocean Health Index the WCR have an overall index score of 65 in a scale from 

0 to 1002 (OHI, 2015). Nicaragua showed the lowest overall score (47) and Aruba, Antigua and 

                                                           
2 - “100” means that the evaluated system has achieved its defined target (reference point), is sustainably delivering 

all of the specified benefits that it can; and appears likely to be able to continue doing so in the near Future. 
- Intermediate scores mean that the optimal benefit is not being obtained and/or is not being obtained in a sustainable 

way. 
- “0” means that global data were available, but the region either did not achieve any of the potential benefits or that 

the benefits it did obtain were not gained in a sustainable manner. 
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Barbuda the highest overall score (>80) in relation with the rest of localities from WCR (Table 5). 

Overall, more than 80% of countries from WCR are achieving optimal benefit from marine 

ecosystems and go on sustainable way (Table 5 and Fig. 9). Regarding the Clean Water goal 

(contamination by chemicals, eutrophication, human pathogens and trash) also a similar average 

score (64) was recorded at the WCR as a whole. Nevertheless, Guatemala, Haiti and Jamaica score 

for this goal was <50 whilst in the French Guiana it was >80 (Fig. 9). 

In both cases indicates that we should improve polices of use and management, reducing the 

inflow of pressures toward natural resources.  

Table 5. Global score of Ocean Health Index from Wider Caribbean Region calculated for 2016. 

Territories from WCR  Rank Overall 
score Territories from WCR Rank Overall 

score 
Anguilla 96 69 Guyana  155 63 

Antigua and Barbuda  18 81 Haiti 193 56 

Aruba 17 81 Honduras  147 65 

Bahamas 39 76 Islands Montserrat 54 73 

Barbados 198 56 Jamaica 188 58 

Belize 114 68 Mexico 112 68 

British Virgin Islands  83 70 Nicaragua 216 47 

Cayman Island 32 77 Panama 150 64 

Colombia 179 60 Puerto Rico and Virgin Islands 69 72 

Costa Rica 178 60 Saint Kitts and Nevis 140 66 

Cuba 161 62 Saint Lucia 182 60 

Dominica 206 52 
Saint Vincent and the 
Grenadines 

194 56 

Dominican Republic 79 70 Suriname 38 76 

French Guiana 76 71 Trinidad and Tobago 63 72 

Grenada 176 60 Turks and Caicos Islands 78 71 

Guadeloupe and Martinique 73 71 Venezuela 167 61 

Guatemala 173 61     

                                                           
- The higher the score, the closer a region is to obtaining the maximal sustainable benefits possible with the given 

reference points. 
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Focal sources of metal contamination in the WCR are mining, industrial processes (smelters, 

oil refineries, chemical industry, shipyards), untreated sewage sludge and diffuse sources such as 

metal piping, traffic and combustion by-products from coal-burning power stations; being Cd, Hg, 

and Pb being the metallic pollutants of major concern (UNEP, 2006). At regional level, PAHs, are 

the result of burning of waste, burning of vegetation for clearing land, and crude oil production 

and transportation (UNEP, 2002; Fernandez et al., 2007). In the case of POPs such as OCPs, PCBs 

and PBDEs, the improper use and/or disposal of agrochemicals and industrial chemicals, 

combustion processes and release of by-products contributes to environmentally relevant levels of 

POPs (UNEP, 2006). It known that the use of agricultural pesticides has greatly increased during 

the last 30 years and DDT residues have become ubiquitous and constitute de major threatened for 

the ecosystem from WCR (Rawlins et al., 1998; Fernandez et al., 2007). PCBs have been used 

extensively since the 1930s in the WCR (e.g. in electrical transformers). Correspondingly, they 

have been detected in water, sediment, seafood and biota samples (Fernandez et al., 2007), 

although data and monitoring capacity are limited at regional scale for these POPs. Certainly, 

PCBs and PBDEs are contaminants distinctive of urban and industrialised areas; however, they 

have been found at increasing levels in developing countries, as a result of poor waste management 

practices and improper burning (UNEP, 2006). Nevertheless, with the exception of some 

pesticides, the monitoring of most of them relies on occasional analyses for research purposes or 

for impact assessment e.g. after accidental spills (UNEP, 2004; GEF-REPCar, 2011). 

5.3. Mangrove ecosystems: concepts, services and threats 

Ecologically, "mangroves" are defined as an assemblage of tropical and semi-tropical trees 

and shrubs that inhabit the coastal intertidal zone (Duke, 1992). Mangroves are highly complex 

transitional coastal ecosystems that include 0.7% of world's tropical and subtropical forests and 

provide a unique ecosystem that represent complex food webs with a strong relationship with 

neighbouring habitats (Giri et al., 2011). A mangrove community is composed of plant species 

whose special adaptations allow them to survive the variable flooding and salinity stress conditions 

imposed by the coastal environment. From a total of approximately 20 plant families containing 

mangrove species worldwide, only two, Pellicieraceae and Avicenniaceae, are comprised 

exclusively of mangroves. In the family Rhizphoraceae, for example, only four of its sixteen 

genera live in mangrove ecosystems (Duke, 1992).  
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According to Twilley, (1998) there are two types of classification systems for the mangrove 

forest, geomorphological and ecological (Fig. 9). Coastal settings can be catalogued as river deltas, 

river-dominated estuaries, lagoons, and oceanic islands, with varying sources of sediments from 

terrigenous runoff to carbonate deposits. These geomorphologically distinct landforms have local 

variations in topography and hydrology that result in the evolution of distinct ecological types of 

mangroves referred to as riverine, fringe, or interior mangroves (Lugo and Snedaker, 1974). Fringe 

forest borders protected shorelines, canals, and lagoons, and is inundated by daily tides. A riverine 

forest flanks the estuarine reaches of a river channel and is periodically flooded by nutrient-rich 

fresh and brackish water. Drainage depressions in the interior of mangrove areas harbor basin 

forests, characterized by stagnant or slow-flowing water. Scrub (syn.; dwarf) forests grow in areas 

where hydrology is restricted, resulting in conditions of high evaporation, high salinity, or low 

nutrient status (Twilley et al., 1998, Twilley and Rivera-Monroy, 2005, Twilley and Day, 2012). 

Mangrove forests are transitional coastal ecosystems among land and marine ecosystems and 

provide a unique ecosystem that represents complex food webs with a strong relationship with 

neighbouring habitats (Bosire et al., 2008; Nagelkerken et al., 2008; Giri et al., 2011).  

 

 

 

 

 

 

 

 

 

 

Fig. 9. Hierarchical classification 
system to describe patterns of 
mangrove structure and function based 
on global, geomorphological (regional), 
and ecological (local) factors that 
control the concentration of nutrient 
resources and regulators in soil along 
gradients from fringe to more interior 
locations from shore (Twilley and Day, 
2012). 
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Mangrove-lined coastal systems are important because they are a natural resource for 

tourism, support fisheries (e.g., by providing fish nurseries), provide food supply, contribute to 

conservation of biological diversity, protect shoreline of storm, and purify wastes that enter coastal 

zones from land-based sources of pollution. Mangroves also act as bio-shields, important for 

protecting against coastal erosion (UNEP, 1994, Nagelkerken et al., 2008, Walter et al., 2008). 

Collectively, the ecosystem services provided by mangroves worldwide is estimated at 1.65 trillion 

dollars annually (Barner and Clevenger, 2014). These mangrove ecosystems and the services they 

provide are being severely threatened by anthropogenic changes.  

Mangrove ecosystems and the services they provide are being severely threatened by 

anthropogenic changes. Some of the anthropogenic threats to mangroves include extraction for 

uses as timber, coastal pollution, reclamation of land for human use, and the effects of climate 

change on these ecosystems. Deforestation due to reclamation of coastal land is one of most 

pressing threats to mangroves, and recently, this reclamation has been attributed to development 

associated with tourism (Ellison and Farnsworth, 1996).  In the last five decades, mangrove 

ecosystems worldwide have been severely impacted by a combination of natural and 

anthropogenic stressors (Lewis et al., 2011; Bayen, 2012). Trace metals, PAHs, PCBs, OCPs and 

other organic pollutants (anthropogenic origin) have been detected in mangrove ecosystems 

around the world (Bayen, 2012) 

 
Fig. 10. Conceptual framework principal impacting factors of climate change and how they are likely to 
negatively influence mangrove communities (Ward et al., 2016). 
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5.3.1. Threats for mangrove ecosystems in the WCR 

Mangrove-lined coastal systems, which are an important natural resource for tourism, 

fisheries and storm protection in the WCR, are vulnerable to land-based human activities (UNEP, 

1994).  

Oil pollution resulting from off-shore oil exploration and production, pipelines, tanker 

accidents, and intentional clearing of ship's ballast tanks affects mangroves throughout the WCR 

(Rodriguez, 1981; Ellison and Farnsworth, 1996; UNEP, 2002; Fernandez et al., 2007). In 1979, 

the Atlantic Empress oil spill released 280000 tonnes of oil 10 miles off Tobago. Most of the oil 

was burned towards open seas and no significant shore pollution was recorded on the nearest 

islands, albeit no impact study was carried out. In order to give an idea of the relevance of oil 

pollution in the WCR it is worth noting that in the 1980's there were around 30 oil spills that 

impacted mangroves in the region (i.e., Refineria Panamá spill, Galeta island, 1986). Moreover, 

spills had occured much before since the early 1960's: i.e., Argea Prima (Puerto Rico, 1962), Santa 

Augusta (St Corix US Virgin islands, 1971); Zoe Colocotronis spill (Puerto Rico, 1973). In the 

majority of the cases, oil accumulated among mangrove roots, killing large numbers of 

invertebrates, fish, and turtles and hydrocarbon residues were still detectable in the mangrove soil 

and sediments two decades after the spills (Ellison and Farnsworth, 1996). The best available data 

on effects of oil spills on mangrove flora, fauna, and ecosystem processes come from studies 

conducted at the Smithsonian Tropical Research Institute following the 1986 spill at Galeta, 

Panama. Continued dependency of most Caribbean states on imported oil for energy needs, the 

existence of large refinery and trans-shipment complexes throughout the region, and the huge 

amounts of oil transported annually through the Panama's Canal strongly suggest that petroleum 

will continue to be the major pollutant impacting Caribbean mangroves and mangrove-lined 

systems (Ellison and Farnsworth, 1996).  

Mining, industrial processes, untreated sewage sludge and diffuse sources (metal piping, 

traffic and combustion by-products) are the main anthopogenic sources of metal pollution in the 

WCR; and Cd, Hg, and Pb are major metallic pollutants (UNEP, 2006). In addition to these 

sources, the disposal of agrochemicals and industrial chemical also contributes with POPs (UNEP, 

2006). Thus, persistent pesticides constitute a major environmental concern in the WCR, (Rawlins 

et al., 1998; Fernandez et al., 2007). PCBs have been detected in water, sediment, seafood and 

biota samples (Fernandez et al., 2007), although data and monitoring capacity are limited at 
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regional scale. In view of their environmental relevance at regional scale, POPs ranked second in 

the priority rankings of Caribbean contaminant categories (GESAMP, 2001). Rodriguez (1981) 

identified four locally or regionally important pollutants: Hg (Colombia, Cuba); mine tailings and 

compounds (e.g., sodium hydroxide) associated with bauxite mines (Cuba, Jamaica, and the US 

Virgin Islands); sewage (Cuba, Haiti, Jamaica, Puerto Rico, Venezuela); and urban runoff (Cuba, 

Dominican Republic). Later on, pesticide runoff, heavy metals from industrial activities, and 

domestic sewage in Belize, Colombia, Cuba, Jamaica, Nicaragua, Puerto Rico, and Trinidad & 

Tobago; solid waste dumping throughout the Lesser Antilles, Jamaica, and Trinidad & Tobago, 

and dredge spoil dumping in Antigua again were identified as pollutant hazards in Caribbean 

mangrove ecosystems (Ellison and Farnsworth, 1996). The increasing pace of industrial and tourist 

development, and the continued lack of sewage treatment  throughout the Caribbean, can be related 

to the increasing impact of chemical pollutants into mangrove ecosystems in the WCR.  

5.4. Mangrove-lined coastal ecosystems in Nicaragua and Colombia 

Nicaragua. The mangrove forest from Nicaragua extends throughout 69050 ha and represents 

one of the main coastal ecosystems, which is approximately equally distributed between the Pacific 

and the Caribbean coasts (Jiménez, 1999; FAO, 2007). Nicaraguan mangroves are influenced by 

21 watersheds, 13 of them drain in the Caribbean and 8 in the Pacific Coast (González, 1997). 

Thus, the Caribbean coastal area is a major sink for contaminants transported along the watersheds 

as it receives the 90% of the Nicaragua’s territory catchment (UNEP, 2002). Moreover, maritime 

traffic and ports, urban settlements, shellfish farming and intensive agriculture are also potential 

sources of pollutants in the Pacific coast (Spongberg and Davies, 1998; Gener, 2009; Spongberg 

and Witter, 2008, Vargas et al., 2015).  

Mangrove-lined coastal ecosystems are basically lagoons in the Caribbean Sea and estuaries 

in the Pacific coast. Thus, intertidal mangrove swamps are characteristics of the Pacific coast 

estuaries such as e.g. Corinto, and the Natural Reserve Padre Ramos (UICN/ORMA, 2001). These 

mangroves3, which are dominated by seawater, are structurally less developed than that further 

south as a result of its orientation within the dry tropical climate zone. Also there is lower annual 

rainfall, than further south of the transition line, ranging from 1300 mm in Nicaragua to 2000 mm 

                                                           
3 https://www.worldwildlife.org/ecoregions/nt1434 

https://www.worldwildlife.org/ecoregions/nt1434
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in Costa Rica, but mostly falling during the short wet season resulting in a longer dry season from 

December to April. Annual temperature fluctuates between 25°C and 27°C (Polanía and Mainardi, 

1993). In general, the river basins that drain into this ecoregion are of high relief, therefore 

seasonally intense rainfall and highly erodable soils make them prone to erosion caused the 

removal of vegetation for agricultural practices, timber, fuelwood and livestock grazing. Major 

threats include the pressure to convert mangroves to agricultural uses, shrimp culture and salt 

production, as well as urban encroachment, runoff of pesticide residues and eutrophication 

(Polanía, 1993; Ramsar, 1999).  

In the Nicaraguan Caribbean coast, mangroves are sparse are primarily found in estuarine 

lagoons and small patches at river mouths and are dominated by freshwater (Tomlinson, 1986). 

The sparseness of mangroves is a result of the high inflow of freshwaters to the coastline ocean 

zone. Among the highest rates of rainfall in the world, this region receives over 6 m a year. Peak 

rainfall occurs in the warmest months between May and September. A relatively dry season occurs 

from January to April, which coincides with stronger trade winds. Tides are semi-diurnal and have 

a range of less than 0.5 m. SST is on average around 29-30ºC and salinity can be as low as <2‰ 

in the rainy season. The habitats include mixed rainforest, wooded swamps, coastal wetlands, 

estuarine lagoons, sandy beaches, sea grasses and coral reefs. This coastal area generally consists 

of low alluvial floodplain, in which there is a network of black-water canals and creeks. In between 

are beaches that are important nesting areas for endangered sea turtles that feed in the sea grass 

beds and visit mangrove areas4. Deforestation in the upper watershed has resulted in drainage and 

sedimentation problems. Other threats include gold mining, sewage contamination, runoff of 

agricultural chemicals, and erosion (Dumailo, 2003; MARENA, 2010). The most important 

lagoons in the Nicaraguan Caribbean coast are Bluefields and Pearl Lagoon. Bluefields receives 

water load from the Escondido River basin and where corn, banana, sugarcane, oil palm and 

coconut intensive agriculture has promoted the elevated application of pesticides for the last 50 

years (GEF-REPCar, 2011; Ebanks-Mongalo et al., 2013). Thus, dieldrin, HCHs, DDTs, 

chlorpyrifos, and terbufos were reported in water, sediment and mangrove cupped oysters from 

Bluefields (GEF-REPCar, 2011; Ebanks-Mongalo et al., 2013). Pollution monitoring in Nicaragua 

has been sporadically carried out by academics and research groups (GEF-REPCar, 2011; Ebanks-

Mongalo et al., 2013), as well as by international organisations such as the International Mussel 

                                                           
4 https://www.worldwildlife.org/ecoregions/nt1431  

https://www.worldwildlife.org/ecoregions/nt1431
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Watch and the UNEP Caribbean Environment Programme (Farrington and Tripp, 1995; Siung-

Chang, 1997; UNEP, 2006).  

Colombia. The Colombian Caribbean coast is located in the Department of Magdalena 

encompassing the Gulfo de Urabá then east to just past the Sierra Nevada de Santa Marta at the 

base of the Guayjira Peninsula. The region is particularly arid with an average isomegathermic 

climate of 27°C, a notably seasonal pattern of precipitation of 400-760 mm and high annual 

evapotranspiration of 1400 mm; three times higher than precipitation (Sánchez-Páez et al., 1997). 

The latitudinal movement of the intertropical conversion front defines the two rainy seasons, which 

are from March to May and from October to November, representing 70% of total annual volume. 

Two dry seasons lie between these rainy season months5. SST ranges 29-33ºC and salinity 15-

37‰. Thus, mangrove species in general have developed special adaptations to tolerate tidal 

flooding and high salinity. Hydrodynamic processes are governed by the Magdalena River, which 

has an effect on the western section of the region and by the rivers on the western slope of the 

Sierra Nevada de Santa Marta, which exclusively feed the Ciénaga Grande. From an ecological 

and socioeconomic perspective, this region holds the most degraded estuarine complex in 

Colombia. Decline in mangrove forest during the period between 1956-1987 was 40.6%; and in 

1995 reached 63.8% of the total alive in 1956 (Gónima et al., 1998), which has created effects 

such as the loss of habitats for a large number of species of fish, birds and bentonic organisms. 

The diversion of water by building channels and dikes to prevent flooding on the major rivers as 

well as the resulting silting of water flow due to the high loads of sediment from erosion (Gónima 

et al., 1998). The enrichment of masses of water with organic matter from the rivers, from nearby 

human population centers and from chemical fertilizers (eutrophication), creating anoxic 

conditions leading to the death of massive numbers of fish and other organisms (Hernández and 

Márquez, 1991; Mancera and Vidal, 1994). There are also locally relevant environmental 

problems. In Cartagena Bay, mangle islet and islands are offshore the Cartagena Port and the 

industrial zone of Mamonal (oil refineries, petrochemicals, and asphalt, cement and smelting 

plants); and receives the direct impact of the Dique Channel; and dissolved and dispersed 

hydrocarbons have been reported in seawater, especially in the rainy season (Vivas-Aguas et al., 

2014). This channel was open 5 centuries ago to connect the Magdalena River with the Cartagena 

Bay for navigation and constitutes a major source of sediments and chemical pollution in the 

                                                           
5 https://www.worldwildlife.org/ecoregions/nt1417 

https://www.worldwildlife.org/ecoregions/nt1417
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Cartagena Bay (Vivas-Aguas et al., 2014). Isla Barú in Barbacoas Bay is also influenced by the 

Magdalena River to which it communicates by smaller channels via the Dique Channel since the 

1950's (Gómez-Giraldo et al., 2009). In Santa Marta Bay, the Marina Santa Marta is subject to 

strong anthropogenic influence (Garcia et al., 2012). In the early 2000's, DDT and its metabolites, 

heptachlor, aldrin and HCHs were widespread pollutants in surface waters in Santa Marta Bay as 

the result of runoff from upstream plantations of coffee and banana, but in the recent decade these 

chemicals have been below detection limits in tributary rivers as result of regulatory restrictions 

for the use of these OCPs (Vivas-Aguas et al., 2014). Similarly, a marked reduction in the OCP 

levels in seawater and sediments have been recorded in Cartagena Bay and Barbacoas Bay during 

the last decade (Vivas-Aguas et al., 2010).  

5.4.1. Relevant candidate species for pollution biomonitoring programmes 

Four species of bivalves were proposed for pollution biomonitoring in mangrove-lined 

coastal ecosystems, two for Caribbean coast (Crassostrea rhizophorae and Polymesoda arctata) 

and other two for Pacific coast from Nicaragua (Anadara tuberculosa and Larkinia grandis). Three 

of them (C. rhizophorae, A. tuberculosa and L. grandis) were already used in the International 

Mussel Watch Programme carried out in Nicaragua in the early 1990's (Farrington and Tripp, 

1995). 

Mangrove cupped oysters, C. 

rhizophorae, were selected because they had 

been previously suggested as potential 

biomonitor and sentinel species for pollution 

assessment in mangrove-lined coastal 

ecosystems (Farrington and Tripp, 1995; 

Nascimento et al., 1998; Wallner-Kersanach 

et al., 2000; Rebelo et al., 2005; Silva et al., 

2003; 2006; Valdez Domingos et al., 2007).  

These oysters are (a) filter-feeding 

sessile organisms inhabiting both clean and 

polluted sites attached either to mangrove roots or to coastal rocks; (b) bioaccumulate pollutants 

such as metals, PAHs and POPs in their tissues (Farrington and Tripp, 1995; Rainbow, 2006; Van 
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Lavieren et al., 2011; Torres et al., 2012; Kanhai et al., 2014); (c) respond to environmental insult 

(Silva et al., 2003; Rebelo et al., 2005; Torres et al., 2012); (d) are widely distributed in tropical 

regions, e.g. from Caribbean to Southern Brazil; and (e) are easy to collect including a large range 

of size classes (Beeby, 2001; Fox, 2001; Basu et al., 2007; Valdez Domingos et al., 2007; Masson 

et al., 2010).  

C. rhizophorae (Guilding, 1828) is distributed all over the Caribbean Sea, including the 

islands of the West Indies Archipelago such as Puerto Rico, Cuba, etc. The mangrove cupped 

oyster inhabits areas of relatively high salinity and commonly attaches itself to the roots of the 

Rhizophora mangle but also to rocks and/or forming oyster reefs in coastal lagoon. The shell is 

white, foliated and rough. The left valve is deeply indented and the right valve is flat, smooth and 

fits into the left valve. The shell interior is smooth and somewhat strongly purple coloured, the left 

shell margin being especially strongly coloured. The umbo is bent to the back. Mature individuals 

grow to more than 10 cm (Arakawa, 1990).  

 

 

 

 

 

 

 

 

Fig. 11. Sex ratio of C. rhizophorae in each size class. The number of oyster in each size class es shown 
at the top of the diagram (Vélez, 1982). ♀, female; ♂, male. 

Mangrove cupped oyster can reproduce continuously throughout the year. At least 2-3 

spawning peaks per reproductive cycle have been reported in different regions, but the main one 

seems to be in the rainy season (Villarroel et al., 2004; Lenz and Boehs, 2011). This seasonal 

spawning may be associated with increase of temperature and salinity. In areas where water 
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temperature fluctuates between 23 to 29 ºC, there are bimodal peaks, lower from January to June 

and higher from July to December. However, in lagoons with temperature higher than 25 ºC, the 

spawning are continuous. In C. rhizophorae, females predominate and can reach up to 90% of the 

population although their prevalence may vary with size and season (Fig. 11; Vélez, 1982). 

Overall, Crassostrea oysters are protandrous hermaphrodites and sex ratio values can vary 

depending on the species, age, size and local conditions (Dove and O’Connor, 2012; Park et al., 

2012). Sex appears to be determined by a single gene with a dominant male allele M and a 

recessive protandrous allele F, such that FF animals are protandrous and MF animals are 

permanent males (Powell et al., 2011).  

Slender marsh clam, P. arctata, as above mentioned for 

the case of C. rhizophorae, also has the requisites to be a 

candidate biomonitor/sentinel species for pollution monitoring 

in mangrove-lined coastal systems in the Caribbean. They are 

filter-feeding, sessile organisms that bioaccumulate pollutants 

(Pérez-cruz et al., 2013; Leal et al., 2014; Vargas et al., 2015), 

respond to environmental insult, and present a wide 

distribution in the Caribbean. Thus it can be an alternative to 

mangrove cupped oysters in those sites where these are not 

sufficiently present, such as sandy areas of low salinity. However, data on pollutant 

bioaccumulation and its general biological (growth, reproductive cycle, affection parasitic, range 

of size, seasonality and biological responses to pollutants) are quite limited.  

P. artacta (Deshayes, 1854; syn., P. solida (Deshayes, 1854)6, according to Bouchet, 2015) 

is a benthic mollusc with a biogeographical range extending from Belize to the Orinoco River in 

Venezuela. It inhabits fine, sandy sediments of the low-to-medium salinity estuarine zone (high 

organic content, salinity: 3-20 ppt). It is identified by having V-shaped pallial sinus, with a long 

curved muscle insertion area, departing from its anterior side completely separate from the anterior 

adductor scar (Severeyn et al., 1994). According to Rueda and Urban (1998) P. arctata is 

monoecious combined with protogyny, and the sex-ratio changes with individual size-classes (Fig. 

12). Juveniles start becoming males when they reach 10 mm shell height so that above 16 mm 

                                                           
6 According to the World Register of Marine Species (http://www.marinespecies.org/index.php), the currently 
accepted name of P. solida is Polymesoda arctata (Deshayes, 1854), Bivalvia: Cyrenidae (Bouchet, 2015). 
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shell length no juvenile is observed; and at 21 mm shell height males start changing to 

hermaphrodite.  

 

 

 

 

 

Mangrove cockles Anadara tuberculosa (pustulose ark) and Larkinia grandis (shell clam ark) 

from the Pacific Ocean, also have been used as biomonitor species to measure the tissues 

concentration of metals, PAHs and POPs in mangrove ecosystems (Farrington and Tripp, 1995; 

Ziarrusta et al., 2015; Vargas et al., 2015). Like P. arctata, these species are a potential 

biomonitor/sentinel in mangrove-lined ecosystems; however, study about bioaccumulation and 

pollutant biological effects are practically lacking. In contrast some general biology data are 

available because these species constitte a regionally relevant fishery that demands sustainable 

management (Gener et al., 2009; Lucero-Rincón et al., 2013; Silva-Benavides and Bonilla, 2015). 

Pustulose arks, A. tuberculosa (GB Sowerby I, 1833) 

have a geographic distribution range from Laguna Ballena 

(Baja California Sur, Mexico) to Bahia de Tumbes (Perú; 

Mora-Sanchez, 1990; Cruz and Jimenez, 1994). A. 

tuberculosa inhabits muddy sediments (15 cm deep in the 

mud) among the aerial prop roots and under the canopies of 

the mangrove trees in mangrove swamps along the main-

lands and islands of lagoons (Mackenzie, 2001; Stern-Pirlot 

and Wolff, 2006). This species has two valves of equal shape 

that are obliquely oval. Each valve has 34–37 radial ribs and 

a dark brown periostracum with bristles between the ribs 

(Mackenzie, 2001). The dorsal margin of the valves is 

angular. Reproduction is continuous throughout the year 

with two peaks of seasonal spawning (García-Domínguez et al., 2008; Lucero-Rincón et al., 2013). 

Fig.12. Gender 

distribution by shell 

height intervals in 

P. arctata (Rueda 

and Urban, 1998). 
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The sex ratio reported is 1:1 (female:male) and no intersex was reported in localities from Costa 

Rica and Nicaragua (Gener et al., 2009; Silva-Benavides and Bonilla, 2015). However, in the 

Pacific coast from El Salvador, Colombia and Ecuador the sex ratio may vary throughout the year 

between 1.2:1 to 5.9:1 (female:male). Postulose ark is considered a protandric in which intersex 

cases have been reported (Flores and Lincadeo, 2010; Lucero-Rincón et al., 2013). 

Shell clam arks, L. grandis, (Broderip & GB Sowerby 

I, 1829; syn., Anadara grandis (Broderip & GB 

Sowerby I, 1829)7, according to Huber 2015) are found 

along an ample biogeographical distribution range 

from Bahia Magdalena (Baja California, Mexico) to 

Bahia de Tumbes (Perú; Mora Sanchez, 1990; Cruz and 

Jimenez, 1994). L. grandis lives in intertidal mudflats 

and some subtidal areas beyond the edges of mangrove 

swamps (Mackenzie, 2001). It grows to a size as large 

as >12 cm shell length. Its valves are almost square, and 

their length almost equals their height. The valves are 

convex with high umbos, and they have 26 ribs 

separated by deep interspaces. The shell has a dark 

periostracum. The blood is red. Unlike in neighbouring 

countries such as Honduras and El Salvador where it is 

commercially exploited (Galdámez et al., 2007), in 

Nicaragua this mangrove cockle (commonly known as "casco de zburro" -donkey’s hoof-) is 

endangered by overharvest (Gener et al., 2009), except in the Padre Ramos reserve, where it is 

under community management for recovery (Manzanares L, personal comm.). The species show 

the same reproductive pattern than A. tuberculosa, with a continuous reproduction throughout the 

year with two peaks of seasonal spawning, being the highest prevalence of spawning (60-80%) 

from December to February and June, associated to the highest salinities of the year. Sex ratio has 

been reported to be 1:1.25 (female:male) (Fournier and de la Cruz, 1987; Galdámez et al., 2007). 

                                                           
7 On the other hand, taxonomic name of Anadara grandis is not accepted according to the World Register of Marine 
Species (http://www.marinespecies.org/index.php), the currently accepted name is Larkinia grandis (Broderip & GB 
Sowerby I, 1829), Bivalvia: Arcidae (Huber, 2015).  
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1.1. State of the art 
 
Mangroves are highly complex transitional coastal ecosystems that include 0.7% of world's 

tropical and subtropical forests and provide a unique ecosystem that represents complex food 

webs with a strong relationship with neighbouring habitats. In the lasts decades, mangrove-lined 

coastal ecosystems worldwide have been severely impacted by a combination of natural and 

anthropogenic stressors including chemical pollution.  

In the Wider Caribbean Region (WCR), pollution monitoring programmes carried out in 

mangrove-lined coastal systems have been hitherto strictly based on chemical analysis. However, 

contaminants normally are present by cocktails of pollutants in multiple stress scenarios and 

therefore we need to carry our biological effects assessment together with the chemical analysis. 

For this purpose, pollution monitoring programmes based on the use of biomarkers as early 

warning signals of the biological deterioration, is highly recommended by international and 

intergovernmental conventions and regulations. Unfortunately, the monitoring capacities and 

facilities can be in many WCR countries far away from those required to conduct sophisticated 

and most-advanced biomarker-based monitoring using molluscs as sentinel species. However, 

the application of biomarkers is not necessarily inhibited by monetary and logistic constraints 

because effortless biomarkers can provide basic knowledge on animal health and water quality 

and are technically achievable everywhere.  

Accordingly, and aware of the technical and logistic limitations (e.g., limited accessibility 

and difficulties for secure sample transportation and quality in situ processing), a toolbox of non-

sophisticated and reliable biological effects endpoints was selected to assess the potential of the 

mangrove bivalve species, as sentinels for pollution monitoring in the WCR and neighbouring 

areas. This toolbox includes responses easy to measure at population and individual level and 

histological histopathological analyses; these latter allows scoring responses at systemic and 

tissue levels on the basis of cheap, solid and straightforward technology.  

The Stress-on-Stress (SoS) response was recommended by ICES for monitoring 

programmes as an indicator of mussel health status. Further on, the successful application of SoS 

response as biomarker for environmental monitoring has been extended to other bivalve species. 

SoS response reveals the capacity of bivalves to survive on air and it is interpreted as a measure 

of resilience. It is not as sensitive as some ICES core biomarkers of general stress (e.g. lysosomal 
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membrane stability) but is more sensitive than others, and its methodology is simple, rapid and 

low-cost. Flesh Condition Index (FCI) reflects the physiological status of bivalves and it has 

been reported that it is reduced on pollutant exposure. Gamete development and reproductive 

impairment (e.g. alterations in sex-ratio, oocyte atresia, gonad histopathology) were included in 

the toolbox because the gametogenesis is crucial to understand bivalve health and because 

reproduction disturbances are well-known biological effects exerted by chemical pollutants. 

Digestive gland histopathology was also a core element of the toolbox, as a wide range of 

contaminants, including metals, pesticides and PAHs, is known to provoke histopathological 

alterations in this tissue. 

Currently, pollution monitoring programmes carried out in USA, Canada, Europe and 

internationally use eastern oysters (Crassostrea virginica) and mussels (Mytilus 

galloprovincialis) as biomonitor and sentinel species. These species are not present in the WCR 

and therefore there is a need for alternative species suitable to be used in this region.  In 

agreement with previous reports, the mangrove cupped oyster, Crassostrea rhizophorae, is a 

potential candidate biomonitor and sentinel for the WCR and other Latin America and tropical 

areas. Likewise, the slender marsh clam, Polymesoda arctata, in the Caribbean and the 

mangrove cockles, Anadara tuberculosa and Larkinia grandis, in the Pacific coast are potential 

alternative species for mangrove-lined coastal systems devoid or with scarce mangrove cupped 

oysters.  

 

1.2. Hypothesis 
 

Biomonitoring programmes for the assessment of chemical pollution and 

ecosystem health disturbance in mangrove-lined coastal systems in tropical and 

subtropical ecosystems, such as those of the Wider Caribbean Region and Latin 

America, can be achieved by applying analytical chemistry to determine pollutant 

tissue burdens together with low-cost and effortless biomarkers, recorded in 

autochthonous biomonitor and sentinel bivalve species. 
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1.3. Objectives 
 

On order to test this hypothesis, the following general objectives are to be achieved: 

1. To confirm the suitability and to promote the use of the mangrove cupped oyster, 

Crassostrea rhizophorae, as biomonitor species for pollution biomonitoring in mangrove-

lined Caribbean coastal systems. 

2. To develop a suitable, low-cost and effortless multi-biomarker approach for pollution 

monitoring in mangrove-lined Caribbean coastal systems using the mangrove cupped oyster, 

C. rhizophorae as sentinel species. 

3. To determine the suitability of alternative species such as the slender marsh clam 

(Polymesoda arctata) and the mangrove cockles (Anadara tuberculosa and Larkinia 

grandis) as biomonitor and sentinel species for biomonitoring of pollution and associated 

ecosystem health disturbance in mangrove-lined Caribbean and Pacific coastal systems in 

Nicaragua. 

4. To identify and solve logistic and technical problems associated to the implementation of 

biomarker-based pollution biomonitoring programmes in mangrove-lined coastal systems. 
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Abstract: This paper aims to contribute to pollution biomonitoring in mangrove-lined Caribbean 
coastal systems using mangrove cupped oysters, Crassostrea rhizophorae, as a biomonitor species. 
Biomonitoring was carried out in 8 localities (3 in Nicaragua and 5 in Colombia) subjected to different 
types and levels of pollution. Oysters were collected during the rainy and dry seasons of 2012-2013 and the 
tissue concentrations of metals, PAHs, and POPs were determined. Low tissue concentrations of metals 
(except Hg) and PAHs, moderate-to-high tissue concentrations of Hg, HCHs, DDTs, detectable levels of 
chlorpyrifos, PCBs (mainly CB28, CB118, CB138 and CB 153) and BDE85 and negligible levels of musks 
were recorded in Nicaraguan oysters. Conversely, a distinct profile of POPs was identified in Colombia, 
where the tissue concentrations of HCHs and DDTs were practically negligible, chlorpyrifos and PBDEs 
were below detection limits, and the tissue levels of PCBs were low (CB28 and CB52). In contrast, 
noticeable tissue concentrations of synthetic musk fragrances were recorded in all the Colombian localities 
in the dry season, and the tissue concentrations  of Ag, As, Cd, Pb and PAHs in several localities and in 
particular seasons ranged from moderate to extremely high. Regarding POPs, the values recorded for 
HCHs, DDTs and PCBs in Nicaraguan mangrove cupped oysters greatly exceeded the reference values in 
tissues of C. rhizophorae from the Wider Caribbean Region, whereas only the levels of PCBs were 
occasionally surpassed in Colombia. The differing contaminant profiles for oysters from Nicaragua and 
Colombia were distinguishable by distinct radar plots and principal component analysis, as well as 
evidenced in integrated pollution indices. Likewise, seasonality affected oyster tissue contaminant profiles 
and seemed to depend on seasonal variability in physicochemical properties of mangrove ecosystems as 
well as on diversification of human activities and practices between the rainy and the dry season, but 
seemingly not so markedly on oysters' reproductive condition. Considering the diversity, both geographical 
and environmental, of the studied scenarios, the present results confirm the suitability of C. rhizophorae as 
a biomonitor species at Caribbean regional scale for pollution monitoring programmes in mangrove-lined 
coastal systems, where seasonal variability is a major factor controlling pollutant mobility and 
bioavailability.  
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Resumen: El objetivo de este trabajo es contribuir al biomonitoreo de la contaminación en los 
sistemas costeros de manglares del Caribe, usando  las ostras de manglar Crassostrea rhizophorae como 
una especie biomonitora. Se llevó a cabo el biomonitoreo en ocho localidades (tres en Nicaragua y cinco 
en Colombia) sujetas a diferentes tipos y niveles de contaminación. Se recoloectaron ostras durante las 
épocas de lluvia y seca del 2012 – 2013, y se determinaron las concentraciones en tejido de metales, PAHs 
y POPs. En los tejidos de las ostras de Nicaragua se registraron bajas concentraciones de metales (excepto 
Hg) y PAHs, concentraciones entre intermedias y altas de Hg, HCHs y DDTs, niveles detectables de 
clorpirifos, PCBs (sobre todo CB28, CB118, CB138 y CB 153) y BDE85, y niveles insignificantes de 
almizcles sintéticos. Por el contrario, en Colombia se identificó un perfil distinto de POPs en el que las 
concentraciones de HCHs y DDTs fueron insignificantes, Clorpirifos y PBDE estuvieron por debajo del 
límite de detección, y los niveles tisulares de PCBs (CB28 y CB52) fueron bajos. En cambio, se detectaron 
concentraciones significativas en tejido de almizcles sintéticos en todas las localidades de Colombia en la 
estación seca. Se determinaron concentraciones tisulares de Ag, As, Cd, Pb y PAHs en varias localidades 
y en épocas  específicas en un rango entre moderadas y extremadamente altas. En lo que respecta a POPs, 
los valores de HCHs, DDTs y PCBs presentes en los tejidos de la ostra C. rhizophorae en Nicaragua 
excedieron por mucho los valores de referencia en ostra de la Región del Gran Caribe (WCR), mientras que 
en Colombia solo los niveles de PCBs sobrepasaron ocasionalmente los de referencia. Se distinguieron 
diferentes perfiles de contaminantes en las ostras de Nicaragua y Colombia mediante distintos diagramas 
de radar y mediante análisis de componentes principales, así como en los índices integrados de 
contaminación. Igualmente, los perfiles de contaminantes de los tejidos de las ostras se vieron afectados 
por la estacionalidad, lo que y parece depender de la variabilidad estacional de las propiedades 
fisicoquímicas de los ecosistemas de manglares y de la diversificación de la actividad humana entre la 
época lluvia y la época seca, pero no aparentemente de la condición reproductiva de las ostras. 
Considerando la diversidad tanto geográfica como ambiental de los escenarios estudiados, los resultados 
actuales confirman la idoneidad de C. rhizophorae como una especie biomonitora a escala regional en el 
Caribe para llevar a cabo programas de biomonitoreo de la contaminación en sistemas costeros de 
manglares, donde la variabilidad estacional es un factor importante que controla la movilidad y 
biodisponibilidad de los contaminantes. 
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1. Introduction 
Mangroves are highly complex transitional coastal ecosystems that include 0.7% of world's 

tropical and subtropical forests and provide a unique ecosystem that represent complex food webs 

with a strong relationship with neighbouring habitats (Bosire et al., 2008; Nagelkerken et al., 2008; 

Giri et al., 2011). In the last four decades, mangrove ecosystems worldwide have been severely 

impacted by a combination of natural and anthropogenic stressors (Lewis et al., 2011; Bayen, 

2012). Particularly, mangrove-lined coastal systems, an important natural resource for tourism, 

fisheries and storm protection in the Wider Caribbean Region (WCR), are enormously vulnerable 

to land-based human activities (UNEP, 1994).  

Mining, industrial processes (smelters, oil refineries, chemical industry, shipyards), untreated 

sewage sludge and diffuse sources such as metal piping, traffic and combustion by-products from 

coal-burning power stations are the main anthopogenic sources of metal pollution in the WCR, 

with Cd, Hg, and Pb being the metallic pollutants of major concern (UNEP, 2006). Burning of 

waste, burning of vegetation for clearing land, and crude oil production and transportation result 

in elevated levels of polycyclic aromatic hydrocarbons (PAHs) at regional scale in the WCR 

(UNEP, 2002; Fernandez et al., 2007). The improper use and/or disposal of agrochemicals and 

industrial chemicals, combustion processes and release of by-products contributes to  

environmentally relevant levels of persistent organic pollutants (POPs), such as DDTs and other 

pesticides, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) 

(UNEP, 2006). Indeed, persistent pesticides constitute a major environmental concern in the WCR, 

where the use of agricultural pesticides has greatlhy increased during the last 30 years and DDT 

residues have become ubiquitous (Rawlins et al., 1998; Fernandez et al., 2007). It is worth noting 

that only ~10% of a pesticide are considered to be effective upon application, withthe remaining 

90% and its derivatives expected to ultimately enter waterways and ultimately coastal ecosystems 

via runoff, misapplication and atmospheric transport (UNEP, 1994). PCBs have been used 

extensively since the 1930s in the WCR (e.g. in electrical transfomers). Correspondingly, they 

have been detected in water, sediment, seafood and biota samples (Fernandez et al., 2007), 

although data and monitoring capacity are limited at regional scale for these POPs. Certainly, 

PCBs and PBDEs are contaminants distinctive of urban and industrialised areas; however, they 

have been found at increasing levels in developing countries, as a result of poor waste management 

practices and improper burning (UNEP, 2006). In view of their environmental relevance at 
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regional scale, POPs ranked second in the priority rankings of Caribbean contaminant categories 

(GESAMP, 2001). However, with the exception of some pesticides, the monitoring of most of 

them relies on occasional analyses for research purposes or for impact assessment e.g. after 

accidental spills (UNEP, 2004; GEF-REPCar, 2011). 

Pollution monitoring programmes have been carried out in the WCR coastal systems since the 

1970's, under the auspices of intergovernmental institutions (Siung-Chang, 1997; UNEP, 2006). 

Thus, the UNEP Caribbean Environment Programme (CEP) was established in 1981 in order to 

promote regional cooperation for protection and sustainable development of the Caribbean Sea. 

Moreover, several tools (e.g. the protocol for Pollution from Land-based Sources and Activities) 

were agreed in the Cartagena Convention in 1983 in order to classify water bodies, establish legally 

binding standards, identify major sources of pollutants and prevent pollution (Siung-Chang, 1997). 

However, with notable exceptions (e.g. REDCAM in Colombia, Vivas-Aguas et al., 2014), 

monitoring activities at national scale are to our knowledge irregular and based on sporadic studies 

carried out by academics and research groups. A crucial issue in both national and regional 

monitoring programmes is that elsewhere employed technology and assessment methods (e.g. 

Asia-Pacific Mussel Watch, USA Mussel-Watch and EU Marine Strategy Framework Directive; 

Goldberg, 1975; Monirith et al., 2003; Kimbrough et al., 2008; Zampoukas et al., 2014) are not 

easily available or they are unaffordable and unsustainable; which often may be worsened by 

simple logistic hurdles (e.g. accessibility to sampling sites and sample transporation logistics). 

Other challenges include the paucity of baseline environmental data (e.g. concentrations of 

pollutants), the relatively poor baseline knowledge about contamination in mangrove-lined 

Caribbean coastal systems, and the limited human capacity and regional networking prospects 

(Rawlins et al., 1998; UNEP, 2004; 2006). Moreover, ongoing monitoring programmes are aimed 

at recording the concentration of pesticides and other POPs, PAHs and metals in seawater and 

sediments but not, only exceptionally, in biota (Sericano et al., 1995; UNEP, 2002; 2004; 2006; 

Rojas de Astudillo et al., 2005; Fernandez et al., 2007; Carvalho et al., 2009a; Vivas-Aguas et al., 

2010; 2014; Castañeda-Chávez, 2011; Alfonso et al., 2013; Kanhai et al., 2014; 2015). Indeed, 

monitoring programmes based on the Mussel-Watch approach using bivalves or other target 

organisms as biomonitors (Goldberg, 1975; Sericano et al., 1995; Monirith et al., 2003; Kimbrough 

et al., 2008; 2009) are not systemically carried out, to our knowledge. If this approach is to be 

implemented in the WCR, research efforts must be addressed to solve logistic and technological 

questions and to select suitable biomonitor species. 
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Mangrove cupped oysters, Crassostrea rhizophorae, have been quite extensively investigated 

as potential biomonitor for pollution assessment in mangrove-lined coastal ecosystems 

(Nascimento et al., 1998; Wallner-Kersanach et al., 2000; Rebelo et al., 2005; Silva et al., 2003; 

2006; Valdez-Domingos et al., 2007) because (a) they are filter-feeding sessile organisms 

inhabiting both clean and polluted sites attached either to mangrove roots or to coastal rocks; (b) 

they bioaccumulate high concentrations of pollutants in their tissues (Rainbow, 2006; Van 

Lavieren et al., 2011; Torres et al., 2012; Kanhai et al., 2014); (c) they respond to environmental 

insult (Silva et al., 2003; Rebelo et al., 2005; Torres et al., 2012); (d) they are widely distributed 

in tropical regions, e.g. from Caribbean to Southern Brazil; and (e) they are easy to collect 

including a large range of size classes (Beeby, 2001; Fox, 2001; Basu et al., 2007; Valdez 

Domingos et al., 2007; Masson et al., 2010). Indeed, C. rhizophorae has already been employed 

as biomonitor species in pollution monitoring studies aimed at deciphering spatial and temporal 

trends in chemical pollutants in tropical coastal zones in Brazil (Silva et al., 2003; Rebelo et al., 

2005; Torres et al., 2012).  

The present investigation aims at expanding the use of the mangrove cupped oyster, C. 

rhizophorae, as biomonitor species for pollution biomonitoring in mangrove-lined Caribbean 

coastal systems. For this purpose, a pilot field study was carried out in 8 localities (3 in Nicaragua 

and 5 in Colombia) subjected to different types and levels of pollution, in two sampling campaigns 

during 2012-2013. Samples were collected in the rainy and dry seasons. The tissue concentration 

of metals, PAHs, and POPs in oysters was recorded as a measure of the nature and levels of 

bioavailable chemical pollutants and their seasonal variability in different representative scenarios 

of mangrove-lined Caribbean coastal systems including subtidal oyster reefs in coastal lagoons, 

intertidal prop roots of magrove trees and intertidal rocky shores.  

2. Material and Methods 
2.1. Sampling sites and sample collection 

In Nicaragua, subtidal (<1 m depth) oyster reefs were studied in two localities (Fig. 1): 

Bluefields (sampling sites: Punta Lora and Half Way Cay) and Pearl Lagoon (sampling site: 

Pigeon Cay). Punta Lora was considered as a prospective reference site (far away from urban 

settlements) whilst Half Way Cay and Pigeon Cay were selected as potentially polluted areas 
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influenced by aquatic transport and urban discharges (GEF-REPCar, 2011; Ebanks-Mongalo et 

al., 2013). In Colombia, intertidal prop roots of mangrove trees were studied in Cartagena Bay and 

Barbacoas Bay (Fig. 2) and intertidal rocky shores in Santa Marta Bay (Fig. 3).  

In Cartagena Bay,  a mangle islet 200 m north of Isla Maparadita (0.5 Km offshore the 

Terminal of Cartagena Port) and Isla Brujas were selected as seemingly polluted sites, as shown 

in previous studies (Vivas-Aguas et al., 2010; 2014). Isla Brujas is an islet adjacent to the industrial 

zone of Mamonal (oil refineries, petrochemicals, and asphalt, cement and smelting plants) that 

also receives the direct impact of the Dique Channel. This channel was open 5 centuries ago to 

connect the Magdalena River with the Cartagena Bay for navigation and constitutes a major source 

of sediments and chemical pollution in the Cartagena Bay (Vivas-Aguas et al., 2014). In addition, 

Isla Barú in Barbacoas Bay was selected as a potential reference site; however, it also may be 

influenced by the Magdalena River to which it communicates by smaller channels via the Dique 

Channel since the 1950's (Gómez-Giraldo et al., 2009). 

In Santa Marta Bay, the Marina Santa Marta was selected as a sampling site subject to strong 

anthropogenic influence (Garcia et al., 2012), whereas the nearby Taganga Harbour was a priori 

considered as a reference site.  Sampling was carried out over one year (2012-2013) in the rainy 

season (October 2012) and in the dry season (March 2013). Seawater surface temperature was in 

the range of 30-32ºC during both seasons.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Caribbean coastal maps 
from Nicaragua, showing the 
localities where oysters Crassostrea 
rhizophorae were collected in 2012-
2013. Nicaraguan coast: Pigeon Cay 
(12°21'42.50"N-83°38'32.11"W); 
Half Way Cay (11°59'58.73"N-
83°43'28.24"W) and Punta Lora 
(11°54'21.02"N-83°44'58.68"W).  
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Fig. 2. Caribbean coastal maps 
from Cartagena-Colombia, 

showing the localities where 
oysters Crassostrea rhizophorae 

were collected in 2012-2013. Isla 
Barú (10°10'56.02"N-

75°38'21.74"W); Isla Brujas 
(10°19'59.07"N-75°30'47.24"W) 

and Isla Maparadita 
(10°22'21.09"N-75°30'48.65"W) 

in Cartagena Bays. 

Fig. 3. Caribbean coastal maps 
from Santa Marta-Colombia, 
showing the localities where 

oysters Crassostrea rhizophorae 
were collected in 2012-2013. 

Marina Santa Marta 
(11°14'31.59"N-74°13'05.24"W) 

and Taganga (11°16'07.68"N-
74°11'37.37"W) in Santa Marta 

Bay. 
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Up to 85 mangrove cupped oysters (Crassostrea rhizophorae) were collected per sampling 

site, of which 60 were used for biological effects assessment (Chapter 2) and the remaining 25 for 

the chemical analyses presented herein. Upon collection, oysters were placed in 15 L plastic boxes 

(2 individuals / L) in seawater at ambient temperature and transported to the laboratory (for 3-6 h) 

before processing. Due to logistic problems, sampling could not be conducted in Pigeon Cay 

during the dry season. 

2.2. Tissue concentrations of contaminants 

Pools of mangrove cupped oysters (25 individuals) were homogenised and freeze-dried before 

being stored (at -20ºC) and analysed. For the analysis of metals (Ag, Al, As, Cd, Cr, Cu, Hg, Ni, 

Pb, Ti, V and Zn), 100 mg of freeze-dried samples were digested in a microwave oven (Multi-

wave 3000, Anton Paar, Austria) and the extracts were first filtered and then measured in an 

Inductively Coupled Plasma - Mass Spectrometer (ICP-MS; NexION 300 Perkin Elmer, USA) 

(Bartolomé et al., 2010; Navarro et al., 2010). For the analysis of the organic contaminants, 0.3 g 

of freeze-dried samples and 0.3 g of Florisil dispersant were manually blended in a glass mortar 

and were transferred to a 10-mL glass syringe containing 0.6 g of deactivated silica and 4.0 g of 

activated silica. The target analytes were eluted with 25 mL of dichloromethane, and the eluate 

was evaporated to dryness using N2 blowdown and reconstituted to a final volume of 140 L of n-

hexane. All these extracts were analysed by Gas Chromatography - Mass Spectrometry (GC–MS) 

using an Agilent 7890A gas chromatograph coupled to an Agilent 7000 triple quadrupole mass 

spectrometer and an Agilent 7693 autosampler (Agilent Technologies). The MassHunter 

WorkStation Acquisition Software (Version B.05.02/Build 5.2.365.0, Agilent Technologies, 

2008) was used for data acquisition and automatic integration and quantification of the results. 

This method was designed to measure up to 40 non-polar or slightly non-polar organic pollutants 

such as PAHs, PCBs, PBDEs, organochlorine pesticides (OCPs), organophosphorus pesticides and 

musk fragrances (Ziarrusta et al., 2015). 

2.3. Chemical pollution indices 

Pollutant concentrations in mangrove cupped oyster tissues were compared with available 

environmental quality criteria for individual pollutants (OSPAR Commission, 2005; 2009; 2013; 

Kimbrough et al., 2008; Green et al., 2012): Background Reference Concentrations (BRCs); 

Background Assessment Criteria (BACs), Highest Background Concentrations (HBCs) and 



 
 

  Results and Discussion 
 

79 
 
 

Highest Low Concentrations (HLC). BRCs are intended to provide baseline or reference 

concentrations, and to describe environmental conditions under which there is no anthropogenic 

influence on the concentrations of the target substances in the environment (Davies, 2004; OSPAR 

Commission, 2005). BACs describe the threshold value for the background level, using data from 

reference sites (OSPAR Commission, 2005; 2009; 2013). HBCs correspond to the upper limit to 

Class I in the Norwegian marine pollution monitoring approach, which recognises five classes 

from Class I, insignificantly polluted, to Class V, extremely polluted (Green et al. 2012). HLCs 

correspond to the upper limit of the Low Concentration Range in the NOAA's mussel watch 

pollution monitoring; this recognises three concentration ranges (low, medium and high) for the 

tissue concentration of pollutants in oysters (Kimbrough et al., 2008). 

The Chemical Pollution Index (CPI; Bellas et al., 2011; 2014; Beiras et al., 2012) was 

calculated for each site and season. For this purpose, Concentration Factors (CF) were calculated 

for each pollutant by dividing the tissue pollutant concentrations (Ctiss) by the corresponding 

environmental quality criterion (Ceqc): CF=Ctiss/Ceqc. Then, the following formula was applied: 

CPI=Σi[log(CFi)]. Likewise, the Pollution Load Index (PLI; Tomlinson et al., 1980) was 

computed for each site and season by obtaining the n-root from the n-CFs that were obtained for 

all the pollutants, according to the following equation: 𝑃𝑃𝑃𝑃𝑃𝑃 = √𝐶𝐶𝐶𝐶1 𝑋𝑋 𝐶𝐶𝐶𝐶2 … …𝐶𝐶𝐶𝐶n
𝑛𝑛 . 

2.4. Statistical analyses 

Statistical analyses were carried out with the aid of SPSS version 22 statistical package (IBM 

SPSS, Armonk, NY, USA). The normality of data distribution (Shapiro-Wilk's test) and 

homogeneity of variance (Levene’s test) were determined before proceeding with subsequent 

analyses. Due to the high variability between samples, even after normal distribution 

transformation of data, non-parametric analyses were carried out. Significant differences between 

localities and seasons in pollutant tissue concentrations in oysters were analyzed by the Z score test 

(p<0.05). Pearson's correlation between tissue concentrations of pollutants was carried out for 

Nicaraguan (N=5) and Colombian (N=10) oysters, separately; also between PLI and CPI for the 

complete set of studied localities. Principal component analysis (PCA) was performed (N. 

variables = 43) on the basis of leverage correlation after normalization and standardisation of the 

data, using "The Unscramble" v. 7.1 software (Camo, Norway).  
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3. Results 
3.1. Nicaragua 

Overall, metal tissue concentrations were not high (Table 1) and after applying the Z score 

test differences between seasons could only be established with a significance level of p<0.1. 

Likewise, metal tissue concentrations were slightly higher in Half Way Cay than in Punta Lora, 

and statistical significance was established with p<0.1, especially in the rainy season (Table 1). 

PAH tissue concentration was apparently higher in the dry season than in the rainy season (Table 

2). In the rainy season, the highest values were recorded in Pigeon Cay and the lowest in Punta 

Lora, with Half Way Cay values in between (Table 2). In the dry season, tissue PAH concentration 

increased up to 8 fold in Punta Lora but remained seemingly unchanged in Half Way Cay (Table 

2). The most relevant PAHs found were acenaphthylene, acenaphthene, pyrene, benzo[a]pyrene, 

indeno[1,2,3-cd]pyrene and dibenzo[ah]anthracene, especially in Pigeon Cay in the rainy season 

but also, to a lesser extent, in Half Way Cay and Punta Lora in the dry season (Table 2).  

The sum of the 16 USEPA PAHs (except napthalene) was much lower in Punta Lora during 

the rainy season than in any other Nicaraguan sample, which was accompanied by low values of 

∑HMWPAHs and ∑LMWPAHs and a high ∑LMWPAH/∑HMWPAHs ratio (Table 2). Unlike in the case 

of PAHs, POP tissue concentrations were higher in the rainy season than in the dry season (Table 

3); nevertheless, significant differences after applying the Z score test could only be established at 

the level of  p<0.1 in most of the cases. HCHs and DDTs and their derivatives were recorded in 

oyster tissues in all the samples analyzed, irrespective of the locality and the season (Table 3). 

Interestingly, the highest tissue concentrations of pesticides (α-HCH, β-HCH and DDT derivatives 

such as 4,4-DDE) were recorded in Punta Lora in the rainy season (Table 3). Musk fragrances 

were always below detection limits. The tissue concentrations for CB28, CB118 and CB153 were 

high and similar between localities and seasons, whilst for other individual PCBs (CB52, CB101, 

CB138 and CB180) tissue concentrations were higher in the dry season than in the rainy season, 

and especially high in Pigeon Cay (Table 3). Only one of the eight analysed PBDEs (BDE85) was 

found in oyster tissues at measurable levels; this showed markedly high values in the rainy season 

in Pigeon Cay and Punta Lora (Table 3). According to the Pearson's correlation analysis carried 

out (Tabla 4), there existed association (a) amongst LMWPAHs (other than acenaphthylene and 

pyrene) and some HMWPAHs, such as  benzo[a]anthracene, chrysene, 

benzo[b]fluoranthene+benzo[k]fluo-ranthene, as well as As, chlorpyrifos and PCBs; (b) amongst 
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benzo[a]pyrene, benzo[ghi]pyrene and indeno[1,2,3-cd]pyrene; and (c) between HMWPAHs and 

HCHs (+) and HMWPAHs and DDE (-).  

The pollutant profile for each locality and season is illustrated in radar plots in Fig. 4. For this 

purpose, the following variables were used to construct the radar plots using a spreadsheet: (a) 

sum of tissue concentrations of metals upon removal of outliers such as Al, Cu, Ti and Zn; (b) sum 

of 16 US EPA priority PAHs (USEPA, 2001) except naphthalene; (c) sum of musks (HHCB 

+AHTM); (d) sum of 7 ICES PCBs (OSPAR Commission, 2010); and (e) sum of OCPs (HCHs + 

DDTs). It can clearly be seen that (a) pollutant tissue concentrations were higher in the rainy season 

than in the dry season in all localities; (b) PCBs and OCPs were the most representative pollutants; 

and (c) OCPs seem to constitute a potential problem were elevated in Punta Lora during the rainy 

season. 

 
Table 1. Metal tissue concentration in Crassostrea rhizophorae (μg/g) from shallow subtidal oyster reefs 
of Nicaraguan mangrove lagoons. The superscript letters (a, b and c) indicate roughly significant differences 
between groups (p<0.1). LOD, limit of detection. 

 

 LOD 
RAINY SEASON DRY SEASON 

Pigeon Cay Half Way 
Cay Punta Lora Half Way 

Cay Punta Lora 

Ag 0.0015 1.88a 2.08a 2.98b 0.92a 0.89a 

Al 15.3 469.67a 665.83b 225.42c 408.77a 488.05a 

As 0.01 6.81a 4.23b 2.96b 4.39b 4.59b 

Cd 0 1.39a 2.50a 1.78a 1.78a 3.59b 

Cr 0.22 0.79a 1.04b 0.36a 0.54a 0.39a 

Cu 0.11 557.13a 541.19a 220.02b 487.66a 357.22a 

Hg 0.004 0.16a 0.18a 0.12a 0.08b 0.13a 

Ni 0.54 1.00a 1.21a 0.54b 0.75a 1.38a 

Pb 0.015 0.25a 0.33a 0.21a 0.26a 0.39b 

Ti 0.94 18.32a 24.17b 11.15a 11.27a 12.68a 

V 0 1.43a 2.07b 0.73a 1.07a 1.44a 

Zn 2.36 1525.61a 2544.21b 936.76a 1945.92a 1490.22a 

∑Metals 2584.44a 3789.04b 1403.03c 2863.41a 2360.97a 

Positive CPI values, always <1, were recorded in Pigeon Cay in the rainy season and in Half 

Way Cay and Punta Lora in the dry season (Fig. 5a). Overall, the main pollutants contributing to 

these CPI values were As, Cd, benzo[a]pyrene, HCHs, DDTs and PCBs (SM 1). PLI values were 



 
 
Chapter 1. Mangrove cupped oysters as biomonitor    
 

82 
 
 

always <50, although PLI recorded in Pigeon Cay at the rainy season was 43.8 (Fig. 5b). 

Benzo[a]pyrene in the dry season and, generally, HCHs and DDTs were found to be the major 

contributors to PLI (SM 2). 

Table 2. PAH tissue concentration in Crassostrea rhizophorae (ng/g) from shallow subtidal oyster reefs 
of Nicaraguan mangrove lagoons. The superscript letters (a, b and c) indicate significant differences 
between groups (p<0.05; p<0.1, when shown between brackets). The following compounds were under 
detection limits in all the samples (superscript numbers refer to the sums and indices given in the table 
where they are integrated): Flu (LOD=0.07)(1); Flr (LOD=0.34)(1). LOD, limit of detection; udl, under 
detection limits; n/a, not applicable. 

 

 LOD 
RAINY SEASON DRY SEASON 

Pigeon 
Cay 

Half Way 
Cay 

Punta 
Lora 

Half Way 
Cay 

Punta 
Lora 

Acy (1) 1 30a 30a udlb 26a 31a 

Ace (1) 1 52 29 29 38 38 

Phe (1) 0.49 udla udla udla 23a 83b 

Ant 1 22a 5b 4b 10b 9b 

Pyr (1) 1 29 udl udl udl 25 

Benz[a]A (2) 1 24 6 5 13 12 

Chr (2) 1 24a 5b 7b 12b 11b 

B[b]F +B[k]F (2) 1 23 udl 3 10 10 

B[a]P (2)  1 64a 50a udlb 45a 55a 

B[ghi]P 1 19a 20a udlb 17a 22a 

Ind (2) 2 26a 26a udlb 23a 28a 

D[ah]A (2) 2 29a 34a udlb 30a 40a 

∑PAHs (16; except Naph) 342(a) 204(a) 48(b) 248(a) 365(a) 

∑HMWPAHs∑(2) (carcinogenic) 190(a) 121(a) 15(b) 133(a) 156(a) 

∑LMWPAHs∑(1) (%∑PAHs) 111(a) 

(32%) 
59 (a) 

(29%) 
29 (a) 

(60%) 
87 (a) 

(35%) 
177(b)  
(48%) 

Ind / B[ghi]P 1.37 1.30 n/a 1.35 1.27 

∑LMWPAHs / ∑HMWPAHs 0.58(a) 0.49(a) 1.93(b) 0.65(a) 1.13(a) 

Ind / (Ind + B[ghi]P) 0.58 0.57 n/a 0.58 0.56 
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Table 3. POP tissue concentration in Crassostrea rhizophorae (ng/g) from shallow subtidal oyster reefs 
of Nicaraguan mangrove lagoons. The superscript letters (a, b and c) indicate significant differences 
between groups (p<0.05; p<0.1, when shown between brackets). The following compounds were under 
detection limits in all the samples (superscript numbers refer to the sums and indices given in the table 
where they are integrated): 2.4-DDD (LOD=5)(3); 4.4-DDT (LOD=50)(3); 2.4-DDE (LOD=5)(3); HHCB 
(LOD=8.8)(4); AHTN (LOD=10)(4); CB180 (LOD=1)(5); BDE28 (LOD=7.2)(6); BDE47 (LOD=1.3)(6); 
BDE66 (LOD=0.94)(6); BDE99 (LOD=6.6)(6); BDE100 (LOD=7.5)(6); BDE153 (LOD=50)(6); BDE154 
(LOD=50)(6). LOD, limit of detection; udl, under detection limits; n/a, not applicable. 

 

 LOD 
RAINY SEASON DRY SEASON 

Pigeon 
Cay 

Half Way 
Cay 

Punta 
Lora 

Half Way 
Cay 

Punta 
Lora 

α-HCH 50 60(a) udl(a) 102(b) udl(a) udl(a) 

β-HCH 25 89(a) 90(a) 102(a) 87(a) 116(b) 

γ-HCH 2 25(a) 14(a) 9(a) 17(a) 30(b) 

δ-HCH 25 88a 85a 74b 85a 90a 

∑HCHs 262 189 287 189 236 
4.4-DDE(3) 2 36a 206 a 992b 35a 35a 

2.4-DDT(3) 25 113(a) 101(b) 90(c) 105(b) 99(b) 

∑DDTs ∑ (3) 149a 307a 1082b 140a 134a 
4.4-DDT/4.4-DDE 0 0 0 0 0 
2.4-DDD/4.4-DDE 0 0 0 0 0 
(2.4-DDD+4.4-DDE)/ ∑DDTs 0.24(a) 0.67(a) 0.92(b) 0.25(a) 0.26(a) 
∑OCPs 411a 496a 1369b 329a 370a 

Chlorpyrifos 2 11(a) udl(b) udl(b) 5(b) udl(b) 

∑Musks∑ (4) 0 0 0 0 0 
CB28(5)  1 111(a) 100 (a) 99(a) 116(b) 101(a) 

CB52(5) 1 18a udlb udlb udlb udlb 

CB101(5) 1 19a udlb udlb udlb udlb 

CB118(5) 1 124 121 111 121 118 

CB138(5) 1 22a udlb udlb udlb udlb 

CB153(5) 1 47(a) 29(b) 28(b) 36(b) 35(b) 

∑PCBs∑ (5) (PCB7) 341(a) 250(b) 238(b) 273(b) 254(b) 
BDE85(6) 1 325a udlb 89b udlb udlb 

∑PBDEs∑ (6) 325a udlb 89b udlb udlb 

∑POPs 1088a 746a 1696b 607a 624a 
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3.2. Colombia 

With the exception of oysters from Taganga Bay, metal tissue concentrations were higher in 

the rainy season than in the dry season and not very dissimilar amongst localities, with the 

exception of the Zn tissue concentration (Table 4; Z score test, p<0.05). In Taganga, the tissue 

concentrations of Al, As, Cr, Ni, Ti and V were significantly higher in the dry season than in the 

rainy season (Table 5). PAH tissue concentrations were higher in the dry season than in the rainy 

season except in Isla Brujas where exactly the opposite was observed (Table 6). In the dry season, 

the most abundant PAH was phenanthrene in all the localities, although fluorene and pyrene were 

also relevant in Isla Brujas (Table 6). In the rainy season, in contrast, fluorene and anthracene were 

more concentrated in all the localities, and the levels of carcinogenic PAHs, especially chrysene, 

but also pyrene, benzo[a]anthracene, benzo[ghi]pyrene and indeno[1,2,3-cd]pyrene, were notably 

elevated at Isla Brujas (Table 6). Likewise, POP tissue concentrations were noticeably higher in 

the dry season than in the rainy season, especially in Isla Brujas and Taganga (Table 7). The levels 

of HCHs, DDTs, chlorpyrifos and PBDEs in oyster tissues were always below the detection limit 

(Table 7). The tissue concentrations of PCBs and, more markedly, of musk fragrances were higher 

Fig. 4. Radar plots 
obtained using the total 
concentration of metals 

(other than Al, Cu, Ti 
and Zn: M*; µg/g dry-
wt), the sum of the 16 

USEPA priority PAHs 
(ng/g dry-wt),  the sum 

of musks (ng/g dry-wt), 
the sum of the 7 ICES 

PCBs (ng/g dry-wt) and 
the sum of OCPs (ng/g 
dry-wt), as variables to 

depict the tissue pollutant 
profile (red lines) for 

each locality and each 
season in oysters 

collected from 
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in the dry season than in the rainy season in all the localities studied (Table 7). Besides, musk 

fragrances were below detection limits in Marina Santa Marta and Taganga Bay during the rainy 

season. According to the Pearson's correlation analysis carried out (Table 8), there was association 

(a) amongst different metals and of these with CB138; (b) amongst ∑HMWPAHs; and (c) between 

musk fragrances and of these with CB52. Radar plots, constructed as above detailed, were used to 

illustrate the pollutant profile in Colombian oyster tissues (Fig. 6). It can be observed that pollutant 

levels were higher in the dry season than in the rainy season. Isla Brujas was the locality most 

influenced by PAHs. Musk fragrances gained relevance in the dry season in all localities, 

especially in Taganga. PCBs and OCPs lacked any relevance in the pollutant profile of Colombian 

oyster tissues.  
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Fig. 5. (a) Chemical Pollution 
Index (CPI) in oysters from 
Nicaragua. CPI is categorized into 
three groups: ‘low pollution’ when 
CPI ≤ 0, ‘moderate pollution’ when 0 
< CPI ≤ 1 and ‘high pollution’ when 
CPI > 1 (according to Bellas et al., 
2011; 2014). (b) Pollution Load 
Index (PLI) derived from the tissue 
concentrations of pollutants in 
oysters from Nicaragua (Tomlinson 
et al., 1980). A PLI of 100 
correspond to very contaminated 
sites and a PLI > 50 requires a 
potential risk and moderate 
contamination (Angulo, 1996). 
Letters (a and b) indicate significant 
differences between groups (p<0.05) 
after the Z-score test. RS, rainy 
season; DS, dry season. 
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Positive CPI values (<1) were only recorded in Isla Brujas in the rainy season (Fig. 7a), with 

As, Cd, benzo[a]anthracene, chrysene and benzo[ghi]pyrene as  the main pollutants contributing 

to this CPI value (SM 1). PLI values were always <50, although PLI recorded in Isla Brujas at the 

rainy season was 44.0, and PLI values recorded in the dry season in Isla Brujas and Isla Maparadita 

were, respectively, 19.9 and 11.1 (Fig. 7b). Cadmium, benzo[a]anthracene, chrysene and 

benzo[ghi]pyrene were found to be the major contributors to PLI in Isla Brujas in the rainy season 

whilst in the dry season, the main contributors in both Isla Brujas and Isla Maparadita were HHCB, 

phenathrene and Cd (SM 2). 

4. DISCUSSION 
4.1. Metals 

In Nicaragua, metal tissue concentrations in mangrove cupped oysters were low, according to 

proposed criteria for oysters and mussels (Silva et al., 2003, Kimbrough et al., 2008, Alfonso et 

al., 2013, Solaun et al., 2013), with some exceptions. Mercury was found at moderate levels in the 

dry season and in Punta Lora during the rainy season and at high levels in Half Way Cay and 

Pigeon Cay during the rainy season. This can be attributed to the presence of artisanal gold mining 

upstream the Escondido River (Dumailo, 2003; MARENA, 2010), which is a major source of Hg 

pollution (Cordy et al., 2011). Cadmium was found at intermediate levels in Punta Lora during the 

dry season, and Cu at intermediate levels in all the localities. Urban runoff and sewage are typical 

sources for these metals, especially when there is no sanitation system, as is the case (Silva et al., 

2001). In addition, antifouling paints, widely used because navigation is the main transportation 

means in the area, are a potential source for Cu (Wallner-Kersanach et al., 2000). Overall, metal 

tissue concentrations were higher in Half Way Cay than in Punta Lora during the rainy season, 

which is consistent because Half Way Cay is located at the sediment deposition zone of the lagoon, 

whilst Punta Lora is along the outflow of the secondary channel of the lagoon. In Colombia, the 

tissue concentration of As, Cd, Cr, Cu and Zn in oysters was relatively high when compared with 

concentration reported in other Caribbean localities (Campos, 1990; Silva et al., 2001; Cogua et 

al., 2012). In addition, tissue concentration of Hg in Marina Santa Marta during the dry season, 

and the tissue concentration of Pb in Isla Barú and Isla Brujas in the rainy season and in Marina 

Santa Marta and Taganga at both seasons were moderate (Kimbrough et al., 2008). Extremely high 

Cd tissue concentration were recorded in Isla Barú and Isla Brujas during the rainy season and in 
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Isla Maparadita at the dry season, whilst moderate-to-high levels were found in Isla Brujas during 

the dry season and in Isla Maparadita during the rainy season, according to NOAA criteria for C. 

virginica (Kimbrough et al., 2008). The values greatly exceeded those reported for C. corteziensis 

from coastal lagoons in Mexico (Wider Caribbean Region) as indicative of polluted areas (5.34 μg 

Cd/ g dry-wt; Frias Espiricueta et al., 2009). The presence of high levels of Cd in Isla Brujas and 

Isla Maparadita can be easily explained by the industrial activities carried out in these localities as 

well as by the influence of sediment loads received from the Dique Channel. Conversely, the 

concentration of Pb, Cr and Cd in seawater was determined to be below detection limits (Vivas-

Aguas et al., 2014), which suggests that these metals may be associated with sediments and 

particulate matter and therefore they could not be detected by seawater analysis. These findings 

highlight the need to use biomonitors for metal pollution assessment rather than seawater analysis, 

as established since the pionering proposal of Goldberg, (1975). Likewise, the high levels of Cd 

recorded in the Isla Barú oysters' tissues at the rainy season suggest that sediments and water of 

the Magdalena River are an important source of metal pollution, since metals were not detectable 

in seawater (Vivas-Aguas et al., 2014) but are detected in oyster tissues as a result of 

bioaccumulation.  

In Marina Santa Marta oysters, the tissue concentration of As, Cu and Zn can be considered 

moderate (Kimbrough et al., 2008), as well as Ni tissue concentrations in Taganga oysters in the 

dry season. The main source of metal pollution in this area are likely to be port activitie, since 

local metal industries and mining are absent (Vivas-Aguas et al., 2014). Thus, antifouling paints 

and vessel repair activities in the marina constitute the most likely sources of Cu and Zn in Marina 

Santa Marta (Wallner-Kersanach et al., 2000). The medium tissue concentration of As in Marina 

Santa Marta oysters and, more specifically, the high concentration of this metal recorded in 

Taganga oysters during the dry season are difficult to explain. According to geochemical data, As 

is a major potential pollutant in Colombia, as it is widespread throughout the country in the form 

of arsenopyrite associated with widely disseminated gold ores (Alonso et al., 2013). However, 

specific measurements carried out in sediments of the Ciénaga Grande de Santa Marta swamp 

revealed very low As concentrations (Perdomo et al., 1998). Nevertheless, Taganga cannot be 

considered a pristine reference site because together with musk fragrances (see below) and the 

metal aforementioned, also the tissue levels of Cr were moderately high (e.g., 6.39 μg Cr/g dry-wt 

in C. rhyzophorae fromTaganga vs. 1-1.8 μg Cr /g dry-wt in C. rhizophorae from the nearby 

central Venezuelan coast; legal limit for shellfish consumption is 5 μg Cr/g dry-wt). The most 
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probable source of As, musk fragrances and Cr are municipal wastewater discharges from Santa 

Marta that are delivered into Taganga Bay via a submarine outfall.  On the other hand, Cd and Pb 

tissue concentration in oysters were low, in agreement with the low concentration of these metals 

detected in seawater during the study period (Vivas-Aguas et al., 2014). 
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Fig. 7. (a) Chemical Pollution Index (CPI) in oysters from Nicaragua (a) and Colombia (b). CPI is 
categorized into three groups: ‘low pollution’ when CPI ≤ 0, ‘moderate pollution’ when 0 < CPI ≤ 1 and 
‘high pollution’ when CPI > 1 (according to Bellas et al., 2011; 2014). (b) Pollution Load Index (PLI) 
derived from the tissue concentrations of pollutants in oysters from Colombia (Tomlinson et al., 1980). A 
PLI of 100 correspond to very contaminated sites and a PLI > 50 requires a potential risk and moderate 
contamination (Angulo, 1996). Letters (a and b) indicate significant differences between groups (p<0.05) 
after the Z-score test. RS, rainy season; DS, dry season. 
 

Seasonality. Both in Nicaragua and Colombia, metal tissue concentrations were higher at the 

rainy season than at the dry season, except in Taganga where the tissue concentrations of Al, As, 

Cr, Ni, Ti and V were higher in the dry season than in the rainy season. In contrast, the 

concentrations of Cd, Cr and Pb in seawater from Cartagena Bay and Barbacoas Bay were lower 

in the rainy season in 2012 than in the dry season in 2013 (Vivas-Aguas et al., 2014). It is 

conceivable that greater loads of suspended matter during the rainy season contribute to enhanced 

metal uptake and accumulation (Rebelo et al., 2003). Thus, Rebelo et al., (2003) found that the 

tissue concentration of Cd and Zn were the highest during the rainy season in C. rhizophorae from 

Sepetiba Bay (Brazil) and Alfonso et al., (2013) reported that the tissue concentrations of Al, Cd 
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and Ni were highest during the rainy season in C. rhizophorae from Buche and Mochima estuaries 

in Venezuela. Likewise, the highest tissue concentration of Pb and Zn was recorded in the rainy 

season of C. gigas and C. cortezienzes (Jara-Marini et al., 2008; Osuna-Martínez et al., 2011). 

However, contradictory patterns have been reported regarding seasonality of metal tissue 

concentrations in mangrove oysters. The Pb tissue concentration was higher in the dry season than 

in the rainy season in mangrove cupped oysters from Trinidad and Tobago (Kanhai et al., 2014) 

and in mangrove oysters C. cortezienzes from the Gulf of California (Páez-Osuna and Osuna-

Martínez, 2015); and Amado-Filho et al., (2008) did not find any significant difference in metal 

tissue concentrations between rainy and dry seasons in mangrove cupped oysters from Todos os 

Santos Bay (Brazil). In these cases, seasonal trends would depend on the local variability in 

hydrodynamics of sediment particles, independently of the season (Rebelo et al., 2003). For 

instance, Páez-Osuna and Osuna-Martínez, (2015) concluded that for the majority of the metals 

the tissue concentration in mangrove oysters from the Gulf of California coastal lagoons was 

greater during the dry season than during the rainy season due to regionally relevant upwelling; 

whilst for Hg, high levels in the rainy season were associated with transport of materials from the 

watershed to the lagoon. 

4.2. Polycyclic Aromatic Hydrocarbons (PAHs) 

Tissue concentrations of PAHs reported in bivalves from Nicaragua within the framework of 

the International Mussel Watch are in the range of <100 ng/g for ∑PAHs (Sericano et al., 1995). 

In the present study, slightly higher concentrations were found for total PAHs except for Punta 

Lora in the rainy season. Nevertheless, the tissue levels of total PAHs recorded can be regarded as 

low (e.g., in C. virginica, values of ∑PAHs in the range of 47-828 ng/g are considered low; 

Kimbrough et al., 2008). In the case of Colombia, the values of ∑PAHs recorded in all the localities 

in the rainy season and in Isla Barú and Marina Santa Marta in the dry season were around or 

below the range of <100 ng/g (Sericano et al., 1995). As a striking exception, oysters from Isla 

Brujas had much higher PAH concentrations (presenting medium levels according to Kimbrough 

et al., 2008). Isla Brujas is located in the vicinity of an oil refinery and terminal, as well as the 

Mamonal complex and, most relevantly, it receives direct sediment input from the Dique Channel. 

In agreement, the same location has been reported to present the highest concentrations of 

dissolved and dispersed hydrocarbons in seawater during the study period, especially in the rainy 

season (Vivas-Aguas et al., 2014). ∑PAHs were >100 ng/g in all the localities in the dry season; 
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however, the values recorded can be considered low according to the criteria of Kimbrough et al., 

(2008). Similarly, total PAHs in C. rhizophorae tissues were in the range of 109-362 ng/g dry-wt 

in Trinidad and Tobago (Kanhai et al., 2015) and in the range of 66.8-240.7 ng/g dry-wt in 

Guadeloupe in the Lesser Antilles (Ramdine et al., 2012). However, a potential risk cannot be 

disregarded (Neff et al., 2005) neither in Nicaragua nor in Colombia; as potentially carcinogenic 

PAHs (PAHHMW; IARC, 1987) were recorded in Nicaragua (except in Punta Lora in the rainy 

season) and in Isla Maparadita and Marina Santa Marta and, most outstandingly, in Isla Brujas in 

the rainy season. On the other hand, PAH tissue concentrations were considerably greater in the 

dry season than in the rainy season, especially in Punta Lora for phenanthrene and pyrene, and in 

all the Colombian localities for phenanthrene.  

Regarding the likely origin of the PAHs, the diagnostic ratios Phe/Ant and Flr/Pyr (Neff et 

al., 2005) could not be calculated as some of the compounds were below detection limits. Instead, 

the ratio of LMWPAHs to HMWPAHs was used as chemical indicator of the petrogenic vs pyrolytic 

origin the PAHs (Baumard et al., 1998; Soclo et al., 2000). The ratio was >1 in Punta Lora and in 

Marina Santa Marta in the rainy season, indicating a predominant petrogenic origin whilst it was 

<0.65 in Half Way Cay and Pigeon Cay at both seasons and, most markedly, in Isla Brujas and 

Isla Maparadita in the rainy season. These results revealed a pyrolytic origin of the PAHs in these 

localities. In Punta Lora in the dry season, both petrogenic and pyrolytic sources of PAHs seem to 

be superimposed, as the value of LMWPAHs/HMWPAHs was close to 1. PAH isomer pair ratios are 

indicative of whether PAHs are derived from biomass, coal, and petroleum combustion (Yunker 

et al., 2002; Oros and Ross 2005). Thus, Ind/(Ind+B[ghi]P) isomer pair ratio (Yunker et al., 2002; 

Oros and Ross 2005) showed that in mangrove cupped oysters from Punta Lora in the dry season 

and in Pigeon Cay and Half Way Cay the PAHs were derived primarily from biomass and coal 

combustion (Ind/(Ind+B[ghi]P)=0.56-0.58). Meanwhile, this ratio indicated that petroleum 

combustion was the main source of PAHs in Isla Brujas in the rainy season 

(Ind/(Ind+B[ghi]P)=0.20-0.50; Oros and Ross, 2005). The likely source for these high PAH 

concentrations is the nearby oil refinery and asphalt plant (Mamonal industrial zone). The same 

approach was used to conclude that petroleum combustion was a major source of PAHs in San 

Francisco Estuary sediments and mussels and that only minor amounts of the PAHs in bivalves 

were derived from biomass (e.g., grasses, wood, and wood soot) and coal combustion (Pereira et 

al., 1999; Oros and Ross, 2004; 2005).  
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Seasonality. In Nicaragua, LMWPAHs were dominant (60% of the total PAHs) in mangrove 

cupped oysters from Punta Lora at the rainy season whilst LMWPAH% values were below 35% in 

Half Way Cay and Pigeon Cay, and values in Punta Lora at the dry season reached 49%. Hellou 

et al., (1993) and Gaspare et al., (2009) associated the dominance of LMWPAHs to waterborne 

exposure, contrasting with dominance of HMWPAHs for exposure through sediment and suspended 

matter. According to these criteria, Punta Lora oysters were exposed predominantly to waterborne 

PAH fractions in the rainy season and those from Half Way Cay and Pigeon Cay in Nicaragua in 

both seasons. Interestingly, Punta Lora in the dry season seemingly constituted an intermediate 

case, with oysters exposed to a mixture of water-borne and sediment or suspended matter 

associated compounds (LMWPAHs = 48% of PAHtotal). In Colombia, LMWPAH% values were below 

35% in all the localities in the rainy season (in Taganga it could not be calculated) and in Isla 

Maparadita in the dry season, indicating that oysters were exposed predominantly to waterborne 

PAH fractions, according to the criteria proposed by Hellou et al., (1993) and Gaspare et al., 

(2009). Conversely, in Isla Brujas in the dry season (LMWPAHs = 48% of PAHtotal) oysters were 

seemingly exposed to a mixture of waterborne and sediment or suspended matter associated PAH 

compounds. 

4.3. Persistent Organic Pollutants (POPs) 

Organochlorine pesticides (OCPs). HCHs and DDTs are common pollutants in coastal areas 

and estuaries resulting mainly from agricultural practices and insect control (de Brito et al., 2002), 

which seems to be the case of Nicaraguan Caribbean mangroves. Bluefields Lagoon receives water 

load from the Escondido River basin, where corn, banana, sugarcane, oil palm and coconut 

intensive agriculture has promoted the elevated application of pesticides for the last 50 years (GEF-

REPCar, 2011; Ebanks-Mongalo et al., 2013). In agreement, dieldrin, DDTs and terbufos were 

recently found in water, sediment and mangrove cupped oysters from Bluefields at concentrations 

over environmental quality criteria (Ebanks-Mongalo et al., 2013). Likewise, high concentrations 

of HCHs and DDTs have been reported in water and sediments in other Nicaraguan Caribbean 

localities (GEF-REPCar, 2011). The use of DDTs is banned but public health institutions have 

permission to use DDT for sanitation purposes and DDT derivatives are released to the 

environment, especially in the rainy season, to fight against mosquitoes (Bodin et al., 2011). Thus, 

∑DDT in C. virginica from Coastal Lagoons in the Gulf of Mexico was highest in rainy season, 

when runoff transports DDT previously applied to nearby crop fields and urban areas (Castañeda-
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Chávez, 2011). The levels of total DDTs recorded herein are higher, especially in Punta Lora in 

the rainy season, than the ∑DDTs reported in bivalves from Nicaragua within the framework of 

the International Mussel Watch (<10 ng/g dry-wt; Sericano et al., 1995). Likewise, they are much 

higher than in crab eggs (C. granulate) from impacted mangroves in Guanabara Bay at Brazil (98 

ng/g dry-wt; de Souza et al., 2009). However, the values of ΣDDTs recorded are lower than those 

recorded in other areas; e.g. ΣDDTs of 156.2 ng/g dry-wt were reported in mangrove cupped 

oysters from the vicinity of Paranaguá City (Liebezeit et al., 2011) and ∑DDT as high as 864 ng/g 

dry-wt was reported in freshwater snails from Hanoy City water canals (Nhan et al., 2001). The 

predominance of DDE amongst DDT and its derivatives indicates that exposure is chronic or at 

least long lasting (Castañeda-Chávez, 2011). In agreement, DDE was a major contributor to the 

DDT in oysters from Paranaguá City, as these were chronically affected by sewage discharge. 

Alike, DDE was the main POP compound found in tissues of oysters, C. virginica and C. 

rhizophorae, from Términos lagoon at the Gulf of Mexico (Carvalho et al., 2009a; 2009b) and in 

mussels, Perna perna, from Brazilian bays (Galvao et al., 2014). Therefore, the high levels of 4.4-

DDE found in oysters from Half Way Cay and, most outstandingly, in those from Punta Lora, 

suggest that the source of DDTs is most likely long-lasting and uninterrupted. Likewise, significant 

levels of HCHs were recorded in Nicaraguan mangrove cupped oysters, which were of lower 

magnitude than the DDT levels, especially in Punta Lora in the rainy season. As pointed out by 

Nhan et al., (2001), who also found lower tissue concentrations of HCHs than of DDTs in 

freshwater snails from water canals in the region of Hanoi, there is no reason to believe that the 

amounts of HCHs used as pesticide have been lower than those of DDT. However, the solubility 

in water of HCHs is much higher and their half-lives much shorter than in the case of DDT and, 

therefore, the average environmental levels are lower in the long term. Nevertheless, the values of 

∑HCHs were similar to those reported in C. virginica and C. rhizophorae from Mexico (3-32 ng/g 

dry-wt; Carvalho et al., 2009a) and in bivalves from the Wider Caribbean region (12 ng γ-HCH/g 

dry-wt; Van Lavieren et al., 2011) but higher than those found in tissues of oysters from Senegal 

(1 ng /g dry-wt; Bodin et al., 2011) and in freshwater snails, Angulyagra sp. from water canals in 

the region of Hanoi (0.51 ng /g dry-wt; Nhan et al., 2001).  

On the other hand, OCPs were below detection levels in the tissues of oysters collected from 

the Colombian localities in both seasons. In the early 2000's, DDT and its metabolites, heptachlor, 

aldrin and HCHs were widespread pollutants in surface waters in Santa Marta Bay as the result of 

runoff from upstream plantations of coffee and banana, but in the recent decade these chemicals 
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have been below detection limits in tributary rivers as result of regulatory restrictions for the use 

of these OCPs (Vivas-Aguas et al., 2014). Similarly, a marked reduction in the OCP levels in 

seawater and sediments have been recorded in Cartagena Bay and Barbacoas Bay during the last 

decade (Vivas-Aguas et al., 2010). Thus, in the studied Colombian localities, OCP concentrations 

in surface waters were below detection limits in the 2012-2013 rainy and dry seasons (Vivas-

Aguas et al., 2014), in agreement with our present records of OCP tissue levels in mangrove 

cupped oysters.  

Chlorpyrifos. Chlorpyrifos is a broad spectrum organophosphate insecticide widely used on 

food crops; however few data are available about its concentration in marine biota. The range of 

chlorpyrifos in the tissues of marine bivalves along the US coast, including oysters (C. 

rhyzophorae and other species) and mussels, ranges from "non-detected" to 53 ng/g dry-wt, with 

a regional average of 0.78 ng/g dry-wt (Wade et al., 1998). In the present study, this 

organophosphate pesticide was only detected in Nicaraguan mangrove cupped oysters (in Half 

Way Cay in the dry season and Pigeon Cay in the rainy season) in the range of 5-11 ng/g dry-wt 

and not in the Colombian localities. In agreement, chlorpyrifos was recorded in sediments and 

mangrove cupped oysters from Bluefields in the 2011 rainy season (Ebanks-Mongalo et al., 2013) 

but not in surface waters of Cartagena Bay in the 2012-2013 period (Vivas-Aguas etal., 2014). 

Thus, in Nicaraguan Caribbean mangroves, high levels of chlorpyrifos seem to be associated with 

currently ongoing agricultural practices. In Colombia, however, this organophosphate pesticide 

was detected in previous years at toxic levels in surface waters influenced by the Dique Channel 

input (intensive agriculture in the Magdalena River basin) and by agrochemical industry sited at 

the Harbour area (Vivas-Aguas et al., 2010); with very high levels in the 2011 rainy season but 

below detection limits in the 2012-2013 period (Vivas-Aguas et al., 2014). It seems that the 

environmental levels of this pesticide can be highly erratic with transient peaks after recent 

application or discharges followed by low levels after a while. Indeed, chlorpyrifos has low 

solubility in water (thus it is usuallyassociated to suspended organic matter) and a relative short 

half-life (approx. 7 days), and is volatile in water and metabolised by aquatic animals (Serrano et 

al., 1997). Consequently, the absence of a seasonal or geographical pattern can be associated to 

changes in the application and timing, so that detectable tissue concentrations might correspond to 

samples collected just after recent applications of the pesticide, as suggested by Wade et al., 

(1998). Nevertheless, this should not be overlooked because short pulses of chlorpyrifos can exert 

long-term toxicity to marine invertebrates (CCME, 2008). 
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Musk fragrances. Synthetic musks are ubiquitous contaminants in the marine environment. 

Galaxolide (HHCB) and Tonalide (AHTN) are the major musk fragrances in sewage discharged 

into estuaries. The tissue concentration of musks recorded in Isla Barú, Isla Brujas and Isla 

Maparadita in the rainy season are within the range of those previously reported for marine 

molluscs (e.g., <12 ng/g dry-wt for HHCB and <17 ng/g dry-wt for AHTN in North Sea mussels; 

Rüdel et al., 2006). However, much higher concentrations were recorded in the dry season 

(interestingly, the top touristic season) in all the localities, in the range of 15-70 ng/g dry-wt for 

HHCB and 25-50 ng/g dry-wt for AHTN. Nevertheless, these values are still much below those 

recorded by for HHCB in mussels (1700 ng/g lipid = ~140 ng/g dry-wt; assuming 1% fat and 80% 

hydration) and clams (3000 ng/g lipid = ~240 ng/g dry-wt; assuming 1% fat and 80% hydration) 

from densely populated and industrialised zones of Canada (Gatermann et al., 1999).  The high 

HHCB and AHTN concentrations in Taganga Bay and Isla Brujas during the dry season are most 

probably due to wastewater discharges from nearby sewage outfalls.   

Polychlorinated biphenyls (PCBs). The levels of total PCBs recorded in Nicaraguan C. 

rhizophorae were lower than those recorded in crab eggs from impacted mangroves in Guanabara 

Bay in Brazil (570 ng/g dry-wt; de Souza et al., 2009) but higher than ∑PCBs reported in bivalves 

from Nicaragua within the framework of the International Mussel Watch (<10 ng/g dry-wt; 

Sericano et al., 1995) and for freshwater snails from the region of Hanoi (<60 ng/g dry-wt; Nhan 

et al., 2001). PCBs are essentially of industrial origin and therefore the tissue concentrations found 

in Nicaraguan mangrove cupped oysters are much lower than those found in harbors and industrial 

areas of industrialised countries (e.g., 2500 ng/g in mussels from Marseille harbor in France; 

Villeneuve et al., 1999). Nevertheless, remarkable tissue concentrations of CB28, CB118 and 

CB153 were recorded in all the Nicaraguan localities and seasons whilst CB52, CB101, CB138 

and CB180 were found at lower concentrations that were highest at the dry season and were 

especially high in Pigeon Cay. All these PCB congeners have been recognised as non- or poorly 

metabolised in molluscs and therefore they are bioaccumulated (Kannan et al., 1995; Nhan et al., 

2001). Similarly, CB28 and CB153 were the two individual PCBs recorded at highest tissue 

concentrations in brown mussels (Perna perna) from Southeastern Brazil bays (Galvao et al., 

2014). Data on seasonality are not conclusive. In the present study, no seasonal trend was observed 

for CB28, CB118 and CB153 tissue concentrations, but CB52, CB101, CB138 and CB180 peaked 

up at the dry season. In contrast, C. gasar collected from the Saloum Delta (Senegal) had 
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systematically higher PCB levels (by a factor of 2–3) during the rainy season compared to 

individuals sampled at the dry season (Bodin et al., 2011).  

Polybrominated diphenyl ethers (PBDEs). PBDEs are bioaccumulative halogenated 

compounds used as flame retardants in automobile, textile and, mainly, electronics industries 

(Kimbrough et al., 2009) and are considered to be emerging environmental contaminants. BDE85 

showed markedly high values in the rainy season in Pigeon Cay and Punta Lora, with values of 

total PBDEs in the range of 89-325 ng/g dry-wt. These values are much higher than previously 

reported in bivalves (Moon et al., 2007; Oros et al., 2007) and cannot be associated with a 

particular source at local scale. 

Seasonality. The tissue concentrations of HCHs, DDTs, chlorpyrifos, PCBs and PBDEs in 

Nicaraguan mangrove cupped oysters were higher in the rainy season than in the dry season, 

especially for ∑OCPs in Punta Lora. In contrast, the levels of POPs in Colombian mangrove 

cupped oysters were higher during the dry season than during the rainy season, especially in 

Marina Santa Marta and Taganga. It seems, therefore, that the seasonal trend in the tissue 

concentration of POPs is not the same in Nicaraguan and Colombian oysters. In C. gasar from 

Senegal, high tissue concentrations of POPs in the rainy season were attributed to recent inputs 

from the surroundings though rainfall and river runoff (Bodin et al., 2011). Likewise, POP tissue 

concentrations in C. virginica (lipid base) from Coastal Lagoons in the Gulf of Mexico were also 

highest in rainy season (Castañeda-Chávez, 2011). It is conceivable that high POP tissue 

concentrations in the rainy season are the consequence of enhanced runoff that transports POPs 

from crop fields and urban areas to receiving waterways. This can be especially relevant in tropical 

countries where rainfall is intense during the rainy season and intensive agricultural practices lead 

to a high input of pesticides over watersheds (Daam and Van Den Brink, 2010), like in the 

Nicaraguan mangroves, and less relevant in more industrial areas such as the Colombian mangrove 

system studied herein.  
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4.4. Pollution biomonitoring and assessment  

Principal Component Analysis of the tissue pollutant concentrations showed a 71% variance 

accounted for by 3 principal components (PC-1: 43%; PC-2: 17%; and PC-3: 11%; Fig. 8-10). 

Communality was high (>74%) for all the items. PC-1 was interpreted in terms of rural vs. urban 

sources of pollution, with high agricultural activities, aquatic transport and rural wastewater 

disposal in the positive part of its axis (with low-to-moderate scores but high correlation loadings 

for Ace, Acy, B[a]P, B[b]F+B[k]F, D[ah]A, Ind, γ-HCH, δ-HCH, β-HCH, 4.4-DDE, 2,4-DDT, 

CB28, CB118 and CB153) and urban pollutants in the negative part (with moderate scores and 

correlation loadings for Flr, AHTN and HHCB). PC-2 was interpreted in terms of metal pollution, 

essentially because scores for the tissue concentrations of Al, As, Cr, Ni, Pb, Ti, V and Zn were 

higher than the average (unlike for Cd and Ag), with high scores and high correlation loadings for 

Ni, Ti and V, and moderate scores and correlation loadings for Al, As, Cr, Pb, V and Zn. PC-3 

was interpreted as seasonality. It was not strongly correlated with any pollutant tissue 

concentration and only low-to-moderate scores and correlation loadings were found for Hg, B[a]A, 

B[ghi]P, Chr, Ind, Chlorpyrifos, HHCB, AHTN, CB52 and CD138. However, the tissue 

concentrations of these pollutants exhibited the most marked seasonal variability, especially in 

Colombia, where the samples (localities) were clearly discriminated between the positive and the 

negative part of the PC-3 axis. Thus, at least 3 consistent clusters were outlined upon combining 

pairs of PCs (Fig. 8-10). In the PC-2 vs PC-1 biplot (Fig. 8): (a) samples corresponding to 

Nicaraguan localities at both seasons were clustered lying very markedly towards the positive part 

of PC-1, characterized by moderate loading (values) of the oyster tissue concentrations of  PAHs, 

OCPs and PCBs (CB28, CB118 and CB153), (b) samples from Marina Santa Marta and Taganga 

at both seasons were clustered at the centre of the top left quadrant around moderate-to-high 

concentrations of metals such as As, Cr and Pb, and (c) samples from Isla Barú during the dry 

season were clustered nearby moderate levels of musk fragrances. In addition, samples from Isla 

Brujas and Isla Maparadita at the dry season were clearly discriminated from any other sample, 

being located towards the extreme bottom left quadrant (high levels of Flr and moderate-to-high 

of Cd, and Phe). In the PC-3 vs PC-1 biplot (Fig. 9), the Nicaraguan cluster remained as in the 

previous biplot but samples from Colombia appeared in two clusters: (a) rainy season samples in 

the top left quadrant, together with the highest loading values for Cd and Flu in Brujas and to a 

lesser extent in Isla Maparadita and Marina Santa Marta; and (b) dry season samples in the top left 

quadrant, together with the high loading values for AHTN and CB52, and moderate values for As, 
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Phe and HHCB. Finally, the PC-3 vs PC-2 biplot (Fig. 10) discriminated all the samples both by 

location and season, although the loadings were in most of the cases low-to-moderate and only the 

28% of the variance was accounted for. Samples from Marina Santa Marta and Taganga were 

clustered depending on the season, with moderate-to-high loadings for metals with less (e.g., Al, 

As, Cr, Ni, Pb, Ti, V and Zn) and more (e.g., As and Hg) marked seasonal trends. Samples from 

Barú, Brujas and Maparadita during the rainy season appeared in a cluster associated to Chr, B[a]A 

and B[ghi]P and to a lesser extent to Cd, Ant, Flu and Ind). Finally, samples from Isla Barú, Isla 

Brujas and Isla Maparadita during the dry season and Pigeon Cay during the rainy season were 

distributed in the bottom left quadrant, without a clear pollutant profile as, except for AHTN and 

CB52, correlation loadings are low-to-moderate.  

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 8. Principal Component Analysis of the tissue pollutant distributions for oysters, C. rhizophorae, 
sampled in the Nicaraguan and Colombian Caribbean in the rainy and the dry season. Samples and variables 
are shown in biplots of combinations of two principal components identified (PC-2 vs PC-1). Four clusters 
can be distinguished in biplot among the samples and are related to the tissue pollutant distributions in 
oysters. RS, rainy season; DS, dry season. 
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Fig. 9. Principal Component Analysis of the tissue pollutant distributions for oysters, C. rhizophorae, 
sampled in the Nicaraguan and Colombian Caribbean in the rainy and the dry season. Samples and variables 
are shown in biplots of combinations of two principal components identified PC-3 vs PC-1. Three clusters 
can be distinguished in biplot among the samples and are related to the tissue pollutant distributions in 
oysters. RS, rainy season; DS, dry season. 

 

 

 

 

 

 

 

 

 

Fig. 10. Principal Component Analysis of the tissue pollutant distributions for oysters, C. rhizophorae, 
sampled in the Nicaraguan and Colombian Caribbean in the rainy and the dry season. Samples and variables 
are shown in biplots of combinations of two principal components identified PC-3 vs PC-2. Three clusters 
can be distinguished in biplot among the samples and are related to the tissue pollutant distributions in 
oysters. RS, rainy season; DS, dry season. 
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In summary, based on the determination of pollutant tissue levels in C. rhizophorae, the 

present study revealed that the pollution profile was different between the two studied 

geographical areas, Nicaragua and Colombia; as shown by both radar plot pollution profiles (Fig. 

4 and 6) and PCA (Fig. 8-10). Likewise, the levels of pollutants were different, which was clearly 

reflected in the CPI and PLI values (Figs. 5 and 7), which were significantly correlated to each 

other following a linear regression model (Fig. 11). Therefore, CPI and PLI seem to be fully 

comparable integrative estimates of pollutants' levels. In addition, seasonality was a crucial factor 

affecting contamination profiles and concentrations and seemed to indicate seasonal variability in 

physicochemical properties of mangrove ecosystems as well as on diversification of human 

activities and practices (e.g., pest control, sanitation, tourism) between the rainy and the dry 

season, rather than the oysters' reproductive cycle (Chapter 2).  

Overall, low tissue concentrations of metals (except Hg) and PAHs, moderate-to-high tissue 

concentrations of Hg, HCHs, DDTs, detectable levels of chlorpyrifos, PCBs (mainly CB28, 

CB118, CB138 and CB 153) and BDE85 (in Pigeon Cay) and negligible levels of musks were 

recorded in Nicaraguan oysters. Conversely, a distinct profile of POPs was identified in Colombia, 

where the tissue concentrations of HCHs and DDTs were practically negligible, chlorpyrifos and 

PBDEs were below detection limits, and the tissue levels of PCBs were low (CB28 in the rainy 

season in Isla Brujas, Isla Maparadita and Marina Santa Marta; and CB52 in all the localities at 

the dry season). In contrast, noticeable tissue concentrations of musk fragrances were recorded in 

all the localities in the dry season, and the levels of Ag, As, Cd, Pb, and PAHs in several localities 

and in particular seasons ranged from moderate to extremely high. In tissues of C. rhizophorae 

from the Wider Caribbean Region (including Mexico, Jamaica and Trinidad) mean values of 12 

ng γ-HCH/g dry-wt, 4 ng PCBs/g dry-wt and 1 ng 4,4-DDE/g dry-wt have been reported (Van 

Lavieren et al., 2011). The values recorded in Nicaraguan mangrove cupped oysters largely 

exceeded these references, whereas only the levels of PCBs were occasionally surpassed in 

Colombia. These profiles and levels of pollutants are useful to identify potential pollution 

problems and pollutant sources in the studied regions but they do not provide reliable indication 

of the deleterious effects that these pollutants may exert to biota and ecosystems, as recommended 

for pollution monitoring programs (OSPAR Commission, 2013). For this reason, biological effects 

assessment was carried out in a parallel investigation aimed at relating oyster health condition to 

pollutant tissue levels (Chapter 2). 
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Fig. 11. Linear regression of PLI against CPI. RS, rainy season; DS, dry season. 

In conclusion, mangrove cupped oysters, C. rhizophorae, are suitable biomonitors for 

assessing pollution levels in Caribbean mangroves, including diverse habitats such as lagoons and 

swamps and over a wide geographical coastal region from Nicaragua to Colombia. Nevertheless, 

seasonality is crucial to properly design and conduct pollution monitoring programmes. National 

and regional monitoring programmes in the WCR such as IMA in Trinidad and Tobago (Siung-

Chang, 1997), GIWA in the WCR (UNEP, 2006) and REDCAM in Colombia (Vivas-Aguas et al., 

2014) would be greatly improved by including measurement of  tissue  concentrations of chemical 

pollutants in mangrove cupped oysters  in addition to measurements of the levels of pollutants in 

water and sediments, as regularly done in other regions of the world such as Pacific Asia, Europe, 

Canada and the USA (Monirith et al., 2003; Kimbrough et al., 2008; Zampoukas et al., 2014). 
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Abstract: This investigation was aimed at contributing to develop a suitable multi-biomarker 
approach for pollution monitoring in Caribbean mangroves and coastal zones using as sentinel species the 
mangrove cupped oyster, Crassostrea rhizophorae. A pilot field study was carried out in 8 localities (3 in 
Nicaragua and 5 in Colombia) subjected to different levels and type of pollution. Samples were collected 
in the rainy and dry seasons in 2012-2013. The biological effects at different levels of biological complexity 
(stress on stress response, reproduction, condition index, tissue-level biomarkers and histopathological 
condition) were determined as indicators of health disturbance, integrated as IBR/n index, and compared 
with tissue burden of chemical pollutants in order to achieve an integrative biomonitoring approach. 
Though modulated by natural variables and confounding factors, different indicators of health disturbance 
alone and in combination were related to the presence of different profiles and levels of chemical pollutants 
present at low-to-moderate levels. Different mixtures of a variety of persistent (e.g., As, Cd, PAHs) and 
emerging chemical pollutants (e.g. musk fragrances)  in combination with different levels of organic and 
particulate matter resulting from upwelling and sewage discharges, and environmental factors (salinity, 
temperature) elicited a different degree of disturbance in ecosystem health condition in mangrove-lined 
Caribbean coastal ecosystems, as reflected in sentinel  C. rhizophorae. As a result, IBR/n was correlated 
with pollution indices such as PLI and CPI, even though the levels of biological anomalies used as 
indicators of health disturbance and the levels of pollutants were in general terms low-to-moderate in a real 
field situation influenced and modulated by biological variables and environmental factors that varied 
seasonally. Our study supports the use of simple methodological approaches to diagnose anomalies in the 
health status of mangrove cupped oysters from different localities and to identify potential causing agents 
and reflect disturbances in ecosystem health. Consequently, the easy methodological approach used herein 
is useful for the assessment of health disturbance in a variety Caribbean coastal ecosystems using mangrove 
cupped oysters as sentinel species.  
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Resumen: Esta investigación tuvo como objetivo contribuir a desarrollar un enfoque de multi-
biomarcadores apropiado para el monitoreo de la contaminación en manglares y zonas costeras del Caribe, 
usando como especie centinela la ostra de manglar Crassostrea rhizophorae. Se llevó a cabo un estudio 
piloto de campo en ocho localidades (tres en Nicaragua y cinco en Colombia) sujetas a diferentes niveles y 
tipos de contaminación. Se recolectaron muestras en las épocas de lluvia y seca del 2012 y 2013. Se 
determinaron efectos biológicos a diferentes niveles de complejidad biológica (respuesta de estrés-sobre-
estrés, reproducción, índice de condición, biomarcadores tisulares y condición histopatológica) como 
indicadores de perturbaciones en la salud, y se integraron en el índice IBR/n. Seguidamente dichos efectos 
biológicos se compararon con la carga tisular de contaminantes químicos con la finalidad de lograr un 
enfoque integral de biomonitoreo. Aunque modulados por variables naturales y factores de confusión, se 
relacionaron, por separado y en conjunto, diferentes indicadores de alteraciones de salud con los diferentes 
perfiles y niveles de contaminantes químicos, que estaban presentes a niveles entre bajos y medios. 
Diferentes mezclas de diversos contaminantes químicos persistentes (ejemplo: As, Cd, PAHs) y emergentes 
(ejemplo: almizcle sintéticos) en combinación con diferentes niveles de materia orgánica y particulada 
(proveniente de efluentes de aguas residuales, afloramientos) y diferentes factores ambientales (salinidad, 
temperatura), provocaron diferente grado de alteración en la condición de la salud de los ecosistemas 
costeros de manglares del Caribe, según se reflejó en la especie centinela C. rhizophorae. Como resultado, 
aunque los niveles de anomalía biológica usados como indicadores de la alteración de la salud y los niveles 
de contaminantes fueron, en términos generales, de bajos a medios en una situación real de campo y, 
además, estaban influenciados y modulados por variables biológicas y factores ambientales que variaban 
con la época, el IBR/n se correlacionó con los índices de contaminación PLI y CPI. Nuestra investigación 
confirma que pueden usarse enfoques metodológicos sencillos para diagnosticar anomalías en el estado de 
salud de la ostra de manglar, lo que sirve para identificar potenciales agentes causantes y reflejar 
perturbaciones en la salud del ecosistema. En consecuencia, este enfoque metodológico sencillo es útil para 
evaluar perturbaciones de la salud de diversos ecosistemas costeros del Caribe, usando la ostra de manglar 
como especie centinela.   
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1. Introduction 
Mangrove ecosystems are threatened by a combination of natural disasters, tourism, 

aquaculture, deforestation and chemical pollution (Ellison, 2004; Defew et al., 2005; Fernandez et 

al., 2007; Polidoro et al., 2010; Lewis et al., 2011; Bayen 2012). In mangroves of the Wider 

Caribbean Region (WCR, UNEP Regional Seas Programme), pollution monitoring programmes 

have been carried out since the 1970's to determine the concentrations of pesticides and other 

persistent organic pollutants (POPs), PAHs and metals in seawater, sediments, seafood and 

biomonitor species (Sericano et al., 1995; Rojas de Astudillo et al., 2005; Fernandez et al., 2007; 

Carvalho et al., 2009; Castañeda-Chávez 2011; Alfonso et al., 2013; Kanhai et al., 2014; 2015). 

Particularly, mangrove cupped oysters (Crassostrea rhizophorae) have been proposed as 

biomonitors for pollution monitoring in mangrove ecosystems (Nascimento et al., 1998; Wallner-

Kersanach et al., 2000; Rebelo et al., 2005; Silva et al., 2003; 2006; da Silva et al., 2005; Zanette 

et al., 2006; Valdez Domingos et al., 2007; Torres et al., 2012; Chapter 1).  

Nowadays, it is accepted that marine pollution monitoring cannot be sustained only by 

chemical data because these do not provide any indication of the deleterious effects exerted to 

biota and ecosystems by cocktails of pollutants in multiple stress scenarios (Cajaraville et al., 2000; 

Allan et al., 2006); consequently, it is recommended to include both chemical and biological 

effects endpoints in pollution monitoring programs (ICES, 2011; OSPAR Commission, 2013a). 

Amongst the most used biological effects endpoints, biomarkers are ‘‘early warning signals’’ 

useful to assess the biological effects exerted by mixtures of chemicals on sentinel species in 

complex environmental conditions (Cajaraville et al., 1993; Marigómez et al., 2006; 2013). Thus, 

biomarkers have recently become an integral component of environmental monitoring 

programmes in several countries (Schettino et al., 2012).  

To our knowledge, "biological effects" monitoring based on the biomarker approach is not 

currently being carried out in the Caribbean coastal zone. Although information about the 

biological effects exerted by chemical pollutants on mangrove oysters is gaining attention (Chung, 

1980; Alves et al., 2002; Rebelo et al., 2003; Zanette et al., 2006; 2008; Paixão et al., 2007; 

Maranho et al., 2012; Catharino et al., 2015), the monitoring capacities and facilities can be in 

many WCR countries far away from those required to conduct sophisticated and most-advanced 

biomarker-based monitoring using oysters as sentinels (Van Lavieren et al., 2011). However, as 

very recently stated by Blaise et al., (2016) the application of biomarkers is not necessarily 

inhibited by monetary and logistic constraints because effortless biomarkers can provide basic 
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knowledge on animal health and water quality and are technically achievable everywhere. 

Accordingly, and aware of the technical and logistic limitations (e.g., dealing with limited 

accessibility and difficulties for secure sample transportation and quality in situ processing), a 

toolbox of non-sophisticated and reliable biological effects endpoints was selected to assess the 

potential of the mangrove cupped oyster, C. rhizophorae, as sentinel for pollution monitoring in 

Caribbean mangroves and coastal zones. This toolbox included responses easy to measure at 

population and individual level and histopathological analyses; these latter allow scoring responses 

at systemic and tissue levels on the basis of cheap, solid and straightforward technology.  

The Stress-on-Stress (SoS) response has been recommended by ICES (2012) for monitoring 

programmes as an indicator of mussel health status (Hellou and Law, 2003; Pampanin et al., 2005). 

Further on, the successful application of SoS response as biomarker for environmental monitoring 

has been extended to other bivalve species, especially in sub-Arctic and temperate regions (Blaise 

et al., 2016). SoS response is a cost-effective test, in which the capacity of bivalves to survive on 

air is scored as a measure of resilience (Smaal et al., 1991; Veldhuizen-Tsoerkan et al., 1991; 

Viarengo et al., 1995; 2007; de Zwaan and Eertman 1996). It has been applied in the field to detect 

effects of urban discharges to estuarine and coastal waters using both native (Hellou and Law, 

2003; Pampanin et al., 2005) and transplanted mussels (Moles and Hale, 2003; de los Ríos et al., 

2013), as well as for assessing oil spill impact (Thomas et al., 1999) and in laboratory experiments 

(Veldhuizen-Tsoerkan et al., 1991; Eertman et al., 1995; Viarengo et al., 1995). It is not as sensitive 

as some core biomarkers of general stress (e.g. lysosomal membrane stability) but is more sensitive 

than others and its methodology is simple, rapid and low-cost (Viarengo et al., 1995).  

Flesh Condition Index (FCI) reflects the physiological status of bivalves (Orban et al., 2002; 

Strogyloudi et al., 2012) and it has been reported that it is reduced on exposure to metals and 

organic chemicals (Andral et al., 2004; Ivanković et al., 2005; Mubiana et al., 2006). SoS response 

and FCI were recognised amongst those effortless biomarkers easy to be applied without major 

monetary or logistic constrains (Blaise et al., 2016). 

Gamete development and gonad histopathology were included in the toolbox of biological 

effects endpoints because the gametogenic cycle is a backbone reference to understand health 

condition and the biological effects of pollutants, and because changes in normal gametogenic 

cycle and reproduction disturbances (e.g. intersex) are well-known biological effects of chemical 

pollutants (Wintermyer and Cooper, 2007; Ortiz-Zarragoitia and Cajaraville, 2010; 2011; 

Baussant et al., 2011). Finally, digestive gland histopathology was also incorporated into the 
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toolbox, as a wide range of contaminants, including metals, pesticides and PAHs, is known to 

provoke histopathological alterations in this tissue (Au 2004; Usheva et al., 2006; Aarab et al., 

2008; Kim and Powell, 2007; Kim et al., 2008; Bignell et al., 2011; Garmendia et al., 2011; Khan 

et al., 2015).  

Aimed at contributing to develop a suitable multi-biomarker approach for pollution 

monitoring in Caribbean mangroves and coastal zones using as sentinel species the mangrove 

cupped oyster, C. rhizophorae, a pilot field study was carried out in 8 localities (3 in Nicaragua 

and 5 in Colombia) subjected to different levels and type of pollution (Chapter 1). Samples were 

collected in the rainy and dry seasons in 2012-2013. Results dealing with the tissue levels of 

pollutants were published in a preceding paper (Chapter 1), in which the suitability of mangrove 

cupped oysters as biomonitors for the Caribbean mangroves and coastal zones was confirmed. In 

the present investigation, the biological effects at different levels of biological complexity (stress 

on stress response, reproduction, condition index, tissue-level biomarkers and histopathological 

condition) were determined, integrated as IBR/n index (Belaieff and Burgeout, 2002; Broeg and 

Lehtonen, 2006; Marigómez et al., 2013), and compared with tissue burden of chemical pollutants 

(Chapter 1) in order to achieve an integrative biomonitoring approach. 

2. Material and Methods 
2.1. Sampling sites and sample collection 

Different representative scenarios of mangrove ecosystems from the Caribbean were selected. 

In Nicaragua, subtidal (<1 m depth) oyster reefs were studied in two localities (Fig. 1): Bluefields 

(sampling sites: Punta Lora and Half Way Cay) and Pearl Lagoon (sampling site: Pigeon Cay). 

Punta Lora was considered as a prospective reference site (far away from urban settlements) whilst 

Half Way Cay and Pigeon Cay were selected as potentially polluted areas influenced by aquatic 

transport and urban discharges (GEF-REPCar, 2011; Ebanks-Mongalo et al., 2013). In Colombia, 

intertidal prop roots of mangrove trees were studied in Cartagena Bay and Barbacoas Bay (Fig. 2) 

and intertidal rocky shores in Santa Marta Bay (Fig. 3).  

In Cartagena Bay, a mangle islet 200 m north of Isla Maparadita (0.5 Km offshore the 

Terminal of Cartagena Port) and Isla Brujas were selected as seemingly polluted sites, as shown 

in previous studies (Vivas-Aguas et al., 2010; 2014). Isla Brujas is an islet adjacent to the industrial 

zone of Mamonal (oil refineries, petrochemicals, and asphalt, cement and smelting plants) that 
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also receives the direct impact of the Dique Channel. This channel was open 5 centuries ago to 

connect the Magdalena River with the Cartagena Bay for navigation and constitutes a major source 

of sediments and chemical pollution in the Cartagena Bay (Vivas-Aguas et al., 2014). In addition, 

Isla Barú in Barbacoas Bay was selected as a potential reference site; however, it also may be 

influenced by the Magdalena River to which it communicates by smaller channels via the Dique 

Channel since the 1950's (Gómez-Giraldo et al., 2009).  

In Santa Marta Bay, the Marina Santa Marta was selected as a sampling site subject to strong 

anthropogenic influence (Garcia et al., 2012), whereas the nearby Taganga Harbour was a priori 

considered as a reference site. Sampling was carried out over one year (2012-2013) in the rainy 

season (October 2012) and in the dry season (March 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Caribbean coastal maps from 
Nicaragua, showing the localities 
where oysters Crassostrea 
rhizophorae were collected in 2012-
2013. Nicaraguan coast: Pigeon Cay 
(12°21'42.50"N-83°38'32.11"W); Half 
Way Cay (11°59'58.73"N-
83°43'28.24"W) and Punta Lora 
(11°54'21.02"N-83°44'58.68"W).  

 



 
 

Results and Discussion 
 

121 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Environmental conditions and anthropogenic impact and contamination were different 

between Nicaraguan and Colombian coastal areas, as well as among localities within each study 

area (Table 1). Further on, the levels of pollutants in each locality were determined in a parallel 

study (Chapter 1). Briefly, low tissue concentrations of metals (other than Hg) and PAHs, 

moderate-to-high tissue concentrations of Hg, HCHs, DDTs, detectable levels of chlorpyrifos, 

PCBs and BDE85 (in Pigeon Cay) and negligible levels of musks were recorded in Nicaraguan 

oysters. The profile of POPs was different in the oysters from the Colombian localities where (a) 

the tissue concentration of HCHs, chlorpyrifos, PCBs and PBDEs were in the range of non-

Fig. 2. Caribbean coastal maps from 
Cartagena-Colombia, showing the 

localities where oysters Crassostrea 
rhizophorae were collected in 2012-

2013. Isla Barú (10°10'56.02"N-
75°38'21.74"W); Isla Brujas 

(10°19'59.07"N-75°30'47.24"W) and 
Isla Maparadita (10°22'21.09"N-

75°30'48.65"W) in Cartagena Bays. 

 

Fig. 3. Caribbean coastal maps from 
Santa Marta-Colombia, showing the 
localities where oysters Crassostrea 
rhizophorae were collected in 2012-

2013. Marina Santa Marta 
(11°14'31.59"N-74°13'05.24"W) and 

Taganga (11°16'07.68"N-
74°11'37.37"W) in Santa Marta Bay. 
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detected to low; (b) noticeable tissue concentrations of musk fragrances were recorded in the dry 

season; and (c) the levels of Ag, As, Cd, Pb, and PAHs in several localities ranged from moderate 

to extremely high. 

Up to 85 mangrove cupped oysters (Crassostrea rhizophorae) were collected per sampling 

site, of which 25 were used for the chemical assessment (Chapter 2) and the remaining 60 for 

biological effects analyses presented herein. Upon collection, oysters were placed in 15 L plastic 

boxes (2 individuals /L) in seawater at ambient temperature and transported to the laboratory (for 

3-6 h) before processing. Due to logistic problems, sampling could not be conducted in Pigeon 

Cay during the dry season. 

Table 1. Environmental conditions of Nicaraguan and Colombian coastal areas studied herein, including 
general traits of anthropogenic impact and pollution (Dumailo, 2003; Vivas-Aguas et al., 2013; Mancera-
Pineda et al., 2013; Chapter 1). SST, seawater surface temperature; DO, dissolved oxygen; SOM, suspended 
organic matter; SSP Suspended Solid Particles; HDD, dissolved hydrocarbons; OCP, organochlorate 
pesticides; NDA, no data avilable; (sed), in sediments; (wb); waterborne.  

 
Pigeon 

Cay 
(1) 

Half 
Way 

Cay (1) 

Punta 
Lora 

(1) 

Isla 
Barú 

(2) 

Isla 
Brujas 

(2) 

Isla 
Mapar. 

(2) 

Marina 
(2)  (3) 

Taganga 
(2) (3) 

SST  (ºC) RS 29 >30 >30 32 33 33 29-30 29-30 
DS 26 29 27 31 29 30 25-26 25-26 

Salinity (‰) 
RS 2 6 2 15 17 10 35 35 
DS 26 26 12 34 35 33 37 37 

pH 
RS NDA NDA NDA 8.7 8.2 8.2 8.2 8.3 
DS NDA 8.7 8.7 8.2 8.1 8.1 8.1 8.2 

DO (mg/L) 
RS MIN MIN MIN 7 11 11 4.5 6.5 
DS MAX 6 8 6 9 9 8 6 

SOM/SSP 
(mg/L) 

RS HIGH NDA NDA >250 <10 <10 20 10 
DS LOW NDA NDA >250 <10 <10 20 10 

Turbidity 
(m) 

RS HIGH HIGH 
(0.7) 

HIGH 
(0.7) 

HIGH+ HIGH MID MID+ MID+ 
DS LOW LOW LOW LOW LOW LOW 

NH4 (μg/L) 
RS NDA NDA NDA 250 150 200 7 18 
DS NDA NDA NDA 200 100 100 2 0 

Faecal 
Bacteria 

RS NDA ++ + ++ ++ ++ ++ + 
DS NDA + - - - - 

HDD (μg/L) 
RS NDA + (sed) - 8 13 4 4-6 <1 
DS NDA - - 11 6 <1 <1 

OCP (ng/L) 
RS NDA >150 

(sed) 
>150 
(sed) 

<30 
(wb) 

<30 
(wb) 

<30 
(wb) 

<30 
(wb) <30 (wb) 

DS NDA - - - - - 
Pb 
(wb)(μg/L) 

RS NDA NDA NDA 10 200 200 4.5 - 
DS NDA NDA NDA 30 50 100 - - 

 

(1) Dumailo (2003), (2) Vivas-Aguas et al., (2013) and (3) Mancera-Pineda et al., (2013) 
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2.2. Condition and histopathology 

2.2.1. Stress on Stress (SoS) test  

LT50 was calculated after the "survival-in-air" SoS test (Veldhuizen-Tsoerkan et al., 1991; 

Viarengo et al., 1995) performed on 30 oysters from each site and sampling period that were placed 

over wet paper on plastic trays at constant room temperature (34oC) and 100% humidity. Survival 

was assessed daily and oysters were considered to be dead when their valves gaped and failed to 

close when they were physically stimulated, or simply presented a bad smell (Pampanin et al., 

2005).  

2.2.2. Flesh Condition Index  

Two different methods were carried out to estimate the flesh condition index (FCI). In 

Nicaraguan oysters, shell cavity volume (SCV) was determined according to Rebelo et al., (2005). 

Briefly, moulds of the shell internal cavity were made using plasticine and introduced into a water-

filled glass column to verify water displacement. Displaced water dripped through a tap in the 

column and was collected in a Petri dish over a balance; through the water weight, SCV was 

calculated in ml. Soft parts from each individual were dried at 105ºC and weighed to the nearest 

0.1 mg on an analytical balance in order to calculate flesh dry-wt (FDW; Lobel and Wright 1982). 

Then, FCI was calculated (Scott and Lawrence 1982) as FDW/SCV = 100 × FDW (g)/SCV (ml). 

In Colombian oysters, FCI was determined as FDW/SDW, where SDW is the shell dry weight 

(dried at room temperature) according to Crosby and Gale, (1990). SDW was measured in g and 

shell length (L) was determined as the length in mm of the largest valve (the long axis measured 

to the nearest 0.1 mm with Vernier callipers; Dame, 1972). SDW and L were not determined in 

Nicaraguan oysters. However, estimates of these parameters were calculated on the basis of SCV 

values upon applying model functions (Cabrera-Peña et al., 1983; Crosby and Gale, 1990) adjusted 

to local population traits, as derived from direct SDW and L measurements carried out only in 

oysters collected in the three Nicaraguan localities in October 2013. As FCI was calculated by 

distinct approaches in Nicaraguan and Colombian oysters, it was decided to calculate FDW/L as 

an oyster FCI suitable for inter-regional comparisons. Moreover, using L as the reference to 

construct condition indices in oysters (e.g. FDW/L or FDW/L3; Hellou et al., 2003) overcomes 

uncertainties associated to unpredictable variations in SDW and difficulties resulting from 

inaccurate SCV determinations (Blaise et al., 2016).  
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2.2.3. Histology and histopathology  

Upon dissection of their soft body (N=20 oysters/sample), central cross-sectioned slices (3–5 

mm thick, including digestive gland, gonad (mantle) and additional tissues) were fixed in 

Davidson’s fixative for 48 h and paraffin embedded. Microtome sections (5 µm) were obtained 

using an automated rotary Leica RM 2255 microtome (Leica Microsystems, Nussloch, Germany), 

stained with haematoxylin-eosin and examined under the light microscope (Olympus BX61; 

Tokyo, Japan) for gamete development determination and histopathological diagnosis (Kim et al., 

2006). 

Gamete development and reproductive disturbance. Gamete developmental stages were 

examined microscopically. Slides of 20 oysters per sample were examined individually under the 

light microscope using 10× and 20× objective lenses. The sex of each animal was recorded and 

the total number of female and male oysters was calculated for each sampling time and locality, 

and with these data, the sex ratio was calculated for each sampling time and locality (Ortiz-

Zarragoitia et al., 2011). Further on, the sex ratio index (SRI) was calculated as the G value of 

females-to-males ratio (F:M) upon the gross assumption of theoretical F:M ratios (after Vélez, 

1982) of 2.3:1 in Nicaragua rainy season, 1:1 in Nicaragua dry season and Colombia rainy season 

and 0.75 in Colombia dry season. Intersex index (IXI) was calculated as the prevalence of intersex 

individuals at each locality and season.  

The prevalence of gamete developmental stages was determined upon scoring the maturity of 

the follicles and gametes according to Kim et al., (2006); and also a gonad index (GI) value was 

assigned (modified after Ortiz-Zarragoitia and Cajaraville 2010): 1 = undifferentiated (GI = 0); 2 

= early development (GI = 1); 3 = mid development (GI = 2); 4 = late development (GI = 4); 5 = 

full development (GI = 5); 6 = spawning (GI = 3); 7 = spawned (GI = 2) and 8 = spawned (GI = 

1). Gamete mass index (GMI) was calculated as the log ratio of the sum of the prevalence of 

developmental stages 2-5 (gonad tissue growth) to the sum of the prevalence of stages 6-8 (gonad 

tissue loss). Undifferentiated index (UDI) was estimated as the prevalence of stage 1. Oocyte 

atresia prevalence was recorded in female oysters and its intensity was scored (0-4) individually 

according to the scale for abnormal gonad development proposed by Kim et al., (2006) for mussels. 

Oocyte atresia index (OAI) was calculated by multiplying prevalence × intensity. Reproductive 

Anomalies Index (RAI) was calculated as weighted average of the deviation from the theoretical 

maximum anomalies of the specific indices of reproductive disturbance, according to the following 

formula: 
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𝑅𝑅𝑅𝑅𝑅𝑅 =
1
5

× �
𝐶𝐶𝐶𝐶 × 𝑆𝑆𝑅𝑅𝑅𝑅
𝑆𝑆𝑅𝑅𝑅𝑅50

+
𝐶𝐶𝐶𝐶 × 𝑅𝑅𝐼𝐼𝑅𝑅
𝑅𝑅𝐼𝐼𝑅𝑅50

+
𝐶𝐶𝐶𝐶 × 𝐺𝐺𝐺𝐺𝑅𝑅
𝐺𝐺𝐺𝐺𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

+
𝐶𝐶𝐶𝐶 × 𝑈𝑈𝑈𝑈𝑅𝑅
𝑈𝑈𝑈𝑈𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

+
𝐶𝐶𝐶𝐶 × 𝑂𝑂𝑅𝑅𝑅𝑅
𝑂𝑂𝑅𝑅𝑅𝑅50

� 

 

where CF=×100/1.6 (thus RAI changes between 0 and 100); SRI50=27.7 for a 50% deviation 

from the theoretical sex ratio; IXI50=50, when a 50% prevalence of intersex individuals occurs; (c) 

where GMImax=2, when 100% of the gametes are mature in absence of any sign of spawning; (d) 

UDImax=100, when 100% of the individuals do not present differentiated gametes; and OAI50=2, 

the median value of the scale for atresia scoring after Kim et al., (2006).  

Digestive gland histopathology. Slides of 20 oysters per sample were examined individually 

under the light microscope using 10×, 20× or 40× objective lenses. Parasites and histopathological 

alterations were scored using either quantitative or presence/absence scales (Kim et al., 2006). 

Intracellular ciliates, unidentified intracellular protists, Nematopsis sp., metazoans (trematodes, 

cestodes), Rickettsia/Clamydia-like organisms (R/CLO) and granulocytomas were recorded 

quantitatively following procedures previously described (Kim et al., 2006; Kim and Powell, 2007; 

Garmendia et al., 2010; 2011). Quantitative scores were made by keeping a running count of the 

incidences as the slide was scanned to avoid re-examination of each slide multiple times for each 

category. Haemocytic infiltration (without distinction between focal and diffuse), brown cell 

aggregates and disseminated neoplasia were scored as present/absent for each individual oyster 

(Zaroogian and Yevich, 1993; Kim and Powell, 2004). Prevalence and intensity of 

histopahological lesions were determined in Nicaragua, and prevalence in Colombia, according to 

Kim and Powell (2007) and Garmendia et al., (2011), as follows:  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑁𝑁.𝑃𝑃𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑎𝑎 𝑖𝑖𝑃𝑃𝑎𝑎𝑖𝑖𝑃𝑃𝑖𝑖𝑎𝑎𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖 × 100 

𝑁𝑁. 𝑃𝑃𝑒𝑒𝑃𝑃𝑒𝑒𝑖𝑖𝑃𝑃𝑃𝑃𝑎𝑎 𝑖𝑖𝑃𝑃𝑎𝑎𝑖𝑖𝑃𝑃𝑖𝑖𝑎𝑎𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖 
 

 

𝑅𝑅𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎𝐼𝐼 =
∑ (𝑁𝑁. 𝑜𝑜𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 𝑜𝑜𝑎𝑎 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎𝑃𝑃

𝑜𝑜𝑃𝑃 𝑝𝑝𝑃𝑃𝑎𝑎ℎ𝑜𝑜𝑃𝑃𝑜𝑜𝑜𝑜𝐼𝐼 𝑝𝑝𝑃𝑃𝑃𝑃 𝑖𝑖𝑃𝑃𝑎𝑎𝑖𝑖𝑃𝑃𝑖𝑖𝑎𝑎𝑖𝑖𝑃𝑃𝑃𝑃)
𝑛𝑛
𝑖𝑖=1

𝑁𝑁.𝑃𝑃𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑎𝑎 𝑖𝑖𝑃𝑃𝑎𝑎𝑖𝑖𝑃𝑃𝑖𝑖𝑎𝑎𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖
 

The inflammatory response index (IRI) was calculated as the sum of the prevalence values of 

oedema, granulocytomas and disseminated neoplasia. The parasitic infestation index (PII) was 

calculated as the sum of the prevalence values calculated individually for each of the 5 groups of 

parasites aforementioned. The digestive gland atrophy index (DGAI) was estimated according to 

Kim and Powell (2007).  
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2.3. Integrated Biological Response (IBR) 

IBR index was based on the integration of five biological responses from cellular to 

community levels (DGAI, IRI, FDW/L, RAI and 1/LT50) according to Beliaeff and Burgeot 

(2002), Broeg and Lehtonen (2006), and Marigómez et al., (2013). Calculations were based on a 

multivariate graphic method, according to the following procedure: (1) calculation of the mean 

and standard deviation for each sample; (2) standardization of data for each sample: xi’ = (xi-x)/s; 

where, xi’ = standardised value of the biomarker; xi = mean value of a biomarker from each sample; 

x = general mean value of xi calculated from all compared samples (data set); s = standard 

deviation of xi calculated from all samples; (3) addition of the standardised value obtained for each 

sample to the absolute standardised value of the minimum value in the data set: yi = xi’+|xmin’|; (4) 

calculation of the radar plot triangular areas as Ai = (yi x yi+1)/2, where ‘‘yi’’ and ‘‘yi+1’’ are the 

standardised values of each biomarker and its next one in the radar plot, respectively; and (5) 

calculation of the IBR index which is the summing-up of all the radar plot triangular areas 

(IBR=∑Ai) (Beliaeff and Burgeot, 2002). Since the IBR value is directly dependent on the number 

of biomarker in the data set, the obtained IBR value was divided by the number of biomarkers 

used to calculate IBR/n (Broeg and Lehtonen, 2006).  

2.4. Statistical analyses 

Statistical analyses were carried out with the aid of SPSS version 22 statistical package (IBM 

SPSS, Armonk, NY, USA). The normality distribution (Shapiro-Wilk’s test) and homogeneity of 

variance (Levene’s test) of data were determined before proceeding with subsequent analyses. Due 

to the high variability between individuals, even after normal distribution transformation of the 

data, non-parametric analyses were carried out. Significant differences in the prevalence of 

inflammatory responses and parasitic lesions, and in health disturbance (anomalies) indices were 

analysed by the Z score test. Survival values of SoS test were analysed with the non-parametric 

Kaplan-Meier analysis, followed by the Tarone-Ware post hoc test for comparisons between 

localities for each season and between seasons for each locality. Differences in SCV, L, SDW, 

FCI (FDW/SCV and FDW/SDW), DGAI and GI were determined by applying Kruskal–Wallis 

followed by Dunn’s post hoc test. Sex ratio bias was studied using the G test of association, 

comparing total number of female and male mussels and normalizing for theoretical gender bias. 

In all the tests used herein, significant differences were established at p<0.05. 
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3. Results 
3.1. Nicaragua 

Shell L, FDW, SCV and SDW were smaller (p<0.05) in Pigeon Cay than in Half Way Cay 

and Punta Lora in the rainy season; likewise, all these biometric parameters presented lower values 

(p<0.05) in the dry season than in the rainy season in the latter two localities (Table 2). Moreover, 

FDW was smaller in Half Way Cay than in Punta Lora at both seasons. A similar pattern was 

observed regarding condition indices. FSW/SCV, SDW/L and FDW/L values were lower in 

Pigeon Cay than in Half Way Cay and Punta Lora during the rainy season, lower in the dry season 

than in the rainy season in the latter two localities and smaller in Half Way Cay than in Punta Lora 

in the rainy season (Figs. 4a to 4c). 
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Fig. 4. Biomarkers of anomalies in oyster health indicative of disturbance in ecosystem health for the 
rainy and the dry seasons in Nicaraguan mangrove lagoons (Pigeon Cay, Half Way Cay and Punta Lora). 
Different letters denote statistically significant differences between localities and asterisk (*) indicate 
seasonal differences for a locality (p<0.05). SDW/L, shell growth index; FDW/SCV and FDW/L, condition 
indices. ‡, no data. 
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Table 2. Condition and histopathology of Crassostrea rhizophorae from shallow subtidal oyster reefs of 
Nicaraguan mangrove lagoons. Shell cavity volume, condition index and atrophy their values are mean ± 
standard error (n = 20). Sex Ratio Index = SRI's G value. The superscript letters (a, and b) indicate significant 
differences between groups (p<0.05). Asterisks (*) indicate seasonal difference for a locality (p<0.05); ♯, 
significantly different from the theoretical gender bias (Vélez, 1982) according to the G test (p<0.05). 1, 
estimated based on model functions. 

 
 

RAINY SEASON DRY SEASON 

Pigeon Cay Half Way 
Cay Punta Lora Half Way 

Cay Punta Lora 

Shell Length (L; mm)1 59.7±2.1a 79.9±2.6b 84.8±2.4b 70.4±4.0* 72.4±2.6* 

Flesh dry-wt (FDW; mg) 118.4±16.3a 296.1±22.6b 370.3±26.1b 113.3±16.3a* 149.5±13.9b* 

Shell Cavity Vol (SCV; ml) 4.9±2.5a 9.6±4.4b 10.9±4.3b 7.3±4.4* 7.4±2.8* 

Shell dry-wt (SDW; g)1 11.2±1.1a 24.0±1.8b 27.2±1.7b 18.4±2.5a* 18.6±1.6a* 

Sex ratio (Sex Ratio Index) 5.2:1♯ (3.91) 6.4:1♯  (5.74) 2.1:1♯ (0.09) 1:1.4* (0.01) 1.7:1*  (2.16) 

Intersex Index 0 0 0 0 0 

Gonad Index 3.5±0.2b 3.8±0.2b 3.3±0.1a 2.1±0.4a* 3.7±0.3b 

Gametogenic Mass Index 0.77 0.70 0.10 0.10 0.34 

Undifferentiated Index 0.05 0.08 0.00 0.00 0.00 

Oocyte Atresia Prevalence 0.387 0.406 0.222 0.000 0.333 

Oocyte Atresia Intensity 0.806±1.327 0.594±0.979 0.407±0.971 0.000a* 0.417±0.669b 

Oocyte Atresia Index 0.312  0.241  0.090  0.000 0.139 

Prevalence (oedema) % 18.5 35 2.5 89 44 

Prevalence (BCA) % 95 100 97.5 89 100 

Preval. (granulocytomas) % 5 0 0 0 0 

Preval. (diss. neoplasia) % 5 5 0 0 0 

Prevalence (ciliates) % 29 23.5 0 17 33 

Preval. (Underted. Prot.) %  2.5 10 0 11 17 

Prevalence (Total Prot.) % 31.5 33.5 0 28 50 

Preval. (Nematopsis) % (1) 97.5 76 25.5 89 39 

Prevalence (Metazoan) % 0 0 0 11 0 

Prevalence (R/CLO) % 0 0 0 0 10 
 

 (1) Intensity (individuals per section) = 62.5 (PC-RS); 12.5 (HC-RS); 9 (HC-DS); 2.5 (PL- RS); 2 (PL-DS) 
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Sex ratio values for each sampling location at each sampling time are shown in Table 2. 

Statistically significant bias in the sex ratio towards female condition (2.82:1; G value=8.65, 

p<0.05) was detected for the whole Nicaraguan population of mangrove cupped oysters in 

comparison with the theoretical sex ratio of 1.65:1 (resulting from the average between 2.3:1 (rainy 

season) and 1:1 (dry season) sex ratios). This bias towards female condition was also found in the 

rainy season (3.75:1; G value = 4.95, p=0.03) but not in the dry season (1.21:1; G value = 5.08, 

p=0.18), when a 22.5% of the oysters presented undifferentiated gonad. Indeed, the three studied 

localities showed a significant bias to females in the rainy season (Table 2). No intersex was 

recorded. Different gamete development stages were observed depending on the season and the 

locality (Figs. 5 and 6). In the rainy season, gamete development was delayed in Pigeon Cay in 

comparison with the other two localities, and most advanced in Punta Lora (Fig. 5). In the dry 

season, gamete development went more ahead in Half Way Cay than in Punta Lora (Fig. 5). 

Accordingly, significant differences (p<0.05) were observed in GI between seasons in Half Way 

Cay and between Half Way Cay and Punta Lora in both seasons (Table 2). In contrast, no 

differences in GMI and UDI were recorded (Table 2). The levels of oocyte atresia (Fig. 6c) 

recorded in both seasons in all the localities were similar except in Half Way Cay in the dry season, 

when no oocyte atresia was recorded (Table 2). As a whole, RAI reflects only a low-to-moderate 

(<10) reproductive disturbance in Pigeon Cay and Half Way Cay, mainly featured by deviations 

in the expected SRI and GMI values (Fig. 7a). 
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Fig. 5. Gamete development stages of oyster Crassostrea rhizophorae collected from Nicaragua at the 
rainy and the dry seasons. ‡, no data. 

 

Histopathological examination revealed the presence of a variety of parasites such as 

intracellular ciliates, undetermined intracellular protists, Nematopsis sp., trematodes and 

Rickettsia/Clamydia-like organisms (R/CLO) (Fig. 8). Some parasites had a local impact such as 
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metazoans (Half Cay in dry season) and R/CLO (Punta Lora in dry season) (Fig. 8g and i). Other 

parasites such as the unidentified intracellular protists were found sporadically (Fig. 8e). 

Ostensibly, parasite prevalence was low in Punta Lora in the rainy season and PI was higher in 

Half Way Cay than in Punta Lora all over the year (Table 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Light micrographs of gonad sections and intersex individuals of Crassostrea rhizophorae. a) 
normal gonad of a male; b) normal gonad of a female; c) female from Half Way Cay with atretic oocytes; 
d) male from Brujas with intersex; e) female from Marina with intersex; f) female from Barú with intersex. 
AO, atretic oocytes; EO, early oocyte; GO, growing oocyte; DO, degenerated ovum; RO, ripe ovum; SG, 
spermatogonia; SC, spermatocytes; CT, connective tissue; MF, mature follicles; ♀, female germ cells; ♂, 
male germ cells.  
 

Nevertheless the intensity of parasitic infestations was generally low. It is worth noting that 

intracellular ciliates (Fig. 8f) and Nematopsis sp. (Fig. 8h) presented the highest prevalence values 
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all along the study period; whilst the highest intensities were seemingly recorded for Nematopsis 

sp. and unidentified intracellular protists (Table 2) in the rainy season. PII values are higher during 

the rainy season in Pigeon Cay and Half Way Cay than in Punta Lora, where PII values raised in 

the dry season (Fig. 7b). Unlike in the dry season, the histological integrity of the digestive gland 

tissue was seemingly altered in all the studied localities in the rainy season (Figs. 8a and b). A 

large part of the digestive gland tissue was occupied by disorganized ICT with haemocytic 

infiltration (Fig. 8b and d) and the caliper of digestive ducts was particularly undersized (Fig. 8b 

and f). Inflammatory responses such as massive haemocytic infiltrations of ICT (oedema), brown 

cell aggregates, granulocytomas and disseminated neoplasia were observed (Fig. 8b to 8d). 

Prevalence of inflammatory responses was apparently higher in the dry season than in the rainy 

season and in Half Way Cay than in Punta Lora; however, significant differences after applying 

the Z score test could only be established at p<0.1 (Table 2). Prevalence of brown cell aggregates 

was always high whereas only one granulocytoma was found in one oyster from Pigeon Cay in 

the rainy season (Fig. 8d). Two isolated cases of oysters with disseminated neoplasia were 

recorded in the rainy season (Table 2; Fig. 8c). Unlike for the case of PII, IRI was higher in the 

dry season than in the rainy season (Fig. 7b and c); however, its values were also always higher in 

Pigeon Cay and Half Way Cay than in Punta Lora. 

Digestive alveoli presenting severe atrophy (with a wide lumen and thin epithelium) and 

separated by ample areas of ICT (Figs. 8b, d and f) were observed all over the year but their 

incidence was particularly high in the rainy season. In addition, digestive cells vacuolisation (Fig. 

8e) was recorded in a few specimens (<10%) from half way Cay at both seasons. Thus, in the rainy 

season DGAI was similar in the three localities and always higher than in the dry season (p<0.05; 

Fig. 7d). In contrast, in the dry season DGAI was different between localities, with higher values 

in Half Way Cay than in Punta Lora (p<0.05; Fig. 7d).  

LT50 was significantly different between seasons for Half Way Cay and Punta Lora (Tarone-

Ware test, p<0.05) but not between localities at each season (Fig. 7e). The highest LT50 values 

were observed in the rainy season, whilst 2-3 fold lower values were recorded in the dry season 

(Fig. 7e). 

Five indices of biological response (DGAI, IRI, FDW/L, RAI, LT50) were represented in 

radar plots (Fig. 9). The depicted profiles revealed that in the rainy season low levels of biological 

complexity (DGAI and IRI) and reproduction (RAI) were responsive in Half Way Cay and Punta 
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Lora whilst all the indices but LT50 (SoS) responded in Pigeon Cay. Conversely, quite different 

profiles were envisaged in the dry season, with responses at more complex biological levels and 

especially in SoS.  

                      RAINY SEASON                                                      DRY SEASON  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 7. Biomarkers of anomalies in oyster health indicative of disturbance in ecosystem health for the 
rainy and the dry seasons in Nicaraguan mangrove lagoons (Pigeon Cay, Half Way Cay and Punta Lora). 
Different letters denote statistically significant differences between localities and asterisk (*) indicate 
seasonal differences for a locality (p<0.05). RAI, reproductive anomalies index; PII, parasitic infestation 
index; IRI, inflammatory response index; DGAI, digestive gland atrophy index; LT50, median survival time 
after SOS test. ‡, no data. 
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Fig.8. Paraffin sections of the digestive gland of Crassotrea rhizophorae stained with haematoxylin-
eosin: a) normal digestive gland b) digestive gland with diffuse infiltration haemocyte and atrophied alveoli; 
c) disseminated neoplasia; d) granulocytoma and diffuse infiltration haemocytic; e) unidentified protists; f) 
ciliate; g) R/CLO; h) Nematopsis sp.; i) metazoan. Abbreviations: A, alveoli; D, duct; CT, connective tissue; 
HI, haemocytic infiltration; L, lumen; NH, neoplastic haemocytes. Arrows, tissue alterations; arrowheads 
indicate the presence of brown cell (BC) aggregates and vacuolization (V). 
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Thus, significant differences were found between localities in the IBR/n index in the rainy 

season after applying the Z score test, IBR/n values being lower in Punta Lora than in Half Way 

Cay and in this latter lower than in Pigeon Cay (Fig. 9). In the dry season, IBR/n values in Punta 

Lora and Half Way Cay were higher than the rainy season, without differences between localities.  

3.2. Colombia 

Shell L showed the highest values in the Marina Santa Marta and the lowest in Isla Brujas in 

both seasons, and no seasonal variability was observed (Table 3). The highest FDW values were 
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Fig. 9. Radar plots for 
biomarkers and the 
corresponding IBR/n index 
for the rainy and the dry 
seasons in Nicaraguan 
mangrove lagoons (A). 
Different letters denote 
statistically significant 
differences between pairs of 
means according to the Z-
score test (p< 0.05). DGAI, 
digestive gland atrophy 
index; IRI, inflammation 
index; FDW/L, condition 
index; RAI, reproductive 
anomalies index; LT50, 
median survival time after 
SOS test. ‡, no data. 
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recorded in Isla Maparadita and Marina Santa Marta in the rainy season, whilst values were much 

lower in all the localities except Marina Santa Marta in the dry season (Table 3). The highest SDW 

values were found in Marina Santa Marta in both seasons, while SDW was significantly lower in 

the dry season than in the rainy season in Isla Brujas, Isla Maparadita and Taganga (p<0.05, Table 

3). The highest FDW/SDW was recorded in Isla Maparadita followed by values in Taganga and 

Isla Barú, with lower values in the dry season than in the rainy season in Isla Maparadita and Isla 

Barú (p<0.05; Fig. 10a).  

The highest SDW/L was recorded in Marina Santa Marta in both seasons, with lower values 

in the dry season than in the rainy season in Isla Brujas, Isla Maparadita and Taganga, and higher 

values in the dry season than in the rainy season in Isla Barú (p<0.05, Fig. 10b). The highest 

FDW/L values were recorded in Isla Maparadita and Marina Santa Marta in the rainy season and 

in Isla Barú and in Marina Santa Marta in the dry season (p<0.05, Fig. 10c). 

Sex ratio values for each sampling location at each sampling time are shown in Table 3. No 

statistically significant bias in the sex ratio of the whole studied population (1.14:1; G value=2.55, 

p=0.11) was detected in comparison with the theoretical sex ratio of 1:1.14 resulting from the 

average between 1:1 (rainy season) and 1:1.33 (dry season) sex ratios. Accordingly, no bias was 

found in any season (rainy season: 1.16:1; G value = 0.80, p=0.37; dry season: 1:1.06; G value = 

0.925, p=0.34). Among the studied localities, only Taganga showed a significant bias to female 

condition in both seasons (Table 3). Intersex cases were sporadically found: one female from 

Marina Santa Marta in the rainy season, and one female from Isla Barú and one from Marina Santa 

Marta and one male from Isla Brujas in the dry season (Table 3). All cases showed separate male 

and female gonad follicles (Figs. 6d-f).  

Most oysters were in advanced gamete development stages (e.g., spawning and spawned; Fig. 

11). In the rainy season, Marina Santa Marta and Taganga showed the most advanced gamete 

development stages; however, the opposite was found in the dry season. Significant differences in 

GI were found between seasons in Isla Brujas and Taganga and between localities for both seasons 

(Fig. 11). Likewise, differences in GMI and UDI were recorded between localities but no between 

seasons (Table 3). Atretic oocytes were only observed in one oyster from Marina Santa Marta in 

the rainy season. As a whole, RAI reflects only a low-to-moderate (<10) reproductive disturbance, 

mainly featured by deviations in the expected SRI, GMI and UDI values (Fig. 12a).  
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Fig. 10. 
Biomarkers of 
anomalies in oyster 
health indicative of 
disturbance in 
ecosystem health 
for the rainy and 
the dry seasons in 
Colombian 
mangrove swamps 
(Isla Barú, Isla 
Brujas, Isla 
Maparadita, 
Marina and 
Taganga). 
Different letters 
denote statistically 
significant 
differences 
between localities 
and asterisk (*) 
indicate seasonal 
differences for a 
locality (p<0.05). 
SDW/L, shell 
growth index; 
FDW/SDW and 
FDW/L, condition 
indices. 
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Table 3. Condition and histopathology of Crassostrea rhizophorae from intertidal roots/docks of 
Colombian mangrove swamps. Shell cavity volume, condition index and atrophy their values are mean ± 
standard error (n=20). Sex Ratio Index = SRI's G value. The superscript letters (a, b and c) indicate 
significant differences between pairs of localities (p < 0.05). Asterisk (*) indicate seasonal difference for a 
locality (p< 0.05); ♯, significantly different from the theoretical gender bias (Vélez, 1982) according to the 
G test (p<0.05). 

 
 

RAINY SEASON DRY SEASON 

I. Barú I. 
Brujas 

I. 
Mapar. Marina Taganga I. Barú I. 

Brujas 
I. 

Mapar. Marina Taganga 

Shell Length  
(L; mm) 

39.3 
±1.7bc 

33.3 
±1.1a 

34.1 
±0.8ab 

41.5 
±1.9c 

33.7 
±1.3a 

35.6 
±1.6a 

34.1 
±1.9a 

35.7 
±0.9a 

41.1 
±1.6b 

39.3 
±3.1ab 

Flesh dry-wt 
 (FDW; mg) 

103.1 
±7.6a 

95.3 
±8.3a 

231.1 
±26.1b 

153.7 
±9.6b 

70.7 
±6.0a 

91.7 
±8.1b 

56.7 
±8.9a* 

62.7 
±6.6a* 

155.4 
±17.3c 

53.5 
±6.3a 

Shell dry-wt 
 (SDW; g) 

3.2 
±1.7a 

4.3 
±2.5b 

3.7 
±2.2ab 

6.5 
±2.9c 

2.7 
±1.2a 

4.1 
±2.0c 

2.6 
±1.2b* 

1.7 
±0.6ab* 

6.3 
±2.8d 

1.4 
±0.7a* 

Sex ratio 
(Sex Ratio Ind) 

1.2:1 
(0.40) 

1:1.1 
(0.11) 

1.2:1 
(0.4) 

1.4:1 
(0.76) 

2:1♯ 
(4.08) 

1.3:1 
(1.17) 

1:2.3(1) 
(0.80)* 

1.5:1 
(2.37) 

1:1.4 
(0.00) 

2.5:1(1) 
(4.67) 

Intersex Index 0 0 0 2.5 0 5 5 0 5 0 

Gonad Index 
3.6 

±0.2 b 
3.3 

±0.2 b 
3.4 

±0.2 b 
2.6 

±0.2 a 
2.4 

±0.2a 
3.2 

±0.3b 
1.6 

±0.3a* 
3.0 

±0.3b 
3.3 

±0.3b 
3.4 

±0.4b* 

Gamet. Mass 
Index 0.26(a) 0.40(b) 0.19(a) 0.07(a) 0.02(a) 0.16(a) 0.00(b) 0.10(a) 0.30(a) 0.30(a) 

Undifferent. 
Index 0.00 0.05 0.0 0.03 0.05 0.05a 0.35b 0.00a 0.00a 0.07a 

Oocyte Atresia 
Prevalence 

0 a 0 a 0 a 0.053 b 0 a 0 0 0 0 0 

Oocyte Atresia 
Intensity 

0 a 0 a 0 a 0.053± 
0.101b 

0 a 0 0 0 0 0 

Oocyte Atresia 
Index 

0 a 0 a 0 a 0.003 b 0 a 0 0 0 0 0 

Prevalence  
(oedema) % 2.5 (a) 15 (a) 30 (b) 0 (a) 0 (a) 85 (b) 55 (a) 45 (a) 70 (a) 40 (a) 

Prevalence  
(BCA) % 0 a 0 a 2.5 a 22.5 b 2.5 a 10 a 5 a 0 a 45 b 5 a 

Prevalence 
(granuloc) % 0 0 0 0 0 0 0 0 0 0 

Preval. (diss 
neoplasia) % 0 0 0 0 0 0 0 0 0 0 

Prevalence  
(ciliates) % 2.5 (a) 7.5 (b) 2.5 (a) 0 (a) 0 (a) 10 (a) 15 (b) 0 (a) 5 (a) 5 (a) 

Preval (Undert. 
Prot.) % 0 0 0 0 0 0 0 0 0 0 

Preval.  
(Total Prot.) % 2.5 (a) 7.5 (b) 2.5 (a) 0 (a) 0 (a) 10 (a) 15 (b) 0 (a) 5 (a) 5 (a) 

Prevalence 
(Nematopsis)% 0 2.5 2.5  0 0 0 a 30 b 0 a 0 a 0 a 

Prevalence 
(Metazoan)% 0 2.5 0 0 2.5 0 a 0 a 10 b 0 a 0 a 

Prevalence  
(R/CLO) % 0 a 5 b 0 a 0 a 0 a 10 b 0 a 10 b 0 a 5 a 

 

(1) >30% of oysters with undifferentiated gonad. 

A variety of parasites such as intracellular ciliates, Nematopsis sp., metazoan and R/CLO were 

found although, in general terms, both prevalence and intensity were low all along the study   
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(Table 3; Figs. 8 and 12b). The highest PII values were found in Isla Brujas, where in addition PII 

was significantly higher in the dry season than in the rainy season (most likely due to the moderate-

to-high prevalence of Nematopsis sp.); likewise, PII tended to be higher in the dry season than in 

the rainy season in all the localities (Fig. 12b).  

Overall, no major alteration in the histological integrity of the digestive gland tissue was 

recorded. However, in the dry season the prevalence of oedema in digestive gland tissue in all the 

localities was high, especially in Isla Barú and Marina Santa Marta, and the prevalence of brown 

cell aggregates in Marina Santa Marta was moderately high (Table 3). Granulocytomas and 

disseminated neoplasia were not recorded. Prevalence of inflammatory responses were apparently 

higher in the dry season than in the rainy season (Table 3). IRI values were higher in Isla Barú 

than in the other localities in the dry season, when they were seemingly higher in all the localities; 

although seasonal differences were not significant in Isla Maparadita and Isla Brujas because IRI 

values were also conspicuous in the rainy season (Fig. 12c). Medium values of DGAI (score ~1-

2) were recorded in all the localities all along the study. Nevertheless, DGAI values were 

significantly higher in the dry season than in the rainy season in Isla Brujas and, vice versa, higher 

in the rainy season than in the dry season in Taganga (Fig. 12d). Besides, DGAI was significantly 

different amongst localities in the dry season, with highest values in Isla Brujas followed by Isla 

Maparadita (Fig. 12d).  

LT50 values were significantly different between seasons, especially in Barú, Isla Brujas and 

Isla Maparadita (p<0.05, Fig. 12e); the lowest LT50 values being recorded in these localities in the 

rainy season and less markedly in the dry season, although still LT50 values recorded in Isla Brujas 

were the lowest (Fig. 12e).  

The profiles depicted by the 5 indices of biological response varied with season (radar plots 

in Fig. 13), except in Marina and Taranga where FDW/L and RAI were equally responsive at both 

seasons. In the rainy season, LT50 was particularly sensitive in Isla Barú, Isla Brujas and Isla 

Maparadita, whilst in the dry season responses at mid-to-high level of biological complexity 

(FDW/L and RAI) were elicited in Isla Barú and at low-to-mid level (DGAI, IRI and FDW/L) in 

Isla Maparadita and, especially, in Isla Brujas (Fig. 13). As a result, IBR/n index showed 

significant differences in both seasons (Fig. 13): Isla Brujas and Isla Maparadita showed higher 

IBR/n values than Isla Barú, Marina Santa Marta and Taganga in the rainy season, Isla Brujas 

being the locality with the highest IBR/n values in the dry season. 
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4. Discussion 
The habitats and environmental conditions of Nicaragua and Colombia were different, so the 

anthropogenic impact and the profile and levels of pollutants were as well (Dumailo, 2003; Vivas-

Aguas et al., 2013; Mancera-Pineda et al., 2013; Chapter 1). Thus, shallow subtidal oyster reefs 

were investigated in Nicaragua whilst the study in Colombia was addressed to intertidal prop roots 

of mangrove trees and intertidal rocky shores. Moreover, SST and salinity were higher in 

Colombia than in Nicaragua, with extreme high SST (>33ºC) in the former and extreme low 

salinities (<2‰) in the latter in the rainy season (Table 1).  

As a result, a main variable to keep in mind for inter-regional comparisons is that oysters from 

Nicaragua (Shell Lmax=7.3±1.7 cm) and Colombia (Shell Lmax=3.7±0.9 cm) corresponded to 

different size classes, which were the most abundant ones at each corresponding sampling site. 

4.1. Nicaragua 

Size varied with season, with the largest oysters being collected in Half Way Cay and Punta 

Lora in the rainy season. Accordingly, FDW, L and SCV were higher in Half Way Cay and Punta 

Lora than in Pigeon Cay in the rainy season, which suggests that growth was reduced in Pigeon 

Cay oysters.  

Generally speaking, stress is associated with a decrease in flesh condition, whereas a higher 

abundance of food and hormonally active substances will increase flesh condition (Smaal and Van 

Stralen, 1990). Different indices are available to determine flesh condition in oysters (Crosby and 

Gale, 1990). In Nicaragua, FDW/SCV and FDW/L were clearly lower in the dry season than in 

the rainy season, and lower in Pigeon Cay than in the other two localities. Seasonal changes in FCI 

have been previously reported in mangrove oysters (Nascimento and Pereira, 1980; Nascimento 

et al., 1980; Meyer et al., 1998; Rebelo et al., 2005). However, the seasonal pattern may vary 

depending on locally relevant differences in nutritional and reproductive status, as well as on 

environmental constrains (e.g. the presence of pollutants). Thus, unlike in the present study, in C. 

gigas and C. corteziensis from the Gulf of California lagoons, FDW/SCV was higher in the dry 

season than in the rainy season (Osuna-Martínez et al., 2010). Likewise, high FDW/SCV and 

FDW/L values have been reported in C. rhizophorae both in the dry season, associated to high 

levels of nutrients in the water (Meyer et al., 1998; Rebelo et al., 2005), but also in the rainy season, 

concomitantly with full gonad maturation (Nascimento and Pereira, 1980; Nascimento et al., 
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1980). Presently, high FDW/L values would be expected together with not spawning advanced 

gametogenic stages; this seems to apply when the rainy and the dry seasons are compared in Half 

Way Cay, and to a lesser extent in Punta Lora, where a higher incidence of spawning stages in the 

dry season than in the rainy season coincides with lower FDW/L values. However, the lowest 

FDW/L was recorded in Pigeon Cay, where gamete development was seemingly arrested in the 

rainy season (late gamete development stage was dominant resulting in high GI values) and the 

highest in Punta Lora in the rainy season were spawning stages were dominant. Therefore, 

reproduction was not the main factor influencing FDW/L in the rainy season.  

                              RAINY SEASON                                             DRY SEASON 

 

 

 

 

 

Fig. 11. Gamete development stages of oyster Crassostrea rhizophorae collected from Colombia at the 

rainy and the dry seasons.  

Conversely, the low FDW/SCV and FDW/L values found in Pigeon Cay in comparison with 

Half Way Cay and Punta Lora might be attributed to the presence of pollutants (e.g., PAHs, PCBs 

and PBDEs), as reflected in pollution indices such as the Pollution Load Index (PLI; Tomlinson 

et al., 1980) and the Chemical pollution index (CPI; Bellas et al., 2011), according to Chapter 1. 

Indeed, FDW/SCV was proposed as an inexpensive, quick, representative and responsive tool for 

monitoring pollution (Scott and Lawrence 1982), commonly used to estimate growth differences 

among oysters living in different environmental conditions (Austin et al., 1993). Likewise, 

FDW/SCV provides indication of the nutritive status of oysters and of whether they are subject to 

stress conditions (Crosby and Gale, 1990). For example, in C. virginica, exposure to metals such 

as Cu and Cr is directly related with a decrease in FDW/SCV (Aguilar et al., 2012); and in a field 

study in Brazil, FDW/SCV was found to be different in C. rhizophorae from estuaries with 

different levels of PAHs and PCBs (Valdez Domingos et al., 2007).  
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Reproduction anomalies were recorded and scored and were also more relevant in the rainy 

season than in the dry season and more marked in Pigeon Cay and Half Way Cay than in Punta 

Lora where, conversely, anomalies were most evident in the dry season. It is worth noting that the 

so-called reproductive anomalies do not necessarily mean deleterious or pathological effects but 

simply deviations from the expected values that might be indicating potential disturbances in 

oysters' reproduction. The main anomalies recorded in this study included alterations in sex ratio, 

gamete development delay/arrest and oocyte atresia. Crassostrea oysters are protandrous 

hermaphrodites and sex ratio values can vary depending on the species, age, size and local 

conditions (Dove and O’Connor, 2012; Park et al., 2012). Sex appears to be determined by a single 

gene with a dominant male allele M and a recessive protandrous allele F, such that FF animals are 

protandrous and MF animals are permanent males (Powell et al., 2011). In C. rhizophorae, females 

predominate and can reach up to 90% of the population although their prevalence may vary with 

size and season (Vélez, 1982). In raft cultivated C. rhizophorae (>20 mm shell length), females 

were predominant (male/female ratio = 0.2-0.6) during the rainy season and especially in the 

largest size classes (Gordon, 1988). Accordingly, sex ratio indicated a dominance of females in 

Nicaragua; however, feminisation went beyond the expected values (according to criteria by 

Vélez, 1982) in the rainy season, especially in Pigeon Cay and Half Way Cay but also in Punta 

Lora. Sex ratio in Punta Lora oysters was comparable to those reported for C. rhizophorae in the 

Laguna Grande de Obispo, in Venezuela (F:M, 2.42:1; Montes et al., 2007), and in Guaratuba Bay 

(F:M, 1.6:1) and in Camanu Bay (F:M, 1.9:1 y 2.1:1) in Brazil (Christo and Absher, 2006; Lenz 

and Boehs, 2011). A predominance of females was also observed in Crassostrea brasiliana from 

Brazil (Castilho-Westphal et al., 2015). Sex ratio values in Pigeon Cay and Half Way Cay, 

however, were much higher. This apparent anomaly could be due to the large size of the oysters 

(Lmax>80 mm), or caused by exposure to oestrogenic compounds in the rainy season. Skewed sex 

ratios have been reported in bivalve populations from sites polluted with tributyltin, metals and 

PAHs (Gagne et al., 2002; 2003; Gauthier- Clerc et al., 2002). Likewise, oestrogenic effects have 

been reported in bivalves exposed to sewage effluents and to urban and agricultural runoff waters 

(Blaise et al., 1999; 2003; Gagne et al., 2001; Quinn et al., 2004; Ortiz-Zarragoitia and Cajaraville 

2010). Their exposure would be favoured by either the enhanced input of chemicals with endocrine 

disruption capacity (e.g. pesticides) in the rainy season. In contrast, sex ratio skew towards males 

was recorded in Half Way Cay in the dry season. In agreement, a similar masculinisation was 

reported in summer for C. rhizophorae by Lenz and Boehs, (2011).  
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Fig. 12. Biomarkers of anomalies in oyster health indicative of disturbance in ecosystem health for the 
rainy and the dry seasons in Colombian mangrove swamps (Barú, Brujas, Maparadita, Marina and 
Taganga). Different letters denote statistically significant differences between localities and asterisk (*) 
indicate seasonal differences for a locality (p<0.05; p<0.1, when shown between brackets). RAI, 
reproductive anomalies index; PII, parasitic infestation index; IRI, inflammatory response index; DGAI, 
digestive gland athrophy index; LT50, median survival time after SOS test.  
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Mangrove cupped oysters reproduce continuously throughout the year with peaks of seasonal 

spawning associated to temperature and salinity; however, spawning and spatfall are continuous 

in lagoons with temperatures higher than 25ºC (Vélez, 1982), like Bluefields and Pearl Lagoon. 

As seen in diverse species of Crassostrea from different regions of the world, GI is correlated with 

seawater temperature, salinity and quantity and quality of the food supply (Ren et al., 2003; Christo 

and Absher, 2006; Paixão et al., 2013). At least 2-3 spawning peaks per reproductive cycle have 

been reported in C. rhizophorae from different regions, but the main one seems to be in the rainy 

season (Nascimento et al., 1978; Villarroel et al., 2004; Lenz and Boehs, 2011). However, our 

results suggest that, as reported for many other tropical bivalves (Pouvreau et al., 2000), wild 

mangrove oysters from Nicaraguan Caribbean seem to follow a continuous reproductive cycle, 

albeit certain peaks of more intense spawning activity could not be disregarded. Similarly, C. 

virginica from Mecoacan was reported to spawn all along the year (George-Zamora et al., 2003). 

More detailed studies on wild mangrove oyster populations would be required in this respect. 

Nevertheless, gamete development was seemingly delayed in Pigeon Cay in comparison with 

Punta Lora in the rainy season, with Half Way Cay in between. In the dry season, however, gamete 

development was delayed in Punta Lora in comparison with Half Way Cay. In bivalves, exposure 

to chemicals such as oils, PAHs, DDTs, and alkylphenols causes alterations in gamete 

development and enhances oocyte atresia (Aarab et al., 2004; Binelli et al., 2001; Lowe, 1988; 

Lowe and Pipe, 1987; Ortiz-Zarragoitia and Cajaraville, 2006; 2011). Delayed gametogenesis have 

been reported in bivalve populations from sites polluted with tributyltin, metals and PAHs (Gagne 

et al., 2002; 2003; Gauthier- Clerc et al., 2002). The occurrence of gamete development arrest in 

Pigeon Cay and Half Way Cay but not in Punta Lora may be therefore due to pollutant specific 

effects. Interestingly, the highest tissue levels of PAHs were recorded in oysters from Pigeon Cay, 

followed by oysters from Half Way Cay; as well as the highest levels of PBDEs (Chapter 1). 

Conversely, OCPs do not seem to be related to effects on gamete development, as the highest 

tissue levels were recorded in oysters from Punta Lora in the rainy season (Chapter 1) in absence 

of apparent effects on gametogenesis.  

Oocyte atresia is a normal process in advanced gametogenesis and post spawning stages, as 

described in e.g. C. brasiliana (Castilho-Westphal et al., 2015). Herein, atresia was recorded at 

higher levels in Pigeon Cay and Half Way Cay than in Punta Lora in the rainy season and its 

intensity values were particularly high in the two former localities resulting in significantly higher 

OAI values. Enhanced oocyte atresia could be a sign of gonad resorption and spawning abortion 
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aimed at re-directing energy resources from reproduction to counteract stressors (e.g. pollutants). 

Exposure to chemical pollutants is known to enhance oocyte atresia (Aarab et al., 2004; Binelli et 

al., 2001; Lowe, 1988; Lowe and Pipe, 1987; Ortiz-Zarragoitia and Cajaraville, 2006; 2011). In 

agreement, the levels of oocyte atresia can be related to the PLI and CPI values recorded in the 

studied localities (Chapter 1).  

  RAI incorporated the above discussed reproductive anomalies and showed that these were 

most relevant in Pigeon Cay and Half Way Cay in the rainy season and to a lesser extent in Punta 

Lora in the dry season. Though these reproductive anomalies might have result from "natural 

causes" (e.g. old large sized oysters might tend to be female with atretic oocytes) the observed 

inter-site differences suggested that additional stress sources might be acting (e.g., pollutants, 

nutrient availability, hypoxia or extreme salinity).  

Although the intensity of parasitic infestations was generally low, it was higher in Half Way 

Cay than in Punta Lora all over the year; parasite prevalence being especially low in the rainy 

season in Punta Lora. Most frequently recorded parasites were Nematopsis sp. and ciliates, whilst 

neither metazoans (except a few in Half Way Cay in the rainy season) nor R/CLO were recorded. 

Nematopsis sp. seems to be a common parasite in Caribbean C. rhizophorae (Nascimento et al., 

1986; Sabry et al., 2007; 2011, 2013; Brandão et al., 2013), mussels (Boehs et al., 2010; Garmendia 

et al., 2011; Ceuta and Boehs, 2012) and other oyster species (Aguirre-Macedo et al., 2007; Afsar 

et al., 2014). No seasonal trend was envisaged in the prevalence of Nematopsis sp., which was 

much lower in Punta Lora than in Half Way Cay in both seasons and in Pigeon Cay. Nematopsis 

has been recorded all throughout the year in Mytella guyanensis (Boehs et al., 2010; Ceuta and 

Boehs, 2012) but a marked seasonality in the prevalence of Nematopsis in C. rhizophorae has also 

been reported (Nascimento et al., 1986; Sabry et al., 2007; Brandão et al., 2013). The prevalence 

values recorded in Pigeon Cay, and Half Way Cay can be considered high according to previous 

criteria (Brandão et al., 2013). At low infection intensities this protist only causes inflammatory 

responses although at high intensities can be harmful, especially in the gills (Bower et al., 1994). 

Likewise, ciliates were recorded all over the year at similarly moderate prevalence values in all 

the localities except in Punta Lora in the rainy season where it was absent.  
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As a result, PII was high in Half Way Cay in both seasons and in Pigeon Cay, and moderate 

in Punta Lora in the dry season. The differences do not seem to be related to size (or age) because 

oysters from Pigeon Cay are the smallest but present the highest PII value; whilst usually large 

and aged individuals exhibit more severe parasitisation. Likewise, FCI does not seem to be relevant 

because oysters with similar FDW/L values show different parasite load. It might happen that 

environmental stressors or pollution exposure provokes immunodeficiency or that high turbidity 

and levels of suspended particulate or organic matter in the water column might facilitate parasitic 

infestation. In presence of high levels of suspended organic matter, growth of bacteria and algae 

and then of protozoans, their predators, is enhanced (La Rosa et al., 2001). Thus, the abundance 

of ciliates has been proposed as an indicator or the host health and the level of eutrophication 

(Palm and Dobberstein, 1999). The presence of ciliates depends on environmental factors such as 

temperature, salinity and suspended matter (e.g., turbidity) and has been suggested to be indicative 

of organic pollution resulting from e.g., domestic sewage (Marcogliese and Cone, 1997; Brandão 

et al., 2013). They are believed to be commensals (Lauckner, 1983) that only may result harmful 

at high intensities and not always, as reported in C. rhizophorae in Brazil (Nascimento et al., 1986; 

Boehs et al., 2009; da Silva et al., 2011; Brandão et al., 2013) 

Disorganized ICT with haemocyte infiltration and shrinkage of digestive diverticula, digestive 

alveoli atrophy and digestive cell vacuolisation were observed in all the studied Nicaraguan 

localities, mainly in the rainy season. Comparable histopathological alterations were interpreted 

as a stress response to pollution enhancement in the rainy season (Valdez Domingos et al., 2007). 

Granulocytomas and disseminated neoplasia were only found, at low prevalence, in Pigeon Cay 

and Half Way Cay. These inflammatory lesions have been associated to the presence of pollutants 

but also to pathogens (Villalba et al., 2001; Kim et al., 2008; Bignell et al., 2011; Garmendia et 

al., 2011; De Vico and Carella, 2012). Oedema and brown cell aggregates were observed all along 

the year. Whilst he prevalence of brown cell accumulates was close to 100% in all the cases, the 

prevalence of oedema was higher in the dry season than in the rainy one and higher in Half Way 

Cay than in Punta Lora and Pigeon Cay, with highest values in Half Way Cay in the dry season. 

However, intensity values were low except in Pigeon Cay that exceeded the scores in other 

localities by a factor of 5 to 30 times. Elevated levels of haemocytic infiltration and oedema are 

general responses to chemical pollutants in molluscs (Au, 2004). These inflammatory responses 

were shown to be related to the tissue concentration of Cd and hydrocarbons in C. virginica from 

Mexican coastal ecosystem (Gold-Bouchot et al., 1995) and therefore they were suggested as 

indicators of pollution-induced stress for native oysters in coastal lagoons (Gold-Bouchot et al., 
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2007). The prevalence of oedema seems to be related to PII and was especially high in Half Way 

Cay in the dry season, when the prevalence of intracellular parasites was highest.  

Accordingly, IRI runs in parallel with PII suggesting that most inflammatory responses were 

associated to the presence of parasites and pathogens, in agreement with Carella et al., (2015). 

Nevertheless other aetiologies cannot be fully disregarded because granulocytomas, disseminated 

neoplasia, induced immunodepression can be caused by e.g. chemical agents (Au, 2004), and 

because the prevalence of the two former and the intensity of oedemas were higher in the Pigeon 

cay and Half Way cay in the rain season, where oysters presented the highest pollutant tissue levels 

(Chapter 1). Moreover, according to the recorded DGAI values (Couch 1985; Bodin et al., 2004; 

Kim and Powell, 2007; Garmendia et al., 2011; Apeti et al., 2014; Cuevas et al., 2015), general 

stress seems to be higher in the rainy season than in the dry one, with some signals of moderate 

stress in Half Way Cay in the dry season. Pollution by chemicals in mixture is a potential factor 

activating latent infection in oysters (Chu et al., 2002). Thus, in mussels collected from the 

Lanesundfjord in Norway following a contaminant gradient, non-parasitic tissue abnormalities 

were related to chemical contamination; however, dose-response relationships could not be 

directly defined (Auffret, 1988). 

LT50 showed a very different profile in comparison with other general stress biomarkers such 

as DGAI. It was in the range of 3-9 d, the lowest being recorded in the dry season. This might 

indicate that oysters are more resistant to additional stress in the rainy season than in the dry 

season, which would not be expected from a stressed organism. Certainly, a better individual 

condition could explain these inconsistent results which corresponds to the cases of Half Way Cay 

and Punta Lora in the rainy season (high FDW/L and high LT50) but unfortunately it does not apply 

for the case of Pigeon Cay (low FDW/L and high LT50). On the other hand, the LT50 recorded in 

Nicaragua are not really high in comparison with e.g. Colombia oysters and therefore the resilience 

of oysters could be considered affected at regional scale and especially in the dry season. 

According to our records there is no previous data on SoS response in C. rhizophorae so that LT50 

values can be only interpreted in comparative terms. Thus, LT50 in Nicaragua (~8 d) does not reach 

the values of 12 d recorded in some localities in Colombia in this study, which a more marked 

decrease than those reported in other species to discriminate polluted and reference sites (Blaise 

et al., 2016). In contrast, the low LT50 values recorded in Nicaragua in comparison with Colombian 

oysters could also be explained because Nicaraguan oysters were larger, as concluded for other 

species. For instance, small mussels present higher LT50 values than large mussels both under 
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welfare and stressed conditions (Thomas et al., 1999). More detailed research is needed to 

characterise SoS response in mangrove cupped oysters in the Caribbean region, though the present 

results are challenging. In any case, the same reasoning could be applied locally for the case of 

Nicaraguan oysters, with expected higher LT50 in small than in large oysters if environmental 

conditions are not dissimilar. However, Pigeon Cay oysters are smaller than in Half Way Cay and 

Punta Lorain the rainy season but LT50 values are not higher than in the two latter localities, which 

might suggest some effect on SoS in this locality. The low LT50 values recorded in the dry season 

can be explained by different, not necessarily opposing, causes know to lead to reduced survival-

in air in bivalves (Viarengo et al., 1995; Thomas et al., 1999; Hellou and Law, 2003; Pampanin et 

al., 2005), say: poor individual condition (low CI and FDW/L), reproductive stress during 

spawning, unfavourable environmental conditions (hypoxia and high turbidity and salinity) and 

seasonal sources of pollutants (i.e., pesticides, etc.). In mussels from the Halifax Harbor low LT50 

values were associated with bioaccumulation of polycyclic aromatic compounds (Hellou and Law, 

2003). In mussels caged in contaminated estuaries for 6 wk, survival-in-air (ranging between 5.5-

8 d, depending on the pollution levels) was correlated with the sum of CB44 and CD52 but not 

with other pollutants present (Smaal et al., 1991). Moreover, SoS response has been proposed to 

be an excellent means of valuating the effect of long-term chronic exposures (e.g. to crude oil; 

Thomas et al., 1999). For example, 4 years after the Exxon Valdez oil spill, M. trossulus from 

impacted sites survived in air only for 10–14 d whilst neighbouring reference mussels survived for 

13–24 d; accordingly, they still presented high body burdens of PAHs (Thomas et al., 1999). 

The present approach thus suggests that oysters are not equally healthy in the different 

localities and seasons investigated herein, which is directly evidenced by the IBR index; this 

provides an integrated view on the health status of sentinel organisms even though seasonal 

variability could act as a confounding factor, as previously suggested for bivalves from temperate 

regions subject to pollution (Leiniö and Lehtonen, 2005; Pytharopoulou et al., 2008; Serafim et 

al., 2012; Marigómez et al., 2013). Integrating these anomalies in the oysters' health status into the 

IBR/n index provided a general indication of the ecosystem health disturbance. The worst situation 

was that recorded in Half Way Cay followed by Pigeon Cay, both with comparable health profiles, 

whilst ecosystem health was less disturbed in Punta Lora, where the signal provided by DGAI in 

the rainy season might be indicative of a recent distressing episode, unlike the situation in other 

localities that seems to be more pervasive. In summary, complex multi-factorial sources of health 

disturbance seem to co-occur over a regional background of low-to-moderate pollution (e.g. by 

pesticides and domestic sewage; e.g. as shown in Table 1) in Nicaraguan Caribbean coast and 
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therefore correlation between IBR/n and pollution indices such as PLI and CPI was not significant. 

Though individual biological responses at each locality and season was to a large extent consistent, 

the lack of correlation may be due to the strong influence of the physiological state (modulated by 

multi-factorial drivers and seasonal variation under natural field conditions) of the oysters on these 

measurements. 

4.2. Colombia 

Shell length, in the range of 33-42 mm, was quite variable amongst localities, oysters from 

Marina Santa Marta being the largest.  Moreover, SDW values were exceptionally high in Marina 

Santa Marta in both seasons, and SDW/L in Marina Santa Marta (both seasons), Isla Brujas (rainy 

season) and, to a lesser extent, in Isla Barú (dry season). Abnormal shell growth, including e.g. 

hypertrophy and chambering, has been associated to endocrine disruptors such as TBTs, which are 

characteristic of marinas and dockyards (Chagot et al., 1990); which could be the case of Marina 

Santa Marta.  

The highest FDW/SDW was recorded in Isla Maparadita, with lower values in the dry season 

than in the rainy season. Although it is commonly used in the case of mussels as an indicator of 

individual condition (Lobel and Wright 1982; Smaal and van Stralen, 1990), FDW/SDW is known 

to have a limited value as index of nutritive status or recent stress in oysters. On the one hand, both 

flesh and shell growth are disparately variable throughout the year, especially in tropical oysters; 

on the other hand, unpredictable variations in SDW result from natural mineral incrustations and 

normally occurring shell break-offs (Crosby and Gale, 1990; Blaise et al., 2016). Indeed, the 

aforementioned differences in SDW (e.g. potential alterations in shell growth) may render 

FDW/SDW even less valuable in this particular study. In contrast, FDW/L overcomes 

uncertainties associated to unpredictable variations in SDW (Hellou et al., 2003; Blaise et al., 

2016). Herein, together with high FDW/L values recorded in Isla Maparadita during the rainy 

season and to a lesser extent in Marina Santa Marta in both seasons the lowest were recorded in 

Taganga in both seasons, with overall higher values in all the localities in the rainy season than in 

the dry season. Cyclicity in condition index has been related to periods of post-spawning occurring 

towards the end of each rainy season (Gordon, 1988); which does not seem to be the present case, 

as spawning is not discontinued and, in any case, the productive cycle effects should have been 

the other way round and no relationship was perceived between FDW/L and gamete development. 

For instance, as they were at a non-spawning stage high FDW/L values would be expected in Isla 
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Brujas and Taganga oysters in the dry season but, quite the reverse, FDW/L was minimal. On the 

other hand, the high FDW/L values recorded in the rainy season can be also attributed to seasonal 

increases in suspended organic matter. Interestingly, seasonal increase in FCI in oysters is 

positively correlated with in microbial load whereas decreases in FCI have been related with high 

microbial tissue loads due to sewage pollution, which causes lower assimilation efficiency (Jana 

et al., 2014). Interestingly, in the present study, the faecal bacteria load is higher in the rainy season 

than in the dry season, which will coincide with high FWD/L values, and Taganga, with the lowest 

FDW/L values, receives sewage directly from the Santa Marta marine outfall; especially during 

the dry season, which is the high touristic season in Santa Marta. Finally, seasonal cyclic 

fluctuations in FCI could be explained partially by changes in salinity and number of days within 

various temperature regimes, which may result in decreased feeding activity or diet quality 

abundance (Austin et al., 1993). The salinity in Isla Maparadita during the rainy season is more 

extremely reduced than in any other locality studied. As a whole, in Santa Marta Bay, upwelling 

in the dry season leads to increased salinity, decreased temperature and turbidity and enrichment 

of inorganic nutrients due to the contribution of deep marine waters. In the rainy season, outwelling 

occurs, mediated by tropical rainfall and relevant river loads of sediment, organic matter and 

domestic sewage to the Santa Marta Bay; this results in decreased salinity and dissolved oxygen, 

and augmented temperature, turbidity and phosphorus and chlorophyll concentrations (Mancera-

Pineda et al., 2013). The Gaira and Manzanares rivers contribute with freshwater and sediments 

to the bay during the rainy season, together with inorganic nutrients, domestic sewage and litter. 

Besides, mineral coal transportation, a major port activity, contributes to enhanced sedimentation 

and sediment re-suspension thus leading to elevated levels of suspended particulate matter. 

Therefore, FDW/L would be governed by the nutritional status of by the influence of stressors or 

specific contamination sources (e.g. domestic sewage) rather than by seasonality in gamete 

development and spawning.  

According to the SRI, a spot feminisation could be envisaged in Taganga oysters in both 

seasons. This locality is influenced by discharges from the nearby marine outfall of Santa Marta 

and could therefore be recipient of potentially oestrogenic chemical pollutants. In contrast, intersex 

oysters were found in Marina Santa Marta (both seasons) and Isla Brujas (dry season). Intersex 

has been reported in the vicinity of sewage discharge locations in a variety of species from 

copepods to fish (Moore and Stevenson, 1994; Ortiz-Zarragoitia and Cajaraville, 2010; 2011; Puy-

Azurmendi et al., 2010; 2013); however, intersex gonads are normally found at small numbers 
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(0.3-1.6%) in C. rhizophorae (Vélez, 1982) and herein intersex cases, with separate male and 

female gonad follicles, were only sporadically. Nevertheless, the intersex cases presently recorded 

coincide with the cases of oversized shell, which has been related to the presence of anti-

oestrogenic compounds such as TBT (Chagot et al., 1990). In any case, the presence of endocrine 

disrupting chemicals seems to be a question of concern; these chemicals include oestrogens, anti-

oestrogens, anti-androgens, toxicants that reduce steroid hormone levels, toxicants that affect the 

CNS, and toxicants that affect hormonal status (Depledge and Billinghurst, 1999), which typically 

occur in mixtures in domestic sewage effluents and industrial wastes. Moreover, a certain arrest in 

gametogenesis was envisaged in Isla Brujas in the dry season, with a high prevalence of oysters 

with undifferentiated follicles. In the rainy season, Marina Santa Marta and Taganga showed the 

most advanced gamete development stages; however, the opposite was found in the dry season. 

Oocyte atresia was practically negligible and therefore RAI was mainly influenced by altered sex 

ratios and arrest/delay of the gametogenic cycle, with the highest scores recorded in Isla Brujas 

and Taganga, followed by Isla Barú. The observed low-to-moderate reproduction anomalies seem 

to be related to pollutant exposure rather than to nutritional or environmental conditions. 

Components of domestic sewage and a wide range of industrial chemicals are capable of disrupting 

the endocrine systems of a wide range of wildlife species (Depledge and Billinghurst, 1999). 

The prevalence of parasites (such as Nematopsis sp, ciliates, intracellular protists, RCL/Os, 

and metazoans) was low in all the samples; though seemingly higher in the dry season than in the 

rainy season. These parasites are common in C. rhizophorae and related species and their seasonal 

variations and their relation to environmental conditions have been previously reported. The 

presence of Nematopsis sp and ciliates seems to be indicative of organic pollution (Marcogliese 

and Cone, 1997; Brandão et al., 2013), and unlike in Colombia, it has been recorded at high 

prevalence in Nicaraguan mangrove cupped oysters (present study) and, overall, in tropical 

bivalves (Nascimento et al., 1986; Aguirre-Macedo et al., 2007; Sabry et al., 2007; 2011, 2013; 

Boehs et al., 2010; Ceuta and Boehs, 2012; Brandão et al., 2013). RCL/Os have been previously 

recorded in the digestive gland cells of C. rhizophorae (da Silva et al., 2011; Zeidan et al., 2012; 

Brandão et al., 2013; Sabry et al., 2013) with low prevalence usually below 30% and absence of 

pathological effects others than hypertrophy of infected cells. In C. rhizophorae from Maraú River 

in Brazil, low prevalence (3.3%) of metazoan and R/CLO was also reported in the rainy season in 

comparison with the dry season (10-13.3%; Brandão et al., 2013). Likewise, low prevalence 

(1.76%) of the metazoan Tylocephalum was found in C. rhizophorae in the dry season, associated 
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with high water temperature (Sabry et al., 2007), as well as for R/CLO in the dry season in Mytella 

guyanesis (Ceuta and Boehs, 2012). Isla Brujas, especially in the dry season, exhibited moderate 

prevalence values for Nematopsis sp. and ciliates. As a result, PII was higher in Isla Brujas (both 

seasons) than in the other localities, followed by Isla Barú and Isla Maparadita in the dry season. 

Pollution by chemicals in mixture is a potential factor activating latent infection in oysters (Chu et 

al., 2002). Isla Brujas received the input from the Dique Channel, which is a main source of 

sediments and chemical pollution in the Cartagena Bay, both in the rainy and the dry seasons; 

indeed, metals and PAHs in sediments are at concentrations that pose environmental risk, 

according to international policies (Vivas-Aguas et al., 2010). Thus, some degree of 

immunodepression might be envisaged in Isla Brujas oysters but this cannot be confirmed with 

the present data and in any case it seems to be of minor entity.  

Regarding inflammatory responses only oedema and brown cell accumulation (this latter at 

much lower levels than in Nicaraguan oysters) were recorded, particularly high in the dry season. 

At this season there might be some common causing agent everywhere, but most especially in 

Barú and Marina, be this a particular pollutant, sewage contamination or environmental conditions. 

Inflammatory responses in bivalves are generally considered to be indicative of stress, linked to 

severe lesions caused by parasitosis (Cochennec-Laureau et al., 2003; Garmendia et al., 2011; 

Comesaña et al., 2012) or xenobiotics compounds (Rojas. et al., 1999; Villalba et al., 2001; Sheir 

and Handy, 2010). Elevated levels of haemocytic infiltration and oedema are general responses to 

chemical pollutants in molluscs (Au, 2004). These inflammatory responses were shown to be 

related to the tissue concentration of Cd and hydrocarbons in C. virginica from Mexican coastal 

ecosystem (Gold-Bouchot et al., 1995) and therefore they were suggested as indicators of 

pollution-induced stress for native oysters in coastal lagoons (Gold-Bouchot et al., 2007). Thus, 

IRI exhibited the same trends than PII in the rainy season but not at all in the dry season. DGAI, 

which represents a fast and enduring biological response to environmental stressors (Garmendia 

et al., 2011; Marigómez et al., 2013), only exhibited a low-to-moderate raise in Isla Brujas in the 

dry season and therefore it did not provide any clear evidence of health impairment.  

LT50 was in the range of 4-12 d. Oysters from Isla Brujas in the dry season and, most markedly, 

those from Isla Barú, Isla Brujas and Isla Maparadita in the rainy season exhibited very low LT50 

values. Unlike in Nicaraguan mangrove cupped oysters, in which the lowest LT50 values were 

recorded in the dry season, Colombian oysters seem to be more resistant to additional stress in the 

dry season than in the rainy season,  as it would be expected from a stressed organism. Moreover, 
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LT50 values were in general terms higher than in Nicaragua, which might be related to the smaller 

size of the Colombian oysters or to the poorer health condition of the Nicaraguan oysters at 

regional scale, as above discussed. Overall, the SoS response profile in the dry season resembled 

the one recorded for DGAI but, conversely, these biological responses were apparently not at all 

related in the rainy season, nor related to other observed health and growth parameters, neither 

with gamete development. Likewise, LT50 values could not be related to the pollutant tissue 

burdens reported in the oysters (Chapter 1). In the case of intertidal mussels from temperate 

regions, LT50 values around 3-6 d have been reported on exposure to Cu, Cd, PCB congeners, 

Aroclor 1254, individual PAHs (e.g., 9,10-dimethyl 1,2-benzanthracene, fluoranthene or 

benzo[a]pyrene), in comparison with >10 d recorded in control and reference mussels 

(Veldhuizen-Tsoerkan et al., 1991; Eertman et al., 1995; Viarengo et al., 1995). Thus, as a general 

rule, LT50 values >10 d are indicative of healthy condition whereas values <6 d are found in 

stressed mussels (Viarengo et al., 1995; Davies and Vethaak, 2012; Martínez-Gómez et al., 2017). 

These critical values, however, can vary depending on the nutritional, reproductive and 

physiological status of the organisms and on environmental factors; thus, for instance, small 

mussels seem to be more tolerant to survival-in-air than larger ones, both in the polluted and non-

polluted sites (Thomas et al., 1999). Likewise they can be different for different species, e.g. even 

if they are sympatric Mytilus spp. (Hellou and Law, 2003), and therefore the present results 

obtained for mangrove cupped oysters must be interpreted cautiously. It seems that SoS response 

if the result of multiple agents interacting (pollution, environmental factors).  

As previously reported in mussels from temperate regions (Hellou and Law, 2003; 

Koukousika and Dimitriadis, 2005; Nesto et al., 2007; Pampanin et al., 2005), a strong seasonal 

variability in SoS, which followed opposite patterns in Nicaraguan and Colombian oysters, was 

envisaged. This intricate response pattern may be attributed to region-specific factors that may 

influence SoS response, such as ambient temperature, reproductive stage and size (Martínez-

Gómez et al., 2017). Moreover, survival in air is known to be more limited for subtidal bivalves 

than for intertidal ones (Babarro and de Zwaan, 2008), and oysters from Nicaragua inhabited 

shallow subtidal reefs in mangrove lagoons whilst those from Colombia were collected from 

intertidal roots/docks in mangrove swamps. Thus, we must be cautious to interpret the present 

LT50 values alone, though they can be useful for comparative purposes and to understand the 

battery of biomarkers in an integrative manner.  
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Fig. 14. Regression models and correlation between IBR/n and CPI (a) and PLI (b) in Colombian 
mangrove swamps in the dry season. CPI and PLI data obtained in Chapter 1. CPI, Chemical Pollution 
Index (Bellas et al., 2011; 2014); PLI, Pollution Load Index (Tomlinson et al., 1980). 

Though modulated by natural variables and confounding factors, different indicators of health 

disturbance alone and in combination were related to the presence of different profiles and levels 

of chemical pollutants present at low-to-moderate levels. Thus, IBR/n discriminated Isla Brujas 

and Isla Maparadita from the other localities in both seasons as well as Isla Brujas from Isla 

Maparadita in the dry season. Considering altogether the present results and the pollutant tissue 

levels reported for these mangrove cupped oysters (Chapter 1), it can be concluded that different 

mixtures of a variety of persistent (e.g., As, Cd, PAHs) and emerging chemical pollutants (e.g. 

musk fragrances)  in combination with different levels of organic and particulate matter resulting 

from upwelling and sewage discharges, and environmental factors (salinity, temperature) elicit a 

different degree of disturbance in ecosystem health condition in mangrove-lined Caribbean coastal 
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ecosystems, as reflected in sentinel  C. rhizophorae. As a result, IBR/n was correlated with 

pollution indices such as PLI and CPI (Fig. 14), even though the levels of biological anomalies 

used as indicators of health disturbance and the levels of pollutants were in general terms low-to-

moderate in a real field situation influenced and modulated by biological variables and 

environmental factors that varied seasonally.  

In conclusion, integrative approaches for marine and coastal pollution monitoring involve the 

use of methodological standards in both sampling, analysis of samples and interpretation of results 

(ICES 2011; OSPAR Commission 2013b). Assessment of ecosystem health disturbance for the 

monitoring of pollution and its biological consequences in tropical and subtropical coastal regions 

is constrained by (a) difficulties for systematic routine sampling (e.g. accessibility to sampling 

sites is expensive and complicated, and may be hampered by natural phenomena such as 

hurricanes, cyclones and earthquakes); (b) the limited knowledge on the biology and ecology of 

local/regional target species; (c) the lack of adequate sample transportation to the laboratory (this 

may take long time under non-optimal conditions for sample quality preservation); and (d) 

technological hurdles (e.g. cryo-processing and cryo-sample transportation) that impede the 

application of core endpoints elsewhere applied in coastal biomonitoring. Moreover, quantifying 

a suite of biomarkers often requires purchasing dedicated equipment, special wares, and expensive 

reagents not always easy to afford by developing countries (Blaise et al., 2016). As previously 

established by Blaise et al. (2016) for mussels of sub-Arctic and temperate regions, our study 

supports the use of simple methodological approaches to diagnose anomalies in the health status 

of mangrove cupped oysters from different localities and to identify potential causing agents. 

These anomalies may reflect disturbances in ecosystem health that can be associated to chemical 

pollutants, eutrophication (e.g. from domestic sewage) as well as to naturally or human-driven 

anomalies and extremes in environmental factors such as salinity, dissolved oxygen, suspended 

matter, etc. Consequently, the easy methodological approach used herein is useful for the 

assessment of health disturbance in a variety Caribbean coastal ecosystems using mangrove 

cupped oysters as sentinel species. Likewise, this approach is useful to identify presumptive 

sources of health disturbance, be these chemical pollutants or other stress sources, which can 

further on be identified following specific and more complicated and expensive analytical 

procedures. 
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Abstract: This investigation aims at contributing to the use of the slender marsh clams (Polymesoda 
arctata), pustulose arks (Anadara tuberculosa), and ark shell clams (Larkinia grandis) as potential 
biomonitors and sentinels for pollution biomonitoring in mangrove-lined coastal systems in Nicaragua, 
based on previous experience acquired with mangrove cupped oysters, Crassostrea rhizophorae (Chapter 
1 and 2). For this purpose, localities with different contaminant sources were selected in the Nicaraguan 
coastline. In the Caribbean, P. arctata was collected in Pigeon Cay (Pearl Lagoon) and Punta San Gabriel 
(Bluefields Lagoon). In the Pacific, A. tuberculosa was collected in Padre Ramos Reserve and Corinto, 
and L. grandis in Padre Ramos Reserve. Samples were collected in the rainy and dry seasons during 
2012-2013. The tissue concentration of metals, PAHs and POPs were determined and integrated into 
pollution indices (CPI and PLI). In parallel, biological endpoints at different levels of biological 
complexity (condition indices, reproduction parameters, histopathology, and stress-on-stress response) 
were determined as biomarkers of ecosystem health disturbance.  In the Caribbean, the tissue 
concentration of contaminants in P. arctata was, in general terms, low with some exceptions. Moreover, 
Ag, As, Cd, Hg, Ni and V were mainly recorded during the dry season, whilst PAHs and POPs, such as 
HCHs, DDTs, AHTN, PCBs and BDE85, were mainly recorded during the rainy season. As whole, the 
highest CPI and PLI values were recorded in Punta San Gabriel, which is consistent because this locality 
is located at the sediment deposition zone of Bluefields Lagoon. Nevertheless, it seems that metals and 
PAHs are not a matter of major concern in these Caribbean lagoons; in contrast, high levels of HCHs and 
DDTs and low-to-moderate levels of musk fragrances and PBDEs were recorded. Although only minor 
differences were found in biological parameters between localities and between seasons, low LT50 values 
were recorded in Punta San Gabriel during the rainy season, associated to the highest PLI and CPI values. 
In the Pacific coast, the main pollutants recorded in A. tuberculosa and L. grandis were HCHs, DDTs, 
AHTN and PDBEs in the rainy season and Cd in the dry season. In these two Pacific species, biological 
endpoints comparable to those used in other sentinel bivalves appear to be suitable as biomarkers of 
health disturbance; however, more basic research is needed to understand their general biology, ecology 
and disease. Overall, our study supports that slender marsh clams in the Caribbean, and pustulose arks 
and ark shell clams in the Pacific coast could be used as biomonitors and sentinels for assessing pollution 
and ecosystem health disturbance in mangrove-lined coastal systems in Nicaragua. Besides, seasonality 
has been found to be crucial to properly design and conduct pollution monitoring programmes using the 
three species investigated herein.  
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Resume: Esta investigación tiene como objetivo contribuir al uso del guacuco de marjal esbelto 
(Polymesoda arctata), la concha negra (Anadara tuberculosa), y el casco de burro (Larkinia grandis) 
como potenciales especies biomonitoras y centinelas para el biomonitoreo de contaminación en los 
sistemas costeros de manglar en Nicaragua, a partir de la experiencia previa adquirida con ostras de 
manglar Crassostrea rhizophorae (Capitulo 1 y 2). Para ello, se seleccionaron localidades con diferentes 
fuentes de contaminantes en las costas Nicaragüenses. En el Caribe, se recolectó P. arctata in Pigeon Cay 
(Laguna de Perla) y en Punta San Gabriel (Laguna de Bluefields). En el Pacífico, se recolectó A. 
tuberculosa en la Reserva Padre Ramos y Corinto, y L. grandis en la Reserva Padre Ramos. Se 
recolectaron las muestras en las épocas de lluvia y seca durante 2012-2013. Se determinaron las 
concentraciones tisulares de metales, PAHs y POPs, y se integraron en índices de contaminación (CPI y 
PLI). Paralelamente, se determinaron parámetros biológicos a diferentes niveles de complejidad biológica 
(índices de condición, parámetros de reproducción, histopatología y respuesta de estrés sobre estrés) 
como biomarcadores de perturbación de la salud del ecosistema. En el Caribe, las concentraciones 
tisulares de contaminantes en P. arctata fueron bajas, en general, con algunas excepciones. Por otro lado, 
Ag, As, Cd, Hg, Ni y V se registraron principalmente en la época seca, mientras que PAHs y POPs (tales 
como HCHs, DDTs, AHTN, PCBs y BDE85) se registraron principalmente en la época de lluvia. En 
general, los valores más altos de CPI y PLI se registraron en Punta San Gabriel, lo que es consistente, 
porque esta localidad se ubica en la zona de sedimentación de la Laguna de Bluefields. Sin embargo, 
parece que los metales y PAHs no son motivo de gran preocupación en estas lagunas Caribeñas. Por el 
contrario, se registraron altos niveles de HCHs y DDTs, y niveles de bajos a medios de almizcles 
sintéticos. Aunque se encontraron mínimas diferencias entre localidades y entre épocas en los parámetros 
biológicos estudiados, se registraron valores bajos de LT50 en Punta San Gabriel durante la época de 
lluvia, asociados a valores más altos de CPI y PLI. En la costa del Pacífico, los principales contaminantes 
registrados en A. tuberculosa y L. grandis fueron HCHs, DDTs, AHTN y PDBEs en la época de lluvia y 
Cd en la época seca. En estas dos especies, parámetros biológicos comparables a los utilizados en otros 
bivalvos centinelas parecen ser adecuados como biomarcadores de perturbación de la salud; sin embargo, 
se necesita más investigaciones básicas para entender su biología general, ecología y enfermedad. En 
general, nuestra investigación sustenta que el guacuco de marjal esbelto en el Caribe, y la concha negra y 
el casco de burro en el Pacífico podrían ser usadas como especies biomonitoras y centinelas para evaluar 
la contaminación y las perturbaciones de la salud del ecosistema en los sistemas costeros de manglar en 
Nicaragua. Además, se ha comprobado que la estacionalidad es crucial para diseñar y llevar a cabo 
adecuadamente programas de monitoreo de contaminación  usando las tres especies estudiadas en éste 
trabajo. 
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1. Introduction 
The mangrove forest from Nicaragua extends throughout 69050 ha and represents one of the 

main coastal ecosystems, which is approximately equally distributed between the Pacific and the 

Caribbean coasts (Jiménez, 1999; FAO, 2007). Overall, mangrove ecosystems are threatened by 

a combination of natural disasters, tourism, aquaculture, deforestation and chemical pollution 

(Ellison, 2004; Defew et al., 2005; Fernandez et al., 2007; Polidoro et al., 2010; Lewis et al., 

2011; Bayen, 2012). Concretely, Nicaraguan mangroves are influenced by 21 watersheds, 13 of 

them drain in the Caribbean and 8 in the Pacific Coast (González, 1997). Consequently, the 

Caribbean coastal area is a major sink for contaminants transported along the watersheds as it 

receives the 90% of the Nicaragua’s territory catchment (UNEP, 2002). Nevertheless, maritime 

traffic and ports, urban settlements, shellfish farming and intensive agriculture are also potential 

sources of pollutants in the Pacific coast (Spongberg and Davies, 1998; Gener, 2009; Spongberg 

and Witter, 2008; Vargas et al., 2015). 

Thus, there exists a need to carry out pollution monitoring programmes using bivalve 

molluscs as biomonitors and sentinels, following the Mussel-Watch approach (Goldberg, 1975; 

Sericano et al., 1995; Monirith et al., 2003; Kimbrough et al., 2008; 2009; Garmendia et al., 

2011; Marigómez et al., 2013). However, to our knowledge, such a kind of pollution monitoring 

activities in Nicaragua are based on sporadic studies carried out by academics and research 

groups (GEF-REPCar, 2011; Ebanks-Mongalo et al., 2013; Chapters 1 and 2), as well as by 

international organisations such as the International Mussel Watch and the UNEP Caribbean 

Environment Programme (Farrington and Tripp, 1995; Siung-Chang, 1997; UNEP, 2006).  

The mangrove cupped oysters (Crassostrea rhizophorae) have been proposed as 

biomonitors and sentinels for pollution monitoring programmes in mangrove ecosystems 

(Nascimento et al., 1998; Wallner-Kersanach et al., 2000; Rebelo et al., 2005; Silva et al., 2003; 

2006; da Silva et al., 2005; Zanette et al., 2006; Valdez Domingos et al., 2007; Torres et al., 

2012; Chapters 1 and 2). However, their distribution in Nicaragua is restricted to the Caribbean 

coast and therefore they cannot be used in pollution monitoring programmes in Pacific Coast 

mangrove-lined coastal systems. Thus, we need additional potential biomonitor and sentinel 

species, suitable for biomonitoring of pollutants and ecosystem health disturbance in Nicaraguan 

mangrove–lined coastal systems, both in the Caribbean and in the Pacific Coasts. Using more 

than one biomonitor/sentinel species in the same pollution monitoring programme is not 
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exceptional. Pollution monitoring programmes carried out from North to South America (The 

National Status & Trends NS&T, 1986-1993; and the International Mussel Watch, IMW, 1991-

1992) use different bivalve species, such as oysters, clams and cockles, depending on their 

availability at each particular geographical region (Farrington and Tripp, 1995; Sericano et al., 

1995; Kimbrough et al., 2008). Moreover, the sensitivity against pollutants may vary amongst 

species and therefore usually more than one species are simultaneously used to assess pollution 

and its biological consequences in marine biomonitoring programmes (Fernández-Tajes et al., 

2011; Pereira et al., 2011).  

Within this framework, the slender marsh clam, Polymesoda artacta from the Caribbean 

Sea, and mangrove cockles, Anadara tuberculosa and Larkinia grandis from the Pacific coast 

were selected as potential biomonitor/sentinel species for Nicaraguan mangrove ecosystems to 

be used either in parallel or as alternative to mangrove cupped oysters. These three species had 

been used as biomonitors in previous reports (Farrington and Tripp, 1995; Pérez-Cruz et al., 

2013; Leal et al., 2014; Ziarrusta et al., 2015). P. artacta (Deshayes, 1854; syn., P. solida 

(Deshayes, 1854)1, according to Bouchet, 2015) is a benthic mollusc with a biogeographical 

range extending from Belize to the Orinoco River in Venezuela (Severeyn et al., 1994). It 

inhabits fine, sandy sediments of the low-to-medium salinity estuarine zone (high organic 

content, salinity: 3-20 ppt; Severeyn et al., 1994). In Nicaragua, this species has been recorded in 

the Caribbean coast from Pearl Lagoon (North) to Monkey Point (South), as P. solida, 

Polymesoda sp or simply marsh clam (Mackenzie and Stehlik, 2001; MARENA, 2004; GTR-K, 

2007; Ziarrusta et al., 2015). Mangrove cockles, A. tuberculosa (GB Sowerby I, 1833) and L. 

grandis, (Broderip & GB Sowerby I, 1829; syn., A. grandis (Broderip & GB Sowerby I, 1829)2, 

according to Huber, 2015) are found along an ample biogeographical range from Baja California 

in Mexico to Bahia de Tumbes in Perú (Mora Sanchez, 1990; Cruz and Jimenez, 1994). In 

general, A. tuberculosa is more abundant than L. grandis (Mackenzie, 2001). A. tuberculosa 

inhabits level mud sediments in mangrove swamps that occur along the main-lands and islands 

of lagoons. These cockles occur among the aerial prop roots and under the canopies of the 

mangrove trees; most are about 15 cm deep in the mud (Mackenzie, 2001; Stern-Pirlot and 
                                                           
1 According to the World Register of Marine Species (http://www.marinespecies.org/index.php), the currently 
accepted name of P. solida is Polymesoda arctata (Deshayes, 1854), Bivalvia: Cyrenidae (Bouchet 2015). 
 
2 On the other hand, taxonomic name of Anadara grandis is not accepted according to the World Register of Marine 
Species (http://www.marinespecies.org/index.php), the currently accepted name is Larkinia grandis (Broderip & GB 
Sowerby I, 1829), Bivalvia: Arcidae (Huber, 2015).  
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Wolff, 2006). In Nicaragua, the pustulose ark, A. tuberculosa (commonly named "black shell") 

has been recorded along the Pacific coast (Pérez et al., 2003; Gener et al., 2009; USAID, 2012). 

L. grandis lives in intertidal mudflats and some subtidal areas beyond the edges of mangrove 

swamps (Mackenzie, 2001). Unlike in neighbouring countries such as Honduras and El Salvador 

where it is commercially exploited (Galdámez et al., 2007), in Nicaragua this mangrove cockle 

(commonly known as "casco de burro" -donkey’s hoof-) is endangered by overharvest (Gener et 

al., 2009), except in the Padre Ramos reserve, where it is under community management for 

recovery (Manzanares L, personal comm.).  

Both chemical and biological effects endpoints are included in pollution monitoring 

programs (ICES, 2011; OSPAR Commission, 2013), because the chemical data alone do not 

provide any indication of the deleterious effects exerted to biota and ecosystems by cocktails of 

pollutants in multiple stress scenarios (Cajaraville et al., 2000; Allan et al., 2006). Within this 

context, in a previous study, both pollutant bioaccumulation and biological effects were 

investigated in mangrove cupped oysters C. rhizophorae (Chapters 1 and 2). However, in slender 

marsh clams, pustulose arks and casco de burro ark shell clams there are only few 

bioaccumulation studies (Farrington and Tripp, 1995; Pérez-Cruz et al., 2013; Leal et al., 2014; 

Ziarrusta et al., 2015) and practically no biological effects studies, to our knowledge.  

Moreover, as elsewhere discussed (Van Lavieren et al., 2011; Blaise et al., 2016; Chapter 2) 

although developing countries, such as Nicaragua, may lack the monitoring capacities and 

facilities required to conduct most-advanced biomarker-based monitoring using bivalves as 

sentinels, effortless biomarkers can provide basic knowledge on animal health and water quality 

and are technically achievable (Blaise et al., 2016; Chapter 2). For this purpose, a toolbox of 

non-sophisticated and reliable biological effects endpoints was selected to assess the potential of 

the mangrove cupped oyster, C. rhizophorae, as sentinel for pollution monitoring in Caribbean 

mangroves and coastal zones from Nicaragua (Chapter 2). This toolbox included responses easy 

to measure at population and individual level and histopathological analyses; these latter allow 

scoring responses at systemic and tissue levels on the basis of cheap, solid and straightforward 

technology.  

This is a preliminary investigation that aims at contributing to the future use of the slender 

marsh clams (P. arctata), pustulose arks (A. tuberculosa), and casco de burro ark shell clams (L. 

grandis) as potential biomonitors and sentinels species for pollution biomonitoring in mangrove-

lined coastal systems in Nicaragua, after applying the experience and toolbox developed 
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previously for mangrove cupped oysters (Chapter 1 and 2). For this purpose, a pilot field study 

was carried out in 4 localities (2 in the Caribbean and 2 in the Pacific coast) subjected to 

different types and levels of pollution, in two sampling campaigns during 2012-2013. Samples 

were collected in the rainy and dry seasons and the tissue concentration of metals, PAHs, POPs 

and biological effects in slender marsh clam and mangrove cockles were recorded.  

2. Material and Methods 
2.1. Sampling sites and sample collection 

Three species of bivalves were collected along one year (2012-2013) in the rainy season 

(October) and in the dry season (March); seawater surface temperature was in the range of 30-

32ºC at both seasons.  

Subtidal (<1 m depth) slender marsh clams (Polymesoda arctata) were collected from two 

localities of the Caribbean coast (Fig. 1): Bluefields (sampling site: Punta San Gabriel) and Pearl 

Lagoon (sampling site: Pigeon Cay). Punta San Gabriel was considered as a prospective 

reference site (far away from urban settlements, ~6 Km) whilst Pigeon Cay was selected as a 

potentially polluted site influenced by aquatic transport and urban discharges (GEF-REPCar, 

2011; Ebanks-Mongalo et al., 2013). Intertidal pustulose arks (Anadara tuberculosa) were 

studied in two localities (mangrove swamp) in the Pacific coast (Fig. 2): Corinto (sampling site: 

Isla Machuca) and the Natural Reserve Padre Ramos (sampling site: Estero La Virgen). Isla 

Machuca was selected as seemingly polluted sites because it is subject to strong anthropogenic 

influence (UICN / ORMA, 2001) and the Corinto port. Beside, Estero La Virgen was selected a 

priori as reference site because it is a Natural reserve. Intertidal casco de burro ark shell clams 

(Larkinia grandis) were studied in one locality (mudflat) of the Pacific coast (Fig. 2); the Natural 

Reserve Padre Ramos (sampling site: Estero Venecia), considered as a reference clean site.  

Up to 85 individuals were collected per locality/sample; up to 25 of them were used for the 

chemical analyses and the remaining 60 were used for biological effect assessment. Upon 

collection, the bivalves were put in 15 L plastic boxes (2 individuals / L) in seawater at ambient 

temperature and transported to the laboratory (for 3h) before processing. Due to logistic 

problems, sampling could not be conducted in Pigeon Cay at the dry season.  
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Fig. 1. Caribbean 
coastal maps from 
Nicaragua, showing the 
localities where slender 
marsh clam Polymesoda 
arctata were collected in 
2012-2013. Nicaraguan 
coast: Pigeon Cay 
(12°21'42.50"N-
83°38'32.11"W) and Punta 
San Gabriel 
(11°57'24.40"N-
83°46'19.90"W).  

 

 

 

 

 

 

Fig. 2. Pacific coastal 
maps from Nicaragua, 
showing the localities 
where mangrove cockles 
Anadara tuberculosa and 
Larkinia grandis were 
collected in 2012-2013. 
Nicaraguan coast: Isla La 
Virgen (12°46'59.40"N-
87°26'59.60"W); Estero 
Venecia (12°47'10.70"N-
87°28'53.20"W) and Isla 
Machuca (12°27'52.70"N-
87°08'27.40"W.  
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2.2. Tissue concentrations of contaminants 

Pools of 25 individuals were homogenised and freeze-dried before being stored (at -20ºC) 

and analysed. For the analysis of metals (Ag, Al, As, Cd, Cr, Cu, Hg, Ni, Pb, Ti, V and Zn), 100 

mg of freeze-dried samples were digested in a microwave oven (Multi-wave 3000, Anton Paar, 

Austria) and the extracts were first filtered and then measured in an Inductively Coupled Plasma 

- Mass Spectrometer (ICP-MS; NexION 300 Perkin Elmer, USA) (Bartolomé et al., 2010; 

Navarro et al., 2010). For the analysis of the organic contaminants, 0.3 g of freeze-dried samples 

and 0.3 g of Florisil dispersant were manually blended in a glass mortar and were transferred to a 

10-mL glass syringe containing 0.6 g of deactivated silica and 4.0 g of activated silica. The target 

analytes were eluted with 25 mL of dichloromethane, and the eluate was evaporated to dryness 

using N2 blowdown and reconstituted to a final volume of 140 L of n-hexane. All these extracts 

were analysed by Gas Chromatography - Mass Spectrometry (GC–MS) using an Agilent 7890A 

gas chromatograph coupled to an Agilent 7000 triple quadrupole mass spectrometer and an 

Agilent 7693 autosampler (Agilent Technologies). The MassHunter WorkStation Acquisition 

Software (Version B.05.02/Build 5.2.365.0, Agilent Technologies, 2008) was used for data 

acquisition and automatic integration and quantification of the results. This method was designed 

to measure up to 40 non-polar or slightly non-polar organic pollutants such as PAHs, PCBs, 

PBDEs, organochlorine pesticides (OCPs), organophosphorus pesticides and musk fragrances 

(Ziarrusta et al., 2015). 

2.3. Chemical pollution indices 

Pollutant concentrations in the tissues of slender marsh clams, pustulose arks and casco de 

burro ark shell clams were compared with available environmental quality criteria for individual 

pollutants (OSPAR Commission, 2005; 2009; 2013; Kimbrough et al., 2008; Green et al., 2012): 

Background/Reference Concentrations (BRCs); Background Assessment Criteria (BACs), 

Highest Background Concentrations (HBCs) and Highest Low Concentrations (HLC). BRCs are 

intended to provide baseline or reference concentrations, and to describe environmental 

conditions under which there is no anthropogenic influence on the concentrations of the target 

substances in the environment (Davies, 2004; OSPAR Commission, 2005). BACs describe the 

threshold value for the background level, using data from reference sites (OSPAR Commission, 

2005; 2009; 2013). HBCs correspond to the upper limit to Class I in the Norwegian marine 

pollution monitoring approach, which recognises five classes from Class I, insignificantly 
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polluted, to Class V, extremely polluted (Green et al., 2012). HLCs correspond to the upper limit 

of the Low Concentration Range in the NOAA's mussel watch pollution monitoring; this 

recognises three concentration ranges (low, medium and high) for the tissue concentration of 

pollutants in oysters (Kimbrough et al., 2008). 

The chemical pollution index (CPI; Bellas et al., 2011; 2014; Beiras et al., 2012) was 

calculated for each site and season. For this purpose, Concentration Factors (CF) were calculated 

for each pollutant by dividing the tissue pollutant concentrations (Ctiss) by the corresponding 

environmental quality criterion (Ceqc): CF=Ctiss/Ceqc. Then, the following formula was applied: 

CPI=Σi[log(CFi)]. Likewise, the Pollution Load Index (PLI; Tomlinson et al., 1980) was 

computed for each site and season by obtaining the n-root from the n-CFs that were obtained for 

all the pollutants, according to the following equation: 

𝑃𝑃𝑃𝑃𝑃𝑃 = √𝐶𝐶𝐶𝐶1 𝑋𝑋 𝐶𝐶𝐶𝐶2 … …𝐶𝐶𝐶𝐶n
𝑛𝑛 . 

2.4. Condition and histopathology 

2.4.1. Stress on Stress (SoS) test  

LT50 was calculated after the "survival-in-air" SoS test (Veldhuizen-Tsoerkan et al., 1991; 

Viarengo et al., 1995) performed on 30 individuals from each site and sampling period that were 

placed over wet paper on plastic trays at constant room temperature (34oC) and 100% humidity. 

Survival was assessed daily and individuals were considered to be dead when their valves gaped 

and failed to close when they were physically stimulated, or simply presented a bad smell 

(Pampanin et al., 2005).  

2.4.2. Flesh Condition Index  

Soft parts from each individual were dried at 105ºC and weighed to the nearest 0.1 mg on an 

analytical balance in order to calculate flesh dry-wt (FDW; Lobel and Wright, 1982). Then the 

flesh condition Index (FCI) was as FDW/SDW, where SDW is the shell dry weight (dried at 

room temperature) according to Crosby and Gale, (1990). SDW was measured in g and shell 

length (L) was determined as the length in mm of the largest valve (the long axis measured to the 

nearest 0.1 mm with Vernier callipers; Dame, 1972).  FDW/L was calculated and used to as an 

indication of bivalves flesh condition suitable for a regional comparison (Hellou et al., 2003; 

Blaise et al., 2016).  
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2.4.3. Histology and histopathology  

Upon dissection of their soft body (N=20 individuals/sample), central cross-sectioned slices 

(3–5 mm thick, including digestive gland, gonad (mantle) and additional tissues) were fixed in 

Davidson’s fixative for 48 h and paraffin embedded. Microtome sections (5 µm) were obtained 

using an automated rotary Leica RM 2255 microtome (Leica Microsystems, Nussloch, 

Germany), stained with haematoxylin-eosin and examined under the light microscope (Olympus 

BX61; Tokyo, Japan) for gamete development determination and histopathological diagnosis 

(Kim et al., 2006). 

Gamete development and reproductive disturbance. Gamete developmental stages were 

examined microscopically. Slides of 20 individuals per sample were examined one-by-one under 

the light microscope using 10× and 20× objective lenses. The sex of each animal was recorded 

and the total number of female and male individuals was calculated for each sampling time and 

locality, and with these data, the sex ratio was calculated for each sampling time and locality 

(Ortiz-Zarragoitia et al., 2011). Further on, the sex ratio index (SRI) was calculated as the G 

value of females-to-males ratio (F:M) upon the gross assumption of theoretical F:M ratios of 1:1 

in P. arctata (no referecne available; arbitrarily decided as a fist approach); A. tuberculosa 

(Gener et al., 2009, Silva-Benavides and Bonilla 2015) and L. grandis (Galdámez et al., 2007). 

Intersex index (IXI) was calculated as the prevalence of intersex individuals at each locality and 

season. The prevalence of gamete developmental stages was determined upon scoring the 

maturity of the follicles and gametes, as well as a gonad index (GI) value (Table 1) according to 

Kim et al., (2006); Ortiz-Zarragoitia and Cajaraville, (2010). 

Gamete mass index (GMI) was calculated as the log ratio of the sum of the prevalence of 

developmental stages 2-4 (gonad tissue growth) to the sum of the prevalence of stages 5-6 

(gonad tissue loss), in logarithmic scale. Undifferentiated index (UDI) was estimated as the 

prevalence of stage 1. Oocyte atresia prevalence was recorded in females and its intensity was 

scored (0-4) individually according to the scale for abnormal gonad development proposed by 

Kim et al., (2006) for mussels. Oocyte atresia index (OAI) was calculated by multiplying 

prevalence × intensity. Reproductive Anomalies Index (RAI) was calculated as weighted average 

of the deviation from the theoretical maximum anomalies of the specific indices of reproductive 

disturbance, according to the following formula: 
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𝑅𝑅𝑅𝑅𝑃𝑃 =
1
5

× �
𝐶𝐶𝐶𝐶 × 𝑆𝑆𝑅𝑅𝑃𝑃
𝑆𝑆𝑅𝑅𝑃𝑃50

+
𝐶𝐶𝐶𝐶 × 𝑃𝑃𝑋𝑋𝑃𝑃
𝑃𝑃𝑋𝑋𝑃𝑃50

+
𝐶𝐶𝐶𝐶 × 𝐺𝐺𝐺𝐺𝑃𝑃
𝐺𝐺𝐺𝐺𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

+
𝐶𝐶𝐶𝐶 × 𝑈𝑈𝑈𝑈𝑃𝑃
𝑈𝑈𝑈𝑈𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

+
𝐶𝐶𝐶𝐶 × 𝑂𝑂𝑅𝑅𝑃𝑃
𝑂𝑂𝑅𝑅𝑃𝑃50

� 

where CF=×100/1.6 (thus RAI changes between 0 and 100); SRI50=27.7 for a 50% deviation 

from the theoretical sex ratio; IXI50=50, when a 50% prevalence of intersex individuals occurs; 

(c) where GMImax=2, when 100% of the gametes are mature in absence of any sign of spawning; 

(d) UDImax=100, when 100% of the individuals do not present differentiated gametes; and 

OAI50=2, the median value of the scale for atresia scoring after Kim et al., (2006).  

Table 1. Gametogenic phases and gonad index applied in slender marsh clam (Polymesoda arctata) and 
mangrove cockles (Anadara tuberculosa and Larkinia grandis), modified from mytilid and dreissenid 
development stages (Kim et al., 2006; Ortiz-Zarragoitia and Cajaraville, 2010). 

Gonad 
Index 

Gametogenic 
phase Description 

0 Resting/spent 
gonad (I) Inactive or undifferentiated 

1 Early  
development (II) 

Gametogenesis has begun; no ripe gametes visible 

2 Ripe gametes present; gonad developed to about one-third of its final size 

3 
Advanced 
development (III) 

Gonad increased in mass to about half the fully ripe condition; each follicle 
contains, in area, about equal proportions of ripe and developing gametes 

4 Gametogenesis still progressing, follicles contain mainly ripe gametes 

5 Mature (IV) 
Gonad fully ripe, early stages of gametogenesis rare; follicles distended 
with ripe gametes; ova compacted into polygonal configurations; sperm 
with visible tails 

4 
Spawning (V) 

Active emission has begun; sperm density reduced; ova rounded off as 
pressure within follicles is reduced 

3 Gonad about half empty 

2 
Post-spawning (VI) 

Gonadal area reduced; follicles about one-third full of ripe gametes 

1 Only residual gametes remain; some may be undergoing cytolysis 

Digestive gland histopathology. Parasites, tissue lesions and inflammatory responses were 

examined microscopically. Slides of 20 individuals per sample were examined individually 

under the light microscope using 10×, 20× or 40× objective lenses. Parasites and 

histopathological alterations were scored using either quantitative or presence/absence scales 

(Kim et al., 2006). Intracellular ciliates, unidentified intracellular protists, Nematopsis sp., 

metazoans (trematodes, cestodes) and Rickettsia/Clamydia-like organisms (R/CLO) were 
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recorded quantitatively following procedures previously described (Kim et al., 2006; Kim and 

Powell, 2007; Garmendia et al., 2010; 2011). Quantitative scores were made by keeping a 

running count of the incidences as the slide was scanned to avoid re-examination of each slide 

multiple times for each category. Haemocytic infiltration, without distinction between focal and 

diffuse and brown cell aggregates were scored as present/absent for each individual bivalve, 

except to granulocytomas that it was quantified (Zaroogian and Yevich, 1993; Kim and Powell, 

2004). Prevalence and intensity of histopahological lesions were determined, according to Kim 

and Powell, (2007) and Garmendia et al., (2011), as follows:  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑁𝑁.𝑃𝑃𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑎𝑎 𝑖𝑖𝑃𝑃𝑎𝑎𝑖𝑖𝑃𝑃𝑖𝑖𝑎𝑎𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖 × 100 

𝑁𝑁. 𝑃𝑃𝑒𝑒𝑃𝑃𝑒𝑒𝑖𝑖𝑃𝑃𝑃𝑃𝑎𝑎 𝑖𝑖𝑃𝑃𝑎𝑎𝑖𝑖𝑃𝑃𝑖𝑖𝑎𝑎𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖 
 

𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎𝐼𝐼 =
∑ (𝑁𝑁. 𝑜𝑜𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 𝑜𝑜𝑎𝑎 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎𝑃𝑃

𝑜𝑜𝑃𝑃 𝑝𝑝𝑃𝑃𝑎𝑎ℎ𝑜𝑜𝑃𝑃𝑜𝑜𝑜𝑜𝐼𝐼 𝑝𝑝𝑃𝑃𝑃𝑃 𝑖𝑖𝑃𝑃𝑎𝑎𝑖𝑖𝑃𝑃𝑖𝑖𝑎𝑎𝑖𝑖𝑃𝑃𝑃𝑃)
𝑛𝑛
𝑖𝑖=1

𝑁𝑁.𝑃𝑃𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑎𝑎 𝑖𝑖𝑃𝑃𝑎𝑎𝑖𝑖𝑃𝑃𝑖𝑖𝑎𝑎𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖
 

The inflammatory response index (IRI) was calculated as the sum of the prevalence values 

of oedema, granulocytomas and disseminated neoplasia. The parasitic infestation index (PII) was 

calculated as the sum of the prevalence values calculated individually for each of the 5 groups of 

parasites aforementioned. The digestive gland atrophy index (DGAI) was estimated according to 

Kim and Powell (2007).  

2.5. Statistical analyses 

Statistical analyses were carried out with the aid of SPSS version 22 statistical package 

(IBM SPSS, Armonk, NY, USA). The normality distribution (Shapiro-Wilk’s test) and 

homogeneity of variance (Levene’s test) of data were determined before proceeding with 

subsequent analyses. Due to the high variability between individuals, even after normal 

distribution transformation of the data, non-parametric analyses were carried out. Significant 

differences in the prevalence of inflammatory responses and parasitic lesions and in health 

condition indices were analysed by the Z score test. Survival values of SoS test were analysed 

with the non-parametric Kaplan-Meier analysis, followed by the Tarone-Ware post hoc test for 

comparisons between localities for each season and between seasons for each locality. 

Differences in L, SDW, FDW/SDW, DGAI and GI were determined by applying Kruskal–Wallis 

followed by Dunn’s post hoc test. Sex ratio bias was studied using the G test of association, 

comparing total number of female and male mussels and normalizing for theoretical gender bias. 

In all the tests used herein, significant differences were established at p<0.05. 
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3. Results 
Table 2. Metal tissue concentrations in P. arctata (μg/g) from Caribbean mangrove lagoons. LOD, 
limit of detection. 

 

  LOD 
RAINY SEASON DRY SEASON 

Pigeon Cay Punta San 
Gabriel 

Punta San 
Gabriel 

Ag 0.0015 0.06 1.00 1.46 

Al 15.3 285.54 631.98 606.05 

As 0.01 10.24 9.69 26.33 

Cd 0 0.24 0.25 1.00 

Cr 0.22 0.63 0.53 0.68 

Cu 0.11 11.48 11.12 8.52 

Hg 0.004 0.15 0.16 0.24 

Ni 0.54 2.67 0.87 1.25 

Pb 0.015 0.89 0.27 0.40 

Ti 0.94 11.89 14.73 8.34 

V 0 0.78 1.80 2.49 

Zn 2.36 91.76 99.45 104.23 

∑Metals 416.35 771.86 761.00 

3.1. Polymesoda arctata 

Tissue concentrations of contaminants. Overall, metal tissue concentrations were low, 

although the tissue concentrations of As and Hg were seemingly higher in Punta San Gabriel in 

the dry season than in the rainy season, when no differences between localities were apparent 

(Table 2). The tissue concentrations of PAHs were apparently higher in the rainy season than in 

the dry season (Table 3). In the rainy season, higher PAHs values were recorded in Punta San 

Gabriel than in Pigeon Cay (Table 3). The most relevant PAHs found were phenanthrene, 

fluoranthene, pyrene, and benzo[b]fluoranthene+benzo[k]fluoran-thene in Punta San Gabriel and 

chrysene in Pigeon Cay, in the rainy season (Table 3). The sum of the 16 USEPA PAHs (except 

napthalene) was higher in Punta San Gabriel during the rainy season than in Pigeon Cay. Pigeon 

Cay showed high values of ∑HMWPAHs and low ∑LMWPAHs and a low ∑LMWPAH/∑HMWPAHs 

ratio, whilst the opposite effect was observed in Punta San Gabriel (Table 3). The tissue 

concentrations of POPs were apparently higher in the rainy season than in the dry season (Table 

4). HCHs and DDTs and their derivatives were recorded especially in the rainy season; the tissue 
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concentration of HCHs being higher in Pigeon Cay than in Punta San Gabriel and the opposite as 

regards the DDT tissue concentrations, which was higher in Punta San Gabriel than in Pigeon 

Cay (Table 4). Musk fragrances were only detected in Punta San Gabriel in the rainy season. 

PCBs were only detected in Pigeon Cay in the rainy season, CB28 and CB118 showing the 

highest values (Table 4). Only two of the eight analysed PBDEs (BDE85 and BDE100) were 

found at measurable levels; BDE85 showing markedly high values in Pigeon Cay in the rainy 

season and in Punta San Gabriel in the dry season (Table 4). 

The highest CPI and PLI values were obtained in the rainy season (Figs. 3a and b), Punta 

San Gabriel being the locality with positive CPI values (<1) and high PLI values (69.58). 

Overall, the main pollutants contributing to these CPI and PLI values were Hg, HCHs, DDTs, 

AHTN, PCBs and BDE85 (SM 1 and 2). 

Table 3. PAH tissue concentrations in Polymesoda arctata (ng/g) from Caribbean mangrove lagoons. 
The following compounds were under detection limits in all the samples (superscript numbers refer to the 
sums and indices given in the table where they are integrated): B[ghi]P (LOD=1); Ind (LOD=2)(2). LOD, 
limit of detection; udl, under detection limits; n/a, not applicable. 
 

  LOD 
RAINY SEASON DRY SEASON 

Pigeon Cay Punta San 
Gabriel 

Punta San 
Gabriel 

Acy (1) 1 udl udl udl 

Ace (1) 1 17 udl udl 

Flu (1) 0.07 udl 17 udl 

Phe (1) 0.49 udl 173 udl 

Ant 1 18 udl udl 

Flr (1) 0.34 udl 64 udl 

Pyr (1) 1 4 33 udl 

Benz[a]A (2) 1 20 udl udl 

Chr (2) 1 40 7 udl 

B[b]F +B[k]F (2) 1 22 27 3 

B[a]P (2) 1 udl 6 udl 

D[ah]A (2) 2 udl 13 udl 
∑PAHs (16; except Naph)  120 339 3 

∑HMWPAHs ∑ (2) (carcinogenic)  60 7 3 

∑LMWPAHs ∑ (1)  (%∑PAHs)  21 (17%) 287 (85%) n/a 

∑LMWPAHs / ∑HMWPAHs  0.34 43.00 0 

Ind/(Ind+B[ghi]P n/a n/a n/a 
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Table 4. POP tissue concentrations in P. arctata (ng/g) from Caribbean mangrove lagoons. The 
following compounds were under detection limits in all the samples (superscript numbers refer to the 
sums and indices given in the table where they are integrated): 2.4-DDD (LOD=5) (3); HHCB (LOD=9) (4); 
BDE28 (LOD=7.2) (5); BDE47 (LOD=1.3) (5); BDE66 (LOD=0.94) (5); BDE99 (LOD=6.6) (5); BDE153 
(LOD=50) (5). LOD, limit of detection; udl, under detection limits; n/a, not applicable. 

 

  LOD 
RAINY SEASON DRYSEASON 

Pigeon Cay Punta San 
Gabriel 

Punta San 
Gabriel 

α-HCH 50 90 29 udl 

β-HCH 25 81 udl udl 

γ-HCH 2 15 85 udl 

δ-HCH 25 87 udl udl 

∑HCHs  273 114 0 

4.4-DDE (3) 2 278 udl udl 

2.4-DDT (3) 25 96 8 udl 

4.4-DDT (3) 50 udl 750 udl 

∑DDTs (3)  373 758 0 

4.4-DDT/4.4-DDE  0 n/a 0 

2.4-DDD/4.4-DDE  0 n/a 0 

(2.4-DDD+4.4-DDE)/ ∑DDTs  0.74 n/a 0 

∑OCPs  649 873 0 

Chlorpyrifos 2 7 udl udl 

AHTN (4) 10 udl 115 udl 

∑Musks∑ (4)  0 115 0 

CB28  1 80 udl udl 

CB52 1 7 udl udl 

CB101 1 17 udl udl 

CB118 1 87 udl udl 

CB138 1 18 udl udl 

CB153 1 16 udl udl 

CB180 1 5 udl udl 

∑PCBs∑(PCB7)  230 0 0 

BDE85 (5) 1 227 22 115 

BDE100 (5) 1 udl 8 udl 

∑PBDEs∑ (5)  227 30 115 

∑POPs  1113 1018 119 
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Health condition. L, SDW, SDW/L and FDW/L showed the highest values in Punta San 

Gabriel in the dry season, but in the rainy season no statistical differences were recorded 

between localities in L, FDW and FDW/L (Table 5 and Fig. 4b-c). FDW/SDW in clams from 

Punta San Gabriel were the highest values recorded (Table 5 and Fig. 4a). Sex ratio values for 

each sampling locality and time are shown in Table 5. No significant difference was detected in 

the sex ratio (F:M, 1.2:1; G value=0.82, p>0.05) for the investigated slender marsh clams as a 

whole in comparison with the theoretical sex ratio of 1:1; this population sex ratio resulted from 

the average between seasonal sex ratios (1.4:1 in the rainy season and 1:1.5 in the dry season). 

The sex ratio values were similar between localities in rainy season (Table 5). Undifferentiated 

gonad was only found in Punta San Gabriel in the rainy season with a prevalence value of 2%. 

No intersex was recorded.  

Minor differences in gamete development stages were observed between seasons and 

localities. The dominant gamete development stages were spawning and post-spawning (>90 %) 

in both localities (Fig. 5 and 6a-d). Gametogenic development was seemingly more advanced in 

the dry season than in the rainy season (Fig. 5). Punta San Gabriel showed gamete development 

stages more advanced than Pigeon Cay in the rainy season (Fig. 5). However, significant 

differences (p<0.05) not were observed in GI between localities and seasons (Table 5). 
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Fig. 3. (a) Chemical Pollution Index 
(CPI) in P. arctata from Caribbean 

mangrove lagoons. CPI is categorized 
into three groups: ‘low pollution’ 

when CPI ≤ 0, ‘moderate pollution’ 
when 0 < CPI ≤ 1 and ‘high pollution’ 

when CPI > 1 (according to Bellas et 
al., 2011; 2014). (b) Pollution Load 
Index (PLI) derived from the tissue 

concentrations of pollutants 
(Tomlinson et al., 1980). A PLI of 100 
correspond to very contaminated sites 

and a PLI > 50 requires a potential risk 
and moderate contamination (Angulo 

1996). ‡, not data. 
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Likewise, no differences in GMI and UDI were recorded (Table 5). No oocyte atresia were 

recorded. As a whole, RAI did reflect only a low-to-moderate reproductive disturbance in Punta 

San Gabriel in the rainy season (Fig. 7a). Only one clam from Pigeon Cay was found to be 

infested by germinal cells of Bucephalus sp in the rainy season (Fig. 6e). 

Table 5. Biometry and histopathology of P. arctata from Caribbean mangrove lagoons. Shell length, 
flesh dry weight, shell dry weight and gonad index values are mean ± standard error (n = 20). Sex Ratio 
Index = SRI G value. The superscript letters (a, b and c) indicate significant differences between groups 
(p<0.05; p<0.1, when shown between brackets). Asterisks (*) indicate significant differences between 
seasons for a given locality (p<0.05); ♯, significantly different from the theoretical gender bias (1:1) 
according to the G test (p<0.05). n/a, not applicable. 

 

  
RAINY SEASON DRY SEASON 

Pigeon Cay P San Gabriel P San Gabriel 

Shell Length (L; mm) 35.2±3.7 35.86±3.12 39.6±6.65* 

Flesh dry-wt (FDW; mg) 0.43±0.19 0.52±0.34  0.47±0.13 

Shell dry-wt (SDW; g) 18±3.93a 13.74±3.03b 23.45±5.59* 

Sex ratio 
(Sex Ratio Index) 

1.5:1  
(1.61) 

1.3:1  
(0.64) 

1:1.5  
(0.85) 

Intersex Index 0 0 0 

Gonad Index 2.88±1 2.95±1.32 3.08±1.23 

Gametogenic Mass Index n/a 1.57 n/a 

Undifferentiated Index 0 0.05 0 

Oocyte Atresia 
Prevalence 0 0 0 

Oocyte Atresia Intensity 0 0 0 

Oocyte Atresia Index 0 0 0 

Prevalence (oedema) % 70 80 80 

Prevalence (BCA) % 100 100 80 

Prevalence 
(granulocytomas) % 0 0 0 

Preval. (dissem. 
neoplasia) % 0 0 0 

Prevalence (ciliates) % 6 0 10 

Preval. (Un/aert. Intra. 
Prot.) %  0 0 10 

Prevalence (Total Intr. 
Prot.) % 6 0 20 

Preval. (Nematopsis sp) 
% (1) 10 0 0 

Prevalence (R/CLO) % 9 13 20 
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Fig. 4. Biometry and condition of P. arctata from Caribbean mangrove lagoons during the rainy and the 
dry seasons. Different letters denote statistically significant differences between localities and asterisks 
(*) indicate significant differences between seasons for a given locality (p<0.05). SDW/L, shell growth 
index; FDW/SDW and FDW/L, condition indices. ‡, not data. 

 

 

 

 

 

 

 

 

Fig. 5. Gamete development stages of slender marsh clam P. arctata from Caribbean mangrove 
lagoons. ‡, not data. 

 

0

20

40

60

80

100

PIGEON CAY P SAN GABRIEL PIGEON CAY P SAN GABRIEL

Rainy Season Dry Season

G
am

et
e 

de
ve

lo
pm

en
ta

l s
ta

ge
s (

%
)

Undifferenteated Early develpment Late development
Ripe Spawning Post spawning

‡

a) 

b) 

c) 

100

80

60

40

20

0
PIGEON CAY           P SAN GABRIELFD

W
/S

D
W

 (m
g/

g)
100

80

60

40

20

0
PIGEON CAY           P SAN GABRIELFD

W
/S

D
W

 (m
g/

g)

‡

1000

800

600

400

200

0
PIGEON CAY           P SAN GABRIEL

SD
W

/L
 (m

g/
m

m
)

1000

800

600

400

200

0
PIGEON CAY           P SAN GABRIEL

SD
W

/L
 (m

g/
m

m
)

‡

50

40

30

20

10

0
PIGEON CAY           P SAN GABRIEL

FD
W

/L
 (m

g/
m

m
)

50

40

30

20

10

0
PIGEON CAY           P SAN GABRIEL

FD
W

/L
 (m

g/
m

m
)

‡

a
b

*

a b *

*



 
 
Results and Discussion  
 

186 
 
 

Histopathological examination in the digestive gland revealed the presence of a variety of 

parasites such as intracellular ciliates, undetermined intracellular protists, Nematopsis sp. and 

Rickettsia/Clamydia-like organisms (R/CLO) (Fig. 8c and d). Some parasites had a local impact 

such as undetermined intracellular protists in Punta San Gabriel in the dry season and 

Nematopsis sp. in Pigeon Cay in the rainy season (Table 5). Seemingly, parasite prevalence was 

low in both localities and seasons. PII was higher in dry season than in rainy season (Table 5 and 

Fig. 7b), which was principally attributed to the incidence of R/CLO. Nevertheless, the intensity 

of parasitic infestations was generally low (<5 parasites/clam). R/CLO presented the highest 

intensity values (4-5) all along the study period.  
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Fig. 6. Light micrographs of gonad sections of P. arctata from Caribbean mangrove lagoons.            
a) spawning gonad of a male; b) spawning gonad of a female; c) post-spawning gonad of a male; d) 
post-spawning gonad of a female with atretic oocyte; e) germinal cell of Bucephalus sp in gonad of a 
female from Pigeon Cay. Abbrevations: BC, brown cell aggregate; DO, degenerated oocyte; CC, 
cellular cytolysis; RO, ripe oocyte; SG, spermatogonia; CT, connective tissue. Arrow, change or tissue 
alteration. 
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Fig. 7. Biomarkers of anomalies in slender marsh clam health indicative of disturbance in ecosystem 
health for the rainy and the dry seasons in Caribbean mangrove lagoons. Different letters denote 
statistically significant differences between localities and asterisk (*) indicate seasonal differences for a 
locality (p<0.05). RAI, reproductive anomalies index; PII, parasitic infestation index; IRI, inflammatory 
response index; DGAI, digestive gland atrophy index and LT50, median survival time after SOS test. 
‡, not data. 
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Fig. 8. Paraffin sections of the digestive gland of P. arctata stained with haematoxylin-eosin:                  
a) digestive gland with diffuse haemocytic infiltration; b) brown cell aggregates; c) R/CLO; d) 
undetermined protists in alveoli of digestive gland. Abbreviations: A, alveoli; D, duct; CT, connective 
tissue; HI, haemocytic infiltration; L, lumen. Arrows, parasites or tissue alterations. 
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The histological integrity of the digestive gland tissue was seemingly unaltered in all the 

studied localities in both seasons (Figs. 8a). Inflammatory responses such as massive haemocytic 

infiltrations of ICT (oedema) and brown cell aggregates were observed (Fig. 8a and b). The 

prevalence of inflammatory responses and brown cell aggregates was apparently high in both 

seasons, as the IRI was as well (Table 5 and Fig. 8c). Digestive alveoli presented low degree of 

atrophy, resulting in low DGAI values; indeed, the lumen was nearly occluded by a high 

epithelium (Table 5 and Fig. 8a-d).  

LT50 values were higher in the rainy season than in the dry season (Fig. 5e). In the rainy 

season, the highest LT50 values (Tarone-Ware test, p<0.05) were recorded in Pigeon Cay, whilst 

no statistical differences were observed between seasons (Fig. 5e).  

3.2. Anadara tuberculosa 

Tissue concentrations of contaminants. Metal tissue concentrations were low, except for As 

and Cd (Table 6). The highest tissue concentration of Cd, and to a lesser in As, was found in  

Estero La Virgen in the dry season (Table 6). PAH tissue concentration was low and restrained 

to the rainy season; the most relevant PAHs found being phenanthrene in the both localities 

(Table 7). The sum of the 16 USEPA PAHs (except naphthalene) and ∑LMWPAHs was 

seemingly equal in Isla Machuca and Estero La Virgen. The ∑LMWPAH/∑HMWPAHs ratio, could 

not be calculated (Table 7). POPs appeared to be higher in rainy season than in the dry season 

(Table 8). γ-HCH presented higher values in Estero La Virgen than in Isla Machuca in both 

seasons, with the highest values being recorded in the rainy season (Table 8). The only DDTs 

metabolite recorded was 4.4-DDE, found in Estero La Virgen in the rainy season and Isla 

Machuca in the dry season (Table 8). Musk fragrances were recorded only in the rainy season 

with the highest value in Estero La Virgen (Table 8). PCBs were under detected limit in all 

localities and seasons and only three of the eight analysed PBDEs (BDE85, BDE100 and 

BDE154) were found in pustulose ark tissues. BDE154 showed the highest value in the rainy 

season and BDE85 in the dry season, both in Isla Machuca (Table 8). CPI and PLI values were 

low in both seasons (CPI<0 and PLI<<50; Figs. 9a and b); the main pollutants contributing to 

these CPI and PLI values being Cd, Phe, HCHs, DDTs, AHTN and BDE85 (SM 1 and 2).  
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Table 6. Metal tissue concentration in A. tuberculosa (μg/g) from Pacific mangrove swamps. Ni was 
under detection limits in all the samples (LOD=0.54). LOD, limit of detection. 
 

  LOD 
RAINY SEASON DRY SEASON 

Estero La Virgen Isla Machuca Estero La Virgen Isla Machuca 

Ag 0.0015 0.01 0.05 0.03 0.01 

Al 15.3 78.97 188.91 105.67 136.86 

As 0.01 9.97 6.42 12.72 7.34 

Cd 0 2.94 3.11 13.17 0.52 

Cr 0.22 0.78 0.65 1.38 0.57 

Cu 0.11 3.34 3.74 3.52 5.22 

Hg 0.004 0.09 0.07 0 0 

Pb 0.015 0.05 0.06 0 0 

Ti 0.94 4.22 9.91 5.74 7.89 

V 0 0.84 0.72 0.79 0.61 

Zn 2.36 63.77 53.37 68.38 95.91 

∑Metals 165.22 267.24 211.72 255.05 

 

Table 7. PAH tissue concentration in A. tuberculosa (ng/g) from Pacific mangrove swamps. The 
superscript lyrics (a, b and c) indicate significant differences between groups (p<0.05; p<0.1, when shown 
between brackets). The following compounds were under detection limits in all the samples (superscript 
numbers refer to the sums and indices given in the table where they are integrated): Acy (LOD=1)(1); Ace 

(LOD=1)(1); Ant (LOD=1); Benz[a]A (LOD=1)(2); Chr (LOD=1)(2); B[b]F+B[k]F (LOD=1)(2); B[a]P 
(LOD=1)(2); B[ghi]P (LOD=1); Ind (LOD=2)(2); D[ah]A (LOD=2)(2). LOD, limit of detection; udl, under 
detection limits; n/a, not applicable. 
 

  LOD 
RAINY SEASON DRY SEASON 

Estero La Virgen Isla Machuca Estero La Virgen Isla Machuca 

Flu (1) 0.07 3 1 udl udl 

Phe (1) 0.49 60 66 udl udl 

Flr (1) 0.34 25 udl udl udl 

Pyr (1) 1 3 4 udl udl 

∑PAHs (16; except Naph)  91 70 0 0 

∑HMWPAHs ∑ (2) (carcinogenic)  0 0 0 0 

∑LMWPAHs ∑ (1) (%∑PAHs)  91 (100%) 70 (100%) 0 0 

∑LMWPAHs ∑ (1) (%∑PAHs) n/a n/a n/a n/a 

∑LMWPAHs / ∑HMWPAHs n/a n/a n/a n/a 

Ind/(Ind+B[ghi]P n/a n/a n/a n/a 
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Table 8. POP tissue concentration in Anadara tuberculosa (ng/g) from Pacific mangrove swamps. The 
superscript lyrics (a, b and c) indicate significant differences between groups (p<0.05; p<0.1, when shown 
between brackets). The following compounds were under detection limits in all the samples (superscript 
numbers refer to the sums and indices given in the table where they are integrated): α-HCH (LOD=50)(3); 
β-HCH (LOD=25)(3); δ-HCH (LOD=25)(3); 2.4-DDD (LOD=5)(4); 2.4-DDT (LOD=25)(4); 4.4-DDT 
(LOD=50)(4); Chlorpyrifos (LOD=2); HHCB (LOD=9)(5); CB28 (LOD=1)(6); CB52 (LOD=1)(6); CB101 
(LOD=1)(6); CB118 (LOD=1)(6); CB138 (LOD=1)(6); CB153 (LOD=1)(6); CB180 (LOD=1)(6); BDE28 
(LOD=7.2)(7); BDE47 (LOD=1.3)(7); BDE66 (LOD=0.94)(7); BDE99 (LOD=6.6)(7); BDE153 
(LOD=50)(7).LOD, limit of detection; udl, under detection limits; n/a, not applicable. 
 

  LOD 
RAINY SEASON DRYSEASON 

Estero La Virgen Isla Machuca Estero La Virgen Isla Machuca 

γ-HCH (3) 2 76 7 25 udl 
∑HCHs∑ (3)   76 7 25 0 
4.4-DDE (4) 2 28 udl udl 46 
∑DDTs ∑ (4)  28 0 0 46 
4.4-DDT/4.4-DDE  0 n/a n/a 0 
2.4-DDD/4.4-DDE  0 n/a n/a 0 
(2.4-DDD+4.4-DDE)/ ∑DDTs  1.00 n/a n/a 1.00 
∑OCPs  104 7 25 46 
AHTN (5) 10 59 12 udl udl 
∑Musks∑ (5)   59 12 0 0 
∑PCBs∑ (6) (PCB7)  0 0 0 0 
BDE85(7) 1 49 23 87 170 
BDE100(7) 1 udl 14 udl udl 
BDE154(7) 1 udl 272 udl udl 
∑PBDEs∑ (7)  49 309 87 170 
∑POPs  212 328 112 216 

 

Health condition. Overall, L, FDW, SDW, FDW/SDW, SDW/L and FDW/L values showed 

to be statistically higher in the dry season than in the rainy season in pustulose arks (Figs. 10a-c 

and Table 9). Low values were observed in Estero La Virgen in the rainy season, except for L 

(Figs. 10a-c and Table 9). However, in the dry season no significant differences were observed 

between localities. Sex ratio values for each sampling location at each sampling time are shown 

in Table 9. Statistically significant bias in the sex ratio towards female condition (F:M, 4.9:1; G 

value=42.64, p<0.05) was found for the whole set of studied pustulose arks in comparison with 

the theoretical sex ratio of 1:1 (Gener et al., 2009, Silva-Benavides and Bonilla, 2015); this 

overall sex ratio results from the average between 5.3:1 (rainy season) and 4.3:1 (dry season) sex 
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ratios. This bias towards female condition was found in at both seasons (Table 9). 

Undifferentiated gonad was only observed in Estero La Virgen, with a 5.2% of prevalence in the 

rainy season, and in Isla Machuca, with a 5.9% in the dry season (Table 9). Intersex cases were 

sporadically found: one female from Estero La Virgen in the rainy season, and one male and 

female from Estero La Virgen and one female from Isla Machuca in the dry season (Table 9); 

always with separate male and female gonad follicles (Fig. 11e). Gamete development was more 

advanced in the rainy season than in the dry season, and in Estero La Virgen than in Isla 

Machuca in both seasons (Figs. 11a-d and 12); however, significant differences not were 

observed in GI between localities (Table 9). Oocyte atresia was recorded all along the study 

period, mainly in Isla Machuca (Fig. 11f and Table 9). RAI reflected only a low-to-moderate 

(<18) reproductive disturbance in both localities and seasons, mainly featured by deviations in 

the expected SRI, GMI and OAI values (Fig. 13a). No parasite was observed in the gonad during 

the study period. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. (a) Chemical Pollution Index (CPI) in A. tuberculosa from Pacific mangrove swamps. CPI is 
categorized into three groups: ‘low pollution’ when CPI ≤ 0, ‘moderate pollution’ when 0 < CPI ≤ 1 and 
‘high pollution’ when CPI > 1 (according to Bellas et al., 2011; 2014). (b) Pollution Load Index (PLI) 
derived from the tissue concentrations of pollutants (Tomlinson et al., 1980). A PLI of 100 correspond to 
very contaminated sites and a PLI > 50 requires a potential risk and moderate contamination (Angulo 
1996).  
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Table 9. Biometry and histopathology of A. tuberculosa from Pacific mangrove swamps. Shell 
length, flesh dry weight and shell dry weight their values are mean ± standard error (n = 20). Sex Ratio 
Index = SRI G value. The superscript letters (a, b and c) indicate significant differences between groups 
(p<0.05). Asterisks (*) indicate seasonal difference for a locality (p<0.05); ♯, significantly different 
from the theoretical gender (Gener et al., 2009; Silva-Benavides and Bonilla, 2015) bias (1:1) according 
to the G test (p<0.05). 

 
 

  
RAINY SEASON DRY SEASON 

Estero La 
Virgen 

Isla 
Machuca 

Estero La 
Virgen 

Isla 
Machuca 

Shell Length (L; mm) 49.1±3.0 49.1±6.7 51.3±3.0* 50.7±6.7* 

Flesh dry-wt (FDW; mg) 0.9±0.4a 1.3±0.5b 1.3±0.3*  1.3±0.3 

Shell dry-wt (SDW; g) 18.2±4.2 20±6.9 21.7±5.2* 21.2±7.0 

Sex ratio 1  
(Sex Ratio Index) 6:1# (19.8) 4.5:1# (9.7) 7.5:1#*(11.2) 2.8:1* (3.4) 

Intersex Index 2.6 0 10.5 5.9 

Gonad Index 3.3±1.2 3.7±0.8 3.7±1.6* 3.8±1.3 

Gametogenic Mass Index 0.36 0.80 0.73 0.05 

Undifferentiated Index 5.2 0 0 5.9 

Oocyte Atresia Prevalence 26.7 55.6 73.3 63.6 

Oocyte Atresia Intensity 0.5 1.4 1.1 1.2 

Oocyte Atresia Index 12.4 80.2 83.1 86.8 

Prevalence (oedema) % 10.7 13 0.7 10 

Prevalence (BCA) % 93 63 100 80 

Prevalence 
(granulocytomas) % 0 0 0 5 

Preval. (dissem. neoplasia) 
% 0 0 0 0 

Preval. (Nematopsis sp) %  53.3 27.2 39 85 

Preval. (Bucephalus sp) % 0 3.1 1.1 0 

Preval. (Metacercariae) % 0 3.1 0 5 

Prevalence (Copepods) % 3.3 0 0 5 
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Fig. 10. Biometry and condition of A. tuberculosa from Pacific mangrove swamps during the rainy and 
the dry seasons. Different letters denote statistically significant differences between localities and 
asterisks (*) indicate significant differences between seasons for a given locality (p<0.05). SDW/L, shell 
growth index; FDW/SDW and FDW/L, condition indices. 
 

Histopathological examination of the digestive gland revealed the presence of a variety of 

parasites such as Nematopsis sp., Bucephalus sp., metacercariae and copepods (Table 9). 

Nematopsis sp. was the parasite more commonly recorded, and with the highest prevalence in all 

the study period. Bucephalus sp., metacercariae and copepods had a local and seasonal impact 

(Figs. 14e and f and Table 9). Seemingly, parasite prevalence was low in both localities and 

seasons, except for Nematopsis sp. (Table 9). Overall, PII was higher in dry season than in rainy 

season (Fig. 13b and Table 9), which can be mainly attributed to the incidence of Nematopsis sp. 

Except for the case of Nematopsis sp. (intensity<70), the intensity of parasitic infestations was 

generally low (intensity<2). Inflammatory responses such as oedema, granulocytomas and brown 

cell aggregates were observed (Figs. 14a-c and Table 9): (a) prevalence of brown cell aggregates 

was slightly higher in Estero La Virgen than in Isla Machuca; (b) oedema was more relevant in 

the dry season than in the rainy season; and (c) only one case of granulocytoma was found in Isla 

Machuca in the dry season. Consequently, IRI was apparently the highest in the dry season (Fig. 
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13c). DGAI was highly variable amongst individuals and therefore no significant differences 

were found between seasons and between localities; however, some seasonal trends might be 

envisaged (Figs. 13 d and 14a-d). Digestive alveoli presented the lowest atrophy and DGAI with 

a lumen nearly occluded and a high epithelium frequently in the dry season (Table 9, Fig. 13d 

and Fig. 14a-c).  

LT50 values tended to be higher in the rainy season than in the dry season; nevertheless, 

statistical differences were only observed between seasons in Isla Machuca (Fig. 13e).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 11. Light micrographs of gonad sections and intersex individuals of A. tuberculosa. a) normal and 
ripe gonad of a male; b) normal and ripe gonad of a female; c) spawning gonad of a male; d) spawning 
gonad of a female; e) male from Estero La Virgen with intersex; f) female from Isla Machuca with atretic 
oocytes. Abbreviations: AO, atretic oocytes; EO, early oocyte; GO, growing oocyte; DO, degenerated 
ovum; HI, haemocyte infiltration; RO, ripe ovum; SG, spermatogonia; SC, spermatocytes; CT, 
connective tissue; MF, mature follicles; ♀, female germ cells; ♂, male germ cells. Arrows, change or 
tissue alterations. 
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Fig.14. Paraffin sections of the digestive gland of A. tuberculosa stained with haematoxylin-eosin: a) 
normal digestive gland with diffuse infiltration haemocyte b) granulocytoma and diffuse infiltration 
haemocytic; c) brown cell aggregate in connective tissue; d) atrophied alveoli with a wide lumen; e) 
copepod in to stomage ; f) trematode in duct of digestive gland. Abbreviations: A, alveoli; D, duct; CT, 
connective tissue; HI, haemocytic infiltration; L, lumen. Arrows, tissue alterations. 
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collected from 
Pacific mangrove 
swamps. 
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Fig. 13. Biomarkers of anomalies in cockle health indicative of disturbance in ecosystem health for the 
rainy and the dry seasons in the Pacific mangrove swamps. Asterisk (*) indicate seasonal differences for a 
locality (p<0.05). RAI, reproductive anomalies index; PII, parasitic infestation index; IRI, inflammatory 
response index; DGAI, digestive gland atrophy index and LT50, median survival time after SOS test.  
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Table 10. Metal tissue concentration in Larkinia grandis (μg/g) from Pacific mangrove mudflat. The 
nickel compounds was under detection limits in all the samples (LOD=0.54). LOD, limit of detection. 

 

  LOD 
RAINY SEASON DRY SEASON 

Estero Venecia Estero Venecia 

Ag 0.0015 0.03 0.03 
Al 15.3 295.25 535.72 
As 0.01 10.48 15.35 
Cd 0 3.14 14.22 
Cr 0.22 3.00 1.20 
Cu 0.11 3.85 4.00 
Hg 0.004 0.08 0.10 
Pb 0.015 7.87 0.19 
Ti 0.94 15.13 27.30 
V 0 0.90 1.37 
Zn 2.36 43.98 52.55 

∑Metals 383.71 652.02 

 
Table 11. PAH tissue concentration in Larkinia grandis (ng/g) from Pacific mangrove mudflat. The 
following compounds were under detection limits in all the samples (superscript numbers refer to the 
sums and indices given in the table where they are integrated): Acy (LOD=1)(1); Ace (LOD=1)(1); Ant 
(LOD=1); Benz[a]A (LOD=1)(2); B[b]F+B[k]F (LOD=1)(2); B[ghi]P (LOD=1); Ind (LOD=2)(2); D[ah]A 
(LOD=2)(2). LOD, limit of detection; udl, under detection limits; n/a, not applicable. 
 

  LOD 
RAINY SEASON DRY SEASON 

Estero Venecia Estero Venecia 

Flu (1) 0.07 14 udl 

Phe (1) 0.49 74 udl 

Flr (1) 0.34 37 udl 

Pyr (1) 1 8 udl 

Chr (2) 1 4 udl 

B[a]P (2) 1 2 7 

∑PAHs (16; except Naph)  138 7 

∑HMWPAHs ∑ (2) (carcinogenic)  4 7 

∑LMWPAHs ∑ (1) (%∑PAHs)  96 (70%) 0 (0%) 

∑LMWPAHs / ∑HMWPAHs  24.8 n/a 

∑LMWPAHs ∑ (1) (%∑PAHs) n/a n/a 

∑LMWPAHs / ∑HMWPAHs n/a n/a 

Ind/(Ind+B[ghi]P n/a n/a 
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3.3. Larkinia grandis 

Tissue concentrations of contaminants. Metal tissue concentrations were the highest in the 

dry season, especially for As, Cd and Ti (Table 10). PAH tissue concentration was low and 

practically restrained to the rainy season; the most relevant PAHs found being phenanthrene and 

fluoranthene (Table 11). POP tissue levels were low and varied between seasons, with higher 

tissue concentrations of γ-HCHs and AHTN in the rainy season than in the dry season and higher 

tissue concentrations of two PBDEs (especially BDE85 but also BDE100) in the dry season than 

in the rainy season (Table 12). Overall, CPI and PLI were low in both seasons. CPI values were 

0.02 in the rainy season and -0.84 in the dry season. PLI values were 11.49 in the rainy season 

and 4.03 in the dry season. The main pollutants contributing to these CPI and PLI values were 

Cd, Phe, HCHs, AHTN and BDE85 (SM 1 and 2).  

Table 12. POP tissue concentration in Larkinia grandis (ng/g) from Pacific mangrove mudflats. 
The following compounds were under detection limits in all the samples (superscript numbers refer to the 
sums and indices given in the table where they are integrated): α-HCH (LOD=50)(3); β-HCH (LOD=25)(3); 
δ-HCH (LOD=25)(3); 4.4-DDE (LOD=5)(4);2.4-DDD (LOD=5)(4); 2.4-DDT (LOD=25)(4); 4.4-DDT 
(LOD=50)(4); Chlorpyrifos (LOD=2); HHCB (LOD=9)(5); CB28 (LOD=1)(6); CB52 (LOD=1)(6); CB101 
(LOD=1)(6); CB118 (LOD=1)(6); CB138 (LOD=1)(6); CB153 (LOD=1)(6); CB180 (LOD=1)(6); BDE28 
(LOD=7.2)(7); BDE47 (LOD=1.3)(7); BDE66 (LOD=0.94)(7); BDE99 (LOD=6.6)(7); BDE153 (LOD=50)(7); 
BDE154 (LOD=50)(7).LOD, limit of detection; udl, under detection limits; n/a, not applicable. 
 

  LOD 
RAINY SEASON DRY SEASON 

Estero Venecia Estero Venecia 

γ-HCH(3) 2 23 udl 

∑HCHs(3)   23 0 
∑DDTs(4)  0 0 

4.4-DDT/4.4-DDE   n/a n/a 

2.4-DDD/4.4-DDE   n/a n/a 

(2.4-DDD+4.4-DDE)/ ∑DDTs   n/a n/a 

∑OCPs   23 0 

AHTN (5) 10 75 udl 

∑Musks∑ (5)   75 0 

∑PCBs∑ (6) (PCB7)   0 0 

BDE85(7) 1 19 170 

BDE100(7) 8 udl 10 

∑PBDEs∑ (7)   19 180 

∑POPs   117 180 
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Health condition. L, FDW, SDW and SDW/L values were statistically higher in the rainy 

season than in the dry season; FDW/SDW and FDW/L showed the same trend but this was not 

significant (Table 13). Sex ratio values for each sampling time are shown in Table 13. The 

studied set of casco de burro ark shell clams did not deviate from the theoretical sex ratio (after 

Galdámez et al., 2007), showing a F:M value of 1.2:1 (G value=0.33, p>0.05; Table 13). 

Undifferentiated gonad was not observed in any season (Table 13). Only one female with 

intersex was recorded in the dry season (Table 13). The gamete development was more advanced 

in the rainy season than in the dry season, though spawning was always the most prevalent 

gamete development stage (Figs. 15, 16d and e). Significant differences not were observed in GI 

between seasons (Table 13). Oocyte atresia was recorded in both seasons (Table 13). RAI 

reflected only a low-to-moderate (<13) reproductive disturbance in both seasons, mainly featured 

by the OAI values (Table 13). No parasite was observed in gonad. 

Histopathological examination in the digestive gland revealed the presence of a variety of 

parasites including undetermined intracellular protists, Nematopsis sp. and metacercariae (Table 

13). Nematopsis sp. was the parasite with the highest prevalence, followed by metacercariae and 

undetermined intracellular protists (Table 13). The prevalence of parasitic infestations was 

always low (Table 13); likewise, the intensity was as well (intensity<7). The histological 

integrity of the digestive gland tissue seemingly medium (Figs. 16a-c). Inflammatory responses 

such as oedema and brown cell aggregates were observed (Figs. 16b and c; Table 13). IRI was 

the highest in the dry season because the highest prevalence of oedema was found at this season 

(Table 13). Digestive alveoli presented a large lumen and a thin epithelium in both seasons, 

which revealed a remarkable atrophy (high DGAI) (Figs. 16b and c; Table 13). LT50 values were 

higher in the rainy season than in the dry season (Table 13). 
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Table 13. Biometry and histopathology of Larkinia grandis from Pacific mangrove mudflats. Shell length, 
flesh dry weight and shell dry weight their values are mean ± standard error (n = 20). Sex Ratio Index = SRI 
G value. Asterisks (*) indicate seasonal (p<0.05); ♯, significantly different from the theoretical gender 
(Galdámez et al., 2007) bias (1:1) according to the G test (p<0.05). 1, estimated based on model functions. 
 
 

 
RAINY SEASON DRY SEASON 

Estero Venecia Estero Venecia 

Shell Length (L; mm) 56.9±6.5 51.3±3.7* 

Flesh dry-wt (FDW; mg) 2±1 1.2±0.3* 

Shell dry-wt (SDW; g) 78.9±26.1 53.3±13* 

FDW/SDW (mg/g) 29.6±4.24 22.9±0.72 

SDW/L (mg/mm) 1367.9±92.32 1031.8±36.52* 

FDW/L (mg/mm) 3.6±0.44 2.3±0.08 

Sex ratio (Sex Ratio Index) 1.5:1 (1.2) 1:1.1 (0.05) 

Intersex Index 0 5.9 

Reproductive Anomalous Index (RAI) 12.3 10.8 

Gonad Index 4±0 3.3±1.3 

Gametogenic Mass Index 0.47 0.05 

Undifferentiated Index 0 0 

Oocyte Atresia Prevalence 0.67 0.75 

Oocyte Atresia Intensity 1.9 2.2 

Oocyte Atresia Index 1.4 1.44 

Prevalence (oedema) % 4 71 

Prevalence (BCA) % 96 89 

Prevalence (granulocytomas) % 0 0 

Preval. (dissem. neoplasia) % 0 0 

Inflammatory Response Index (IRI) 4 71 

Prevalence (ciliates) % 0 0 

Preval. (Undert. Intra. Prot.) %  0 5.5 

Prevalence (Total Intr. Prot.) % 0 5.5 

Preval. (Nematopsis sp) % (1) 18.5 0 

Prevalence (Metacercariae) % 4 11 

Prevalence (R/CLO) % 0 0 

Parasitic Infestation Index (PII) 22.5 16.5 

DGAI 2.8±1 3.1±1.1 

LT50 6±0.9 4±1.1* 
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Fig. 16. Paraffin sections of Larkinia grandis stained with haematoxylin-eosin: a) normal digestive 
gland b) digestive gland with diffuse infiltration haemocyte and atrophied alveoli; c) brown cell aggregate 
and atrophied alveoli; d) gill with diffuse infiltration haemocyte; e) mature gamete of male; f) mature 
gamete of female. Abbreviations: A, alveoli; D, duct; CT, connective tissue; HI, haemocytic infiltration; 
L, lumen; MF, mature follicles. Arrows, tissue alterations; arrowheads indicate the presence of brown cell 
aggregates. 

4. Discussion 
4.1. Caribbean Coast 

Metals. In the Caribbean coast from Nicaragua, metal tissue concentrations in P. arctata 

were low except for As and Hg, according to proposed criteria for oysters and mussels 

(Kimbrough et al., 2008; Solaun et al., 2013) and existing data in neighbouring regions (Valette-

Silver et al., 1999).  The sources of As can be discharges of untreated municipal wastes and 

sediments contaminated by mining activities, industrial processes or the application of pesticides 

(Smedley and Kinniburg, 2002). The presence of Hg can be attributed to artisanal gold mining 
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carried out along the Escondido River, which opens into the Bluefields Lagoon (Dumailo, 2003; 

MARENA, 2010; Cordy et al., 2011). The tissue concentration of Ag, As, Cd, Hg, Ni and V was 

higher during the dry season than during the rainy season in Punta San Gabriel; and higher for 

Ag and V but lower for Ni and Pb in Punta San Gabriel in comparison with Pigeon Cay in the 

rainy season. These findings are consistent because Punta San Gabriel is located at the sediment 

deposition zone of Bluefields Lagoon, whilst Pigeon Cay is along the outflow of the principal 

channel in the Pearl Lagoon. In the rainy season in Pigeon Cay, the results were to a large extent 

comparable to those obtained with sympatric mangrove cupped oysters, in which the metal tissue 

concentrations were overall low as well (Chapter 1).  Nevertheless, P. arctata accumulated a 

little bit less Ag, As, Cd, Ti and V and a little bit more Ni and Pb than C. rhizophorae, with 

equitable tissue levels of Cr and Hg. Doubtless, the most striking difference was the much lower 

tissue levels of Cu and Zn recorded in P. arctata in comparison with C. rhizophorae; which is 

fully justified because unlike other molluscs, oysters (and especially those of the genus 

Crassostrea) are known to be hyperaccumulators of these two metals (Tan et al., 2015).  On the 

other hand, few data are available regarding metal accumulation in slender march clams. The 

tissue concentrations of Cd, Cu, Pb and V in P. arctata from Lake Maracaibo and El Tablazo 

Bay (Venezuela) were similar to those reported in the present study, whilst those of  As and Zn 

were lower (Sarria-Panasá et al., 2016). In contrast, the tissue concentration of Cd, Pb, Zn and Ni 

recorded in the rainy and dry seasons in slender marsh clams from Moin River (Costa Rica) and 

Lake Maracaibo (Venezuela) were higher than those recorded herein (Leal et al., 2014; Vargas et 

al., 2015). Likewise, the tissue concentrations of Cr, Ni and Pb recorded in P. arctata from the 

“Pantanos de Centla” Reserve of the Biosphere (Tabasco, México) in the dry season were higher 

than in the present study (Pérez-Cruz et al., 2013). In any case, it seems that metal pollution is 

not a matter of major concern in these lagoons of the Nicaraguan Caribbean coast. 

PAHs. The tissue concentrations of PAHs in P. arctata were generally low although they 

were slightly higher in Punta San Gabriel in the rainy season than in any other case. Similarly, in 

C. rhizophorae from the Pigeon Cay the ∑PAHs values recorded were also low, always 

according to Kimbrough et al., (2008) who concluded that in C. virginica, values of ∑PAHs in 

the range of 47-828 ng/g must be considered low. Few data are available on the tissue levels of 

PAHs and related contaminants in Polymesoda. For example, total petroleum hydrocarbons were 

determined in mud clams (Polymedosa erosa) from the coastal area of Sabah (Malaysia; Mohd 

Ali and Yep, 2016). Likewise, mangrove clam Polymesoda erosa was found to present 
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significant tissue concentrations of alkylated and parent PAHs in the mangrove-fringed Segara 

Anakan Lagoon (Java, Indonesia; Dsikowitzky et al., 2011). In the present study, the most 

relevant PAHs found in P. arctata were phenanthrene, fluoranthene, pyrene, and 

benzo[b]fluoranthene+benzo[k]fluoranthene in Punta San Gabriel and chrysene in Pigeon Cay, 

in the rainy season. Likewise, phenanthrene and pyrene where the most relevant PAHs found in 

sympatric C. rhizophorae, though this was observed in the dry season instead (Chapter 1). As a 

whole, carcinogenic PAHs (PAHHMW; IARC, 1987) were relevant in P. arctata (present results) 

and C. rhizophorae (Chapter 1) from Pigeon Cay in the rainy season. A chemical indicator of the 

petrogenic vs. pyrolytic origin of PAHs was calculated based on the LMWPAHs/HMWPAHs ratio 

(Baumard et al., 1998; Soclo et al., 2000). A LMWPAHs/HMWPAHs ratio of 43 (>>1) was found in 

slender march clams from Punta San Gabriel, indicating a predominant petrogenic origin of the 

PAHs, whilst a LMWPAHs/HMWPAHs ratio of 0.34 was found in Pigeon Cay slender marsh clams, 

revealing a pyrolytic origin of the PAHs in this locality; in agreement with the results obtained 

on the basis of PAH tissue concentrations recorded in sympatric mangrove cupped oysters from 

Pigeon Cay (LMWPAHs/HMWPAHsoysters=0.58; Chapter 1).   

POPs. To our knowledge few reports deal with tissue concentrations of POPs in 

Polymesoda clams. Bayen et al., (2005) carried out an exhaustive analysis of POPs in a variety 

of mangrove species in Singapore that included the Lokan clams, Polymesoda expansa, in which 

they reported significant tissue concentrations of HCHs, PBDEs (mainly PBDE47 and 

PBDE100) and most relevantly a dominance of DDTs and certain PCBs (tetra-, penta-, hexa-, 

and heptachlorinated). In our study, HCHs, DDTs, musk fragrances, PCBs (CB28 and CB118) 

and PBDEs (BDE85 and BDE100) were found at measurable concentrations in the soft tissues of 

P. arctata. The highest tissue concentrations of POPs were recorded in the rainy season: DDTs, 

musk fragrances and PCBs in Punta San Gabriel; and HCHs in Pigeon Cay. In agreement with 

previous results obtained with C. rhizophorae from the same locality (Chapter 1), high levels of 

HCHs and DDTs were recorded in the tissues of slender march clams from Pigeon Cay; 

however, whilst α-HCH and 4,4,-DDE were dominant in the case of the clams, γ-HCH and 2,4-

DDT were more relevant in the case of sympatric oysters. It is conceivable that these two species 

of bivalves may represent either different environmental compartments or different metabolic 

strategies. Interestingly, γ-HCH and 4,4-DDT tissue levels in P. arctata are higher in Punta San 

Gabriel than in Pigeon Cay during the rainy season. In any case, HCHs and DDTs are at 

detectable levels both in P. arctata and C. rhizophorae, which would clearly indicate the 
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presence of these POPs in these mangrove-lined coastal systems, most likely associated to 

agricultural and insect control practices (de Brito et al., 2002; Bodin et al., 2011).  Indeed, Punta 

San Gabriel is the main sink area in Bluefields Lagoon, which receives water load from the 

Escondido River basin where intensive agriculture has been promoted for the last decades (GEF-

REPCar, 2011). In agreement, high concentrations of HCHs and DDTs have been reported in 

water and sediments in other Nicaraguan Caribbean localities, where these chemicals may 

constitute a serious environmental hazard (GEF-REPCar, 2011; Ebanks-Mongalo et al., 2013). 

Detectable tissue levels of chlorpyrifos were determined in the tissues of P. arctata from Pigeon 

Cay, exactly as it had been previously determined in sympatric C. rhizophorae (Chapter 1). 

Chlorpyrifos is a broad spectrum organophosphate insecticide widely used on food crops that has 

been reported in the tissues of oysters and mussels in the range of 0-53 ng/g dry-wt, with a 

regional average for the USA coastline of 0.78 ng/g dry-wt (Wade et al., 1998). In Nicaraguan 

mangrove cupped oysters was reported at a tissue concentration of in the range of 5-11 ng/g dry-

wt (Chapter 1; Ebanks-Mongalo et al., 2013), similar to that recorded herein in slender march 

clams.  Although musk fragrances were not detected in mangrove cupped oysters from 

Nicaraguan mangrove-lined Caribbean coastal systems, in the present study AHTN was revealed 

in the tissues of slender marsh clams from Punta San Gabriel at concentrations higher than those 

reported in C. rhizophorae from Colombia (Chapter 1), but still lower than those reported in 

mussels and clams from industrialised areas of Canada (Gatermann et al., 1999). The source of 

this contaminant would be wastewater discharges from nearby sewage outfalls, since musk 

fragrances are known to be discharged into estuaries through sewage (Wade et al., 1998). PCBs 

congeners are non- or poorly metabolised in molluscs and therefore they are bioaccumulated 

(Kannan et al., 1995; Nhan et al., 2001). ∑PCBs reported in bivalves from Nicaragua within the 

framework of the International Mussel Watch were <10 ng/g dry-wt (Sericano et al., 1995). 

BDE85 showed markedly high values in the rainy season in Pigeon Cay, both in slender march 

clams and mangrove cupped oysters, with values of total PBDEs in the range of 227-325 ng/g 

dry-wt. These values are much higher than previously reported in bivalves (Moon et al., 2007; 

Oros et al., 2007) and cannot be associated with a particular source at local scale. 

Biological effects assessment. Only minor and less-consistent differences were recorded 

between localities in biometry and flesh condition of slender march clams, although a higher 

flesh condition seemed to be envisaged in the rainy season. A similar seasonal trend was 

reported in C. rhizophorae from our study area (Chapter 2) and, as a general rule, seasonal 
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changes in flesh condition appear to be normal in mangrove bivalves (Nascimento and Pereira 

1980; Nascimento et al., 1980; Meyer et al., 1998; Rebelo et al., 2005). Likewise, reproductive 

disturbance was seemingly minimal and, though a variety of parasites (intracellular ciliates, 

undetermined intracellular protists, Nematopsis sp. and R/CLOs) were identified in P. arctata, 

their prevalence was low in both localities and seasons. In contrast, RAI, PII and IRI reflected a 

low-to-moderate disturbance in reproduction, disease and immune response in C. rhizophorae 

from Pigeon Cay (Chapter 2) in the rainy season. In parallel, the histological integrity of the 

digestive gland tissue was similar in both localities and seasons in P. arctata, and atrophy of 

digestive alveoli was stumpy; unlike in C. rhizophorae from Pigeon Cay in which disorganised 

ICT, shrinkage of digestive diverticula, digestive alveoli atrophy and digestive cell vacuolisation 

were observed and associated to enhanced pollution (Chapter 2; Valdez Domingos et al., 2007). 

These results might suggest that slender marsh clams are less responsive to environmental insult 

than mangrove cupped oysters; however, IRI was very high in P. arctata from both Pigeon Cay 

(only rainy season data) and Punta San Gabriel (at both seasons). Thus, it is conceivable that the 

high prevalence of oedema and brown cell aggregates might be indicating that slender marsh 

clams, unlike mangrove cupped oysters, possess a highly active immune defence system able to 

cope with the extreme environmental conditions of the shallow muddy flats (deposition sinks of 

coastal lagoons) where they inhabit. However, the lower LT50 values recorded in P. arctata from 

Punta San Gabriel during the rainy season in comparison with the dry season might be associated 

to the highest levels of environmental contaminants recorded during that season at that locality, 

as reflected in the PLI and CPI values.  

P. artacta vs C. rhizophorae. Although the tissue concentration of contaminants was, in 

general terms, slightly lower in P. arctata than in sympatric C. rhizophorae, the slender march 

clam appears to be a suitable biomonitor for chemical pollution assessment in the Caribbean that 

could be used as alternative biomonitor species; e.g., when C. rhizophorae is not available. 

Moreover, although these are preliminary observations that deserve more specific research in 

order to be confirmed, it seems that for some specific chemicals, such as for instance musk 

fragrances and PBDEs, P. arctata exhibited a greater bioaccumulation capacity than C. 

rhizophorae. Thus, whilst the main contaminants contributing to CPI and PLI in P. artacta were 

Hg, HCHs, DDTs, AHTN, PCBs and BDE85, in C. rhizophorae (Chapter 1), these were As, Cd, 

benzo[a]pyrene, HCHs, DDTs and PCBs for CPI and benzo[a]pyrene HCHs and DDTs  for PLI. 

In agreement with previous results obtained using mangrove cupped oysters, the highest CPI and 
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PLI values were obtained in the rainy season also in slender marsh clams. CPI and PLI were 

higher in Punta San Gabriel than in Pigeon Cay, which suggests a higher bioavailability of 

pollutants in the former locality. Based on the use of oysters as biomonitors Pigeon Cay was 

determined to be more polluted than Half Way Cay and Punta Lora (Chapter 1) and therefore the 

present results would indicate that the greatest bioavailability of pollutants in the study area 

occurs in Punta San Gabriel (where oysters were absent).  Altogether, these findings suggest that 

P. arctata would be complementary rather than alternative to C. rhizophorae as biomonitor for 

the mangrove-lined Caribbean coastal systems in Nicaragua. Thus, by using both species as 

biomonitors in combination we could conclude the following decreasing gradient of 

contamination in the studied mangrove-lined coastal systems in the Nicaraguan Caribbean area: 

Punta San Gabriel > Pigeon Cay > Half Way Cay > Punta Lora. Moreover, one could 

hypothesise that mangrove cupped oysters, absent in Punta San Gabriel, are more sensitive to 

environmental deterioration than slender marsh clams; however, it rather appears that the 

sedimentation zone of the lagoon, which would be the natural habitat for P. arctata but not for 

oysters, is also a locally relevant contamination hot spot.  

Likewise, it seems that P. arctata would be complementary to C. rhizophorae as sentinel for 

biological-effects assessment in mangrove-lined Caribbean coastal systems in Nicaragua. Based 

on the use of both species as sentinels we could conclude the following decreasing gradient of 

ecosystem health disturbance in the studied mangrove-lined coastal systems in the Nicaraguan 

Caribbean area: Punta San Gabriel > Pigeon Cay > Half Way Cay > Punta Lora. Nevertheless, 

mangrove cupped oysters, appeared to be more responsive to environmental insult than slender 

marsh clams.  

4.2. Pacific Coast 

Contaminants. Tissue metal concentrations in A. tuberculosa and L. grandis were low 

according to previous records (Tu et al., 2011; Vargas et al., 2015) and to background levels 

reported for oysters and mussels, except for As and Cd (Kimbrough et al., 2008; Solaun et al., 

2013). The values recorded for Cd were higher than in other studies carried out with A. 

tuberculosa as biomonitor (Joiris and Azokwu, 1999; Otchere, 2003; Tu et al., 2011), especially 

in Estero La Virgen during the dry season. Moreover, the tissue concentration of metals such as 

As and Cd varied with season, with higher values during the dry season than during the rainy 

one. Similarly, the tissue concentration of Cd and Hg was higher in the dry season than in the 
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rainy season in Anadara (Senilia) senilis from Ghana (Joiris et al., 1998; Otchere, 2003). Both in 

A. tuberculosa and L. grandis, PAH tissue concentration was low and restrained to the rainy 

season; the most relevant PAHs found being phenanthrene in pustulose arks and phenanthrene 

and fluoranthene in shell ark clams. POP tissue levels appeared to be higher in rainy season than 

in the dry season in both species. In A. tuberculosa, γ-HCH presented higher values in Estero La 

Virgen than in Isla Machuca in both seasons, and 4.4-DDE and musk fragrances were found in 

Estero La Virgen in the rainy season. In L. grandis, γ-HCHs and AHTN tissue concentrations 

were higher in the rainy season than in the dry season. PCBs were under detection limits in all 

localities and seasons; however, PBDEs (BDE85, BDE100 and BDE154) were found in 

pustulose ark tissues, especially in Isla Machuca, and in shell ark clams, especially in the dry 

season. CPI and PLI values were low in both seasons and the main pollutants contributing to 

these CPI and PLI values were Cd, phenanthrene, HCHs, DDTs, AHTN, PCBs and BDE85 in A. 

tuberculosa and Cd, B[a]P, HCHs, AHTN and BDE85 in L. grandis.  

Health status. Biometry and flesh condition parameters exhibited somehow opposite 

seasonal trends in A. tuberculosa and L. grandis; these parameters were overall higher in the dry 

season than in the rainy season in pustulose arks and vice versa in shell ark clams. In agreement, 

in shell ark clams, LT50 values were higher in the rainy season than in the dry season. Whilst 

certain bias towards female condition was envisaged in the sex ratio of pustulose arks in 

comparison with the theoretical sex ratio of 1:1 (Gener et al., 2009, Silva-Benavides and Bonilla, 

2015), ark shell clams did not deviate from the theoretical sex ratio (after Galdámez et al., 2007). 

Intersex cases were sporadically found in both species, always with separate male and female 

gonad follicles. Gamete development was more advanced in the rainy season than in the dry 

season, and in Estero La Virgen than in Isla Machuca in both seasons; however, significant 

differences were not observed in GI between localities. Oocyte atresia was recorded all along the 

study period, mainly in Isla Machuca. In A. tuberculosa, RAI reflected only a low-to-moderate 

reproductive disturbance in both localities and seasons. A variety of parasites such as 

Nematopsis sp., Bucephalus sp., metacercariae and copepods were identified in A. tuberculosa, 

although, parasite prevalence was low, except for Nematopsis sp., especially during the dry 

season. In L. grandis, RAI also reflected only a low-to-moderate reproductive disturbance in 

both localities and seasons. The parasites recorded in L. grandis include Nematopsis sp. and to a 

lesser extent undetermined intracellular protists and metacercariae. Inflammatory responses such 

as oedema and brown cell aggregates were observed in both species (granulocytomas only in A. 
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tuberculosa); however, whereas digestive gland atrophy was negligible in A. tuberculosa, 

remarkable atrophy was recorded in L. grandis at both seasons.   

A. tuberculosa and L. grandis as biomonitors and sentinels. The present data are 

preliminary and in absence of previous records and of any comparison with recognised 

biomonitor and sentinel species from the area are difficult to interpret. However, it seems that the 

two studied species have the capacity to bioaccumulate metals, PAHs and POPs in their tissues, 

like regionally recognised biomonitors such as C. rhizophorae do (Chapter 1), and therefore they 

open an opportunity to develop further studies dealing with the use of these species (A. 

tuberculosa and L. grandis) as biomonitors in tropical and subropical Pacific mangrove 

ecosystems (e.g. from Mexico to Peru). Likewise, biological endpoints comparable to those used 

in sentinel C. rhizophorae (Chapter 2) appear to be suitable to be used as biomarkers of health 

disturbance in these two species from the Nicaraguan Pacific coast.  However, more basic 

research is needed on the general biology, ecology and disease of these species. 

Slender marsh clam P. arctata (in the Caribbean), and pustulose ark A. tuberculosa and ark 

shell clams L. grandis (in the Pacific) are putative biomonitor and sentinel species for assessing 

chemical pollution and ecosystem health disturbance in the diverse mangrove-lined coastal 

systems that can be found in Nicaragua. These species bioaccumulate metals, PAHs and POPs in 

their tissues at measurable levels that are seemingly related with the environmental levels of 

these contaminants and with the potential sources of contamination. Thus, they can be used as 

biomonitor species either alternative or complementary to the more widely recognised mangrove 

cupped oyster C. rhizophorae (Chapter 1). On the other hand, a toolbox of low-cost effortless 

biomarkers and biological endpoints including resilience, reproduction, growth and disease 

(histopathology), exactly as previously applied in the case of sentinel mangrove cupped oysters 

(Chapter 2), has been shown be useful for the case of using P. arctata, A. tuberculosa and L. 

grandis as sentinel species covering the whole geographical area of Nicaragua. Besides, as also 

reported in the case of mangrove cupped oysters from the same region (Chapters 1 and 2), 

seasonality is crucial to properly design and conduct pollution monitoring programmes for 

mangrove-lined coastal systems in Nicaragua using the three alternative/complementary species 

investigated herein.  
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Amongst others, chemical pollution is a major problem in mangrove-lined coastal ecosystems 

in the Wider Caribbean Region (WCR) and other neighbouring tropical and subtropical regions. 

Whilst pollution monitoring programmes carried out in the Caribbean are mainly based on the 

chemical analysis of water, sediment and biota (these latter as biomonitors), pollution 

biomonitoring programs worldwide are increasingly including biological effects as endpoints; for 

which they employ early warning signals of ecosystem health disturbance  recorded in sentinel 

species, mainly bivalves. Within this context, a novel initiative emerged from a consortium 

comprised of (a) the Cell Biology & Environmental Toxicology Consolidated Res Grp and (b) the 

Research Centre for Experimental Marine Biology & Biotechnology (Plentzia Marine Station) 

from the University of the Basque Country (UPV/EHU), (c) the Infectious Disease Centre of the 

National Autonomous University of Nicaragua-León (UNAN- León) and (d) the Department of 

Biological & Environmental Sciences of the University Jorge Tadeo Lozano (UJTL; Bogotá). As 

a result, a pilot biomonitoring project known as Caribbean Biomonitoring of Pollution 

(CARIBIOPOL) was carried out along 2012 and 2013, aimed at implementing a science-based, 

non-sophisticated and low-cost methodology (details in Annexes 1-5) suitable for biomonitoring 

of chemical pollution and associated ecosystem health disturbance in mangrove-lined Caribbean 

coastal systems from Nicaragua and Colombia, using bivalves as biomonitor and sentinel species. 

Two different working scenarios were conceived: (a) the first one at regional level, using 

Crassostrea rhizophorae as biomonitor and sentinel species in the Caribbean coast from Nicaragua 

and Colombia in an attempt to contribute to harmonised biomonitoring approaches at the WCR 

scale; and (b) a second one at national level in Nicaragua, using four species of  bivalves (C. 

rhizophorae, Polymesoda arctata, Anadara tuberculosa and Larkinia grandis) as biomonitor and 

sentinel species in the entire Nicaraguan coastline, both in the Caribbean and the Pacific coasts. 

1. C. rhizophorae as biomonitor and sentinel in WCR 
The first challenge was to determine the suitability of mangrove cupped oysters, C. 

rhizophorae, as biomonitor and sentinel species for pollution biomonitoring in different types of 

mangrove-lined coastal systems in the Caribbean. For this purpose, an integrated approach was 

applied, including both contaminant tissue concentrations (Chapter 1) and low-cost and effortless 

biomarkers of health condition in oysters (Chapter 2). The biomonitoring programme was carried 

out in 8 localities (3 in Nicaragua and 5 in Colombia) subjected to different types and levels of 

pollution. Oysters were collected during the rainy and the dry seasons in 2012-2013. The tissue 
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concentration of chemical pollutants such as metals, PAHs and POPs were measured in parallel 

with biological effects at different levels of biological complexity (condition index, reproduction, 

tissue-level biomarkers, histopathological condition and stress-on-stress response). The present 

study revealed that the pollution profile was different between the two studied geographical areas, 

Nicaragua and Colombia; as shown by radar plot pollution profiles. Likewise, the levels of 

pollutants were different, which was clearly reflected in the CPI and PLI values, which were 

significantly correlated to each other following a linear regression model. Therefore, CPI and PLI 

seem to be fully comparable integrative estimates of pollutants' levels. 

In Nicaraguan oysters, low tissue concentrations of metals (except Hg) and PAHs, moderate-

to-high tissue concentrations of Hg, HCHs, DDTs, detectable levels of chlorpyrifos, PCBs and 

BDE85 and negligible levels of musk fragrances were recorded. The values recorded for HCHs, 

DDTs and PCBs greatly exceeded the reference values in tissues of C. rhizophorae from the WCR. 

In Colombia, a distinct profile of POPs was identified; thus, the tissue concentrations of HCHs 

and DDTs were practically negligible, chlorpyrifos and PBDEs were below detection limits, the 

tissue levels of PCBs were low, the tissue concentrations of synthetic musk fragrances were 

remarkable in the dry season, and the tissue concentrations of Ag, As, Cd, Pb and PAHs ranged 

from moderate to extremely high. The values recorded for PCBs occasionally surpassed the 

average values recorded in tissues of C. rhizophorae from the WCR. The different contaminant 

profiles for oysters from Nicaragua and Colombia were evidenced in radar plots and principal 

component analysis, as well as in integrated pollution indices. Oyster tissue contaminant profiles 

varied with season. However this seasonality seemingly did not depend on the oysters' 

reproductive cycle but on the seasonal variability in physicochemical properties of mangrove 

ecosystems as well as on the diversification of human activities and practices between the rainy 

and the dry season (e.g., pest control, sanitation and tourism). 

Considering the geographical and environmental diversity of the studied scenarios (which 

included diverse habitats such as lagoons and swamps and over a wide geographical coastal region 

from Nicaragua to Colombia), the present results confirm the suitability of C. rhizophorae as 

biomonitor species at Caribbean regional scale for pollution monitoring programmes in mangrove-

lined coastal systems, where seasonal variability is a major factor controlling pollutant mobility 

and bioavailability. National and regional monitoring programmes in the WCR would be greatly 

improved by including the measurement of tissue concentrations of chemical pollutants in 



 
 
 

  Chapter 4. Needs and recommendations for biomonitoring in mangrove ecosystems  
 

221 
 
 

mangrove cupped oysters in addition to measurements of the levels of pollutants in water and 

sediments, as it is regularly done in other regions of the world such as Pacific Asia, Europe, Canada 

and the USA. 

These tissue concentrations of contaminants are useful to identify potential pollution problems 

and pollutant sources in the studied regions but they do not provide reliable indication of the 

deleterious effects that these pollutants may exert to biota and ecosystems, as recommended for 

pollution monitoring programs. For this reason, biological effects assessment was carried out in a 

parallel investigation aimed at relating oyster health condition to pollutant tissue levels (Chapter 

2). In order to contribute to develop a suitable multi-biomarker approach for pollution monitoring 

using C. rhizophorae as sentinel species, biological effects were determined at different levels of 

biological complexity as indicators of health disturbance. These biological endpoints were 

integrated in IBR/n indices and compared with the tissue burden of chemical pollutants (recorded 

in Chapter 1). 

Our results indicated that oysters were not equally healthy in the different localities and 

seasons investigated, which was directly evidenced by the IBR/n index, which provided an 

integrated view on the health status of the mangrove cupped oysters and a general indication of 

the ecosystem health disturbance. Different indicators of health disturbance alone and in 

combination were related to the presence of different profiles and levels of chemical pollutants 

present at low-to-moderate levels. As a result, IBR/n was correlated with pollution indices such as 

PLI and CPI, even though the levels of biological anomalies used as indicators of health 

disturbance and the levels of pollutants were in general terms low-to-moderate. Moreover, it is 

worth noting that it was a real field situation influenced and modulated by biological variables and 

environmental factors that varied seasonally. 

Consequently, the simple methodological approach used herein is useful for the assessment 

of health disturbance in a variety Caribbean coastal ecosystems using mangrove cupped oysters as 

sentinel species, which would be a suitable sentinel for biological effects assessment in pollution 

biomonitoring along mangrove-lined coastal systems in the WCR. 

2. A national approach for Nicaragua 
The second challenge was to determine the suitability of three potential biomonitor and 

sentinel species as either alternative or complementary options to mangrove cupped oysters in 
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order to apply the same approach for biomonitoring chemical pollution and ecosystem health 

disturbance in mangrove–lined coastal systems at national scale in Nicaragua. C. rhizophorae 

distribution is restricted to the Caribbean coast and this species is not present in muddy areas of 

coastal lagoons. Therefore, we investigated the suitability of slender marsh clams, Polymesoda 

arctata, as biomonitor and sentinel for muddy areas of Caribbean coastal lagoons; and the 

suitability of pustulose arks, Anadara tuberculosa, and ark shell clams, Larkinia grandis, to be 

used in Pacific Coast mangrove-lined coastal systems. Based on the acquired experience with C. 

rhizophorae and applying the same analytical chemical approach and the same biological effects 

toolbox, biomonitoring was carried out in 5 localities with different contaminant sources, which 

represented diverse scenarios of the mangrove-lined coastal systems at national scale in Nicaragua. 

In the Caribbean, P. arctata was collected in Pigeon Cay (Pearl Lagoon) and Punta San 

Gabriel (Bluefields Lagoon). In the Pacific, A. tuberculosa was collected in Padre Ramos Reserve 

and Isla Corinto Port, and L. grandis in Padre Ramos Reserve. Samples were collected in the rainy 

and dry seasons during 2012-2013. The tissue concentration of metals, PAHs and POPs were 

determined and integrated into pollution indices (CPI and PLI). In parallel, biological endpoints at 

different levels of biological complexity (condition indices, reproduction parameters, 

histopathology, and stress-on-stress response) were determined as biomarkers of ecosystem health 

disturbance. 

In the Caribbean, the tissue concentration of contaminants in P. arctata was, in general terms, 

low with some exceptions: metals such as Ag, As, Cd, Hg, Ni and V were mainly recorded during 

the dry season, and PAHs, HCHs, DDTs, musk fragrances, PCBs and PBDEs during the rainy 

season. The highest levels of contaminants (high CPI and PLI) were recorded in Punta San Gabriel, 

located at the sediment deposition zone of Bluefields Lagoon. In the rainy season in Pigeon Cay, 

the profile of the tissue concentrations of contaminants were comparable to those obtained with 

sympatric mangrove cupped oysters (Chapter 1); although P. arctata accumulated much less Cu 

and Zn, a little bit less Ag, As and Cd, and a little bit more Pb than C. rhizophorae. The tissue 

concentrations of PAHs in P. arctata were generally low, as they were in C. rhizophorae from the 

Pigeon Cay. The LMWPAHs/HMWPAHs ratio recorded in slender march clams suggested a 

predominant petrogenic origin of the PAHs in Punta San Gabriel and a pyrolytic origin in Pigeon 

Cay (in agreement with the results obtained in this latter locality with sympatric mangrove cupped 

oysters). Thus, in agreement with the results obtained using mangrove cupped oysters as 
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biomonitors (Chapter 1), slender marsh clams also revealed that metals and PAHs were less 

relevant contaminants in these Caribbean lagoons, whilst HCHs, DDTs, musk fragrances and 

PBDEs could be of concern. 

On the other hand, our results might suggest that slender marsh clams are less responsive to 

environmental insult than mangrove cupped oysters. In any case, the high prevalence of oedema 

and brown cell aggregates might be indicating that slender marsh clams, unlike mangrove cupped 

oysters, possess a highly active immune defence system able to cope with the extreme 

environmental conditions of the shallow muddy flats (deposition sinks of coastal lagoons) where 

they inhabit. More research is needed to better understand P. arctata biomarkers of health status 

and its responsiveness to environmental insult; which would help in getting an adapted toolbox to 

measure biological effects in this species. Meanwhile, some biomarkers such as reduction in LT50 

were shown to respond and were associated to low-to-moderately high PLI and CPI values in Punta 

San Gabriel during the rainy season. Our findings suggest that P. arctata would be complementary 

rather than alternative to C. rhizophorae as biomonitor and sentinel for the mangrove-lined 

Caribbean coastal systems in Nicaragua. Thus, if we consider altogether both species as 

biomonitors and sentinels we could conclude a decreasing gradient of contamination and 

ecosystem health disturbance in the studied mangrove-lined coastal systems in the Nicaraguan 

Caribbean area, say: Punta San Gabriel > Pigeon Cay / Half Way Cay > Punta Lora. 

In the Pacific coast, significant tissue levels of HCHs, DDTs, musk fragrances and PDBEs 

were recorded in A. tuberculosa and L. grandis; which could not be related to the analysed 

biological endpoints because we had few localities to compare and, mainly, because the general 

biology, ecology and disease of these species is hitherto unknown and, therefore, we lacked 

reference data to compare. Nevertheless, our study supports that pustulose arks and ark shell clams 

in the Pacific coast could be used as biomonitors and sentinels for assessing pollution and 

ecosystem health disturbance in mangrove-lined coastal systems in Nicaragua. As in the case of 

mangrove cupped oysters, seasonality was also found to be crucial to properly design and conduct 

pollution monitoring programmes using these two species. Moreover, the present results constitute 

a pioneering study to establish baseline of tissue concentrations of contaminants in these species, 

as well as to characterise their general and reproductive biology, their growth and 

physiological/nutritional condition, and their health status (disease; including the identification  of 

parasites and pathologies); all these parameters being susceptible to be used as low-cost, effortless 
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and reliable toolbox of biomarkers, indicative of ecosystem health disturbance in tropical and 

subtropical regions. The present data are preliminary; however, the two studied species 

bioaccumulate metals, PAHs and POPs in their tissues and therefore they open an opportunity to 

develop further studies dealing with the use of these species as biomonitors in tropical and 

subtropical Pacific mangrove ecosystems from Mexico to Peru. Finally, biological endpoints 

comparable to those used in sentinel C. rhizophorae (Chapter 2) appear to be suitable biomarkers 

of health disturbance but this cannot be corroborated until more basic research carried out to 

improve our knowledge of the general biology, ecology and disease of these species. 

As a whole, slender marsh clams, P. arctata, in the Caribbean, and pustulose arks A. 

tuberculosa, and ark shell clams, L. grandis, in the Pacific are putative biomonitor and sentinel 

species for assessing chemical pollution and ecosystem health disturbance in the diverse 

mangrove-lined coastal systems that can be found in Nicaragua. 

3. Needs analysis and recommendations 
 

Mangrove cupped oysters, C. rhizophorae, are suitable biomonitors for pollution monitoring 

and assessment in Caribbean mangroves, including diverse habitats such as lagoons and swamps 

and over a wide geographical coastal region from Nicaragua to Colombia. The biomonitoring can 

be improved by using complementary species such as slender marsh clams, P. arctata, in 

combination; thus covering other neighbouring habitats of interest such as e.g. muddy flats. 

Likewise, the same conceptual and methodological approaches can be applied to neighbouring 

coastal areas of the tropical and subtropical regions, such as for instance the Pacific coast. It is 

worth noting that integrative approaches for marine and coastal pollution monitoring require the 

application of methodological standards in sampling and analysis of samples, as well as in the 

interpretation of results. 

Regarding the WCR, in view of the present results it is highly recommended that national and 

regional monitoring programmes such as IMA in Trinidad and Tobago, GIWA in the whole WCR 

and REDCAM in Colombia would be greatly improved by including measurement of tissue 

concentrations of chemical pollutants in mangrove cupped oysters (or other biomonitor species) 

in addition to measurements of the levels of pollutants in water and sediments, as it is regularly 

done in other regions of the world such as Pacific Asia, Europe, Canada and the USA. Also, it is 
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relevant to emphasise that seasonality is crucial to properly design and conduct pollution 

monitoring programmes. 

 The determination of biological effect biomarkers for the assessment of ecosystem health 

disturbance often requires delicate equipment and instrumentation, special wares and expensive 

reagents, not always easy to afford by developing countries. Our study supports that simple 

methodological approaches (low-cost and effortless biomarkers) can be used to diagnose 

anomalies in the health status of mangrove cupped oysters (and slender marsh clams, pustulose 

arks, and ark shell clams), which would be indicative of disturbances in ecosystem health 

associated to chemical pollution, eutrophication (e.g. from domestic sewage) and other sources of 

environmental distress. Even if this cost-effective methodological approach is used, the use of 

biomarkers in tropical and subtropical coastal regions could be constrained by: (a) the difficulties 

for systematic routine sampling because accessibility to sampling sites is expensive and 

complicated, and because it is often hampered by natural phenomena such as hurricanes, cyclones 

and earthquakes (systematic biomonitoring or time-series are a difficult challenge); (b) the limited 

knowledge on the biology and ecology of target species of local or regional interest,  as presently 

discussed for the case of P. arctata and more markedly for A. tuberculosa and L. grandis; (c) the 

difficulties to achieve adequate transportation of samples to the laboratory (transportation may 

take long time under non-optimal conditions for sample quality  preservation); and (d) some 

technological hurdles (e.g. for in situ cryo-processing and further cryo-sample transportation) that 

hamper the application (at least occasionally for comparison and calibration purposes) of core 

biomarkers elsewhere applied in coastal biomonitoring such as e.g. lysosomal biomarkers (not 

applied in the present study). 

After the experience acquired during the sampling campaigns and sample processing and in 

view of the present and other complementary results, the CARIBIOPOL consortium agreed the 

following recommendations in order overcome the aforementioned constrains: (a) research efforts 

must be addressed to extend and deepen the knowledge about the biology, ecology and disease of 

target species (especially C. rhizophorae, but also P. arctata, A. tuberculosa and L. gandris, 

amongst others of local/regional interest) in order facilitate a better interpretation of the biological 

results and their relationship with chemical pollution; (b) ad-hoc means, local assistance (this 

implies also than environmental awareness and education are a must) and networking are crucial 

to overcome existing logistic difficulties for routine or systematic sampling (e.g., thus facilitating 
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accessibility to sampling sites, and timely forecasting natural phenomena such as hurricanes, 

cyclones and earthquakes); (c) realistic consensus procedures (or alternative options) and contact-

points must be agreed in order to secure the adequate transportation of samples to the laboratory; 

and (d) research policies (e.g. special permits for cold-ice transportation for research purposes), 

reference labs or institutional agreements (e.g. for researchers' mobility and exchanges or for using 

neighbouring hospital facilities and services) should be developed in order to overcome 

technological hurdles for applying more sensitive and sophisticated biomarkers. 

Aimed at contributing to stimulate these actions in Nicaragua and Colombia, we identified 

partners/headquarters in the Caribbean Coast, their technical capabilities and their capacity to 

support accessibility to sampling localities. These were the Dept. of Biology of the Bluefields 

Indian Caribbean University (BICU) in the Nicaraguan Caribbean coast, the Infectious Disease 

Center from UNAN-León in the Nicaraguan Pacific coast and the Dept. of Biological and 

Environmental Sciences from UJTL, with headquarters in Bogotá and Santa Marta. 
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1. Conclusions 
1) Mangrove cupped oyster, Crassostrea rhizophorae, is a suitable biomonitor for assessing 

pollution in mangrove-lined coastal systems in the Caribbean, including diverse habitats such 

as lagoons and swamps and a geographically wide coastal region from Nicaragua to 

Colombia. Based on the determination of pollutant tissue levels in this species, the present 

study revealed that the pollution profile was different between Nicaragua and Colombia; as 

evidenced in both radar plot pollution profiles and PCA. Likewise, the levels of pollutants 

were different, which was clearly reflected in the CPI and PLI values. National and regional 

monitoring programmes in the WCR would be greatly improved by including measurements 

of  tissue concentrations of chemical pollutants in mangrove cupped oysters in addition to 

measurements of the levels of pollutants in water and sediments. 

2) The profiles and levels of pollutants recorded in mangrove cupped oyster tissues were useful 

to identify potential pollution problems and pollutant sources in the studied regions. Overall, 

low tissue concentrations of metals (except Hg) and PAHs, moderate-to-high tissue 

concentrations of Hg, HCHs, DDTs, and low levels of chlorpyrifos, PCBs and BDE85 were 

recorded in Nicaraguan oysters. A distinct profile of POPs was identified in Colombia, where 

the tissue concentrations of HCHs, DDTs and PCBs were negligible-to-low, noticeable tissue 

concentrations of synthetic musk fragrances were recorded and the levels of Ag, As, Cd, Pb, 

and PAHs ranged from moderate to extremely high.  

3) Seasonality was a crucial factor affecting contamination profiles and concentrations and was 

seemingly related to seasonal variability in physicochemical properties of mangrove 

ecosystems as well as on diversification of human activities and practices (e.g., pest control, 

sanitation, tourism) between the rainy and the dry season, rather than the oysters' reproductive 

cycle.  

4) Mangrove cupped oysters were not equally healthy in the different localities and seasons 

investigated herein, as evidenced by the IBR/n index. Complex multi-factorial sources of 

health disturbance seemed to co-occur over a regional background of low-to-moderate 

pollution (e.g. by pesticides and domestic sewage) in the Nicaraguan Caribbean coast and 

therefore correlation between IBR/n and pollution indices (PLI and CPI) was not significant. 

In contrast, different indicators of health disturbance were related to the presence of different 
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profiles and levels of chemical pollutants present at low-to-moderate levels, and IBR/n was 

correlated with pollution indices (PLI and CPI) in a real field situation influenced and 

modulated by biological variables and environmental factors that varied seasonally.  

5) The assessment of ecosystem health disturbance by means of biomarkers in tropical and 

subtropical coastal regions may be constrained by difficulties for systematic routine sampling, 

the limited knowledge on the biology and ecology of local/regional target species, and the 

lack of adequate sample transportation to the laboratory; as well as by technological hurdles 

for applying core biomarkers elsewhere applied in coastal biomonitoring. However, the 

present study supports that simple methodological approaches can be used to diagnose 

anomalies in the health status of mangrove cupped oysters and to identify potential causing 

agents; these anomalies reflecting disturbances in ecosystem health associated to chemical 

pollutants, eutrophication (e.g. from domestic sewage) and other environmental stressors. 

Consequently, based on the low-cost, effortless and non-sophisticated biomarker toolbox used 

herein, mangrove cupped oysters can be used as sentinel species for the assessment of health 

disturbance in a variety Caribbean coastal ecosystems.  

6) Although the tissue concentration of contaminants was, in general terms, slightly lower in 

Polymesoda arctata than in sympatric C. rhizophorae, the slender marsh clam appears to be a 

suitable biomonitor for chemical pollution assessment in the Caribbean. For synthetic musk 

fragrances and PBDEs, P. arctata exhibited a greater bioaccumulation capacity than C. 

rhizophorae, whilst this latter species exhibited a greater bioaccumulation for As, Cd, 

benzo[a]pyrene, and PCBs. These findings suggest that P. arctata would be complementary 

rather than alternative to C. rhizophorae as biomonitor for the mangrove-lined Caribbean 

coastal systems in Nicaragua. Likewise, P. arctata would be complementary to C. 

rhizophorae as sentinel organism for biological effects assessment. 

7) Regarding the suitability of Pacific species, Anadara tuberculosa and Larkinia grandis as 

biomonitors and sentinels, our data are preliminary and in absence of previous records and of 

any comparison with recognised biomonitor and sentinel species from the area are difficult to 

interpret. However, it seems that the two studied species have the capacity to bioaccumulate 

metals, PAHs and POPs in their tissues and therefore they open an opportunity to develop 

further studies dealing with the use of these species as biomonitors in tropical and subtropical 

Pacific mangrove ecosystems from Mexico to Peru. Likewise, biological endpoints 
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comparable to those used in sentinel C. rhizophorae appear to be suitable to be used as 

biomarkers of health disturbance in these two species from the Nicaraguan Pacific coast.  

However, more basic research is needed on the general biology, ecology and disease of these 

species. 

8) A toolbox of low-cost effortless biomarkers and biological endpoints including resilience, 

reproduction, growth and disease (histopathology), exactly as previously applied in the case 

of sentinel mangrove cupped oysters, has been shown to be useful for the case of using P. 

arctata, A. tuberculosa and L. grandis as sentinel species covering the whole geographical 

area of Nicaragua. Besides, as in the case of C. rhizophorae, seasonality is crucial to properly 

design and conduct pollution monitoring programmes using P. arctata; A. tuberculosa and L. 

grandis as biomonitors and sentinels.  

 

 

 

2. Thesis 
 

Assessment of chemical pollution and ecosystem health disturbance in 

mangrove-lined coastal systems in the Pacific region of Nicaragua and in the 

Caribbean regions of Nicaragua and Colombia,  are successfully achieved by 

using mangrove cupped oysters, Crassostrea rhizophorae, and other 

alternative and locally relevant bivalve species, such as Polymesoda arctata, 

Anadara tuberculosa and Larkinia grandis, as biomonitors and sentinels. For 

this purpose, the combination of pollutant tissue burdens together with low-

cost and effortless biomarkers in an integrated approach must take into 

account seasonality and other sources of natural variability and confounding 

factors, as well as the occurrence of multiple stressors. 
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Anexo 1. Protocolo de muestreo 

CARIBIOPOL 2012-2013 

Planificación Muestreo: /   /   /   / 

 

 

 

PUNTOS DE MUESTREO 

Localidad Sitio de muestreo 

Etiqueta por especie 

    

      

      

      

      

      

      

 

MAREAS 

Día Hora tabla Altura (mts) 

   

   

   

 

 

 

 

 

 

Nombre proyecto Muestreo País Especie bivalvo Sitio de muestreo 
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TÉCNICAS Y ANIMALES A USAR 

Técnicas a usar Nº animales Etiqueta Envase-Procesado 

Histología 

 

 

 

 

20 

 

 

5 

 

 

 

H 

 

 

 

20 corte transversal EN Casetes, 

DAVIDSON 

 

Órganos separados:          5 Manto 

(M),  

5 Glándula Digestiva (GD) 

5 Branquia (Br). 

Casetes, FORMALDEHIDO 

BIOLOGIA MOLECULAR 5 BM 5 Manto (M) 

5 Glándula Digestiva (GD) 

5 Branquia(Br), todos los crioviales 

deben de llevar 0.5 ml de rNA Later 

Stress on stress 30 SOS Enteros, vivos en agua o lodo según 

especie 

Biometry  25 Flesh condition Enteros, vivos en agua o lodo según 

especie 

QCA-PAHs, Plaguicidas y 

Metales pesados 

25 PAHs Enteros, vivos, bolsa QMCA 

QCA-PAHs, Plaguicidas y 

Metales pesados 

1 L Agua química Dos envases de ½ L 

 

PLANIFICACIÓN GENERAL: /    /    /    / 

Participantes:  

Material muestreos:  

Por punto de muestreo y especie:  

-  15 Crioviales etiquetados: 

o 15 para BIOLOGIA MOLECULAR (BM) de los cuales 5-GD 5-Br 5-M  

- 25 casetes etiquetados para HISTOLOGIA, de los cuales: 

o  20 para cortes transversales. 

o  5 para GD+M+Br, órganos separados.  

- 1 bolsa de plástico etiquetada para QMCA. 

- 1 bolsa de plástico etiquetada con trozos de papel aluminio numerados para guardar las conchas. 

- 3 cajas de 15L etiquetadas con el nombre del sitio para colectar los bivalvos. 
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Material de disección 

- 1 caja poliespán con acumuladores de frío 

- Material de disección (tijera, pinza y bisturí por persona) 

- 2 cuchillos para ostras 

- Lápiz y sacapuntas 

- 2 Botes con fijador por especie (DAVIDSON, FORMALDEHIDO) 

- 1 marcador permanente 

- 1 regla 

- espátula o cuchillo 

- papel de filtro 

- 3 bandejas 

- etiquetas extra 

- Guantes 

- rNA later 

- Bolsa para basura 

- Balanza (g) 

 

CAMBIOS A TENER EN CUENTA 

1- Utilizaremos 2 fijadores: DAVIDSON, FORMALDEHIDO 

2- Se guardan muestras para Metales, PHA y Plaguicidas a -40 hasta su proceso de liofilización. 

3- Todas las conchas de todos los individuos se guardan. 

 

¿QUÉ HAY QUE HACER? 

1.- Es importante señalar que aún no están decididas las técnicas que se van a llevar a cabo sobre las 

muestras recogidas. Por eso las etiquetas se dividen en grupos: HISTOLOGIA, BIOLOGIA MOLECULAR 

y QUIMICA. 

2.- En cada punto de muestreo se cogerán 85-110 individuos. En el caso de que los animales estén llenos 

de arena o fango procurar pasarlos por agua y quitar la mayor parte posible de arena. 

3.- 85 bivalvos se meten en una caja de 15 L con agua de la estación de muestreo y se llevan al laboratorio. 

Al llegar al laboratorio, 30 de estos bivalvos se pondrán al aire en el lugar indicado para stres on stres, 25 

se diseccionan se miden el peso total, concha y carne, todo el tejido blando del bivalvo se guarda -40ºC 

para su liofilización y posteriormente su análisis de metales, PAHs, POPs y cálculo de índice de 

condición, en el caso de que el proceso de liofilización y análisis químico se realice en otro centro, se deben 

seleccionar otros 25 bivalvos para el cálculo de índice de condición y secar a 105ºC por 24 hr.  

4.- Para histología:  

-Utilizaremos 20 bivalvos a los que haremos un corte transversal, que contenga la glándula digestiva, parte 

de la branquia y el manto (bivalvos 1-20). Los meteremos directamente en un casete para fijar en 

DAVIDSON.  

-Diseccionaremos 5 bivalvos más. Meter la glándula digestiva, el manto y la branquia en un casete para 

fijar en FORMALDEHIDO (bivalvos 20-25).  

-En total se utilizan 25 bivalvos para histología (1-25). 
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5.- Biología molecular 

-A cinco bivalvos se les extraen ambas branquias de cada individuo y se introducen en los crioviales 

debidamente etiquetados, de igual manera la gónada y glándula digestiva. Los crioviales contienen 0.5 ml 

de rNA Later (inactivación rNasa) se traslada al laboratorio en una nevera con hielo azul (Ice pack) y luego 

se guardan a -80ºC. 

6.-Guardar las conchas de cada individuo que se utilizó para su posterior análisis de biometría, con el 

código de la etiqueta en la parte interna de ambas valvas y envueltas en papel aluminio. 

Importante: 

1.- Al llegar de vuelta al laboratorio, el material refrigerado debe guardarse inmediatamente en un  

congelador a –80 ºC (Biología Molecular), limpiar, secar y preparar el material de disección para ser 

utilizarlo en el siguiente muestreo. 

INCIDENCIAS: Anotar cualquier alteración que haya ocurrido en el proceso de muestreo, disección o 

transporte de muestras. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20 cortes 

transversales

1………………………………………………….20

21……………….………..25

HISTOLOGÍA

FORMALINA

DAVIDSON

31……………..35

5 Moluscos

BIOLOGÍA MOLECULAR (BM)

Manto (M)

Glándula 

Digestiva 

(GD)
Branquia 

(BR)

Molus. 

entero

Criovial

Casete

5 diseccionados

CARIBIOPOL 2012-2013

DIAGRAMA PARA TOMA DE MUESTRAS

25 Molus. 30 Molus. 

SOS

QUÍMICA/BIOMETRÍA
PAH, Metales y Plaguicidas

STRESS ON STRESS

1L agua
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Anexo 2. Analysis of tissue concentrations of contaminants 

Preprocessing and bottling: the soft body of each bivalve was separated from the shell, 

homogenized (blender Black and Decker), pooled (25 bivalves per sample) and maintained at -

40ºC during processing (2-3 d). Pooled samples were freeze-dried (between −46 and −52ºC) and 

at low pressure (between ∼0.17 and 0.22 mbar) in a Cryodos T-50 (Telstar, Barcelona, Spain; 

Navarro et al., 2010). The samples was then homogenised in a Pulverisette 6 ball mill (Fritsch, 

Quebec, Canada) resulting in a fine powder (<125µm particle size), sieved with a 250µm mesh. A 

Laborette 27 rotary cone sample divider (Fritsch GmbH) was used to complete the homogenisation 

of the sample. This process was repeated twice to guarantee the material homogeneity. Then, the 

material was sub-sampled and distributed in amber bottles (∼30g in each bottle) at −20 ◦C in the 

fridge until analysis. Metals tissue concentration of (silver, aluminium, arsenic, barium, cadmium, 

chromium, cobalt, copper, iron, mercury, lithium, magnesium, manganese, molybdenum, nickel, 

lead, antimony, selenium, tin, strontium, titanium, thallium, vanadium and tungsten) Ag, Al, As, 

Ba, Cd, Cr, Co, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Ti, TI, V and W, in whole 

soft tissue were determined by ICP–MS (Bartolomé et al., 2010; Navarro et al., 2010). 

Nevertheless, organic pollutants assessment was focused on Matrix Solid Phase Dispersion 

(MSPD) extraction method followed by  gas chromatography couple to single mass spectrometry 

(GC–MS) to determine up to 41 non-polar or slightly non-polar organic pollutants (PAHs, PCBs, 

PBDEs, OCPs, OPPs and musk fragrances) (Ziarrusta et al., 2015).  

Chemicals solution and reference material of metal: for the inductively coupled plasma-mass 

spectrometric (ICP-MS) determination, individual standard solutions of metals (1000µgmL−1 for 

Ag, Al, As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Ti, TI, V and W) 

was used. The Standard Reference Material SRM NIST-2977 (mussel tissue, Perna perna) was 

supplied by the National Institute of Standards and Technology (Gaithersburg, USA). The 

microwave-assisted extraction was carried out in a close microwave device MDS-2000 (CEM 

Corporation, Matthews, USA) equipped with 12 Teflon vessels and a pressure controller. The 

samples were evaporated in a TurboVap LV (Zymark, Barcelona, Spain).  

Determination of metal tissue concentration: a liquots (0.2 g) were placed in an extration 

vessel with 15mL of 7% (v/v) nitric acid. The following digestion program was used: at first, the 

oven worked at full power (630W) in order to reach 30psi, then, the pressure was kept constant at 

80% of power during 30min. After cooling, the extracts were filtered through syringe PTFE filters 
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(25mm,5µm,Waters, Milford, USA), diluted to 50mL with Milli-Q water and 100µL of the internal 

standard solution (5µgg−1) was added. These extracts were kept in the dark in polyethylene vials 

at 4ºC until the analysis. The ICP-MS system (ELAN 9000; Perkin-Elmer SCIEX, Thornhill, 

Ontario, Canada) was used for the analysis: nebulizer, plasma and auxiliary flows 0.9, 15 and 1.2 

Lmin−1, respectively, sample flow 1mLmin−1, radiofrequency power 1000W, integration time 

1500ms and four replicates (Bartolomé et al., 2010; Navarro et al., 2010). The analytic procedure 

was evaluated by means of Standard Reference Material (SRM) and the use of laboratory reference 

materials. Tissue metal concentrations were expressed as µg metal/g tissue dry weight (Bartolomé 

et al., 2010; Navarro et al., 2010) 

Chemicals solution and reference material of organic pollutants: the names of the target 

analytes and the isotopically labelled standards used as surrogates, the abbreviations and the purity 

of the standards are included in Table 1. PCB Mix-3 (CB 28, CB 52, CB 101, CB 118, CB 138, 

CB 153 and CB 180) was supplied by Dr. Ehren-storfer GmbH (Augsburg, Germany) and the 

individual standard of CB 52 by Sigma–Aldrich (St. Louis, MO, USA). Bromodiphenyl Ethers 

Lake Michigan Study mix (BDE 28, BDE 47, BDE 66, BDE 85, BDE 99, BDE 100, BDE 138, 

BDE 153 and BDE 154) was purchased from Isostandards Materials (Madrid, Spain) and the 

individual standard of BDE 100 from Sigma–Aldrich (St. Louis, MO, USA). SS TCL PAH Mix 

containing EPAs 16 priority PAHs was obtained from Supelco (Walton-on-Thames, UK). The 

surrogate standard PAH deut 5 containing 5 deuterated PAHs ([2 H8]-naphthalene, [2 H10 ]-

acenaphthene, [2 H10]-phenanthrene, [2 H12 ]-chrysene and [2 H12]-perylene) was provided by 

Dr. Ehrenstorfer GmbH. The two polycyclic musks, tonalide (AHTN) and galaxolide (HHCB), 

were obtained from LGC Standards GmbH (Wesel, Germany), whereas [2 H15]-musk xylene was 

supplied by Dr. Ehrenstorfer GmbH. The four OCPs (o,p-dichlorodiphenyldichloroethane, p,p-

dichlorodiphenyl-dichloroethylene, o,p-dichlorodiphenyl-trichloro-ethane, p,p-dichlorodiphenyl-

trichloroethane) and four HCH isomers were supplied by Dr. Ehrenstorfer GmbH. The two OPPs, 

chlorpyriphos and chlorfenvinphos, as well as the deuterated analogue [2 H8]-1,1,1-trichloro-2,2-

bis(4-chlorophenyl)ethane, were provided by Sigma–Aldrich. [2 H66]-n-dotriacontane and [2 

H46]-n-docosane were acquired from CDS Isotopes Inc. (Sainte-Foy-La-Grande, France). 

Individual stock solutions from each solid standard were dissolved to prepare ̴1000 g g−1 stock 

solutions in 2-propanol (HPLC-grade, 99.8%, LabScan, Dublin, Ireland). These solutions were 

stored in amber vials at −20 ◦ C. 100 mg L−1 dilutions were prepared in 2-propanol monthly and 

more diluted stocks were prepared daily according to the experimentation. The solvents n-hexane 
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(95%), dichloromethane (DCM; 99.8%), ethyl acetate (EtOAc; 99.8%) and acetone (99.8%) used 

for elution were provided by LabScan. Empty polypropylene cartridges (10 mL capacity) were 

pur-chased from HSW Norm-Jet (Keltenstrasse, Germany), BD Discardit II (Huesca, Spain) and 

Omnifix-F (B. Braun Melsungen AG, Germany). Empty glass syringes of 6 mL and 10 mL 

capacity were acquired from Supelco (Bellefonte, PA, USA) and Rutherford Vintage (Ruthe, 

Portugal), respectively. 6 mL and 12 mL polyethylene frits were purchased from Supelco. For 

dispersion and clean-up purposes, different solid sorbents were used. Diatomaceous earth (acid 

washed not further calcined, 95% purity), Florisil and silica (high purity grade, 70–230 mesh) were 

provided by Sigma–Aldrich. EnviCarb (Supelclean 120/400) was acquired from Supelco, zeolite 

from Zeolyst International (Conshohocken, USA) and Plexa and octadecyl-functionalized silica 

(Bondesil-C18) from Agilent Technologies (Lake Forest, USA). Silica and Florisil were activated 

at 130 ◦C overnight and maintained in a dry atmosphere until their use for analysis purposes. When 

necessary, both phases were deactivated with controlled percentages of sulphuric acid (H2 SO4; 

95–97%) purchased from Merck (Darmstadt, Germany). A Cryodos-50 laboratory freeze-dryer 

from Telstar Instrument (Sant Cugat del Valles, Barcelona, Spain) was used to freeze-dry the 

mollusc samples. Extracted fractions were evaporated at 20 ◦ C in a Turbovap LV Evaporator 

(Zymark, Hopkinton, MA, USA) using a gentle N2 (99.999%, Messer, Vilaseca, Spain) blowdown. 

Material cleaning: all the laboratory material was cleaned with abundant pure water (<0.2 

S cm−1, Millipore, Billerica, MA, USA) and without using detergent to avoid possible 

contamination. The material was sonicated in clean acetone (Q.P., Panreac Química, Spain) for an 

hour and rinsed with ultrapure water (<0.057 S cm−1, Milli-Q model, Millipore). Finally, the glass 

material was dried in an oven at 400 ◦ C for 4 h. The glass syringes were sonicated in clean DCM 

for an hour and rinsed with ultrapure water before drying in an oven at 130 ◦ C for approx. 12 h. 

MSPD extraction and clean-up: under optimised conditions, 0.30 g of freeze-dried mollusc 

sam-ple and 0.30 g of Florisil dispersant were manually blended for 2 min in a glass mortar using 

a glass pestle. A 10-mL glass syringe, containing a polyethylene frit at the bottom, was filled from 

bottom to top as follows: 0.60 g of deactivated silica, 4.00 g of activated silica and finally the 

blended material. Isotopically labelled surrogates were spiked at 50 ng g−1 in the blended material 

and a second frit was placed over. Subsequently, analytes were eluted with 25 mL of DCM 

(measured at collection) and the eluate obtained was evaporated to dryness using a gentle N2 

blowdown and reconstituted to a final volume of 140 L of n-hexane. The extracts were analysed 
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by means of GC–MS or GC–MS/MS. For optimisation and validation purposes freeze-dried fish 

hatchery mussels (obtained from a local market), a freeze-dried mussel tissue laboratory reference 

material (LRM) and the freeze-dried mussel tissue SRM-2977 (National Institute of Standards and 

Technology, Gaithersburg, MD, USA) were used. 

GC–MS analysis: the MSPD extracts were analysed in an Agilent 7890A gas 

chromatograph coupled to an Agilent 7000 triple quadrupole mass spectrometer and using an 

Agilent 7693 autosampler (Agilent Technologies). 2 L of the extract was injected in the splitless 

mode (1.5 min) at 300 ◦C in an Agilent HP-5 ms capillary column (30 m × 0.25 mm, 0.25 m) with 

helium (99.9995%, Carburos Metálicos, Barcelona, Spain) as carrier gas at a constant flow of 1.3 

mL min−1. The following oven temperature programme was used for the separation of the 41 target 

compounds: 60 ◦C (held 1 min) to 140 ◦ C at 30 ◦ C min−1, to 200 ◦ C at 3 ◦ C min−1 , to 240 ◦ C at 

5 ◦ C min−1 and a final increase of 30 ◦ C min−1 up to 300 ◦ C, where it was held for 10 min. When 

LVI-PTV injection was considered, 10 L of the sample extract was injected at 50 ◦ C while the 

vent valve was opened for 3 min at a flow rate of 75 mL min−1 and a vent pressure of 2.9 psi. 

Subsequently, the analytes were focused to the column in splitless mode for 1.5 min while the 

temperature of the PTV injection port was increased at 12 ◦ C min−1 to 300 ◦ C and held for 5 min. 

Finally, the inlet was further cleaned at a purge flow of 50 mL min−1 before further injections. The 

mass spectrometer worked in the electron impact (EI) mode with electron energy of 70 eV. The 

temperature of the interface was kept at 310 ◦C, while the temperature of the ionisation source and 

the detector were maintained at 230 ◦C and 150 ◦C, respectively. The measurements were 

performed both in the selected ion moni-toring (SIM) and in the selected reaction monitoring 

(SRM) modes (see Table 1). In the latter, N2 (99.9999%; Air Liquide, Spain) was required as 

collision gas at a flow of 1.5 mL min−1. In the case of the SIM mode, the first ion was used as 

quantifier while the second ion was considered as qualifier. In the case of the SRM mode, one 

precursor ion and two product ions (one used as quantifier and the other one as qualifier) were 

monitored, as recommended by the identification requirements of the European guidelines 

(Commission Decision, 2002/657/EC and SANCO/10684/2009 Guideline). The sum of the dwell 

times within a window was maintained in 100 ms and longer dwell times were used for the target 

analytes compared to the corresponding labelled standards in order to improve the signal of the 

former (see Table 1). The MassHunter WorkStation Acquisition Software (Version B.05.02/Build 

5.2.365.0, Agilent Technologies, 2008) was used for data acquisition and automatic integration 

and quantification of the results. 
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Compounds analyzed by MSPD–GC–MS according to Ziarrusta et al., 2015. 

Abbreviation Name Abbreviation Name 

Polycyclic aromatic 

hydrocarbons 
 

Polychlorinated 

biphenyls 
 

Acy Acenaphthylene CB 28 2,4,4’-Trichlorobiphenyl 

Ace Acenaphthene CB 52 2,2’,5,5’-Tetrachlorobiphenyl 

Flu Fluorene CB 101 2,2’,4,5,5’- Pentachlorobiphenyl 

Phe Phenanthrene CB 118 2,3’,4,4’,5- Pentachlorobiphenyl 

Ant Anthracene CB 138 
2,2’,3,4,4’,5’- 
Hexaachlorobiphenyl 

Flr Fluoranthene CB 153 2,2’,4,4’,5,5’-Hexachlorobiphenyl 

Pyr Pyrene CB 180 
2,2’,3,4,4’,5,5’-
Heptachlorobiphenyl 

B[a]A Benzo[a]anthracene 
Polybrominated diphenyl 

ethers 
 

Chr Chrysene BDE 28 2,4,4’-Tribromodiphenyl ether 

B[b]F Benzo[b]fluoranthene BDE 47 
2,2’,4,4’-Tetrabromodiphenyl 

ether 

B[k]F Benzo[k]fluoranthene BDE 66 
2,3’,4,4’-Tetrabromodiphenyl 

ether 

B[a]P Benzo[a]pyrene BDE 85 
2,2’,4,4’,6-Pentabromodiphenyl 

ether 

B[ghi]P Benzo[g,h,i]perylene BDE 99 
2,2’,3,4,4’-Pentabromodiphenyl 

ether 

Ind Indene[1,2,3-cd]pyrene BDE 100 
2,2’,4,4’,5-Pentabromodiphenyl 

ether 

D[ah]A Dibenzo[a,h]anthracene BDE 153 
2,2’,4,4’,5,5’-
Hexabromodiphenyl ether 

Isotopically labelled 

compounds 
 BDE 154 

2,2’,4,4’,5,6’-
Hexabromodiphenyl ether 

[2H10]-Ace [2H10]-Acenaphthene   

[2H10]-Phe [2H10]-Phenanthrene   

[2H10]-Chr [2H10]-Chrysene   

[2H12]-Pyr [2H12]-Perylene   

[2H15]-MX [2H15]-musk xylene   

[2H8]-4,4’ -DDT 
1,1,1-Trichloro-2,2- bis(4-

chlorophenyl)ethane-d8 

  

[2H46]-n-docosane    

[2H66]-n-dotriacontane    

Organophosphorous    

Chlor Chlorpyriphos   

Chlorf Chlorfenvinphos   

Organochlorine pesticides    

δ-HCH δ-Hexachlorocyclohexane   

α-HCH α-Hexachlorocyclohexane   

β-HCH β-Hexachlorocyclohexane   

γ -HCH γ-Hexachlorocyclohexane   

4,4’ -DDE p,p’-Dichlorodiphenyl- dichloroethylene   

2,4’-DDD o,p’- Dichlorodiphenyldichloroethane   

2,4’ -DDT o,p’-Dichlorodiphenyl- trichloro-ethane   

4,4’-DDT p,p’-Dichlorodiphenyl- trichloroethane   

Polycyclic musks    

HHCB Galaxolide   

AHTN Tonalide   
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Anexo 3. Descripción de disección según la especie de bivalvo y procesos de 

preparación de tejido. 

Preparación de tejido y disección de Ostra: Para abrir la ostra se introduce un cuchillo de 

ostras en la parte del ligamento entre los umbos. Una vez roto el ligamento, se cortan los músculos 

aductores presente en la parte media de la ostra. Una sección transversal de 5 mm de espesor de 

tejido se elimina de la ostra con un bisturí o unas tijeras, con la finalidad que la segunda sección 

contenga todos los órganos. La segunda sección de tejido se obtiene de tal manera que la cara 

dorsal-ventral pasa a través de la glándula digestiva, tejido de las branquias y gónada. Veinte 

secciones se colocan inmediatamente en un casete de tejido y el casete se introduce en un recipiente 

lleno de fijador de Davidson (Tabla 1) durante 48 horas. Después de 48 horas, el fijador se elimina 

y se añade etanol al 70% y los tejidos se dejan reposar hasta su procesamiento. Otras cinco 

secciones se colocan inmediatamente en un casete de tejido y el casete se introduce en un recipiente 

lleno de fijador de Formaldehido al 10% (Tabla 2) durante 24 horas. Después de 24 horas, el fijador 

se elimina y se añade etanol al 70% y los tejidos se dejan reposar hasta su procesamiento.  

Tabla 1. Reactivos y proporcione para preparación histológica  del fijador Davidson (Kim et al., 2006). 

Secuencia 

de mezcla 
Compuesto Formula 

Peso molecular 

(g/mol) 
Marca 1L 

1 Ácido acético glacial (ml)* C2H4O2 60.05 
Fluka 

45731 
100 

2 Formaldehido 40% (ml)  30.03 
Panreac 

211328 
200 

3 Etanol 96o  (ml)    300 

   4** 

Cloruro de sodio (g)    7.5 

Agua destilada (ml)    300 

5 Glicerina (ml) C3H8O3 92.09 

Sigma G-

6279 

 

100 

 

Nota: *  ácido acético ≥ 99.8%, las proporciones están dadas para un volumen total de 1 litro.  

 ** La mezcla de la sal y agua destilada se prepara aparte y luego se mezcla. 

Preparación de tejido y disección de Berberecho y Almeja: Para abrir los berberechos y 

almejas se introduce un cuchillo en la parte del ligamento entre los umbos, hasta romper éste y se 

cortan los músculos aductores. Una sección transversal de 5 mm de espesor de tejido se elimina 

del bivalvo con un bisturí, con la finalidad que la segunda sección contenga todos los órganos. La 

segunda sección de tejido se obtiene de tal manera que la cara dorsal-ventral pasa a través de la 

glándula digestiva, tejido de las branquias y gónada. En ésta segunda sección, debemos de limpiar 

un poco la glándula digestiva del musculo del píe, ya que a la hora de realizar las secciones en el 

micrótomo nos daña la cuchilla al igual que la sección a extraer. Otra forma de hacer la toma de 

muestra es extraer de cada bivalvo la glándula digestiva, branquias y manto por separado. Veinte 

secciones se colocan inmediatamente en un casete de tejido y el casete se introduce en un recipiente 

lleno de fijador de Davidson (Tabla 1) durante 48 horas. Después de 48 horas, el fijador se elimina 

y se añade etanol al 70% y los tejidos se dejan reposar hasta su procesamiento. Otras cinco 
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secciones se colocan inmediatamente en un casete de tejido y el casete se introduce en un recipiente 

lleno de fijador de Formaldehido al 10% (Tabla 2) durante 24 horas. Después de 24 horas, el fijador 

se elimina y se añade etanol al 70% y los tejidos se dejan reposar hasta su procesamiento.  

Tabla 2. Reactivos y proporcione para preparación histológica  del fijador  Formaldehido 10% (Martoja 

y Martoja-Pierson, 1970). 

Secuencia de 

mezcla 
Compuesto Formula 

Peso 

molecular 

(g/mol) 

Marca 1L 

1 
Formaldehido 40% 

(ml) 
 30.03 Panreac 211328 100 

2 
Fosfato disódico  

12H2O (g) 
Na2H2PO412H2O 358.14 Fluka 71650 28.92 

3 

Fosfato 

monosódico 1H2O 

(g) 

NaH2PO4H2O 137.99 
Panreac 131965/Fluka 

71506/Probus 183710 
2.56 

4 Agua destilada (ml) Rellenar hasta alcanzar un litro 1L 

 

Nota: Si no se cuenta con el fosfato monosódico y disódico, se puede utilizar agua marina del sitio de muestreo y 

formaldehido en la proporción 9:1 (formaldehido al 10%). 

Preparación de portas 

Deshidratación e inclusión de muestras de tejido de bivalvos: Las muestras de tejido 

individuales se preparan para ser incluidas en parafina, utilizando un protocolo de deshidratación 

(Tabla 3). Las soluciones usadas para la deshidratación, limpieza e inclusión se cambian con 

frecuencia para mantener la pureza de la solución. Todo éste proceso se puede hacer manualmente 

moviendo los tejidos, siguiendo la secuencia de las soluciones. La parafina se funde a una 

temperatura de 60-75 ° C. La parafina derretida siempre se debe utilizar en la infiltración final y 

pasos de inclusión. Después de que los tejidos están en las cubetas de infiltración de parafina lista 

para su inclusión, se extrae la muestra de tejido de los casetes y se ponen en un molde de plástico 

o acero inoxidable. Se procede a rellenar de parafina fundida para su inclusión, se coloca en la 

parte superior del molde el casete que contiene la etiqueta de la muestra y se traslada a una placa 

fría del sistema de inclusión. A medida que el tejido / parafina se enfría endurece. Se debe tener 

cuidado de usar parafina suficiente para cubrir el tejido después de esta contracción. El molde se 

deja en la placa fría hasta que se retira el bloque de tejido-parafina 1hr o de 1-2 hr a temperatura 

ambiente. El bloque se almacena a temperatura ambiente 32-35ºC. 

Corte de tejido: Los bloques de parafina se cortan utilizando un micrótomo, iniciamos a 20 

micras hasta exponer el tejido en toda la sección transversal, luego se cortan las secciones a 5 

micras. Las secciones de tejido pueden ser cortadas individualmente o en secciones continuas. Las 

secciones se colocan en la superficie de un baño maría de agua destilada, a temperatura de 45-50 

° C y se dejan expandir. Una vez que las secciones se expanden a su tamaño completo, son 

pescadas con un portaobjetos en un ángulo de 90º, el que se desliza bajo una o más de las secciones 

de tejido, el portaobjeto contiene albúmina de huevo para mejorar la fijación del tejido al cristal. 
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Las secciones ya puestas en el portaobjeto son secadas en un horno a 37 ºC por 24 hr o a 

temperatura ambiente toda la noche. Éstas se almacenan a temperatura ambiente 32-35ºC, hasta 

su proceso de tinción.  

Tabla 3. Protocolo de deshidratación de muestras de bivalvos, adaptado para Nicaragua CARIBIOPOL 

2012-2013, modificado de Kim et al., (2006). 

Pasos 

Deshidratación de muestras en Formaldehido y Davidson 

Compuestos Tiempo (h) 

1 Etanol 70% 1 

2 Etanol 96% 1 

3 Etanol 96% 1 

4 Etanol absoluto 100% 1 

5 Etanol absoluto 100% 1 

6 IMS 1 

7 Xilol 1 

8 Xilol 1 

9 Parafina 2 

 10 Parafina 2 

11 Inclusión   

Tiempo total 

  

12 

Nota: IMS (proporción 1:1 de alcohol absoluto y xilol). El alcohol etílico 

desnaturalizado al 99º  es considerado absoluto. 

Tinción de tejidos: Las secciones son desparafinadas e hidratadas utilizando una serie de 

xiloles y etanoles (Tabla 4). Después de la hidratación, los portaobjetos se tiñen en Hematoxilina 

de Harris moficada 4 minutos. En éste paso es conveniente respetar el tiempo de tinción que 

recomienda cada tipo de solución de hematoxilina. Dependiendo de la fórmula de preparación el 

tiempo puede variar de 3-20 minutos. Luego se procede a lavar en agua corriente y diferenciar el 

tejido con alcohol ácido 0.25% para eliminar el exceso de colorante hasta que los núcleos y 

componentes basófilicos de las células sea lo único que permanezcan teñidos. Virar al color azul, 

empleando Carbonato de litio 1.3%. Aplicamos el colorante de Eosina  2 minutos, el cual pude 

modificarse según el tipo de tejido y tiempo de uso del tinte. Posteriormente se procede a la 

deshidratación de las secciones en una serie de etanoles en escala ascendente y finalmente se 

diafanizan o aclaran empleando xilol. Los tiempos requeridos para cada paso son flexibles, tanto 

en los procedimientos de tinción descritos aquí y en el protocolo de inclusión anterior. Diferentes 

tipos de tejido pueden requerir diferentes momentos. Todas las soluciones, especialmente los 

xilenos y etanoles queridos, deben cambiarse con frecuencia. Los portaobjetos que contienen las 

secciones, no debemos permitir que se sequen durante las transferencias entre cubetas si el proceso 

es manual.  
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Montaje de tejido: Este procedimiento consiste en colocar encima de la sección o corte teñido 

y diafanizado una gota de una sustancia adherente, diluida, generalmente en xilol (DPX medio de 

montar para histología) o resina natural como el bálsamo de Canadás, cuyos índices de refracción 

son similares a los del vidrio, luego se pone una lámina de cubreobjetos encima del tejido, 

cuidando que no queden burbujas de aire entre la resina. A continuación se deja que el xilol se 

evapore y la resina adquiera solidez suficiente; para ello las láminas se colocan en una bandeja 

horizontal por 12 hrs y estarán listas para ser observadas. 

Tabla 4. Protocolo de tinción de Hematoxilina –Eosina adaptado para “Bivalvos de Nicaragua”, 

modificada de Kim et al., (2006). 

Paso Estación Reactivo 
Tiempo en 

minutos 
Exacto 

1 1 Xilol 10:00 - 

2 2 Xilol 10:00 - 

3 3 Alc. absoluto 02:00 - 

4 4 Alc. absoluto 02:00 - 

5 5 Alc. 96º 02:00 - 

6 6 Alc. 70º 02:00 - 

7 7 Agua destilada 05:00 - 

8 8 Hematoxilina 04:00 SI 

9 Wash 5 Agua corriente 04:00 - 

10 9 Alcohol ácido 00:10 SI 

11 Wash 4 Agua corriente 05:00 - 

12 10 Carbonato de litio 00:10 SI 

13 Wash 3 Agua corriente 01:00 - 

14 11 Eosina 02:00 SI 

15 Wash 2 Agua corriente 00:01 - 

16 Wash 1 Agua corriente 00:50 - 

17 13 Alc. 70º 00:30 SI 

18 14 Alc. 96º 00:30 SI 

19 15 Alc. absoluto 01:20 SI 

20 16 Alc. absoluto 01:20 SI 

21 17 Xilol 01:00 - 

22 18 Xilol 01:00 - 

23 Exit Xilol 01:00 - 

 

Nota: El tiempo de la EOSINA (aumenta en relación al tiempo de uso del tinte). La intensidad del 

color de la eosina disminuye si aumentamos el tiempo de la salida de los  alcoholes (pasos 

17;18;19).  

 

Carbonato de Litio 1.3%: Para hacer una dilución de carbonato de litio en agua se busca la saturación de ésta sal 

en ella, y después se filtra. El nivel de saturación es de 1.3 g cada 100 ml de agua destilada. 

 

Alcohol ácido al 0.25%: Añadir 0.25 ml de ácido clorhídrico en 100 ml de alcohol al 70%. 
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Anexo 4. Análisis de tejidos teñidos con Ematoxilina-Eosina. 

Las diapositivas preparadas son examinadas individualmente bajo el microscopio con un 

objetivo de 10X. Si cualquier tejido necesita  ser examinado más de cerca, un objetivo 20X o 40X 

puede ser utilizado para un examen más detallado de las sospechas de patologías o parásitos. Los 

principales tipos de tejidos examinados incluyen branquias, manto, gónadas y gonoductos, túbulos 

de glándula digestiva, estómago y tejido conectivo. A medida que el análisis histopatológico se 

realiza en conjunto con el análisis gonadal, los bivalvos son examinados generalmente empezando 

por las gónadas para determinar el sexo y la etapa de desarrollo gonadal. Luego se examinan las 

branquias y la masa visceral (Kim et al., 2006). 

Tabla 5. Estados reproductivos en ostras, modificado de Kim et al., (2006); Ortiz-Zarragoitia y 

Cajaraville, (2010).  

 

Fase 

gonadal 

Índice 

gonadal 
Estado Características 

1 0 

Sexualmente 

indiferenciado 
Poco o ningún tejido gonadal visible. 

2 1 
Desarrollo inicial Los folículos comienzan a expandirse. 

3 2 
Desarrollo medio 

Los folículos se expanden y empiezan a fusionarse; no hay 

gametos maduros presentes. 

4 4 

Desarrollo 

avanzado 

Folículos expandidos en gran medida, y unidos, el tejido 

conectivo es considerable; algunos gametos maduros 

presentes. 

5 5 
Desarrollo total 

La mayoría de los son gametos maduros, poco tejido 

conjuntivo restante. 

6 3 
Desove Gametos visibles en gonoductos. 

7 2 
Desovado 

Reducción del número de gametos, algunos gametos 

maduros que aún quedan, evidencia de actividad 

reproductiva renovada. 

8 1 Desovado Poco o ningún gameto visible, tejido gonadal atrofiado. 

 

Un examen histopatológico también se puede llevar a cabo en paralelo al análisis gonadal 

(Kim et al., 2006; Garmendia et al., 2011). Se necesita un examen cuidadoso de las etapas 

tempranas del desarrollo gonadal para distinguir entre machos y hembras, el cual puede ser 

indiferenciado. La etapa del ciclo gametogénico se asigna en función de la madurez de los folículos 

y gametos, un valor numérico es asignado como se describe en las Tablas 5 y 6. El cálculo de la 

proporción sexual, se determina Nºhembras/Nºmachos.  
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Tabla 6. Estado reproductivo en Polymesoda arctata, Anadara tuberculosa y Larkinia grandis, 

modificado de Kim et al., (2006); Ortiz-Zarragoitia y Cajaraville, (2010).  

 

Fase 

gonadal 

Índice 

gonadal Estado Característica 

I 0 Reposo Inactivo o indiferenciado. 

II 

1 Desarrollo La gametogénesis comienza; no hay gametos maduros visibles. 

2 Desarrollo 
Gametos maduros presentes; gónadas desarrolladas a cerca de 1/3 de 

su tamaño final. 

III 

3 Desarrollo 

Gónada desarrollada a cerca de 1/2 de su tamaño final de condición 

completamente madura; cada folículo contiene, en términos de área, 

aproximadamente proporciones iguales de gametos maduros y en 

desarrollo. 

4 Desarrollo 
Gametogénesis sigue avanzando, los folículos contienen gametos 

maduros, principalmente. 

IV 5 Maduro 

Gónadas completamente maduras, las primeras etapas de la 

gametogénesis muy poco presentes; folículos dilatados con gametos 

maduros, óvulos compactados en configuraciones poligonales; 

espermatozoides con colas visibles. 

V 

4 Desovado 

La emisión activa ha comenzado, la densidad de esperma se ha 

reducido; los óvulos dejan de ser tan redondos debido a que la presión 

dentro de los folículos se reduce. 

3 Desovado Gónada vacía de aproximadamente la 1/2. 

2 Desovado 
Zona gonadal reducida; aproximadamente 1/3 del folículo está lleno de 

gametos maduros. 

VI 1 Desovado Sólo quedan gametos residuales; algunos están en citólisis. 

 

En el caso de las alteraciones histopatológicas como  parásitos, enfermedades o patologías de 

tejidos se asigna un valor según  la intensidad usando una escalas cuantitativas, semi cuantitativas 

y presencia-ausencias, según la patología (Tabla 7)  (Kim et al 2006).  Se debe anotar cada 

incidencia para evitar volver a examinar el tejido escaneado o la muestra varias veces para cada 

categoría. En la escala  semi-cuantitativa pueden requerir un re-escaneo del tejido para cada 

categoría a evaluar dependiendo de la magnitud de la infección.  

En éste apartado incluiremos un listado de los parásitos y patologías encontradas durante el 

programa piloto CARIBIOPOL. La lista no tiene la intención de incluir a todos los parásitos y 

patologías conocidas de  Ostras, Almejas y Berberechos, sino solo los parásitos y patologías 

encontradas durante el proyecto. Con frecuencia, en el examen de rutina, no tratamos de diferenciar 

a un bajo nivel taxonómico entre parásitos, debido a que la intensidad de la infección encontrada 

fueron bajas para la mayoría de especies de parásitos.  

La información obtenida a partir del análisis taxonómico no justifica el tiempo empleado en 

la identificación. Más bien, hemos agrupado las distintas especies en categorías superiores (por 

ejemplo, todos los cestodos, todos los ciliados). En éste proyecto no se analizaron muestras en 
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fresco de parásitos para su identificación. Cuando se necesita una mayor diferenciación, lo primero 

es diferenciar  el tejido donde se produzca, porque la mayoría de las especies tienen preferencias 

según el tipo de tejido. En casi todos los casos, este nivel de diferenciación ha sido adecuado para 

la estimación de la prevalencia y la intensidad de la infección. 

Tabla 7. Lista de categorías cuantitativas y semi cuantitativas utilizada por taxón de bivalvo en 

Nicaragua, modificada de Kim et al., (2006).  

Categorías 
Especies 

C. rhizophorae P. solida A. tuberculos A. grandis 

Categoría cuantitativa     

Inclusion de procarionte x x   

Gregarinas x x x  

Ciliados x x x  

Cestodos x    

Trematodo metacercaria x  x x 

Turbelarian o nemertinos x x x  

Copepodos x  x x 

Infiltración hemocítica en tejidos x    

Granulocitoma   x  

Celulas pardas x x x x 

Categoria Semi-cuantitativa     

Neoplasia hemocítica x    

Atrecia gonadal x x   

Esporoquiste de tremado   x  

Los resultados obtenidos se utilizan para calcular los siguiente parámetros: Prevalencia = NH 

/ NS, y la intensidad = SP / NH, donde NH es el número de especímenes que hospedan, parásitos 

o patologías, NS es el número de muestras analizadas por sitio, SP es la cantidad correspondiente 

a cada parásito y la patología registrada. Prevalencia e intensidad proporcionan información acerca 

de la incidencia de cada parásito y condiciones del tejido (Kim et al., 2006; Garmendia et al., 

2011). Entre las categorías semi cuantitativas, solo se describiremos como evaluar infección por 

esporoquistes de trematodos, neoplasia y alteraciones en el desarrollo gonadal  Tabla 8 y 9. 
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Tabla 8. Escala semi-cuantitativa para infección de esporoquistes de trematodos (Kim et al., 2006). 

 

 

Tabla 9. Escala semi-cuantitativa para medir las alteraciones hemocíticas (neoplasia) y desarrollo 

anormal en gónada (Kim et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Valor Descripción 

0 No infectado. 

1 Presente solo en la gónada (permanece presente en algunos gametos). 

2 
Gónada completamente llena (no hay presencia en gametos); pueden estar presente en glándula 

digestiva o en branquias de forma muy esporádico. 

3 Gónada completamente llena, la infección se ha extendida a la glándula digestiva o branquias. 

4 
Gónada completamente llena, sustancialmente llena la glándula digestiva o branquias, aparecen 

individuos en sacos de esporoquistes. 

Valor Descripción 

0 No infectado 

1 Menos del 25% de los túbulos están infectados 

2 25% de los túbulos están infectados 

3 50% de los túbulos están infectados  

4 Mas del 50% de los túbulos están infectados 
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Anexo 5. Equipos y material de laboratorio 

 

Equipamiento básico de campo  

 

 7 Equipos de disección (tijeras y pinzas) 

 2 Bisturí por persona 

 1 Caja de guantes de latex # L, M, S  

 1 Litro de fijador de Davidson y 1L de Formaldehido al 10% 

 3 Botes plásticos de 2L para colecta de muestras 

 4 Acumuladores de frios (Ice pack) 

 2 Cuchillos de ostras 

 4 Bandejas  grandes para disección y stress on stress 

 3 Pares de guantes de buceo para colecta de ostras 

 1 Caja de poliespán o termo para conservar muestras 

 1 Bolsa con marcadores, lápices, borrador, saca puntas y regla 

 10 Pliego de papel filtro o dos rollo de papel de cocina 

 Bolsa de basura 

 Balanza granataria (g) 

 25 casetes para histología 

 17 crioviales para histoquímica y biología molecular  

 2 botellas de 500ml para colecta de muestras de agua 

 1 Rollo de papel aluminio 

 1 Caja de bolsas ziploc o cierre fácil 

 

Unidad de histología 

 1 Espacio para realizar tinción de tejidos y stress on stress 

 4 Canastillas con capacidad 10 placas para realizar tinción de tejido  

 12 Cubetas para realizar tinción 

 1 Dispensadores de parafina  

 1 Incubadora 60°C  

 1 Baño de parafina 

 1 Baño maría  

 Casetes de histología 

 200 Moldes para inclusión de tejido 

 Cuchillas para micrótomo 

 1 Juego de pinceles 

 Porta objetos con borde esmerilado 

 Cubreobjetos 24x50 mm 

 1Micrótomo  

 1 Nevera  

 1 Congelador -40ºC 

 1 Congelador -70ºC 

 1 Balanzas de precisión (g) 
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 1 Microscopios binocular  

 1 Microscopio binocular con cámara 

 Equipo menor (cristalería) 

 

Otros equipos  

 Bombas de vacío y materiales para el filtrado de agua. 

 Liofilizador  

 Balones de cristal para liofilizar 

 Agitador magnético 

 Magneto para homogenizar las soluciones 
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Anexo 6. Figuras de alteraciones histopatológicas encontradas en ostras, 

almejas y berberecho de Nicaragua. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protista indiferenciado en túbulos de Ostras (Crassostrea 

rhizophorae) 

 

Gregarinas, Nematopsis sp en tejido conectivo de glándula 

digestiva en Ostras (Crassostrea rhizophorae) 

 

Ciliado, Trichodina sp en la parte basal en branquias de 

Ostras (Crassostrea rhizophorae) 

Gregarinas, Nematopsis sp en tejido conectivo de gónada en 

Ostras (Crassostrea rhizophorae) 

 

Ciliado, Ancistrocoma sp en conducto de glándula digestiva 

en Ostras (Crassostrea rhizophorae) 

 

Rikettsia/Clamidia como organismo en túbulos de Almeja 

(Polymesoda solida) 
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Ciliado, Rynchodida en branquias de Ostras (Crassostrea 

rhizophorae) 

Trematodo, Metacercaria con infiltración  hemocitica en tejido 

conectivo de gónada en Ostra (Crassostrea rhizophorae) 

 

Trematodo Metacercaria con infiltración  hemocítica alrededor 

del túbulo de glándula digestiva en  berberecho (Anadara 

tuberculosa) 

Trematodo, Bucephalus sp en branquias de berberecho (Anadara 

tuberculosa) 

Trematodo indiferenciado en gónada y túbulo de glándula digestiva 

de Anadara tuberculosa 

Cestodo, Tylocephalum sp con infiltración hemocitica en tejido 

conectivo de glándula digestiva en Ostras (Crassostrea rhizophorae) 
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Turbelarian,  Urastoma sp en banquías de Crassostrea 

rhizophorae 

Copépodo indiferenciado en  túbulo de glándula digestiva de 

Anadara tuberculosa 
Infiltración hemocítica difusa alrededor de túbulo de glándula 

digestiva y conectivo de gónada de Anadara tuberculosa 

Granulocitoma entre glándula digestiva y conectivo de gónada 

en Anadara tuberculosa 
Células pardas en tejido conectivo de glándula digestiva  en 

Anadara tuberculosa 

Turbelarian indiferenciado en gónada  de Polymesoda solida 
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Células germinales de esporoquistes de Bucephalus sp en 

conectivo de gónada en Polymesoda solida 

Células hemocíticas con neoplasia en tejido conectivo de glándula 

digestiva y gónada en Crassostrea rhizophorae 

Atrofia en túbulos de glándula digestiva  en Crassostrea rhizophorae Atresia en ovocitos de gónada en Crassostrea rhizophorae 

Apoptosis en folículos de gónada en Anadara tuberculosa Infiltración hemocítica en branquias de Anadara tuberculosa 
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Túbulos casi ocluidos (glándula digestiva normal) de Anadara 

tuberculosa 

Intersex en gónada: células germinales de hembra y macho en 

Anadara tuberculosa 
 

Túbulos casi ocluidos (glándula digestiva normal) de Crassotrea 

rhizophorae 

Túbulos casi ocluidos (glándula digestiva normal) de Polymesoda 

solida 

♀ 
 

♂ 
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Anexo 7. Figuras de los sitios de muestreo e investigadores que participaron en 

la primera colecta de muestras en el Caribe (Nicaragua y Colombia) y Pacífico 

de Nicaragua. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Fotos de los sitios de muestreo en el Caribe de Nicaragua. De izquierda a derecha y de arriba 

abajo: a) En Bluefields: Half Way Cay; Punta San Gabriel y Punta Lora; b) en Laguna de Perla: Pigeon 

Cay. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Fotos de los sitios de muestreo en el Caribe de Colombia. De izquierda a derecha y de arriba abajo: 

a) En Santa Marta: Taganga y Marina de Santa Marta; b) en Cartagena: Barú; Isla Brujas e Isla Maparadita. 

 

 

Half Way Cay Punta San Gabriel

Punta Lora Pigeon Cay 

Por cortesía de  A Luna 

COLOMBIATaganga Marina

Isla Barú Isla Brujas Isla Maparadita
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Fig. 3. Fotos de los sitios de muestreo en el Pacífico de Nicaragua. De izquierda a derecha y de arriba 

abajo: a) En la Reserva Natural de Padre Ramos: Estero Venecia y Estero La Virgen; b) en Corinto: Isla 

Machuca.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Fotos del primer muestreo de campo (época de lluvia) en el Caribe de Colombia. Equipo de 

investigadores que participaron: N Etxabarria, L Garmendia, M Ortiz-Zarragoitia,  A Luna, S Casseres y L 

Villamil. 
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Fig. 5. Fotos del primer muestreo de campo (época de lluvia) en el Caribe de Nicaragua. Equipo de 

investigadores que participaron: E Rivas, L Garmendia, O Gonález, M Ortiz-Zarragoitia,  N Etxabarria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Fotos del primer muestreo de campo (época de lluvia) en el Pacífico de Nicaragua. Equipo de 

investigadores que participaron: J Trinidad, O Gonález, M Navarrete,  D Padilla. 
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