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Abstract
There is recent interest in determining energy costs of shortcuts to adiabaticity (STA), but different
definitions of ‘cost’have been used.Wedemonstrate the importance of taking into account the control
system (CS) for a fair assessment of energyflows and consumptions.Wemodel the energy
consumption and power to transport an ion by a STAprotocol in amultisegmented Paul trap. The ion
is driven by an externally controlled,moving harmonic oscillator. Even if no net ion-energy is gained
at destination, setting the time-dependent control parameters is amacroscopic operation that costs
energy and results in energy dissipation for the short time scales implied by the intrinsically fast STA
processes. The potentialminimum is displaced bymodulating the voltages on control (dc) electrodes.
A secondary effect of themodulation, usually ignored as it does not affect the ion dynamics, is the
time-dependent energy shift of the potentialminimum. The non trivial part of the energy
consumption is due to the electromotive forces to set the electrode voltages through the low-pass
filters required to preserve the electronic noise fromdecohering the ion’smotion. The results for the
macroscopic CS (the Paul trap) are compared to themicroscopic power and energy of the ion alone.
Similarities are found—andmay be used quantitatively tominimize costs—only when theCS-
dependent energy shift of the harmonic oscillator is included in the ion-energy.

1. Introduction

Several papers [1–12] have studied the ‘energy cost’ or ‘energy consumption’ of shortcuts to adiabaticity (STA)
[13, 14], fast track routes to the results of slow adiabatic processes. Assessing the energy consumption of STA
protocols is particularly relevant in quantum thermodynamics as theymay appear to imply zero costs above the
differential between initial andfinal energies, for example in expansion/compression strokes of a quantumheat
engine or refrigerator. Often the primary system (PS), whose state is of interest for the application at hand, is
microscopic while the control system (CS) ismacroscopic, so that the PS is described as governed by a
semiclassicalHamiltonianwith (classical) external time-dependent control parameters. Different STA are
commonly formulated by specifying the protocol, i.e., the time dependences of the parameters that induce fast
state changes of the PS.

While the citedworks ignore the energetic needs of control elements and focus on the energy of the PS, or
even on parts of theHamiltonian of the PS, in [15] amore general approachwas suggested. There, the energy
flowwith the outerworld is studied for an enlarged system that includes the PS and theCS required to change the
time-dependent parameters that drive the PS. The divide between the enlarged systemPS+CS and the outer
world should be drawn such that the energyflow through that boundary can indeed be translated into actual fuel
or electric power consumption. For recent, related discussions of the need to include aCS alongwith the PS, see
e.g. [16], where the energy required tomanipulate amesoscopic quantum system in the presence of noise is
examined, or [17], where fundamental limits of quantum refrigeration are discussed.

Torrontegui et al carried out their study for amechanical system that could be thoroughly analyzed, the
transport of a load (PS) suspended fromamoving trolley (CS) in amechanical crane [15]. Thismodel is in fact
quite closemathematically to experimental setups that shuttle ions or cold atoms bymovingmirrors [18] or
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lenses [19]. A number of conclusions that were conjectured to be broadly applicable were drawn in [15]. To test
these conclusions and explore differentmodels thatmay help to build general concepts and an embracing
theory, it is worth investigating the energies involved in different transport experiments that do not rely on
control elements subjected tomechanical displacements.

Here we shall study the energy consumption to transport via STA a single ion (PS), in its groundmotional
state at initial and final times, in a linear Paul trapmade of parallel radiofrequency (rf) electrodes and segmented
pairs of dc electrodes [20–22], see figures 1(a) and (b). Strong radial confinement is assumed, which is primarily
due to ponderomotive forces caused by the rffield, whereas the potential along the longitudinal trap axis x is
controlled by the voltage biases applied to the control electrode pairs of each segment [23]. The potential
minimum is displaced along the trap axis by applyingwaveforms that change the voltages of the control
electrodes in time. Adiabatic [20] and faster-than-adiabatic shuttling experiments of this type have been
performed [24, 25]. In our simplifiedmodel, andwithout loss of generality, we consider the transport of an ion
between two nearby segments with centers at x= 0 and x= d, as in [26]. The voltage in each segment of facing
pairs of dc electrodes is controlled by a programmable waveform generator and a low-pass electronic filter as
shown infigure 2. The latter is used in trapped-ion experimental setups to limit the heating and decohering
action of electronic noise on the ionmotion. Filters are preferably placed close to the trap electrodes, inside the
vacuumchamber housing the trap. In this way, it is possible to suppress significantly the amplitude of noise
generated at the voltage supplies or picked up along thewires connecting these to the trap electrodes [27]. The
filters are commonly built with a resistorR and capacitorC (first-order RCfilters), although higher order filters
and activefilters are also possible. In this workwewill consider RC filters without incurring in loss of generality,
sincefinite resistances and large capacitors are inherent to the control circuitry regardless of the filters used,
whereas parasitic inductances produce negligible effects.We assume a constant power supply to generate the rf
field, whichmakes this consumption trivial, unlike that due to the voltagewaveforms applied at the control dc
electrodes. In thismodel, the energyflowbetween the enlarged system implies a consumption of power due to
energy dissipated by the resistances, and the energy required to charge and discharge the capacitors. In the
mechanical analogy of [15] different limits were identified depending onwhether time intervals with negative
power of the control consume energy, save it, or become energetically neutral. In the currentmodel for the ion-

Figure 1. (a) Schematic representation of the ion shuttling process and (b) layout of the electrodes of a segmented linear Paul trap.
Segments of facing pair of electrodes in red and blue produce the potential that transports the ionwhile the rest remain grounded. RF

electrodes provide axial confinement. (c)Electrostatic potentialsmodeled as a ei
x b ci

2 2f = - -( ) , where subindices i=1, 2
correspond to the different segments. The parameters used for theGaussian curves, chosen to fit the electrostatic potentials obtained
in [26], are a=0.2, b1=0, b2=d and c= 250 μm, andwill be used throughout the paper. The transport distance is d= 280 μm.

2

New J. Phys. 20 (2018) 065002 ATobalina et al



transport process the capacitor charge and discharge have to be actively driven, and thus both imply
consumption. This is analogous to the scenario inwhich both the accelerating and the braking phases of the
control trolley use an engine to pull the trolley in different directions in themechanical analogy.

The specific STAprotocol we consider here to set the time-dependent location of the axial potential is based
on the ‘compensating force approach’. This technique compensates with a homogeneous, time-dependent force
the inertial forces due to themotion of a reference trap trajectory, so the ionwave function remains at rest in the
framemovingwith the reference trap [28–30]. It amounts to the trick that awaiter uses to carry the tray quickly,
tilting it to avoid spilling the drinks [31]. In the harmonic approximation for the trap, the compensation
displaces theminimum.Within the set of STA-transport protocols based solely on choosing a certain path for
the harmonic trap, the compensating force approach is generic in the sense that any reference trajectory is
allowed, subjected to certain boundary conditions. The compensating force approachmay be also regarded as
invariant-based inverse engineering of the transport protocol [28], as explained in the next section.Other STA-
transport protocolsmay be based on counterdiabatic driving, which changes the structure of theHamiltonian
adding amomentumdependent interaction [28]. The counterdiabatic (CD) drivingmethod and the
compensating force approach are unitarily connected—they can be found from each other by a unitary
transformation—[30, 32, 33], although the physical implementation involves different interactions and a
different experimental setting. Actual transport—in thefixed laboratory frame—has not yet been implemented
withCDdriving althoughAn et al [32] simulatedCD transport experimentally in an interaction picturewith
respect to the harmonic oscillation. They also performed the compensating force approach as ‘unitarily
equivalent transport’ in the interaction picture. The driving forces were induced optically rather than by varying
voltages of control electrodes. Controllablemomentum and spin dependent interactions for actual CD-driven
transport in the lab framemay in principle be appliedwith synthetic spin–orbit coupling [34] but the spin
dependencewould be a strong limitation formany applications, e.g. to transport arbitrary qubits. The
corresponding energetic analysis lays beyond the scope of this work.

In section 2we review briefly the compensating force approach and find the voltages needed to implement
the desired potentials. This will also set the time-dependent term in the PSHamiltonian. In section 3we define
and compare the different energies and powers involved. Power peaks that limit how short the process timesmay
be, asymptotic dependences, and an optimization of the consumption are also discussed. The values of the
parameters used in the computations have been taken from [26]. The paper endswith a summary and outlook
for futurework.

2.Methods

2.1. Compensating force approach for a transport process

Let us consider an ion ofmassm driven by aHamiltonian of the form H V x t,
p

m2

2

= + ( ), with

V x t F t x
m

x t f t,
2

, 12 2w a= - + - +( ) ( ) [ ( )] ( ) ( )

where

F t m t¨ , 2a=( ) ( ) ( )

and dots represent derivatives with respect to time. F(t) is a homogeneous force that compensates the inertial
force generated by the acceleration of the reference harmonic potential with angular frequencyω given by the
second, quadratic term in (1)[28].α(t)may be in principle an arbitrary reference trajectory fromα(0)=0 to
α(tf)=d in a given time tf. Different trapping configurations, such us a non-rigid harmonic potential or a
doublewell potential have been examined formore complex transport protocols, e.g. in [35], but these
generalizations are not needed for our current purpose.

Figure 2.Electronic scheme for setting the voltages at the control electrodes. It consists of a digital-to-analog converter (DAC) that
allows for waveforms, and a low-pass electronic filter built with a resistorR and a capacitorC.
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H supports an invariant ofmotion, I p m t m x t2 m2
2

2 2a w a= - + -[ ˙ ( )] ( ) [ ( )] , provided that the force F
(t) andα(t) satisfy (2) [13]. Anywave functionΨ(x, t) that evolves withHmay be expanded in terms of
eigenvectorsψn of I,

x t c x t I t x t x t, e , , , , , 3
n

n n n n n
i nå y y l yY = =q( ) ( ) ( ) ( ) ( ) ( )

where cn are constant coefficients,λn the time-independent eigenvalues of the invariant, and θn are Lewis–

Riesenfeld phases that can be calculated as [36] t t x t H t x td , i , .n
t

n t n
1

0


 òq y y= ¢á ¢ - ¢ ¢ ñ¶
¶

( ) ( )∣ ( )∣ ( ) The

eigenstates of the invariant can bewritten as [37]

x t x t, e , 4n
m t x

n
i
y a= F -a( ) [ ( )] ( )˙ ( )

whereΦn are the eigenfunctions of the harmonic oscillator centered atα(t), the ‘transport function’.
The purely time-dependent potential energy term f (t) in (1) is frequently ignored since it ‘only adds’ a global

phase to thewave function [38]. Nevertheless, this term is physicallymeaningful. In particular, it will determine
the actual energy of the ion relative to a fixed zero of energy and the corresponding power.

The potential (1) drives the ion from an initial to a non-excited displaced state if we impose commutativity
between theHamiltonian and its invariant at boundary times and thusH(tb) and I(tb) share eigenstates (tb=0,
tf). A simple choice for the transport function is t t tj j f

j
0

5a a= å =( ) ( ) .While other functional forms are also
possible, the polynomial function is known to yield smooth and technically feasible results [28]. The parameters
αj are fixed so thatα(t) satisfiesα(0)=0,α(tf)=d, t 0ba =˙ ( ) for commutativity, and also t¨ 0ba =( ) to have a
continuous forcewith F= 0 for t�0 and t�tf. These boundary conditions yield

t d t t t t t t10 15 6 . 5f f f
3 4 5a = - +( ) [ ( ) ( ) ( ) ] ( )

Unless stated otherwise, we shall use the transport function in (5) in the examples and computations. Later in
section 3.5we shall use a higher order polynomial with additional freedom to optimize consumptions. Note that
α(t) represents the trajectory of the center of the dynamical states (4), which coincideswith theminimumof the
reference harmonic potential x tm

2
2 2w a-[ ( )] , but not with the trajectory followed by theminimumof the total

potential (1), displaced due to the compensating force to t t¨ 2a a w+( ) ( ) , as shown infigure 3.

2.2. Evolution of segment voltages
Weconsider a simple setting to transport the ion between two (pairs of) electrodes centered at x= 0 and
x= d. The time-dependent potential in (1) that shuttles the ion is in practice generated as a local
approximation from

V x t q U t x U t x, , 61 1 2 2f f= +( ) [ ( ) ( ) ( ) ( )] ( )

whereUi are segment voltages,fi are dimensionless electrostatic potentials, q is the electric charge of the ion, and
subindices i=1, 2 correspond to the different segments.We use a Ca40 + ion in the numerical calculations so q
is the elementary charge.

Electrostatic potentials are usually computed through the boundary elementmethod orfinite element
method solvers such asNISTBEMorCOMSOL [22, 39], but the results can bewell approximated byGaussian

Figure 3.Trajectory of theminimumof the potential (1) (solid blue line), andα(t) in (5) (dashed black line), which is the center of the
dynamical states (4) and theminimumof the reference harmonic potential. The parameters used are tf=0.418μs, d= 280 μmand
ω=2π×1.3 MHz.
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functions aei
x b c2i

2 2f = - -( ) , see figure 1(c). The approximation provides analytical results andmore exact but
numerical functionswill not change quantitatively any of the conclusions drawn here.

By imposing that first and second derivatives of the potential (6) atα should be equal to−F(t) andmω2,
respectively, wefind

U
m t m t t

t t t t q
i j j i

1 1 ¨
, , 1, 2 , , 7i

i
j

i
j

2

2 1 2 1

w f a a f a

f a f a f a f a
=

- ¢ + - 

 ¢ - ¢ 
Î ¹

( ) [ ( )] ( ) ( ) [ ( )]

{ [ ( )] [ ( )] [ ( )] [ ( )]}
{ } ( )

where the primes represent spatial derivatives. The same resultmay also be found as in [26], by splittingUi into
two parts set to impose a harmonic potential term centered atα and a linear compensating term.

3. Results

3.1. Energy and instantaneous power of the PS
The time-dependent energy of the ground dynamicalmodeψ0(x, t) driven byH is

E
m

t m t t f t
2 2

¨ . 8PS
2w

a a a= + - +˙ ( ) ( ) ( ) ( ) ( )

Expanding the potential (6) in Taylor series aroundα(t), the additional time-dependent term in (1) is given by

f t m t t
c m c d t t

c d t t
¨

2 ¨
, 9

2 2 2

2 2
a a

w a a
a a

= -
+ -

- +
( ) ( ) ( ) [ ( ( )) ( )]

( ) ( )
( )

which depends on the chosen reference trajectoryα(t) and its acceleration, on thewidth of theGaussian
electrostatic potentials c, and on the distance d between segment centers. Thus the power for the primary system,
and any definition of energy consumption that depends on the energy of the PS, in fact depend on the control
system through f (t). Obviating the control system and thus leaving f (t) indeterminatemakes the energy of the PS
undefined.Often f (t) is taken as zero for simplicity, but this provides thewrong energy functionEPS(t; f=0),
since it is not definedwith respect to afixed zero of energy so it cannot provide the true power.

Figure 4(a) depicts the completely different time evolution of the energy of the ionwith the physical f (t) in
(9) andwith f= 0, and figure 4(b) their corresponding instantaneous power, which for the physical f (t) reads

P
E

t
m A B

d

d
, 10PS

PS 2w= = +( ) ( )

whereA andB depend on the parameters of the trap c and d, and on the transport functionα and its derivatives,

A t t
c d t t t

c d t t

c t t d t t

c d t t

B
c d t t t

c d t t

¨
2 ¨ 2 ¨ 2

,

2
. 11

2 2

2 2 2

2 3

2 2

4

2 2 2

a a
a a a
a a

a a a a
a a

a a a
a a

= -
-
- +

-
- + -

- +

=
- +
- +

˙ ( ) ( ) [ ( )] ˙ ( ) ( )
[ ( ) ( ) ]

{ ˙ ( ) ( ) [ ( )] ( )}
( ) ( )

[ ˙ ( ) ( ) ˙ ( )]
[ ( ) ( ) ]

( )

( )

Although not appreciable in the scale of thefigure, at boundary times (tb=0, tf)EPS(tb; f=0) is the ground state
energy of the harmonic potential E0=ÿω/2, whileEPS(tb)=E0−mω2c2, that is, initial and final energies have
been displaced from the ground energy of the reference harmonic potential by f (tb). Both processes, with f= 0
or f (t) given by (9), are formally valid shortcuts without final excitations on the transported state, and, seemingly,

Figure 4. (a) Scaled ratio between EPS in (8) and the ground energy of the reference harmonic potential, E0=ÿω / 2.We consider a
transport process of a Ca40 + ion carried out by the potential (1)with f given by (9) (solid black line), andwith f= 0 (dashed red line),
forα(t) in (5). (b)Corresponding power computed as the rate ofEPS change. tf=0.418μs, d= 280 μm, andω=2π×1.3 MHz.
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with no energy cost as the power PPS integrates to zero in both cases. This is a general property in STA processes
with the same energy of the PS at boundary times, as in transport protocols. The instantaneous power does not
integrate to zero in STAprocesses that imply a net energy change for the PS, such as expansions or compressions.

3.2. Power of theCS
Let us now consider the powerwe have to supply to theCS to implement the STA protocol. Transporting an ion
requiresmoving the potentialminimumby varying the segment voltages in time, as explained inmethods. This
is achieved by inducing currents that go through the RC low-pass filters and govern the voltages in the electrodes.
The total power exerted by the electromotive force at the source of the electrode circuits includes the rate of
change of the energy accumulated at the capacitor and the power dissipated in the resistance through the Joule
effect, P P Pi C RCS i i

= å +( ), respectively, given by

P C U U P R C U, , 12C i t i R t i
2 2

i i= ¶ = ¶( ) ( )

whereR andC are the resistance and the capacitance of each electrode circuit (assumed equal for both segments).
See figure 5(b) for the evolution of these power terms in thefirst segment. Those for the second segment are
symmetrical.

The power required by theCS is orders ofmagnitude larger than the one for the PS, as we are dealingwith
macroscopic charges instead of a single ion. In fact this disparity of scales is helpful in that the effect of the exact
state of the PS has a negligible influence in the implementation of the protocol. This is one of the observations in
themechanical cranemodel in [15], where the stability of the STAprotocol in the control system required a
smallmass of the load compared to themass of the trolley. (Otherwise each initial condition of the PSwould
require a different control protocol.)

3.3. Comparison between the energy consumed by the PS and by theCS
In [15] it was emphasized that theway to implement a negative power has a decisive influence on the energy cost.
Negative powers do not necessarily imply a reduction in the energy cost of the process. To implement such a
reduction, the systemhas to store and reuse the energy given away, which is often not the case or only partially
true. To calculate the energy consumption by integration of the power, Torrontegui et al proposed to include a
parameter η in the negative power segments,

P t P td d . 13
t t

0 0

f f

 ò òh= ++ - ( )

HereP±=Θ(±P)P are positive/negative parts of the power of the system and−1�η�1 accounts for
different possible scenarios. The limit η=−1means that the negative power implies asmuch energy
consumption as the positive one, while η=1means that the energy can be stored and reused (regenerative
braking).

In ourCS, the power dissipated in the resistance, PRi
, is always positive but PCi

becomes negative when the
capacitor is discharging, see figure 5(b). However, the short time scales intrinsic to STA require to charge and
discharge the capacitormuch faster than the circuit’s time constant, sowe always need to actively drive it. This is
achieved by changing the polarity of the power source, reversing the direction of the current whenever we need
to change the energy flow in the capacitor. Thismakes impossible to retrieve the energy stored in the capacitor,

Figure 5. (a)Time evolution of the voltageU1 (blue solid line) of segment one, and the voltageU2 (red dashed line) of segment two.
Note the reflection symmetry. They generate the potential (6)withω=2π×1.3 MHz that controls the transport of a Ca40 + ion in a
segmented Paul trap over a distance d= 280 μmin tf=0.418μs. (b)Power to charge the capacitor, PC1 (short-dashed orange line),
withC= 1 nF, and power dissipated in the resistance, PR1 (long-dashed green line), withR= 30Ω, see (12). The corresponding
powers for segment two are reflection-symmetric with respect to themiddle time. The total power PCS is also shown (solid black line).
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which translates as an η=−1 scenario in our analysis. The energy consumed by the control is in summary given
by

P P td . 14
t

i
C RCS

0 1

2
f

i i ò å= +
=

(∣ ∣ ) ( )

For the reference trajectory (5) and tf→0 it scales as tf
5- ( tf

4~ - for the time scale considered infigure 6(a))while
PS , defined as

P td 15
t

PS
0

PS
f

 ò= ∣ ∣ ( )

by analogywith CS , scales as tf
2- (see figure 6(a)).

Infigure 6(b)we compare PPS∣ ∣and P Pi C R1,2 i iå += ∣ ∣ normalized by their initial value. Although they have a
similar evolution, they are not just scaledwith respect to each other. A consequence of their different orders of
magnitude is that the actual energy consumption  can be computed in terms of theCS alonewith great
accuracy, i.e., PS CS CS   = + » .

3.4. Power peaks
The power peaks of the protocolmay limit theminimum time to implement a STA, as a generic power source is
only able to reach a certainmaximumvalue. Figure 7 depicts the value of the power peak of the PS and theCS for
differentfinal times in a transport process with (5). For theCS the power peak occurs at boundary times (tb=0,
tf) and it reads

Figure 6. (a)Energy consumption in the electrode circuits ( CS ) that control the transport of a Ca40 + ion accelerated by a
compensating force STA for different final times (solid blue line); scaled energy consumed by the ion ( PSg ) in such process, where the
factor γ=1011 is set so that the starting point of both curves coincide (short-dashed black line); energy cost of inducing the rf-fields
that confine the ion assuming that it requires a constant power ofP= 1W (long-dashed red line). Parameters: d= 280 μm,
ω=2π×1.3 MHz,R= 30Ω, andC= 1 nF. (b)Absolute value of the power consumed by the ion PPS∣ ∣ (dashed black line) and
power required by the control computed as P Pi C R1,2 i iå += ∣ ∣ (solid blue line), for the same process with tf=0.418μs. Curves have
been scaled for better comparison, dividing themby their absolute value at initial time (P 0 1.45CS =∣ ( )∣ Wand P 4.28 10PS

12= ´ -∣ ∣
W).

Figure 7. Scaled power peaks required for shuttling a Ca40 + ion over d= 280 μmfor different final times. Dashed black line
corresponds to the PS and solid blue line to the CS. They are normalized to one at tf1=0.1μs. The specific values are
P t 3.13 10fPS

10
1

= ´ -( ) Wand P t 6455fCS 1
=( ) W.Other parameters used areR= 30Ω,C= 1 nF andω=2π×1.3 MHz.
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For the PS and for the parameters used in the paper and final times shorter than 1μs, the power peak is at initial
andfinal times as well (see figure 6where tf=0.418μs) and it is given by

P t
d m

t

60
. 18b

f
PS

2

3
=( ) ( )

Again, the difference between the PS and theCS power peaks is not just amatter of scaling, they show a different
qualitative behavior. The power peak of the PS scales as tf

−3 while the one of theCS scales as tf
6- .

3.5.Optimization
The freedom to choose different transport functionsα(t)may be used to optimize physically relevant variables.
For example this freedomwas used in [40] to avoid deviations from the harmonic regime at intermediate times
in the transport of a load by amechanical crane.Herewe use a 7th degree polynomial ansatz with two free
parameters tominimize the energy consumption of the transport process. The optimization, i.e., thefinal form
of the reference trajectory,must be based onminimizing the total energy consumption.However, it is
interesting to compare the results with alternative optimization criteria. In particular, we shall alsominimize the
energy consumption of the primary system PS with the physical, CS-based f function (9), and fPS 0 =( ) with
f= 0. Table 1 shows the energy consumption of the PS (with f= 0 andwith the physical f (t)), and of theCS for
each of the optimized protocols. Notice that the optimization of PS with the physical f, yields essentially the
same results than the optimization of CS . Both protocols achieve a reduction in the consumption of 6% for the
ion and 17% for the control. On the contrary, optimizing fPS 0 =( ) turns out to be unsatisfactory, as it increases
significantly the total energy consumption of the process: PS increases by 13%and CS by 43%with respect to
the non-optimized trajectory that uses thefifth degree polynomial (5). These numerical results confirm the
importance of including theCS-dependent term f in thePS-energy so as tomimic the evolution of the energy
consumption and to usePS-energies for optimizing consumptions.

4.Discussion

As newquantum technologies unfold from laboratory prototypes to commercially available devices, energetic
costs of processesmay becomemore andmore relevant. STA can play an important role in this transition by
providing a toolbox of approaches to design control protocols thatminimize process times and the effects of
decoherence. Determining the energetic cost of a shortcut requires a global perspective that includes the primary
system and the control system aswell. The shortcuts are by definition fast processes so one cannot assume that
the control systemmay change infinitely slowly to avoid dissipation, as in Landauer’s analysis ofminimal costs of
computation [41], or in ideal thermodynamical reversible processes. To bemore precise, very slow processes are
physically possible, but STA are never applied in the long-time domain.

The study case chosen in this paper is amicroscopic ion transportedwith a STAprotocol implemented by
macroscopic operations tomodulate the voltages of a segmented Paul trap. Features of the energy consumption

Table 1.Energy consumptions for transport processes with reference trajectory given by
t a t tj j f

j
0

7a = å =( ) ( ) . fPS 0 =( ) is the energy consumed by the ion given in (15)with f (t)=0, PS
is the same quantity with f (t) given by (9) and CS is the energy consumption in the control given in
(14). Parameters aj, j<6, arefixed (as functions of a6 and a7) by the boundary conditions described
inmethods. Thefirst titled column corresponds to the original non-optimized protocol with (5),
while the others correspond to different criterions tofind the free parameters, based onminimizing
one of thementioned energy consumptions. The values of the free parameters are a6=−0.0195
and a7=−0.0049 for the ‘optimized for fPS 0 =( )’ column, a6=−0.0093 and a7=0.0027 for the
‘Optimized for PS ’ column and a6=−0.009 4 and a7=0.0027 for the ‘optimized for CS ’

column.

Non-optimized Optimized for Optimized for Optimized for

fPS 0 =( ) PS CS

fPS 0 =( ) 3.441×10−19 J 2.179×10−19 J 3.363×10−19 J 3.355×10−19 J

PS 5.513×10−19 J 6.242×10−19 J 5.169×10−19 J 5.169×10−19 J

CS 1.882×10−7 J 2.696×10−7 J 1.572×10−7 J 1.572×10−7 J
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that were speculated to be broadly applicable after the analysis of amechanical crane [15] have been found here
too. For example, negative power time-segmentsmay imply asmuch consumption as the positive power
segments. In themodel, as it will be typically the case in controllingmicroscopic systems, the consumption is
dominated by far by the control system. This is in fact desirable, otherwise the control operations to implement a
given STAwould have to depend on the specific initial conditions of the PS. The power for theCS is due to
dissipation in the resistances and to the charge or discharge of capacitors. This dual origin (dissipative and non-
dissipative) is once again analogous to themechanical cranemodel, where the powerwas employed to
compensate dissipation (friction losses) andmove (accelerate or brake) the control trolley.

The integrated energy consumption of the PS alone is not zerowhen evaluatedwith the absolute value of the
power of the PS. This integral quantity, properly scaled, resembles the consumption of theCS, and in fact can be
used tofind optimal transport trajectories, but only when a purely time-dependent energy shift that depends on
theCS is included in the PSHamiltonian. In other applications this term is neglected or set as zero, but it is a
crucial factor to determine energyflows.

We have paid attention to global energy consumptions rather than differential ones (relative to some
reference process). A definition of energy consumption based on a differential powermay have someuses, e.g.,
to compare different ways to achieve a shortcut for a given reference process. However, it depends on the
reference process and it is inappropriate if we are interested in the actual energy consumption, the reason being
that the reference process also consumes energy.

Themain text has focused on the non trivial part of the energy consumption of theCS, associatedwith the dc
electrodes, which grows strongly when diminishing process times, leaving aside the linear-in-time consumption
of the rf electrodes. Combining the two contributions,minimal times for energy consumption can be identified.

Further examples of systems subjected to STAmay be examined to build a general theory, e.g. analyzing
energy consumptions in discrete systems [42]. After completion of this work, a relevant paper [43]was brought
to our attention.
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