Koloratzaile organikoz dopaturiko L zeolita antena-material luminiszente gisa

Egilea:
David Martínez Muñoz

Zuzendariak:
Jorge Bañuelos Prieto
Leire Gartzia Rivero

© 2018, David Martínez Muñoz
GRADU AMAIERAKO LANA

KIMIKAKO GRADUA

KOLORATZAILE ORGANIKOZ DOPATURIKO L ZEOLITA ANTENA-MATERIAL LUMINISZENTE GISA

David Martínez Muñozek AURKEZTUTAKO MEMORIA

MATRIKULAZIO-DATA: Leioa, 2018ko ekainaren 21a

ZUZENDARIAK: Jorge Bañuelos Prieto eta Leire Gartzia Rivero

SAILA: Kimika-Fisikoa
AURKIBIDEA

1. SARRERA ETA HELBURUA ... 1
 1.1. FOTOSINTESIA : Antena artifizialetako inspirazio iturria ... 1
 1.1.1. Antena sistema : Fotosintesirako ezinbestekoak ... 1
 1.1.2. Förster Resonance Energy Transfer (FRET)... 2
 1.2. ANTENA-MATERIAL ARTIFIZIALAREN DISEINUA. ... 4
 1.2.1. Antena sistema naturaletik artifizialetara ... 5
 1.3. LANAREN HELBURUA ... 6

2. PROZEDURA ESPERIMENTALA ... 8
 2.1. MATERIALAK .. 8
 2.1.1. L Zeolita (ZL) ... 8
 2.1.2. Koloratzaileak .. 10
 2.2. LAGINEN PRESTAKETA ... 12
 2.2.1. Koloratzaile disoluzioak ... 12
 2.2.2. Energia emaitzeko disoluzioan .. 12
 2.2.3. ZL-koloratzaile material hibridoaren prestaketa .. 13
 2.3. TEKNIKA INSTRUMENTALAK .. 17

3. EMAITZAK ETA EZTABAIDA .. 22
 3.1. KOLORATZAILEEN EZAUGARRI FOTOFISIKOAK DISOLUZIOAN 22
 3.2. ENERGIA-TRUKEA DISOLUZIOAN .. 25
 3.3. ENERGIA-TRUKEA ZEOLITAREN KANALETAN .. 27

4. ONDORIOAK .. 34

5. BIBLIOGRAFIA ... 35
1. SARRERA ETA HELBURUA

Naturan ematen diren prozesuak, era artifizial batean imitatzea izaten da kimikari askoren erronka, prozesu hauek aurkezten duten perfekzio eta eraginkortasun ezin hobeagatik. Biomimetizazioan oinarritzean, berrikuntza zientifikoak egiteko aukerak handitu daitezke. Honen ondorioz, komunitate zientifikoak, bioprozesuak imitatu ditzaketen material berrien diseinuan eta garapenean dihardu.

1.1. FOTOSINTESIA : Antena artifizialen inspirazio iturria

1.1.1. Antena sistemak : Fotosintesirako ezinbestekoak

Organismo fotosintetikoek antena sistema deritzen sistema fotoaktibo oso sofistikatuak (*light-harvesting complexes,*) LHCs bezala ere ezagutzen direnak) garatu dituzte eguzki-argia era eraginkor batean bildu eta garraiatzeko.

Antena sistemak ingurune proteiko batez osatuta daude, non milaka klorofila molekula edota beste pigmentu osagarriak, inguru proteikoaren barnean babestuta eta modu antolatu batean aurkitzen diren (1c.Irudia). Pigmentu hauen sistema kromoforikoek argia absorbatzen dute, eta jarraian, prozesu kimikoen (energiaren eraldaketa, eguzki energiatik energia kimikora) hasiera emateko behar den energia, erreakzio gunera garraiatzen da energia transferentziaren bitartez (1d.Irudia).

Organismo hauetan, antena sistema kopurua handia izan ohi da, esate baterako, landare baten hosto batean milioika antena sistema aurkitu daitezke (1c.Irudia).

1.1.2. Förster Resonance Energy Transfer (FRET)

Zientzialarien aztertu dituzten antena sistemetan, kromoforo batek (argia absorbatzen duen espezia molekula organiko bat izanik) absorbatzen duen kitzikapen energia beste kromoforo bati transferitzen diola ikusi da, nahiz eta hauen artean lotura fisikorik ez egon, “through-space” mekanismoaren bidez. Prozesu fotofisiko honi Förster Resonance Energy Transfer (FRET) deritzo. 9 Beste modu batean esanda, FRET, kitzikatutako egoera batean dagoen molekula batek (energia emailea, E), ondoko molekula bati (energia hartzailarei, H) energia transferitzen dioenean ematen den prozesua da (1.2.b. Irudia). Dipolo-dipolo interakzioen bidez ematen da, fotoi baten askapenik eman gabe. Hots, prozesu ez-erradiatzailea da.
1.2. Irudia. Jablonsky diagrama sinplifikatuak energia emailearen (E) eta energia hartzailarearen (H) trantsizio egoeratan gertatzen diren energia aldaketak adieraziz. a) Emailearen fluoreszentzia (FRET-ik ez). b) FRET (energia transferentzia dago energia emaile eta hartzailareten artean eta azkenik, hartzaila fotoiakigorri erlaxatzen da oinarrizko egoerara).

Beraz, organismo fotosintetikoen antena-sistemaketan energia trukea FRET mekanismoaren bidez ematen da, antena osatzen duten osagaiak (pigmentuak eta ingurune proteikoa) era ordenatu batean antolatuta daudelako. Izan ere, ingurune proteikoan barneratuta dauden pigmentuak modu zehatz batean antolatu eta orientatzen dira ingurunearen zurruntasunaren ondorioz. Eta inguruneak inposatzen dien antolamenduari esker, pigmentuak bata bestetik oso hurbil kokatzen dira energia transferentzia ahalbidetuz.

1.3. Irudia. FRET gertatzeko baldintzak. a) Espektroen arteko gainezarpena egotea. b) Energia emaile (E) eta hartzalearen (H) orientazio eta distantzia egokie izan behar dute energia transferentzia emateko.

1.2. ANTENA-MATERIAL ARTIFIZIALAREN DISEINUA
Fotokimika arloaren gai interesgarrienetako bat, fotosintesi prozesuaren biointerpretatutako material artifizialen diseinuan eta garapenean datza. Azken urteotan batez ere, organismo fotosintetikoen ezazarriak dituzten sistema artifizial sinplifikatuaren diseinua eta garapen sustatu da,2 hain zuzen arte, sistema naturalek aurkezten duten antolamendu, egitura eta ergagintasun kimiko paregabeak direla eta.7 Komunitate zientifikoak orain arte, antena naturalen ezazarriak dituzten hainbat sistema artifizial diseinatu eta garatu ditu, besteak beste, konplexu metaliko luminiszenteak,11 dendrimeroak,12 porfirinak,13 eta koloratzaile ezberdinez dopaturiko matriz polimerikoak,14 edo material hibridoak15 Testuinguru honen aurrean, Gradu Amaierako Lan hau aipatutako azken sisteman oinarritu da, argiaren bilketa eta garraioa era erginkor batean burutu dezakeen antena-material artifizial berri baten diseinua, garapena eta erginkortasunaren balioztapena eginez.
1.2.1. Antena sistema naturaletik artifizialera

Beraz, antena sistema moduan jokatzen duen material artifizial bat, argia era eraginkor batean jaso eta garraiatzeko gai izan behar da.

Esan beharra dago, organismo fotosintetikoen antena sistema naturaletan klorofila ez ezik, beste pigmentu osagarri batzuk egon ohi direla. Pigmentu osagarri hauen
funtzioa, klorofilak argia xurgatzen ez duen edo absorbibitate molar baxua duen uhin luzeratan eguzki-argia absorbatzea da, ondoren, klorofilari kitzikatutako energia hori transferitzeko.\(^7\) Ondorioz, pigmentu osagarri hauei esker, eguzki-argiaren absorbzioa areagotzen da espektroaren tarte zabalago batean. Era berean, hau imitatu nahi da antena-sistema artifizialean, hau da, ultramore-ikusgai (UV-Vis) tarte espektralean argiaren bilketa areagotu nahi da. Honetarako, UV-Vis espektroaren gune ezberdin baina osagarrietan argia absorbatzzen duten molekulak aukeratu dira (2.1.2. atalean zehazten den moduan). Baldintza hau ez ezik, aukeratutako koloratzaile organikoak argia era eraginkor batean jaso ahal izateko, koloratzaileen kontzentrazioa handia izan behar da, fluoreszentziaren etekin kuantiko (\(\phi\)) handiarekin.\(^19\)

Bestetik, kromoforoen arteko kokapena eta distantzia egokia izan behar da, eta ostalariaren dimentosioak optimoak. Azken baldintza honetan, batez ere ostalariaren poroen eta kanalen tamaina da garantzia duena, izan ere koloratzaile organikoen, agregatuak eratzeko joera izaten dute kontzentrazio handietan. Arrazoinek honez eratuko, koloratzaileak ostalariaren kanaletan barneratzea ezinbestekoa da, kanalek, koloratzailee antolaketa zehatz bat ezartzea behartzen dielako, gertatu zitezkeen agregatuak ekidituz.\(^19\)

1.3. LANAREN HELBURUA

Antena-material artifizia lortzeko, UV-Vis eremu ezberdinak eremutako argia absorbatzeko eta emititzeko gai diren koloratzaile fluoreszentzeak, L zeolita aluminosilikatotan dopatu dira. Ostalari honen zurruntasuna dela medio, koloratzaileei babesa eman eta elkarrengandik hurbil kokatzerako behartuko die, antolamendu eta orientazio jakin batekin (1.4. Irudia).

Era berean, koloratzaileen kontzentrazioa eta energia emaitzeko/eraitzeko erlazioak FRET eraginkortasunean duten eragina aztertuko da. Izan ere, garatutako nanomaterial hibridoak emititzen duen fluoreszentziaren kolorea, FRET prozesuaren menpe dago.

2. PROZEDURA ESPERIMENTALIA

Atal honetan, antena artifizial bezala erabili daitekeen material fotoaktiboaren garapenaren nondik norakoak ageri dira. Lehendabizi, antena artifizial moduan joka dezakeen material fotoaktiboa (koloratzailez dopaturiko L zeolita material hibridoa) garatzeko erabili diren materialak zehazten dira haien ezaugarri nagusienak azalduz (2.1. atala). Ondoren, laginen prestaketarako jarraltu diren urrats esperimentalak ageri dira (2.2. atala), koloratzaileen propietate fotofisikoen analisia burutzeko egin diren disoluzioen prestaketekin hasiz (2.2.1. atala), koloratzaileen arteko nahasteekin jarraituz (2.2.2. atala), eta L zeolitaren nanokanaletan koloratzaileen barneraketarekin bukatz (2.2.3. atala). Azken zatian, berriz, solido zein likido egoeran dauden laginen analisi fotofisikorako eta mikroskopikorako erabili diren teknika instrumentalak ageri dira (2.3. atala).

2.1. MATERIALAK

Antena sistema artifizial moduan joka dezakeen materiala lortu ahal izateko, alde batetik, argia ikusgai eremuaren alde ezberdinetan absorbatu eta emitituko duten osagaiak behar dira, gune fotoaktibo bezala jokatuko dutenak hain zuzen ere.20,21 Funtzio hau betetzeko fluoroforo organikoak (koloratzaileak) erabiliko dira. Bestetik, koloratzaile hauei babesa emango dien ostalari bat behar da. Kasu honetan, ez-organikoa den L zeolita aluminosilikatoa erabili delarik.22

2.1.1. L Zeolita (ZL)

Zeolitak, mikroporotsuak eta mikrokristalinoak diren material ez-organikoak dira. Barrunbe edo kanalak osatzeagatik ezauagarritzen dira, hauen barnean tamaina ezberdineko molekulak ostatzeko ahalmena duten.23 “Zeolita” terminoak zeo eta lithos hitz grekoetan du jatorria, “irakiten duen harria” esanahi duena. 1756.urtean, A. Fredrick Cronstedt suediar kimikari eta mineralogoak materiala berotu, eta ur-lurruren kantitate handia askatzen zela behatu ondoren izendatu zuen. Ur-lurrurenaren askapena materialaren poroen barnean adsorbatuta geratzen den uraren ondorioa da.24 Zeolitei “molecular sieves”23 ere deritze, haien poroen edo barrunbeetan...
molekula ezberdinak sartu daitezkeelako, molekulek duten tamainaren arabera. Beraz, zeolitak banaketa zein erauzketa prozesuetarako proposak dira.

Naturan mineral moduan mota ezberdinak aurkitu daitezkeen arren, komunitate zientifikoak oinarriko kimika zein teknologia esparruan erabiltzeko, material hauen sintesia burutu du. Gaur egun, egitura eta geometria ezberdina aurkezten dituzten 191 zeolita mota erregistratutako daude, eta zeolita naturalen artean 40 egitura baino gehiago ezagutzen dira.23

Beraz, antena sistema artifizial moduan jokatuko duen materiala lortzeko, deskribatutako ZL erabiliko da ostalari bezala. Izan ere, ZL-k dituen kanalen dimentsioak fluoroforoen tamainarekin bat datoaz eta hauek ostatzeko aukera paregabea ematen dute agregazioa ekitiduz.26 Gainera, koloratzaile organiko mota bat baino gehiago ostatu dezake aldi berean, koloratzaileak bata bestearen atzetik sekuentzialki barneratuz material hibridoa eratzeko. ZL-k aurkezten dituen
berezitasunen artean, aipatzekoa da bere baitan koloratzaile neutroak zein kationikoak ostatzeko aukera duela.17 Erabilera hau ez ezik, beste eremu askotan ere aplikatu daiteke, esate baterako, prozesu katalitikoetan, trukaketa ionikoetan, antena materialetan, zein biomedikuntzan.27,28

2.1. Irudia. \textit{a)} L zeolitaren egitura hexagonala goitik ikusita, dituen kanal unidimentsionalak agerian daudelarik. \textit{b)} Kanal baten alboko bista 7.5 Å-ko dimentsioko gelaxka unitatea duena, poroaren sarrera 7.1 Å-koa da eta duen zabalera handiena 11.26 Å-koa. \textit{c)} Kankrinita unitateen arteko lotura, kanal unidimentsionala eratuz c ardatzean zehar.23 \textit{d)} L zeolitaren kristalen irudia mikroskopia elektronikoarekin bidez lortuta (Scanning Electron Microscopy, SEM).

Lan honetan komertziala den \textit{Lucidot® DISC} L zeolita mota erabili da, \textit{Clariant} etxe komertzialak ekoiztu eta hornitutakoa. Zeolita mota hauek, leunak diren disko itxurako morfologia dute (2.1.d. Irudia). Unidimentsionalak diren kanalak gainazal basalarekiko perpendikularrak dira, eta luzera (0.2-0.4 μm inguru) diskoaren diametroa (0.5-2 μm inguru) baino txikiagoa da.29

2.1.2. Koloratzaileak

Fluoreszentek diren koloratzaileak, ikusgai eremu anaerginkortasunez absorbatzen eta emititzen duten konposatuak dira. Propietate fluoreszente hauek dituzten koloratzaileei, fluoroforo edo fluorokromo deritze.30

Lan honetan ultramore-ikusgai eremu ana ergikoki neutroak diren hiru fluoroforo desberdin erabili dira. Alde batetik, komertzialak diren 1,4-bis(5-phenyloxazol-2-yl) benzene dimetilatua (laburbilduz DMPOPOP), oxazol familiako koloratzailea dena,31 eta 14H-anthra [2,1,9-mna]thioxanthen-14-one (Hostasol

Erabiltako koloratzaileak, bi taldetan sailkatu daitezke. Alde batetik, uhin luzera txikiagoetan absorbatzen duten koloratzaileak antenetan energia emaleak (E) izango dira, haien zeregin nagusia argia xurgatzea delarik. Eta bestetik, uhin luzera handiagoetan absorbatzen duten koloratzaileek energia hartzala (H) moduan jokatuko dute, material hibridoetan argiaren igorleak izango direnak (2.2. Irudia).

![DMPOPOP](image1)
DMPOPOP
Formula molekularra: C_{33}H_{39}N₂O₂
Pisu molekularra: 392.46 g/mol

![Perileno Laranja (PL)](image2)
Perileno Laranja (PL)
Formula molekularra: C_{52}H_{39}N₂O₂
Pisu molekularra: 626.71 g/mol

![Hostasol Gorria (HG)](image3)
Hostasol Gorria (HG)
Formula molekularra: C_{32}H_{37}OS
Pisu molekularra: 336.41 g/mol

2.2. Irudia. Erabiltako koloratzaileen egitura molekularraik, dagozkien formula eta pisu molekularrekin. Koloratzaileak behin L zeolitan barneratuta doudenean ikusgai espektroan xurgatzen duten uhin luzera tartea zehazten da.
2.2. LAGINEN PRESTAKETA

Lehendabizi, koloratzaile bakoitzaren disoluzioak prestatu dira, koloratzaile bakoitzaren ezaugarri fotofisikoaren analisia burutu ahal izateko, eta jarraian, energia emaile-hartzailaren arteko disoluzio nahasteak egin dira, emaile-hartzailaren arteko energia-trukearen probabilitatea aztertzeko. Behin energia-trukea posiblea dela egiaztatuta, ZL-koloratzaile material hibridoaren prestaketa gauzatu da.

2.2.1. Koloratzaile disoluzioak

Koloratzaile bakoitzaren ezaugarri fotofisikoak aztertze ahal izateko, disoluzio diluituak prestatu dira. Hiru koloratzaileen kasuan prozedura berdina jarraitu da. Lehenik eta behin, 10^{-3} M-eko disoluzio amak prestatu dira, kasu guztiaren pisatutako gutxienekoa koloratzaile kantitatea 1 mg-koa izanik, Sartorius Secura® 125-1S balantza analitikoan (±0.01 mg), eta 25 mL diklorometanotanotan (maila espektroskopikoa, Scharlab) disolbatuz. Ezaugarri fotofisikoak neurtzeko, baldintza diluituetan lan egin da, barneko iragazketa edo berabsortzio/beremisio eta agregazio fenomenoak ekiditeko, eta horretarako, 25 cm3-ko eta 2×10^{-6} M inguruko disoluzio diluituak prestatu dira dagokion disoluzio amatik abiatuz.

2.2.2. Energia emaile-hartzailaren arteko nahasketak disoluzioan

2.2.3. ZL-koloratzaile material hibridoaren prestaketa

2.2.3.1. Aurretratamendua. Zeolita kanalen pH-aren egokitzapena.

2.2.3.2. L zeolitan dopatuko den koloratzaile kargaren estimazioa
Aukeratutako koloratzaileen tamaina (zeharkako ardatz tenurria 6-7 Å-koa denez) aproposa da c-ardatzean zehar orientatzen diren kanaletan sartzeko (poroaren sarrera 7.1 Å-koa baita, 2.3. Irudia). ZL-ren kanaletan sartu nahi den koloratzaileen kantitatea (karga) determinatzeko, fluoroforoen dimentsio molekularrak eta zeolitan okupatzen duten gelaxka unitate kopurua kontuan hartu dira. Modu honetan koloratzaile bakoitzaren adsortzio gunea kalkulatu daiteke, hau da, zenbat gelaxka
okupatzen dituen. ZL-k dituen gelaxka unitatearen datuak zeolita egituren datubasetik (International Zeolite Association, IZA) eskuratu dira, bere balioa 7.5 Å-koa da (2.3. Irudia). Beraz, kontuan hartuz HR koloratzailearen luzera 11.3 Å–koa dela, zeolitaren kanalen 2 gelaxka unitate beteko ditu. DMPOPOP eta PL luzeagoak diren molekulak direnez (16.6 Å eta 21.4 Å hurrenez hurren), zeolitaren kanalen 3 gelaxka unitate beteko dituzte. ZL-k dituen gelaxka unitate molak (n_{gu}), bere masa ($m(\text{ZL})$) eta pisu molekularrarekin ($M_w=2883 \text{ g/mol}$) determinatu da 2.1. Ekuazioa erabiliz.

$$n_{\text{gu}} = \frac{m(\text{ZL})}{M_w} \quad (2.1)$$

Berez, behin lagina dauden gelaxka-unitateak (n_{gu} moletan) determinatuta, eta koloratzaile bakoitzak bete dituen gelaxkak (x) ezagututa, ZL laginean koloratzaile bakoitzerako dauden adsorzie guneak ($n_{\text{koloratzaile}}$) determinatu dira (koloratzailearen %100-ko karga teorikoari dagokiona) 2.2. Ekuazioa erabiliz.

$$N_{\text{koloratzaile}} = \frac{n_{\text{gu}}}{x} \quad (2.2)$$

Beraz, gehitu den koloratzaile kantitatea bete nahi diren adsorzie guneen arabera estimatu da. Fluoroforoak zeolitaren kanaletan sekuentzialki gehitu nahi direla kontuan hartuz, bigarren eta hirugarren koloratzaileentzat lekua uztea ezinbestekoa da lortu nahi den energia transferentzia egoteko. Hau jakiteko, laginean dauden kanal
kopurua (N_{kanal}) ezagutzea beharrezkoa da, bere diametroarekin (d) determinatuen dena 2.3. Ekuazioa erabiliz.

$$N_{\text{kanal}} \approx 0.265 \cdot d^2$$ (2.3)

2.2.3.3. Koloratzaileen dopaketa L zeolitan

2.3. TEKNIKA INSTRUMENTALAK
Teknika instrumentalen artean, batez ere absorbzio eta fluoreszentzia teknika espektroskopikoak, eta mikro-espektroskopia fluoreszentzia erabili dira lagin solido zein likidoen ezaugarri fotofisikoak aztertzeko.

\[
\log \left(\frac{I}{I_0} \right)_\lambda = A_\lambda = \varepsilon_\lambda \cdot \alpha \cdot I
\]

(2.4)

Non I₀, λ uhin luzeran laginean induzitutako argi intentsitatea den; I, λ uhin luzeran laginean zehar transmititu den argi intentsitatea; A₀, λ uhin luzerako absorbantzia den; \(\varepsilon_{\lambda}\), λ uhin luzeraren absorbzio koefizientea; \(\alpha\), kromofoaren kontzentrazioa eta \(I\), bide optikoa den.

2.5. Irudia. Jablonski diagrama sinplifikatua, ezkerreko diagraman elektroi baten kitzikapena azaltzen da, fotoi baten absorbzioa oinarrizko egoeratik (S_0) altuagoa den egoera batetara (S_1 edo S_2) eman ez. Fluoreszentzia, berriz, eskuineko diagraman behatzen da S_1-en oinarrizko mailatik abiatuz oinarrizko egoerara (S_0) bueltatzen denean, fotoi bat askotzen deneko prozesua izanik. Gezi etenak ez-erradiatzaileak diren trantsizio elektronikoak (hala nola konbertsioa) adierazten dituzte eta, gezi arruntak, ordea, trantsizio elektroniko erradiatzaileak.

2.6. Irudia. a) Izpi bikoitzeko UV/VIS Varian Cary 4E espektrofotometroa b) Edinburgh Instruments (FLSP920 modeloa) espektrofluorimetroa
Kitzikatutako egoeraren energia erradiatzaileak ez diren bideengatik disipatu daiteke ere, kasu honetan, fotoien emisioa eman gabe. Hurrengo mekanismoen bidez gertatuko daiteke: beroaren askapenaren bidez (barneko konbertsioa, energia mailen multiplizitatea berdina bada edo sistemen arteko gurutzaketa, energia mailen multiplizitatea desberdina bada), disolbatzailearen molekulekin interakzioen bidez, beste molekulekin kollisionatzean edo beste kromoforo bati erresonantzia bitartez energia transferitzean. Azken prozesu hau da lan honen gakoa, arestian azaldu den bezala.

Fluoroforo baten etekin kuantikoa (ϕ) fluoreszentzia bezalaigorri diren fotoi kopurua eta molekulak absorbatu dituen fotoi kopuruaren arteko erlazioa da (2.5.Ekuazioa).

\[
\phi = \frac{I_{\text{goritakoko fotoi kopurua}}}{A_{\text{absorbatutako fotoi kopurua}}}
\]

(2.5)

Beraz, fluoroforo baten etekin kuantikoa 1.0 denean, fluoreszentzia moduan igortzen ditu absorbatutako fotoi guztiak.

Fluoreszentziaren etekin kuantikoak kalkulatzeko erroreferentzia moduan koloratzaile bakoitzari dagokion koloratzaile komertzial (ϕ balio ezaguna duena) egokiaek erabili dira. Hauek modu egokia aukeratzeko, kontuan hartu behar da erroreferentziak lagina kitzikatzen duen uhin luzera tartean absorbatu eta laginaren igorpen eremua antzekoa izan behar duela. Esandako hau kontuan izanik, DMPOPOP-aren koloratzailearen disoluzioarentzat, ikuskor eremuaren zonalde urdinean dagoenez, kumarina 1 ($\phi_{\text{ref}} = 0.75$) erabili da etanoletan. Eremu gorriago batean ageri diren PL eta HR koloratzaileen disoluzioentzat, berriz, PM 567 ($\phi_{\text{ref}} = 0.84$) erabili da etanoletan.

\begin{align}
\phi &= \frac{k_r}{k_r+k_{nr}} = k_r \tau \\
\tau &= \frac{1}{k_r+k_{nr}}
\end{align}

Koloratzaile bakoitzaren, zein nahaste bikoteen disoluzioen absortzio eta fluoreszentzia espektroak eta desaktibazio kurbak eskuratzeko kuartzozko kubetak erabili dira. Hala ere, koloratzailearen kontzentrazioaren arabera bide optiko desberdineko kubetak erabili dira. Disoluzio diluituetan (5x10^{-6} M) 1 cm-koko bide optikodun kuartzozko kubetak erabili dira. Kontzentratuago dauden nahasteen (5x10^{-5} M) espektroak neurtzeko, berriz, 1 mm-koko bide optikodun kuartzozko kubeta erabili da, eta azkenik, nahaste kontzentratuaren (5x10^{-4} M) espektroak, 0.1 mm-koko kuartzozko kubetarekin neurtu dira. Azken bi kasu hauetan, fluoreszentzia espektroak konfigurazio frontalean (eta ez angelu zuzenean ohikoa den bezala) neurtu dira, berabsortzio/beremisio prozesuaren eraginak murrizteko.

Lagin solidoen (koloratzailez dopaturiko L zeolita) kasuan, neurketak aurreko espektrofotometroan (FLSP920 modeloa) egiten da. Baina kasu honetan neurketa egin ahal izateko lagin solidoa porta batekin estal da. Horretarako, lehendabizi, hautsaren 1 mg diklorometanotan suspenditu da (1mg/1mL), eta suspensio honen
200 μL xiringatu dira beirazko porta baten gainean, forma zirkularreko patroi bat lortuz. Jarraian, lurruntzen utzi eta behin solidoa sikituta, olio espektroskopikoaren tanta bat gehitu eta bigarren porta batekin estali da, beira-hautsa-olio-beiraz osatutako sandwich-a lortuz (2.7.a. Irudia). Konposite hau egokia da errefrakzio indizeen arteko aldea berdintzeko (airea eta solidoaren artekoa), izan ere, zeoliten kristalek argia sakabanatzen dute eta honek neurketa espektroskopikoak oztopa ditzake.

Koloratzailez dopaturiko L zeoliten fluorescencentzako irudiak koloredun CCD kamera batekin (DP72) ekipaturiko mikroskopio optikoaren (2.7.b. Irudia) bitartez erregistratu dira epi-konfigurazioan (Olympus BX51). Laginen kitzikapena Chroma markako band-pass filtroen bidez burutu da (350/50 and 470/40) eta emisioa cut-off filtroen bitartez (E400LPv2,igorpena 400 nm-tik aurrera bilduz).

Bukatzeko, zeolita kristalen morfologia eta tamaina mikroskopio elektronikoaren bidez eskuratu dira (Scanning Electron Microscope, SEM), UPV-EHU-ko ikerkuntza zerbitzu orokorrean (SGIker) neurtu dena.

2.7. Irudia. a) Beira-hautsa-olio-beiraz osatutako sandwich-a, lagin solidoen propietateak neurteko prestatu den konpositea. b) Mikroskopio optikoa (Olympus BX51).
3. EMAITZAK ETA EZTABAIDA

Hiru zatitan banatzen da. Lehen bi ataletan (3.1. eta 3.2. atalak), aukeratutako koloratzaileen ezaugarri fotofisikoak disoluzioan eta energia transferentzia (FRET) emateko egokiak diren eztabaidatzen da. Izan ere, energia emaile-hartzailen arteko espektroen gainezarpena egon ezean, fluoroforoen arteko ondoz-ondoko energia transferentzia ez da gertatuko, lan honen gakoa dena. Azken atalean (3.3.atala) garatutako material fotoaktiboa (koloratzailez dopaturiko L zeolita material hibridoa) antena artifizial moduan erabili daitekeen edo ez eztabaidatzen da, bere propietate fotofisikoen azterketa sakonaren bitartez.

3.1. KOLORATZAILEEN EZAUGARRI FOTOFISIKOAK DISOLUZIOAN

Azpiatal honetan, 2.2.1. atalean prestatutako koloratzaile disoluzioen ezaugarri fotofisikoak (3.1. Taula eta 3.1. Irudia) aztertzen dira. Emaitza hauei esker, energia emaile-hartzailen arteko energia transferentzia (FRET) posiblea den aurrean egingo da.

Energia hartzaile bezala, berriz, PL32 eta HG30 aukeratu dira. PL-k absorbzio zabala eta intentsua erakusten du ikusgaiko eremu berdean (525 nm inguru, 3.1.A. Irudia). Bere

3.1. Taula. Koloratzaileen propietate fotofisikoak diklorometononat disoluzio diluituak erabilitak (4x10⁻⁶ M): absorbzio (λ⁰₂₅) eta fluoreszentzia (λ⁰₃₅) uhin-luzera maximoak, absorbzio molar maximoa (εₐ₃₅), fluoreszentziaren etekin kuantikoa (Φ) eta erdibizitza denbora (τ).

<table>
<thead>
<tr>
<th></th>
<th>λ₂₅ (nm)</th>
<th>ε₃₅ (10⁴ M⁻¹cm⁻¹)</th>
<th>λ₃₅ (nm)</th>
<th>Φ</th>
<th>τ (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMPOPOP</td>
<td>366.5</td>
<td>3.7</td>
<td>431.0</td>
<td>0.90</td>
<td>1.44</td>
</tr>
<tr>
<td>PL</td>
<td>526.0</td>
<td>8.7</td>
<td>534.0</td>
<td>0.71</td>
<td>3.79</td>
</tr>
<tr>
<td>HG</td>
<td>511.5</td>
<td>1.9</td>
<td>583.0</td>
<td>0.72</td>
<td>9.35</td>
</tr>
</tbody>
</table>

Aukeratutako energia emaile-hartzaile koloratzaileen bikoteak energia-truke prozesua (FRET) ahalbidetzeko, beste baldintza batzuen artean, emailearen emisio eta hartzailearen absorbzio espektroa gainezarrita egon behar direla da. Baldintza hau ezinbestekoa da momentu dipolarren arteko elkarrekintza egoteko eta energia trukea espazioan zehar (“through space”) egoteko.⁹ DMPOPOP-PL (3.1. A. Irudia) eta

Ondorioz, lortutako emaitzei erreparatuz, koloratzaile bikoteek argi sorta desberdina baina osagaria xurgatzen dutela egiaztatu da. Beste alde batetik, absorzio ahalmen (absorptzio molarraren bidez neurtzen dena, 3.1. Taula) oso altua dutela ikusi da (gutxi gorabehera > 20000 M⁻¹ cm⁻¹), eguzki erradiazioa eraginkor batean xurgatzeko ezinbesteko baldintza dena, eta etekin kuantiko fluoresentza %70-a baino altuagoa da kasu guztietan (3.1. Taula), beraz,igorritako argia distiratsua izango da, material fotoaktiboen betebeharri erantzuna eman ze.

3.1. Irudia. DMPOPOP-aren, PL-ren eta HG-ren absorzio (lerro lodia) eta fluoresentzia (lerro fina) espektro normalizatua diiklorometanotan. Irudiak emaile(E)-hartzaile(H) bikoteen arabera antolatu dira. A) DMPOPOP(E) vs PL(H) B) DMPOPOP(E) vs HG(H). Marra beltzez gainjarten espektuala adierazi da, emailearen emisioa eta hartzalearen absorzioaren artean energi-trukea (FRET) ahalbidetzen duena.
3.2. ENERGIA-TRUKEA DISOLUZIOAN

![Diagrama de FRET](image.png)

3.2. Irudia. Koloratzaileen nahasteen A) DMPOPOP – PL eta B) DMPOPOP – HG fluoreszienia espektro normalizatuak (emailearen emisioan) kontrolentasun diklorometanotan. Nahasteen absorbzio espektroak (goikaldeko espektroak) ere erakusten dira kitzkapena (λ_{exc}) emalearen absorbzio gunean gauzatu dela adrenalako.
FRET prozesua gertatzen den egiaztatzeko, energia emai le moduan jokatzen duen koloratzailea (DMPOPOP-a bi kasuetan) selektiboki kitzikatu da, hau da, energia emai leak soilik xurtagatzen duen uhin luzera batean kitzikatu da nahastea, energia hartzailea (PL edo HG) kitzikatu gabe (3.2. Irudia goikaldeko espektroak).

Beraz, bikote hauen disoluzioak energia transferentzia ahalbidetzeko apropo sak direla frogatu da, ondorioz, aukeratutako koloratzaileak hautagai egokiak izan daitezke antena artifizial moduan joka dezakeen material fotoaktiboa (koloratzailez dopaturiko L zeolita material hibridoa) garatzeko.
3.3. ENERGIA-TRUKEA ZEOLITAREN KANALETAN

Koloratzaileak ondo barreiatu dira zeolitaren kanaletan zehar, koloredun hauts fluoreszenteak lortuz, fluoreszentziako irudietan ikus daitekeen moduan (3.3. Irudia).

3.3. Irudia. DMPOPOP (ezkerra), PL (erdian) eta HG-z (eskuina) dopatutako L zeolitaren absortzio eta fluoreszentzia espektro normalizatuak. Espektroen atzean ageri diren argazkiak koloratzaile bakoitza zeolitan dopatzean eskuratu diren kristalaren emisio irudiak dira, fluoreszentziako mikroskopiaren bidez erregistratuak.

Fluoroforoak zeolitaren barnean (3.3. Irudia) eta disoluzioan (3.2. Irudia) daudenean lortu diren ezaugarri espektroskopikoak alderatzen badira, oso antzekoak direla ikusi daiteke. Beraz, koloratzaileak temperatura altuko adsortzioaren bitartez dopatu ondoren (2.2.3.3. atala) haien propietate fotofisikoak orokorrean mantentzen direla ziurtatu da kanaletako ingurune zurrun berrian. Agertzten diren aldaketa txikiak ingurune berriak duen izaera desberdiniari (zurruntasuna, polaritatea) esleitu
daitezke. Hori dela eta, aldez aurretik imidazolarekin egindako katioi-trukaketa (2.2.3.1. atala) ezinbestekoa da azido-base orekak ekiditeko eta azken hauek eragin dezaketen aldaketa fotofisikoak saihesteko. Aipatzekoa da, ingurune berri honen ondorioz koloratzaileen arteko distantzia oso txikia dela, eta koloratzaileen gertutasun honek interakzio intermolekularrak (adibidez agregazioa) eragin dezakeela. Hala ere, ez da banda berrien presentziarik detektatu ez absorbzioan (agregatuak aldaketak nabarmenak sortu dezakete bandaren itxuran) ezta fluoreszentzian ere (antolaketaren arabera agregatu batzukigorlek izan daitezke). Ondorioz, koloratzaile bakoitza zeolitaren barnean dagoenean, bere ezaugarri fotofisikoak mantentzen dituela egiazatuko da. Beraz, L zeolitak jokatzen duen eginkizuna berebiziko garrantzia du, izan ere, bere poro eta kanaletan hautatu diren koloratzaileak barneratzeko adina leku dago, baina agregatuak ez ditu eratzen uzten edo behintzat ez ditu barneratzen uzten hain bolumen handiagatik.

ZL-HG-ren kasua, berriz, salbuespena da. HG zeolitaren kanaletan dagoenean, banda espektralek lerrokatze batokromiko nabarmena jasaten dute (3.4. Irudia lerro lodiak) HG disoluzio ingurunean (lerro etenak) dagoen egoerarekin alderatzen bada. Bibliografian portaera hau berresten duen joera argitaratuta dago, koloratzaile honen bandak ingurune solido eta zurrunetan gorrika desplazatzen direla baieztatuz.

3.4. Irudia. HG-ren absorbzio (gorria) eta fluoreszentzia (morea) espektro normalizatutak zeolitan eta disoluzioan (lerro etenen bidez adierazita).
Egoera berri honen aurrean, materialaren diseinua hurrengo moduan burutu da (2.2.3.3. atalean zehaztu den moduan). Lehendabizi, azken energia hartzailoa izango den HG-ren txertaketa egin da (bere uhin luzera tarteari dagokion koloratzailengandik jasoko duen argia Igorriko duena eremu gorrian), ondoren, jokabide bikoitza izango duen PL-a sartu da, energia hartzaila moduan eta aldi berean emaile bezala jokatuko duena, eta azkenik, energia emaile nagusia den DMPOPOP-a gehitu da (2.4. Irudia). L zeoliten poro estuek hautatutako koloratzailen antolaketa sekuentziala eta ondoz ondo PL FRET prozesua (3.5. Irudia) beratzen dute. Era berean, kanalen zurruntasuna dela eta molekulen nahasketa ekiditen da, aurreko ordena eta antolaketa mantenduz, hau da, DMPOPOP-a zeoliten kanalen eztetan, HG erdian eta bien artean PL kokatuz (2.4. Irudia).

3.5. Irudia. Garatutako antena-materialean gertatzen den ondoz-ondoko energia-truke (FRET) prozesu sinplifikatuaren irudi eskematikoa.

Aurreko bikotea ondo dabilela ziurtatu ostean, antena artifizial moduan joka dezakeen material hibridoa osatzeko azken osagaia baneratu da, DMPOPOP-a hain
zuzen ere. PL-ren karga desberdina (%17, %30 eta %40-koa dena hurrenez hurren) duten 3 material hibrido diseinatu dira, beste bi koloratzaileen karga konstante mantenduz, DMPOPOP-a %30-etan eta HG %4-ean. 3.2. Taulan antena sistema moduan jokatuko duten materialen ezaugarri nagusiak laburbiltzen dira, hala nola, barneratuta duen koloratzaile bakoitzaren karga eta emaile/hartzaileen arteko erlazioak. Kasu guztietan absorzio espektroak neurterakoan hiru bandar bereizgarri behatu dira, koloratzaile bakoitzaren bandak hain zuzen ere, hauen presentzia egiaztatuz. Eremu urdinean DMPOPOP-a, berde-horian PL eta gorrian, berriz, HG. Beraz, koloratzaileak kanaletan zehar modu eraginkorreesan barreiatzen direla esan daiteke, beraien ezaugarri espektroskopikoak mantenduz. Ondorioz, garatutako material hibrido hauek argia xurgatzeko ahalmen ezin hobea dutela esan daiteke. Izan ere, alde batetik, banda ahaltsua dute, banda bakoitzaren absorzio molarrak altuak direlako, eta bestetik, zabala, banda horiek ultramore-ikusgai eremu osoan zehar hedatzen direlako. Beraz, ikusgai eremu osoko argia xurgatzeko ahalmena izango dute.

3.2. **Taula.** Hiru antena-materialak eraikitzeko erabilitako koloratzaileen kargak eta emaile(E)/hartzaileen(H) arteko erlazioak kasu bakoitzeko.

<table>
<thead>
<tr>
<th>Antena-materialak</th>
<th>DMPOPOP (E1) (%)</th>
<th>PL (H1/E2) (%)</th>
<th>HG (H2) (%)</th>
<th>E1:H1/E2:H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>17</td>
<td>4</td>
<td>7.5:4.3:1.0</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>30</td>
<td>4</td>
<td>7.5:7.5:1.0</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>41</td>
<td>4</td>
<td>7.5:10.3:1.0</td>
</tr>
</tbody>
</table>

3.6. Irudia. HG (4) - PL (17, 30, 41) - DMPOPOP (30) dopaturiko L zeolita 3 laginen fluorescentzia espektroa, eta emisio irudiak (barneko leerroak eskala adierazten du, 20 µm) 360 nm-tan kitzikatuz (DMPOPOP-k sollik xurgatzen duen tartean). Koloratzaila bakoitzaren fluorescentzia espektroak zeolitan (lerro ez-jarraia, DMPOPOP-a urdinez, PL-a berdez eta HG-a morez) alderatzeko gehitu dira.

Energi-trukearen eraginkortasuna txikiena duen materialaren kasuan (41% PL), berriz, kristalen emisioa laranja kolorekoa da. Beraz, zenbat eta energia-trukea eraginkorragoa izan, materialaren igorpen kolore gorri distiratsuagoa izango du. Joera hau bibliografian bildutakoarekin bat dator, izan ere, antena efektua eraginkorra izateko, emalieen proportzia hartzailearekiko handiagoa izateak energia-trukearen eraginkortasuna hobetzen du.33

Beraz, diseinatutako material fotoaktibo hauek azaltzen duten antena efektuaren bitartez, argia edozein ultramore-ikusgaiko gunean xurgatuta ere, HG-ren emisio gorria berreskuratzen da, ondoz-ondoko FRET prozesuari esker.
4. ONDORIOAK

L zeolitaren nanokanalak koloratzaile egokiekin dopatzea estrategia aproposaka da antena artifizialak garatzeko. Ingurune zurrun honek koloratzaileak euren artean hurbiltzen ditu energi-trukea areagotuz, bestetik, fluoreszentzia desaktiboa dezaketen agregazioa bezalako fenomenoak ekiditzen ditu, eta gainera, molekulak orientazio eta distribuzio finko batean ordenatzen ditu.

5. BIBLIOGRAFÍA

